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Abstract 

This paper proposes a two-stage stochastic model 

predictive control (SMPC) for the operation 

management of more electric aircraft (MEA). The 

goal is to minimize load shedding and switching 

activities in the system, considering the 

uncertainty of load profile, while optimally 

charging/discharging the battery-based energy 

storage system (BESS). In addition, several 

performance evaluation criteria are introduced to 

evaluate the effectiveness of the proposed 

approach. According to the results obtained in 50 

random scenarios, SMPC leads to less load-

shedding time, higher stored energy levels, and 

lower uncertainty compensation costs compared 

to its deterministic counterpart. 

Introduction 

The aircraft industry is responsible for providing 

fast, reliable, and comfortable flights. However, it 

contributes to approximately 2.5% of global 

human-induced CO2 emissions. Environmental 

issues have been among the main concerns in the 

developing aviation industry in recent years. In 

this regard, the concept of more electric aircraft 

(MEA) is attracting a lot of attention for 

developing new aircraft systems. In MEA, 

traditional hydraulic and pneumatic systems are 

replaced with electrical systems, which results in 

reducing fuel consumption while improving the 

system’s efficiency and dynamic response 

[1],[2],[3]. However, to achieve these goals, 

efficient control and operation management 

systems for the onboard electrical power system 

(EPS) are required.    

 The EPS in MEA includes diesel generators as 

the main source of power as well as several 

energy storage systems (ESS) and loads with 

different priorities. There are a variety of loads in 

MEA, such as the ice protection unit, flight and 

environment control systems, galley and 

entertainment loads, and lights, that can be 

classified as high, mid., and low priority loads 

based on their criticality [4]. To preserve flight 

safety and fuel efficiency, the operation of 

different system components with their specific 

characteristics must be coordinated while 

satisfying several technical and operational 

constraints. Hence, power management of the 

EPS is a challenging task. Although there are 

several techniques to predict the power demand 



of different power consumption units, uncertainty 

is an inseparable part of EPS loads stemming 

from their fluctuating nature. Thus, appropriate 

uncertainty-handling techniques are required.  

Operation management of the EPS of MEA has 

been attracting the attention of academia in recent 

years. In [5], a stochastic optimization problem is 

formulated to smooth the output power of the 

main generators in an MEA using a hybrid ESS 

(HESS) in an online manner. Lyapunov 

optimization approach is used to solve the 

optimization problem. Different HESS are also 

evaluated. A power allocation strategy for MEA 

to minimize load shedding is proposed in [6]. 

Battery scheduling is performed to confine 

generators to work within their optimal operating 

range. A distributed model predictive control 

based on the alternating direction method of 

multipliers (ADMM) is proposed in [7]. Different 

update rates are considered for engine and power 

subsystems. In [8], a stochastic optimal control 

strategy is designed for aircraft EPS. Chance-

constrained model predictive control (MPC) is 

used to mitigate the uncertainty in inputs and 

dynamics of the system. Normal probability 

distribution (PDF) is used for representing the 

uncertainty in the output power source as well as 

sheddable and non-sheddable loads while the 

failure probability of system contactors is 

modeled as a Bernoulli random variable. In [9], 

coordinated control of the gas turbine engine and 

generators of an MEA is studied while enforcing 

constraints. A Markov chain model is used to 

construct scenario trees of the possible mission 

pathways and scenario-based MPC is applied to 

the problem to minimize the system cost.            

This paper explores the potential of two-stage 

stochastic MPC (SMPC) in the operational 

management of MEA and mitigating the volatility 

of loads. The proposed operational management 

strategy adaptively splits power among different 

sources of power, including the main generator 

and the battery storage system.  

The rest of this paper is organized in several 

sections including Problem formulation, Two-

stage SMPC, Simulation Results, and 

Conclusion. 

Problem Formulation 

In this section, the integrated power management 

problem of the EPS is presented. Fig. 1 shows the 

general architecture of the EPS of an MEA. The 

aircraft EPS studied in this paper is composed of 

a main engine, a battery-based ESS (BESS), and 

loads. It is assumed that there are both sheddable 

and non-sheddable loads in the system. The 

sheddable loads are further classified as high-

priority and low-priority loads as can be seen in 

Fig. 1. The main goal is to minimize load 

shedding and switching activities in the system, 

as well as maintain sufficient energy in the BESS. 

Decision variables include generators’ output 

power, batteries charging/discharging power, and 

load connection/disconnection following their 

priorities. The operation management problem 

can be mathematically formulated as an 

optimization model to provide optimized values 

for the decision variables. The abovementioned 

control goals are formulated by an objective 

function, with a set of constraints related to EPS 

dynamics and several technical and operational 

requirements. In this paper, the optimization 

problem is formulated as a Mixed-Integer-Linear-

Programming (MILP) model, which can be 

solved effectively by available solvers, such as 

CPLEX. 

 

 
Fig. 1 General architecture of EPS of MEA 

 

Nomenclature 

The main symbols in the EPS model are 

introduced in Table I. 

Table I: Nomenclature 

Parameters 

Ts 
Sampling time [s] 

k 
Time interval (k∈ℤ≥0) 

Power 

Converter

Power 

Converter

MEA Power Grid

Power 

Converter

Generator ESS

Critical 

Loads

Power 

Converter

Power 

Converter

High 

priority 

loads

Low 

priority

loads

MEA Loads



ηch / ηdisch 

BESS charging/discharging 

efficiency 

Bcap 
BESS capacity [kWh] 

���
���, ��	
��

���  

BESS maximum 

charging/discharging power [kW] 

SOCmax/ 

SOCmin 

Upper/lower bounds of the BESS 

SOC target range 

�	�
��� 

Maximum input power from the 

generator [kW] 

��	

�
�(�) 

The ith non-critical load power 

[kW] 

γLi 

The priority of the ith non-critical 

load 

NLi 
Total number of non-critical loads 

��	
���
�
�(�) 

The ith critical load power [kW] 

Continues Variables 

Pin(k) 

Input power from the generator 

[kW] 

Pch/disch(k) 

BESS charging/discharging power 

[kW] 

Pbatt(k) 
BESS net power [kW] 

SOC(k) 
BESS state of charge 

Binary Variables 

SLi(k) 

Contactor connection status of the 

ith non-critical load 

ζch/disch(k) 

Indicator for charging/discharging 

the BESS 

Constraints 

The four groups of constraints considered in the 

energy management system are formulated as 

follows.  

 

Power balance: Following Kirchhoff’s Current 

Law for a given voltage, the total power received 

from the power sources equals the power 

consumption of the loads at each time instant k, 

assuming no losses within the power grid 

transmission: 

�	�(�) + ��	
�ℎ(�) − ��ℎ(�) −
∑ ��	(�)��	


ℎ
� − ∑ ���
���
ℎ
�

� = 0	   
(1) 

 

ESS dynamic model: The state of charge (SOC) 

indicates the level of charge of a BESS relative to 

its capacity. The SOC can be calculated from the 

charging/discharging power over time. 

���(� + 1) = ���(�) + �
 ⋅ ��ℎ ⋅
� ℎ(!)
" #$

− �
 ⋅ �%&' ℎ(!)
" #$×)%&' ℎ

  
(2) 

The SOC limits are enforced by the following 

equation, representing the target range of SOC to 

ensure flight safety. 

����	� ≤ ���(�) ≤ ������  (3) 

 

BESS charging/discharging mode: The battery 

can be either charged or discharged within the 

power limitation in the EPS. Therefore, two 

binary indicators are introduced to represent 

different modes selected during the flight: 

+�ℎ(�) + +�	
�ℎ(�)
= 1, +�ℎ(�), +�	
�ℎ(�) ∈ -0,1. 

0 ≤  ��ℎ(�) ≤ +�ℎ(�) ⋅ ��ℎ

���  

0 ≤  ��	
�ℎ(�) ≤ +�	
�ℎ(�) ⋅ ��	
�ℎ

���  

(4) 

 

Generator power limitation: The input power 

from the generator cannot exceed its upper bound, 

considering the rated power of the generator: 

0 ≤  �	�(�) ≤ �	�
���  (5) 

Objective function 

As mentioned above, the operation management 

of the studied EPS aims at 1) minimizing the total 

time for which loads are shed following the load 

priorities, which means high-priority loads are 

less shed than low-priority loads; 2) minimizing 

the switching activities caused by load 

shedding/connecting to reduce transient issues in 

the system; 3) avoiding BESS discharging and 

encouraging its charging to improve the resilience 

of the EPS in scenarios with energy shortage.  

A multi-objective function in (6) is consequently 

proposed combining objectives in (7)-(9) for each 

target by adding weighting factors ws, wδ, and 

wbat. In (7), the load shedding is minimized by 

penalizing the shedding of loads with the load 

priorities. Equation (8) indicates the change in 

load connections for each time interval is 

minimized. The BESS charging power is 

maximized while it's discharging power is 

minimized in (9). In addition, the charging speed 



of the battery can be changed by adopting 

different weighting factors for 

charging/discharging, i.e., wch and wdisch, 

respectively [4].   

�01(�) = 2
3(��	) + 243(5�	)
+ 26�73(�6�7) 

(6) 

3(��	) = ∑ 89&(:;<9&(!))=9&
&>?

∑ 89&
=9&
&>?

  (7) 

3(5�	) = ∑ |<9&(!A:);<9&(!)|=9&
&>?

B9&
  (8) 

3(�6�7) = 2�	
�ℎ

�%&' ℎ(!)
�%&' ℎ

C#D −
2�ℎ

� ℎ(!)
� ℎ

C#D   
(9) 

Two-Stage Stochastic Model 

Predictive Control 

Model predictive control (MPC) is a widely used 

control technique for dynamic systems with 

constraints on state and input variables. The 

ability of MPC to handle multi-input multi-output 

systems and operational constraints, as well as 

accounting for future changes in the system, has 

made it a successful control technique for 

practical applications [10]. In MPC, using the 

dynamical equations of the system, the optimal 

control sequence over the desired control horizon 

is derived by minimizing an objective function. 

Although the receding horizon strategy of MPC 

and accounting for future system conditions make 

MPC an efficient solution strategy for many 

applications, appropriate uncertainty handling 

techniques are required in cases with considerable 

sources of uncertainty. In this regard, robust 

MPC [11], chance-constrained SMPC [12], and 

scenario-based SMPC [13] have been considered 

in many applications.  

In the two-stage SMPC with resource variables, 

there are two types of decision variables, namely 

the first-stage, and the second-stage decision 

variables. The first-stage decision variables are 

decided before the realization of uncertainty 

while the second-stage variables are considered 

resource variables and are determined after the 

realization of uncertainty [14]. The first-stage 

decision variables are determined in a way that 

the total system cost including the operation cost 

and the expected penalty cost from possible 

constraint violation is minimized. To this end, 

two slack variables EAand E;are introduced to the 

problem as second-stage decision variables which 

represent corrective actions in case of any 

constraint violation. Since constraint violation 

can only be determined after the realization of 

uncertainty, different realizations of uncertain 

variables are considered as scenarios associated 

with an occurrence probability F. Considering � 

different scenarios for uncertain variable 

realization with a probability of F
, GH1, ⋯ , �, and 

slack variables E
Aand E
;, the two-stage SMPC 

problem at each time instant J can be formulated 

as follows: 

 

Min
N(7,⋯,7AB;:)

∑ 3(O(J + �))B;:
!PQ +

∑ ∑ F� RSAE�
A(J + �) + S;E�

;(J + �)T<

P:

B;:
!PQ   

 (10) 

U(O(J + �)) ≤ 0 (11) 

ℎ(O(J + �), 5
(J + �)) ≤ E
A(J + �) (12) 

−(ℎWO(J + �), 5
(J + �)X)
≤ E
;(J + �) 

(13) 

O(J + �) ∈ Y (14) 

E
A(J + �), E
;(J + �) ≥ 0 (15) 

� ∈ 0, ⋯ , [ − 1, G ∈ 1, ⋯ , � 
 

In (10), the first term (3(O)) is the first stage cost 

representing the operation cost of the system 

while the second term shows the expected penalty 

cost over the prediction horizon [. In addition, 

SA and S; represent penalty coefficients, and O is 

the set of first-stage decision variables while 5 

contains uncertain parameters. Equation (11) 

represents the set of deterministic constraints that 

are not dependent on the uncertain parameter, 

while (12) and (13) show the modified balance 

constraint in the form of ℎWO(J), 5(J)X = 0 that 

cannot be guaranteed due to the presence of 

uncertainty and is thereby adjusted with the 

introduction of slack variables. Exploiting the 

available knowledge of uncertain variables, a 

probability distribution function (PDF) is 

approximated and used to generate random 

scenarios. 

Two-stage stochastic MPC of MEA 

EPS 

In this paper, the power demand of each load is 

considered as a random variable complying with 

a normal PDF with a mean value equal to the 

predicted demand and a standard deviation (SD). 

Due to the presence of random load demand in the 

system, the satisfaction of the power balance 

equation in (1) cannot be guaranteed before the 

realization of uncertainty. Thereby, applying the 

two-stage stochastic MPC with resource variables 

introduced in the previous section, the operation 

management problem of MEA EPS at each time 



instant t is formulated as a stochastic optimization 

problem as follows:    

 

Min \(J) = ∑ �01(J + �)B;:
!PQ +

∑ ∑ F
(S
AE
A(J + �) +<

P:

B;:
!PQ

S
;E
;(J + �))  

(16) 

s.t. (2)-(5), (7)-(9)  

�	�(J + �) + ��	
��(J + �) − ���(J +
�) − ∑ ��	(J + �)��	'


�
�(J + �)	 −
∑ ���'

���
�
�(J + �)� ≤ E
A(J + �)  

(17) 

−W�	�(J + �) + ��	
��(J + �) −
���(J + �) − ∑ ��	(J + �)��	'


�
�(J +	
�) − ∑ ���'

���
�
�(J + �)� X ≤ E
;(J + �)  

(18) 

E
A(J + �), E
;(J + �) ≥ 0 (19) 

� ∈ 0, ⋯ , [ − 1, G ∈ 1, ⋯ , � 

In (17)-(19), ��	_


�
�(J + �) indicates the demand 

power of the sheddable load Li in scenario s. In 

addition, ���_

���
�
�(J + �) is the power demand 

of the non-sheddable load Li in scenario s at time 

instant J + � while being at J. SA and S; 

represent penalty coefficients to penalize any 

power deviation due to uncertain load variations. 

Simulation Results 

In this section, to evaluate the effectiveness of the 

proposed stochastic energy management strategy, 

an online simulation is conducted to compare the 

results of SMPC and deterministic MPC 

(DMPC). Load profiles illustrated in Fig. 2 are 

adopted for simulation purposes. In this figure, 

the forecasted power demand of each type of load 

is represented by a blue dashed line (Load Pre), 

which is also considered the mean load value in 

SMPC.  In DMPC, as load uncertainty is not 

considered, optimizations are performed for 

predicted loads.  In SMPC, 50 random scenarios 

(S=50) are generated at each time instant � for 

each type of load following a normal PDF, where 

an SD of 1% is assumed around the mean value. 

The maximum and minimum load power of all 

scenarios are represented in Fig. 2 (Load max and 

Load min, respectively). 

To compare the online performance of the SMPC 

and DMPC, a real-time load profile, represented 

by a red line (Load Real) in Fig. 2, is assumed. It 

is worth noting that, this real-time load profile 

follows a normal PDF as well. The performance 

of SMPC and DMPC for achieving the control 

targets is compared based on this real-time load 

profile. Moreover, slack variables E
;and E
A 

indicate the potential power unbalance requiring 

compensation in real-time control. In this paper, 

it is assumed that the compensation is realized by 

the generator, which is associated with a high 

penalty factor for exceeding the assumed 

maximum power �	�
���. This is named the 

compensation cost for the generator. 

 

 
  Fig. 2 Load profiles 

Evaluation for control targets 
Fig. 3 and Fig. 4 represent the load shedding and 

SOC results when adopting the proposed SMPC 

and DMPC methods. From Fig. 3, SMPC can be 

seen to lead to less load-shedding time compared 

to DMPC. During 120-132 min, the low-priority 

load is connected to the system in the case of 

SMPC, while in the DMPC case, it is shed. In 

addition, applying SMPC leads to higher SOC 

levels, close to the upper bound, compared to the 

SOC results obtained from DMPC. Evaluation 

functions U(��	), U(5�	), U(���), and U(�01) 

are proposed in (20)-(23) to calculate the 

operating costs including load shedding, 

switching activities, stored energy, and overall 

operating cost. In (20)-(23), � is the total time 

steps during all flight stages.  U(��	) in (20) 

indicates the average load shedding, U(5�	) in 

(21) is the total switching activities during the 

flight, and U(���) in (22) evaluates the average 

of the difference of SOC with its upper bound. 

The overall operating cost combines the 

evaluation functions in (20)-(22) weighted by 
̂,  

^4 , and ^<_` as presented in (23). In this paper, 

the weights for each cost term are equally set to 

1. For all evaluation functions, less value 

0 20 40 60 80 100 120 140 160
0

2

4

6
Pload1 (Critical)

Load Pre Load Real Load max Load min

0 20 40 60 80 100 120 140 160
0

2

4

6
Pload2 (High priority)

Load Pre Load Real Load max Load min

0 20 40 60 80 100 120 140 160

Time[min]

0

2

4

6
Pload3 (Low priority)

Load Pre Load Real Load max Load min



indicates better performance in achieving the 

control targets. 

U(��	) = ∑ ∑ 89&(:;<9&(!))=9&
&>?

a
b>c

d ∑ 89&
=9&
&>?

  
(20) 

U(5�	) = ∑ ∑ |<9&(!A:);<9&(!)|=9&
&>?

ae?
b>c

d   
(21) 

U(���) = ∑ |fg − ���(�)|d
!PQ

�  
(22) 

U(�01) = 
̂3(��	) + ^43(5�	)
+ ^<_`U(���) 

(23) 

 

Table II presents the evaluation of the objectives 

when adopting SMPC and DMPC methods for the 

online simulation. Compared to the DMPC 

strategy, the SMPC method improves the 

performance in load shedding and SOC level by 

5.45% and 16.97%, respectively. This leads to the 

reduction of the overall operating cost by 9.4% 

when adopting the SMPC method. This indicates 

that when the uncertainty is not considered, the 

imprecise load prediction can result in poor 

performance for the control targets, while the 

proposed SMPC method can avoid this drawback 

by explicitly considering the load uncertainty in 

planning the operating strategy. 

Table II: Evaluation of the control targets 

Item 
U(��	) U(5�	) U(���) U(�01) 

SMPC 0.35 0.07 0.23 

 

0.64 

DMPC 0.37 0.07 0.28 

 

0.71 

Reduction 

Percentage 

(%)(1) 

-5.45 0 -16.97 

 

-9.40 

(1) Reduction Percentage: the reduced percentage when 

comparing the results of SMPC with DMPC 

 

Evaluation for compensation 
In this paper, it is assumed that the generator can 

compensate for the deviations of power 

unbalance, i.e., the slack values of E
A + E
;. 

However, this leads to a compensation cost with 

a high penalty in addition to the operating cost. 

 

 

 

 

 
(a) SMPC 

 

 
(b) DMPC 

Fig. 3 Load shedding/connecting results for 

SMPC and DMPC 

 

 
(a) SMPC 

 

 
(b) DMPC 

Fig. 4 SOC results for SMPC and DMPC 
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It is also assumed that the battery power follows 

the scheduled power from the SMPC and DMPC 

strategies. When the DMPC strategy is applied to 

the EPS, the BESS power is allocated without 

considering load uncertainty. Consequently, the 

generator compensates for all the deviations 

between the predicted and real-time load power. 

In contrast, the SMPC method schedules the 

BESS power considering the uncertainty, thereby 

less power deviation is required to be 

compensated for by the generator.  

In Fig. 5, the power allocated to the generators is 

presented. The generator power scheduled by 

SMPC and DMPC strategies are illustrated by a 

blue line (schedule) in Fig. 5 (a) and (b), 

respectively. To compensate for the real-time 

deviations between the scheduled power supply 

and the power consumption, the generator 

scheduled power should be increased with the 

real-time deviation, presented by the red dashed 

line (withdev) in Fig. 5. In addition, in the 

adopted 50 uncertainty scenarios, the generator 

power for compensating the maximum and 

minimum deviations is presented in Fig. 5 

(withdevmax and withdevmin respectively). 

 

 
(a) SMPC 

 

(b) DMPC 

Fig. 5 Input power from the generator 

 

To compare the compensation cost when 

adopting the SMPC and DMPC methods, the 

evaluation functions U(E) and U(�h) are 

proposed in (24)-(25). U(E) indicates the average 

deviations required to be compensated for by the 

generator in all scenarios and flight stages. U(�h) 

indicates the average power exceeding the 

assumed power limitation �	�
��� in all scenarios 

and flight stages. 

 

U(E) = ∑ ∑ i'j(!)Ai'e(!)a
b>c

k'>?
d∙<   (24) 

U(�h) =
∑ ∑ (�&m(!);�&m

C#D)ae?
b∈-n&mon&m

C#D.
k'>?

d∙<   
(25) 

 

Table III presents the evaluation results of the 

deviation compensation costs when adopting 

SMPC and DMPC strategies for both real-time 

load and 50 uncertain load scenarios. It can be 

observed that by adopting the SMPC method, all 

the compensation costs for different scenarios are 

reduced. 

 

Table III: Evaluation of compensation costs 

 

Real-time load case 
50 load scenarios 

U(E) U(�h) U(E) 
U(�h) 

SMPC 0.3056 0.1422 0.2842 
0.0436 

DMPC 0.5108 0.1513 0.4716 
0.1480 

Reduce

d Per- 

centage 

-40.17% -6.01% 
-

39.74% 

-

70.54% 

 

Conclusion 

In this paper, the operation management problem 

of the electric power system of more electric 

aircraft is formulated in the framework of two-

stage SMPC. The studied electric system 

comprises a main generator, a battery-based 

energy storage system as well as critical and non-

critical loads. Load variation during different 

flight stages is considered the main source of 

uncertainty in the system, which is mitigated by 

the proposed stochastic framework. Simulation 

results illustrate the effectiveness of the proposed 

approach with respect to the deterministic model 

predictive control in minimizing load shedding, 

switching activities, and maintaining a high state 

of charge levels in the batteries. 
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