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Man-Induced Vibrations 

J. Jonsson and L. Pilegaard Hansen 
Department of Building Technology and Structural Engineering, 

Aalborg University, Sohngaardsholmsvej 57, 9000 Aalborg, Denmark 

Introduction 
Human motion can cause various typeu of periodic or transient dynamic loads. 
The periodic loads are mainly due to jumping, running, dancing, walking and 
body rocking. Transient loads primarily result from single impulse loads, such as 
jumping and falling from elevated positions. The response to these loads are of 
primary interest for the structural engineer, whereas the exact load as a function of 
time generally is of minor importance. This is true when the loading time (contact 
duration) t p  is smal1 compared to the largest natura1 periods T, = 2.rr/wn of the 
structure. The present study is mainly concerned with spectator-induced vertical 
vibrations on grandstands. The idea is to use impulse response analysis and base 
the load description on the load impulse. If the method is feasable, it could be used 
in connection with the formulation of requirements in building codes. 

During the last two decades work has been done on the measurement of the 
exact load functions and related reponse analysis. A recent work using a spectral 
description has been performed by Per-Erik Erikson [g] and includes a good litera- 
ture survey. Bachmann and Ammann [l] give a good overview of vibrations caused 
by human activity. Other relevante references have been included in the reference 
list. 

Periodic motion 

The forces acting on a human body performing periodic motion can be decomposed 
in several ways. In this section the vertical motion is considered. A body shown 
in figure 1 (left) with mass m is acted upon by a gravitation force F, = mg, a 
constant reaction force F, = ymg and a dynamic force Fd. The constant reaction 
force F, exists, if the body is in continous contact with a structure and it is the 



Figure 1: Forces on body and load-time function for brisk rvalk 

minimum value of the total reaction force (R = F, + Fd). The remaining force is 
the dynamic force Fd 2 0. The motion of the body is determined by 

mx = Fd + F, - F, (1) 

The momentum of the periodic motion is also periodic. Conservation of momentum 
over one time period T, is found as 

'Upon inserting the constant forces F, and Fc the equation (2) yields the periodic 
impulse I of the dynamic force: 

Simple human motions can often be modelled by a few periodic impulses. The 
load-time function of walking, shown in figure 1 (right) could be modelled by a 
constant reaction force F, and one periodic load function F d  (impulse). In a simple 
model F d  would consist of periodic Dirac impulses corresponding to impacts on 
the structure. Between impacts the body moves in a conservative force field. The 
simple model then corresponds to bouncing of a ball. Anticipating that the center 
of mass of the body moves a distance h in the vertical direction, the maximum 
cha~lge in potential energy is (1 - y)mgh. Setting the maximum potential energy 
equal to  the kinetic energy before impact $mu2 yields the impact velocity: 



The change in momentum AP due to impact is determined by the mass and the 
change in velocity 2u: 

Setting the momentum change equal to the impulse of the dynamic force I = AP 
yields 

For discontinous contact such as jumping (y = 0) equation (6) gives a direct mecha- 
nical link between the motion height and the time period, eg. h = igTP. For 
continous contact it can be used for estimation of the static reaction force. Using a 
load time function from brisk walk from Baumann & Bachmann [2] with T, = 0.5s 
and y = 0.53, shown in figure 1 (right), the vertical movement of the center of mass 
becomes h = 0.14m. 

In the case of human motion we can estimate the movement of the center of mass, 
whereby it is possible using equation and (3) and (5) to find the impulse needed 
for the periodic motion. If the human motion is known as a function of time, the 
time derivative of the momentum gives the total force on the body F = &(mu). 
This would enable determination of the load function. 

Impulse response 

The structural response to the impulsive loads from for example human motion is 
considered in the next two sections, f ~ r s t  for a single impulse load and secondly for 
one periodic impulse load. 

For a single degree of freedom system with (structural) mass M, undamped 
eigenfrequency w, and damping ratio t the displacement response to a Dirac impulse 
I is given by T 

1 e-E~.,t . h=-- sin ~ d t  

M w ~  
(7) 

where the damped eigenfrequency is u d  = w,-. For impulses of finite time 
duration t,, the shape of the force time function has to be taken into account. 
For different impulse shapes figure 2 (left) shows the dynamic magnification factor 
K corresponding to the ratio between the maximum dynamic and static response. 
The magnification factor has been calculated using a damping ratio of t = 0.05, 
but could conservatively be calculated for zero damping. 

An impulse correction factor ol can be found by normalizing the maximum 
dynamic response with the Dirac impulse response. Figure 2 (right) shows the 
impulse correction factor for different impulse shapes. An approximation of the 
impulse response can thus be obtained by using the Dirac impulse response (7) 
multiplied by the correction factor a. 



Figure 2: Dynamic magnification factor K and impulse shape correction factor U.. 

Periodic impulse response 

For a Dirac impulse acting periodically with the period T,  on the damped single 
degree of freedom system, the response has be found analyticall~ as 

I 
J=-- e d w n t  (g sin u d t  + - cos wdt 

Mwd C 
where the constants are determined as 

A = l - e-EW"Tp cos wdTP 

B = e-FWnTp sin W ~ T ~  
C = 1 - 2e-tW"T~ COS W d T p  + e-2<w*T~ 

The maximum displacement response is found at  the time 

teZt = - arctan 
wd 

where n is the lowest integer for which t,,t > O .  For multiple periodic Dirac impulses 
superposition can be used and teZt would have to be found for the superimposed 
responses. 

Using a Fourier series solution to find the "correct" response of the periodic 
half-sine impulse it is possible to compare the maximum response with that of the 
periodic Dirac impulse response multiplied by the impulse shape correction factor 
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Figure 3: Periodic Dirac impulse response (half-sine impulse). 

a. Computing the results for a variety of t,/T, ratios and for T,/T, ratios in 
the interval ]0,4] shows that the scaled periodic Dirac impulse response is a good 
approximation. For tp/Tn = 0.8 the results are shown in figure 3. It is seen that 
the agreement is good even for this large contact duration compared to the natural 
period. For the case tp/Tn = 0.8 shown in figure 3, it is worth noting that below 
Tp/Tn = 0.8 the impulse time durations overlap. resulting in a static response from 
the constant reaction part Fd of the load. This has currently not been further 
investigated. 

Experiment al ideas 

The experimental part of this research project will monitor the movements of the 
person or persons participating in the experiment, so that  it will be possible to 
estimate the movement of the center of mass. .4 simple model of a person could 
consist of 2 parts for each leg and arm, one part for the body and one for the head, 
thus giving 10 rigid moving parts. The center of mass would have to be confirmed 
with medical research. 

The experiments will be carried out in two main phases, one in the laboratory 
and another at a grandstand at  a rock concert or a football match. In the laboratory 
there will probably be three stages. In the first stage the body motion and the 
load as a function of time will be measured on a smal1 platform mounted on a 
stiff laboratory floor for jumping and the special wave motion ("the ~vave" seen at 
football matches). In the second stage the load measuring platform will be mounted 



on a simple beam structure and the measurements repeated on the beam both on 
and off the platform. The eigenfrequency of the beam structure may be varied by 
altering support conditions. In the third stage the effect of multiple persons on the 
beam will be measured. 

At the grandstand measurements will be performed for one person jumping, for 
multiple persons jumping and for real situations either at concerts or at football 
matches. 
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