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Abstract

This paper proposes a two-stage stochastic model
predictive control (SMPC) for the operation
management of more electric aircraft (MEA). The
goal is to minimize load shedding and switching
activities in the system, considering the
uncertainty of load profile, while optimally
charging/discharging the battery-based energy
storage system (BESS). In addition, several
performance evaluation criteria are introduced to
evaluate the effectiveness of the proposed
approach. According to the results obtained in 50
random scenarios, SMPC leads to less load-
shedding time, higher stored energy levels, and
lower uncertainty compensation costs compared
to its deterministic counterpart.

Introduction

The aircraft industry is responsible for providing
fast, reliable, and comfortable flights. However, it
contributes to approximately 2.5% of global
human-induced CO2 emissions. Environmental
issues have been among the main concerns in the
developing aviation industry in recent years. In
this regard, the concept of more electric aircraft
(MEA) is attracting a lot of attention for
developing new aircraft systems. In MEA,
traditional hydraulic and pneumatic systems are
replaced with electrical systems, which results in
reducing fuel consumption while improving the
system’s efficiency and dynamic response
[1],[2],[3]. However, to achieve these goals,
efficient control and operation management
systems for the onboard electrical power system
(EPS) are required.

The EPS in MEA includes diesel generators as
the main source of power as well as several
energy storage systems (ESS) and loads with
different priorities. There are a variety of loads in
MEA, such as the ice protection unit, flight and
environment control systems, galley and
entertainment loads, and lights, that can be
classified as high, mid., and low priority loads
based on their criticality [4]. To preserve flight
safety and fuel efficiency, the operation of
different system components with their specific
characteristics must be coordinated while
satisfying several technical and operational
constraints. Hence, power management of the
EPS is a challenging task. Although there are
several techniques to predict the power demand



of different power consumption units, uncertainty
is an inseparable part of EPS loads stemming
from their fluctuating nature. Thus, appropriate
uncertainty-handling techniques are required.
Operation management of the EPS of MEA has
been attracting the attention of academia in recent
years. In [5], a stochastic optimization problem is
formulated to smooth the output power of the
main generators in an MEA using a hybrid ESS
(HESS) in an online manner. Lyapunov
optimization approach is used to solve the
optimization problem. Different HESS are also
evaluated. A power allocation strategy for MEA
to minimize load shedding is proposed in [6].
Battery scheduling is performed to confine
generators to work within their optimal operating
range. A distributed model predictive control
based on the alternating direction method of
multipliers (ADMM) is proposed in [7]. Different
update rates are considered for engine and power
subsystems. In [8], a stochastic optimal control
strategy is designed for aircraft EPS. Chance-
constrained model predictive control (MPC) is
used to mitigate the uncertainty in inputs and
dynamics of the system. Normal probability
distribution (PDF) is used for representing the
uncertainty in the output power source as well as
sheddable and non-sheddable loads while the
failure probability of system contactors is
modeled as a Bernoulli random variable. In [9],
coordinated control of the gas turbine engine and
generators of an MEA is studied while enforcing
constraints. A Markov chain model is used to
construct scenario trees of the possible mission
pathways and scenario-based MPC is applied to
the problem to minimize the system cost.

This paper explores the potential of two-stage
stochastic MPC (SMPC) in the operational
management of MEA and mitigating the volatility
of loads. The proposed operational management
strategy adaptively splits power among different
sources of power, including the main generator
and the battery storage system.

The rest of this paper is organized in several
sections including Problem formulation, Two-
stage SMPC, Simulation Results, and
Conclusion.

Problem Formulation

In this section, the integrated power management
problem of the EPS is presented. Fig. 1 shows the
general architecture of the EPS of an MEA. The
aircraft EPS studied in this paper is composed of
a main engine, a battery-based ESS (BESS), and

loads. It is assumed that there are both sheddable
and non-sheddable loads in the system. The
sheddable loads are further classified as high-
priority and low-priority loads as can be seen in
Fig. 1. The main goal is to minimize load
shedding and switching activities in the system,
as well as maintain sufficient energy in the BESS.
Decision variables include generators’ output
power, batteries charging/discharging power, and
load connection/disconnection following their
priorities. The operation management problem
can be mathematically formulated as an
optimization model to provide optimized values
for the decision variables. The abovementioned
control goals are formulated by an objective
function, with a set of constraints related to EPS
dynamics and several technical and operational
requirements. In this paper, the optimization
problem is formulated as a Mixed-Integer-Linear-
Programming (MILP) model, which can be
solved effectively by available solvers, such as
CPLEX.

Generator ESS
Power Power
Converter Converter
MEA Power Grid
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Fig. 1 General architecture of EPS of MEA

Nomenclature

The main symbols in the EPS model are
introduced in Table 1.

Table I: Nomenclature

Parameters
T Sampling time [s]
K Time interval (k€Zx0)




BESS charging/discharging
Tch / Mdisch efficiency
B BESS capacity [kWh]
cap
BESS maximum
pRax prax | charging/discharging power [kW]
Upper/lower bounds of the BESS
288:: / SOC target range
Maximum input power from the
pex generator [kW]
The ith non-critical load power
Pt (k) | [kW]
The priority of the ith non-critical
YLi load
N Total number of non-critical loads
Li
pronshed () The ith critical load power [kW]
L

Continues Variables

Input power from the generator

Pin(k) (kW]
BESS charging/discharging power
Penvaisen(k) [kW]
Poar(k) BESS net power [kW]
SOC(K) BESS state of charge
Binary Variables
Contactor connection status of the
Sri(k) ith non-critical load
Indicator for charging/discharging
Cch/disch(k) the BESS
Constraints

The four groups of constraints considered in the
energy management system are formulated as
follows.

Power balance: Following Kirchhoff’s Current
Law for a given voltage, the total power received
from the power sources equals the power
consumption of the loads at each time instant k,
assuming no losses within the power grid
transmission:

P (k) + Pyisep(k) — Pey(k) — 0
ZiSLi(k)PLsihed — Zj pLleonshed -0

ESS dynamic model: The state of charge (SOC)
indicates the level of charge of a BESS relative to
its capacity. The SOC can be calculated from the
charging/discharging power over time.
S0C(k+1)=S0C(k) +Tg-n¢p-
Pep(k) Pgiscn(k) 2)
Beap s BeapXNdisch

The SOC limits are enforced by the following
equation, representing the target range of SOC to
ensure flight safety.

soc™n < S0C (k) < SOC™ax (3)

BESS charging/discharging mode: The battery
can be either charged or discharged within the
power limitation in the EPS. Therefore, two
binary indicators are introduced to represent
different modes selected during the flight:

Cen(k) + aisen(k)
= 1:Zch(k): (disch(k) € {0:1}
0= Py(k) < oK) - PO @

0< Pdisch(k) < Zdisch(k) ' P(;rilgc’;z

Generator power limitation: The input power
from the generator cannot exceed its upper bound,
considering the rated power of the generator:

0 < Py(k) < P'** &)

Objective function

As mentioned above, the operation management
of the studied EPS aims at 1) minimizing the total
time for which loads are shed following the load
priorities, which means high-priority loads are
less shed than low-priority loads; 2) minimizing
the switching activities caused by load
shedding/connecting to reduce transient issues in
the system; 3) avoiding BESS discharging and
encouraging its charging to improve the resilience
of the EPS in scenarios with energy shortage.

A multi-objective function in (6) is consequently
proposed combining objectives in (7)-(9) for each
target by adding weighting factors ws, ws, and
Woat. In (7), the load shedding is minimized by
penalizing the shedding of loads with the load
priorities. Equation (8) indicates the change in
load connections for each time interval is
minimized. The BESS charging power is
maximized while it's discharging power is
minimized in (9). In addition, the charging speed



of the battery can be changed by adopting

different weighting factors for
charging/discharging, i.e., Wcn and Waisch,
respectively [4].
0bj(k) = wsf (SLi) + wsf (61i) ©6)
+ Wbatf(Pbat)
N .
¥ L yLiA-5SLi(k)
fS) = === (7)
Zi:l YLi
Npio S
f((sLi) — i ISLik+1)—Spi(K)| (®)
Ny
Pgisc (k)
f (Ppat) = Waiscn ‘;5'-“};’,‘, -
Pa(k) ©)
ch Pcr;llax
Two-Stage Stochastic Model

Predictive Control

Model predictive control (MPC) is a widely used
control technique for dynamic systems with
constraints on state and input variables. The
ability of MPC to handle multi-input multi-output
systems and operational constraints, as well as
accounting for future changes in the system, has
made it a successful control technique for
practical applications [10]. In MPC, using the
dynamical equations of the system, the optimal
control sequence over the desired control horizon
is derived by minimizing an objective function.
Although the receding horizon strategy of MPC
and accounting for future system conditions make
MPC an efficient solution strategy for many
applications, appropriate uncertainty handling
techniques are required in cases with considerable
sources of uncertainty. In this regard, robust
MPC [11], chance-constrained SMPC [12], and
scenario-based SMPC [13] have been considered
in many applications.

In the two-stage SMPC with resource variables,
there are two types of decision variables, namely
the first-stage, and the second-stage decision
variables. The first-stage decision variables are
decided before the realization of uncertainty
while the second-stage variables are considered
resource variables and are determined after the
realization of uncertainty [14]. The first-stage
decision variables are determined in a way that
the total system cost including the operation cost
and the expected penalty cost from possible
constraint violation is minimized. To this end,
two slack variables 7 *and r ~are introduced to the
problem as second-stage decision variables which
represent corrective actions in case of any
constraint violation. Since constraint violation

can only be determined after the realization of
uncertainty, different realizations of uncertain
variables are considered as scenarios associated
with an occurrence probability 7. Considering S
different scenarios for uncertain variable
realization with a probability of g, s€l, -+, S, and
slack variables r;"and 1y, the two-stage SMPC
problem at each time instant ¢ can be formulated
as follows:

e MinFRS) f Qe+ ) +

SR ESam (Pt (e + K + 071 (£ 4+ 1)

(10)
gut+k)<0 (11)
h(u(t + k), 8,(t+ k) <rft+k) (12)
—(h(u(t + k), 85(t + k))) (13)
<71 (t+k)
u(t+k)eU (14)
i (t+k),rs(t+k)=0 (15)

keoO-- ,N—-1s€1,-,S

In (10), the first term (f (u)) is the first stage cost
representing the operation cost of the system
while the second term shows the expected penalty
cost over the prediction horizon N. In addition,
p* and p~ represent penalty coefficients, and u is
the set of first-stage decision variables while &
contains uncertain parameters. Equation (11)
represents the set of deterministic constraints that
are not dependent on the uncertain parameter,
while (12) and (13) show the modified balance
constraint in the form of h(u(t), 1) (t)) = 0 that
cannot be guaranteed due to the presence of
uncertainty and is thereby adjusted with the
introduction of slack variables. Exploiting the
available knowledge of uncertain variables, a
probability distribution function (PDF) is
approximated and used to generate random
scenarios.

Two-stage stochastic MPC of MEA
EPS

In this paper, the power demand of each load is
considered as a random variable complying with
a normal PDF with a mean value equal to the
predicted demand and a standard deviation (SD).
Due to the presence of random load demand in the
system, the satisfaction of the power balance
equation in (1) cannot be guaranteed before the
realization of uncertainty. Thereby, applying the
two-stage stochastic MPC with resource variables
introduced in the previous section, the operation
management problem of MEA EPS at each time



instant ¢ is formulated as a stochastic optimization
problem as follows:

Min F(t) =YR-lobj(t + k) +
N ys i m it (t+k) + (16)
ps s (t+k))

s.t. (2)-(5), (7)-(9)

Pin(t + k) + Pdisch(t + k) - Pch(t +
k) = X Spi(t + KPR (t + k) — (17)
jPL"jg"Shed(t +k)<r(t+k)

—(Pin(t + k) + Paisen(t + k) —
P (t+k)=Y,;S,(t+ k)Pgi’;ed(t + (18)
k) — X Premshed (t + k) < 7 (t+ k)

rt(t+k),rs(t+k)=0 (19)
keoO-,N-1s€1,-,S

In (17)<(19), P!¢%(t + k) indicates the demand
power of the sheddable load Li in scenario s. In
addition, PL"j‘z?Shed (t + k) is the power demand
of the non-sheddable load Li in scenario s at time
instant t + k while being at t. p* and p~
represent penalty coefficients to penalize any
power deviation due to uncertain load variations.

Simulation Results

In this section, to evaluate the effectiveness of the
proposed stochastic energy management strategy,
an online simulation is conducted to compare the
results of SMPC and deterministic MPC
(DMPC). Load profiles illustrated in Fig. 2 are
adopted for simulation purposes. In this figure,
the forecasted power demand of each type of load
is represented by a blue dashed line (Load Pre),
which is also considered the mean load value in
SMPC. In DMPC, as load uncertainty is not
considered, optimizations are performed for
predicted loads. In SMPC, 50 random scenarios
(§=50) are generated at each time instant k for
each type of load following a normal PDF, where
an SD of 1% is assumed around the mean value.
The maximum and minimum load power of all
scenarios are represented in Fig. 2 (Load max and
Load min, respectively).

To compare the online performance of the SMPC
and DMPC, a real-time load profile, represented
by a red line (Load Real) in Fig. 2, is assumed. It
is worth noting that, this real-time load profile
follows a normal PDF as well. The performance
of SMPC and DMPC for achieving the control

targets is compared based on this real-time load
profile. Moreover, slack variables 7, and 7,
indicate the potential power unbalance requiring
compensation in real-time control. In this paper,
it is assumed that the compensation is realized by
the generator, which is associated with a high
penalty factor for exceeding the assumed
maximum power PJ'**. This is named the
compensation cost for the generator.

Pload1 (Critical)
T T
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T T T
——-Load Pre ——Load Real

Load max

power[kW]
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Fig. 2 Load profiles

o

Evaluation for control targets

Fig. 3 and Fig. 4 represent the load shedding and
SOC results when adopting the proposed SMPC
and DMPC methods. From Fig. 3, SMPC can be
seen to lead to less load-shedding time compared
to DMPC. During 120-132 min, the low-priority
load is connected to the system in the case of
SMPC, while in the DMPC case, it is shed. In
addition, applying SMPC leads to higher SOC
levels, close to the upper bound, compared to the
SOC results obtained from DMPC. Evaluation
functions g(S1;), g(61;), g(SOC), and g(0Obj)
are proposed in (20)-(23) to calculate the
operating costs including load shedding,
switching activities, stored energy, and overall
operating cost. In (20)-(23), T is the total time
steps during all flight stages. g(S;;) in (20)
indicates the average load shedding, g(d;;) in
(21) is the total switching activities during the
flight, and g(SOC) in (22) evaluates the average
of the difference of SOC with its upper bound.
The overall operating cost combines the
evaluation functions in (20)-(22) weighted by v,
Vs, and vgpc as presented in (23). In this paper,
the weights for each cost term are equally set to
1. For all evaluation functions, less value



indicates better performance in achieving the
control targets.

Yoo Sk y i (1-SLi(k) (20)
S, = i=1 71
9(SLi) TZ?,:LfVLi
ThIA Tk (et )=S0 21
g6 = heroimy LT -
2500 = Zheo HI=S0CMOL (22)
T
g(0bj) = vsf (S1) + vsf (6Li) (23)

+ Vs0cg(SOC)

Table II presents the evaluation of the objectives
when adopting SMPC and DMPC methods for the
online simulation. Compared to the DMPC
strategy, the SMPC method improves the
performance in load shedding and SOC level by
5.45% and 16.97%, respectively. This leads to the
reduction of the overall operating cost by 9.4%
when adopting the SMPC method. This indicates
that when the uncertainty is not considered, the
imprecise load prediction can result in poor
performance for the control targets, while the
proposed SMPC method can avoid this drawback
by explicitly considering the load uncertainty in
planning the operating strategy.

Table II: Evaluation of the control targets

Ttem 9(Sui) | 9(8L) | 9(SOC) | g(Obj)
SMPC 0.35 0.07 0.23 0.64
DMPC 0.37 0.07 0.28 0.71
Reduction

Percentage | -5.45 0 -16.97 -9.40
()"

(1) Reduction Percentage: the reduced percentage when
comparing the results of SMPC with DMPC

Evaluation for compensation

In this paper, it is assumed that the generator can
compensate for the deviations of power
unbalance, i.e., the slack values of 7" + 7.
However, this leads to a compensation cost with
a high penalty in addition to the operating cost.
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Fig. 3 Load shedding/connecting results for
SMPC and DMPC
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It is also assumed that the battery power follows
the scheduled power from the SMPC and DMPC
strategies. When the DMPC strategy is applied to
the EPS, the BESS power is allocated without
considering load uncertainty. Consequently, the
generator compensates for all the deviations
between the predicted and real-time load power.
In contrast, the SMPC method schedules the
BESS power considering the uncertainty, thereby
less power deviation 1is required to be
compensated for by the generator.

In Fig. 5, the power allocated to the generators is
presented. The generator power scheduled by
SMPC and DMPC strategies are illustrated by a
blue line (schedule) in Fig. 5 (a) and (b),
respectively. To compensate for the real-time
deviations between the scheduled power supply
and the power consumption, the generator
scheduled power should be increased with the
real-time deviation, presented by the red dashed
line (withdev) in Fig. 5. In addition, in the
adopted 50 uncertainty scenarios, the generator
power for compensating the maximum and
minimum deviations is presented in Fig. 5
(withdevmax and withdevmin respectively).

Pin

T
Pin max|

I T ! T | T
7 \fschedule - - ~withdev - withdevmax -~ withdevmin

power[kW]

) I . I . I
0 20 40 60 80 100 120 140 160

Time[min]
(a) SMPC
Pin
7 T T T T T
‘7schedule - - ~withdev - withdevmax - withdevmin Pin max

power[kW]

I I I i i
20 40 60 80 100 120 140 160

Time[min]
(b) DMPC

Fig. 5 Input power from the generator

To compare the compensation cost when
adopting the SMPC and DMPC methods, the
evaluation functions g(r) and g(CV) are
proposed in (24)-(25). g(r) indicates the average
deviations required to be compensated for by the
generator in all scenarios and flight stages. g(CV)

indicates the average power exceeding the

assumed power limitation P/}%* in all scenarios
and flight stages.
g(r) = 2§=12£=o;i(k)+r;(k> (24)
g(cv) = Zomt Dyipypopey Fin O™ (25)

T-S

Table III presents the evaluation results of the
deviation compensation costs when adopting
SMPC and DMPC strategies for both real-time
load and 50 uncertain load scenarios. It can be
observed that by adopting the SMPC method, all
the compensation costs for different scenarios are
reduced.

Table I1I: Evaluation of compensation costs

Real-time load case 50 load scenarios
cv
g | gevy | gy | IEV
SMPC | 0.3056 | 0.1422 | 0.2842 0.0436
DMPC | 0.5108 | 0.1513 | 04716 | 21480
Reduce -
0, 0 - o
dPer- | -40.17% | -6.01% | 34 440, 70.54%
centage
Conclusion

In this paper, the operation management problem
of the electric power system of more electric
aircraft is formulated in the framework of two-
stage  SMPC. The studied electric system
comprises a main generator, a battery-based
energy storage system as well as critical and non-
critical loads. Load variation during different
flight stages is considered the main source of
uncertainty in the system, which is mitigated by
the proposed stochastic framework. Simulation
results illustrate the effectiveness of the proposed
approach with respect to the deterministic model
predictive control in minimizing load shedding,
switching activities, and maintaining a high state
of charge levels in the batteries.
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