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Dynamics of Structures,

Workshop Programme

Wednesday, September 14, Lecture Room A217

15.00-17.00

19.30-7

Presentation of laboratories and tests:
Structural Lab.: Damage detection and fatigue.
Geotechnical Lab.: Dynamic triaxial tests.
Hydraulics Lab.: Dynamic wave loads.

Dinner at restaurant Kniv & Gaffel, Maren Turisgade 10, 9000
Aalborg.

Thursday, September 15, Lecture Room A217

09.00-09.05
09.00-09.30

09.30-09.45

09.45-10.00

10.00-10.15

10.15-10.30

10.30-11.00

11.00.11.30

11.30-11.45

11.45-12.00

12.00-12.15

12.15-12.30

12.30-13.30
13.30-14.00

14.00-14.30

14.30-14.45
14.45-15.00

15.00

Welcome by Steen Krenk, Aalborg University

Lessons from Model Tests with Cyclic Loading of a Gravity Structure
on Very Dense Sand, Knut Andersen, Norwegian Geotechnical Institute
Simplified Response Analysis of Guyed Masts according to EC3 Part
3.1, Mogens G. Nielsen, Rambgll, Hannemann & Hgjlund A/S

A Non-Linear Mathematical Model For Vortes Shedding Forces On Fle-
xible Structures, Allan Larsen, COWIconsult A/S

Identification and Damage Detection on Structural Systems, Rune
Brincker, Aalborg University

Damage Assessment of a Steel Lattice Mast under Natural Excitation,
Poul Henning Kirkegaard, Aalborg University

Coffee

Dynamic Problems Related to Coastal Structures, Hans Falk Burcharth,
Aalborg University

Development of Pore Pressure and Material Damping during Cyclic
Loading, Lars Bo Ibsen, Aalborg University

Linear and Quadratic Lanczos Algorithms, Steffen Vissing, Aalborg
University

Prediction of Global and Localized Damage and Future Reliability for
RC Structures Subjecr to Earthquakes, Seren R.K. Nielsen, Aalborg
University

Perturbation Solutions for Random Linear Structural Systems Subject to
Random Excitation using Stochastic Differential Equations, Seren R.K.
Nielsen, Aalborg University

Lunch

Measured and Predicted Response of an Offshore Gravity Platform, Ivar
Langen, Hogskolesenteret i Rogaland, Norway

Dynamic Aspects of Bridge Piers with Plane Base Plate, Helge Grave-
sen/Ole A. Madsen, Carl Bro Civil and Transportation A/S
Man-Induced Vibrations, Jeppe Jonsson, Aalborg University

Fatigue and Crack Propagation, Thomas Cornelius Hansen, Danish
Technical University

Closure
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LESSONS FROM MODEL TESTS WITH CYCLIC LOADING OF
-A GRAVITY STRUCTURE ON VERY DENSE SAND

by

Knut H. Andersen, Norwegijan Geotechnical Institute

Model testing has in the past been successfully used to verify the
foundation design procedures for cyclically loaded structures on clay.
Model testing of cyclically Toaded structures on sand has been Timited,
however, and the foundation design procedures for cyclically Toaded
structures op sand have not been verified to the same extent as for
structures on clay.

The main reasons why model testing of cyclically Toaded structures on sand
has been Timited, are the needs to simulate the gravity stresses and the
drainage conditions in the prototype correctly in the model. The gravity
stresses can be modelled in centrifuge tests, but the drainage will occur
much more rapidly in a centrifuge model than in a prototype. Pore pressure
generation due ta cyclic loading and negative pore pressures due to
dilatancy are then not reproduced correctly.

Recently Delft Geotechnics developed a viscous fluid that can be used as
pore fluid in variocus types of soil instead of water. This pore fluid
enables scaling according to the similitude equatiuns that must he
fulfilled to perform realistic centrifuge model experimenis of cyclically
loaded structures on sand. S$pecial triaxial and oedometer tests were run
te show that the viscous pore fluid does not influence the engineering
properties of the sand.

In a cooperative project between Delft Geotechnics and the Norwegian
Geotechnical Institute, two pilot model tests were performed on an offshore
gravity platform on very dense sand to demonstrate the feasibility of the
centrifuge modelling technique with the new pore fluid. In cne test the
platform was loaded monotonically, and in the other test it was Toaded with
& cyclic load history representative for a North Sea design storm. The
tests were instrumented with piezometers and total stress devices at the
base. Displacement transducers defined all displacement components, and a

load cell attached to the hydraulic actuator recorded the applied Toading
history.

Even 1T these first itests were meant as pilot tests to demonstrate the
feasibility of the centrifuge modelling technique, they provided valuable
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data that have been used to check the geotechnical calculation procedures.
The interpretation concludes that the bearing capacity and the displace-
ments of offshore gravity platforms on very dense sand can be reasonably
well predicted. Static and cyclic triaxial and direct simple shear
laboratory tests are needed to provide the soil parameters in the
calculations. The measured bearing capacity was higher than what is
normally assumed in design. The main reason is that the high negative pore
pressures induced by dilatancy in very dense sand normally has not been
fully relied on in practical design. The resuTts indicate that it may be
the displacements rather than the bearing capacity that will govern the
allowable cyclic Toads on a cyclically loaded structure on very dense sand.

The results of the mode]l tests are described in:

Allard A., K.H. Andersen and J. Hermstad (1994)

“Centrifuge Model Tests of a Gravity Platform on Very Dense Sand; Testing
Techniques and Results™. Conference on Behaviour of Offshore Structures,
B0SS*94, Boston 1994, Proceedings Vol 1, pp 231-254.

Andersen K.H., A. Allard and J. Hermstad (1994)

"Centrifuge Model Tests of a Gravity Platform on Very Dense Sand;
Interpretation™. Conference on Behaviour of Qffshore Structures, BOSS’94,
Boston 1994, Proceedings Vol 1, pp 255-282.
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CENTRIFUGE MODEL
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Cen.tri'fuge 'acceléra’cion: 300g

I

Scaling: - length: 1/300
= time: 1/3007

viscous fluid



DYNAMICS OF STRUCTURES

Aalborg University, Denmark, September 14-15, 1994,

SIMPLIFIED RESPONSE ANALYSIS OF GUYED MASTS
ACCORDING TO EC3 PART 3.1

Mogens G. Nielsen
Ramball, Hannemann & Hgjlund A/S
Bredevej 2, DK-2830 Virum, Denmark.

INTRODUCTION

The response of a guyed mast is rather difficult to analyze due to the non-linearities
of the structure and the dynamics of the wind.

Guyed masts differs from towers by having non-linear deflections and several low
eigenfrequencies, which makes the stochastic analysis very extensive.

Over the history a lot of different methods has been used for analysing guyed masts
in order to make a simplified model of the dynamic response. Some of the methods
is described below.

At the present time work is being done to make an European code for towers and

masts: EUROCODE 3: Part 3.1 (2] and Rambell, Hannemann & Hgjlund
participates in this work.

ANALYSIS ACCORDING TO THE IASS-RECOMMENDATION

The method proposed in the IASS-recommendation for guyed masts [1] is based on
patch wind loading in order to model the dynamics of the wind.

The principle of the method is to find the worst combination of the response from
varying the wind pressure in some patches over the height of the guyed mast
between the mean wind pressure and the maximum wind pressure. The maximum

wind pressure is equal to the gust wind pressure except for the cantilever part where
it is the gust wind pressure increased by 30%.

The patches are based on the spans between adjacent guy levels and over the

cantilever if any. The procedure requires several static wind analyses for each wind
direction considered in order to get the maximum response.

ANALYSIS ACCORDING TO THE RH&H PROCEDURE

Rambell, Hannemann & Hejlund has designed guyed masts for almost 50 years and
has introduced a new patch wind method which in principle is as the procedure in



the JASS Recommendation. Though the method is changed in order to improve the
model of the effect of the non-linearities.

The wind pressures in the combination of the patches are:
Aot = Qe + K (Ggust = Gmens)
Qred = Gimean = K (Qgust = Grmcan)
where qg,, is the gust wind pressure and g, is the mean wind pressure. k is a

factor which takes the dynamics of the wind and the structure into account, and k is
1.0 for normal span and 2.0 for a cantilever.

Fig 3.1 Application of patch loads according to RH&H procedure.

ANALYSIS ACCORDING TO EC3 PART 3.1

The method in the draft of EC3, Part 3.1 [2] is based upon a method proposed by
Davenport and Sparling [3]. A similar method is also used in BS 8100 [5].

The principle of the method is to model the response from the wind as in the
stochastic method with a mean and a fluctuating part.

Using this method the peak dynamic response is expressed as:

chak = ch-m i Fﬂuctma{i.ng



Where the F,,.,, is determined as the response, when structure is exposed to the mean
wind load.

The fluctuating response, Fu.u, is determined as the root sum of the squares of the
effects of the patch loads:

N
= 2
Fﬂucmaa'ng - ;FPL:‘

where Fp; is the effect of the i’th patch load.
The fluctuating part of the wind pressure is determined by:
QE‘lucma%ing = g p Iv sz

where p is the density of the wind, I, is the turbulence of the wind, V_ is the mean
wind speed and g is the gust factor. G is set to 3.5.

The patches in this method differs from the patches in the IASS method (See fig.
4.1).

Mean wind i=1 E 3 ¥ 3 g
loading

Patch Loads

Fig 4.1 Application of patch loads according to EC3, Part 3.1.



STOCHASTIC ANALYSIS

Rambell, Hannemann & Hejlund has developed a program MAINMAST to make
stochastic analyses of guyed masts [6].

The wind load is separated into the mean wind load, the turbulent load and the
aerodynamic load, and it is assumed that the turbulent part of the wind velocity and
the velocity of the mast are small compared to the mean wind velocity.

The expected extreme response is found by the traditional equation:
Fextr = ch.m i_ g Or

Where the F_,, is determined as the response, when structure is exposed to the mean
wind load.

G is the peak factor and o is the standard deviation of F. o is determined from the
equilibrium with the mast exposed to the mean wind and is found by an integration
over frequency and a double integration over height of the structure. The wind load
is based on the cross spectrum of the turbulent wind.

Using this method it is assumed that the deflections are linear from the equilibrium
with the mean wind load.

COMPARISON BETWEEN THE DIFFERENT ANALYSIS

During the work of the EC3 part 3.1 several comparisons between the above
mentioned methods have been undertaken and it seams as though the traditional IASS
patch wind and the EC3 part 3.1 method is on the safe side compared to the
stochastic method.

One of the mast that has been analyzed is the Danish 300 m mast and here the IASS

patch wind method is very much on the save side if the gust wind speed is based on
the EC1 values.

The mast was designed for the wind speeds defined in DS 410, and where the gust
wind speed is relatively small compared to the mean wind speed. Comparing the
results from the analyses based on these with the results from the stochastic analysis
gives a relatively good agreement.

Fig. 6.1 shows a comparison for the Danish 300 m mast between the overall extreme
member forces between the stochastic analysis ("Full Dynamic"), the BS 8100 patch
wind analysis, the IASS patch wind analysis and the EC3 part 3.1 patch analysis.
The mast has been analyzed for three directions of the wind. From fig. 6.1 it can be
seen that the that the EC3 part 3.1 is very close to the stochastic analysis and mostly

on the safe side. For the diagonals near the guy levels the forces are very much on
the safe side.
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A Non-Linear Mathematical Model For Vortex
Shedding Forces On Flexible Structures

Allan Larsen
COWIconsult A/S, Parallelvej 15, 2800 Lyngby, Denmark

Abstract

The present paper (condensed form) proposes a one degree of freedom
(1DOF) non-linear model of self limiting cyclic fluid loads for application in Finite
Element Method analyses of light flexible structures subjected to vortex shedding
excitation under lock-in conditions. Being empirical by nature, the model includes
three independent parameters to be determined from response tests with repre-
sentative fluid-elastic scale models or prototypes. The presentation will evaluate
the proposed load / response model against other 1DOF empirical vortex shedding
models which have found some acceptance in structural engineering and will
discuss methods for parameter identification from measured response data.

1. INTRODUCTION

Flexible and lightly damped slender structures are often found to be prone
to vortex-induced vibrations when submerged in a stream of fluid. Notable
examples includes cable supported bridges, chimneys and towers exposed to wind
and marine risers, pipelines, poles and taut cables exposed to ocean current. The
bluff shape of most practical structural cross sections promotes formation of
periodic and coherent von Karman type "vortex streets" in the wake of the
structure. Large amplitude resonant vibrations may occur in speed ranges of the
fluid flow where the vortex shedding action locks on to one of the cross flow
vibration modes of the structure. At this condition, commonly referred to aslock-in,
vortex-induced vibrations are found to be self-limiting, amplitude dependent and
highly sensitive to the density of the fluid and the mass density and the inherent
damping level of the structure.

The Finite Element Method has received broad acceptance as the foremost
analysis toolin contemporary structural engineering. FEM analyses allow detailed
computations of the overall response and stress distributions in critical structural
members subjected to deterministic or random loads. Hence FEM computations
appear as the logical choice for assessment of vortex shedding action on slender
structures and for evaluation of alternative damping measures intended for
suppression of excessive vortex induced responses.

The objective of the present paper is to establish a suitable forcing function
model which recognizes the non-linear amplitude dependent character of the vortex
shedding action. Also the model must be capable of reproducing the functional
relationship between response and mass density / structural damping as estab-

DYNAMICS OF STRUCTURES, Aalborg University, Denmark, September 14-15, 1994 1



lished through physical testing of a given structure submerged in a fluid flow.
Finally, the proposed model must comply with the load generation facilities
commonly available in commercial FEM codes.

2. 1DOF VORTEX SHEDDING MODELS IN THE LITERATURE

Structural loads are usually applied in dynamic FEM analyses as external
time dependent forcing functions of a predefined magnitude and are thus indepen-
dent of the structural response. Scruton [1] discussed use of this approach (the
simple forced lift oscillator at resonance) for mathematical modelling of cross flow
forces due to vortex shedding. He concluded that the resulting hyperbolic rela-
tionship between vortex induced response and structural damping was not con-
sistent with wind tunnel observations of cylinders oscillating at finite amplitudes.
The resonant forced lift oscillator model was later applied by Smith and Wyatt [2]
as a convenient framework for correlation of wind tunnel test results obtained in
connection with drafting of the proposed british design rules for bridge aerodynam-
ics. The hyperbolic relationship between structural response and structural
damping, n = 1/{ is thus reflected in empirical formulae given in the above
mentioned design rules.

Amplitude dependent loads may be introduced in FEM models as negative
damping elements (dashpots) provided the dynamic loads can be expressed in
terms of the local vibration velocity of the structure. In a review of vortex induced
flow phenomena, Marris [3] proposed to express vortex induced cross flow forces
at lock-in as a cubic function of the structural vibration velocity. For simple
harmonic motion the cubic model may be rearranged to yield a linear forcing term
combined with a non-linear amplitude dependent restoring term known from the
classical Van der Pol Oscillator. The latter form was adopted by Scanlan [4] for
projection of bridge section model test results to prototype responses. The Van der
Pol Oscillator concept was later adopted by Vickery and Basu [5], but within the
framework of stochastic vibration theory, for assessment of vortex induced
crosswind vibrations of chimneys and towers mainly of circular cross section.

3. GENERALIZED Van der POL MODEL FOR VORTEX-INDUCED
FORCES

The functional relationship between response and structural damping at
lock-in is not satisfactorily accounted for by the 1DOF resonant forced lift oscillator
and the classical Van der Pol oscillator models. Hence a generalization of the Van
der Pol model for the cross flow force F, due to vortex shedding action is proposed
which allows improved adaption to experiments:

Fo=nfC1-elnP)i (1)

DYNAMICS OF STRUCTURES, Aalborg University, Denmark, September 14-15, 1994 2



where 1, v arethe structural displacement and velocity made non-dimensional by
the cross flow dimension of the structure. p = pD?%m is mass ratio, f the oscilla-
tion frequency and C,, €, v are non-dimensional fluid dynamic parameters to be
determined from measurements of structural response under representative flow
conditions. In FEM applications an alternative expression for F is useful:

T S | (2)
QRv+1)RrH*

Expressions (1) and (2) are equivalent provided the vortex induced response is
harmonic with a well defined frequency f, which often is the case in practical
applications. The non-linear forcing function given by (2) is readily modelled by
non-linear dashpot elements available in a number of commercial FEM codes.

4. STRUCTURAL RESPONSE VERSUS STRUCTURAL DAMPING

The numerical values of the fluid dynamic coefficients C,, ¢, v in (1) or (2)
may be determined from response measurements on an elastic model of the
structure exposed to representative flow conditions. A common type of fluid-elastic
model is the section model - a rigid portion of the structure supported by linear
springs.

It is assumed that the structural dynamics of the physical model in absence of
flow is well approximated by the usual 1DOF free oscillator accounting for
structural stiffness, inertia and viscous damping. Introducing (1) to account for the
vortex shedding action, the equation of motion for the model in presence of flow,
becomes:

fi+pfCA+@ufPn=pfC(1l-¢en™ 7 (3)

For harmonic resonant motion n = 7 cos(2nft) the inertia and stiffness terms
cancels out leaving the response to be governed by damping () terms only. The
steady state response amplitude is thus obtained as:

N = |1 - L
Ie(v)e C,

where the trigonometric integral

1
2v (4)

Ie(v) = foznsinz(p) |cos(p)|**dp in general must be evaluated numerically.

Sc = {m/pD? is a modified Scruton Number, a non-dimensional quantity propor-
tional to the structural mass, damping and the mass of displaced fluid.

DYNAMICS OF STRUCTURES, Azlborg University, Denmark, September 14-15, 1994 3



Fig. 1 displays normalized steady state response amplitudes n/n, as
function of the ratio of structural damping to aerodynamic damping Sc¢/C_, for
representative values of the power multiplier v = 0.25, 0.5, 1.0 and 1.5. It is noted
that v governs the curvature of the response curves. S¢/C, = 1 defines the value
of the Scruton Number necessary to eliminate vortex induced responses.Sc = 0
defines the limiting amplitude n, = (n/lc(v)e)"® used for normalization of the
response. n/n, = 1 would be sustained for the theoretical case of vanishing
structural damping or structural mass.

Presence of the trigonometric integral Ic(v) in (4) which requires a priori
knowledge of the power multiplier v appear slightly awkward. nflc(v) may
however be approximated by a linear expression 3v +1. This approximation which
is accurate within 8% in the interval 0 < v < 1 spanning the range likely to be
encountered in practical applications.

> .o

T
o el md
=~

Sc/C,

Fig. 1 Non-dimensional steady state response for the proposed generali-
zed Van der Pol model for selected values of the power multiplier.

5. PARAMETER IDENTIFICATION AND APPLICATION

The steady state response equation (4) defines the functional relationship
between expected structural response, the Scruton Number and the three fluid
dynamic coefficients C,, e, v sought after. Equation (4) suggests that determina-
tion of the numerical values of C, &, v may be obtained by measuring the steady
state vortex induced at a minimum of three different Scruton Numbers. The fluid
dynamic coefficients are then identified by matching the measured response to
equation (4).

DYNAMICS OF STRUCTURES, Aalborg University, Denmark, September 14-15, 1994 4



A least squares method may be adopted for matching of experimental data
to the generalized Van der Pol response equation (4). The least squares fit is
effectuated through an error expression comprising the sum of squares of differ-
ences between measured responses n(Sc) and predicted responsesn(Sc,C,,e,v)
according to (4):

S8Q = Y [nLSc) - n(Sc,Cpef (5)

The solution proceeds by establishing the values of C, ¢, v for which the
sum of squares (5) is a minimum. A task accomplished by standard data reduction
routines.

Fig. 2 offers a graphical presentation of the proposed non-linear response
model (full line) fitted to experimental data for a circular spring supported cylinder
published by Goswami et al [6]. The figure also includes a fit of the non-linear
model proposed by Marris [3] and Scanlan [4] which assumes v = 1.

0.1 T T T 1 T
n
0.05 —
0

1 1 2 2.5 3 3.5 4

{m

Scruton Number : ;
pD
Fig. 2 Comparison of 1DOF resonant response models propsed by the

present author and Scanlan [4] superimposed on experimental re-
sponse data obtained for a circular spring supported cylinder [6].

From fig. 2 it is noted that the predicted generalized Van der Pol response
curve (solid) maintains a slight downward curvature and appear well adopted to
the trend suggested by the experimental data. Response predictions following the
non-linear model proposed by Marris and Scanlan (dash) displays an upward
curvature which is not quite consistent with experimental trends.
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Abstract

A short introduction is given to system idenflcation and damage assessment in
civil engineering structures. The most commonly used FFT-based techniques
for system identification are mentioned, and the Random decrement technique
and parametric methods based on ARMA models are introduced. Speed and
accuracy are discussed. Finally some commenly used damage indicators are
mentioned, and the problem of identifying damage from a set of damage indi-

cators is discussed.

Identification from dynamical response

Identification of physical properties from the dynamic response of structural systems -
often called experimental modal analysis or system identification - is an area where a
huge amount of research has been carried out, and where the interest for research results
and practical applications is still increasing.

The growing interest for these techniques can be explained in different ways. One expla-
nation is that computational possibilities in structural dynamics are getting better and
new structural designs are introduced calling for a better and more detailed knowledge
about the physical properties of the structures and how these properties are affected by
damage and changes in load conditions. Another explanation is that by introduction of
the computer in the measurement system, the possibility of handling large amounts of
data became available, and the pofentia.l of the techniques were revealed.

The many possibilities of practical applications can be illustrated by studying one of the
latest conference proceedings about experimental modal analysis, for instance one of the
latest IMAC proceedings, see [15]. Only a few examples of applications will be mentioned
here.

One of the first applications of structural dynamic measurement was in the 1940’s where
the problem of describing the loads on aircraft wings was studied and where especially the
problems of flutter gave rise to experimental studies of the dynamical properties of aircraft
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structures. Also, masts, chimneys and wind turbines are examples of structures where
experimental studies of flutter and dynamic wind load might be wanted. Measurements
on offshore structures loaded by sea waves have been performed in many locations for
determination of sea loads and structural response, see e.g. Jensen [6].

Traditionally, identification of structural systems from their dynamical response has been
based on the Fast Fourier Transform, Brigham [4]. The basic ideas were discovered in
the forties by Danielson and Lanczos, [7], but the technique became known by the work
of Cole and Tukey [8] and was implemented in larger scale from the the mid-sixties.

The standard technique is to estimate spectral density functions and fit these functions
with a suitable rational spectrum model, Ewins [5]. Unfortunately, in typical cases in
structural engineering, where the loading is unknown and unperiodic, the estimates based
on this techique becomes biased due to leakage. However, the leakage problem might be

removed by estimating correlation functons instead of spectral density functions, Brincker
et al [13].

Another unparametric technique is the Random Decrement (RDD) Technique, Brincker
et al [13]. The RDD technique is a fast technique for estimation of correlation functions
for Gaussian processes by simple averaging.

The RDD technique was developed at NASA in the late sixties and early seventies by
Henry Cole and co-workers [9-12], just a little later than the development of the FFT
technique.

The basic idea of the technique is to estimate a co-called RDD signature. If the time series
:c(t), y(t) are given, then the RDD signature estimate DXy(T) is formed by averaging
N segments of the time series z(t)

N
bxy(?’) = ;Zﬁt(T—I—tiN Cy(gi) (l)

where the time series y(¢) at the times ¢; satisfies the trig condition Cy(i-')’ and NV is the
number of trig points. The trig condition might be for instance that y(¢;) = a (the level
crossing condition) or some similar condition. The algorithm is illustrated in figure 1.
In eq. (1) a cross signature is estimated since the accumulated average calculation and
the trig condition are applied to two different time series. If instead the trig condition is
applied to the same time series as the data segments are taken from, an auto signature
is estimated.

In figure 2 estimation times are compared for direct estimation of the correlation function
(using the definition), for estimation using the unbiased FF'T and for using the RDD
technique. As it appears, the RDD technique is faster that the FFT, for short estimates,
up to 100 times faster.

The two techniques just mentioned are based on the same idea: to compress the data in
a short interface function and then extract the physical parameters from this function by

fitting an analytical model. However, information will be lost in the data compression
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Figure 1. Determination of the Random Decrement signature.

process, because it is not possible fo contain all the detailed information hidden in the
time series in the estimates of correlation functions or spectral density functions.

Therefore, system parameters estimated from interface functions, will show larger vari-
ance than parameters estimated by effective fitting of models directly to the time series.

When fitting models directly to the time series, "blackbox” models in discrete time like
Auto Regressive Moving Average (ARMA) models or oversized Auto Regressive (AR)
models (also denoted method of maximum entropy) are frequently used, Ljung [1], Sdder-
strom and Stoica [2], Pandit and Wu [3]. These techniques has been developed mainly
for applications in electrical engineering, but they are considered to be very accurate -
in practice the closest one can get to unbiased effective estimators. For applications in
structural engineering se e.g. Jensen [6]. In these techniques the parameter identification
is based on nonlinear optimization and therefore the techniques require a relatively large
computation power. However if the computation time and the time for transferring and
storage of the large amounts of data can be accepted, these techniques will be an obvious
choice.

An ARMA model is a parametric model given by
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Figure 2. Times for calculation of autocorrelation function estimates
by the Random Decrement technique (RDD), the Fast Fourier Transform
(FFT) technique and the direct technique.

y(t) +ary(t —1)+ ...+ an, y(t —na) = e(t) +cre(t —1) +... + cn et — ng)

(2)
where the zero mean Gaussian white noise sequence e(t) is filtered through a filter,
described by the parameters a; and ¢; to give the response y(t). the right-handside is
the autoregressive part (AR), and the left-handside is the moving average part (MA). It
can be shown, that any structural system with n degrees of freedom can be modelled
as an ARMA(2n, 2n — 1) model, Pandit et al [3], i.e., 2n AR parameters and 2n — 1
MA parameters. When the model order has been choosen, and the parameters has been
estimated by non-linear optimization, any system parameter can be calculated by closed
form solutions. Further, since the covariance matrix of the parameter set is estimated

together with the parameter vector itself, confidence limits on any physical parameter
might easily be calculated.

In practice however, the choice between the different techniques is governed by a trade-off
between accuracy and speed, and sometimes it is beneficial to accept a small incease in
variance for a large decrease in the time used in the estimation process.

The difference in estimation time might by quite large. To illustrate the difference the
slowest, but most accurate technique (ARMA) is compared to the fastest possible at the
moment (RDD), figure 3. Eigenfrequency and damping is estimated for a single degree
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Figure 3. Estimation times for different techniques as a function of the
length M of the one-sided auto correlation estimate.

of freedom system. In figure 3 three different curves are shown for the RDD technique,
fitting of the theoretical correlaton function (RDD-FIT), fitting an AR model the the
correlation function estimate (RDD-AR) and using a simple non-parametric technique
to estimate the two quantities (RDD-NP). As it appears the estimation time differ by a
factor of 1000-5000.

Damage Detection

One of the interesting applications of structural system identification is damage detection.
When a specimen or even a large complex structure is damaged, the damage will cause
a change of the dynamic properties. For instance if a structural member is cracked, the
crack will decrease the stiffness and thereby decrease the eigenfrequencies of the structure
and it may increase the damping due to local plasticity and thereby change the energy
flow and the overall damping of the structure.

It is important to emphasize however, that there is no safe way at the moment for an
accurate damage identification. The problem of finding out what kind of changes a certain
damage might cause is usually not a great problem. The opposite problem however, the
problem of identifying a certain damage for a given change of the structural response is
a very difficult task - and at the present time - a problem that has not been solved.
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Figure 4. Result for a cantilever beam with box section (80 x 40 mm).
Upper figures: Variantion of the first and the third natural frequency with
crack position z along the beam and crack lenth a. Lower figures: Experi-
mental results for a certain crack location.

In practise therefore, the application of these techniques is limited to cases where it is of
importance to know whether or not significant structural changes has taken place, and if

some changes has taken place - to be able to indicate the type and location of a possible
damage.

A fine rewiev of the different damage indicators is given by Rytter [14]. Some examples
will be given here.

The simplest and most important damage indicators are may be the changes of the
eigenfrequencies. The eigenfreqencies can easily be measured with large accaracy, and if
the eigenfrequencies are sensitive to the kind of damage in quistion, they might be well
suited as damage indicators. The sensitivety is illustrated in figure 4.

Also the damping ratios might be used as damage indicators. In figure 5 is shown a
phase-plan plot for a beam in the undamaged and the damaged state (a small crack
develloped). The test results show clearly a large increase in damping.

If one has estimated a large number of damage indicators d; together with their corre-

sponding standard deviations ¢;, a simple unified damage measure might be defined hy
taking the sum
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Figure 5. Phase-plan plots for a cantilever beam with box section (80 x
40 mm) in the undamaged state (left) and in the damaged state (right).
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where d;o is the damage indicators corresponding to the undamaged (virginal) state.

Mode shapes might be included. One way to do this is to use the modal assurance
criterion calculating a socalled MAC matrix for two eigenvectors. A socalled COMAC
vector might also be calculated. Some experimental results are shown in figure 6.

A certain class of damage indicator are of great importance however. This is the class of
parameters indicating an increase in the non-linear behaviour of the structure. Consider
the phase-plan plot in figure 5. The damaged beam show a clear unsymmetry in the phase
plan plot indicating a change in stiffness when the bending change sign. The phenomenon
is due to the opening and the closing of the crack. Other non-linear indicators are new
peaks appearing in the power spectrum and changes in the response statistics.

The most important findings in the latest year is probably the use of neural networks
in the damage detection problem. Neural networks are computational models loosely
inspired by the neuron architecture and operation of the human brain. Many different
types of neural networks exist. Among these the multilayered neural network trained
by means of the back-propagation algorithm are currently given greatest attention by
application developers.
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Figure 6. Result for a cantilever beam with box section (80 X 40 mm).
Left figure: MAC values for mode 1 and 2. Right figure: COMAC values

for mode 1 and 2.

When the neural networks are used in damage detection, the networks are trained by
introducing different kinds of damage in the structure and calculating the corresponding
changes in the actual damage indicators. Then, after training the network, it might be
used for indifying the kind of damage for a given set of damage indicator obtained from
measurements. The method has proven to be successfull on real structures, Kierkegard
et at [15], Rytter et al [16].
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Abstract: In this paper the possibility of detecting and locating damages in a 20 m high steel lattice
mast subjected to natural excitation has been investigated. For the damaged mast seven different
damage states were considered. In these damage states a damage was assumed in one of the lower
diagonals. These diagonals were cut and provided with a bolted joint implying that a damage could
be simulated. Based on 20 periodical measurements during 6 months the sensitivity of the modal
parameters, identified by an ARMA-model, to environmental conditions such as wind-direction, wind-
speed and air-temperature have been investigated. These sensitivities have been compared with the
changes of modal parameters due to a damage. It is found that the measured natural frequencies vary
less than one per cent while the measured modal damping ratios vary more than twenty per cent due
to different environmental conditions. The measured bending natural frequencies and the measured
rotational frequency approximately decrease few per cent and more than ten per cents, respectively,
due to a damage corresponding to a removal of one of the lower diagonals. The results also show that
a neural network trained with simulated data is capable for detecting location of a damage in the steel

lattice mast when the network is subjected to the experimental data.

Keywords. System identification, ARMA-model, damage detection, civil engineering application,
neural networks.

1. Introduction

Structural diagnosis by measuring vibrational signals of civil engineering structures is a subject of
research which has received increasing interest during the last decades. The main impetus for doing
vibrational based inspection (VBI) is caused by a wish to establish an alternative damage assessment
method to the more traditionally methods such as e.g. visual inspection. Many research projects
have concluded that it is possible to detect damages in civil engineering structures by VBI, and some
techniques to locate damages in civil engineering structures have also been proposed. However, much
of the performed research has been based on numerical simulations and on laboratory models. A

throughout review of VBI techniques can be found in Rytter [1].

In order to use VBI techniques it is necessary to be able to obtain reliable estimates of the dynamic
characteristics, e.g. natural frequencies. Such quantities can be estimated from the resulting output
caused by a known well-defined input. However, the estimates can also be estimated by using the

so-called ambient testing, t.e. the only excitation on the structure is the natural excitation.

The aim of the research presented in this paper was to answer the [ollowing questions by using full-scale

measurements based on natural excitation:
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1) Is it possible to distinguish between changes in modal parameters due to effects produced by damages
and those brought about as a result of changes in the ambient environmental conditions 7

2) How sensitive are measured modal parameters to a damage ?
3) Can the location of the damages be estimated ?

In order to answer these questions a 20 m high steel lattice mast subjected to wind excitation was
experimentally investigated. The experimental arrangement are described in section 2. [n section 3 the
experimental results are presented and discussed and at last in section 4 conclusions are given.

2. Experimental Arrangement

An elevation of the 20 m high steel lattice test mast is shown in fig. 2.1. The four chords K-frame test
mast with a 0.9x0.9 m cross-section was bolted with twelve bolts, three for each chord, to a concrete
foundation block founded on chalk and covered by sand. The mast was constructed with welded

connections. At the top of the mast two plywood plates were placed in order to increase the wind-area.

The eight lower diagonals were cut and provided with a bolted joint. Each bolted joint consists of
4 slice plates giving the possibility of simulating a 1/4, 1/2, 3/4 and full reduction of the area of a
diagonal. A damage was simulated by removing one or more splice plates in these bolted joints. Seven
different damage states (1,2,5,6,9,10,11) were considered. The damage state 1,2,5 and 6 correspond to
a removal of diagonal AB101, BC101, AB102 and BC102, respectively, see fig. 2.2. Damage states
9 and 11 correspond to fifty per cent reduction of the sectional area of diagonal AB101 and AB102,

respectively. Damage state 10 corresponds to fifty per cent reduction of the sectional area of diagonal
AB101, BC101, CD101 and DA101.
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Fig. 2.1 Elevation of Mast. Fig. 2.2 Diagonals of the lower two sections

The mast was instrumented with instruments to measure the accelerations, wind-direction (wind-vane)
and wind-speed (cup-anemometer). Further, the ambient air temperature was measured. The data
acquisition and the analyse of the sampled data by an ARMA-model were performed with the MAT-
LAB, see PC-MATLAB [2], based on program to Structural Time Domain Identification, STDI, see

Kirkegaard et al. [3]. A throughout description of the test arrangement can be found in Kirkegaard et
al. [4].



3. Experimental Results and Discussion

In the period from December 92 to June 93 twenty measurements sessions were performed with the
undamaged mast . The dates of the sessions were selected in such a way that a data base containing
measured responses due to different wind-directions and wind-speeds were created. At a measurement
session 10 time series were recorded for each transducer, 1.e. accelerometers as well as cup-anemometer
and wind-vane. In the same period 2 measurement sessions were performed where damages were
simulated at the mast. In the period the lowest and the highest air temperature were -5°C and 20°C,
respectively.

3.1 Modal Parameters of the Undamaged Mast

It was the natural bending frequencies no. 1 and no. 4, the natural bending frequencies no. 2 and
no. 5 and the natural frequency no. 3 corresponding to deflection parallel to the x-axis and deflection

parallel to the y-axis and rotation, respectively, which were estimated.

The estimates of the natural frequencies and the modal damping ratios are shown as function of the
measurement number in fig. 3.1. The 20 estimates in each figure have been obtained by combining the
measured estimates of natural frequencies and modal damping ratios, respectively, from each measure-
ment session by weighting with the standard deviations. At each measurement session 10 times series

were recorded, implying 10 estimates of the natural frequencies and modal damping ratios. respectively.

The solid lines in fig. 3.1 indicate a mean value of the 20 estimates while the dashed lines give an
interval between the mean value plus one per cent and the mean value minus one per cent for the
natural frequencies. In the same way an interval corresponding to the mean value plus ten per cent
and the mean value minus ten per cent is shown with dashed lines for the modal damping ratios. Fig.
3.1 shows that the measured natural frequencies vary approximately only few per cent while the modal
damping ratios vary more than twenty per cent. It is seen that the bending natural frequencies are
more sensitive than the rotational frequency. The standard deviation of the natural frequencies and
modal damping ratios are approximately 0.003 Hz and 0.001, respectively. This indicates that the
variation of the measured modal parameters 1s due to changes in the environmental conditions and
only not due to randomness. In order to investigate the sensitivity of natural frequencies with respect
to wind-direction and wind-speed the 200 estimates of the natural frequencies are shown in fig. 3.2a as
function of the wind-speed. The estimates have been divided into 4 groups. Each group corresponds
to a wind-direction interval of 90 degrees. Fig. 3.2a shows that the natural frequencies are sensitive
to the wind-speed. However, it is most clear for the first and second natural frequency. Further, it is
seen that the natural frequencies have an increase for a wind-speed corresponding to 7-8 m/s when the
wind-direction is changed. However, this change can also be a consequence of a change in temperature.
In fig. 3.2b the 200 estimates of the natural frequencies are shown as a function of the wind-speed. The
estimates have been divided into 2 groups. corresponding to estimates obtained from measurements
where the air temperature was lower than 0°C' and higher than 0°C', respectively. [t is seen that
the increase in natural frequencies for a wind-speed corresponding to 7-8 m/s can be due to an air
temperature below 0°C' and not necessarily a change in the wind-direction. However. more data most

be obtained in order to investigate this problem.

3.2 Modal Parameters of the Damaged Mast

In fig. 3.3a and 3.3b the measured natural frequencies from measurement sessions 4 and 6 are shown
as a function of damage state, rvespectively. The solid lines in fig. 3.3a show the lower bound of
the 95% confidence level of the natural frequencies from measurement session 3. The estimates are

assumed Gaussian distributed. In the same way n fig. 3.3b the lower bound of the 95% confidence
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level of the natural frequencies from measurement session 5 is shown. The measurement sessions 3 and
5 (undamaged) correspond to measurement sessions 4 and 6 (damaged), respectively, with respect to
environmental conditions, 1.e. approximately the same wind-speed, wind-direction and air-temperature.
This means that a change in the measured natural frequencies can be interpreted as a change due to
a damage and not to a change in the environmental conditions. Fig. 3.3 shows that it is possible to
detect a damage in the mast corresponding to a removal of one of the lower diagonals, damage states
1,2,5 and 6. Further, a damage, damage states 9 and 11, corresponding to a fifty per cent reduction of
the sectional area can also be detected. However, if such a damage should be detected it is important
to compare modal parameters from the damaged and undamaged mast, respectively, obtained under

the same environmental conditions.

3.3 Estimation of Damage Location by use of Neural Network

The applicability of a neural based damage assessment method, see e.g Hertz et al. [5] and Kirkegaard
et al. [6], is investigated by training a neural network with the relative changes of the natural frequencies
of the 5 lowest modes. These changes were estimated for a 20, 40, 60, 80 and 100 per cent reduction
of the sectional area of diagonal AB101, BC101, AB102 and BC102, respectively. Further, the relative
changes of the frequencies also were estimated for the undamaged mast. By a trial-and-error approach
it 1s found that a 4 layers neural network with 5 input nodes, 5 nodes in each of the two hidden layers
and 4 output nodes gave the network with smallest output error. Each output node corresponds to a
damage in one of the diagonals AB101, BC101, AB102 and BC102, respectively. The value for a single
diagonal adopts the value 1 when not damaged, the value 0 when totally damaged and 0.2 corresponds
to a 80 per cent reduction of a sectional area etc.

The network was tested by subjecting the simulated input data corresponding to a 100 per cent reduc-
tion of the sectional area of the four diagonals AB101, BC101, AB102 and BC102, respectively, to the
network. It was found that the neural network was capable of reproducing the location and size of a
damage used in training (Damage state 1,2,5,6). Table 1 shows the outputs from the network subjected

to experimental data.

Output ’—

Node Damage State
No.
1 ’ 2
1(AB101) 0.1 0.8
2(BC101) 0.8 0.1
3(AB102) 0.6 1.0
4(BC102) 0.9 0.9

Table 1: Results from network subjected to experimental data.

The results in table 1 show that it is possible to detect a damage corresponding to a removal of a diagonal
(Damage state 1,2,5,6) by the neural network approach. It is also seen that a damage corresponding

to 50 per cent reduction of the sectional area of a diagonal AB102 can be detected. but not quantified.
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In

CONCLUSIONS

this paper the natural frequencies and modal damping ratios of a 20 m high steel lattice mast

subjected to natural excitation have been experimentally investigated. The conclusions of the paper

can be stated as follows:

4.

(1]

e Measured natural frequencies vary less than one per cent while the measured modal damping ratios
vary more than twenty per cent due to different environmental conditions, such as wind-speed

and air-temperature

® The measured bending natural frequencies and the rotational frequency approximately decrease
few per cent and more than ten per cent, respectively, due to a damage corresponding to a remaval

of one of the lower diagonals.

e It is possible to detect a damage corresponding to a removal of a diagonal using a system identifi-
cation technique (ARMA) based on natural excitation. A fifty per cent reduction of the sectional
area of a diagonal can be detected, if the measured modal parameters from the damaged mast

and the undamaged mast, respectively, are obtained under the same environmental conditions.

® A neural network trained with simulated data is capable for detecting location of a damage,

corresponding to a removal of a diagonal when the network is subjected to experimental data.
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Dynamic Response of Breakwaters
by
Hans Falk Burcharth

Wind generated storm waves cause dynamic loads on breakwaters. The problems related to
the structural response depend on the type of structure. In case of monolithic structures, like
sandfilled concrete caissons, the problems are associated with the overall stability of the
monolith and not with the structural members, i.e. the front plate of the caisson. In case of
rubble mound structures the problems are related to the integrity of the slender types of
concrete armour units, and to the stability of super structures (parapet walls), if present.

The presentation will discuss the present stage of knowledge associated with the problems of
designing breakwater structures. For the case of rubble mound structures a method of
designing armour layers made of slender unreinforced concrete units has been developed. For
the other cases no saticfactory methods exist so far but research is ongoing.



Development of pore pressure and material damping during cyclic loading

L.B. Ibsen, Aalborg University, Denmark

ABSTRACT: The behaviour of sand during cyclic loading can be characterized as “stabilization”, “instant stabilization”, “pore
pressure buildup” and “liquefaction”. The terminologies can be defined exactly by a simple mathematical formulation based on
the existence of a cyclic stable state. By introducing a mobilization index M it is possible to describe the strongly hysteretic
behaviour during loading and unloading, even if the stress path is complicated.

INTRODUCTION

In the last thirty years a great number of test series with cyclic
loading of sand have been performed, many phenomena have
been described and important theories have been presented.
Today the main problem is to gather all relevant information
in a consistent mathematical formulation.

Laboratory testing gives a possibility to study soil behaviour
in details. However, it is widely recognized that it is not possi-
ble to use laboratory test results for practical purposes without
calibrating them against field tests and field observations.

For instance, the preparation of a sand specimen and the
reconstruction of stress history and seismic history have a ma-
jor effect on the cyclic behaviour. In most natural deposits,
soil elements are subjected to shear stresses corresponding to
the “earth pressure of rest” situation. In earth structures close
to natural slopes or beneath foundations, soil elements are sub-
jected to even larger shear stresses. The stress history is re-
constructed by anisotropic consolidation before cyclic testing.

An old sand deposit in an earthquake region has been vi-
brated many times in its lifetime and the specimen should
therefore be prepared by a vibration technique at a level cor-
responding to the seismic history.

The success of laboratory testing depends on the extent to
which the in-situ characteristics are reestablished.

The purpose of this paper is therefore limited to describe
in mathematical formulations the phenomena involved in soil
response on cyclic loading, and to give a definition of the termi-
nologies, which are already accepted, but not clearly defined.
It combines the two different assumptions

i) Alternating loads build up pore pressure, and liquefac-
tion will develop if the amplitude or the number of cycles
are big enough (initiated by Seed and Lee in 1966).

ii) The initial effective stress state and the relative density
of the soil play a definitive role for the behaviour of a
soil. If the initial shear stress exceeds a certain value the
pore pressure will be reduced by cyclic loading and the
soil will stabilize (Casagrande 1976, Castro and Poulus
1977, Loung 1980).

The paper is based on triaxial tests on a uniform sand called

- Lund no 0. The mean diameter dgp = 0.4 mm, the coefficient

of uniformity U = 1.7, the initial void ratio 0.62 corresponding
to a density index Ip = 0.7. The test specimens were prepared
by a pluvial technique and carefully saturated in vacuum. A
test consists of an anisotropic consolidation phase followed by
cyclic loading at constant volume.

STATIC BEHAVIOUR OF DENSE SAND

The parameters, which describe the state of a soil under axi-
symmetrical stress conditions, are

the mean normal stress p’

1 ;
5(‘7; + 203)

the deviator stress ¢ = (07—0%)

1
the volumetric strain &, = & +2¢c3 M
the distorsion g = %(51 — €3)

where oy is the vertical and o3 the horizontal pressure.

The strength of a soil ie normally described by the Mohr-
Coulomb’s failure criterion. “Failure” is defined as a state
where q is maximum, and corresponds normally to a distorsion
&g =5—10%. The strength parameters ¢’ and ' are assumed
to depend on the void ratio only. In Figure 1 is shown the
{ailure line corresponding 40 & = 0.62.

] £q=10%

/ =u. ‘E.

Figure 1. Stress path in an undrained test compared with the
Mohr-Coulomb failure criterion.



In a stress state with very small deviatoric stresses the
behaviour of a sand is contractive, but when ¢’ increases a
dense sand dilates. However, it is not possible to cut up the
¢~ ' stress-space in a contractive and a dilative zone, because
changes in ¢, depend on stress increments.

The stress path for an undrained test is shown in Figure 1.
It is of particular interest because the first cycle on cyclic load-
ing has to follow a similar stress path. It must be emphasized
that for normal stress levels this stress path does not describe
an undrained failure state, because the destorsion is too small,
only g, & 0.5 — 1.0%. At very high stress levels e, = 5 — 10%
and failure can occur. We can conclude that the first cycle in
an undrained cyclic test has limited strains.

MOBILIZATION INDEX M

The deviator stress ¢’ can be normalized by introducing a mo-
bilization index M

M=d/lg| i -1<M<1 @)

where ¢} corresponds to the actual mean normal stress p'.

The advantage of using a mobilization index instead of the
often used stress ratio (o] — 0%) /o3 is obvious: It is possible
to compare tests with different soil and densities, because ¢’ is
normalized with respect to the strength of the soil. M can be
used with success even for curved failure envelopes and as men-
tioned later a mathematical description of hysteresis is possible
even for large strains and complicated stress variations.

The mobilization index is introduced in Figure 2. The
drained, anisotropic stress state (p,,q,) just before cyclic load-
ing is then (p,, M2). During cyclic loading the amplitude A is
constant and the maximum value of M at each cycle is:

Mmu =

r |
q"IAM,,.:kM.,. 3)

where k is the amplitude ratio and M,, is the mean value of

M.

CYCLIC TRIAXIAL TESTS

In triaxial tests the loads, movements, volume, and pore pres-
sure are measured on the outside of the test specimen, and it is
essential to have homogeneous conditions inside the specimen
in order to achieve correct values of stresses, strains, and void
ratio. The height of the specimen is therefore equal to the di-
ameter, and smooth pressure heads are used. But in extension
it is impossible to avoid inhomogeneous strains at failure where
“necking” occurs, preventing the strain and stresses from being
calculated correctly.

Aq
«36‘\&6
= _‘qo+A/
//ﬁqo//
é%”’l -qo—“A 3
M=0

Figure 2. Normalization of the deviator stress ¢. Variation of
M during cyclic loading.

(po .M,)

V]

XI}S!Q

n

Yo

Figure 3. Simultaneous liquefaction in compression and exten-
sion. Risk for necking.

The Mohr-Coulomb failure criterion is unsymmetric in tri-
axial compression and extension, because the intermediate nor-
mal stress changes from o/, to o7 ..

AT

In compression: ¢; = 3 st (p' + ccoty’)
o ()
In extension: q; E:_%% (p' + ceoty’)

If ¢’ varies symmetrically M, = sing’/(3 + sing’) at failure.
Failure then takes place simultaneously in cornpression and ex-
tension (Figure 3). If M, < sing’[/(3+3iny’) at failure necking
takes place. The corresponding initial value of M, is given by

M < M, =11—8(3——sinqa)-é (5)

In tests with M2 = M, the strains in loading and reload-
ing are almost identical, and the cyclic stress-strain curves are
reversible.

CYCLIC PHENOMENA

The stable state M,

It is now postulated that a stable state exists at a certain mo-
bilization index M,, where the positive and negative pore pres-
sure generated during a loading cycle neutralize each other,
provided that |Mp.:| < 1. In the stable state the stress vari-
ation during a loading cycle does not change anymore. The
stable state M, has been verified in an extensive test series,
shown in Figure 4. The initial value of M, the confining pres-
sure, the amplitude and the number of cycles vary from test
to test, but the number of cycles, N, is large enough to ensure
that the last hundreds of cycles takes place in the stable state,
where the stress paths do not change.

Stabilization

It is seen that when M2, > M, then negative pore pressure will
develop and the effective stress level will increase until the sta-
ble state is reached. This phenomenon is called “stabilization”.
If M2 >> M, then “instant stabilization” takes place.

Pore presssure buildup and liquefaction

If M, < M, and |M,,,.| < 1 a positive pore pressure will
be generated and the effective stress level will decrease until
the stable state is reached. This phenomenon is called “pore
pressure buildup”.



If M.z equals 1 during pore pressure buildup, the hys-
teretic strains get very large (g, = £10%), the testing equip-
ment looses all control, and the peak pore pressure in each cy-
cle rises to the confining pressures This ultimate state is called
“liquefaction”. It is well documented in many test series.

Mathematical formulation
A simple description of this phenomenon is given by:

M, = M+(M,-M) f(N)
(6)
Muaz. & FoMy il

where f(N) is a function of the number of cycles. f(N) =0
for N =0 and f(N)— 1 for N — oco. Thus

o= (5

£ is rather close to 1. In analysis of liquefaction risks during
earthquakes an advantageous value of £ is 1.25.

N, depends on M}, as indicated in Figure 5, which is based
on results from a larger number of tests than shown in Figure
4. It is seen that

N,=4. (l;{f'“) (8)

M? is at the actual stress level limited upwards: M7, < 0.8.
Figure 6 shows the three possible developments of My, and
M. during cyclic loading as given by formulas (6), (7), (8).

STRESS VARIATION DURING CYCLIC LOADING

Figure 7 shows some examples of stress variations during cyclic
loading, which corresponds to the phenomena defined earlier.

The first loading (V = 1) always follows the stress path in
a static undrained test. and the corresponding value of M is
always lesser than one. This causes in Figure 7 b) a negative
pore pressure big enough to stabilize the sand almost immedi-
ately.

As the cyclic loading goes on the distorsion grows bigger
and bigger and when &, ~ 5 — 10% the maximum value of M
is able to reach 1. In Figure 7 d) liquefaction can occur.

In tests where M}, < M,, necking can give big distorsions
and liquefaction after a few cycles.

HYSTERETIC BEHAVIOUR OF SAND

The behaviour of sand during cyclic loading is strongly hys-
teretic and irreversibility occurs and causes permanent defor-
mations.

a) Stabilization

A q, N= N=480 A q'

1
80 + ] 80

60 ¢ N=1360-2300 60 ¢+

b) Instant stabilization
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Figure 4. Verification of the stable static M,.
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Figure 5. Estimation of N, as a function of M2, formula 8.
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Figure 6. Development of the degree of mobilization under
cyclic loading.

a) Increasing M., resulting in pore pressure build-up.

b) Increasing Mmao resulting in liquefaction.

¢) Increasing Mpma- resulting in stabilization.

c) Pore pressure buildup d) Liquefaction
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Stress path in cyclic loading.



The irreversibility depends on M7, and does not occur for
M2 = M,. It depends on (M2 — M,),(M, ~ M2) and the
number of cycles. In Figure 7 a) the irreversibility dominates
the hysteresis, in Figure 7 d) only small irreversibility occurs.

Two stress cycles from the sequence in Figure 7 d) are
shown in Figure 10. It shows that the behaviour of sand in
this case is strongly hysteretic. The shape of the two curves are
considerably different, corresponding to the different variations
in p’ and ¢/, and it seems very complicated for 2 mathematical
description.

However, by introducing the mobilization index M the curves
become very regular and the mathematical formulation rather
easy.

A performance curve for a first loading is shown in Figure
8 with M7, =2 0. It can be described by

aM “

3e, =Gpy(1-M")
where Gy is a normalized shear modulus, and n is a parameter
which describes the curvature. In unloading the formula is
modified to

oM -
e = Om (1 —IM")
and a hysteric cyclic curve can then be described by:
aM ’ M “
e = On (1= sion () ¥7) ®

This shows continuity and differentiability for M = 0, (Figure
9). The formula is a simplified Bouc-Wen formula.

A further study shows that when M,, # 0 unrealistic irre-
versibilities occur except for small stress amplitudes. In order
to separate the hysteretic behaviour from irreversibility, the
formula is modified

M- Mml ) (10)

B(M - M) (MM,
PG = u (1 son (M=) [T 2

In Figure 10 formula (10) is fitted to test results with small
values of M,, by the method of least squares. Characteristic
values of G, and n are Gy = 900 and n = 0.5.
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Figure 8. Normalized performance curve.
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Figure 9. Hysteretic curve (eq 9).

Figure 10. Hysteretic curves estimated from eq (10) and mea-
sured in triaxial tests.

Using formula (6), (7), (8) and (10) the development of hys-
teresis during cyclic loading can be followed and the damping

ratio D calculated. For small values of M,, the damping ratio
depends on M., only:

D=~05 M (11)

Hardin and Drnevich propose for a clean dense sand D =
0.28 — 0.015 log(N), which is seen to correspond to a natural
state with stabilisation.

CONCLUSION

The behaviour of sand subjected to cyclic loading is described
in simple mathematical formulations by introducing a normal-
ized deviator stress, called the mobilization index. This paper
shows how stabilization, instant stabilization, pore pressure
buildup, and liquefaction develop and how hysteretic curves
and damping ratios can be calculated. The damping ratio
agrees well with expected values for a saturated sand.
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Linear and Quadratic Lanczos Algorithms

Steffen Vissing & Steen Krenk
Department of Building Technology and Structural Engineering
Aalborg University, DK-9000 Aalborg, Denmark

Eigenvalue problems arise in various engineering problems as for instance structural
dynamics and stability analysis as well as in heat tranfer analysis. The solution of linear
or quadratic eigenvalue problems is therefore an essentiel part of the analysis. Quadratic
eigenvalue problems are often solved after reduction to an indefinite linear eigenvalue prob-
lern of double size and thus the fundamental problem is the generalized indefinite linear
eigenvalue problem. In this paper Lanczos algorithms for the symmetric problem is de-
veloped, but the algorithms may be generalized to nonsymmetric problems by introducing
biorthogonal sets of left and right vectors. The generalized linear eigenvalue problem is of
the form

(A + AB)w =0 (1)

where A and B are n xn real symmetric matrices which may be indefinite, A is an eigenvalue
and w is the corresponding n-dimensional eigenvector.

A general strategy for the generalized linear indefinite eigenvalue problem (1) consists
of setting up a Krylov sequence representing the required eigenvectors and defining a
proper orthogonality condition and vector orientation. A Krylov subspace suitable for
approximate representation of the eigenvectors corresponding to the numerically smallest
or largest eigenvalues can be generated by iterating with the matrix A™'B or the matrix
B~ !A. The eigenvalue problem may typically arise from a finite element formulation in
which the discretization causes the largest errors for the numerically largest eigenvalues.
Further more only a small fraction of the eigenvectors corresponding to the numerically
smallest eigenvalues may approximate a response to sufficient accuracy. Therefore the
following Krylov sequence is used

[wo, AT'Bwy, (A7IB)wo,..., (A7'B)™ wy) (2)

However, an efficient use of the Krylov sequence requires some kind of condition on the
base vectors, e.g. a suitable orthogonality condition. Natural choices for orthogonalizing
the Krylov vectors are either of the two system matrices A and B or a simple matrix like
the identity matrix. This paper presents algorithms in which the vectors are orthogonalized
with respect to either of the system matrices. Herebyv the vectors need in principle only
be orthogonalized to the previous two vectors in order to achieve orthogonality and only
two parameters in the recurrence formulae are needed. However, in finite precision the
numerical error increase in each iteration whereby non-orthogonal vectors may be genera-
ted. In order to prevent the loss of orthogonality a simple reorthogonalisation procedure
is applied. Using either A or B orthogonality conditions the n-dimensional eigenvalue

1



problem is reduced to an m-dimensional eigenvalue problem with a symmetric tridiagonal
matrix T and, on account of indefinite system matrices, a diagonal matrix E containing
+1 in the diagonal. Alternative, orthogonality conditions with respect to a matrix without
direct relation to the problem e.g. the identity matrix may lead to fewer matrix operations
but the tridiagonal matrix T is then replaced by an upper Hessenberg matrix.

Linear Lanczos algorithms for the generalized symmetric but indefinite eigenvalue prob-
lem with A and B orthogonality conditions are given in pseudo code as Algorithm 1 and
Algorithm 2. In the algorithms «;, j = 1,2,---,n are the diagonal elements of T, f;,
j =2,3,---,n are the sub- and superdiagonal elements of T and e;, 7 = 1,2,---,n are the
diagonal elements of E. The efficiency of the algorithms depends on the two matrix ope-
rations Bq; and A~'p; which is directly related to the bandwidth of the system matrices
A and B.

ALGORITHM 1: LINEAR LLANCZOS ALcorITHM 2: LiNEAR LANCZOS
WITH A ORTHOGONALITY WITH B ORTHOGONALITY
Start vector py Start vector q
Initialize po:=0 Initialize qp:=0
for (j:=1 to m) for (§ui=1 bom)
qj = A7'p; pj := Bg;
d := qj p; d:=qjp;
e; := sign(d) e; := sign(d)
By = |d|/? B; = |d[*/?
q; := q;/6; q; =/ B;
p; := P;j/B; p; = p;/B;
pi+1 = Ba; i = A7Vp;
;= Q] Pj+1 0 i= Qf41P;
Pi+1 7= €Pjr1 — &P; — BiPi- Qi+1 = €Qj+1 — @95 — B 951
Pty = orthol by, G & =120 Wi == onthiel g, be ), F= 1,2, ves

A full reorthogonalization procedure is shown in Algorithm 1 and 2 in which all the p;
vectors are stored. A more efficient reorthogonalization algorithm may be applied.

After the generalized Lanczos reduction a reduced m-dimensional eigenvalue problem
is obtained in the form

(E 4 AT)y =0 (3)

where y is an m-dimensional eigenvector corresponding to the eigenvalue A. The eigenvalues
of (3) approximate the numerically smallest eigenvalues of (1) while the corresponding
eigenvectors are obtained by w = QEy where Q = [q1, 92, -, dm] is a matrix storing the
orthogonalized Krylov vectors known as Lanczos vectors. The eigenvalues of (3) may be

o



obtained by a generalization of a symmetric solver for the standard eigenvalue problem
with a symmetric tridiagonal matrix e.g. the QR method or by an unsymmetric solver
for the standard eigenvalue problem with the unsymmetric tridiagonal matrix ET. The
unsymmetric solver will fill out the upper part of the matrix T. Additional work is needed
on the stability of the symmetric solver.

Example

The test example shown in Figure 1 is a 10 stores building with a vertical viscous damper
at the top. The physical properties are given in the figure. The building is modelled with
174 elements and has 150 free degrees of freedom. The damping matrix only contains one
nonzero element corresponding to the damping coefficient ¢ of the damper.
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Figure 1: 10 stores building with a damper

In table 1 and 2 the eigenvalues for 10, 20 and 40 iterations with the algorithms for A
and B orthogonality conditions are compared with the 20 smallest, eigenvalues of the exact
solution with ¢ = 0.5. The eigenvalues for ¢ = 0, ¢ = 0.5, ¢ = 0.1 are shown in Figure 2.

This example show no notable difference in the convergence rate for A and B orthogo-
nality. Approximately half of the eigenvalues have converged.



Exact 10 iterations 20 iterations 40 iterations |
0.0014 4 0.0383: | 0.00144-0.0383 | 0.0014+0.0383z | 0.0014+0.0383:
0.0049 + 0.0844: | 0.004940.0844 | 0.004940.0844: | 0.0049+0.0844:
0.0108 & 0.1159: | 0.010840.1160 | 0.010840.1159z | 0.01084-0.1159:
0.0040 + 0.2159:z | -0.1525 0.004040.21597 | 0.00404-0.2159
0.0003 4 0.2311z | 0.008740.2542 | 0.000340.2312z | 0.0003+0.23112
0.0010 4 0.2610z | 0.9020 -0.0059-+0.26562 | 0.0010-+0.26102
0.0277 £ 0.2909: - 0.0005+0.3364: | 0.027740.2909:
0.0008 £ 0.3249: - 0.0084+0.45472 | 0.0008-+0.3249:
0.0022 £ 0.3457: - 0.03704+0.7749: | 0.0022+0.3457:2
0.0047 + 0.3644: - 0.25904+1.9052: | 0.00474-0.36462

Table 1: Eigenvalues of a 10 stores building, A orthogonality, ¢ = 0.5.

Exact 10 iterations 20 iterations 40 iterations _‘
0.0014 + 0.0383z | 0.0014+ 0.0383 | 0.001440.03832 | 0.0014+0.0383:
0.0049 + 0.0844: | 0.0049-+ 0.0844 | 0.004940.08447 | 0.00494-0.0844:
0.0108 & 0.1159z | 0.01084 0.1159 | 0.010840.1159z | 0.0108+0.1159:
0.0040 £ 0.2159z | 0.0102-4 0.2398 | 0.00404:0.2159: | 0.0040+0.2159:
0.0003 £ 0.2311¢ | 0.3499+ 0.3230 | 0.00034-0.2311z | 0.00034+0.2311:

0.0010 + 0.26102 - 0.000140.2631z | 0.0010£0.26102
0.0277 £ 0.2909¢ - 0.003440.3300: | 0.02774:0.2909:
0.0008 = 0.3249: - 0.0134+0.4285: | 0.0008+0.3249:
0.0022 + 0.3457: = 0.0624+0.72022 | 0.0022£0.34572
0.0047 £+ 0.36441 . 0.7684+2.0851¢ | 0.00484-0.36452

Table 2: Eigenvalues of a 10 stores building, B orthogonality, ¢ = 0.5.

25 ce00 =05
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Figure 2: Bigenvalues for a 10 stores building with the damping coeflicient ¢. The symbols
0, + and X stands for, respectively, the exact solution, A orthogonality and B orthogo-
nality.
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SUMMARY

The paper deals with the prediction of global and localized damage and the future reli-
ability estimation of partly damaged reinforced concrete (RC) structures under seismic
excitation. Initially, a global maximum softening damage indicator is considered based
on the variation of the eigenfrequency of the first mode due to the stiffness and strength
deterioration of the structure. The hysteresis of the first mode is modelled by a Clough
and Johnston hysteretic oscillator ! with a degrading elastic fraction of the restoring
force. The linear parameters of the model are assumed to be known, measured before
the arrival of the first earthquake from non-destructive vibration tests or via structural
analysis. The previous excitation and displacement response time series is employed for
the identification of the instantaneous softening using an ARMA model. The hysteresis
parameters are updated after each earthquake. The proposed model is next general-
ized for the MDOF system. Using the adapted models for the structure and the global
damage state, the global damage in a future earthquake can then be estimated when a
suitable earthquake model is applied. The performance of the model is illustrated on
RC frames which were tested by Sozen and his associates 24.

1. INTRODUCTION

The physical local damage in reinforced concrete (RC) structures subject to severe seis-
mic excitation is attributed to micro-cracking and crushing of concrete, yielding of the
reinforcement bars and bond deterioration at the steel-concrete interfaces. To the extent
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that RC structures can be modelled by non-linear mechanical theories, local damage
at a cross-section of the structure can adequately be measured by the degradation of
bending stiffness and moment capacity of the cross-section. The overall effect of local
damages is the stiffness and strength deterioration of the structure. A global dam-
age indicator can then be defined as a functional of such continuously distributed local
damages which characterize the overall damage state and serviceability of the structure.

Global damage indicators are response quantities characterizing the damage state of
the structure after an earthquake excitation, and such can be used in decision-making
during the design phase, or in case of post-earthquake reliability and repair problems.
In serving these purposes, the global damage indicator should, at least, be observable
for practical purposes, be a non-decreasing function of time unless the structures are
repaired or strengthened, possess a failure surface (serviceability or ultimate limit state)
to separate safe states from the unsafe ones and carry Markov property so that post-
earthquake reliability estimates for a partly damaged structure can be made solely from
the latest recorded value of the damage indicator.

The maximum softening damage indicators measure the maximum relative reduction of
the vibrational frequencies for an equivalent linear system with slowly varying stiffness
properties during a seismic event, hence, display the combined damaging effects of the
maximum displacement ductility of the structure during extreme plastic deformations
and the stiffness deterioration in the elastic regime, the latter effect being referred to as
final softening. The introduction of the one-dimensional maximum softening indicator
based on an equivalent linear single-degree-of-freedom (SDOF) system fits to the first
mode of the RC building as a global damage indicator is due to DiPasquale and Cakmak
3. The excitation and displacement response time series of a single position on the
building are the only required observations for the one-dimensional maximum softening
damage indicator. The applicability of the index was analysed based on data from
shake table experiments with RC frames performed by Sézen and his associates %%,
Limit states for slight damage to total collapse were calibrated using this data and the
performance of the index was tested for partly damaged structures which had been
instrumented in the past. The maximum softening concept has also been generalized to
multi-degree-of-freedom (MDOF) models along with the associated damage localization
problem . The Markov property of the maximum damage indicator chains for SDOF
and 2 DOF models was tested numerically by means of Monte Carlo simulations &°
and it was concluded that the global damage indicator fulfils Markov property with
sufficient accuracy.

The present paper deals with the prediction of global and localized damage and the
future reliability estimation of partly damaged reinforced concrete (RC) structures under
seismic excitation. Initially, a global maximum softening damage indicator is considered
based on the variation of the eigenfrequency of the first mode due to the stiffness and
strength deterioration of the structure. The hysteresis of the first mode is modelled
by a Clough and Johnston hysteretic oscillator !, with degrading elastic fraction of the
restoring force, subject to seismic excitation. The circular eigenfrequency, damping
ratio and the modal participation factor of the first mode of the undamaged structure
are assumed to be known, measured before the arrival of the first earthquake from
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non-destructive vibration tests or via structural analysis. The previous excitation and
displacement response time series is employed for the identification of the instantaneous
softening using an ARMA model. The two free hysteresis parameters are updated after
each earthquake from another system identification procedure where a weighted error
criterion defined using instantaneous softening and the displacement response time series
are employed. Using the adapted models for the structure and the global damage state,
the global damage in a future earthquake can then be estimated if a suitable earthquake
model is applied. In the paper, the Markov property of the global maximum softening
damage indicator is verified. Hence, the maximum softening index as calculated from
the present method may be used for future reliability estimates as well.

The proposed model is next generalized for an MDOF system. The horizontal displace-
ment of the structure is assumed to be measured in a finite n number of points on the
structure. An equivalent hysteretic shear model of n degrees of freedom is introduced in
which the linear system parameters are identified to provide the same undamped circu-
lar eigenfrequencies, modal damping ratios and modal participation factors as measured
on the undamaged structure. The shear force between the measure points (typically
storeys) is next modelled by Clough-Johnston hysteretic models similar to the one ap-
plied in the SDOF case. The set of maximum softening damage indices between all
measure points forms a Markov vector and can be used for reliability estimation. Since
the local damages are directly observed, the localization of the damage problem (the
inverse problem) is circumvented.

The performance of the model is illustrated on RC frames which were tested by Stzen
and his associates 2.

2. HYSTERETIC MODEL FOR SDOF OSCILLATOR

m
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Figure 1. a) SDOF hysteretic oscillator model ~ b) Clough-Johnston hysteretic model.

The equations of motion of the first mode are modelled by the following coupled differ-
ential equations

() + 20owod (t) + w] | a(D(D))e(t) + (1 - a(D(H)))=(t)| =

—Botig(t) , t>to , z(te)=2(to) =0 (1)



(1) = k(&(t), 2(t), D(t); 20) 2(t) 2(to) =0 (2)

D(t) = g(&(t), 2(t); 20)2(t) D(%) = Dg (3)
2z o

a(D(t)) = (m) (4)

k(&(t), 2(t), D(t); 20) = H(z){ A(t)H (2)(1 - H(z — za))+

H(-z)} + H(—2){At)H(—&)(1 — H(—2z — z)) + H(&)} (5)
g(£(t), 2(t); 20) = H(&)H (2 — 20) — H(—2)H(—2z — ) (6)
A(t) = Z[H-—GD(T) (7)

(8)

The first modal coordinate z(t) can be defined as the top storey displacement of the
structure relative to the ground surface if the mode shape is suitably normalized. The
linear circular eigenfrequency, wp, the damping ratio, (o, and the mode participation
factor, By, of the first mode are assumed to be known before the arrival of the first
earthquake, obtained previously via linear structural analysis or non-destructive exper-
imentation of the structure. i,(t) indicates the horizontal earth surface acceleration
signal and the first earthquake starts at the time ¢ = ¢5. a(D(t)) is the elastic fraction
of the restoring force.

z(t) is the hysteretic component which is modelled using the Clough-Johnston hysteretic
model. z = +z5 , 2z = —z signify the yield levels. k(:i:(t), z(t), D(¢); zo) is a non-
analytic function describing the state dependent stiffness of the hysteretic model on the
component z(t). The stiffness degrading hysteretic constitutive law of the model can be
represented as shown in figure 1.b. The Clough-Johnston model deals with the stiffness
degradation by changing the slope A(%) of the elastic branches as the accumulated plastic
deformations, Dt (t) and D~(t) at positive and negative yielding, increase as shown
in figure 1.b. D(t) = D*(¢) + D (¢) is the total accumulated plastic deformations.
For loading branches, the slope A(%) is selected such that the elastic branch always
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aims at the previous unloading point with the other sign. At unloadings, the slope is
1. D, is the initial value of the total accumulated damage which is zero before the
first earthquake hits and is assumed to be determined from previous earthquake and
displacement response records for the succeeding earthquakes. H(z) is the unit step
function.

A novelty of the present model stems primarily from the modelling of a(D(t)) as a non-
increasing function of the damage parameter D(t). Since, a(D(t)) measures the fraction
of the restoring force from linear elastic behaviour, this fraction must decrease as larger
and larger parts of the structure become plastic. Note that initially, a(D(0)) = 1, and,
unless there is damage, still «(0) = 1. The dependence of a(D(t)) on D(#) as indicated
by (4) has been selected to fulfil this boundary condition. The relative success of the
model (1)-(8) in reproducing actually recorded displacement time series in the studied
example is primarily due to this modelling.

The hysteretic parameters zo,n¢ are to be identified from the experienced excitation
and displacement response time series with an optimal system identification method.
The Clough-Johnston hysteretic model was originally designed for reinforced concrete
beams. The differential description of the model, applied herein, is due to Minai and
Suzuki °.

3. HYSTERETIC MODEL FOR MDOF SYSTEM
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Figure 2. MDOF hysteretic oscillator model for the measuring points.

The horizontal displacement of the structure at a finite number of points is measured.
The relative displacement between the ith and (¢ + 1)th measure points is designated
z;, and z; signifies the displacement of the first measure point relative to the ground
surface excited by the horizontal acceleration, g4, see figure 2. For simplicity, the time

dependence of z,i, etc. is not explicitly shown in the following notation used for
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the MDOF system. With reference to the shear model shown in figure 2, the relative
displacement z; between the ith and (i + 1)th measure point is assumed to cause a
shear force of magnitude @;m; where m; is the storey mass. The equations of motion
in terms of the relative displacements can be written as,

Tr = Gy — Gy — Uy , t>1g

Fp =g Qe = (e F 1) + Qg 4 T35 5 1=28, jn—1 ©)
i‘n — _(;U'n =+ 1)Qn A= Qn—l 3 t > tO

$1'(t0)=i7,'(t0)=0 y =12, yn
Qi = 2(0,iwo,i#i + wp ;(aizi + (1 — ai)zi) 1=1,2,--+,n (10)
= Blgney Boaall 5% afhii=0 , 1= 1,200 g0 (11)
Di:g(i‘igzi;zo,z’)ii ;t>t0 :Di(tO):Di,U 3 i:]--.\"z?"' 3T (12)

230:' no,: .

== _ ! 3 = 1,2,"' 5 13
« (2ZU,i+Di 2 e ( )
Hi = - ) ?':2)3}' y T (14)

i—1

In (9), nth measure point is assumed to be located at the top storey. k(:,zi, D;;z0:)
and g¢(2;, z;; 20,:) are given by (5) and (6). 2(p,iwo,:;m; and w%)imi are respectively the
damping coefficients and initial elastic spring stiffnesses between the storeys. Hence,
wo,; and (o ; 7= 1,2, -n are merely parameters to specify the linear parts of the shear
forces and should not be confused with the natural frequencies and damping ratios
of the structure. These parameters along with y; ¢ = 2,3, ---n must be identified
so that the elastic model of (9) and (10) with a; = 1 provides the same undamped
circular eigenfrequencies w;, damping ratios (; and modal participation factors §; of the
undamaged structure, as calculated or measured by non-destructive testing. Notice that
the indicated discrete linear system has 3n — 1 free parameters, wo i, (o,; and u;, to fit
the 3n parameters, w;, (; and f;, obtained from the primary linear system identification
of the structure. Here, it is assumed that only the lowest n modes of the primary linear
structure have been identified. There 1s an indeterminateness in the secondary system
identification. This means that conditions can only be met at the lowest n — 1 modes.

The hysteretic parameters z9; and ng,; are sequentially updated during the damage
process after each severe earthquake by system identification.
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4. GLOBAL DAMAGE INDICATORS : MAXIMUM SOFTENING INDEX

Consider the SDOF model. The instantaneous softening, §(t), of the structure is defined
as, Cakmak et al. 1:23,

Ty

50 =1~ 703

(18)

where T is the first period of the linear structure and T(t) is the first period of the
equivalent linear structure with slowly varying stiffness characteristics during an earth-
quake excitation. Ty is assumed to be known from previous structural analysis or non-
destructive experimentation of the structure and 7'(¢) is estimated from the excitation
and displacment response time series of the experienced earthquake.

The maximum softening damage indicator, §37 is the maximum of §(¢) during the seismic
excitation.

8y = max 6(1) (16)

In the hysteretic model, the instantaneous slope of the hysteretic curve defines the
varying instantaneous period of the equivalent linear structure. For Clough-Johnston
model, the instantaneous slope is A(t) for loading branches, 1 for unloading branches
and 0 when yielding occurs. Therefore, instead of instantaneous softening, an average
softening value is defined using the average slope, m, of the hysteresis loop, the slope
of the line through extreme points.

_ 2%
™= 9% + D(b) e

The loop-averaged softening S(t) is

B = 2~ \/ 55%5_017(7) (1- D) + D)) (18)

where a(D(t)) is given by (4). As seen from (18), S(t) is non-decreasing during a seismic
event and fully correlated to D(t). S(t) can then only measure the effect of the plastic
deformations on the period of the structure since z; is considered to be non-degrading
during a seismic event in this study.

Correspondingly, local softening can be defined for each measure point in the MDOF
system.

2205 s
G T — (1 — i —1’ Loy 9
S5i(t) =1 \/ = Di( ;) +a; 1 s n (19)
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where a; is given by (13). Si(t) is a local damage indicator displaying the damaging
effects of the local plastic deformations.

5. SYSTEM IDENTIFICATION

The proposed global damage indicator and the hysteretic model for the SDOF system
are defined by six parameters, namely, 7'(%), (o , wo , fo , 20 , no. T(t) is estimated from
the excitation and displacement response time series of the experienced earthquake using
an ARMA model, e.g. °, suited to the displacement response process and the estimated
ARMA coeflicients are mapped to determine the first period and the instantaneous
softening, S(t)*%M4, of the corresponding dynamic system. The next three parameters
are assumed to be known before the arrival of the first earthquake, via linear structural
analysis or previous non-destructive experimentation. The hysteresis parameters zg
and ng are estimated from an iterative system identification procedure where a weighted
error criterion for the jth iteration, F(z(t), S(t); 2}, 7?), defined from the instantaneous
softening and the displacement response time series is employed.

Fi(a(t), S(2); 2, 73) = w1 ) (#] —ax)® + w2y (8] - SEFMAY (20)
k

i

where zp = z(f = i) etc. zy are the measured displacements. 3“:{: and S’f are model]

predictions using estimated hysteretic parameters, 2}, A#]. The summation over the

index k is performed for the time interval where large oscillations occur, and, the sum-
mation over the index [ is performed for the time interval where SAEMA(t) more or less
stabilizes. This guarantees more weights given to large oscillations and large damage
levels. Additionally, w; and wg are chosen such that the displacement and instantaneous
softening contributions in the error are approximately equal, i.e.

Wy zk(:f:fc — :nk)2

wp S(8] — SARMAY

(21)

The new estimates for the hysteretic parameters are then obtained using the steepest
descent method, e.g. 3.

OF7 I+

o PEDN
Z = €

0 Zg 1 Q
62’0

# = g (22)

the gradients % and %f:—; are computed numerically. €,, and €,, are step parameters
calibrated from the numerical values of the gradients.

By these system identification procedures, T'(t) and hysteresis parameters z; and ng
have been estimated using the observable measures; the excitation and displacement
response time series only.

For MDOF systems, similar system identification methods can be introduced.



6. PREDICTION OF DAMAGE AND RELIABILITY

It will be assumed that the excitations from different earthquakes are mutually stochas-
tically independent. Then, the memory of the previous earthquakes is carried over to the
state vector ZT (1) = [x(t), %(t), z(t), D(t)] where xT(t) = [z1(2), -+ , za(t)] etc. Since,
it has been assumed above that the structural system returns to the equilibrium state af-
ter the previous earthquke corresponding to the initial values x(to) = x(to) = z(tp) = 0,
the memory of the previous earthquakes is then carried totally by the initial values
D(ty) = Dy. With these conditions on the initial values of the other state variables, the
initial values of the damage vector D(t) in a sequence forms a Markov chain to the extent
that the present mathematical model is an adequate representation of the RC-structure.
Since the softening S(¢) and S(t) of the SDOF and MDOF systems only depend on the
initial values Dy and Dy of the damage process and the present earthquake i,4(2), these
quantities form a Markov chain. The consequences of these statements are that both the
damage process and the reliability as measured using the maximum softening value in
future earthquakes, can be predicted by the present model, if only the damage process,
D(t) and D(t) are updated after each seismic event, i.e. their terminal values in the
previous earthquakes are calculated via updated hysteretic model parameters, zg, 1
and Zp, Np.

The reliability of the structure subject to future earthquakes can be estimated using
independent Monte Carlo simulations. This requires a suitable earthquake model for the
generation of the mutually independent earthquake excitations. Running the hysteretic
model subject to these excitations generates a sample set for the numerical values of
maximum softening. These samples can further be used in evaluating the reliability of
the structure based on the definition of failure event.
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Fig.3: Distribution of observed limit state values of one-dimensional maximum softening ®.

In figure 3, the distribution function of observed values of the one-dimensional maximum
softening, obtained from analysis of shake table experiments with reinforced concrete
frames (Healey and Sozen (1978), Cecen (1979)), is shown. The limit state definition
varied from insignificant damage to total collapse. In all cases a relatively small co-
efficient of variation was observed for the damage indicator. From this analysis it is
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concluded that safe states of the structure can be separated from unsafe states with
sufficient reliability, by determining whether or not the maximum softening §3s exceeds
a critical value §y. The failure event is then defined by {63; > 83 }. For MDOF systems
n-dimensional failure surfaces can be defined similarly .

7. EXAMPLE

In order to demonstrate the ability of the proposed hysteretic SDOF model to fit and
predict actual seismic response of RC structures, experimentally recorded results on a
1:10 scaled planar 10 storey 3 bay reinforced concrete frame, shown in figure 4, tested
at University of Illinois at Urbana Champaign °, are used.
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Figure 4. 10 storey 3 bay reinforced concrete frame.

The test structure consisted of two parallel frames working in parallel with ten uni-
formly distributed storey weights, attached in between. The beams and columns are
symmetrically reinforced so that yield limits are the same in compression and tension,
see 5 for more information about the geometrical and structural details of the structure.
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The eigenfrequency, damping ratio and modal participation factor for the first mode of
the undamaged structure are wy = 6, {; = 0.035 and By = 1.32. The first eigenvector
is chosen such that displacement of the top storey is 1.32z(t) where z(t) is the first
modal coordinate.

This structure is excited by 3 consecutive horizontal acceleration processes at the ground
surface which are simulated models of the El-Centro earthquake in 1940. These tests
are called HI-RUN1, H1-RUN2 and H1-RUN3 in ®, so they are in this paper. The
horizontal ground surface accelerations of these runs are given in figure 5 where 1, (t)
is normalized by the gravitational constant g = 9810 mm/sec?.

T(t) is estimated from the excitation and displacement response time series of the
experienced earthquake using an ARMA model, e.g. %, suited for the displacement
response process. The time window size is chosen as 2.4 seconds and an ARMA model
is fit for each 2.4 second time window. The estimate is located at the centre of the
window and the estimates are smoothed. SARMA(4) is then obtained using (15), see
figure 8.

zp and ng are estimated using the predescribed steepest descent method. The identified
numerical values for zg and ng using the correponding runs are listed in table 1.

VRO
RUN Zg 7o
(cm)
RUN1 2.68 083
RUN2 3.01 0.77
RUN3 3.14 0.73

Table 1. Estimated hysteretic parameters

The performance of the suited hysteretic models for each run using the values listed in
table 1 is shown in figures 6 and 7 for the displacement of the top storey, 1.32z(t), and
softening, S(t), respectively. The prediction performance of the suited hysteretic model
for RUN1 in the future earthquakes of tests RUN2 and RUN3 is shown in figures 8 and
9. Model predictions for S(t) are very good. The prediction performance of the suited
hysteretic model for RUN2 in the future earthquake of test RUN3 is shown in figures
10 and 11. Comparison of figures 8 and 10, and 8 and 11 show that the updated model
predicts better.
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a) H1-RUN1 displacement of the top storey
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Figure 6. The performance of the suited hysteretic models for each RUN. Displacement of the top
storey, 1.32z(¢) and 1.32£(¢) in mm, versus time, ¢, in seconds.
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a) H2-RUN2 displacement at top storey
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Figure 12 shows the results obtained in earlier works by MDOF modelling of this struc-
ture using non-linear beam theories. The computer programs used in these are SARCF-
IT % and SARCOF ". A comparison of figure 12 with figures 6, 8 and 10 show that

the proposed model fits better than the other two approaches, primarily because of the
degrading model of the a(D(t)) parameter.
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8. CONCLUSIONS

A robust method is developed for the prediction of global and localized damage and
the future reliability estimation of partly damaged reinforced concrete (RC) structures
under seismic excitation. A global maximum softening damage indicator is considered
based on the variation of the eigenfrequency of the first mode due to the stiffness and
strength deterioration of the structure. The hysteresis of the first mode is modelled
by a Clough and Johnston hysteretic oscillator !, with degrading elastic fraction of
the restoring force. The linear parameters of the model are assumed to be known,
measured before the arrival of the first earthquake from non-destructive vibration tests
or via structural analysis. The previous excitation and displacement response time
series is employed for the identification of the instantaneous softening using an ARMA
model. The hysteresis parameters are updated after each earthquake. The proposed
model is next generalized for the MDOF system. Using the adapted models for the
structure and the global damage state, the global damage in a future earthquake can
then be estimated if a suitable earthquake model is applied. The performance of the
model is illustrated by RC frames which were tested by Sozen and his associates 24 and
the predicted results in terms of instantaneous softening and top storey displacement
are in very good agreement with the ones recorded during the experiments.
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SUMMARY

The paper deals with the first and second order statistical moments of the response
of linear systems with random parameters subject to random excitation modelled as
white-noise multiplied by an envelope function with random parameters. The method
of analysis is basically a second order perturbation method using stochastic differential
equations. The joint statistical moments entering the perturbation solution are deter-
mined by considering an augmented dynamic system with state variables made up of the
displacement and velocity vector and their first and second derivatives with respect to
the random parameters of the problem. Equations for partial derivatives are obtained
from the partial differentiation of the equations of motion. The zero time-lag joint
statistical moment equations for the augmented state vector are derived from the [to
differential formula. General formulation is given for multi-degree-of-freedom (MDOF)
systems and the method is illustrated for a single-degree-of-freedom (SDOF) oscillator.
The results are compared to those of exact results for a random oscillator subject to
white noise excitation with random intensity.

1. INTRODUCTION

Structural uncertainties due to physical imperfections, model inaccuracies and system
complexities are spatially distributed over the structure and can be mathematically
modelled using either random variables or random processes which may be functions
of time and/or space. The uncertainty of the structural model parameters and of the
excitation parameters may induce uncertainty in the system response of the same mag-
nitude as the random dynamic loads, and should therefore be included in the analysis.
In the 198Qs, the analysis of the response variability of stochastic structural systems
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recieved a lot of attention, consequently a new field, ”Stochastic Finite Elements” was
coined to stochastic mechanics. Although there have been papers on computation-
ally expensive Monte Carlo solutions and reliability considerations, most of the studies
done in stochastic finite elements have been on the second moment analysis of the re-
sponse of stochastic systems under deterministic loading. The developments in this
field are reviewed in 17:2:6:83  This paper considers the approximate solution methods
for the stochastic differential equations arising in stochastic finite elements for dynamic
problems. In this respect, ordinary perturbations °, mean-centered second-order per-
turbation solutions %1512 and orthogonal polynomial expansions for the covariances
% have been proposed as solution procedures. Divergent secular terms have been de-
tected in the time domain analysis %1512 and these are cured in the frequency domain
11,12 " The partial derivatives of the response processes with respect to random variables
are proportional to time, hence perturbation solutions carry divergent secular terms
and might blow up with time for undamped systems. For damped systems, since the
divergent secular terms are under the governing control of the exponential damping
decay, the existing deviations in the perturbation solutions become neither observable
nor important with time 2.

For the random vibration of random systems, Chang and Yang ® developed a mean-
centered approximate second-order perturbation method in conjuction with modal ex-
pansion and an iterative scheme to solve non-linear dynamic problems for a beam el-
ement with structural uncertainities subject to Gaussian white noise excitation. They
employed equivalent linearization with Gaussian closure to obtain equivalent linear sys-
tem stiffness matrix and the local averaging method of Vanmarcke !® to discretize ran-
dom fields, thus, it is necessary to investigate the sensitivity of the response statistics
to the density of the finite element mesh. Jensen and Iwan 1° employed an expansion
of the covariances of the response in terms of a series of orthogonal polynomials that
depend on the coeflicients of the spectral decomposition of the uncertain parameters of
the system. The accuracy of the approximation increases as the number of terms in
the expansion is increased. Increase in the number of terms in the expansion is used to
solve problems with high variabilities.

The authors have previously considered the stationary response of random linear elastic
13 a5 well as geometrically non-linear frame structures # subject to stationary random
excitation based on a second order perturbation analysis. The random fields of the struc-
ture have been discretized by the weighted integral method of Deodatis 7 and Takada
1% in which Galerkin finite elements with deterministic shape functions are applied to
stochastic differential equations. This provides consistency in the discretization of the
random fields since the deterministic continuum and the random field are discretized
by the same shape functions. The stochastic analysis of the geometrically non-linear
structure was performed by an equivalent linearization approach in combination with
a spectral approach. Since only the stationary response characteristics are to be com-
puted, secular terms never arised. In both studies, the effects of the variability and the
correlation length of the random fields of concern on the response are parametrically
examined. Through comparisons with extensive Monte Carlo simulations and analyti-
cally available results, the second order perturbation method is observed to be a good



approximation for variabilities up to 25-30 per cent.

Stochastic response of linear systems subject to white noise can be studied by means
of 1t6 stochastic differential equations !. For random dynamic systems, the stochas-
tic differential equations of motion have random coefficients. In this paper a second
order perturbation method is developed for the stationary or non-stationary statisti-
cal moments of the response of MDOF structural systems subject to Gaussian white
noise excitation multiplied by an envelope with random parameters, based on stochastic
differential equations. The coefficients in the perturbation solution for the covariance
are made up of time-dependent zero-time lag joint statistical moments of the responses
and their first and second partial derivatives with respect to the random parameters.
The necessary expectations are determined considering a sequence of augmented dy-
namic systems with the state vector made up of the displacement and velocity and
their first and second derivatives with respect to the random parameters. This provides
a very compact notation. Equations for the partial derivatives are obtained from the
differentiation of the equations of motion.

The method is illustrated on a random linear SDOF oscillator subject to white noise
excitation with random intensity. The obtained results have been compared to exact
ones. The exact reults are obtained via the application of the total probability to the
conditional analytical results.

2. LINEAR RANDOM MDOF STRUCTURAL SYSTEMS

The equations of motion of linear MDOF systems with random parameters subject to
random excitation modelled as unit white noise multiplied by an envelope matrix with
random parameters are

M(X)Y (X, )+ C(X)Y (X, t) + K(X)Y(X,t) = Q(X, )W (1) (1)

where M(X), C(X) and K(X) are random mass, damping and stiffness matrices of
dimension p x p. X is a vector of dimension d X 1 denoting all random variables of
the structural and the load models. Q(X,t) is a matrix of dimension p X r indicating
the envelope functions with random parameters. {W(t),t €] — 0o,c0[} is a vector of
dimension r X 1 of mutually independent unit white noise processes, 1.e. a Gaussian
process with the mean value and auto-covariance function as

E[Wa(t)] =0 (2)

E[Wa(t1)Wg(t2)] = 6(t1 — t2)bag (3)

where §(t; — t2) signifies Dirac’s delta function and 6,4 is the Kronecker’s delta. X7 =
[X1,...,X4] are zero-mean random variables with the covariances KX exsy 198

E[X;] =0 (4)



Bl XX = s i, (5)

X1,...,Xg4, which will be referred to as the basic variables, are all assumed to be
stochastically independent of the external excitation process {W(t),t €] — oo, 00(}.

Consider the following Taylor expansion of the structural random matrices and the
excitation envelope matrix in terms of random parameters.

1
M(X) =mg + m;X; + 5111inin + -

: 1
CX)=ep +x; + -2-(2inin b S

(6)
1

o1
Q(X, 1) = ao(t) + @(t)X; + 5 (XX + - |

where my; = M(0), m; = %M(O), Ny = %—_M(O), etc. and the summation
convention 1s applied over the dummy indicesz,7 = 1,2,...,d. my, co, ko, mi, c;, ki,
m;;, c;i; and ki; ¢,7 = 1,2,...,d are deterministic constant matrices of dimension
p X p. qo(t),q:(t) and q;;(¢) ¢,7=1,2,...,d are deterministic matrices of dimension
p X v which are functions of time.

The displacement response process {Y(X,t),t € [0,00[} and the velocity response pro-
cess {Y(X,1),t € [0,00(} of (1) are random partly because of the functional dependency
of the external excitation process and partly because of the random basic variables X.
{Y(0,t),t € [0,00[} and {Y(0,t),t € [0, 00[} indicate the response process on condition
of X = 0, i.e. the stochastic displacement process obtained from (1) with mean values
for the basic variables. Consider the following Taylor expansion of the stochastic system

from the mean value syvstem to the second order in the basic variables A7y,... , Xy

s 1 . :
Ym(xut)gym(oat)+YT”|I£(O=t)Xi+ sﬁfmnfirj(otf)xi}ij+”' m= 1.2, P (?)
. . . 1.
Yor(K, 1) 22 ol 048) + Ponnd D, 8030 EYm,z‘.xj(O,t)Xin+... i e L P, S

where Y, £,(0,t) = %Ym(o.ﬂ etc. Further, the summation convention has been ap-
plied for the dummy indices i,7 = 1,...,d. Use of (7), (8) and retaining terms up
to the second order in the basic variables provides the following approximation for the



unconditional covariance of the response processes.

Y, Yo (1) = BYn(X, )Y,(X,t)] =

E[Ym(0,)Y1(0,1)] + E[¥in(0,6)Yn £:(0,£)X;] + E[Ya(0,t)¥m :(0,£)X:]+
E[{Ym,m(o, £)Yn (0, 8) + %ym(oj)ymm)_(ojt) e %Yﬂ(o,t)Ym,z,‘I,‘(O,t)}Xin} e pug
~ E{Yn(0,1)Y.(0,1)]+

{E[Ym,ri(o,t)Yn,zj(O,t)] 4 %E[Ym(o,t)yn,mj(o,t)] 4 %E[Yn(o,t)ym,z,.x,.(o,t)] }K(pg,.)xj

v, 7, (8) = B[Vi(X, )¥n(X, 8)] & E[Yr(0,£)¥5(0,8)] +

{E[Ym,m(o, B (0] AL %E[Ym(o,t)yn,m(o,t)] + %E[Yn(o,t)}'fm,m(o,t)] }ngi)xj
10

Ky v, () = B[Ym(X,1)Ya(X,1)] = E[Y5(0,8)¥,(0,8)]+

{E[ijre(oa t)l}ﬂyrj(ov t)] + %E[Ym(ﬂ,t)}"n,x‘.zj(ﬂ, t)] # %E[YR(O, t)ym’rix;‘(o’t)] }FX.-)X,-
1

In deriving (9), (10) and (11) zero mean response has been assumed, i.e. E[Y(0,t)] =

E[Y(O,t)] = 0. Further, the independence of the basic variables on the white noise
excitation processes 1s used.

In order to evaluate the expectations on the right hand sides of these solutions, stochastic
differential equations must be formulated specifying the development of Y (0, %), Y(D, t)
and of the partial derivatives Y ;,(0,%), Y 5,(0,t), Y 4,z,(0,1), Y ..;,(0.t). These are
obtained from partial differentiation of (1) with respect the basic variables, evaluated at
the mean structure X = 0 and from the expansions listed in equation (4). A sufficient
condition for the development of these state variables fulfilling the resulting equations
1s obtained if the mentioned state variables fulfil the following differential equations.

mpY(0,1) + coY(0,t) + koY (0,t) = qo(t)W(2) (12)

meY ,,(0,8) +¢oY .,(0,t) + koY .,(0,t) =
~m;Y(0,t) — ¢;Y(0,8) —k;Y(0,t) + q; ()W (1) =
—mymg* [ - oY (0,¢) — ko Y(0,t) + qo(t)W ()]
—¢;Y(0,t) - kY (0,1) + q;(1)W(t) =

(mimgco —¢;)Y(0,¢) + (mymg ko — ki) Y(0, )+

(ai(?) — mimg " qo(1)) W (1) (13)



mo’{lsziﬂfj (Ol t) + CUY,IJiZIJj (Ovt) + kDY,Ii.‘L‘j (Oat) =

- miY,z;' (Ost) - mj?ﬂ:i(ovt) iy min(O,t) - CiY,zj (Oat) - CjY,I;(()?t)_
Cin(O, 1) — k,‘Y,zj (0, t) = k_;,‘Y’I‘(O,t) — kiJ'Y(O,t) =+ qi]-(t)W(t) =

- m,—mo_l{(mjmo—lco —¢;)Y(0,t) + (mjmg ke — k;)Y(0,8)+
(a;(8) — mym5 Q) W(E) — oY 5,(0,8) ~ ko ¥ z,(0,8)} -
mjm@_1 {(mimo_lcu — c,-)Y(O,t) - (mi1n0_1k0 — ki)Y(O.,t)Jr

(as(t) = mimg " qo(®)) W(t) — oY ,(0.1) — ko¥ (0, 1) } -

m;;mg? [ — oY (0,t) — koY (0,t) + qo(t)W(t)] -

&Y (0,8 — 6% =400, 8) — e X106, 5~

k;Y ;. (0,8) — k;Y ;.(0,8) — k;;Y(0,2) + q:;(t)W(2) (14)

(12), (13) and (14) can next be combined into the following closed system of equivalent
1st order stochastic differential equations

Z(t) = AZ(t) + b(YW(¢) , Z(0)=0 (15)

rY(0,t) 7
Y (0,t)

¥ 2, (0,4)
g K
Y,z; (0,1)
Y.z, (0,%)
Y z:2;(0,0)
LY \z;z; (0,¢) ]

0
my ' qo(t)

0

—mg Y{mymy ' qo(t) — q:())
b(t)= | q

—mg ! (mym;tqo(t) — q;(t))
0

mg ! [ (mymyim; + mimy m; — m;; )m; qo(t) — m;my 1 qi(t) — mym;q;(t) + qi; (¢)




0 I 0 0 0 0 0 0
-mg'ke -mgleq 0] 0 0 0 0 0
0 0 0 I 0 0 0 0
Gy H; —mj ko —mgyleg 0 0 0 0
0 0 0 0 0 I 0 0
G; H; Q 0 —mo_]‘ke —mo_lco 0 0
0 0 0 0 0 0 0 I
G;; H;; wylmymy'ke mylmymgley mylmymgtke mglmymgicy -mglky —m;le |
(17)
Gy = mal(m;m{)‘lko —k;)
H; =m;! m-m_lco — ¢
1 0 ( 1 0 z) (18)

Gij = my Hmjmg* (ki — mimg ko) + mimg* (kj — mjmg ko) + mijmg ko)

H;; = m;[m;mg*(c; — mimg'ecq) + mimg!(c; — mjmgteg) +my;my el

Zero initial conditions of the system have been assumed as shown in (15). The white
noise excited system in (15) is the engineering interpretation of a Stratonovich differen-
tial system with linear drift-vector AZ(t) and diffusion vector b(¢). Since the diffusion
vector is state independent, the Stratonovich and 1t6 interpretation of equation (15) are
identical with probability 1 *.

The state vector Z(t) has the dimension N = 2p + 4pd + 2pd®. If the basic variables
are assumed to be uncorrelated, only the coefficients for : = j in the inner sums on the
right hand sides of (9), (10) and (11) contribute. Moreover, since partial derivatives with
respect to ¢ and j are identical, the coefficients can be determined from the differential
system for the following reduced state state vector of the dimension N = 6p for a fixed
e

ZT(-&) = [Y(07 t)') Y(07 t)’ Y,I{ (07 t)) Y,Ii(()) t)) Y,.’U;Ei(o'i t)i Y,I{I{(O‘ ‘t)l (19)

Here, the differential equations for the state vector (19) is obtained as a sub-system of

(16).

3. DIFFERENTIAL EQUATIONS FOR STATISTICAL MOMENTS

(13) is a linear stochastic differential equation subject to Gaussian white noise, there-
fore, the state vector Z(t) is Gaussian. Further, the system has zero initial values,
thus, E[Z(t)] = 0. The covariances of Z(t) fully describe the joint probability den-
sity function of Z(t). Applying the ltd-formula and then performing the expectations,
the following differential equations and associated initial values are obtained for the
covariances, ;;(t) = E[Zi(t)2,(t)], see e.g 1.

pii(t) = Aieprs (8) + Ajrpri(t) +0:(0)bi(t) ,  p45(0) =0 (20)

where summation convention is applied on dummy index £ =1.2,... . \".
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4. LINEAR SDOF RANDOM OSCILLATOR

Next, the method is illustrated for a linear random SDOF oscillator subject to white
noise excitation with random intensity. The equation of motion of a SDOF linear oscil-
lator with random parameters subject to white noise excitation with random intensity
15

M(X)Y(X,t) + C(X)Y (X, t) + K(X)Y(X,t) = QX)W (¢) (21)

where M(X), C(X) and K(X) are random mass, damping and stiffness. Q(X) indicates
the random intensity of the excitation which is taken as time-invariant in this problem.
{W(t),t €] — 00, c0[} is 2 unit white noise process.

The four random parameters, entering the above equations are all modelled as random
variables written on the following form.

M(X) =mo(1+X1) )
C(X) = o1+ X5)

(22)
FOX = g (24 20
QX)=q (14 Xs) )
where X7 = [X1,..., X,] are zero-mean random variables with the co-variances « oy

As previously, these random variables referred to as the basic variables are all assumed
to be stochastically independent of the external excitation process {W(¢),t €] — o0, oo[}.

Equation (22) states that m; = mq, mp =ms =myg =0, = c¢g, ¢1 = ¢c3 = ¢4 = 0,
ks =ko, ki =k =ks =0, =g, 1 =@ =g =0andm;; =c¢j =k =¢; =0
for ¢,7 =1,2,3,4. Kronecker delta is introduced to eliminate the zero terms. For this
oscillator problem, (15)-(18) then become

Z(t) = AZ(t) +bW(t) , Z(0)=0 (23)
(Y(Oat) 1 0
Y(0,1) g0
Y..(0,1) 0"
E A E _ | by 4y
Z(t) = Voo | b= (24)
Y. (0,8 iRl b i
Kximj (07t)
L ¥ a0, ) | L272261:61; — 261564 — 72614645 ]
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5. NUMERICAL RESULTS

In what follows, a numerical example is worked out for an SDOF oscillator. The random
parameters M, C, K and @ are assumed to be mutually stochastically independent
and uniformly distributed, M ~ Ulap,bp), C ~ Ulac,bc), K ~ Ular,bg), Q@ ~
Ulag, bq), where ap = E[M](1—+/3V[MY), by = BIMJ(1+v/3V[M]), etc. The follow-
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ing mean values (E[-]) and variational coefficients (V[]) are considered.

EM]=my=1.0 , VI[M] = 1
B =&y =101 g WG =03
, (27)
E[K]=ky=1.0 . Vg =038
EQ]l=q = V2c¢ky , VI[Q]=03 |
The corresponding circular eigenfrequency, wy = \/—;izo , and damping ratio, (; = 5;19?:;,

of the mean oscillator are 1.0 and 0.05, respectively. The variance of the displacement
and the velocity of the mean linear oscillator are both equal to 1. The variational co-
efficients of the parameters also indicate the standard deviation of the zero-mean basic
variables X; defined in (22). The proposed perturbation method is a very good approx-
imation for small variabilities, i.e. small V[-]. V[-] = 0.3 is a rather high coefficient of
variation, almost the limit of the proposed method. The results with V-] are presented
in figures 1-8 to show the performence of the method at such a large variability.

The linear statistical moment differential equations, listed in (20), are numerically solved
by a 4th order Runge-Kutta scheme, with time step selected as At = 7,/20, where
To = 27 is the eigenperiod of the mean linear oscillator. The results obtained by the
present approximate second order perturbation method are compared to the exact ones
in all the following figures. Since a joint probability function is assigned for the random
variables, fx(x), i.e.,

1

PO = G a0 — ac) (b — axci(bg — a0)

(28)

the exact unconditional non-stationary variances, xyy(t) can be computed from the
application of the total probability theorem on the conditional non-stationary variances,
kyy(X = x), of the oscillator as

erv(®) = [ mey(t] X =x)fx(x)ix (29)

X

The non-stationary variances kyy(t | X = x) and sy (t | X = x) on condition of the
system X = x are analytically available as follows

q* (—wd2 + €269 wy? — w? (? 4+ w? (2 cos(2wgt) — wwy ¢ sin{2wat))

Hywlt | A =%)= de?Cwt m23y, C

(30)

¢* (—wa® + 2wy — WP (2 + w? (? cos(2wqt) + wwq £ sin(2wqt))

kyy(t | X =x) = 4620t m? g2

(31)



BIYY)

where w =

k
;};:CZ

c
2mw
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and wg = w+/1 — (2. The exact non-stationary unconditional

variances presented in figures 1-8 are calculated from the numerical integration of (29)
using equations (30) and (31).

1.2

=
=]
4 &
= | ya
L= Perturbatien Perturbation
w j ’ —_ Exact r:g Exact
il (=]
== i
o £
~ | f7
o3 T —: —— ) T ===
[ 3 3 12 15 12 15
L/T,
Figure 3. kyy (t) versus =

Figure 7.

Ky y () versus

To

.
To

{5 feriin)

kyy(t) versus

To

- Only C is random.  Figure 4. ry ;. (t) versus TLO‘ Only C is random.

Perturbation
Exact

Perturbation
——- Exact

(%]
1

. Only K is random.  Figure 6. &y y (1] versus 7. Only X is random.

Ty

Paertur:zation ——— Perturbat:i:cn
Exact

o =S Exact

ELY]
1

. Only @ is random. Figure 8. k. (t1 versus r’g Only @ is random.
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As seen clearly from figures 1,2 and 5,6, the perturbation solution carry divergent sec-
ular terms in the non-stationary regime. Since the partial derivatives of the response
processes with respect to random variables are proportional to time. To explain how
these secular terms arise, a perturbation solution of order n for (30) and (31) from
the mean structure can be performed. Then, terms of the types t"e™%“*! cos(wyt) and
the~Sowotgin(wyt) will appear. Obviously, these terms will be dissipated as t — oo,
but can be dominating at small ¢, especially if the damping is small. In the proposed
second order perturbation method, the divergent terms are quadratic with time, ¢2.
Hence, extensions to higher order perturbations will not improve the solution for the
non-stationary regime. The solutions would have blown up with time if there hadn’t
been any damping. For damped systems, since the divergent secular terms are under
the governing control of the exponential damping decay, the existing deviations in the
perturbation solutions become neither observable nor important at large ¢. Similar
secular terms were previously detected by the authors in the perturbation solutions of
linear oscillators with random stiffness subject to short duration earthquakes, ?. On
the other hand, for the studied example, no significant secular terms are present for
only the random damping case, figures 3-4. The results are exact for only random white
noise intensity case, figures 7-8. Further, the stationary results are estimated with high
accuracy in all cases even for such high variabilities, V[-]. The deviations between the
perturbation results and the exact solutions in the stationary regime are due to latter’s
being dependent on the selected distribution (in this example, uniform distribution)
whereas perturbation solutions are distribution free.

Analytical derivations yield the following exact stationary unconditional variances.

Z_g%} - 6(bc — ac;(b;\- —ax) 111(?_6_') 1“(%”)(% +bgaq + aZQ) (32)

Kyy = E[
ac ar

2 b ,
_z [ﬁ?ﬁc} " mm(ﬁ) m(i%)(% + boag +ab) (33)

Ryy

Perturbation /
- Exact A

Figure 9. kyy versus V. All parameters are

random with the same coefficient of variation V.
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(32) is employed to illustrate the validity range of the second order perturbation solution
for the stationary results in figure 9 where all random variables are given the same
coefficient of variation, V. The stationary results for the perturbation solution can be
obtained from the solution of linear equations listed in (20) with left hand sides equal to
zero. From the comparison of exact stationary results and the second order perturbation
results, it is concluded that the proposed second order perturbation method yields good
results for variablities up to 25-30 per cent for stationary results.

6. CONCLUSIONS

A second order perturbation method using stochastic differential equations is developed
for the stochastic response problem of linear systems with random parameters subject
to random excitation modelled as white-noise multiplied by an envelope function with
random pararmeters. The joint statistical moments entering the perturbation solution
are determined by considering an augmented dynamic system with state variables made
up of the displacement and velocity vector and their first and second derivatives with
respect to the random parameters of the problem. Equations for partial derivatives are
obtained from the partial differentiation of the equations of motion. The zero time-lag
joint statistical moment equations for the augmented state vector are derived from the
Ito differential formula. This provides a very compact formulation. Secular terms arise
in the perturbation solution in the non-stationary phase until stationarity is attained in
case of random mass and random stiffness paramaters. These are under the governing
control of the structural damping of the system in the way that they are eventually
dissipated.

From the studied numerical comparisons with the exact results for a random linear
oscillator, it is concluded that the proposed second order perturbation method possesses
secular divergent terms which are under the control of damping in the non-stationary
regime and that it yields very good results for variablities up to 25-30 per cent for
stationary response statistics.
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MEASURED AND PREDICTED DYNAMIC BEHAVIOUR OF AN OFFSHORE
GRAVITY PLATFORM

by

Ivar Langen, Hogskolen i Stavanger, Stavanger, Norway

EXTENDED ABSTRACT

The Gulifaks C platform which was installed in May 1989 on 217 metres water depth in the
North Sea, is the largest offshore gravity base concrete structure in the world up to now. The
general layout of thew platform is given in Figure 1. This huge platform is furthermore placed
on a site with multilayered soft and geotechnically complex soil conditions. To obtain necessary
stability and bearing capacity a new foundation solution was introduced with circular concrete
skirts penetrating 22 metres into the soil and with a drainage system by which consolidation of
the soil can be accelerated and controlled.

On this background a comprehensive foundation and structure monitoring system was installed
including 207 sensors which measure environmental conditions, structural behaviour and
foundation behaviour. The purpose of the instrumentation was both design verification and short
and long term monitoring of the platform.The instrumentation system is summarized in Figure
2

This paper discusses the measured dynamic behaviour of the platform. The foundation behaviour
and special features of the instrumentation is covered in papers by Tjelta and al. [1] and Myrvoll
[2]. Two subjects are emphasized: Identification of a dynamic model of the platform and a
discussion of the dynamic response.

In the identification procedure both natural frequencies and mode shapes are used. These and the
damping are estimated from the measurements using a multichannel ARMA model [3,4]. The
first natural period is 3.01 sec and the damping ratio 1.4 - 2. The dynamic model as shown in
Figure 3 is based on the design dynamic model and as built documentation. Uncertain parameters
in this model as foundation spring stiffness, modulus of elasticity for concrete, deck stiffness and
added mass are varied to obtain fit with the natural frequencies and mode shapes from the
measurements. The identified model is furthermore compared with the design model, and
predicted response obtained in the frequency domain using the model and a theoretical load
model, is compared with measured response.

In the discussion of the measured dynamic response the paper features response composition, the
probabilistic nature of the response, and possible nonlinearities in the soil structure interaction
and wave loading. Special attention is given to observed ringing response in the platform.

As an example the wave and response spectral density in the highest seastate measured (H=13.6,
T,=16.7 ) are shown in Figure 4. The response is mainly quasistatic. The resonance contribution
to standard deviation is very small. Time series and polar plots of displacements are shown in
Figure 5 and 6; both total response and response bandpass filtered at 0.25 Hz to give the wave

frequency part and the resonant part. Of special interest is the resonant part which show transient
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or nonstationary behaviour. The probability distributions of waves and response are presented
in Figure 7. The wave frequency response is close to Gaussian indicating a linear soil structure
interaction. The trendency of skewness in the waves does not show up in the response. The
resonant response is clearly non Gaussian with a kurtosis value of 5.4 due to the transients. This
transient resonant response also called ringing must be due to nonlinear wave loading. The
mechanism is up to now not really understood and modelled. The effect does not influence the
total response of Gullfaks C significantly in this sea state since resonance contributes very little.

Figure 8 shows time series of resonant response in a lower sea state (Hs = 9m, Tp = 15) where
ringing is pronounced (kurtosis 10.4). These transient resonance phenomena are clearly felt by
the personnel onboard and have in some cases caused uneasiness. They are, however, not
important for the the integrity of the Gullfaks C structure due to the low general contribution of
resonance in higher sea states. But for large volume structures with longer natural period than
Gullfaks C the effect has turned out to be important [5,6.]
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Figure 8. Time series of resonant y-displacement in top utility shaft (Level 223 m)
Recording period 911018 : 0220. H,=9.05 m and T, = 15.1 sec.
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Abstract:

The paper summarizes some important experienced obtained from the West Bridge in the Storebalt
Link. The alternative of the Contractor (ESG) included bridge piers with a plane base of reinforced
concrete instead of open bottom caissons with in-situ casting of tremie concrete. The design change
gives rise to a number of special requirements.

The paper includes first a review of the major dynamic loads of importance for the bridge piers
(ultimate and accidental loads). Then the requirements to and the experiences with the stonebed under
the caisson bottom are reviewed. Next the consequences in terms of base plate design are reviewed.
Finally, because of problem experienced with some valves in the bottom plate to be used in connection
with placing the caissons on the stonebeds, the consequences for the bearing capacity of sandfilling the
stonebed are reviewed.

The problems associated with the filter criteria between stone bed and soil and the consequences of
sandfilling of the stonebed are the same for the alternative caissons considered.



1. Introduction

The design of the bridge piers for the West Bridge in Storebzlt, Denmark, has included several
alternatives from the outline design to the tender design and the contract design. During outline design
several alternative superstructures including one level concrete and steel structures and two level
composite structures resulted in very different bridge piers. The successful tender from ESG included
a one level concrete superstructure; but it included also as a major difference, that the bridge piers were
constructed as caissons with a plane base of reinforced concrete instead of open bottom caissons with
in-situ casting of tremie concrete, see Fig.1.1.

¢ PIER : <

SCOUR PROTECTION : }

Y SANDFHL

CRUSHED STONE

—————

.. 17000

Fig 1.1 Caisson with plane base plate and open caisson with in-situ casting of tremie concrete

The present paper surnmarizes some of the major experiences obtained during checking the design and
the installation procedures and following the installation of the pier caissons with plane base plate.

Caissons with fixed base plate placed directly on a stonebed gives rise to a number of special
requirements and associated analyses, of which some appeared more critical than initially assumed. The
West Bridge is today successfully installed so the problems associated with the chosen caisson concept
have been overcome. But the experiences obtained are important for future alternatives including
caissons with plane base plate specially when exposed to dynamic loads.



2 Load cases (waves, ice, ship impact)

The main environmental or accidental loads to the bridge piers include waves (plus current), ice, and

ship impact. They are briefly described in the following as they are determining also for some special
requirements due to the concept with a plane base plate.

2.1 Waves
The wave load design has been described in Gravesen (1993a).

During the project the design conditions were modified to the ones shown in Fig. 2.1:
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Fig 2.1 Wave load design conditions

An example of the total force design is shown in Table 2.1

cataarIons| pier [W.L.| H. | T. | DIR. Ex MY
No. no. {m |m {(s) | () | T | BSG| 3 |rhase ()] B | ESG | "% |Phase (°)
Al 44 |[-1,2] 5 |7 o° f20,4-|21,4 | 1,05] 37 319 | 355 | 1,11 37,
A.2 44 |-1,2| 6,3] 7,6(22,5*]25,6 |27,0 | 1,05} 33 380 | 434 | 1,14] 33
A3 44 [-1,2| 6,3| 7,6| 45° §18,6 [19,01f 1,03| 33 275 | 300 | 1,05| 133
A4 44 |-1,2| 6,3| 7.6| 90 | — | — | — — —_— =] —
A.5 44 |-1,2| s,0| 7,6/ o §22,5 | — | — 32 333 | — | — a2
A.6 44 |-1,2{ 6,3| 7,0{22,5°}23,0 | H.A | — 38 360 | N.A.| — 38
A7 44 |-1,2| 63| 7,0l 90 | — | — | — -— —_— |~ —
Table 2.1 Example of final results for pier 44 with water depth of 29 m (diffraction analysis

("BMT") plus effect of finite wave heights and pressure on the bottom of the pier
added ("ESG")



2.2 Ice

The ice load design has been described in the proceedings from the seminar in Danish Society of
Hydraulic Engineering on "Design of exposed bridge piers, 1. Dynamic ice load". The paper by
Christensen et al (1991) describes the overall results inclusive the results of the ice model test later
published in Christensen and Klinting (1992), Timco et al (1994), and Christensen et al (1994). The
paper by Christensen and Skourup (1990) describes the extreme ice properties. The cyclic soil tests are
described in Kleven and Andersen (1992) and the integrated soil resistance analysis is described in
Andersen et al (1992). A further overall description has been given in Chistensen et al (1993).

The selected design time series are presented in Fig 2.2
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Fig 2.2 Selected design time series, accidental ice load. The indicated band envelopes load fluctuations
caused by spalling. The design time series is scaled to both the desired load level and
coincidence between spalling frequency and pier vibration frequency (lock-on).

The structure/soil response in terms of the sectional forces and moments at foundation level calculated
by applying the complicated non-linear structure and soil are illustrated in Fig 2.3.
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Fig 2.3 Ice load respense forces in foundation level



The static design forces as specified in the contract were defined as:

F..x = 44 MN for an incident angle of « = 63 °, combined with a torsion moment of 220 MNm
(corresponding to a torsion arm of 5 m.)

The force distribution corresponds to:

F(perpend. to bridge axis) = 20 MN
F(parall. to bridge axis) = 38 MN

The main result of the investigation was that the "real” design forces gave a slightly (few percent)
larger load on the structure than the specified "equivalent static load" , but the increase could be
converted to an acceptable slightly larger risk for exceedance from the ice load.

2:3 Ship impact

The ship impact investigations have been described in Gravesen (1993b).

The "real" load scenario with the selected 2,000 dwt incident ship is illustrated in Fig. 2.4 and 2.5
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Fig. 2.4 Ship impact force time series (bow collision)
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Fig 2.5 Schematic view of impact locations from bow collision

The "equivalent static design forces" in the contract were specified from the directions and at the
locations shown on Figure 2.5.



The design forces and the levels of impact were
- 40 MN at level + 0.5m (for a loaded ship)
- 36 MN at level + 3.5m (for a ship in ballast)

2.4 Soil resistance model(s)

The foundations were designed in accordance with DS 415 cl. 6.1 for direct foundations and the
contract was based on soils with an undrained cohesion of 225 kPa. For ship impact (short term load)
the soil strength was increased by 3 times 5% corresponding to 3 decades because the impact is
assumed to be 1,000 times faster than used in soil tests. Where weaker soil required larger foundation,
the Contractor was paid for the additional costs for foundation and structures.

For ultimate limit state (ULS) calculations (DL + LL + wind and waves) a factor of safety of 2.0 is
used, whereas for accidental limit state calculations (ALS) (DL + LL + ice or ship impact), the factor
of safety is 1.0. '

The assumed soil reaction distributions are described further in section 4.
2.5 Discussions

As presented above the accidental ice loads and ship impacts were in the design basis simplified to
"equivalent static loads".

For the ice load an initial estimate was required, because the contract design based on ESG’s alternative
had not been tested for ice loads. By utilizing very comprehensive tests and analysis the final calculated
accidental ice forces showed to be only few percent larger than corresponding to the estimated
"equivalent static forces". However, the bridge piers could have been designed more favourable to ice
forces so this load case could have been less critical.

For the ship impact it may be concluded, that it as for example in connection with the East Bridge
would have been more convenient, if the "real" load in terms of force versus time had been included
in the design basis.

Then the Contractors design would automatically be required to include dynamic effects like
requirements to bridge bearings and a realistic foundation bearing capacity analysis including
considering build-up of pore pressures, for the case when damages to ball valves in the bottom of some
caissons made it required to assume sandfilling of the stonebed.

Too large simplifications in the design basis should be avoided because such simplifications may be
very inconvenient for example in case of Contractor alternatives being selected, where new critical
design cases not foreseen in the simplified design basis may occur. Further, special conditions
experienced during construction have also shown to be inconvenient to treat within a too simplified
design basis.

3 Stonebed

3.1 Requirements to stonebed

The stonebed generally with a height of 1.5 m - 1.7 m consists of a lower compacted layer with a
height of typically 1.2 m crushed stones within the diameter range 5 - 70 mm (5 - 90 mm at shallow

water).

On the top of this layer a 0.3 - 0.5 m screeding layer typically consisting of 70 mm heavy density
stones (see section 3.4) is placed.

The lower stone bed should be compacted to a relative density of 80 % in order to ensure strength and
to safeguard against shake-down in case of dynamic loads such as ice and ship impact.



3.2 Levelling of screeding layer

The fixed bed in the caissons give rise to very stringent requirements to the allowable unevenness in
the final surface of the screeding layer.

The jack-up barge "Buzzard" was equipped to carry out the various required actions:

- cleaning of the surface of the excavated area

- placing of the stones in layers

= compacting the stones in the lower layer(s)

5 levelling the final surface

= surveying of the surface of the excavation, the uncompacted/compacted layers, and especially
of the final screeding in order to control the strict requirements

"Buzzard" capabilities are illustrated on Fig. 3.1:
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Fig 3.1 "Buzzard"

The assumed stiffness of the stone bed and the final levelling criteria are described in section 4. Tests
with "Buzzard" showed, that it was possible to obtain the required evenness of the screeding layer. It
may be concluded, that apparently no less advanced equipment than "Buzzard" could have been applied
for the work. An unacceptable evenness of the screeding layer would have resulted in that the caissons
be undergrouted so the basic idea of the "plane base plate on a stone bed without undergrouting” could
have disappeared in a late stage of the project with quite drastic technical and cost consequences.



.3 Stability of stone bed before installation of pier

An important requirement to the stone bed, on which a caisson with fixed bottom has to be placed, is
that the accurately installed stonebed remains stable from the time of screeding to the time of

installation. This is more critical for caissons with a plane base than for caissons to be undergrouted
later.

The general scour design including the results of the scour model tests is described in Hebsgaard et al
(1994).

The scour requirements in the intermediate situations were originally specified on the basis of
theoretical analysis using a Shield criterion (f = 0.03). Later, some additional model tests were carried
out (Delfi Hydraulics, 1990) in connection the ESG’s supplementary scour model tests.

The following cases were considered:

Design conditions Return
Waves dominant Current dominant period
H, (m) U, (m/s) H; (m) U, (m/s)
1. Screeding layer completed 2.1 1.1 1.2 1.55 1 year
2. Placing pier < 0.7 < 1.50 .
3. Pier placed 1.5 1.1 1.2 1.30 2 weeks

The review included analysis of the current amplification due to the neighbourhood of the piers and the
induced currents due to vertical pier oscillations during installation.

The determining criteria showed to be case 1. "Screeding layer completed”, which appeared to result
in quite larger stones than initially assumed to minimize risk for damage to the evenness of the screeded
layer. In order to reduce the practical problems associated with screeding of the upper stone layer
emphasis was given to determine the minimum possible diameter of the stones in the screeding layer.
Therefore, an upper stones layer with a relative density of 1.9 was recommended. The analysis resulted
in stone diameter requirements (ds) of 80 mm, 55 mm and 35 mm for water depths of 10 m, 15 m and
20 m, respectively.

Model tests with corresponding stones of usual density showed the very few stones were moved during
installation, but severe darmage could occur in the period after placing the caissons before the final scour
protection could be installed.

34 Filter criteria between stonebed and underlying soils

Where the excavated sea bed consists of fine sand it was necessary to construct a filter layer between
the stonebed and the fine sand bottom, because there could be risk of mixing giving settlements and
reduced bearing capacity for oscillating loads from waves. For stonebeds on clay till a filter layer is
not considered required.

Design principles for granular filters have been improved the recent years mainly through the dutch
experiences obtained in connection with the Eastern Schelde project, see for example Graauw et al
(1984).

Below is given a brief simplified order of magnitude analysis illustrating, why a filter layer is required
for fine sands.

A typical oscillating wave load results in a stress variation in the sea bed below the stone bed of 86 kPa
and 135 kPa, respectively for a bridge pier on 13 m and 29 m water depth. The pore pressure u is
assumed to vary within the same range. Then u/y,, is varying between 8.6 and 13.5 m.



For fine sand the hydraulic conductivity is estimated to k = 2 x 10° m/s. The sand stiffness module

is estimated to D = 260 MPa. The consolidation time scale (Lambe and Whitman, 1969) is for t = 2
sec:

T = k D t/(y,, H) = 1 m*H?, where H = soil depth

For T = 0.05 is found H = 4.5 m, which is a possible sand layer thickness. To estimate the maximum
gradient is used Fig. 27.2 from Lambe and Whitman (1969):
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Fig. 3.2 Consolidation ratio as function of depth and time factor: uniform initial excess pore pressure.
For T = 0.05 is obtained a slope Z/U, = 0.4. The maximum gradient i™* is estimated to
i™ = (v, x H(U/Z) = (8.62’13.5/435)/04 =52 75> 1

From above simplified analysis it follows, that conditions with critical gradient (i > 1.0) may occur
at the surface from the stonebed to an underlying fine sand during wave loads.

Thereby an appropriate filter ( 0 - 8 mm) is required between the stonebed of 5 - 70 mm stones and
underlying fine sands to avoid (uneven) settlements of the stone bed under the most exposed sections
of the bottom plate during wave loads. Lack of appropriate filter could in addition to uneven settlements
lead to severe changes in the uniform pressure transfer from the stonebed and associated larger cracks
in the bottom plate than those originally obtained through the accurate levelling.

4. Base plate design

4.1 General

The plane base plates are designed and constructed as integral elements of the bridge piers. They are
designed according to the theory of elasticity, so they can transfer all forces from the bridge to the
foundations.

4.2 Loads from the bridge plus waves, ice, and ship impact.

For a concrete bridge as the West Bridge, the dead load (DL) is by far the dominating vertical load on
the foundation. However, the foundation and base plate dimensions are calculated based on

combinations of horizontal and vertical loads, because the horizontal components moves the centre of
gravity and reduces the contact area as well as the allowed vertical bearing capacity.



For a typical pier on deep water, loads and foundation stresses are listed in table 4.1,

Loac} case Effective Vertical Horizontal

dominated foundation surface normal stress shear stress

by m* kPa kPa

110% DL 569 520 17

Wave & Current 523 500 61

Ice 305 750 207

Ship Impact 340 680 223

Table 4.1 Pier no 31 on 28.5 m of water depth and with base plate dimensions 33.0 m by 21.0
m

For this pier ice forces are governing, but it should be noted, that for other piers the internal "ranking"
is different.

Because of variation in pier types, water depths, soil strengths and the different safety factors on
different load cases all four load combinations mentioned above are decisive for base plate dimensioning
of some piers.

Load case Decisive for
dominated base plate dimensioning
by of approximately below indicated

number of piers

110% DL 11-12
Wave & Current 15-30
Ice 6-20
Ship impact 16-20
Table 4.2 Decisive load case for base plate area

The numbers in the table indicate that sometimes the dimensions are limited by more than one load
combination and also that "relaxing" of one of the criteria would automatically make another load case
decisive without any significant saving.

4.3 Foundation reaction pattern

According to the contract, the pier structure should be designed for foundation reaction according to
DS 415 for cast in-situ footing foundations.

- 16 =



Strass under base slab [kPa]

ThlS include:
Effective area reaction
Linear varying reaction

Reaction pattern according to DS 415 ¢ 6.1.2.1 giving + 50% under the corner sections and
- 50% under the central part of the base.

Other requirements to the strength of the pier structure were:
A "local" block load of 1200 kPa over a 3x3 m area assuming a local heap of gravel

Compatibility requirement demanding that the base and the structure shall be designed for the
actual reactions from the gravel pad as constructed.

4.4 Stonebed, construction tolerances

During the design and construction process, the Contractor decided to prepare his construction
specifications including screeding tolerances and compaction quantities so that the compatibility
requirement mentioned above would never lead to more adverse sectional forces in the bridge piers than
the other four foundation reaction pattern requirements.

In fact, this approach was also necessary, because at that time some of the bridge pier caissons were
already constructed.

The contractor verified the foundation reaction pattern for selected piers by means of the computer pro-
gramme PLAXIS.

In the calculations he used the deformation parameters from the soil investigations and the subgrade
reaction moduli of the compacted/uncompacted gravel pad were established based on plate load tests
at Lindholm.

For a gravel pad of 1.2 m compacted and 0.3 m uncompacted stone, the PLAXIS investigations proved
that calculated reaction pattern could be held within the limits when the screeding was conducted to
very strict limits characterized a.o. by

Plane or parabolic shape with maximum (average) deviation of a 3x3 m zone of 25 mm.
Global "sag" of the parabolic shape to be less than 50 mm down in the centre and never
upwards.

One corner maximum 15 mm out of plane defined by the three other comners (to minimize
twist load)

I ; 0.23 x Length v
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Stress distribution for a sag of 60 mm
Fig. 4.1 Example from PLAXIS analysis
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4.5 Structural consequences of the foundation reaction patterns

The close review of the design resulted in rather large reinforcement demands in the base plate and the
lower crosswalls in the pier caissons. Stringent stress/crack criteria was a main reason that the first
caissons with low slender crosswalls on a thick base plate needed considerable strengthening compared
with the first estimates.

Apparently the initial serious underestimates of required reinforcement was the result of much too
simplified structural analysis disregarding relative stiffness of the structural elements and the fact that

the moments are transferred from walls to plates and visa versa.

Later the base plates of the piers were prestressed in the transversal directions and the crosswalls were
given adequate height so that a "harmonic" structural concept was achieved.

5. Sandfilling the stonebed
5.1 Open ball valves
In order to provide an easy water filling of the bridge piers during placement and in addition close

during sand filling the piers of the West Bridge were provided with 6 ball valves consisting of concrete
balls fixed with steel chains in the bottom of the caissons.
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Fig. 5.1 Ball valves, original design

The ball valves were not tested before use. As a consequence of severe vortex shedding, damages
occurred to the valves. Then appropriate closure from leaking sand was not obtained as openings were
found due to chain elements between the ball and the cone or the ball been turned so eyebolt been
present between the ball and the cone. Further, this was first experienced after 20 caissons was placed.
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Fig. 5.2 Sketches of damages to ball valves

Due to lack of access the actual number of cases with (partly) open ball valves could not be verified
so for these caissons an unpredictable number of caissons have partly open ball valves. This led to the
following serious questions:

- would sandfill flow out and how large sand cone could develop below each of the open ball
valves?

- could the flow pattern and the wave load distribute the sand so nearly the complete stonebed
could be sandfilled?

- what is bearing capacity of a sand filled stonebed?

These aspects and main results of the quite extensive tests specified by prof S. Bernander carried out
by Skanska Teknik AB on Chalmers Technical University (Gothenborg) are described in the following.

5.2 Sand cone development

Initial tests showed that it could not be proved that sand would stop falling out from partly open valves
after some time with "bridging”.

The Contractor initiated model test (ESG, 1993a) to estimate how much sand would probably fall out
and which configuration would the outfaling sand develop.

Loading condition was an oscillating pressure gradient from the waves plus an asymmetrical constant
superimposed pressure gradient caused partly by the current and the non-linearities in the waves.

Fig. 5.3 shows a result from such a test
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Fig. 5.3 Results from a sand filling test
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It is remarkable, that a relative large cone develops, and that the growth of the cone is reduced after
a certain period of time. But there always seems to remain an open slot above the sand cone, so at least
the possibility of further extension of the cone is not out of question. The cone size is further quite
sensitive to the asymmetry in the load scenario.

In addition to this comes, that wave loading to the sand filled cones could generate flow conditions in
the sand cone with critical gradient on the cone surface, so an unpredictable additional mechanism to
further spread the outflowing sand and not included in the model tests was present.

A/S Storebzltsforbindelsen and their Consultants (CCL and specialists) were of the opinion that nearly
complete sandfilling was a possible scenario with potential adverse consequences.

5.3 Pore pressures in sandfilled stonebed

This led to further tests (ESG, 1993b) to measure the permeability and to measure, if the stone bed
included contractive or a diletative characteristics under dynamic loadings.

If diletative characteristics were present, then no excessive pore pressure would occur under the
loadings so same bearing capacity of the caissons as originally assumed was present. Visa versa if
contractive characteristics were present. The most critical case was due to the short loading time
considered to be ship impact (bow collision direct to a pier).

Due to the size of the stonebed materials this required quite large and complicated model tests. The
permeability test were carried out in a 550 mm high g 500 mm cylinder. Shear tests were made in a
shear box with a height of 500 mm and a diameter of 1,000 mm. The shear box included 7 free ring
cylinders in addition to the 2 rings attached to the top and the bottom Between the rings a 5 mm gab
was maintained to avoid skin friction.

The shear box model is illustrated on Fig. 5.4:
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The permeability tests showed some tendency to piping in certain preferential flow channels; but the
results could not be interpretated so clear, that undrained conditions in certain critical area in a
sandfillled stonebed could not be disregarded.

Due to uneven stress conditions in various sections of the test cylinder, shear box tests are difficult to
obtain unambiguous results from. However, certain overall conclusions could be drawn from the
average results:

Contrary to the Contractor’s expectations, the sand filled stonebed showed to be contracting so a
positive pore pressure was existing for an effective vertical stress from 380 to 700 kPa combined with
a shear stress from O to 220 kPa and also for a maintained effective vertical stress of 380 kPa
combined with a shear stress ranging from O to 220 kPa. In other words a negative conclusion was also
a result of the shear-box tests. But as a sub-result the shear box test showed a friction between the base
plate and the stonebed of 0.8 instead of 0.6 previously assumed.

From this followed that sufficient bearing capacity would occur even under undrained conditions in the
stonebed (no pore pressure drainage). On the basis of negative results from all the investigations except
from the sub-results with friction it still could be concluded, that sufficient bearing capacity exist even
with leaking ball valves.

A complicated and expensive closing of all the possible leaking ball valves could be avoided.
5.4 Risk of sandfilling from outside

From a retrospective point of view it has to be agreed that at some areas in Storebzlt it cannot
completely be disregarded that there exist a risk for that a certain sandfilling may take place from bed
load transport during certain wave/current situations. The current concentration and the vortex shedding
caused by the presence of the structure (see Hebsgaard et al, 1994) may counteract siltation close to
the piers. But even though the possibility cannot complete be disregarded.

With the positive conclusion above there appears no need for a further analysis in connection with the
West Bridge prtoject. But for future project the aspect should be included in the investigations.
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Man-Induced Vibrations

J. Jonsson and L. Pilegaard Hansen
Department of Building Technology and Structural Engineering,
Aalborg University, Sohngaardsholmsvej 57, 9000 Aalborg, Denmark

Introduction

Human motion can cause various types of periodic or transient dynamic loads.
The periodic loads are mainly due to jumping, running, dancing, walking and
body rocking. Transient loads primarily result from single impulse loads, such as
jumping and falling from elevated positions. The response to these loads are of
primary interest for the structural engineer, whereas the exact load as a function of
time generally is of minor importance. This is true when the loading time (contact
duration) ¢, is small compared to the largest natural periods T,, = 27 /w, of the
structure. The present study is mainly concerned with spectator-induced vertical
vibrations on grandstands. The idea is to use impulse response analysis and base
the load description on the load impulse. If the method is feasable, it could be used
in connection with the formulation of requirements in building codes.

During the last two decades work has been done on the measurement of the
exact load functions and related reponse analysis. A recent work using a spectral
description has been performed by Per-Erik Erikson [9] and includes a good litera-
ture survey. Bachmann and Ammann [1] give a good overview of vibrations caused
by human activity. Other relevante references have been included in the reference
list.

Periodic motion

The forces acting on a human body performing periodic motion can be decomposed
in several ways. In this section the vertical motion is considered. A body shown
in figure 1 (left) with mass m is acted upon by a gravitation force F, = mg, a
constant reaction force F. = ymg and a dynamic force Fy. The constant reaction
force F, exists, if the body is in continous contact with a structure and it is the
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Figure 1: Forces on body and load-time function for brisk walk.

minimum value of the total reaction force (R = F, 4+ Fy). The remaining force is
the dynamic force F; > 0. The motion of the body is determined by

m&i:Fd—{—Fc—Fg (1)

The momentum of the periodic motion is also periodic. Conservation of momentum
over one time period 7}, 1s found as

fDTp(FdJrFC—Fg) dt =0 (2)

Upon inserting the constant forces F, and F, the equation (2) yields the periodic
impulse I of the dynamic force:

TP
1:/0 Fydt = (1 — v)mgT, (3)

Simple human motions can often be modelled by a few periodic impulses. The
load-time function of walking, shown in figure 1 (right) could be modelled by a
constant reaction force £, and one periodic load function Fy (impulse). In a simple
model F; would consist of periodic Dirac impulses corresponding to impacts on
the structure. Between impacts the body moves in a conservative force field. The
simple model then corresponds to bouncing of a ball. Anticipating that the center
of mass of the body moves a distance h in the vertical direction, the maximum
change in potential energy is (1 — y)mgh. Setting the maximum potential energy
equal to the kinetic energy before impact >muv? yields the impact velocity:

v =201 = 7)gh (4)
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The change in momentum AP due to impact is determined by the mass and the

change in velocity 2v:
AP = 2mv = 2my/2(1 — 7)gh (5)

Setting the momentum change equal to the impulse of the dynamic force I = AP

yields
8h

For discontinous contact such as jumping (v = 0) equation (6) gives a direct mecha-
nical link between the motion height and the time period, eg. h = $¢77. For
continous contact 1t can be used for estimation of the static reaction force. Using a
load time function from brisk walk from Baumann & Bachmann (2] with 7}, = 0.5s
and v = 0.53, shown in figure 1 (right), the vertical movement of the center of mass
becomes kb = 0.14m.

In the case of human motion we can estimate the movement of the center of mass,
whereby it is possible using equation and (3) and (5) to find the impulse needed
for the periodic motion. If the human motion is known as a function of time, the
time derivative of the momentum gives the total force on the body F = %(mv).
This would enable determination of the load function.

el

Impulse response

The structural response to the impulsive loads from for example human motion is
considered in the next two sections, farst for a single impulse load and secondly for
one periodic impulse load.

For a single degree of freedom system with (structural) mass M, undamped
eigenfrequency wy, and damping ratio £ the displacement respounse to a Dirac impulse

I is given by
')
o = M_wde—EWﬂt sin wdt (7)

where the damped eigenfrequency is wy = w,/1 — &2?. For impulses of finite time
duration ?,, the shape of the force time function has to be taken into account.
For different impulse shapes figure 2 (left} shows the dynamic magnification factor
k corresponding to the ratio between the maximum dynamic and static response.
The magnification factor has been calculated using a damping ratio of £ = 0.05,
but could conservatively be calculated for zero damping,.

An impulse correction factor « can be found by normalizing the maximum
dynamic response with the Dirac impulse response. Figure 2 (right) shows the
impulse correction factor for different impulse shapes. An approximation of the
impulse response can thus be obtained by using the Dirac impulse response (7)
multiplied by the correction factor e.



1.0
£=0.05
0.8 -| § %
w \ \\
2 3
E g )
o <
\g \E 0.6 A
S o i
II f )
L S e .
0.4 -
t’D
0.2 T T T T

T T
00 02 04 06 08 1.0 12 14
to/Tn

Figure 2: Dynamic magnification factor x and impulse shape correction factor a.

Periodic impulse response

For a Dirac impulse acting periodically with the period T, on the damped single
degree of freedom system, the response has be found analytically as

I A B
6 = —Ewnt (-— sinwyt + — cosw t) 8
dee O wyt + % d (8)
where the constants are determined as
A = 1—etTr o waTp
B = e fnlogip wyly
C = 1—2¢e%nTe o wyl, + g eswnty

The maximum displacement response is found at the time

((fwﬂB ~wdA) " E

test = — arctan
‘ fw, A+ wyB

Wy

(9)

Wy

where n is the lowest integer for which ¢.,; > 0. For multiple periodic Dirac impulses
superposition can be used and t.,; would have to be found for the superimposed
responses.

Using a Fourier series solution to find the “correct” response of the periodic
half-sine impulse it is possible to compare the maximum response with that of the
periodic Dirac impulse response multiplied by the impulse shape correction factor

+
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Figure 3: Periodic Dirac impulse response (half-sine impulse).

a. Computing the results for a variety of ¢,/T, ratios and for T,/T, ratios in
the interval ]0,4] shows that the scaled periodic Dirac impulse response is a good
approximation. For t,/T, = 0.8 the results are shown in figure 3. It is seen that
the agreement is good even for this large contact duration compared to the natural
period. For the case t,/7,, = 0.8 shown in figure 3, it is worth noting that below
T»/Tn = 0.8 the impulse time durations overlap. resulting in a static response from
the constant reaction part F; of the load. This has currently not been further
investigated.

Experimental ideas

The experimental part of this research project will monitor the movements of the
person or persons participating in the experiment, so that it will be possible to
estimate the movement of the center of mass. A simple model of a person could
consist of 2 parts for each leg and arm, one part for the body and one for the head,
thus giving 10 rigid moving parts. The center of mass would have to be confirmed
with medical research.

The experiments will be carried out in two main phases, one in the laboratory
and another at a grandstand at a rock concert or a football match. In the laboratory
there will probably be three stages. In the first stage the body motion and the
load as a function of time will be measured on a small platform mounted on a
stiff laboratory floor for jumping and the special wave motion (“the wave” seen at
football matches). In the second stage the load measuring platform will be mounted

(%1



on a simple beam structure and the measurements repeated on the beam both on
and off the platform. The eigenfrequency of the beam structure may be varied by
altering support conditions. In the third stage the effect of multiple persons on the
beam will be measured.

At the grandstand measurements will be performed for one person jumping, for
multiple persons jumping and for real situations either at concerts or at football
matches.
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Abstract

Fatigue and crack propagation

Fatigue crack propagation is a well-known phenomena. Normally it is studied by using empirical
formulas. However at the Department of Structural Engineering, Technical University of Denmark,
an energy balance crack growth formula has recently been developed [90.1]. This formula can be
used to predict crack propagation arising both from static load and from fatigue loading.

The potential power of a theoretical formula is that it is not necessary to determine crack growth
parameters by time demanding and expensive tests, as is the case when the well-known Paris equa-
tion [63.1]

da_cpgm (1)
dN

is used. Here C and m are empirical constants, which have to be determined by crack growth tests.
The new formula is based upon well-known parameters such as the modulus of elasticity E, the
yield strength f,, the true fracture stress f,, the critical stress intensity factor K and of course the
geometrical dimensions of the actual cracked specimen.

A large number of fatigue tests have been performed earlier, and some of these have been com-
pared with the new formula in an earlier paper [91.1]. The comparison did show very good
agreement. However unfortunately most of the tests were not supported with all the relevant
parameters, especially the true fracture stress f, and the K - K; relation. These parameters
therefore had to be estimated as far as possible.

In this project a new series of fatique tests is performed, where all the relevant parameters are mea-
sured. The chosen materials are two high strength aluminiums Al2024 and Al7075 and one high
strength steel Hardox400.

To determine all the parameters it is necessary to establish three kinds of tests. At first a simple
tension test with the purpose to determine the modulus of elasticity, the yield strength and finally
the true fracture stress. Secondly it is important to determine the critical stress intensity factor for
instance by using the ASTM standard test [70.1] and finally to perform a fatigue test, where the
relationship between the crack lengt a and the number of cycles N is measured.



The main purpose of the project is to test the new theory of crack propagation by comparing it’s
results with test results. In the following the new theory will be presented.

The theory is based on an energy balance criterion, This leads to a formula, which is a first order
differential equation to be solved numerically.

Energy criteria were introduced by Griffith [21.1]. For a load controlled test, where a and P are
the independent variables, the energy balance equation can be written, see [90.1]:

aaivda PS‘Eda + Gbda = 0 2)

Here W is the elastic energy, a is the crack length, P is the force, u is the deformation in the
direction of the force, Gy is the fracture energy and b is the thickness.

Taking into account that the effective length of the crack is larger by a length 1, than the one which
is actually seen, we have:

Wy, + W -p@a-PgBdle+Gdea=o 3
a

oa da ° da

In [90.1] 1, has been determined by some approximate energy considerations. For a material with
yield strength f, and tensile strength f; it was shown that 1, may be put equal to:

o 2 “)

Rearranging the energy balance criterion (3) we get the first order differential equation, (see
[94.1]):

aw(a +1e) 81

e(a)
G b2
da

Using that the derivative of the strain energy dW/da can be expressed by the stress intensity factor
K; and substituting 1, (formula (4)) into formula (5) we get:

2
Kic —Kl(a+1°)

This expression is called the energy crack propagation formula and by integration over one cycle
the crack-velocity da/dN may be found as a function of P and a.



Substituting the relation proposed in [90.1], see also [94.1]:

K, = MK o)

and neclecting ¥, in the nominater in (6) assuming K; < < Ky, it may be shown (see [91.1,p50-
52]) that equation (6) can be written:

da 1 4-2n’
= K; 8)
dN 4'rcfyft(’l\/I’)2

This formula indicates that the Paris constants C and m are related with the parameters n° and M’
as follows:

m = 4-2n’
C - 1 9)
4nf (MY

The most important result of the investigation performed is that in order to make reliable predic-
tions about crack growth two important issues must be considered.

First it must be taken into account, that the critical value of the stress intensity factor or the
fracture energy varies with the stress intensity level. Relations have been measured for three
materials and they clearly exhibit such a relationship.

Second it must be taken into account, that the ultimate stresses at the crack tip are much higher
than the usual values obtained by standard laboratory measurements. To calculate the enhanced
values is extremely difficult, and has never to the authors opinion been done before. In [94.1] it
has been suggested to base the calculation on Weibulls theory of size effects. However it turned
out that the size range, which can be obtained in the laboratory, is far too small to get reliable
results. To remedy this situation, it has been suggested to base the calculation of the Weibull
parameters on the Orowan estimate of the atomic strength, i.e. the strength of a perfect crystal free
of dislocations, grain boundaries, foreign particles etc.



The solution presented in [94.1] of the two
basic problems in deriving a theoretical for-
mula for crack growth was shown to give good
estimates of the crack growth, far better than
the results obtained by other theoretical crack
growth formulas.

However much more work is necessary to
cover the whole range of relevant materials and
to cover the relevant strength range for the
individual materials.

An example of predicting the crack propagation
is shown in figure 1.

As result of this project a paper is published at

the Department of Structural Enginering, Tech-
nical University of Denmark [94.1].
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