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Abstract

Large knowledge bases are increasingly available in the web, linked to each
other so that their information can be combined and joined and they can
be queried as a single knowledge base or navigated by software agents. The
resulting global knowledge base is usually referred to as linked data, linked
open data, linked open data cloud, or the semantic web.

Commonly used standards for these knowledge bases specify a simple
and homogeneous syntax based on triples that can be interpreted, under some
simplifications, as defining a labelled directed graph, where the nodes and
the edges are identified with internationalized resource identifiers that use
domains owned by the stakeholder that publishes each graph. This makes
easier the aggregation of data, which can be reduced to a union of triples.

However, the use of different modelling patterns in different graphs re-
quires any structured query over the global graph to combine all possible
modelling patterns that may exist in it, including all possible nodes or edges
that are synonymous, which is impractical. This semantic heterogeneity also
prevents certain pieces of equivalent knowledge to be linked, because what is
represented by one node in a graph may be represented implicitly, as some
sort of graph pattern, in another graph using a different modelling pattern,
making impossible the linking by means of simple equivalence edges. Fur-
thermore, certain existing modelling patterns are too verbose and inefficient,
while others lack expressiveness and fail to capture essential connections in
the data.

This thesis describes the creation of FrameBase, a system that reuses theory
and resources from linguistics and cognitive science to provide different
connected layers of representation that combine the expressiveness of some
modelling patterns with the conciseness of others, while at the same time
providing a common basic vocabulary that can be extended by stakeholders.
The FrameBase multilayered system of modelling patterns model allows
representing a wide range of knowledge in a way that allows truly seamless
integration and querying of data.

The thesis also introduces different methods to integrate knowledge from
external knowledge bases, and eventually from any source of structured data.
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The methods range from manual to automatic, with different semi-automatic
approaches being developed. Automatic methods exploit the ties of FrameBase
with linguistics to create complex mappings with the names of elements in the
external knowledge bases. The manual approach is streamlined with a web
application that allows a user to build mappings in a simple graphical manner.
Two different semi-automatic approaches are implemented: one enhancing
automatic methods with simple heuristics specific to each knowledge base,
and another enhancing the manual method by re-using the automatic and
semi-automatic methods as part of a suggestion and search engine in the web
application. The results of all automatic methods are evaluated with human
annotators.

Additionally, FrameBase’s ties to linguistics also provide potential methods
to interface with natural language, either for the purpose of text mining or
question answering. The thesis discusses these potential methods at the end,
hinting at possible lines of future work.



Resumé

Store videnbaser er i stigende grad offentliggjorte på webbet, knyttet sam-
men således at deres viden kan forenes og de kan forespørges på en gang
eller navigeres ved softwareagenter. Den resulterende globale videnbase er
normalt omtalt som linked data, linked open data, linked open data cloud, eller det
semantiske web.

Almindeligt brugte standarder for disse videnbaser angiver en simpel,
homogen syntaks baseret på triples der under nogle forenklinger kan fortolkes
som en mærket orienteret graf, hvor knude og kanter er identificeret med IRIs
(Internationalized Resource Identifiers), der bruger domæner ejet af de enkelte
udgivere. Det gør det lettere at aggregere viden ved at sammenføje triplerne.

Imidlertid kræver brugen af forskellige modelleringsmønstre i forskellige
grafer, at en struktureret forespørgsel over den globale graf kombinerer alle
mulige modelleringsmønstre, herunder alle mulige knuder og kanter som er
synonymer, hvilket er upraktisk. Denne semantiske uensartethed forhindrer
desuden visse stykker af tilsvarende viden at blive tilkoblede, fordi det, som er
repræsenteret ved en knude i en graf under en bestemt modelleringsmønster,
kan repræsenteres implicit som en slags grafmønster i en anden graf under et
anden modelleringsmønster, hvilket gør sammenkoblingen ved brug af simple
ækvivalenskanter umuligt. Endvidere er visse eksisterende modelleringsmøn-
stre for detaljerede og ineffektive, mens andre mangler udtryksfuldhed og
undlader vigtige forbindelser i dataene.

Denne afhandling beskriver oprettelsen af FrameBase, et system der an-
vender teori og ressourcer fra lingvistik og kognitionsforskning til at give
forskellige forbundne repræsentationslag, der kombinerer udtryksfuldhed af
nogle modelleringsmønstre med koncisheden af andre, mens de på samme
tid giver et fælles, grundlæggende ordforråd der kan udvides af udgivere og
brugerne. FrameBase’s flerlagede system af modelleringsmønstre tillader at
repræsentere en bred vifte af viden på en måde, som tillader trinløs integrering
af såvel viden som forespørgsler til videnbasen.

Afhandlingen introducerer desuden forskellige metoder til at integrere
viden fra eksterne videnbaser og endelig fra enhver kilde af strukturerede
data. Metoderne spænder fra manuelle til automatiske, og forskellige semi-
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automatiske tilgange bliver udviklet. Automatiske metoder udnytter Frame-
Base’s forbindelse til lingvistik for at skabe komplekse mapninger til navnene
af elementer i de eksterne videnbaser. Den manuelle tilgang er effektiviseret
med en webapplikation, der tillader en bruger at skabe mapninger på en sim-
pel, grafiske måde. To forskellige semi-automatiske tilgang er implementeret:
en, som udvider automatiske metoder med simple heuristikker knyttet til hver
videnbase, og en anden, som udvider den manuelle metode med at genbruge
de automatiske og semi-automatiske metoder for at implementere anbefalings-
og søgefunktioner i webapplikationen. Resultaterne for automatiske metoder
evalueres af mennesker.

Desuden giver Framebase’s bånd til lingvistik mulighed for at forbinde
til naturligt sprog, enten med henblik på tekstudvinding (text mining) eller
forespørgselsbesvarelse (question answering). Afhandlingen diskuterer desuden
potentielle metoder til dette og antyder mulige linjer for det fremtidige arbejde.
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Chapter 1

Introduction

An increasing number of knowledge bases (KBs) are being published in the
web by different kinds of stakeholders. Many of these KBs use standards that
make it easier to link elements from each other, so that they can be treated
and queried as a single global KB. The advantage of this is that it should allow
data across different KBs to be added and combined so that the global KB
can provide information that the individual KBs, if were disconnected, could
not provide. The data in the global linked KB is usually referred to as Linked
(Open) Data (LOD) [3], and the global (usually distributed) KB is referred to
as the LOD cloud. The semantic web is the projected goal of the LOD cloud
comprising the main backend of the web.

The most prevalent standards recommended and used for this purpose are
RDF (Resource Description Framework) [7] and SPARQL (SPARQL Protocol
and RDF Query Language) [12]. RDF represents data as a set of (subject,
predicate, object) triples like (Robb, marries, Talisa), (Robb, hasFather, Eddard),
(Eddard, isbornAtDate, 263 AC). However, except for strings (called “literals”)
and a few other exceptions, RDF uses Internationalized Resource Identifiers
(IRIs) to identify entities denoted in any of the positions of a triple. This allows
that different stakeholders can coin identifiers using the domains they own,
avoiding name collisions, which serves very well the purpose of the LOD
cloud. The names “subject”, “predicate” and “object” arise from the usual
grammatical role of the English names associated to each element (Bran, builds,
The Wall), though sometimes this is not the case (The Wall, builder, Bran). The
set of triples constituting a KB can be interpreted, in a somewhat simplified
fashion, as a directed labelled graph, where the subject and the object are
nodes connected by a directed labelled edge identified by the predicate. This
is a simplification because in RDF, the predicate of a triple can also serve
as subject or object in other triples, and therefore the graph model is more
complex, but in many cases the simplification is enough.
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Chapter 1. Introduction

The RDF format provides a very simple and homogeneous syntax that
combined with the global identifiers favours the aggregation of data. Provided
the individual KBs include the links to other KBs, the LOD cloud is simply
defined by the union of the sets of triples of each KB (some RDF serialization
formats require renaming locally scoped identifiers called “anonymous nodes”
to avoid naming collisions, but this is rather straightforward). Currently, the
LOD cloud contains over 30 billion triples spread over 295 KBs 1.

However, different modelling decisions make graphs that contain the same
or overlapping information to be completely different, not only lexically –
which would imply a sort of graph isomorphism that could be solved by
equivalence relations between nodes– but in a structural sense too. These
modelling decisions define different modelling patterns that, in turn, are usually
encoded as different schemas. Schemas are sets of triples that carry additional
logical semantics that allow to infer new triples from the existing ones.

(set-theoretical of classes and properties with classes defined ***
This is similar to how, in software engineering, a given set of functional

specifications can be implemented in an object-oriented programming lan-
guage using a different set of classes and methods, attending to different
design patterns.

In this work, we analyze different kinds of modelling patterns that cur-
rently co-exist when representing N-ary relations in the LOD, and their
problems, both intrinsic and arising when combined in the LOD (c.f. Paper D).
Graphs representing these different models can be found in Figure 1.1.

• The pattern in Figure 1.1a is very basic and just connects pairw-wise the
arguments of the n-ary relation. If one regards every triple as representing
an underlying n-ary relation with only two arguments filled, it could be said
that this pattern takes place in every KB in the LOD. It lacks the expressive
power to connect more than two arguments of the same n-ary relation.

• The pattern in Figure 1.1b is used in the YAGO ontologies [14] and attempts
to solve the above problem by using a mechanism called RDF reification,
but it incurs in significant overhead that is superlinear to the number of
elements in the relation, and its semantics are also problematic.

• The pattern in Figure 1.1c attempts to improve the pattern above [19], but
still carries some of the same problems.

• The pattern in Figure 1.1d is an event-centric pattern used frequently in
specific parts of many KBs (i.e. Freebase [5]), usually to represent public
events by means of a reduced ad-hoc vocabulary.

• Other ad-hoc solutions can be found, for instance encoding the value of
the third, fourth, etc. argument in the IRI of a property connecting the
1http://lod-cloud.net/state/
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first two, for instance John marriesMaryAtDate 1964. This reduces the
overhead of the patterns from Figures 1.1b and 1.1c but at the cost of
breaking the RDF standard by creating ad-hoc semantics encoded within
the IRIs, which would require extra processing and in the long run produce
incompatibilities and defeat the purpose of the RDF standard of having a
simple, homogeneous standard.

A detailed version of this analysis can be found in Paper D.
This sort of semantic heterogeneity in the LOD cloud has several detrimen-

tal effects:

• When the LOD cloud is queried as a whole, the query needs to include
all the possible alternate terms for a given concept, from all the different
vocabularies used in the different linked KBs, as aliases exist even for the
most general and well-known concepts. Even worse, it has to include all the
possible structural alternatives (graph patterns) used in the different KBs.
This is impractical both because of the complexity acquired by the query
and because it requires the user to keep track of all these alternatives.

• When the data from different KBs are linked, an entity under one model may
easily not have a corresponding entity in another, because it is represented
implicitly, usually by means of a graph pattern residing in the data. For
instance, there is no equivalent entity to wasMarriedWith in Fig. 1.1a in
either Figs. 1.1b, 1.1c or 1.1d. However, most current efforts and techniques
for linking data focus on linking pairs of individual entities in different
graphs by means of equivalence or subsumption relations.

• Although some of the KBs can work as de-facto hubs (currently DBpedia [4]
tends to be used as such), there is no KB specifically designed to work
as semantic hub. DBpedia is mostly based on information extracted from
infoboxes in Wikipedia and therefore its vocabulary is skewed towards the
kind of information collected in these boxes, and lacks a global approach
towards semantics that resources in linguistics may have.

It is important to note that the problem of semantic heterogeneity is not
unique to LOD. It can be found when trying to integrate other kinds of
structured knowledge: for instance when two companies merge they may
want to merge their internal relational databases too, and similar problems
arise. The LOD standards try to address some issues arising when structured
data produced by different stakeholders is combined or linked, but as it will be
shown below, they only succeed partially. Therefore, the problem of semantic
heterogeneity does not exist because of the semantic web standards, but despite
them. The reason why semantic heterogeneity is an important problem in
the LOD and why the analysis and the products in this work focus on the
perspective of the LOD is that the prime objective of the LOD is linking and
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Chapter 1. Introduction

(a) Basic triple pattern.

(b) Pattern used in the YAGO* KB [14].

6



(c) Singleton property pattern proposed to improve the YAGO model [19].

(d) Event-centric pattern used frequently in specific parts of many KBs (i.e. Freebase [5]),
usually to represent public events by means of a reduced ad-hoc vocabulary.

Fig. 1.1: The same information represented using different modelling patterns found in different
KBs in the LOD.

7
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combining data, and therefore the problem of semantic heterogeneity is more
pervasive. Many private databases are never linked or merged with other
databases and therefore semantic heterogeneity never manifests itself, except
in a transient manner in the mind of a user or new database administrator
that has to adapt from one model or schema to another.

A complete review of the state of the art can be found in the papers in
Part II, specially in Papers D and E.

This work describes the construction of FrameBase, a system composed
of a multi-layered KB with a schema that allows to represent a wide range of
knowledge.

The more expressive but more verbose layer is denoted as the reified layer.
It consists of classes, representing frames, which can be events, situations,
processes of a very general kind. It also contains Frame Element properties that
specify qualities about frame instances: agents participating in different ways,
time, place, cause, consequence, instrument, etc. The frames are organized in
a rich hierarchy of macroframes, cluster-microframes, and synset- and LU-
microframes, in order from more general to more specific. Synsets and LUs
(Lexical Units) are concepts imported from WordNet [11] and FrameNet [2]
respectively, which are resources from computational linguistics. FrameNet
constitutes the backbone of FrameBase and is a compilation of such frames
and FEs to annotate the semantics of natural language. WordNet is a com-
putational lexicon that includes word senses grouped by synonymy and
other semantic relations. Both synsets and LUs are closely related to sense-
disambiguated words and therefore they are used to produce the most specific
frames, whereas cluster-microframes and macroframes represent groups of
near-synonymous or related concepts. Figure 1.2 shows an example of how
FrameBase represents knowledge, and Figure E.1 illustrates a sample of the
hierarchy.

The less expressive but more concise layer is denoted as the dereified layer,
and is formed by Direct Binary Predicates (DBPs) that connect directly the
objects of specific pairs of FEs.

The two different layers provide a trade-off between expressiveness and
efficiency, and are connected by inference rules, called Reification-Dereification
(ReDer) rules.

Data from external KBs in the LOD cloud can be imported using integration
rules, which can create FrameBase instance data from the instance fata of
the external KBs. This work also describes the creation of these rules in
manual, semi-automatic and automatic ways, exploiting the linguistic aspects
of FrameBase inherited from FrameNet. The results for automatic and semi-
automatic methods are evaluated. Examples are also provided of how the
resulting FrameBase instance data can be queried. Figure 1.4 provides a
general overview of the dataflow in the FrameBase system.

The relation of FrameBase to linguistics provides additional potential for

8



Fig. 1.2: Information from Figure 1.1 represented under the FrameBase model, which combines
expressiveness with conciseness by combining different representation layers (reified in blue,
dereified in green).

natural language processing tasks such as text mining and question answering,
which will be discussed in Section 4.

The rest of Part I is structured as follows. Chapter 2 summarizes the content
of each of the publications included in this thesis, and it adds complementary
information. Chapter 3 provides the conclusion of this thesis and outlines
future research. Part II contains the complete publications.
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Fig. 1.3: Sample of the frame hierarchy in FrameBase.

Fig. 1.4: Overview of the data flow of FrameBase.
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Chapter 2

Summary of Contributions

This chapter summarizes and complements the content of each of the pub-
lications included in this thesis. Section 1 lists the publications ordered by
submission date, summarizing their content and specifying the eventual over-
lap between them. Section 2 provides supplementary information about some
of the papers. The reading of this information is optional and requires the
previous reading of the papers.

1 Publications

Paper A J. Rouces. “Enhancing Recall in Semantic Querying”, In Proc. 12th
Scandinavian Conference for Artificial Intelligence (SCAI). 2013.

In this paper, different types or “patterns” of semantic heterogeneity in
the LOD are identified, and their consequences upon structured querying are
analysed: a query following one pattern will not retrieve results with identical
or overlapping semantics that use another pattern, therefore reducing recall. A
very general overview of how these heterogeneity issues could be addressed
is also included.

Issues 1.1. (Single Property or Event Attachment), 1.2. (Event Modeling: Dif-
ferent Approaches) and 1.4. (Numerous Overlapping Vocabularies), together
with the proposed approach outlined for solving them, provides the motiva-
tion and foundation for the FrameBase system developed in the following
papers.

Paper B J. Rouces, G. De Melo, and K. Hose, “FrameBase: Representing N-
ary Relations using Semantic Frames”, In Proc. 12th Extended Semantic Web
Conference (ESWC), 2015.

In this paper, a more detailed analysis of different representation models
for N-ary relations in the LOD is provided (extending the discussion of points
1.1 and 1.2 in Paper A). Additionally, it identifies heterogeneity as a problem

11



Chapter 2. Summary of Contributions

not only when querying linked data but also for the very enterprise of linking
data, since certain kinds of heterogeneity require linking different kinds of
patterns, whereas most current established methods for linking data focus on
linking individual entities by means of binary properties.

Then, the paper describes how FrameBase system is built reusing existing
resources from linguistics and cognitive science (FrameNet [2] and Word-
Net [11]). The resulting FrameBase system consists of a core schema made of
frame classes organized in a rich hierarchy, associated properties called Frame
Elements (FEs), Direct Binary Properties (DBPs) connecting pairs of objects
of the FE properties for a given frame, and Reification-Dereification (ReDer)
rules connecting the DBPs with the frame-FE patterns.

The paper illustrates how the resulting FrameBase model is at least as
expressive as the other models discussed, and at the same time it is at least
as space-efficient. In other words: it is as expressive as the most expressive
but inefficient models analyzed, and as efficient as the most efficient but
inexpressive models analysed. It also reduces heterogeneity by providing
a core set of common concepts that can be combined or extended, and it
provides potential connections with natural language.

Finally, the accuracy of the resulting system is analyzed, and the paper
provides a few examples of manually-built integration rules importing know-
ledge from other knowledge bases into FrameBase, and of how the integrated
knowledge can be queried.

Paper D, submitted to the Semantic Web Journal, is an extension of this
paper. Therefore, reading both papers is not necessary, and reading Paper D in-
stead of this one is recommended because of the additional material, including
figures and examples.

Paper C J. Rouces, G. De Melo, and K. Hose, “Representing Specialized Events
with FrameBase”, In Proc. 4th International Workshop on Detection, Representation,
and Exploitation of Events in the Semantic Web (DeRiVE), 2015.

This paper discusses the use of FrameBase to represent events. Since
frames can be viewed as subsuming events (or interpreted as a very general
concept of events), the application is straightforward. The paper provides
examples of integrating event data from different sources and types, proving
the expressiveness of FrameBase. It also discusses the different ways in which
integration rules can be complex. This is an attempt to create an alphabet of
atomic transformations that applied to a straightforward integration rule (one
made of a set of binary correspondences) can create an arbitrarily complex
integration rule. Such catalogue is built with the purpose of contributing to-
wards the extremely difficult task of automatically creating arbitrarily complex
integration rules.

Paper D J. Rouces, G. De Melo, and K. Hose, “Integrating Heterogeneous
Knowledge with FrameBase”, Submitted to: Semantic Web Journal (SWJ), 2016.
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2. Supplementary Information

This paper has been submitted to a conference follow-up special issue
of the Semantic Web journal, and therefore is an extension of Paper B. It
also contains some examples from Paper C. Therefore, it is recommended its
reading over Paper B. The additions in relation to Paper B are summarized in
Section 2.1.

Paper E J. Rouces, G. De Melo, and K. Hose, “Heuristics for Connecting
Heterogeneous Knowledge”. In Proc. 13th Extended Semantic Web Conference
(ESWC), 2016.

This paper describes methods for automatically creating integration rules,
combining a support vector machine with heuristics tailored at idiosyncrasies
of certain source knowledge bases.

Paper F J. Rouces, G. De Melo, and K. Hose, “Complex Schema Mapping and
Linking Data: Beyond Binary Predicates”, In Proc. Workshop on Linked Data on
the Web (LDOW), co-located with WWW, 2016.

This paper describes in depth a method for automatically creating a certain
type of integration rules called property-frame rules. It does so by re-using
DBPs and ReDer rules in FrameBase, canonicalizing properties from exter-
nal knowledge bases, and mapping them to DBPs using a custom similarity
measure. While property-frame integration rules do not solve alone all the inte-
gration needs to map knowledge between FrameBase and external knowledge
bases, or between external knowledge bases through FrameBase, they provide
an essential building block that ontology alignment systems producing binary
equivalence links cannot represent.

Paper G J. Rouces, G. De Melo, and K. Hose. Klint: Assisting Integration of
Heterogeneous Knowledge. Demonstration paper in: Proc. 25th International
Joint Conference on Artificial Intelligence (IJCAI), 2016.

The levels of virtually perfect accuracy required in most knowledge bases
is not possible complex integration rules are built automatically, especially if
the patterns involved have a high or unbounded complexity. Hence, a human
in the loop is necessary for achieving these levels of accuracy. Therefore,
we develop Klint (Knowledge Integrator), a web-based application that by
means of a graphical interface leverages the algorithms developed for creating
integration rules, using them as a suggestion engine that can assist a human
user and reduce his involvement.

Additional features of Klint are described in Section 2.2.

2 Supplementary Information

2.1 Additional content of Paper D

The additions in relation to Paper B are the following:
In the section "State of the Art", section 2.3 has been added, which includes

a detailed analysis and comparison with the role system in schema.org. This
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model is also included in the triple overhead analysis (Table 2). Furthermore,
details to the description of reasoning in the same analysis have been added.

In the section "System Overview", it is described how the schema has been
extended with reified cluster microframes and a new property for which the
transitive closure is computed. Examples, a diagram of the schema (Figure
1), the linking with other LOD datasets (Lexvo.org [9] and the Princeton RDF
Wordnet [17]) and further clarifications have been added.

10,270 new Direct Binary Predicates and Reification-Dereification rules
have been added based on nouns, for which the head verbs have been extracted
with a novel method that is described in Section 5.2. More examples of
ReDer rules have been added to the paper. Additionally, new rules have been
added for cases where FrameNet’s annotations were insufficient, by extracting
statistics from the cases where the annotations were sufficient. Linguistically
rich annotations to all Direct Binary Predicates have been added, using the
Lemon model [18].

2.2 Additional Features in Klint

Klint supports additional features not describes in Paper ??.

Visual Query and Knowledge Building Klint supports a Visual Knowledge
and Query Building mode that allows the user to create knowledge and queries
under the FrameBase schema, in a visual and simple way. The way it works is
identical to Assisted Schema Integration explained in the paper, but creating a
graph from scratch without elements of the source KB. There are two possible
sub-modes: Visual Knowledge Building and Visual Query Building.

• Visual Knowledge Building . When the user introduces only FrameBase
and, optionally, external nodes, the resulting knowledge can be exported in
any of the common RDF formats. Unlike the Assisted Schema Integration mode,
this is not meant to produce massive amounts of data from external structured
sources, but it is rather a source-neutral way to test the expressiveness of
FrameBase creating small examples of knowledge.

• Visual Query Building . When the user adds also some variable node, then
the system will allow him to export the resulting knowledge pattern as a
SPARQL query, and optionally run it against the knowledge integrated with
the available integration rules. The user can choose between different options:

- Obtain a SELECT SPARQL query, suited for a FrameBase KB, selecting all
variables.

- Obtain a CONSTRUCT SPARQL query, suited for a FrameBase KB, extract-
ing all the knowledge that follows that pattern.

- Run the SELECT/CONSTRUCT SPARQL query directly and visualizing
the results.

14
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Representation Algorithm RDF graphs are usually represented as directed
labelled graphs with each subject-predicate-object triple as an edge between
the subject and the object, with the property as the label. However, this is a
simplification, as predicates can also be subjects or objects of some triples, and
RDF graphs are truly bipartite graphs [13] where each triple is represented
by two consecutive directed edges: subject-property and property-object. The
graph representation in Klint maintains the bipartite model, so RDF is fully
supported, but at the same time it maintains a presentation similar to the
directed labelled graph, which is visually more intuitive for the user. It uses a
combination of visual clues: it uses physics simulation algorithms to maintain
a similar orientation for edges of the same triple; it uses a distinctly different
representation for subject and object nodes in relation to predicates; and it
creates alias nodes for predicates, so if the same resource is used twice as
predicates in different triples, or as predicate in one and subject in another,
then it is represented with two different nodes that are internally linked to the
same resource. Klint has several heuristics for creating human-readable node
labels, which are combined with labels extracted from the imported schema
and a public LOD cache.

When users want to make a modification in the graph, they can do so
in a visual and simple way. Subject-Predicate-Object triples can be added or
removed by adding or removing edges between nodes. The system automati-
cally creates a new triple after a subject-predicate and a predicate-object edges
are created sharing the predicate. Temporary links are shown for unfinished
subject-predicate edges.
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Chapter 3

Concluding Remarks

1 Conclusion

This thesis has presented the construction of FrameBase, a knowledge re-
presentation system that based on resources from linguistics, can represent a
wide range of knowledge in an unambiguous and efficient way, providing an
upper layer of knowledge that can be extended by interested stakeholders. The
thesis has also introduced methods for integrating data from other structured
sources, either automatically or semi-automatically.

FrameBase is especially suited for integrating data from the Linked Open
Data cloud. This was chosen because due to the nature of LOD datasets, which
are published by independent stakeholders and meant to be linked to each
other, the LOD cloud is the prime example of heterogeneous data that must
be integrated. However, the problems, methods and techniques presented in
this thesis apply also to other kinds of datasets that need to be integrated,
for instance relational databases that should be integrated after the merge
of two companies. The methods and techniques here introduced could be
applied to cases like this by either changing the implementation formats of
the ontology and rules, or pre-processing the datasets at hand with one of the
many existing systems to convert structured data to RDF1.

2 Future Work

Besides the abovementioned process of extending or adapted FrameBase to
cope with non-RDF data sources, which could be somehow be integrated
into a the FrameBase system (but also be left to each user, who may have
particular needs), different research lines have been identified with potential
to significantly break the state of the art building upon the work described in
this thesis. These are enumerated next.

1https://www.w3.org/wiki/ConverterToRdf
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Interfacing with natural language . Due to its use of linguistic resources for
ontological purposes, FrameBase has a big potential for text mining and other
natural language related tasks, such as question answering. Three distinct
strategies have been identified that could serve to extract FrameBase structured
knowledge from natural language, either for creating grounded knowledge or
queries. These strategies could be combined.

• Reusing Semantic Role Labelling (SRL) systems for FrameNet such as SE-
MAFOR [8]. Direct text-to-ontology systems such as FRED [20] or Pikes [6],
or an extractor of events to the LODE (Linking Open Descriptions of Events)
ontology [10] already make use of SRL systems and could be adapted or
extended.

• DBPs can be matched against running text in a similar fashion as in Paper F,
which would provide additional means towards relation extraction. Alter-
natively, they could be matched to clauses extracted from already existing
clause mining systems, such as OpenIE [1] This would constitute on its own
a specialized SRL system with high accuracy but restricted to two FEs, and
would re-use much of the work described in F (both the implementation
and the future work). The restriction to 2 FEs could be surmounted by
performing a later step of merging frame instances under certain criteria of
similarity and closeness in the text (the closeness measure could be further
refined by using anaphora resolution). The extracted frames could likewise
be combined with others extracted from existing SRL systems.

• The FrameBase schema could be extended with PropBank [15], which is
a linguistic resource similar to FrameNet, but closer to natural language
syntax. PropBank uses a more reduced set of generic roles than FrameNet’s
FEs, and it does not declare the abstract frames behind FrameNet, limiting
itself to word senses. FrameNet was chosen for the backbone of FrameBase
for its hierarchy and being in general semantically richer; however, integrat-
ing PropBank into FrameBase may provide additional advantages, such as
increasing the accuracy of the SRL system [16].

Text mining methods could be reused for question answering with rela-
tively few adaptations. The simplest strategy would be mapping wh-words
to SPARQL variables. Due to current SRL systems having far from perfect
accuracy, it would be advisable using a mixed approach combining unstruc-
tured search in order to fill the gaps (i.e., make for the imperfect recall of the
SRL system) and provide a weighted alternative to the obtained structured
query (i.e., make for the imperfect precision). At the same time, even though
semantic role labeling is still challenging, semantics is one of the largest re-
search areas in natural language processing now and thus FrameBase can
easily benefit from progress made in this area in the future.
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Extending integration rules . Creating integration rules automatically is an
extremely difficult task, illustrated by the low inter-annotator agreement rates
obtained even for rules whose complexity is bounded (i.e., they have a fixed
structure like property-frame and class-frame rules, c.f. Paper E). For rules
with unbounded complexity (involving arbitrary patterns), the task is even
more complex and inter-annotator agreements is likely to drop to extremely
low levels. Despite this, there are potentially ways to create arbitrarily com-
plex rules exploiting FrameBase’s connection to natural language. Two main
strategies seem possible, which are not completely disjoint but differ in that
one is more driven by FrameBase and natural language generation and the
other is driven by the source KBs and relies on natural language processing.
Both of them produce rules connecting a property from the source KB with
a complex pattern in FrameBase, which could be combined with other rules
created with one-to-one mappings produced by existing ontology alignment
systems.

• FrameBase driven. This involves extending the approach in Paper F, cre-
ating very complex ReDer rules whose DBPs could also be matched with
external properties. These DBPs could have for instance a “(VP <VBZ>
(NP <NP1> (PP <IN> <NP2>)))” structure, like for instance “developsUn-
derstandingOfContent” or “startsDemolitionOfBuilding” (but other more
complex structures would be possible too). As explained in Section 4 (Future
Work) in Paper F, this involves two frame instances (one evoked by VBZ
and the other by NP1), and some challenges:

– Syntactically correct but semantically nonsensical combinations should
be filtered out (e.g. “procrastinationDrunkByQuadruplicity”). This could
be done based on example sentences in FrameNet.

– If the frames evoked by the VBZ and NP1 are not annotated in the same
sentence, the correct pair of frames should be chosen from the pair of
lexical units (VBZ,NP1), and the correct FE connecting both should be
chosen too.

An advantage of this approach is that it provides richer ReDer rules in
FrameBase, but the disadvantage is that being driven by FrameBase, it
may have poor recall for real-life datasets, both because of its reliance on
FrameNet example sentences and FrameNet’s non-specialized vocabulary.
The latter problem could be significantly reduced by also updating the
similarity function between DBPs and source properties, to account to hy-
pernymy and synonymy relations that would allow capturing very specific
concepts in source KBs for which hypernyms can be found in FrameBase (for
instance: “increasesSpeedOfProcess” and “catalyzesChemicalReaction”).

• Source-data driven. This would involve parsing predicate names with a
SRL system, in a similar way as explained in the previous research line
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“Interfacing with natural language”. However, SRL systems are also con-
strained by their reliance on example annotated sentences for training. In
any case, an advantage of this approach is that if FrameBase is extended
with PropBank, SRL systems for this could be used as well, as it was also
proposed in the prevopus research line.

Implementing virtual querying . So far the integration rules for integrating
source KBs into FrameBase have been implemented as SPARQL CONSTRUCT
queries that applied over the sources’ data, which can be used to materialize
the integrated knowledge.

This allows for efficient evaluation of queries on the integrated knowledge
base. To account for updates, the SPARQL CONSTRUCT queries have to be
re-run periodically. An alternative implementation would be using virtual
querying: using the integration rules to provide FrameBase-adapted virtual
views of the source KBs. This would allow re-using existing SPARQL endpoints
from the different sources and enable access to the most recent version of
the source data. On the other hand, this introduces a dependence on the
availability of the SPARQL endpoints hosting the source data, as well as the
need for federated query processing techniques to compute the results.

A similar strategy could be used for ReDer rules, either alone on top of
materialized FrameBase instance data, or in conjunction with the virtual views
of external sources described above. The case of ReDer rules is relatively
simpler for the several reasons. First, they are currently definite clauses, which
allows using existing reasoners (for example, the ReDer rules have been
implemented also in the Jena rule language), and at the same time they are
currently not expected to be chained (there are only two levels of reification
and they are disjoint). Additionally, they do not require federation unless the
FrameBase instance was purposely distributed over different triplestores.
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1. Same Meaning but Different Graph

RDF and SPARQL are currently state-of-the-art W3C standards to respec-
tively represent and query structured information, especially when informa-
tion from different sources must be federated. However, there are various
reasons for which the same knowledge can be modeled in RDF graphs that
are both lexically and structurally different, which we will introduce in the
next section. As RDF graphs from different sources are expected to be linked,
the modeling heterogeneities will make the federated graph become sparser
and inconsistent. This is detrimental to the recall of SPARQL queries, as the
query graph will be built following one particular modeling choice that may
not be consistently used across the reachable parts of the federated graph.

1 Same Meaning but Different Graph

Of the problems we will identify, some are more general than others, but even
those that are not inherent to RDF and other semantic web technologies, have
become more problematic under this new paradigm. Here, as opposed to
traditional centralized knowledge management systems, information is no
longer shaped by a closed and well defined model that both editors and users
know and are expected to follow, as it will cointain knowledge from different
sources.

1.1 Single Property or Event Attachment

When additional information needs to be assigned to the event implied by a
property, the property needs to be reified into a new entity that represents the
event, so the additional information can be assigned to the event as additional
properties. This reification can also be done without additional information,
and is related to the neo-Davidsonian form [1, 600f.], though it is denoted as
“representation of n-ary relations” in much of the RDF literature. The problem
is illustrated in [2], with the following example:

A_Einstein wonPrize NobelPrize A_Einstein winner AEinstWonNP1921
NobelPrize prize AEinstWonNP1921
1921 time AEinstWonNP1921

As a solution, [2] proposes choosing a primary pair for each n-ary relation
and appending the rest to this by means of RDF reification. However, a simple
and universal way to choose this primary pair for any n-ary relation seems not
to be straightforward. Also, using RDF reification, the properties are attached
to the triple that contains the property, not the property itself, which is not the
same. Another possible solution would be always enforcing the use of property
reification1. This has the disadvantage of some overhead of triples to express
non-qualified relations that could just be expressed with a single triple, but

1We use “property reification” to denote the process of reifying a property/predicate and
“RDF reification” for reifying a triple.
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languages based on thematic roles, such as Universal Networking Language,
as commented in section 1.2, take this approach. Another option is including
some flexibility in the retrieval, so both reified and non-reified relations are
retrieved together. These options are discussed later in this document. This
problem can also occur when the property is rdf:type.

1.2 Event Modeling: Different Approaches

When we model an event by reifying a property, like described in section 1.1,
there are different modelling options. We enumerate them below.

a) Like in the example in [2], using some rather specific properties like winner
and prize. The property time, in contrast, is quite generic. The event can
belong to an independent specific class (e.g. To-win) or a generic one
(e.g. Event). We think the first approach is not recommendable because
it is redundant. Another approach is making the event belong to specific
classes defined as the domains and ranges of the specific properties, so
the redundance is controlled and there is no need to keep two separate
vocabularies.

b) Making the event belong to a specific class (To-win), and using strictly
generic event-wise thematic roles (also called semantic roles [1, 704f.]),
such as agent, patient, product, place, time, etc., as properties. This also
avoids unnecesary redundancy between events and properties, but the
burden of the vocabulary complexity is moved towards the events. It is the
approach taken in Universal Networking Language (UNL) [3], a knowledge
representation language used as interlingua for machine translation.

1.3 Single Entity or Complex Structure

Similarly to properties in section 1.2, an entity can be replaced with a complex
structure that contains additional information, or the same information better
structured. Two examples of this can be found in the RDF primer2. A similar
case can happen with the use of rdf:value3.

1.4 Numerous Overlapping Vocabularies

There are many different topic-specific vocabularies for RDF, with semantically
overlapping terms. Alligning them with properties such as owl:sameAs is a
problematic task which grows to an unmanageable size at the web scale.
Manual methods are time- and resource-consuming and automatic methods
are error-prone. When two equivalent resources are not properly linked by
owl:sameAs, the whole graph becomes semantically sparser, and a query using
one resource will not retrieve solutions that use the semantically equivalent
one, thus reducing recall.

2http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#structuredproperties
3http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#rdfvalue
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2. Proposed Approach

1.5 Instance Property or Subclass Property

OWL, which is based on description logics, forces a dichotomy between classes
and instances. However, the choice of whether something is modeled as a class
or as an instance (i.e. whether it belongs to the Abox or the Tbox in description
logics) may depend on the context, like the assumptions the ontologist makes
regarding the purpose and the granularity of the ontology.

For example, a particular car model can be considered an instance in an
ontology set up to describe car models by their properties (manufacturer, year,
body style, etc.). At the same time, in an ontology concerning production of
cars by the manufacturer, it can be modeled as a class, possibly a subclass of
the same class(es) it was an instance of in the previous case, so the instances
are actual car-objects with a serial number. If both ontologies were to be
linked, a fundamental problem would arise: a resource would simultaneously
be a subclass and an instance of another resource. This, besides requiring
higher-order logics (which OWL 2 can handle but in a limited way) is lexically
inconsistent.

2 Proposed Approach

From the perspective of retrieving the information, solving the heterogeneities
explained above would increase recall without significantly reducing precision,
in the sense that relevant facts that before were excluded from the query results
for using a different modeling choice than the query, would then be retrieved.
In order to do this, we intend to combine two strategies:

At modeling stage, by declaring a general-purpose vocabulary, together
with usage rules and patterns, that reduce as much as possible the number
of different RDF graphs that relate to the same specification. This vocabulary
could be based on Wordnet, for which a direct translation to RDF already
exists [4]. Wordnet provides sense disambiguation, so polysemy would not
be a problem. This would not contravene the open nature of the semantic
web, as everyone could link vocabularies containing specific entities of their
own responsibility (e.g., a company listing prices for their products). Also,
for very specific terms or senses that are not present in Wordnet, specific
linked vocabularies could still be used, in a similar fashion to how natural
language can be extended with topic-specific jargons. However, a big part of
the resources present in popular vocabularies of the semantic web, like Dublin
Core or FOAF, are equivalent to certain synsets in Wordnet, and the same can
be expected for similar future topic-specific vocabularies. Therefore, one of the
most obvious benefits of this approach would be reducing the high amount of
URI aliases that can be found among the many specific-purpose, but partially
overlapping, existing RDF vocabularies, thus addressing the point 1.4.

Using Wordnet can also provide an additional advantage. Being related
more directly to the English lexicon, it may reduce the learning curve for
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human users, especially compared to learning many topic-specific heteroge-
neous vocabularies and their mutual links. However, some word types – like
prepositions, and compound terms in general – are not part of Wordnet, so its
use as a general vocabulary is not straighforward.

The point 1.5 could be circumvented by using the linguistic copula and
dropping class modeling, but this means dropping RDFS/OWL logical in-
ference too. The point 1.2 could be addressed by sticking to one of the two
non-redudant options, preferably the one based on thematic roles, as it seems
a more common approach.

Regarding the implementation of thematic roles on top of RDF, there are
already other proposals, like SEM or LODE [4], but they seem limited in
extent. A much more comprehensive set of thematic roles can be found in
UNL (Universal Networking Language) [3], that provide the ability to express
most of the meaning of any natural language utterance, and could be imported
to RDF. In [3], it is proposed that UNL might be of use in the context of the
semantic web, though RDF and the issues associated to linking heterogeneous
datasets are not mentioned. Using an approach like UNL would also allow
using only thematic roles as properties, which is equivalent to performing a
comprehensive property reification, and it would solve the first point in 1.1.
However, this enforcement is not realistic when linking data, as the existing
corpus of knowledge in RDF would not comply. A more realistic approach
would then be complementing the language with a flexible query system
which retrieves both reified and unreified properties. We discuss this next.

At querying stage, by adding some flexibility that matches different graphs
that have the same or similar semantics. There have been several proposals for
flexible SPARQL [5], relaxing queries by replacing concepts with supercon-
cepts, based on a background ontology, but this only matches a very specific
kind of ontology-backed isomorphic graphs, and does not cover the modeling
cases explained above. Therefore, a structural approach, similar to the one
mentioned in [5], would be needed. Combining lexical and structural flexi-
bility, the cases introduced before can be addressed by means of equivalence
rules.
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1. Introduction

Abstract

Large-scale knowledge graphs such as those in the Linked Data cloud are typically
represented as subject-predicate-object triples. However, many facts about the world
involve more than two entities. While n-ary relations can be converted to triples in a
number of ways, unfortunately, the structurally different choices made in different
knowledge sources significantly impede our ability to connect them. They also make it
impossible to query the data concisely and without prior knowledge of each individual
source. We present FrameBase, a wide-coverage knowledge-base schema that uses lin-
guistic frames to seamlessly represent and query n-ary relations from other knowledge
bases, at different levels of granularity connected by logical entailment. It also opens
possibilities to draw on natural language processing techniques for querying and data
mining.

1 Introduction

Over the past few years, large-scale knowledge bases (KBs) have grown to
play an important role on the Web. Many institutions rely on Linked Data
principles to publish their data using Semantic Web standards [1]. These KBs
are mostly based on simple subject-predicate-object (SPO) triples, as defined
by the RDF model [2]. Such triples are convenient to process and can be
visualized as entity networks with labeled edges.

Whereas triple representations work straightforwardly for relations involv-
ing two entities, many interesting facts relate more than just two participants –
a problem that has gained renewed attention in several recent papers [3, 4]
as well as in the current W3C proposal to add roles to schema.org [5]. For
a birth event, for instance, one may wish to capture not just the time but
also the location and parents. For an actress starring in a movie, the name
of the portrayed character may be relevant. Such facts naturally correspond
to n-ary relations. In order to capture them as triples, several different re-
presentation schemes have been proposed. Table D.1 shows some possibilities
of expressing that an entity John was married in 1964, some of which also
include additional information such as the name of the bride. We will discuss
these representations in more detail later in Sect. 2.

As the example shows, this sort of semantic heterogeneity leads to signifi-
cant data integration challenges. One KB might use a simple binary property
between two entities, whereas another may instead choose a more complex
representation that accommodates additional arguments. The representations
can easily be so at odds with each other that no particular mapping between
entities could bridge the differences. There are entities at each side that have
no counterpart at the other. This leads to several challenging problems:

1. When linking data, there are currently no mechanisms to connect KBs
with different modeling choices. Predicates exist to link equivalent classes,
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instances, or properties, but not for connecting the different patterns, as
explained above. Existing work on ontology and KB alignment [6] is limited
to finding aliases.

2. When querying, the query must be built in a way that fits the particular
modeling choices made for the respective KB. Otherwise, the recall may be
as low as zero [7]. Even worse, when we don’t have a single coherent KB
but a set of different KBs, there is no simple query (as could be formulated
on a single given schema) that will have a high recall across all KBs.

3. When natural language interfaces to KBs are queried, state-of-the-art sys-
tems typically attempt to map verbs and predicate phrases to RDF pre-
dicates [8]. This approach, however, cannot be applied when the KB fails to
provide a compatible binary relation.

Direct Binary Relation

John marriedOnDate 1964 .

RDF Reification

John marries Mary .
s type Statement .
s subject John .
s property marries .
s object Mary .
s time 1964 .

Subproperties

p subPropertyOf Marriage .
John p Mary .
p time 1964 .

Neo-Davidsonian (Specific Roles)

e type Marriage .
e groom John .
e bride Mary .
e time 1964 .

Neo-Davidsonian (General Roles)

e type Marriage .
e agent John .
e agent Mary .
e time 1964 .

Table B.1: Triple Representations of n-ary Relations

FrameBase. To address these problems, we have created FrameBase, a broad-
coverage schema that can homogeneously integrate other KBs and has strong
connections to natural language. It overcomes the above-mentioned forms of
heterogeneity – by sticking to a specific modeling choice general enough to
subsume the others (neo-Davidsonian representation) – together with a large
vocabulary for events and roles. This vocabulary is reusable and based on an
extensible hierarchy. We also develop a mechanism to convert back and forth
between the new representation and direct binary relations, using a vocabulary
of binary relations automatically generated from linguistic annotations. These
are more concise and can be used when only two arguments are relevant.

This paper is structured as follows. After analyzing the state of the art in
Sect. 2, an overview of FrameBase is given in Sect. 3. Section 4 explains how
we construct the FrameBase schema, while Sect. 5 presents our representation
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2. State of the Art

All triples Core Linking
event

Reasoning

RDF Reification (n + 4)k (n + 3)k +k(k− 1) 1 definite clause
Subproperties (n + 2)k (n + 1)k +k(k− 1) RDFS
Neo-Davidsonian 1 + n + k 1 + n +0 > 1 def. clauses

Table B.2: Triple Overhead. n is the number of participants in an event, and k the number of pairs that
are relevant to be linked by direct binary relations. The first column indicates the total number of triples
that can be materialized. The second column excludes direct binary relationships, which can be inferred
unambiguously by the inference system in the last column. In the case of RDF reification, this inference
could be accomplished by a rule creating the triple from its reification triples. In the case of neo-Davidsonian
representation, we use rules of a different form (described later in Sect. 5). In both cases, each rule is a
definite clause, i.e. a disjunction of logical atoms with only one negated, which is the consequent when the
clause is written as an implication. The third column indicates the number of triples needed to connect
entities that represent the same event, which is a phenomenon that arises when using RDF reification or
subproperties.

conversion mechanism. Section 3 provides a qualitative evaluation, and Sect. 3
concludes the paper with an outlook to future work.

2 State of the Art

In this section, we review related work and conduct a thorough analysis
of existing approaches for modeling n-ary relations, which are synthesized
in Table D.1. In Table D.2, we provide a detailed comparison of their space
efficiency, which has consequences with regards to their applicability for
large-scale KBs.

2.1 Direct Binary Relations

A common way to represent n-ary facts is to simply decompose them di-
rectly into binary relations between two participants [9]. But in doing so,
important information may be lost. For instance, given a triple with property
wasMarriedOnDate and two triples with gotMarriedTo, we cannot be sure to
which marriage the given time span applies.

2.2 RDF Reification

The RDF standard proposes RDF reification [2], which introduces a new
identifier (IRI) for a statement and then describes the original RDF statement
using three new triples with subject, predicate, and object properties.
Subsequently, arbitrary properties of the statement can be captured by adding
further triples about it.

In the different versions of YAGO [10], RDF reification is used to attach
additional information to the event represented by the original RDF triple
(evoked by its property) – as in the RDF Reification example in Table D.1. This
has the advantage that both the original triple as well as the reified triple can
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be present in the KB and queries that do not require the additional information
can still use the original binary relation directly. However, this also has several
drawbacks:

• Formally, the event represented by a triple and the triple as a statement are
different entities with different properties. For instance, an institution may
endorse the triple as a statement without endorsing the marriage. Using
RDF reification, both are represented by the same RDF resource identifier,
which conceptually is meant to be unambiguous. This is a potential source
of confusion and inconsistency.

• The number of triples increases by a factor of 4. For each triple S P O,
one has to add T a rdf:Statement, T rdf:subject S, T rdf:predicate
P, and T rdf:object O. These do not add any new information themselves
but are merely a prerequisite for then being able to extend the original
binary relation to an n-ary relation by subsequently adding more triples
with T as subject.
• The advantage of being able to include the original non-reified triple only

applies for the primary binary relation, and not for the other n(n−1)
2 − 1

ones that can be formed (not counting inverses). Some of these may be rare
or irrelevant, but others may be important and are indeed used in YAGO
(e.g. bornAtPlace, bornOnDate).
• The choice of the primary pair of entities and their binary relation (John

and Mary in Table D.1) is arbitrary, and a third party willing to query the
KB cannot replicate the choice independently. If their choice is different,
they will not obtain any results. A possible solution, which is actually
implemented in YAGO2s, is to include the triples for the other pairs and
reify them, too, but this adds yet another factor of overhead, besides data
redundancy that would complicate updates.

• When two or more different events share the same values for the primary
pair of arguments, they will share the same triple, but require separate
reifications, producing non-unique triple identifiers. For example, if there
are two flight connections between Paris and London with different airlines,
the triple Paris isConnectedTo London will be reified twice, with two
different triple identifiers.

If the triplestore implementation makes use of quads1, the 4-fold overhead
can be avoided (though the underlying storage needs a new column), but
the other disadvantages still remain. Quad-based singleton named graphs [2]
could be used instead of RDF reification, the problems being the same.

2.3 Subproperties
A recent proposal [4] aims to solve some of the issues with RDF reification by
instead declaring a subproperty of the original property in the primary pair,

1http://www.w3.org/TR/n-quads/
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2. State of the Art

and using this subproperty as the subject for the other arguments of the n-ary
relation. This is shown in the Subproperties example in Table D.1.

While the approach enables us to use RDFS reasoning to obtain the triple
with the parent property that relates two of the participants, and also reduces
the overhead of RDF reification, it still suffers from the problems mentioned
above related to the existence of a primary pair. For one, the non-reified binary
relationships for the other pairs cannot be inferred from that subproperty.

2.4 Neo-Davidsonian Representations

Another approach, and the one that we will adapt for FrameBase, is to make
use of so-called neo-Davidsonian representations [11, p. 600f.]. This means that
we first define an entity that represents the event or situation (also referred to
as a frame) underlying the n-ary relation. Then, this entity is connected to each
of the n arguments by means of a property describing the semantic role [3, 12].

Note that the process of converting from the binary representation to the
neo-Davidsonian one is also called reification, but this is different from RDF
reification as discussed earlier. In RDF reification, an entity is defined that
stands for a whole triple so that additional triples can be used to describe the
reified triple as a unit that represents a statement. However, in the context
of event semantics, reification is used to denote the process by which an
entity is defined that refers to the event, process, situation, or more generally,
frame, evoked by a property or binary relation. Having done this, additional
information about it can then easily be added. Both kinds of reification have
in common that a new entity is defined to refer to something that before was
not explicitly represented by an entity in the KB, but in one case it is a RDF
statement while in the other it is an event.

Advantages. Table D.2 compares the neo-Davidsonian approach to the al-
ternatives. These require a lot more triples when several direct binary relations
need to be included. In the worst case, k = n(n−1)

2 despite discounting recipro-
cal relations, but even if not all of these relations are relevant, connecting all
agents and possibly patients to all other elements would be relevant, which
would easily satisfy k > n.

Semantic Heterogeneity. Unfortunately, there are different ways of using
the neo-Davidsonian approach, with different levels of granularity for the
events and the semantic roles, from a very small set of abstract generic
ones [13] to more specific ones [14].

The Simple Event Model (SEM) Ontology [15] falls within the category of
neo-Davidsonian representation with general roles (see Table D.1). It defines
four very general entities, Event, Actor, Place, and Time. It also establishes a
framework for creating more specific ones by extending these, but it does not
provide these extensions, nor ways to integrate existing KBs in a way that
would solve the problem of semantic heterogeneity. Similarly, LODE (Linking
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Open Descriptions of Events) [13] specifies only very general concepts such as
the four just mentioned.

Freebase [14] is a KB built both from tapping on existing structured sources
and via collaborative editing. Although it uses its own formalisms, there are
official and third-party translations to RDF. Freebase makes use of so-called
mediators (also called compound value types, CVTs) as a way to merge multiple
values into a single value, similar to a struct datatype in C. There are around
1,870 composite value types in Freebase (1,036 with more than one instance)
and around 14 million composite value instances. While CVTs do not represent
frames or events per se, from a structural perspective, they can be regarded
as isomorphic to a neo-Davidsonian representation with specific roles (see
Table D.1). However, Freebase places a number of restrictions on CVTs. For
instance, they cannot be nested, and there is no hierarchy or network of them
that would for example relate a purchasing event to a getting event.

There is ongoing work to add the modeling of semantic roles to schema.org
[5]. Schema.org is an effort sponsored by Google, Yahoo, and Microsoft to
establish common standards for semantic markup in Web pages. Currently,
the new roles pattern proposal is just a proposed model without a proper
role inventory, and schema.org merely targets a small restricted number of
domains.

FrameNet [16, 17] is a well-known resource in natural language processing
(NLP) that defines over 1,000 frames with participants (so-called frame elements).
For example, the verb to buy and the noun acquisition are assumed to evoke a
commercial transaction frame, with frame elements for the seller, the buyer,
the goods, and so on.

Previous work has proposed general patterns for using FrameNet in know-
ledge representation [18] and converted FrameNet to RDF [19], proposing a
way to generate schemas from FrameNet. Similarly, the FRED system [20] for
building semantic representations from natural language can be configured to
use FrameNet.

3 System Overview

As we have seen, there are a number of different representations used in KBs.
In this paper, we use the linguistic resources FrameNet [16] and WordNet [21]
to fully develop an extensive schema for large-scale knowledge representation
and integration. The schema is composed of an expressive neo-Davidsonian
level that draws on a large common inventory of frames, together with a more
concise level of direct binary relations, which is connected to the former by
means of inference rules.

3.1 FrameNet-based Representation

The use of FrameNet is motivated by the following considerations.
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• FrameNet has a long history and aims at descriptions of arbitrary natural
language. It thus provides a relatively large and growing inventory of
frames and roles, with a broad coverage of numerous different domains.

• FrameNet comes with a large collection of English sentences annotated
with frame and frame element labels. This data led to the task of automatic
semantic role labeling (SRL) [22] of text, now one of the standard tasks in NLP.
This strong connection to natural language facilitates question answering
and related tasks.

• While FrameNet’s lexicon and annotations cover the English language, its
frame inventory is abstract enough to be adopted for languages as different
as Spanish and Japanese [23]. This also makes it much more suitable as a
basis for knowledge representation than language-specific syntax-oriented
SRL resources such as PropBank [24].

• FrameNet provides an reasonable level of granularity for the phenomena
that humans care to describe. From a theoretical perspective, there is no
universally appropriate single level of reification. Any frame element might
be reified on its own, and any two elements of a frame could be connected
directly by a predicate. Using FrameNet, we strike a well-motivated balance,
at a point that is granular enough to constitute a model for natural language
semantics. As we will explain in Sect. 5, we also provide a second level of
representation, less expressive but more concise, based on the direct binary
predicates between frame elements.

3.2 Overview

For creating the FrameBase schema using FrameNet, we take the following
steps, which will be further explained in Sect. 4.

a) FrameNet–WordNet Mapping. First, we create a high-precision mapping
between FrameNet and another well-known lexical resource called Word-
Net [21], which will be used to enrich the lexical coverage and relations of
the FrameBase schema.

b) Schema Induction. We use FrameNet, WordNet, and the mapping to create
an RDFS schema for FrameBase that has very wide coverage and is extensi-
ble. The schema exploits semantic relations from these components (e.g.,
synonymy, hyponymy, and perspectivization) to transform the original
resources for our lightweight RDFS model.

c) Automatic Reification–Dereification Mechanism. We create reification–
dereification rules in the form of definite clauses that allow the KB to
be queried independently of whether a frame is reified or not, and that may
also be used to reduce overhead in the KB.
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4 FrameBase Schema Creation

4.1 FrameNet–WordNet Mapping

While FrameNet [16, 17] is the largest high-quality inventory of semantic
frame descriptions and their participants, WordNet [21] is the most well-
known resource capturing meanings of words in a lexical network, covering
for example nouns and named entities missing in FrameNet. WordNet, for
instance, serves as the backbone of YAGO’s ontology. We propose a novel
way of mapping the two resources, which later enables us to integrate both of
them into our schema.

WordNet contains synsets, which are sets of sense-disambiguated syn-
onymous words with a given part of speech (POS), such as noun or verb.
FrameNet contains lexical units (LUs), which are also POS-annotated words
associated to frames. Because of the semantics of the containing frame, lexical
units are also disambiguated to a certain extent, though not with the same
granularity as in WordNet. Our objective is to map synsets and lexical units
with the same meaning, so we can later use this to enrich our FrameNet-based
schema with relations and annotations from WordNet.

We choose to map each lexical unit to one and only one synset. While there
are some lexical units that could be mapped to more than one synset, this
will favor precision, which is desirable for the purpose of obtaining a clean
knowledge base. The only cases where this model would be detrimental to
precision are those where lexical units do not have any associated synset, but
these are few and most can easily be avoided by omitting lexical units with
parts of speech not covered in WordNet, such as prepositions.

Our choice allows us to model the mapping as a function S(l|a, b) from
lexical units to synsets as in (D.1). Sl stands for the synsets that have the same
lexical label and POS as the lexical unit l, µL and µG are the lexical and gloss
(definition) overlap, respectively, f yields the corpus frequency of the synset,
and a and b are parameters for a linear combination (the third parameter can
be omitted because of the argmax function).

S(l|a, b) = argmax
s∈Sl

µL(l, s) + a · µG(l, s) + b · f (s) (B.1)

The lexical overlap µL of a lexical unit l and a synset s is the size of the
intersection between the POS-annotated words from the lexical units in the
same frame as l and the POS-annotated words in s and its neighborhood. We
define the neighborhood as the synsets connected by a selection of lexical and
semantic pointers such as “See also”, “Similar to”, “Antonym”, “Attribute”
and “Derivationally related”. This expansion is useful to reduce sparsity and
better match the sets with those generated for the lexical units, which due
to the different semantics of frames and synsets, may already include these
related words.
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The gloss overlap µG is the size of the intersection between the set of
words in the definition of the lexical unit and the gloss of the synset. For
preprocessing these, we rely on the CoreNLP library [25] to clean XML tags,
tokenize, POS-label, and lemmatize the text, and we filter out all words except
nouns and verbs.

We trained a and b with a greedy search over several randomized seeds,
obtaining optimal values a = 5, b = 0.13.

4.2 Schema Induction

We model frames as classes whose instances are the particular events. The
frame elements of each frame are properties whose domain is that frame. We
create a class hierarchy of frames as follows.

1. General Frames: FrameNet’s frame inheritance and perspectivization rela-
tions are modeled as class subsumption between frames, by means of two
specific properties that inherit from rdfs:subClassOf, so that both remain
distinguishable but contribute to the hierarchy and allow RDFS inference.
We additionally declared a top frame for the hierarchy. Inheritance between
frame element properties is modeled with a direct subproperty relation.
Thus, under this model, an instance of the Commerce_sell frame with a
certain Commerce_sell-Buyer x, is also an instance of the Giving frame and
x is the Giving-Recipient, because the first frame inherits from the latter.
Likewise, it is also an instance of Transfer and x is the Transfer-Recipient,
because Giving is a perspective on Transfer.

2. Leaf Nodes: Since FrameNet’s original frame inventory is coarse-grained
and different lexical units like construction and to glue evoke the same frame,
we generate what has occasionally been called a microframe model: We
transform FrameNet such that every lexical unit is treated as evoking its
own separate fine-grained frame, which is made a subclass of the more
coarse-grained original FrameNet frame.

3. Intermediate Nodes The microframe nodes are very fine-grained, e.g. dis-
tinguishing buy from acquire, while some original frames from FrameNet are
very coarse-grained, as mentioned above. For instance, various kinship rela-
tionships such as mother, sister-in-law, etc. are lumped together. This wide
range of lexical units may stand in various lexical-semantic relationships
without these being indicated, including synonymy, antonymy, or nominal-
ization. The only characteristic they have in common is that, by definition,
they evoke a similar kind of situation. Overall, neither the fine-grained nor
the coarse-grained levels are ideal for knowledge representation purposes.
We address this by providing a novel intermediate level composed of
synset-microframes that group equivalent LU-microframes together. For this,
we generate a set of directly equivalent synset-microframes for each LU-
microframe, and we declare owl:equivalentClass predicates between
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these pairs. This is the only predicate we use that needs inference be-
yond pure RDFS, but we also include a pair of reciprocal rdfs:subClassOf,
which is semantically equivalent and leaves the possibility of using any
out-of-the-box RDFS inference engine. The clusters are thus defined as the
resulting equivalence classes over the set of all microframes.
These clusters are built in several steps. First, for a given LU, we get the
corresponding synsets from the FrameNet–WordNet mapping in Sect. 4.1.
In the case of our mapping, the set has no more than one element, but in
the general case it could have more. Then, we expand that set by adding all
other synsets related by lexical relations reflecting cross-POS morpholog-
ical transformations: “Derivationally related”, “Derived from Adjective”,
“Participle” and “Pertainym”. In general, these lexical relations do not nec-
essarily imply any close semantics (e.g., create/make – creature/animal), but
when restricted to synsets all tied to the same FrameNet frame, such cases
are normally factored out. The goal of using the lexical relations is linking
cross-POS LUs that evoke the same specific situation with a different syn-
tactic form, such as nominalizations (produce–production), non-finite verb
forms (produce–produced), adjectivization, or adverbization.

We also use names, definitions and glosses in FrameNet and WordNet to create
text annotations for our schema. We attach lexical forms with rdfs:label and
definitions and glosses from FrameNet and WordNet with rdfs:comment.

5 Automatic Reification–Dereification Mechanism

While frames are convenient for representational purposes, users wishing
to query the knowledge base benefit from binary predicates between pairs
of frame elements. For example, for a birth event, binary predicates like
bornInPlace and bornOnDate can facilitate querying by offering a more com-
pact and simple representation.

We thus present a novel mechanism to seamlessly convert between frame
representations and DBPs. This mechanism can also allow us to avoid materi-
alizing frame instances when only two frame elements are needed.

We generate dereification rules of the following form:

?s BinaryPredicate ?o← ?f a Frame, ?f FE1 ?s, ?f FE2 ?o

Additionally, for each dereification rule there is a converse reification rule
so that one can go back from binary predicates to the frame representation.
Each direct binary predicate (DBP) has only one set of possible frame and
frame elements associated, and therefore chaining reification and dereification
rules is an idempotent operation.

We build the reification–dereification rules automatically using the an-
notations of English sentences given for different LUs in FrameNet, namely
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the grammatical functions (GFs) and phrase types (PTs) [17] associated with
different frame elements in the example sentences of each lexical unit.

For verb-based microframes, FrameNet provides three kinds of GF labels:
External Argument (Ext), Object (Obj), and Dependent (Dep). Some of the PT
labels that can be found are N, NP, Obj, PPinterrog [17]. We create dereified
binary predicates for the pairs of frame elements whose syntactic annotations
for some sentence satisfy the creation rules below, using the GF and gram-
matical PT labels. We list the creation rules below, and add some examples of
reification-dereification rules associated to the DBPs created by some of them.
The postfixes “-s” and “-o” indicate the data associated to the FEs that fill the
first and second arguments of the DBP, or equivalently, the subject and the
object of the resulting RDF triple.
• Create DBP with name “ConjugateThirdPersSing(LU)” if

(GF-s equals Ext) & (GF-o equals Obj) &

(PT-o in { N, NP, Obj, PPinterrog, Sinterrog, QUO, Sfin, Sub, VPing } )

Examples of obtained resulting DBPs and reification-dereification rules:
?S :dereif-Forming_relationships-divorces ?O

↔


?R a :frame-Forming_relationships-divorce.v ,
?R :fe-Forming_relationships-Partner_1 ?S ,
?R :fe-Forming_relationships-Partner_2 ?O .

?S :dereif-Win_prize-wins ?O

↔


?R a :frame-Win_prize-win.v ,
?R :fe-Win_prize-Competitor ?S ,
?R :fe-Win_prize-Prize ?O .

• Create DBP with name “is ConjugatePastParticiple(LU) by” if

(GF-s equals Obj) & (GF-o equals Subj) &

(PT-o in { N, NP, Obj, PPinterrog, Sinterrog, QUO, Sfin, Sub, VPing } )

• Create DBP with name “ConjugateThirdPersSing(LU) Prep” if

(GF-s equals Ext) & (GF-o equals Dep) & (PT-o equals PP(Prep) )

Examples of obtained resulting DBPs and reification-dereification rules:
?S :dereif-Creating-createsFrom ?O

↔


?R a :frame-Creating-create.v ,
?R :fe-Creating-Creator ?S ,
?R :fe-Creating-Components ?O .

?S :dereif-Win_prize-winsAt ?O

↔


?R a :frame-Win_prize-win.v ,
?R :fe-Win_prize-Competitor ?S ,
?R :fe-Win_prize-Venue ?O .
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For some FEs in this and the next rule, we assign a specific preposition, like “at”
for Time and “in” for Place. For example:
?S :dereif-Destroying-destroysAtTime ?O

↔


?R a :frame-Destroying-destroy.v ,
?R :fe-Destroying-Cause ?S ,
?R :fe-Destroying-Time ?O .

?S :dereif-Intentionally_create-establishesInPlace ?O

↔


?R a :frame-Intentionally_create-establish.v ,
?R :fe-Intentionally_create-Creator ?S ,
?R :fe-Intentionally_create-Place ?O .

• Create DBP with name “is ConjugatePastParticiple(LU) Prep” if

(GF-s equals Obj) & (GF-o equals Dep) & (PT-o equals PP(Prep) )

By using the grammatical subject as subject of the triple, we avoid rules
defining certain kinds of DBPs that would be rarely useful, like those connect-
ing the time and place, or the place and the cause.

There is no explicit syntactic annotation in FrameNet to indicate if the
example sentences are in passive form. We used two different heuristics for
detecting this. One draws on the POS annotations available in FrameNet, and
decides that a sentence is in passive iff the target (LU) verb is conjugated
as a past participle, and there is a conjugated form of the verb to be in a
prior position, without another verb in between. The other heuristic uses the
Stanford Parser [26]. Both heuristics make type I and II mistakes differently, so
we discarded the cases where they disagree, and for the ones that they agree
that they are passive, we created the rules inverting the Ext/Obj GFs.

We restrict ourselves to verb-based microframes, because the process above
is more difficult and error-prone with nouns. However, the synset-microframe
clustering of our schema already makes many of the morphosemantic varia-
tions of a verb, including nominalizations, logically equivalent.

With the rules obtained with the process above, the same DBP can be
associated to different pairs of frame elements in a given LU-microframe,
owing to different senses or syntactic frames for a given verb (for example the
transitive and intransitive frames for smuggle). This would conflate different
senses, and if the reification and the dereification directions of the rules were
chained, it would logically entail different pairs of frame elements, which
would not be sound. Furthermore, a given pair of frame elements can also
produce different DBPs. To achieve the idempotency mentioned earlier, we
use the Kuhn–Munkres algorithm to obtain a one-to-one assignment, using as
weights the number of annotated example sentences for a DBP and a pair of
frame elements, because the patterns with more example sentences are usually
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more intuitive. The cubic complexity of the algorithm is not a concern because
each frame leads to a separate graph on which we can operate independently.

We have implemented the reification-dereification rules as SPARQL CON-
STRUCT queries, due to SPARQL’s prominence as a standard query language
for KBs. These can be used to materialize the DBPs into the KB. Other options
would be possible, such as using a general-purpose inference engine that can
handle propositional clauses, like the Rubrik reasoner in Jena [27].

6 Evaluation

We now evaluate the quality of the results and show some example queries.

6.1 FrameNet–WordNet Alignment

To evaluate the created schema, we first compared our FrameNet–WordNet
mapping to the MapNet gold standard [28]. MapNet uses older versions of
FrameNet and WordNet, so that we had to apply mappings from WordNet
1.6 to 3.0 [29], removing those with a confidence lower than one. For mapping
FrameNet 1.3 to 1.5, we removed the few LUs that are not contained in the new
version. Table D.3 compares the results against state-of-the-art approaches and
the scores that they report on the MapNet gold standard. As expected, our
approach achieves high precision, while still maintaining good recall. We use
5-fold cross-validation for our results.

Prec Rec F1 Acc

SVM Polyn. kernel 1 [28] 0.761 0.613 0.679 —
SVM Polyn. kernel 2 [28] 0.794 0.569 0.663 —
SSI-Dijkstra [30] 0.78 0.63 0.69 —
SSI-Dijkstra+ [30] 0.76 0.74 0.75 —
Neighborhoods [31] — — — 0.772
Our mapping 0.789 0.709 0.746 0.864

Table B.3: Comparison of our FrameNet–WordNet mapping to state-of-the-art approaches in
terms of precision, recall, F1, and accuracy

6.2 Schema Induction

The FrameBase schema is based on FrameNet and WordNet and our mappings
between the two resources. It provides 19,376 frames, including 11,939 LU-
microframes and 6,418 synset-microframes, all with lexical labels. A total of
18,357 microframes are clustered into 8,145 logical clusters, which are the sets
of microframes whose elements are linked by a logical equivalence relation.
The size of the schema is 250,407 triples.

We have obtained an average precision of 87.55% ± 6.18% with a 95%
Wilson confidence interval. The evaluation showed a small change of nuance
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for 31.15%± 9.38% of the correct pairs – most of these are caused by our
choice to use semantic pointers such as “Similar to”, which could be removed
if we desire very fine-grained distinctions of microframes. The precision has
been calculated from a random sample of 100 intra-cluster pairs that have
been independently annotated by two of the authors. We have obtained the
linear weighted Cohen’s Kappa over the three-valued combination of the two
variables with which we annotate each cluster pair, obtaining a value of 0.23
over a maximum of 0.87. We obtained the scores with a random annotator.

In addition to the number of frames, the FrameBase schema provides a
vocabulary of frame elements that goes well beyond the knowledge currently
included in most KBs, in particular beyond time and location. This additional
knowledge is routinely conveyed in natural language, and we believe that
using a schema that provides for it paves the way to include it in KBs, either
manually or automatically.

6.3 Reification–Derefication Rules

We also provide 14,930 reification–dereification rules for the same number of
direct binary predicates, with both human-readable IRIs and lexical labels.
We obtained an average precision of 86.59%± 6.41%, and 76.13%± 8.65% of
the correct rules were found easily readable. We consider a rule to be not
easily readable if the name of the direct binary predicate contains a frame
element whose meaning is not obvious for a layman reader, or if it contains
a preposition that is appropriate for some but not all possible objects, or it
is not appropriate for the frame element in the name. For this evaluation,
we followed the same annotation methodology as for the intra-cluster pairs,
obtaining a Cohen’s kappa of 0.39 over a maximum of 0.54.

6.4 Knowledge Base Integration and Querying

Knowledge from other KBs such as Freebase can be integrated using integration
rules. These rules can also be implemented as SPARQL CONSTRUCT queries.
The two examples below were created manually.
CONSTRUCT {
_:e a framebase:frame-People_by_jurisdiction-citizen.n .
_:e framebase:fe-People_by_jurisdiction-Person ?person .
_:e framebase:fe-People_by_jurisdiction-Jurisdiction ?country .

} WHERE {
?person freebase:people.person.nationality ?country .

}
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CONSTRUCT {

_:e a framebase:frame-Leadership-leader.n .
_:e framebase:fe-Leadership-Leader ?o1 .
_:e framebase:fe-Leadership-Governed ?o2 .
_:e framebase:fe-Leadership-Role ?o3 .
_:e framebase:fe-Leadership-Type ?o4 .
_:timePeriod a framebase:frame-Timespan-period.n .
_:timePeriod framebase:fe-Timespan-Start ?o5 .
_:timePeriod framebase:fe-Timespan-End ?o6 .

} WHERE {
?cvti a freebase:organization.leadership .
OPTIONAL { ?cvti freebase:organization.leadership.person ?o1 .}
OPTIONAL { ?cvti ...:organization.leadership.organization ?o2 .}
OPTIONAL { ?cvti freebase:organization.leadership.role ?o3 .}
OPTIONAL { ?cvti freebase:organization.leadership.title ?o4 .}
OPTIONAL { ?cvti freebase:organization.leadership.from ?o5 .}
OPTIONAL { ?cvti freebase:organization.leadership.to ?o6 .}

}

FrameBase facilitates novel forms of queries. The following query, for
instance, uses reified patterns to find the heads of the World Bank. Note that
the clusters implemented in RDFS allow searching for the noun head (from
the leadership frame), although the integration rule above only produced an
instance of fmbs:frame-Leadership-leader.n. The results in Table D.4 show
example instances seamlessly integrated into our FrameBase schema from
both Freebase (rows 1–3, extracted from the second example integration rule
above) and YAGO2s (rows 4–5, extracted with a similar integration rule made
for YAGO2s).

SELECT DISTINCT ?leader ?role WHERE {
?lumfi a fmbs:frame-Leadership-head.n .
?lumfi fmbs:fe-Leadership-Governed ?worldBank.
?lumfi fmbs:fe-Leadership-Leader ?leader .
VALUES ?worldBank {yago:World_Bank freebase:m.02vk52z}
OPTIONAL{ ?lumfi fmbs:fe-Leadership-Role ?role }

}

Alternatively, a direct binary predicate from the dereification rules can be
used to obtain the same non-optional results, as illustrated in the query below.
Either leads or heads can be used because the LU-microframes for these verbs
are in the same cluster as the nouns leader and head, and there is a dereification
rule between the Leader and Governed frame elements for both.
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SELECT DISTINCT ?leader WHERE {
?leader fmbs:dereif-Leadership-heads ?worldBank.
VALUES ?worldBank {yago:World_Bank freebase:m.02vk52z}

}

FrameBase can also be applied with natural language processing tools for ques-
tion answering and data mining. For example, given the question “Who has
been the head of the World_Bank”, the SRL tool SEMAFOR [32] successfully
extracts the frame Leadership with lexical unit head.noun and frame elements
Governed and Leader. Based on this, and after a named entity disambiguator
like AIDA [33] matches World_Bank to the entities in the KBs, the structured
query can easily be built. Moreover, the same procedure can also be used to
integrate new knowledge from a text into the KB, like FRED [20] does.

7 Conclusion

FrameBase is a novel approach for connecting knowledge from different
heterogeneous sources to decades of work from the NLP community. Events
can be described in very different ways across different knowledge bases. Our
framework not only provides an efficient model to describe n-ary relations,
but also integrates and transforms FrameNet and WordNet to yield a broad-
coverage inventory of frames. Additionally, linguistic annotations in FrameNet
such as the ones used to create the reification–dereification rules can also be
used to generate natural language, for instance, for summarizing a portion of
a KB for non-technical users.

Regarding future lines of work, we are currently completing the integra-
tion of the instance data from YAGO2s and Freebase into the FrameBase
schema, using integration rules such as the examples in Sect. 7.4, but auto-
matically generated. This will lead to the first large-scale FrameNet-based KB.
Given FrameBase’s close connection to natural language, we also intend to
study methods for better adapting semantic role labeling tools to question

?leader ?role

fb:m/0h_ds2s ‘Caroline Anstey’ fb:m/04t64n ‘Managing Director’

fb:m/0d_dq5 ‘Mahmoud Mohieldin’ fb:m/04t64n ‘Managing Director’

fb:m/047cdkk
‘Sri Mulyani Indrawati’

fb:m/01yc02
‘Chief Operating Officer’

yago:Jim_Yong_Kim –

yago:Robert_Zoellick –

Table B.4: Results from the query
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answering [32]. We are also investigating the ways that FrameBase enables for
querying multiple KBs simultaneously with on-the-fly data integration.

Please refer to http://framebase.org for information on using Frame-
Base.
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1. Introduction

Abstract

Events of various sorts make up an important subset of the entities relevant not only in
knowledge representation but also in natural language processing and numerous other
fields and tasks. How to represent these in a homogeneous yet expressive, extensive,
and extensible way remains a challenge. In this paper, we propose an approach based
on FrameBase, a broad RDFS-based schema consisting of frames and roles. The concept
of a frame, which is a very general one, can be considered as subsuming existing
definitions of events. This ensures a broad coverage and a uniform representation of
various kinds of events, thus bearing the potential to serve as a unified event model.
We show how FrameBase can represent events from several different sources and
domains. These include events from a specific taxonomy related to organized crime,
events captured using schema.org, and events from DBpedia.

1 Introduction

The surge of research on large-scale knowledge bases in recent years has
largely been driven by the availability of new sources of information about
entities. While structured data about millions of places, people, or companies
are very valuable, there have been comparably few new results on capturing
events of various sorts. Most existing event-oriented ontologies have intro-
duced only a few abstract classes of events, and typical knowledge bases tend
to describe just a small number of specific types of events.

Often, however, there is a need to talk about a broad range of very specific
sorts of events. For instance, one might want to distinguish battles from both
gunfights and from wars, and capture the class-specific details of such events.
We adopt a broad notion of events here. This includes the prototypical cases,
e.g. local happenings such as concerts, gatherings, or competitions, and world
events such as those reported in the news. It also encompasses the more
general abstract definition of events, for instance as “happenings in the real
world” [1], which would include, e.g., the birth of a person or a commercial
transaction between two people. Clearly, such events make up an important
aspect of the world that is relevant in knowledge representation, natural
language processing, and numerous other fields and tasks. Occasionally, the
term eventuality is used to denote a broader notion of events that explicitly
includes states, e.g. two people knowing each other.

In this paper, we address this challenge of representing many different
notions of events under a common schema, from the very prototypical cases
to the very abstract, in a way that has both a broad coverage yet supplies
sufficient detail to model event-specific properties. For this, we present a new
approach for representing event information that is based on FrameBase [2],
a broad RDFS-based schema made of frames and their roles. FrameBase
provides a predefined vocabulary with event-specific properties for thousands
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of different kinds of events. For instance, FrameBase’s schema accounts for
the fact that a battle takes place in a certain time and place and normally
involves two parties. For this, the schema draws on two linguistic resources,
FrameNet [3] and WordNet [4]. As these describe important fragments of
the English lexicon, their coverage is quite substantial. Additionally, as we
illustrate later on, FrameBase can be easily extended.

In the following, we prove the suitability of FrameBase for representing dif-
ferent kinds of events by creating rules that integrate instances from different
domains:

• A taxonomy of event classes relating to organized crime from the EU FP7
project ePOOLICE1. In the project, the event classes in the taxonomy are
used as types of entities that are extracted from documents crawled from
the web, as part of a strategic early-warning system. The taxonomy was
originally captured using the Conceptual Graphs formalism [5]. We use and
integrate the event taxonomy as it is, without ad-hoc modifications to the
schema.

• The subclasses and properties of the “Event” class in schema.org, which
“provides a collection of schemas that webmasters can use to markup HTML
pages in ways recognized by major search providers, and that can also be
used for structured data interoperability” [6].

• The subclasses and properties of the “Event” class in DBpedia [7], which
are extracted from the infoboxes in Wikipedia.

• We conclude with a more general overview of how salient aspects of
events [1] can be mapped into FrameBase.

This paper is structured as follows. After describing previous approaches
and research in Section 2, a brief overview of the FrameBase schema is given in
Section 3. Section 2 then shows how we can rely on the FrameBase schema to
represent events from several different sources and domains. Finally, Section 3
provides concluding remarks and describes avenues for future research and
applications of our work.

2 Related Work

Considering their importance and unique characteristics, events have been
included in numerous upper-level ontologies and vocabularies. In [1], existing
event models are reviewed, but these define very broad abstract categorizations
or meta-models. Only few example specializations or vocabularies for narrow
domains exist, and their overall size is relatively small.

1https://www.epoolice.eu/
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For instance, the Simple Event Model (SEM) Ontology [8] introduces the
four types Event, Actor, Place, and Time. While it provides a mechanism to
create more specific ones by extending these, it does not actually define any
specific kinds of events itself. Similarly, the LODE (Linking Open Descriptions
of Events) model [9] provides very general concepts, such as the four just
mentioned. The event model E [10] proposes a generic structure for the defini-
tion of events, but a specific vocabulary is provided only for the domain of
media events with sensor data. The Event Ontology [11] defines a single event
class, for which time, place, agents, factors, products, and meronymic rela-
tions can be specified, and the domain of focus is music events. Likewise, the
Context Ontology (CONON) is limited to the domain of pervasive computing
environments [12].

FrameBase’s schema instead aims at a broader coverage of many domains
by building on natural language resources. Previous work has made use
of natural language processing techniques to extract events from text. For
instance, one study [13] relies on semantic role labelling (SRL) in conjunction
with VerbNet to collect events from text and convert them to the LODE
vocabulary mentioned above. Another system [14] extracts events both from
text and from semi-structured data. We believe that such automatic extraction
methods would benefit from being able to use a standardized wide-coverage
representation schema for their output.

3 The FrameBase Schema

The FrameBase schema [2] consists of classes representing frames, and proper-
ties representing frame elements. A frame describes any kind of situation, state
or action, in which several elements, participants (agents, patients, etc.) or
properties are involved. Examples include commercial exchanges, marriages,
or the act of stomping. The frame elements refer to the participants or proper-
ties that are involved in a particular frame instance. Common general frame
elements include those of agent, patient, time, and location, but not all frames
involve these. Frame elements are sometimes also referred to as semantic roles,
roles, or theta roles, especially when they are very general.

The frames and the frame elements in FrameBase are organized in hier-
archies of classes (based on subclass relationships) and of properties (based
on subproperty relationships), respectively. There are three kinds of frames
in FrameBase: LU-microframes, synset-microframes and non-lexical frames.
Non-lexical frames are very general and are situated in the upper part of the
hierarchy. LU-microframes (lexical unit microframes) descend from non-lexical
frames, but are much more specific by being associated with the meaning
of particular words (the lexical units). They come from FrameNet [15, 16].
Synset-microframes allow an intermediate level of granularity connecting syn-
onymous LU-microframes, e.g. for marriage and matrimony. These are based
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on WordNet [4], and thus also have allowed us to extend the coverage of
FrameBase beyond that of FrameNet. In the field of linguistics, frames are
said to be evoked by words: for example, both the verb to create and the noun
creation evoke the Creation frame.

FrameBase additionally provides direct binary predicates to directly
connect certain values for elements of a given frame. For example, in
a creation event, the agent and the place are directly connected via the
establishesInPlace relation. This enables more concise queries and rep-
resentations when only two elements are involved in a particular frame. The
frame patterns and the direct binary predicates are logically connected by
means of definite clauses that can be used with different kinds of inference
systems.

For interoperability with existing resources, FrameBase relies on the stan-
dard RDF model [17], which has become a common choice for representing
knowledge. This is particularly true in the context of the Linked Data [18], a
large Web of datasets referring to and reusing each other’s elements. The RDF
model uses subject-predicate-object triples to represent statements. Each triple
can also be seen as an edge in a directed labelled entity-relationship graph.
SPARQL [19] is the standard query language for RDF, which is what we use
in order to integrate other event representations into FrameBase.

Event frames are specific kinds of frames, subsuming a range of differ-
ent notions of events, from the very abstract (e.g., “a natural abstraction of
happenings in the real world” [1]) to notions with a notably narrower scope,
such as that of widely-known events [14]. Frame elements correspond to what
are referred to as aspects in the event literature [1]. However, frames can also
be more general, and include what the event model E categorizes separately
as entities [10]. For example, FrameNet, from which FrameBase is derived,
includes a frame People that is evoked by lexical units (LUs) such as the noun
man, and with frame elements such as Age and Origin.

We believe that the advantage of FrameBase over the existing event models
lies on the fact that while extensible as the others, it already provides a broad-
coverage vocabulary out of the box in order to bootstrap widespread adoption.
Besides, its connection to natural language provides potential advantages, like
interfacing with text for question answering or text mining.

FrameBase includes, from FrameNet, an Event frame, which inherits from
the Change of state scenario frame, and includes a relatively rich hierarchy
below for events like creation and destruction events (including more specific
ones such as births and deaths), and some others. However, not every event
must necessarily fall below this event frame, nor does doing so preclude it
from being mapped to other frames that represent other conceptualizations for
events, or reflect other perspectives of the frame that stress different aspects
than the eventive one. Therefore, the representation of events in FrameBase is
not confined to the Event frame and its subframes. We will see examples of
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this in the next section.

4 Integrating Events

In the first subsections of this section, we present manually built rules for
integrating events from three different sources into FrameBase. Later, we
add further explanations about these rules and discuss the complexity of the
integration rules, and the challenges they present, in particular when they are
to be established automatically.

4.1 Representing Events about Organized Crime

The following list of integration rules shows, for each instance of an event
class in the organized crime conceptual graph (in bold), the corresponding
representation in RDF that it would have in FrameBase. In particular, the main
event instance is represented by the anonymous node _:e. The default prefix
indicates elements that already existed in the core FrameBase schema created
from FrameNet and WordNet.

• Event _:e a :frame-Event-event.n

• Act _:e a :frame-Intentionally_act-act.n

• Arrest _:e a :frame-Arrest-arrest.n

• Drug Possession Arrest _:e a :frame-Arrest-arrest.n .
_:e :fe-Arrest-Offense _:e2 .
_:e2 a :frame-Offenses-possession.n

• Human Trafficking Arrest _:e a :frame-Arrest-arrest.n .
_:e :fe-Arrest-Offense _:e2 .
_:e2 a :frame-Commerce_scenario-trafficker.n .
_:e2 :fe-Commerce_scenario-Goods :frame-People-human.n

• Metal Theft Arrest _:e a :frame-Arrest-arrest.n .
_:e :fe-Arrest-Offense _:e2 .
_:e2 a :frame-Theft-theft.n .
_:e2 :fe-Theft-Goods :frame-Substance-metal.n .
_:e2 a :frame-Offenses-theft.n

• Buy _:e a :frame-Commerce_buy-buy.v

• Crime _:e a :frame-Committing_crime-crime.n

• Illegal Drug Use _:e a :frame-Ingest_substance-use.v

• Consume _:e a :frame-Ingestion-consume.v

• Inhale _:e a :frame-Ingest_substance-sniff.v

• Inject _:e a :frame-Ingest_substance-inject.v

• Possession _:e a :frame-Offenses-possession.n

• Smoke _:e a :frame-Ingest_substance-smoke.v

• Organised Crime
_:e a fbe:frame-Organization-criminal%20organization.n
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• Theft _:e a :frame-Theft-theft.n .
_:e a :frame-Offenses-theft.n

• Metal Theft _:e a :frame-Theft-theft.n .
_:e :fe-Theft-Goods :frame-Substance-metal.n .
_:e a :frame-Offenses-theft.n

• Trafficking _:e a :frame-Commerce_scenario-trafficker.n

• Drug Trafficking _:e a :frame-Commerce_scenario-trafficker.n .
_:e :fe-Commerce_scenario-Goods :frame-Intoxicants-drug.n

• Human Trafficking _:e a :frame-Commerce_scenario-trafficker.n .
_:e :fe-Commerce_scenario-Goods :frame-People-human.n

• Seizure _:e a :frame-Taking-seizure.n

• Drug Seizure _:e a :frame-Taking-seizure.n .
_:e :fe-Taking-Theme :frame-Intoxicants-drug.n

• Sell _:e a :frame-Commerce_sell-sell.v

• Transaction _:e a :frame-Commercial_transaction-transaction.n

• Crime Transaction _:e a :frame-Commercial_transaction-transaction.n
.
_:e a :frame-Committing_crime-crime.n

• Drug Trafficking Transaction
_:e a :frame-Commercial_transaction-transaction.n .
_:e a :frame-Committing_crime-crime.n .
_:e :fe-Commercial_transaction-Goods :frame-Intoxicants-drug.n

• Human Trafficking Transaction
_:e a :frame-Commercial_transaction-transaction.n .
_:e a :frame-Committing_crime-crime.n .
_:e :fe-Commercial_transaction-Goods :frame-People-human.n

• Metal Theft Transaction
_:e a :frame-Commercial_transaction-transaction.n .
_:e a :frame-Committing_crime-crime.n .
_:e :fe-Commercial_transaction-Goods :frame-Substance-metal.n

The hierarchy in the original ontology is not necessarily consistent with the
hierarchy in FrameBase. Only in certain cases does a superclass relationship
between two elements of the source also exist between the two elements’
respective translations to FrameBase. Therefore, for each translation of an
original class of event, the translations of the parents in the original ontology
can be added to the set of instances (ABox) in FrameBase, and this will provide
additional knowledge that would not always be inferred by the FrameBase
schema alone.

We minimize the need for declaring new frames and frame elements for
specialized domains by making use of the compositionality of most specialized
terms, creating complex structures that combine the semantics of simpler, basic
elements. For instance, the translation for the event of type “Drug Possession
Arrest” declares an event of type arrest, and specifies that it is about drug
possession by assigning drug possession (Offenses-possession.n) as the
offence.
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Owing to this flexibility, we merely needed to mint one single new en-
tity that had not existed in the core FrameBase schema (the microframe
Organization-criminal%20organization.n, with the prefix fbe: denoting
that this is an extension). This exemplifies the potential of FrameBase to rep-
resent events from relatively specialized domains, but at the same time the
capacity to be extended to fill any possible gaps.

For representing timelines, the frame Individual_history-history.n can
be used. Each timeline can be represented with one instance of that frame.
This instance can be linked with the frame element Individual_history--
Domain to the topic, which is preferably an entity (or alternatively, a literal
or an anonymous node or dummy entity named with a literal). The instance
can also be linked with the frame element Individual_history-Event to
each of the elements in the timeline. Additional frame elements are available
in FrameBase, originating from FrameNet, for expressing participants, total
duration, etc.

Then, complex queries such as retrieving all events in a given timeline
between two given dates, can be built in SPARQL. Similarly, sub-events
can be represented with the property path: ^:fe-Part_whole-Part/:fe--
Part_whole-Whole.

4.2 Representing Events from DBpedia.org

We now turn to the Event class in DBpedia, and its subclasses, showing how
these can be integrated into FrameBase. The integration is implemented using
SPARQL CONSTRUCT rules because DBpedia is already in RDF. We only add
a couple of subclasses, but most of the properties belong to the parent Event
class itself.

Top event

CONSTRUCT {
?e a :frame-Event-event.n .
?e :fe-Event-Time _:timePeriod .

_:timePeriod a fbe:frame-Timespan-period.n ;
fbe:fe-Timespan-Start ?o1 ; fbe:fe-Timespan-End ?o2 .

_:e2 a :frame-Relative_time-preceding.a ;
:fe-Relative_time-Landmark_occasion ?e ;
:fe-Relative_time-Focal_occasion ?o3 .

_:e3 a :frame-Relative_time-following.a ;
:fe-Relative_time-Landmark_occasion ?o3 ;
:fe-Relative_time-Focal_occasion ?e .

_:e4 a :frame-Relative_time-following.a ;
:fe-Relative_time-Landmark_occasion ?e ;
:fe-Relative_time-Focal_occasion ?o4 .

_:e5 a :frame-Relative_time-preceding.a ;
:fe-Relative_time-Landmark_occasion ?o4 ;
:fe-Relative_time-Focal_occasion ?e .

?e :fe-Event-Reason ?o5 .
?e a :frame-Social_event-meeting.n ;
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:fe-Social_event-Attendee ?o8 .
} WHERE {

?e a dbpedia-owl:Event .
OPTIONAL{?e dbpedia-owl:startDate ?o1}
OPTIONAL{?e dbpedia-owl:endDate ?o2}
OPTIONAL{?e dbpedia-owl:previousEvent ?o3}
OPTIONAL{?e dbpedia-owl:followingEvent|dbpedia-owl:nextEvent ?o4}
OPTIONAL{?e dbpedia-owl:causedBy ?o5}
OPTIONAL{?e dbpedia-owl:duration ?o6}
OPTIONAL{?e dbpedia-owl:numberOfPeopleAttending ?o7} #Omitted
OPTIONAL{?e dbpedia-owl:participant ?o8}

}

For sub-classes of dbpedia-owl:Event

CONSTRUCT {
?e a :frame-Social_event-meeting.n .

} WHERE {?e a dbpedia-owl:SocietalEvent}

For sub-classes of dbpedia-owl:SocietalEvent

CONSTRUCT {
?e a :frame-Project-project.n .
?e :fe-Project-Activity dbpedia:Space_exploration .

} WHERE {?e a dbpedia-owl:SpaceMission}

For sub-classes of dbpedia-owl:SocietalEvent

CONSTRUCT {
?e a fbe:frame-Social_event-convention.n .

} WHERE {?e a dbpedia-owl:Convention}

Out of the 9 properties of the class Event, the only omitted one was
numberOfPeopleAttending, because the class Event is too general for it, as
it has subclasses such as NaturalEvent (SolarEclipse) and PersonalEvent
(Birth, etc.). The SocietalEvent class appears more appropriate for this.

4.3 Representing Events from schema.org

Finally, we present the translation of the Event class in schema.org. Again,
SPARQL CONSTRUCT rules are used because schema.org can be expressed
using RDFa, and SPARQL offers a standard way of representing knowledge
graph transformations. Due to space restrictions, we omit the subclasses here,
but these have very few genuine properties, and therefore the specialization
is relatively simple. Besides, the taxonomy of schema.org events has some
inconsistency issues that makes its use complex: the Event class is defined as
capturing events such as concerts, lectures, and festivals, with properties such
as “typical age range”, but there are sub-events such as UserInteraction and
UserPlusOnes that actually represent a more general kind of events.

CONSTRUCT {
?e a :frame-Social_event-meeting.n .
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?e :fe-Social_event-Time _:timePeriod .
_:timePeriod a fbe:frame-Timespan-period.n ;

fbe:fe-Timespan-Start ?Osta ; fbe:fe-Timespan-End ?Oend .
?e :fe-Social_event-Duration ?Odur . ?e :fe-Social_event-Place ?Oloc .
?e :fe-Social_event-Attendee ?Oatt . ?e :fe-Social_event-Host ?Oorg .
?e :fe-Social_event-Occasion ?Osup . ?Osub :fe-Social_event-Occasion ?e .
?Ooff a :frame-Offering-offer.v ;

:fe-Offering-Theme ?e .
?e a :frame-Performing_arts-performance.n ;

:fe-Performing_arts-Performer ?Oper ;
:fe-Performing_arts-Performance ?Owor .

_: a :frame-Recording-record.v ;
:fe-Recording-Phenomenon ?e ;
:fe-Recording-Medium ?Orec .

} WHERE {
?e a sch:Event .
# Unambiguous translation
OPTIONAL{?e sch:startDate ?Osta} OPTIONAL{?e sch:endDate ?Oend}
OPTIONAL{?e sch:duration ?Odur} OPTIONAL{?e sch:location ?Oloc}
OPTIONAL{?e sch:attendee ?Oatt} OPTIONAL{?e sch:organizer ?Oorg}
OPTIONAL{?e sch:superEvent ?Osup} OPTIONAL{?e sch:subEvent ?Osub}
OPTIONAL{?e sch:offers ?Ooff} OPTIONAL{?e sch:performer ?Oper}
OPTIONAL{?e sch:workPerformed ?Owor} OPTIONAL{?e sch:recordedIn ?Orec}
# Ambiguous translation
OPTIONAL{?e sch:doorTime ?Odoo}
# No translation
OPTIONAL{?e sch:eventStatus ?Oeve}
OPTIONAL{?e sch:typicalAgeRange ?Otyp}
OPTIONAL{?e sch:previousStartDate ?Opre}

}

The only extension of the FrameBase schema used here was the frame
:frame-Timespan-period.n with the start and end frame elements, used to
denote periods of time. This, however, is not an ad-hoc extension motivated
by a particular need of only one source, but a very general one. Out of the 16
properties of the Event class, 12 were translated without loss of meaning. One
was translated with partial loss of meaning (doorTime, translated as a generic
start time) and 3 of them were not translated. Whether these can be integrated
too, by means of more complex structures, is something we are investigating.

4.4 Mapping Event Aspects to Frame Elements

The survey by Scherp and Mezaris [1] proposes a classification of salient
aspects of events. We use this classification to show in a more general way
how event aspects can relate to frame elements in the FrameNet-based schema
of FrameBase.

• Time and Space: When applicable, frames include frame elements Time and
Place.
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• Participation: The classification defines this as “participation of objects
in event, where objects can be any living as well as non-living things
and include people, buildings, and other even intangible objects like
the roles a person plays in a specific situation” [1]. FrameBase pro-
vides a large inventory of more specific roles to capture such par-
ticipants. Often, these correspond to what are sometimes called the
proto-agent and proto-patient roles, whose realization in FrameBase
depends on the frame. Some examples are :fe-Commerce_buy-Buyer,
:fe-Destroying-Destroyer and :fe-Destroying-Undergoer, which are
subproperties of :fe-Getting-Recipient, :fe-Transitive_action-Agent
and :fe-Transitive_action-Patient, respectively.

• Relations between events.

– Mereology: The relation between two events, when one is part of an-
other. Some frames will have a frame element that will fill this role,
like :fe-Social_event-Occasion in the example of the Event class
in schema.org. In other cases, an additional frame instance of type
:frame-Part_whole can be used.

– Causality: One event is the cause of another. Some frames will have
a frame element that will fill this role, like :fe-Event-Reason in the
example for the Event class in DBpedia. In other cases, an additional
frame instance of type :frame-Causation can be used.

– Correlation: When “two (or more) events have a common cause, but this
common cause cannot be explained”. If we can assume there is a common
cause as in the definition, then the causal relationships can be represented
with two instances of :frame-Causation connecting with an anonymous
node for the unknown cause.

• Documentation: Events can be “documented using some media like
photos or videos captured during the event”. This relation is between
an event and such documentation. It can be expressed connecting the
events by an additional frame of type :frame-Recording-document.v,
:frame-Recording-record.v, and :frame-Recording-register.v, or
some extension if needed.

• Interpretation: This aspect aims at capturing “subjectivity that may
exist on the other aspects of events”. This is a very broad category
that may include different phenomena. The perspectivization relation
in FrameNet [16] connects frames representing objective events with
frames describing them from a particular perspective. For instance,
:frame-Commerce_Sell and :frame-Commerce_Buy are perspectivizations
of :frame-Commerce_Scenario. In other cases, an additional frame instance
of a pertinent type can be used, for instance :frame-Becoming_aware.
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4.5 Complex Transformations

Most of the integration rules we have described follow a pattern which involves
an event class in the source being translated as a frame class, and each of their
outgoing properties being mapped to individual frame elements. However,
there are multiple ways in which the rules can differ from this basic pattern.

1. Sometimes, a class integration rule may need to instantiate multiple frames
rather than just a single one. We distinguish two main types of this phe-
nomenon.

a) The instantiated frame instances may be connected by frame elements.
Examples of this include the frame :frame-Timespan-period.n cre-
ated to represent time periods, and the subframes of Relative_time
to express precedence between events (all in the example for
dbpedia-owl:Event). The same applies when a frame element is
used to specify a frame beyond the lexical unit (see the rule for
dbpedia:Space_exploration).

b) Several frames can also be evoked separately, without the in-
stances being directly connected by any frame element. When
these frames describe different perspectives of the same event,
there is the possibility that FrameNet links them by means
of perspectivization, and therefore FrameBase can infer one from
another. For example, classes :frame-Commerce_buy-buy.v and
:frame-Commerce_sell-sell.v, which are used for classes Buy and
Sell in the organized crime taxonomy, are both perspectiviza-
tions of :frame-Commerce_goods-transfer. In this case, inference
is possible because RDFS subclass and subproperty properties are
used in FrameBase to reflect the perspectivization relation be-
tween frame classes and frame elements respectively. Another exam-
ple are :frame-Receive_visitor_scenario and :frame-Visit_host,
which are perspectives of :frame-Visitor_and_host. However,
in other cases one cannot rely on existing inference. For in-
stance, see how the rule to translate Event from schema.org, be-
sides frames Event-event.n and Timespan-period.n, also instan-
tiates Performing_arts-performance.n, Recording-record.v and
Offering-offer.v when certain properties are present.

2. Another possible source of complexity is that frame elements can be in-
verted. In this case, the integration rules need to invert the order of the
arguments, like in the second appearance of :fe-Social_event-Occasion
in the integration rule for the class Event in schema.org.

3. Oftentimes, a property (rather than a class) in the source can be translated as
evoking a frame on its own. In this case, the two involved entities become

67



Paper C.

connected to the new frame by means of frame elements. This would be
the case for a property like fightAgainst, which might evoke an event or
frame of type armed conflict, about which additional information could
be added. None of the examples we have covered above are of this kind,
because we use sources that explicitly represent, or reify, events. In other
sources, however, this phenomenon appears quite frequently.

Arbitrary combinations of these phenomena are possible (e.g. the rule integrat-
ing the Event class from schema.org). Overall, this makes automatic generation
of the integration rules a very hard task, because it generates so many free
variables that any attempt to train a system would face extreme sparsity. In
some cases, it may thus make sense to sacrifice some recall, developing a
system that only covers simpler transformations.

4.6 Representational Flexibility

Finally, another potential challenge for data integration is that even when a
homogeneous schema such as FrameBase is used, certain kinds of knowledge
can still be expressed in multiple possible ways.

• One example is that there are several ways of narrowing down the meaning
of a frame instance. One is creating a new sub-microframe associated with
a new lexical unit. Another one is assigning a value to a frame element
(see example for SpaceMission), as mentioned above. This may lead to
divergent choices of representation even within the core part of the schema
that comes from FrameNet.

• Another example of this is when a frame element needs to be reified, i.e.
represented as a frame instance, to express something additional about it
(as would be the case of the property previousStartDate in schema.org),
or when there is no direct frame element available and creating it would
lead to a combinatorial explosion in the size of the schema. An example
of the latter is the difference between our proposal for using the frame
Part_whole for expressing sub-event relations, and how we used the frame
element Occasion for the frame Social_event, but this is a particularity
of that frame. Again, this may lead to an incoherent representations in the
knowledge base. One potential way of addressing this would be extending
the reification–dereification mechanism of FrameBase [2].

5 Conclusion

We have shown how events from specialized domains can be represented
with the FrameBase schema under a unified model, integrating events in the
prototypical sense with more general kinds of events in the sense of abstract
happenings or situations. This model has proven to have a high degree of

68



References

coverage because it needed just few extensions to accommodate the integrated
knowledge, and we have illustrated how these extensions can be performed
when needed. We have also discussed the various challenges and problems
one faces when the integration rules from disparate structured sources of
event information are to be built automatically.

Extremely specialized domains, such as quantum physics, may produce
lower coverage and need more extensions, although in some cases the creators
of FrameNet have also been involved in projects that led to the inclusion of
specific scientific and technical domains.

The integration rules that we produce can be used in the future as gold
standards for training and testing automatic methods for creating rules from
other schemas. We are currently performing research on these methods to
integrate further sources such as YAGO2s, Freebase, and Wikidata.

Please refer to http://framebase.org for information on using FrameBase
and the integration rules.
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1. Introduction

Abstract

Large-scale knowledge graphs such as those in the Linked Data cloud are typically
represented as subject-predicate-object triples. However, many facts about the world
involve more than two entities. While n-ary relations can be converted to triples in a
number of ways, unfortunately, the structurally different choices made in different
knowledge sources significantly impede our ability to connect them. They also increase
semantic heterogeneity, making it impossible to query the data concisely and without
prior knowledge of each individual source. This article presents FrameBase, a wide-
coverage knowledge-base schema that uses linguistic frames to represent and query n-
ary relations from other knowledge bases, providing also different levels of granularity
connected by logical entailment. This altogether provides for flexible and expressive
seamless semantic integration from heterogeneous sources. It also opens possibilities
to draw on natural language processing techniques for querying and data mining.

1 Introduction

Over the past few years, large-scale knowledge bases (KBs) have grown to
play an important role on the Web. Many institutions rely on Linked Data
principles to publish their data using Semantic Web standards [1]. These KBs
are mostly based on simple subject-predicate-object (SPO) triples, as defined
by the RDF model [2]. Such triples are convenient to process and can be
visualized as entity networks with labeled edges.

Commercial search engines exploit them to provide direct answers to user
queries, and IBM’s Watson question answering system [3], which defeated
human champions of the Jeopardy! quiz show, used them to find and to rule
out answer candidates.

Whereas triple representations work straightforwardly for relations involv-
ing two entities, many interesting facts relate more than just two participants –
a problem that has gained renewed attention in several recent papers [4, 5]
as well as in the current W3C proposal to add roles to schema.org [6]. For a
birth event, for instance, one may wish to capture not just the time but also
the location and parents. For an actress starring in a movie, the name of the
portrayed character may be relevant. Such facts naturally correspond to n-ary
relations. In order to capture them as triples, several different representation
schemes have been proposed. Table D.1 shows some possibilities of expressing
that an entity John was married in 1964, some of which also include additional
information such as the name of the bride. These representations will be
discussed in more detail later in section 2.

As the example shows, this sort of semantic heterogeneity leads to signifi-
cant data integration challenges. One KB might use a simple binary property
between two entities, whereas another may instead choose a more complex
representation that accommodates additional arguments. The representations
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can easily be so at odds with each other that no particular mapping between
entities could bridge the differences. There are entities at each side that have
no counterpart at the other. This leads to several challenging problems:

1. When linking data, there are currently no mechanisms to connect KBs
with different modeling choices. Predicates exist to link equivalent classes,
instances, or properties, but not for connecting the different patterns, as
explained above. Existing work on ontology and KB alignment [7] is limited
to finding aliases.

2. When querying, the query must be built in a way that fits the particular
modeling choices made for the respective KB. Otherwise, the recall may be
as low as zero [8]. Even worse, for the case of a set of different KBs instead
of a single coherent KB, there is no simple query (as could be formulated
on a single given schema) that will have a high recall across all KBs.

3. When natural language interfaces to KBs are queried, state-of-the-art sys-
tems typically attempt to map verbs and predicate phrases to RDF pre-
dicates [9]. This approach, however, cannot be applied when the KB fails to
provide a compatible binary relation.

FrameBase. These problems are addressed by FrameBase [10, 11], a broad-
coverage schema that can homogeneously integrate other KBs and has strong
connections to natural language. It overcomes the above-mentioned forms
of heterogeneity – by sticking to a specific modeling choice general enough
to subsume the others (neo-Davidsonian representation) – together with a
large vocabulary for events and roles. This vocabulary is reusable and based
on an extensible hierarchy. FrameBase also provides a mechanism to convert
back and forth between the new representation and direct binary relations,
using a vocabulary of binary relations automatically generated from linguistic
annotations. These are more concise and can be used when only two arguments
are relevant.

This paper is structured as follows. Section 2 reviews related work and
conducts a thorough analysis of existing approaches for modeling n-ary
relations and their space efficiency. Then, an overview of FrameBase is given
in section 3. Section 4 explains how the FrameBase schema is constructed,
including rules to convert between different levels of reification. Section 2
presents methods to integrate knowledge from external KBs into FrameBase.
Section 3 provides a qualitative evaluation, and section 3 concludes the paper
with an outlook to future work.

2 State of the Art

Different approaches for modeling n-ary relations exist, which are summarized
in Table D.1. Table D.2, provides a novel comparison of their space efficiency,
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Table D.1: Triple Representations of n-ary Relations

Direct Binary Relation

John wasMarriedOnDate 1964 .

RDF Reification

John marries Mary .
s type Statement .
s subject John .
s property marries .
s object Mary .
s time 1964 .

Subproperties

p subPropertyOf Marriage .
John p Mary .
p time 1964 .

Neo-Davidsonian (Specific Roles)

e type Marriage .
e groom John .
e bride Mary .
e time 1964 .

Neo-Davidsonian (General Roles)

e type Marriage .
e agent John .
e agent Mary .
e time 1964 .

which has consequences with regards to their applicability for large-scale KBs.
Each approach will be discussed in detail in the following subsections.

2.1 Direct Binary Relations

A common way to represent n-ary facts is to simply decompose them di-
rectly into binary relations between two participants [12]. But in doing so,
important information may be lost. For instance, given a triple with property
wasMarriedOnDate and two triples with gotMarriedTo, we cannot be sure to
which marriage the given time span applies.

2.2 RDF Reification

The RDF standard proposes RDF reification [2], which introduces a new
identifier (IRI) for a statement and then describes the original RDF statement
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All triples Core Linking
event

Reif.
Inf.

Dereif.
Inf.

RDF Reification (n + 4)k (n + 3)k k(k− 1) 4k dc k dc
Subproperties (n + 2)k (n + 1)k k(k− 1) 2k dc 1 gdc /

RDFS
Schema.org Roles (n + 3)k (n + 2)k k(k− 1) 3k dc k dc
Neo-Davidsonian 1 + n + k 1 + n 0 3k dc k dc

Table D.2: Triple Overhead. n is the number of participants in an event, and k <= n(n−1)
2 the

number of pairs that are relevant to be linked by direct binary relations. “All triples” indicates the total
number of triples that can be materialized. “Core” excludes the k direct binary relations, which can
always be retrieved with some sort of inference. “Linking event” indicates the number of triples needed
to connect entities that represent the same event (aliases), which is something that is not required with
Neo-Davidsonian representation, because it can use a single one. “Reification Reasoning” indicates the
inference system required to obtain the representation in “All triples” or “Core” from the k direct binary
relations. “Dereification Reasoning” indicates the inference system required to obtain the k direct binary
relations or the representation in “All triples” from the representation in “Core”. “x dc” means that x
definite clauses are required for each event; “1 gdc / RDFS” means that one global definite clause would
be enough (providing for subproperty closure, which is part of RDFS inference). Definite clauses are a
kind of rules which can be expressed as a disjunction of logical atoms with only one negated, which is
the consequent when it is written as an implication (rule). In this context, the atoms are of the form
triple(subject,predicate,object). In section 5, we will describe more in detail these rules for the case of
FrameBase.

using three new triples with subject, predicate, and object properties.
Subsequently, arbitrary properties of the statement can be captured by adding
further triples about it.

In the different versions of YAGO [13–15], RDF-reification1 is used to
attach additional information to the event represented by the original RDF
triple (evoked by its property) – as in the RDF-Reification example in Table D.1.
This has the advantage that both the original triple as well as the RDF-reified
triple can be present in the KB and queries that do not require the additional
information can still use the original binary relation directly. However, this
also has several drawbacks:

• Formally, the event represented by a triple and the triple as a statement are
different entities with different properties. For instance, an institution may
endorse the triple as a statement without endorsing the marriage. Using
RDF-reification, both are represented by the same RDF resource identifier,
which conceptually is meant to be unambiguous. This is a potential source
of confusion and inconsistency.

• The number of triples increases by a factor of 4. For each triple S P O,
one has to add T a rdf:Statement, T rdf:subject S, T rdf:predicate
P, and T rdf:object O. These do not add any new information themselves

1We will use the term RDF-reification because the term reification has other meanings, one of
which will be heavily used later in the paper.
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but are merely a prerequisite for then being able to extend the original
binary relation to an n-ary relation by subsequently adding more triples
with T as subject.
• The advantage of being able to include the original non-RDF-reified triple

only applies for the primary binary relation, and not for the other n(n−1)
2 − 1

ones that can be formed (not counting inverses). Some of these may be rare
or irrelevant, but others may be important and are indeed used in YAGO
(e.g. bornAtPlace, bornOnDate).
• The choice of the primary pair of entities and their binary relation (John

and Mary in Table D.1) is arbitrary, and a third party willing to query the
KB cannot replicate the choice independently. If their choice is different,
they will not obtain any results. A possible solution, which is actually
implemented in YAGO, is to include the triples for the other pairs and
reify them, too, but this adds yet another factor of overhead, besides data
redundancy that would complicate updates.

• When two or more different events share the same values for the primary
pair of arguments, they will share the same triple, but require separate
RDF-reifications, producing non-unique triple identifiers. For example, if
there are two flight connections between Paris and London with different
airlines, the triple Paris isConnectedTo London will be RDF-reified twice,
with two different triple identifiers.

If the triplestore implementation makes use of quads2, the 4-fold overhead
can be avoided (though the underlying storage needs a new column), but
the other disadvantages still remain. Quad-based singleton named graphs [2]
could be used instead of RDF-reification, the problems being the same.

2.3 Subproperties

A recent proposal [5] aims to solve some of the issues with RDF-reification by
instead declaring a subproperty of the original property in the primary pair,
and using this subproperty as the subject for the other arguments of the n-ary
relation. This is shown in the Subproperties example in Table D.1.

While the approach enables us to use RDFS reasoning to obtain the triple
with the parent property that relates two of the participants, and also reduces
the overhead of RDF-reification, it still suffers from the problems mentioned
above related to the existence of a primary pair. For one, the non-RDF-reified
binary relationships for the other pairs cannot be inferred from that subprop-
erty.

2.4 Schema.org’s “Roles”

Schema.org is an effort sponsored by Google, Yahoo, and Microsoft to establish
common standards for semantic markup in Web pages. It offers a method to

2http://www.w3.org/TR/n-quads/
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qualify additional information to a binary predicate [6], which in practice is
equivalent to representing the n-ary relation arising from adding arguments
to the binary relation underlying the binary predicate. It works by substituting
the object of the binary predicate with a fresh instance of a class Role3 (or a
more specific sub-class with its own properties), and appending to this role
instance the old object by means of the same binary predicate, alongside other
properties such as time, instrument, etc.

For example :SanFrancisco49ers schema:athlete :JoeMontana would
be converted to:

:SanFrancisco49ers schemaorg:athlete _:x
_:x a schemaorg:Role .
_:x schemaorg:athlete :JoeMontana .
_:x schemaorg:startDate "1979" .

This transformation offers certain level of compatibility between the simple
pattern with the direct binary predicate and the complex pattern, because
the binary predicate is preserved in the complex pattern, with the same
subject. However, the object changes, and therefore the simple pattern as
such is not truly preserved after the transformation. Besides, the definition
or “contract” of the direct binary predicate is broken in the complex pattern.
For example, schemaorg:athlete has SportsTeam and Person as domain and
range respectively, and the semantics is that the object is a person that plays
in the team denoted by the subject. However, none of the two usages in the
complex pattern follow this: one has SportsTeam and Role as domain and
range, and the other has Role and Person.

An example of how this conflation can lead to problems can be fully
appreciated with non-transitive predicates. In the case the predicate was
somekb:fatherOf, someone’s children would become his grandchildren after
the transformation.

Furthermore, the complex pattern produced by this method, given a direct
binary predicate between two entities and a further qualifying value (like
time in the example), is not equivalent to the one produced by another binary
predicate between one of these entities and the qualifying value. This produces
a similar effect of redundancy than in the method using RDF-reification.

2.5 Neo-Davidsonian Representations

Another approach, and the one that FrameBase will adapt, is to make use of
so-called neo-Davidsonian representations [18, p. 600f.]. This means that we
first define an entity that represents the event or situation (also referred to as

3Schema.org’s use of the term “role” differs from its standard use in linguistics, which are
qualifying properties such as agent and patient [16]. This definition has also been adopted in
ontologies, for instance CaseRole in the SUMO ontology [17].
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a frame) underlying the n-ary relation. Then, this entity is connected to each of
the n arguments by means of a property describing the semantic role [4, 19].

The process of converting from the binary representation to the neo-
Davidsonian one is called reification, but this is different from RDF-reification as
discussed earlier. In RDF-reification, an entity is defined that stands for a whole
triple so that additional triples can be used to describe the reified triple as a
unit that represents a statement. However, in the context of event semantics,
reification is used to denote the process by which an entity is defined that
refers to the event, process, situation, or more generally, frame, evoked by a
property or binary relation. Having done this, additional information about
it can then easily be added. Both kinds have in common that a new entity is
defined to refer to something that before was not explicitly represented by an
entity in the KB, but in one case it is an RDF statement while in the other it is
an event.

Advantages. Table D.2 compares the neo-Davidsonian approach to the al-
ternatives. These require a lot more triples when several direct binary relations
need to be included. In the worst case, k = n(n−1)

2 despite discounting recipro-
cal relations, but even if not all of these relations are relevant, connecting all
agents and possibly patients to all other elements would be relevant, which
would easily satisfy k > n.

Semantic Heterogeneity. Unfortunately, there are different ways of using
the neo-Davidsonian approach, with different levels of granularity for the
events and the semantic roles, from a very small set of abstract generic
ones [20] to more specific ones [21].

The Simple Event Model (SEM) Ontology [22] falls within the category of
neo-Davidsonian representation with general roles (see Table D.1). It defines
four very general entities, Event, Actor, Place, and Time. It also establishes a
framework for creating more specific ones by extending these, but it does not
provide these extensions, nor ways to integrate existing KBs in a way that
would solve the problem of semantic heterogeneity. Similarly, LODE (Linking
Open Descriptions of Events) [20] specifies only very general concepts such as
the four just mentioned.

Freebase [21] is a KB built both from tapping on existing structured sources
and via collaborative editing. Although it uses its own formalisms, there are
official and third-party translations to RDF. Freebase makes use of so-called
mediators (also called compound value types, CVTs) as a way to merge multiple
values into a single value, similar to a struct datatype in C. There are around
1,870 composite value types in Freebase (1,036 with more than one instance)
and around 14 million composite value instances. While CVTs do not represent
frames or events per se, from a structural perspective, they can be regarded
as isomorphic to a neo-Davidsonian representation with specific roles (see
Table D.1). However, Freebase places a number of restrictions on CVTs. For
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instance, they cannot be nested, and there is no hierarchy or network of them
that would for example relate a purchasing event to a getting event.

FrameNet [23, 24] is a well-known resource in natural language processing
(NLP) that defines over 1,000 frames with participants (so-called frame elements).
For example, the verb to buy and the noun acquisition are assumed to evoke a
commercial transaction frame, with frame elements for the seller, the buyer,
the goods, and so on.

Previous work has proposed general patterns for using FrameNet in know-
ledge representation [25] and converted FrameNet to RDF [26], proposing a
way to generate schemas from FrameNet. Similarly, the FRED system [27] for
building semantic representations from natural language can be configured to
use FrameNet.

3 System Overview

As seen in the previous section, there are a number of different representations
used in KBs. FrameBase will use the linguistic resources FrameNet [23] and
WordNet [28] to fully develop an extensive schema for large-scale knowledge
representation and integration. The schema is composed of an expressive neo-
Davidsonian level that draws on a large common inventory of frames, together
with a more concise level of direct binary relations, which is connected to the
former by means of inference rules.

3.1 FrameNet-based Representation

The use of FrameNet is motivated by the following considerations.

• FrameNet has a long history and aims at descriptions of arbitrary natural
language. It thus provides a relatively large and growing inventory of
frames and roles, with a broad coverage of numerous different domains.

• FrameNet comes with a large collection of English sentences annotated
with frame and frame element labels. This data led to the task of automatic
semantic role labeling (SRL) [29] of text, now one of the standard tasks in NLP.
This strong connection to natural language facilitates question answering
and related tasks.

• While FrameNet’s lexicon and annotations cover the English language, its
frame inventory is abstract enough to be adopted for languages as different
as Spanish and Japanese [30]. This also makes it much more suitable as a
basis for knowledge representation than language-specific syntax-oriented
SRL resources such as PropBank [31].

• FrameNet provides a reasonable level of granularity for the phenomena
that humans care to describe. From a theoretical perspective, there is no
universally appropriate single level of reification. Any frame element might
be reified on its own, and any two elements of a frame could be connected
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directly by a predicate. Using FrameNet strikes a well-motivated balance, at
a point that is granular enough to constitute a model for natural language
semantics. As section 5 will explain, a second level of representation will
be provided as well, which will be based on the direct binary predicates
between frame elements, and therefore less expressive but more concise.

3.2 Overview

For creating the FrameBase schema using FrameNet, the following steps have
been taken, which will be further explained in section 4.

a) FrameNet–WordNet Mapping. First, a high-precision mapping is created
between FrameNet and another well-known lexical resource called Word-
Net [28], which will be used to enrich the lexical coverage and relations of
the FrameBase schema.

b) Schema Induction. FrameNet, WordNet, and the mapping are used to
create an RDFS schema for FrameBase that has very wide coverage and is
extensible. The schema exploits semantic relations from these components
(e.g., synonymy, hyponymy, and perspectivization) to transform the original
resources into FrameBase’s lightweight RDFS model.

c) Automatic Reification–Dereification Mechanism. Reification–dereification
rules are created, in the form of definite clauses that allow the KB to be
queried independently either using reified frames or dereified direct binary
predicates, and that may also be used to reduce overhead in the KB.

4 FrameBase Schema Creation

Before external KBs can be integrated, the FrameBase schema must be created.
This process involves creating an initial mapping between FrameNet and
WordNet (section 4.1), the use of these resources and mappings to create
the FrameBase core schema (Section 4.2). It also involves the creation of
reification–dereification rules to enable the use of direct binary predicates
(section 5).

4.1 FrameNet–WordNet Mapping

While FrameNet [23, 24] is the largest high-quality inventory of semantic
frame descriptions and their participants, WordNet [28] is the most well-
known resource capturing meanings of words in a lexical network, covering
for example nouns and named entities missing in FrameNet. WordNet, for
instance, serves as the backbone of YAGO’s ontology. This section proposes a
novel way of mapping the two resources, which later enables us to integrate
both of them into FrameBase’s schema.

WordNet contains synsets, which are sets of sense-disambiguated syn-
onymous words with a given part of speech (POS), such as noun or verb.
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FrameNet contains lexical units (LUs), which are also POS-annotated words
associated to frames. Because of the semantics of the containing frame, LUs are
also disambiguated to a certain extent, though not with the same granularity
as in WordNet. The objective at hand is to map synsets and LUs with the same
meaning, so this can be later used to enrich FrameBase’s FrameNet-based
schema with relations and annotations from WordNet.

More specifically, the objective is to map each LU to one and only one
synset. While there are some LUs that could be mapped to more than one
synset, this will favor precision, which is desirable for the purpose of obtaining
a clean knowledge base. The only cases where this model would be detrimental
to precision are those where LUs do not have any associated synset, but these
are few and most can easily be avoided by omitting LUs with parts of speech
not covered in WordNet, such as prepositions.

This choice allows to model the mapping as a function S(l|a, b) from LUs
to synsets as in (D.1). Sl stands for the synsets that have the same lexical
label and POS as the LU l, µL and µG are the lexical and gloss (definition)
overlap, respectively, f yields the corpus frequency of the synset, and a and b
are parameters for a linear combination (the third parameter can be omitted
because of the argmax function).

S(l|a, b) = argmax
s∈Sl

µL(l, s) + a · µG(l, s) + b · f (s) (D.1)

The lexical overlap µL of a LU l and a synset s is the size of the intersection
between the POS-annotated words from the LUs in the same frame as l and
the POS-annotated words in s and its neighborhood. The neighborhood is
defined as the synsets connected by a selection of lexical and semantic pointers
such as “See also”, “Similar to”, “Antonym”, “Attribute” and “Derivationally
related”. This expansion is useful to reduce sparsity and better match the sets
with those generated for the LUs, which due to the different semantics of
frames and synsets, may already include these related words.

The gloss overlap µG is the size of the intersection between the set of words
in the definition of the LU and the gloss of the synset. CoreNLP library [32] is
used to clean XML tags, tokenize, POS-label, and lemmatize the text, and all
words except nouns and verbs are filtered out.

Parameters a and b are trained with a greedy search over several random-
ized seeds, obtaining optimal values a = 5, b = 0.13.

4.2 Schema Induction

In FrameBase, frames are modeled as classes whose instances are the particular
events. The frame elements of each frame are properties whose domain is that
frame. The class hierarchy of frames is created as follows.

1. General Frames: FrameNet’s frame inheritance and perspectivization rela-
tions are modeled as class subsumption between frames, by means of two
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specific properties that inherit from rdfs:subClassOf, so that both remain
distinguishable but contribute to the hierarchy and allow RDFS inference.
Additionally, a top frame is declared for the hierarchy. Inheritance between
frame element properties is modeled with a direct subproperty relation.
Semantic types are sometimes provided as ranges in FrameNet, but their
current coverage is limited, and therefore have been left out of FrameBase.
Under this model, an instance of the Commerce_sell frame with a certain
Commerce_sell-Buyer x, is also an instance of the Giving frame and x is the
Giving-Recipient, because the first frame inherits from the latter. Likewise, it
is also an instance of Transfer and x is the Transfer-Recipient, because Giving
is a perspective on Transfer.

2. Leaf Nodes: Since FrameNet’s original frame inventory is coarse-grained
and different LUs like construction and to glue evoke the same frame, more
specific frames associated to each LU are employed. In other words, every
LU is treated as evoking its own separate fine-grained frame, denoted as LU-
microframe, which is made a subclass of the more coarse-grained original
FrameNet frame. In addition, another type of microframes, denoted as
synset-microframes, are created from the synsets in WordNet 3.0.

3. Intermediate Nodes: The LU-microframes resulting from the process above
are very fine-grained. There are distinct LUs for buy from acquire. This is a
problem for knowledge representation because it increases sparsity. At the
same time, some original frames from FrameNet are very coarse-grained, as
mentioned above, so they cannot be used. For instance, various kinship re-
lationships such as mother, sister-in-law, etc. are lumped together. This wide
range of LUs may stand in various lexical-semantic relationships without
these being indicated, including synonymy, antonymy, or nominalization.
The only characteristic they have in common is that, by definition, they
evoke a similar kind of situation. Overall, neither the fine-grained nor the
coarse-grained levels are ideal for knowledge representation purposes.
This is addressed by providing a novel intermediate level composed
of cluster-microframes that group equivalent LU-microframes and synset-
microframes together, solving the problem described above, and integrating
synset-microframes into a single backbone.
The clusters are generated in the following way. First, for each LU-
microframe, the corresponding synsets from the FrameNet–WordNet map-
ping are retrieved. In the case of the mapping in section 4.1, the set has no
more than one element, but in the general case it could have more. Then,
that set is expanded by adding all other synsets related by lexical relations
reflecting cross-POS morphological transformations: “Derivationally re-
lated”, “Derived from Adjective”, “Participle” and “Pertainym”. In general,
these lexical relations do not necessarily imply any close semantics (e.g.,
create/make – creature/animal), but when restricted to synsets all tied to the
same FrameNet frame, such cases are normally factored out. Therefore, the
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set is reduced to those synsets that also belong to another set produced from
a sibling LU from the same frame. The goal of using the lexical relations is
linking cross-POS LU-microframes that evoke the same specific situation
with a different syntactic form, such as nominalizations (produce–production),
non-finite verb forms (produce–produced), adjectivization, or adverbization.
Next, the LU-microframe is connected with the synset-microframes from
the set of synsets, using the property framebase:isSimilarTo, which is
declared to be transitive and symmetric in OWL.
After the process is run for all LU-microframes and the transitive clo-
sure of framebase:isSimilarTo is materialized, each cluster is represented
by a clique of framebase:isSimilarTo. Finally, the intermediate cluster-
microframes are reified4 and declared superframes of the members of
the cluster, and subframes of their previously immediate superframe. The
cluster-microframe is also connected by framebase:isSimilarTo to the
subframes. An example of two sibling cluster-microframes with all their
members can be appreciated in Figure E.1.
The use of the property framebase:isSimilarTo allows to have a direct
connection between members of the cluster. It may also be convenient in
contexts where a user wants to reduce sparsity by completely merging
all members of each cluster. In this case, he can do it as simply as declar-
ing framebase:isSimilarTo to be a subproperty of rdfs:subClassOf and
enable RDFS inference. By virtue of the already materialized inverses of
framebase:isSimilarTo, every instance of a member of the cluster, in-
cluding the cluster-microframe, will become an instance of the others.
Alternatively, owl:equivalentClass can be used.

Names, definitions and glosses in FrameNet and WordNet are also used
to create text annotations for our schema. Lexical forms are attached with
rdfs:label and definitions and glosses from FrameNet and WordNet are
attached with rdfs:comment. Additional linguistically rich annotations are
added using Lemon [33].

Following the best practices in the Linked Open Data community, we link
synset-microframes to URIs in the canonical RDF translation of WordNet [34].
We also provide links to word-sense URIs in lexvo.org, a KB that connects
information about languages, words, characters, and other human language-
related entities [35]. This allows FrameBase to be transitively connected to
other KBs in the Linked Open Data web, as well as provide multilingual
support.

4This is yet another different but related use of the term reification. In general, reification
means the process of making something real, and in the context of knowledge bases, can be
used whenever a new entity is created for something that was only implicitly represented before,
generally as a function of pre-existing entities.
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example for schema.pdf example for schema.pdf

Fig. D.1: Example of some microframes and labels under the general frame class
:frame-Quitting_a_place. The initial part of the names of classes is common and has been
ommitted.
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5 Automatic Reification–Dereification Mechanism

While frames are convenient for representational purposes, users wishing
to query the knowledge base benefit from binary predicates between pairs
of frame elements. For example, for a birth event, binary predicates like
bornInPlace and bornOnDate can facilitate querying by offering a more com-
pact and simple representation.

Thus, FrameBase presents a novel mechanism to seamlessly convert be-
tween frame representations and DBPs. This mechanism can also allow us
to avoid materializing frame instances when only two frame elements are
needed.

5.1 Structure of ReDer rules

The dereification rules have the form expressed in Figure D.2. Additionally, for
each dereification rule there is a converse reification rule so that one can go
back from binary predicates to the frame representation. Each DBP (direct
binary predicate) has only one set of possible frame and frame elements
associated, and therefore chaining reification and dereification rules is an
idempotent operation. We term the pair of a reification rule and its converse
dereification rule as a ReDer (reification-dereification) rule. An example of a
ReDer rule is provided in Figure D.3.

?s <DIRECT_BINARY_PREDICATE> ?o
l
<FRAME_INSTANCE> a <FRAME_CLASS> ,
<FRAME_INSTANCE> <FRAME_ELEMENT-S> ?s ,
<FRAME_INSTANCE> <FRAME_ELEMENT-O> ?o .

Fig. D.2: The general pattern of a dereification rule.

?s :dbp-Statement-writesAboutTopic ?o
l
?F a :frame-Statement-write.v ,
?F :fe-Statement-Speaker ?s ,
?F :fe-Statement-Topic ?o .

Fig. D.3: The general pattern of a dereification rule.

The ReDer rules can be implemented in different ways.

• As SPARQL CONSTRUCT queries, due to SPARQL’s prominence as a
standard query language for KBs. These can be used to materialize the
DBPs into the KB.

• As clauses with triples as atoms to be fed in general-purpose inference
engines, with or without materialization. For example, ReDer rules have
also been implemented as rules for the Rubrik reasoner in Jena [36].
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Besides the plain rdfs:label and rdfs:comment annotations, we annotate
the DBPs using Lemon [33], which allows syntactically rich annotations that
describe the internal structure and external syntactic frame of their labels.
Instead of using the automatic generator, that uses automatic tokenization,
parsing, etc, we use our knowledge of the structure of the different possible
labels for DBPs to create perfect annotations. Similarly, we also use Lemon for
annotating microframes.

5.2 Creation of ReDer rules

The ReDer rules are automatically built using the annotations of English
sentences given for different LUs in FrameNet, namely the grammatical
function (GFs) and phrase types (PTs) [24]. Each instance of an example
sentence annotated by a frame is accompanied by the GF and PT associated to
each of the FEs of that frame filled in that sentence.

For verb-based LUs, FrameNet provides three kinds of GF labels: External
Argument (Ext), Object (Obj), and Dependent (Dep). Some of the PT labels
that can be found are N, NP, Obj, PPinterrog [24]. Dereified binary predicates
and reification-dereification rules are created for the pairs of frame elements
whose syntactic annotations for some sentence satisfy the creation rules below,
using the GF and PT labels.

As for the general reification-dereification rule pattern in Figure D.2, the
postfixes “-s” and “-o” indicate the data associated to the FEs that fill the first
and second arguments of the DBP, or equivalently, the subject and the object
of the resulting RDF triple. The creation of the DBP implies a creation of a
dereification rule following the pattern in Figure D.2, with <FRAME_CLASS>
defined by the LU, and <FRAME_CLASS> left as a free variable. The correspond-
ing reification rule is built similarly, but assigning an anonymous node or a
skolem constant to <FRAME_CLASS>.
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Creation Rule 1: Verb Agent-Patient
Create DBP with name

“ConjugateThirdPersonSingular(LU)”
if

IsVerb(LU) and PT-o in {N, NP, Obj, PPinterrog, Sinterrog, QUO, Sfin, Sub,
VPing} and (

( GF-s==Ext and GF-o==Obj
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU) )
or

( GF-s==Obj and GF-o==Ext
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU) )

)

Examples of obtained DBPs and reification-dereification rules:

?S :dbp-Forming_relationships-divorces ?O
l
?R a :frame-Forming_(...)-divorce.v ,
?R :fe-Forming_relationships-Partner_1 ?S ,
?R :fe-Forming_relationships-Partner_2 ?O .

?S :dbp-Win_prize-wins ?O
l
?R a :frame-Win_prize-win.v ,
?R :fe-Win_prize-Competitor ?S ,
?R :fe-Win_prize-Prize ?O .
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Creation Rule 2: Verb Patient-Agent
Create DBP with name

“is ConjugatePastParticiple(LU) by”
if

IsVerb(LU) and PT-o in {N, NP, Obj, PPinterrog, Sinterrog, QUO, Sfin, Sub,
VPing} and (

( GF-s==Obj and GF-o==Ext
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU) )
or

( GF-s==Ext and GF-o==Obj
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU) )

)

Examples of obtained DBPs and reification-dereification rules:

?S :dbp-Filling-isLoadedBy ?O
l
?R a :frame-Filling-load.v ,
?R :fe-Filling-Goal ?S ,
?R :fe-Filling-Agent ?O .

?S :dbp-Kidnapping-isKidnapedBy ?O
l
?R a :frame-Kidnapping-kidnap.v ,
?R :fe-Kidnapping-Victim ?S ,
?R :fe-Kidnapping-Perpetrator ?O .
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Creation Rule 3: Verb Agent-Complement
Create DBP with name

“ConjugateThirdPersonSingular(LU)
Prep FrameElement-o”

if
IsVerb(LU) and PT-o==PP[Prep] and (

( GF-s==Ext and GF-o==Dep
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU) )
or

( GF-s==Obj and GF-o==Dep
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU) )

)

Examples of obtained DBPs and reification-dereification rules:

?S :dbp-Creating-createsFromComponents ?O
l
?R a :frame-Creating-create.v ,
?R :fe-Creating-Creator ?S ,
?R :fe-Creating-Components ?O .

?S :dbp-Win_prize-winsAtVenue ?O
l
?R a :frame-Win_prize-win.v ,
?R :fe-Win_prize-Competitor ?S ,
?R :fe-Win_prize-Venue ?O .
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Creation Rule 4: Verb Patient-Complement
Create DBP with name

“is ConjugatePastParticiple(LU)
Prep FrameElement-o”

if
IsVerb(LU) and PT-o==PP[Prep] and (

(GF-s==Obj and GF-o==Dep
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU) )
or

( GF-s==Ext and GF-o==Dep
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU) )

)

Examples of obtained DBPs and reification-dereification rules:

?S :dbp-Destroying-isDestroyedByMeans ?O
l
?R a :frame-Destroying-destroy.v ,
?R :fe-Destroying-Undergoer ?S ,
?R :fe-Destroying-Means ?O .

?S :dbp-Beat_opponent-isDefeatedByWinner ?O
l
?R a :frame-Beat_opponent-defeat.v ,
?R :fe-Beat_opponent-Loser ?S ,
?R :fe-Beat_opponent-Winner ?O .

Using only agent and patient as subject of the triple avoids rules defining
certain kinds of DBPs that would be rarely useful, like those connecting the
time and place, or the place and the cause.

There is no explicit syntactic annotation in FrameNet to indicate if the
verb LUs are evoked in passive form. Therefore, two different heuristics for
detecting this. One (IsPassivePosHeuristic(LU)) draws on the POS anno-
tations available in FrameNet, and decides that the target (LU) verb is in
passive iff it appears as a past participle, and the verb to be, in any form,
is in a prior position, without another verb in between. The other heuristic
(IsPassiveDepHeuristic(LU)) uses the Stanford dependency parser [37], de-
termining that the target (LU) verb is in passive iff it is the source of any of
the dependencies nsubjpass, csubjpass or auxpass. Both heuristics make type
I and II mistakes differently, so the cases where they disagree were discarded,
and in the ones where they agree that they there is passive form, the rules are
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created inverting the Ext and Obj GFs.
For noun-based LU-microframes, a verb is needed that takes the noun as

argument, normally as direct object. Across RDF vocabularies and ontologies,
this verb is sometimes made implicit in human-readable IRIs. For example
skos:hasTopConcept includes “has” explicitly, while skos:topConceptOf in-
cludes “is” implicitly. In FrameBase, the modeling choice has been to always
make it explicit both in the IRI and the lexical annotations, in order to avoid
ambiguity and prevent incorrect use. The verbs have been conjugated in third
person of singular.

For each noun LU in an annotation, the head verb has been extracted by
parsing the example annotated sentences with the Stanford dependency parser
and searching the paths of dependencies indicated in the creation rules 5 and
65. For brevity, the paths are annotated with the notation of SPARQL property
paths, but this is not part of any query.

Creation rule 5 contains several possible dependency paths.

• (LU ^dobj HeadVerb) matches HeadVerb=“make” and LU=“comment” for
the sentence “I have decided not to make any further comment concerning the
change of ball during the lunch interval at Lord ’s on Sunday”.

• (LU cop HeadVerb) matches HeadVerb=“is” and LU=“maiden name” for the
sentence “The maiden name of one of his wives ( probably the second ) was Watt”.

• (LU ^nsubj/cop HeadVerb) matches HeadVerb=“is” and LU=“cause” for the
sentence “The short-term cause of overriding local significance were the droughts
and crop failures in 1920 and 1921”.

• (LU ^prep_*/cop HeadVerb) matches HeadVerb=“is” and LU=“cause” for
the sentence “’Well-meaning ignorance is one of the biggest causes of animal
suffering in this country (...)’.

• (LU ^prep_*/^dobj HeadVerb) matches HeadVerb=“give” and LU=“thought”
for the sentence “I have given a great deal of thought as to how much I should
actually tell you about this period and what just to leave to your imagination”.

Creation rule 6 fires cases with phrasal verbs, where the head verb must be
extracted with a particle.

• (LU ^prep_VerbParticle HeadVerb) matches HeadVerb=“go”, VerbParti-
cle=“on” and LU=“tour” for the sentence “Something else I shall miss by
going on this dratted tour with Gwen !”.

5We use collapsed CC-processed dependencies, version 3.2.0)
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Creation Rule 5: Verb Noun
Create DBP with name

“ConjugateThirdPersonSingular(HeadVerb)
LU Prep Frame-Element-o”

if
IsNoun(LU) and PT-o==PP[Prep] and

GF-s==Ext and GF-o==Dep and (
LU ^dobj HeadVerb or

LU cop HeadVerb or

LU ^nsubj/cop HeadVerb or

LU ^prep_*/cop HeadVerb or

LU ^prep_*/^dobj HeadVerb
)

Examples of obtained DBPs and reification-dereification rules:

(...)-makesInferenceFromEvidence ?O
l
?R a :frame-Coming_to_believe-inference.n ,
?R :fe-Coming_to_believe-Cognizer ?S ,
?R :fe-Coming_to_believe-Evidence ?O .

?S :dbp-Arriving-makesEntranceByMeans ?O
l
?R a :frame-Arriving-entrance.n ,
?R :fe-Arriving-Theme ?S ,
?R :fe-Arriving-Means ?O .

Creation Rule 6: Verb Particle Noun
Create DBP with name

“ConjugateThirdPersonSingular(HeadVerb) VerbParticle

LU Prep Frame-Element-o”
if

IsNoun(LU) and PT-o==PP[Prep]
and GF-s==Ext and GF-o==Dep and (

LU ^prep_VerbParticle HeadVerb
)

Examples of obtained DBPs and reification-dereification rules:
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(...)-worksTowardsUnderstandingAboutTopic ?O
l
?R a :frame-Awareness-understanding.n ,
?R :fe-Awareness-Cognizer ?S ,
?R :fe-Awareness-Topic ?O .

(...)-goesIntoDiscussionWithInterlocutor2 ?O
l
?R a :frame-Discussion-discussion.n ,
?R :fe-Discussion-Interlocutor_1 ?S ,
?R :fe-Discussion-Interlocutor_2 ?O .

In the cases where the Frame-Element-o is included in the DBP but the
FrameNet annotations cannot provide a suitable preceding preposition Prep,
we use statistics from the cases where such preposition can be obtained, and
we choose, if available, the most common preposition associated to the name
of that FE across all frames.

With the rules obtained with the process above, the same DBP can be
associated to different pairs of frame elements in a given LU-microframe,
owing to different senses or syntactic frames for a given verb (for example the
transitive and intransitive frames for smuggle). This would conflate different
senses, and if the reification and the dereification directions of the rules were
chained, it would logically entail different pairs of frame elements, which
would not be sound. Furthermore, a given pair of frame elements can also
produce different DBPs. To achieve the idempotency mentioned earlier, the
Kuhn–Munkres algorithm is used in order to obtain a one-to-one assignment,
using as weights the additive inverse of the number of annotated example
sentences for a DBP and a pair of frame elements, because the patterns with
more example sentences are usually more intuitive. The cubic complexity of
the algorithm is not a concern because each frame leads to a separate graph
which can be handled independently.

6 Integration

Knowledge from other KBs such as Freebase can be integrated integration rules
with two graph patterns as antecedent and consequent sharing some variables.
When there is a variable substitution that, applied to the antecedent, makes it a
subset of the source KB, then the consequent after the same transformation can
be added to the FrameBase instance data (A-Box in the jargon of description
logics). When the sources are in RDF, the integration rules can be implemented
as SPARQL CONSTRUCT queries. Otherwise, an off-the-shelf RDF converter6

can be applied to pre-process the source.

6http://www.w3.org/wiki/ConverterToRdf
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6. Integration

The SPARQL examples in this and the next sections use the following
prefixes.

PREFIX : <http://framebase.org/ns/>
PREFIX freeb: <http://rdf.freebase.com/ns/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX sch: <http://schema.org/>

In the first subsection of this section, some example integration rules are
presented for integrating events from different sources into FrameBase. Later,
a discussion about the complexity of integration rules in general and the
challenges they present is added.

6.1 Example Integration Rules

The two example integration rules above integrate knowledge from Freebase.
They follow a relatively simple pattern, the first reifying a property from
the source KB into a frame in FrameBase (Property–Frame), and the second
translating a class from the source KB into a frame in FrameBase, and the
outgoing properties into FE properties (Class–Frame).

CONSTRUCT {
_:f a :frame-People_by_jurisdiction-citizen.n .
_:f :fe-People_by_jurisdiction-Person ?person .
_:f :fe-People_by_jurisdiction-Jurisdiction ?country .

} WHERE {
?person freeb:people.person.nationality ?country .

}

CONSTRUCT {
_:f a :frame-Leadership-leader.n .
_:f :fe-Leadership-Leader ?o1 .
_:f :fe-Leadership-Governed ?o2 .
_:f :fe-Leadership-Role ?o3 .
_:f :fe-Leadership-Type ?o4 .
_:timePeriod a :frame-Timespan-period.n .
_:timePeriod :fe-Timespan-Start ?o5 .
_:timePeriod :fe-Timespan-End ?o6 .

} WHERE {
?cvti a freeb:organization.leadership .
OPTIONAL { ?cvti
freeb:organization.leadership.person ?o1 .}

OPTIONAL { ?cvti
...organization.leadership.organization ?o2 .}

OPTIONAL { ?cvti
freeb:organization.leadership.role ?o3 .}

OPTIONAL { ?cvti
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freeb:organization.leadership.title ?o4 .}
OPTIONAL { ?cvti
freeb:organization.leadership.from ?o5 .}

OPTIONAL { ?cvti
freeb:organization.leadership.to ?o6 .} }

The next example pertains the Event class in DBpedia.

CONSTRUCT {
?f a :frame-Event-event.n .
#
?f :fe-Event-Time _:timePeriod .
_:timePeriod a :frame-Timespan-period.n ;
fbe:fe-Timespan-Start ?o1 ;
fbe:fe-Timespan-End ?o2 .

#
_:af2 a :frame-Relative_time-preceding.a ;
:fe-Relative_time-Landmark_occasion ?f ;
:fe-Relative_time-Focal_occasion ?o3 .

#
_:af3 a :frame-Relative_time-following.a ;
:fe-Relative_time-Landmark_occasion ?o3 ;
:fe-Relative_time-Focal_occasion ?f .

#
_:af4 a :frame-Relative_time-following.a ;
:fe-Relative_time-Landmark_occasion ?f ;
:fe-Relative_time-Focal_occasion ?o4 .

#
_:af5 a :frame-Relative_time-preceding.a ;
:fe-Relative_time-Landmark_occasion ?o4 ;
:fe-Relative_time-Focal_occasion ?f .

#
_:af6 a :frame-Relative_time-following.a ;
:fe-Relative_time-Landmark_occasion ?f ;
:fe-Relative_time-Focal_occasion ?o5 .

#
_:af7 a :frame-Relative_time-preceding.a ;
:fe-Relative_time-Landmark_occasion ?o5 ;
:fe-Relative_time-Focal_occasion ?f .

#
?f :fe-Event-Reason ?o6 .
#
_:af8 a :frame-Dimension-length.n ;
:fe-Dimension-Object ?f ;
:fe-Dimension-Measurement ?o7 .

#
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?f a :frame-Social_event-meeting.n ;
:fe-Social_event-Attendee ?o9 ;
:fe-Social_event-Duration ?o7 .

#
} WHERE {

?f a dbr:Event .
OPTIONAL{?f dbr:startDate ?o1}
OPTIONAL{?f dbr:endDate ?o2}
OPTIONAL{?f dbr:previousEvent ?o3}
OPTIONAL{?f dbr:followingEvent ?o4}
OPTIONAL{?f dbr:nextEvent ?o5}
OPTIONAL{?f dbr:causedBy ?o6}
OPTIONAL{?f dbr:duration ?o7}
OPTIONAL{ #Omitted
?f dbr:numberOfPeopleAttending ?o8}

OPTIONAL{?f dbr:participant ?o9}
}

From the 9 properties of the class Event, numberOfPeopleAttending was
omitted because the class Event is too general for it, as it has subclasses
such as PersonalEvent (Birth, etc.) and SocietalEvent, that appear more
appropriate for this. The remaining 8 properties were integrated, but even
though the example shares the same basic structure as the Class–Frame
rule provided for Freebase, it includes additional complex patterns in the
consequent.

The dbr:Event class has several subclasses which can also be translated.
However, the hierarchy in the original ontology is not necessarily consistent
with the hierarchy in FrameBase. Only in certain cases does a subsumption
relationship between two entities of the source also exist between the two
entities’ respective translations to FrameBase. Therefore, for each translation
of an element in the source KB, the translations of more general elements can
be added, and this will provide additional knowledge that would not always
be inferred by the FrameBase schema alone.

For example, using RDFS inference, the substitutions for ?f that fire the
rule below will also fire the one for dbr:Event, because dbr:SocietalEvent
is a subclass of dbr:Event. This rule is very short because all of the outgoing
properties belong to the parent Event class itself.

CONSTRUCT {
?f a :frame-Social_event-meeting.n .

} WHERE {
?f a dbr:SocietalEvent

}

Similarly, the substitutions for ?f that fire the rest of the examples
from DBpedia below, will also fire the ones for dbr:SocietalEvent and
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dbr:Event, because the classes captured in the antecedent are subclasses of
dbr:SocietalEvent.

CONSTRUCT {
?f a :frame-Project-project.n .
?f :fe-Project-Activity dbr:Space_exploration .

} WHERE {
?f a dbr:SpaceMission

}

In the rule above, we minimize the need for declaring new frames and
frame elements for specialized domains by making use of the compositionality
of most specialized terms, creating complex structures that combine the
semantics of simpler, basic elements. For instance, the translation for the
type dbr:SpaceMission declares a frame of type Project-project.n, and
specifies that it is about space exploration by assigning dbrl:SpaceMission
as the value for the Project-Activity FE.

CONSTRUCT {
?f a fbe:frame-Social_event-convention.n .

} WHERE {
?f a dbr:Convention

}

CONSTRUCT {
?f a :frame-Change_of_leadership-election.n .

} WHERE {
?f a dbr:Election .

}

CONSTRUCT {
?f a :frame-Social_event-festival.n .
?f :fe-Social_event-Attendee ?o3 .
?f :fe-Social_event-Descriptor dbr:Film .
?f a :frame-Competition-competition.n .
?f :fe-Competition-Participant_1 ?o3 .
?f :fe-Competition-Competition dbr:Film .
_:af1 a :frame-Ordinal_numbers-first.a .
_:af1 :fe-Ordinal_numbers-Item ?o1 .
_:af1 :fe-Ordinal_numbers-Comparison_set ?f .
_:af1 :fe-Ordinal_numbers-Comparison_set dbr:Film .
_:af2 a :frame-Ordinal_numbers-last.a .
_:af2 :fe-Ordinal_numbers-Item ?o2 .
_:af2 :fe-Ordinal_numbers-Comparison_set ?f .
_:af2 :fe-Ordinal_numbers-Comparison_set dbr:Film .

} WHERE {
?f a dbr:FilmFestival .
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OPTIONAL{?f dbr:closingFilm ?o1}
OPTIONAL{?f dbr:openingFilm ?o2}
OPTIONAL{?f dbr:film ?o3}

}

CONSTRUCT {
?f a :frame-Hostile_encounter-hostility.n .
_:af1 a :frame-Death-die.v .
_:af1 :fe-Death-Sub_event ?f .
_:af1 :fe-Death-Protagonist ?o1 .
?f :fe-Hostile_encounter-Side_1 ?o2 .
_:af3 a :frame-Part_whole-part.n .
_:af3 :fe-Part_whole-Part ?f .
_:af3 :fe-Part_whole-Whole ?o3 .
?f :fe-Hostile_encounter-Place ?o4 .
?f :fe-Hostile_encounter-Result ?o5 .
?f :fe-Hostile_encounter-Depictive ?o6 .
?f :fe-Hostile_encounter-Side_2 ?o7 .

} WHERE {
?f a dbr:MilitaryConflict .
OPTIONAL{?f dbr:casualties ?o1}
OPTIONAL{?f dbr:combatant ?o2}
OPTIONAL{?f dbr:isPartOfMilitaryConflict ?o3}
OPTIONAL{?f dbr:place ?o4}
OPTIONAL{?f dbr:result ?o5}
OPTIONAL{?f dbr:strength ?o6}
OPTIONAL{?f dbr:opponents ?o7}

}

We also present the translation of the class Event in schema.org. This
provides an example of integration. Due to space restrictions, we omit the
subclasses here, but these have very few genuine properties, and therefore
the specialization is relatively simple. Besides, the taxonomy of schema.org
events has some inconsistency issues that makes its use complex: the Event
class is defined as capturing events such as concerts, lectures, and festivals,
with properties such as “typical age range”, but there are sub-events such as
UserInteraction and UserPlusOnes that actually represent a more general
kind of events.

CONSTRUCT {
?f a :frame-Social_event-meeting.n .
?f a :frame-Event-event.n .
#
?f :fe-Social_event-Time _:timePeriod .
_:timePeriod a fbe:frame-Timespan-period.n ;
fbe:fe-Timespan-Start ?Osta ;
fbe:fe-Timespan-End ?Oend .
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?f :fe-Event-Time _:timePeriod .
#
?f :fe-Social_event-Duration ?Odur .
?f :fe-Event-Duration ?Odur .
#
?f :fe-Social_event-Place ?Oloc .
?f :fe-Event-Place ?Oloc .
#
?f :fe-Social_event-Attendee ?Oatt .
?f :fe-Social_event-Host ?Oorg .
#
?f :fe-Social_event-Occasion ?Osup .
?Osub :fe-Social_event-Occasion ?f .
#
?Ooff a :frame-Offering-offer.v ;
:fe-Offering-Theme ?f .

#
?f a :frame-Performing_arts-performance.n ;
:fe-Performing_arts-Performer ?Oper ;
:fe-Performing_arts-Performance ?Owor .

#
_:af1 a :frame-Recording-record.v ;
:fe-Recording-Phenomenon ?f ;
:fe-Recording-Medium ?Orec .

#
?f :fe-Social_event-Descriptor ?Oeve .
#
_:af2 a Change_event_time-postpone.v ;
Change_event_time-Event ?f;
Change_event_time-Landmark_time ?Opre.

#
_:af a :frame-Typicality-normal.a .
_:af :fe-Typicality-Entity _:af2 .
_:af2 :frame-Age-age.n .
_:af2 :fe-Age-Age ?Otyp .

} WHERE {
?f a sch:Event .
OPTIONAL{?f sch:startDate ?Osta}
OPTIONAL{?f sch:endDate ?Oend}
OPTIONAL{?f sch:duration ?Odur}
OPTIONAL{?f sch:location ?Oloc}
OPTIONAL{?f sch:attendee ?Oatt}
OPTIONAL{?f sch:organizer ?Oorg}
OPTIONAL{?f sch:superEvent ?Osup}
OPTIONAL{?f sch:subEvent ?Osub}
OPTIONAL{?f sch:offers ?Ooff}
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OPTIONAL{?f sch:performer ?Oper}
OPTIONAL{?f sch:workPerformed ?Owor}
OPTIONAL{?f sch:recordedIn ?Orec}
OPTIONAL{?f sch:eventStatus ?Oeve}
OPTIONAL{?f sch:previousStartDate ?Opre}
OPTIONAL{?f sch:typicalAgeRange ?Otyp}
# No translation
OPTIONAL{?f sch:doorTime ?Odoo}

}

The only extension of the FrameBase schema used for these examples was
the frame :frame-Timespan-period.n with the start and end frame elements,
used to denote periods of time. This, however, is not an ad-hoc extension
motivated by a particular need of only one source, but a very general one.
Of the 16 properties of the Event class, only one (sch:doorTime, with an
official gloss “The time admission will commence”), was not integrated. The
remaining 15 were integrated.

6.2 Complex Transformations

Most of the integration rules we have described follow a pattern which involves
an event class in the source being translated as a frame class, and each of their
outgoing properties being mapped to individual frame elements. However,
there are multiple ways in which the rules can differ from this basic pattern.

1. Sometimes, a class integration rule may need to instantiate multiple frames
rather than just a single one. We distinguish two main types of this phe-
nomenon.

a) The instantiated frame instances may be connected by frame elements.
Examples of this include the frame :frame-Timespan-period.n cre-
ated to represent time periods, and the subframes of Relative_time to
express precedence between events (all in the example for dbr:Event).
The same applies when a frame element is used to specify a frame
beyond the lexical unit (see the rule for dbr:Space_exploration).

b) Several frames can also be evoked separately, without the in-
stances being directly connected by any frame element. When
these frames describe different perspectives of the same event,
there is the possibility that FrameNet links them by means
of perspectivization, and therefore FrameBase can infer one from
another. For example, classes :frame-Commerce_buy-buy.v and
:frame-Commerce_sell-sell.v, which are used for classes Buy and
Sell in the organized crime taxonomy, are both perspectiviza-
tions of :frame-Commerce_goods-transfer. In this case, inference
is possible because RDFS subclass and subproperty properties are
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used in FrameBase to reflect the perspectivization relation be-
tween frame classes and frame elements respectively. Another exam-
ple are :frame-Receive_visitor_scenario and :frame-Visit_host,
which are perspectives of :frame-Visitor_and_host. However,
in other cases one cannot rely on existing inference. For in-
stance, see how the rule to translate Event from schema.org, be-
sides frames Event-event.n and Timespan-period.n, also instan-
tiates Performing_arts-performance.n, Recording-record.v and
Offering-offer.v when certain properties are present.

2. Another possible source of complexity is that frame elements can be in-
verted. In this case, the integration rules need to invert the order of the
arguments, like in the second appearance of :fe-Social_event-Occasion
in the integration rule for the class Event in schema.org.

3. Oftentimes, a property (rather than a class) in the source can be translated as
evoking a frame on its own. In this case, the two involved entities become
connected to the new frame by means of frame elements. This phenomenon
can also appear on its own: an example of this is the first integration rule
example, for freeb:people.person.nationality.

Arbitrary combinations of these phenomena are possible (e.g. the rule integrat-
ing the Event class from schema.org). Overall, this makes automatic generation
of the integration rules a very hard task, because it generates so many free
variables that any attempt to train a system would face extreme sparsity. In
some cases, it may thus make sense to sacrifice some recall, developing a
system that only covers simpler transformations.

6.3 Representational Flexibility

Finally, another potential challenge for data integration is that even when a
homogeneous schema such as FrameBase is used, certain kinds of knowledge
can still be expressed in multiple possible ways.

• One example is that there are several ways of narrowing down the meaning
of a frame instance. One is creating a new sub-microframe associated with
a new lexical unit. Another one is assigning a value to a frame element
(see example for SpaceMission), as mentioned above. This may lead to
divergent choices of representation even within the core part of the schema
that comes from FrameNet.

• Another example of this is when a frame element needs to be reified, i.e.
represented as a frame instance, to express something additional about it
(as would be the case of the property previousStartDate in schema.org),
or when there is no direct frame element available and creating it would
lead to a combinatorial explosion in the size of the schema. An example
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of the latter is the difference between our proposal for using the frame
Part_whole for expressing sub-event relations, and how we used the frame
element Occasion for the frame Social_event, but this is a particularity
of that frame. Again, this may lead to an incoherent representations in the
knowledge base. One potential way of addressing this would be extending
the reification–dereification mechanism of FrameBase.

7 Evaluation

This section evaluates the quality of the results and show some example
queries.

7.1 FrameNet–WordNet Alignment

To evaluate the created schema, the created FrameNet–WordNet mapping has
been compared to the MapNet gold standard [38]. MapNet uses older versions
of FrameNet and WordNet, so mappings from WordNet 1.6 to 3.0 [39] had
to be applied, removing those with a confidence lower than one, and the few
LUs of FrameNet 1.3 that are not contained in FrameNet 1.5 were discarded.
Table D.3 compares the results against state-of-the-art approaches and the
scores that they report on the MapNet gold standard. As desired, the approach
described in section 4 achieves high precision, while still maintaining good
recall. 5-fold cross-validation was used for obtaining the results.

Prec Rec F1 Acc

SVM Polynomial kernel 1 [38] 0.761 0.613 0.679 —
SVM Polynomial kernel 2 [38] 0.794 0.569 0.663 —
SSI-Dijkstra [40] 0.78 0.63 0.69 —
SSI-Dijkstra+ [40] 0.76 0.74 0.75 —
Neighborhoods [41] — — — 0.772
FrameBase’s mapping 0.789 0.709 0.746 0.864

Table D.3: Comparison of FrameBase’s FrameNet–WordNet mapping to state-of-the-art ap-
proaches in terms of precision, recall, F1, and accuracy.

It may be relevant to note that there is in practice an upper bound to
precision scores in tasks like this, because of the subjective component of any
gold standard. The creators of the gold standard [38] report “0.90 as Cohen’s
Kappa computed over 192 LU-synset pairs for the same mapping task” by [42].
More generally, [43] maintains that “both people and automatic systems, when
asked to assign tokens in a text to the appropriate senses in dictionaries, find
the task difficult and do not agree among themselves”.

7.2 Schema Induction

The FrameBase schema is based on FrameNet and WordNet and the mapping
created between the two resources. It provides 19,376 frames, including 11,939
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LU-microframes and 6,418 synset-microframes, all with lexical labels. A total
of 18,357 microframes are clustered into 8,145 logical clusters, which are
the sets of microframes whose elements are linked by a logical equivalence
relation. The size of the schema is 250,407 triples.

An average precision of 87.55%± 6.18% with a 95% Wilson confidence
interval has been obtained. The evaluation showed a small change of nuance
for 31.15%± 9.38% of the correct pairs – most of these are caused by the choice
to use semantic pointers such as “Similar to”, which could be removed if very
fine-grained distinctions of microframes were desired. The precision has been
calculated from a random sample of 100 intra-cluster pairs that have been
independently annotated by two of the authors. The linear weighted Cohen’s
Kappa over the three-valued combination of the two variables with which are
annotated for each cluster pair, has a value of 0.23 over a maximum of 0.87.
The scores were obtained with a random annotator.

In addition to the number of frames, the FrameBase schema provides a
vocabulary of frame elements that goes well beyond the knowledge currently
included in most KBs, in particular beyond time and location. This additional
knowledge is routinely conveyed in natural language, and it seems likely that
using a schema that provides for it paves the way to include it in KBs, either
manually or automatically.

7.3 Reification–Derefication Rules

Additionally, reification–dereification rules are provided, with the same num-
ber of direct binary predicates, with both human-readable IRIs and lexical
labels. 14,930 are verb-based and 10,270 are noun-based. The obtained average
precision for verb-based rules is 96.22%± 3.22%, and 80.43%± 7.61% of the
correct rules were found easily readable. For noun-based rules, the scores are
87.5%± 6.41% and 91.91%± 6.28%. A rule is considered to be not easily read-
able if the name of the direct binary predicate contains a frame element whose
meaning is not obvious for a layman reader, or if it contains a preposition that
is appropriate for some but not all possible objects, or it is not appropriate
for the frame element in the name. For this evaluation, the same annotation
methodology as for the intra-cluster pairs was followed, obtaining a Cohen’s
kappa of 0.39 over a maximum of 0.54.

7.4 Querying

FrameBase facilitates novel forms of queries. The following query, for instance,
uses reified patterns to find the heads of the World Bank. Note that the
clusters implemented in RDFS allow searching for the noun head (from the
leadership frame), although the integration rule above only produced an
instance of fmbs:frame-Leadership-leader.n. The results in Table D.4 show
example instances seamlessly integrated into the FrameBase schema from
both Freebase (rows 1–3, extracted from the second example integration rule
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above) and YAGO2s (rows 4–5, extracted with a similar integration rule made
for YAGO2s).

SELECT DISTINCT
?leader ?leaderLabel ?role ?roleLabel
WHERE {

?lumfi a :frame-Leadership-head.n .
?lumfi :fe-Leadership-Governed ?worldBank.
?lumfi :fe-Leadership-Leader ?leader .
?leader rdfs:label ?leaderLabel .
VALUES ?worldBank {
yago:World_Bank freeb:m.02vk52z

}
OPTIONAL{
?lumfi :fe-Leadership-Role ?role .
?role rdfs:label roleLabel .

}
}

Alternatively, a direct binary predicate from the dereification rules can be
used to obtain the same non-optional results, as illustrated in the query below.
Either leads or heads can be used because the LU-microframes for these verbs
are in the same cluster as the nouns leader and head, and there is a dereification
rule between the Leader and Governed frame elements for both.

SELECT DISTINCT ?leader WHERE {
?leader :dereif-Leadership-heads ?worldBank .
VALUES ?worldBank {
yago:World_Bank freeb:m.02vk52z

}
}

FrameBase can also be applied with natural language processing tools for ques-
tion answering and data mining. For example, given the question “Who has

?leader ?role

fb:m/0h_ds2s ‘Caroline Anstey’ fb:m/04t64n ‘Managing Director’

fb:m/0d_dq5 ‘Mahmoud Mohieldin’ fb:m/04t64n ‘Managing Director’

fb:m/047cdkk
‘Sri Mulyani Indrawati’

fb:m/01yc02
‘Chief Operating Officer’

yago:Jim_Yong_Kim –

yago:Robert_Zoellick –

Table D.4: Results from the query
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been the head of the World_Bank”, the SRL tool SEMAFOR [44] successfully
extracts the frame Leadership with lexical unit head.noun and frame elements
Governed and Leader. Based on this, and after a named entity disambiguator
like AIDA [45] matches World_Bank to the entities in the KBs, the structured
query can easily be built. Moreover, the same procedure can also be used to
integrate new knowledge from a text into the KB, like FRED [27] does.

8 Conclusion

FrameBase is a novel approach for connecting knowledge from different
heterogeneous sources to decades of work from the NLP community. Events
can be described in very different ways across different knowledge bases. Our
framework not only provides an efficient model to describe n-ary relations,
but also integrates and transforms FrameNet and WordNet to yield a broad-
coverage inventory of frames. Additionally, linguistic annotations in FrameNet
such as the ones used to create the reification–dereification rules can also be
used to generate natural language, for instance, for summarizing a portion of
a KB for non-technical users.

In our future work we will continue our efforts to integrate arbitrary know-
ledge with frame structures by automatically generating integration rules such
as the examples in section 2, for arbitrary knowledge bases. Given FrameBase’s
close connection to natural language, we also intend to study methods for
better adapting semantic role labeling tools to question answering [44].

The state-of-the art FrameNet SRL system is Google-internal [46], but the
CMU system is close [44]. Using FrameBase, would automatically benefit from
the rapid advances in NLP.

Details and more information about FrameBase are available at http://
framebase.org. FrameBase data is freely available under a Creative Commons
Attribution 4.0 International license (CC-BY 4.0).
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1. Introduction

Abstract

With recent advances in information extraction techniques, various large-scale know-
ledge bases covering a broad range of knowledge have become publicly available. As
no single knowledge base covers all information, many applications require access
to integrated knowledge from multiple knowledge bases. Achieving this, however, is
challenging due to differences in knowledge representation. To address this problem,
this paper proposes to use linguistic frames as a common representation and maps
heterogeneous knowledge bases to the FrameBase schema, which is formed by a large
inventory of these frames. We develop several methods to create complex mappings
from external knowledge bases to this schema, using text similarity measures, machine
learning, and different heuristics. We test them with different widely used large-
scale knowledge bases, YAGO2s, Freebase and WikiData. The resulting integrated
knowledge can then be queried in a homogeneous way.

1 Introduction

In the past decades, numerous large-scale knowledge bases (KBs) have become
available and are now essential both in research and in the commercial world,
e.g., for IBM’s Jeopardy!-winning question answering system Watson [1] and
for Google’s Knowledge Graph-driven search results. The Web of Linked
Data has grown to the point that the numerous different KBs that have been
published can no longer easily be visualized in a single cloud image.

Since numerous stakeholders are publishing separate KBs focusing on
different domains and sources, a given application often needs to combine
knowledge from multiple KBs. Hence, there is a clear need for methods to
integrate such knowledge. A substantial body of work has aimed to address
this problem by automatically aligning individual entries across KBs, both at
the schema level [2] and at the level of entity instances [3]. These methods
often produce a list of binary links using properties such as owl:sameAs.
Unfortunately, different KBs often model the world in quite distinct ways.
Despite the adoption of standards such as the use of subject-predicate-object
triples in RDF [4], the same piece of information can be represented in ways
such that a one-to-one alignment is no longer possible.

Consider, for instance, a marriage between two people. The YAGO KB [5]
captures this using a binary predicate (isMarriedTo) between two persons.
The Freebase KB [6], in contrast, relies on a special entity called a mediator
or Compound Value Type (CVT) to describe the marriage, as well as several
subject-predicate-object triples to list properties of the marriage, such as
involved people, time, location, etc. In cases like this, which are not uncommon,
neither owl:sameAs, rdfs:subClassOf, owl:equivalentProperty, nor any
other individual property or binary relation can fully express the complex
n-ary relationships between these resources.
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In this paper, we propose to address this problem by integrating heteroge-
neous data into the FrameBase schema [7], which consists of a large inventory
of frames that homogeneously represent n-ary relations. Frame structures are
used in linguistics to describe the meaning of a sentence as scenarios with
multiple participants and properties filling specific semantic roles. A marriage
frame involves two partners, a time and a place, among other things. This is
similar to Freebase’s CVTs. However, in contrast to the few hundreds of CVTs
in Freebase, FrameBase uses a larger number of frames (∼20,000) organized
in a dense hierarchy [8].

While FrameBase offers a flexible system for representing knowledge
from existing knowledge sources [7, 9], there has not been any research
showing how to automatically or semi-automatically integrate heterogeneous
knowledge under its schema. In this paper, we develop a generic algorithm to
create complex integration rules from external KBs into this schema. These
rules go beyond existing alignment mechanisms designed for binary mappings
between elements of different KBs. In our experiments, we show results on
three particularly heterogeneous sources: Freebase [6] and WikiData [10] are
KBs with an especially large schema. YAGO2s [5], in contrast, uses only a small
number of properties, but relies heavily on reification to describe phenomena
such as time and locations.

2 Related Work

Connecting knowledge sources is a long-standing problem. At the level of
individual records in databases, this has variously been addressed as record
linkage, entity resolution, and data de-duplication [11]. In KBs, this roughly
corresponds to the problems of ontology alignment, data linking [12], and
instance matching [3].

For KBs, there has been substantial work on ontology alignment [2] to
identify matching classes from different sources, and in some cases also
instances and properties across different sources [13]. A closely related task
is that of canonicalizing or reconciliating knowledge from open information
extraction [14, 15], which focuses on aligning names of entities and predicates
by clustering synonymous entries. To achieve this, the knowledge extracted
from each text source has to be reconciled, sometimes using complex graph
matching algorithms [15]. But as the same extraction tool is used for each text
source, the resulting graphs are constructed in similar ways and therefore
follow a common model. Hence, the applied techniques for reconciliation are
different from the ones necessary to reconcile ontologies created by completely
independent parties and tools.

Only very little work has considered scenarios in which the same type of
ontological knowledge is modeled in entirely different ways. In these cases,
alignment by means of binary properties such as equivalence or subsumption
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is no longer sufficient, because a KB may not have a direct counterpart for an
element of another KB. The EDOAL (Expressive and Declarative Ontology
Alignment Language) format [16] has been proposed to express complex
relationships between properties. It defines a way to describe complex corre-
spondences but it does not address how to create them. Similarly, complex
correspondence patterns between ontologies – or ontologies and databases –
have been described and classified in an ontology [17]. However, this approach
does not provide any method to create the correspondence patterns, neither
fully nor semi-automatically. The iMAP tool [18] explores a search space of
possible complex relationships between the values of entries in two databases,
e.g., room-price = room-rate * (1 + tax-rate), but these are limited to
specific types of attribute combinations. The S-Match tool [19] uses formal
ontological reasoning to prove possible matches between ontology classes,
involving union and intersection operators, but does not address complex
matching of properties beyond this. Ritze et al. [20] use a rule-based approach
to detect specific kinds of complex alignment patterns between entries in small
ontologies.

Unlike previous work, the approach presented in this paper does not focus
on matching individual entities but provides techniques to match knowledge
that can also be expressed with complex patterns involving multiple entities.

3 Frames for Data Integration

FrameBase [7] relies on the concept of linguistic frames as provided by
FrameNet [8]. Such frames represent events or situations with character-
istics denoted as Frame Elements (FEs). As FrameNet’s original purpose is
semantic annotation of natural language, many frames have associated Lexical
Units (LUs), i.e., terms that, when appearing in a text, may evoke a frame,
which may be connected via FEs to some other parts of the text.

FrameBase represents the information about “John’s 7-year marriage
to Mary” by creating an entity e that is an instance of FrameNet’s
Personal_relationship frame (or a more specific one for marriages, as we
describe later on). Relevant FEs such as the marriage partners and the duration
are then captured by adding triples with e as subject. For instance, properties
Partner_1 and Partner_2 connect e to entities representing John and Mary,
respectively, while the property Duration is used for the time their marriage
lasted.

FrameBase thus repurposes FrameNet frames, originally intended to rep-
resent natural language semantics, for knowledge representation with subject-
predicate-object triples, using what is also called neo-Davidsonian representation:
One first introduces an entity e that is an instance of a frame class, and hence
represents a particular event or situation. This entity is then connected to
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deserter
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desertion
abandonment

defection

deserter
defector

defect
desert

abandon
desert
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forsake

pullback
receding
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withdraw
retire

retreat
draw back
pull back

move back
recede

pull away
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:frame-Quitting_a_place-cluster-defect.v

:frame-Quitting_a_place-cluster-retreat.v

rdfs:label

rdfs:subClassOf

framebase:similarTordfs:subClassOf

Fig. E.1: Example of a hierarchy with a macroframe :frame-Quitting_a_place, two cluster-
microframes that are direct subclasses of the macroframe, and several LU- and synset-microframes
that are direct subclasses of the cluster-microframe. All the microframes under a given synset-
microframe are also connected via the symmetric property framebase:similarTo (for clarity, the
transitive closure is omitted). The synset-microframes also have labels extracted from WordNet.
The microframe identifiers have a shared prefix that has been abbreviated.

other entities (for example other frame instances, literals, or named entities)
by means of properties representing the frame elements.

To adapt FrameNet for knowledge representation, FrameBase extends the
inventory of frames defined by FrameNet in a hierarchy consisting of the
following levels (Figure E.1):

• Macroframes are very coarse-grained and correspond to regular frames in
FrameNet. The Personal_relationship frame class, for example, subsumes
spouse, marriage, girlfriend, and divorced.

• Microframes inherit the general semantics and FE properties from their
parent macroframes. They can be classified into 3 types:

1. LU-micoframes are based on a frame’s LUs and are repre-
sented as subframes in FrameNet, and therefore as sub-
classes in FrameBase. Personal_relationship-married.a and
Personal_relationship-divorced.a, for example, are subclasses of
Personal_relationship.

2. Synset-microframes are created for synsets (sense-disambiguated syn-
onymous words) in WordNet [21] that LUs can be mapped to. For
instance, the two LU-microframes Personal_relationship-suitor.n
and . . . Personal_relationship-court.v are connected to each other by
means of synset-microframes.
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3. Cluster-microframes are created to cluster sets of
LU- and synset-microframes with similar meaning.
Personal_relationship, for instance, clusters (en-
coded as subclasses) Personal_relationship-married.a,
Personal_relationship-divorced.a, Personal_relationship-suitor.n,
and Personal_relationship-court.v.

To enable more efficient querying without involving frame instances, Frame-
Base also provides Direct Binary Predicates (DBPs) that directly connect pairs
of FEs. For instance, the two partners involved in a marriage are directly
connected by a triple with marriedTo as property. The schema provides both
reification and dereification (ReDer) rules to convert knowledge between the
two representations (frame and DBPs). Two example ReDer rules are presented
in Figure E.2.

?S :...isSplitIntoParts ?O
l
?R a :frame-Separating-split.v ,
?R :fe-Separating-Whole_1 ?S ,
?R :fe-Separating-Parts_2 ?O .
?S :dbp-Motion-movesInCarrier ?O
l
?R a :frame-Motion-move.v ,
?R :fe-Motion-Theme_1 ?S ,
?R :fe-Motion-Carrier_2 ?O .

Fig. E.2: Two example ReDer rules. The direct binary predicate is the property in the dereified
pattern, on the top. The reified pattern is at the bottom.

Overall, the FrameBase RDFS schema currently contains 19,376 frames, in-
cluding 11,939 frames for specific lexical units and 6,418 frames for WordNet’s
sets of synonyms. In addition to ReDer rules, the schema uses efficient RDFS+
inference (RDFS extended with a transitive, symmetrical, and reciprocal prop-
erty used to link elements of a cluster).

4 Knowledge Base Integration

We now outline our approach for integrating heterogeneous knowledge bases
using the FrameBase schema. Although the techniques can be applied to a
wide range of KBs, we focus in particular on YAGO2s [5], Freebase [6], and
WikiData [10].

Our integration algorithm produces integration rules describing how to
transform knowledge from a KB into FrameBase. These rules do not connect
individual instances but are defined at the schema level and therefore resemble
Global-As-View mappings in relational database systems [22]. Formally speak-
ing, the produced integration rules can be expressed in first-order logic – with
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Algorithm 1 FrameBase Integration Algorithm.

Require: K . input knowledge base
1: R← ∅ . set of SPARQL CONSTRUCT rules
2: for all classes C in K do . create class-frame rules
3: for all frames F ∈ mappingsC−F(C) do
4: M← ∅ . property mappings
5: for all properties P such that ∃ s, o : 〈s P o〉 ∈ K and s ∈ C do
6: for all E ∈ mappingsPF−E(P, F): E is not in R do
7: M← M ∪ (P, E)
8: R← R ∪ClassFrameRule(C, F, M)

9: for all properties P in K do . create core property-frame rules
10: if the domain of P is not rdf:Statement then
11: for all (F, Es, Eo) ∈ mappingsP−FEE(P) do
12: R← R ∪ PropertyFrameRule(P, F, Es, Eo)

13: for all properties P′ in K do . extend property-frame rules
14: if the domain(P′)=rdf:Statement then
15: for all properties P in K satisfying 〈P ˆrdf:property/P’ y〉 do
16: for all property-frame rules r in R do
17: if r matches PropertyFrameRule(P, F, Es, Eo) then
18: for all frame elements EP′ ∈ mappingsPF−E(P′, F) do
19: Extend(r, P′, EP′)

20: return R . final set of integration rules

triples represented as 3-ary predicates (Figure E.3). Nevertheless, we imple-
ment these rules using SPARQL CONSTRUCT queries [23] because SPARQL
is a widely supported standard for KBs available in RDF format. Non-RDF
KBs can also be integrated by either using an alternative rule formalism or
invoking off-the-shelf or custom-purpose RDF converters1.

Algorithm 1 sketches our approach, which relies on three mapping func-
tions that are discussed in Section 4.3 and three rule instantiation functions
given in Figure E.3. The mapping functions relate entities from the source KB
with entities from FrameBase into which they can be translated, but they do
not provide the structure of the integration rules. The structure is specified
by the instantiation functions, which take elements from the source KB and
FrameBase, and return structured integration rules.

The instantiation functions are used to create two kinds of integration rules:
(i) class-frame rules, which convert classes and properties from the original
KB into similar elements in FrameBase (Section 4.1) and (ii) property-frame
rules, which convert properties from the source KB into frames (Section 4.2).

1http://www.w3.org/wiki/ConverterToRdf
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ClassFrameRule(C, F, M)
given M = {(P1, E1), ...(Pn, En)}
∀v1...vnvn+1(

∃e1(

t f (e1, rdf:type, F) ∧

t f (e1, E1, v1) ∧

...

t f (e1, En, vn)

)← (

ts(vn+1, rdf:type, C) ∧
ts(vn+1, P1, v1) ∧
...

ts(vn+1, Pn, vn)

)

)

PropertyFrameRule(P, F, Es, Eo)

∀v1v2(∃e1(

t f (e1, rdf:type, F) ∧

t f (e1, Es, v1) ∧

t f (e1, Eo, v2) ∧

)← ts(v1, P, v2)

)

Extend(r, P′, EP′ )
given r = PropertyFrameRule(P, F, Es, Eo)

Add inside ∃e1(...) in r
...∧ ∀v3(t f (e1, EP′ , v3)← ∃e2(

ts(e2, rdf:type, rdf:Statement) ∧
ts(e2, rdf:subject, v1) ∧
ts(e2, rdf:predicate, P) ∧
ts(e2, rdf:object, v2)

ts(e2, P′, v3)

)

)

Fig. E.3: Instantiation functions for the integration rules used by Algorithm 1. ts(s, p, o) stands for
a triple in a source KB and t f (s, p, o) for a triple in FrameBase. vi and ei are variables (universally
and existentially quantified, respectively) over entities in the source KB.

4.1 Class-Frame Rules

The process of creating class-frame rules starts in line 2 in Algorithm 1,
relying on mapping functions mappingsC−F and mappingsPF−E. Class-frame
rules are produced by the rule instantiation function ClassFrameRule(C, F, M)
from Figure E.3. They convert a class C into a frame F that represents an
event, situation or state of affairs, given M = {(P1, E1), ...(Pn, En)} maping
properties Pi for C to frame elements Ei of F. Figure E.4 provides an example
of a class-frame rule automatically generated for integrating Freebase.

4.2 Property-Frame Rules

In general, the purpose of a property-frame rule is to translate a property in a
source KB as an instance of a frame with at least two properties. These rules
are built in two steps.

Creation of core property-frame rules. The process of creating core property-
frame rules starts in line 9 in Algorithm 1, relying on the mapping function
mappingsP−FEE. Core property-frame rules are produced by the instantiation
function PropertyFrameRule(P, F, Es, Eo) from Figure E.3. Each RDF triple in
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CONSTRUCT {
_:e a :frame-Win_prize-win.v ; :fe-Win_prize-Time ?y
; :fe-Win_prize-Prize ?a ; :fe-Win_prize-Competitor ?aw
; :fe-Win_prize-Explanation ?hf ; :fe-Win_prize-Competition ?c
; :fe-Win_prize-Rank ?al ; :fe-Win_prize-Event_description ?ed .

} WHERE {
?m a fb:award.award_honor .
OPTIONAL { ?m fb:award.award_honor.year ?y }
...honor.award ?a } ...honor.award_winner ?aw }
...honor.honored_for ?hf } ...honor.ceremony ?c }
...honor.achievement_level ?al } ...honor.notes_description ?ed } }

Fig. E.4: Class-Frame rule, automatically generated rule for integrating Freebase.

the source KB matching pattern ?x P ?y, is transformed into a frame instance
of type F with two frame-element properties Es and Eo whose values are ?x
and ?y, respectively. Figure E.5 provides an example of a core property-frame
rule automatically generated for integrating Wikidata.

#SOURCE_PROPERTY_NAME=’depicts’
#SOURCE_PROPERTY_DESCR=’depicted person, place, object or event’
CONSTRUCT {
_:r a :frame-Communicate_categorization-depict.v .
_:r :fe-Communicate_categorization-Speaker ?S .
_:r :fe-Communicate_categorization-Item ?O .

} WHERE { ?S <http://www.wikidata.org/entity/P180> ?O }

Fig. E.5: Property-Frame rule, automatically generated for integrating Wikidata.

Extending core property-frame rules to capture RDF reification. Additional
clauses may be added by Algorithm 1 in the loop starting in line 13. This
process relies on the mapping function mappingsPF−E. It uses the instantiation
function Extend(r, P′, E) from Figure E.3, which takes a property-frame rule
r = PropertyFrameRule(P, F, Es, Eo) as argument and returns an extended
version of it to capture knowledge attached to triples by means of RDF
reification [7]. KBs such as YAGO use this to represent n-ary relationships, but
the FrameBase model is more efficient for this purpose. Figure E.6 provides an
example of an extended property-frame rule generated for integrating YAGO.

4.3 Mapping Functions

The mapping functions use an automatic general technique meant to be used
with big and dynamic source KBs, extended with heuristics that apply for
common patterns across large source KBs or cover most small source KBs.
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CONSTRUCT { _:event a :frame-Ride_vehicle-flight.n core
; :fe-Ride_vehicle-Source ?s ; :fe-Ride_vehicle-Goal ?o core
; :fe-Ride_vehicle-Vehicle ?objTransp . extension

} WHERE { ?s yago:isConnectedTo ?o . core
OPTIONAL { ?sid rdf:type rdf:Statement . extension
?sid rdf:subject ?s ; rdf:object ?o extension
; rdf:predicate yago:isConnectedTo . extension

OPTIONAL { ?sid yago:byTransport ?objTransp }}} extension

Fig. E.6: Extended property-frame rule, generated for integrating YAGO.

P-FEE Mapping Function Given property P from the source KB,
mappingsP−FEE(P) returns 3-tuples of a frame F, and frame element proper-
ties Es, Eo associated with P. Informally, it means that property P from the
source KB can be substituted with a path ˆEs/Eo in FrameBase.

General Method. For the general variant of mappingsP−FEE(P, F), we exploit
the fact that the direct binary predicates built into FrameBase, which allow
us to directly connect two frame elements, are directly mappable to external
properties that should evoke a frame and two frame elements. Since the
direct binary predicates were created with labels that follow the prevailing
conventions in other LOD KBs [7], we can use a text similarity measure to find
equivalent direct binary predicates, and for those found, use the frame and
FEs in the associated reification rule. For example, if a property in a source KB
is named “is split in”, it turns out to be similar to the direct binary property
“is split into parts” from the first example in Figure E.2, which can be used
to create an integration rule that translates that source KB property into the
reified pattern of FrameBase’s ReDer rule.

To compare direct binary predicates with external ones, the text similarity
we use is cosine distance of bag-of-words vectors. We split predicate names into
tokens using capitalization, use proper lemmatization (with Stanford CoreNLP
3.6.0 [24]) instead of stemming, and do not filter stop-words, since in this case
certain closed-set parts of speech such as prepositions are very important.
The use of this measure significantly improved the results compared to using
ADW [25], arguably because the latter is not tuned for our kind of text. Besides,
our method was much faster.

For each external KB property, we run the similarity function against all
existing DBPs in FrameBase, and we take the best candidate if it has a score
higher than a threshold of 0.8. The threshold value was chosen empirically to
balance precision and recall.

Additional Heuristics. Our system admits manually crafted heuristics to
be added to mappingsP−FEE(P, F). When one of the heuristics fire, they take
preference over the general method. The vast majority of datasets in the Linked
Open Data cloud rely on very small hand-crafted ontologies and vocabularies.
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In this case, relying on the heuristics is particularly useful, because they
can cover most of the elements of the source KB. In particular, we do this
for YAGO2s, which is not a small ontology per se (it has a rather big class
hierarchy and millions of instances) but uses just 77 different non-metadata
properties. The heuristics can be expressed using an RDF ontology that is
loaded by the system at startup.

PF-E Mapping Function Given a property P from the source KB and a frame
F associated with P, mappingsPF−E(P, F) returns frame element properties E
with domain F, and associated with P. Informally, this means that property P
from the source KB can be substituted with property E in FrameBase.

General Method. The implementation of mappingsPF−E(P, F) computes the
text similarity between the name of P concatenated with the name of its range,
and the names of the FEs whose domain is F, using the ADW similarity
measure [25]. It chooses the candidate with the maximum score for each FE.
Note that our algorithm only considers these mappings in restricted settings,
e.g. when a frame F has already been chosen. This greatly reduces the set of
candidates in practice and enables this approach to deliver good results.

Additional Heuristics. To the general method, we add a heuris-
tic that increases similarity to 1 if the following condition is
met: endsWith(P, X) ∧ endsWith(FE, Y). The possible values re-
quired for X and Y can also be loaded from the heuristic onto-
logy. For Freebase, we use the following two pairs: (X, Y) ∈
{(from, time), (place, place)}. For YAGO, 4 pairs are required: (X, Y) ∈
{(happenedIn, place), (happenedOnDate, time), (endedOnDate, time),
(startedOnDate, time)}.

C-F Mapping Function Given a class C from the source KB, mappingsC−F(C)
returns frames F associated with C. Informally, this means that class C from
the source KB can be substituted with class F in FrameBase.

General Method. We let F(C) denote a candidate set of relevant frames F. In or-
der to filter out noisy and incomplete parts of the source KB, mappingsC−F(C)
returns ∅ for classes from the origin KB that do not have at least 10 instances
and at least 3 outgoing properties with text annotations. Otherwise, F(C) is
defined to include all LU-microframes with non-zero lexical overlap (some
word in common in the text labels) between C’s name and the set of text labels
for the synonymous frames from the cluster that F belongs to. Clusters of syn-
onymous frames are formed by LU-microframes that are deemed equivalent
via links through synset-microframes. To disambiguate and choose the best
frame F among all candidates F(C), we train (and later test, c.f. Section 5.1)
logit and SVM classifiers over (C, F) pairs of this form, taken from a gold
standard. The (C, F) pairs are considered true when there is a class-frame rule
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in the gold standard with C in the antecedent and F in the consequent, and
false otherwise. Then, for each source KB item, we choose the frame whose
pair has the highest score. Although this entails an implicit assumption of
functionality, in practice, this results in very significant gains in precision. As
input to the model, we use the following four features:

1. The lexical overlap between (i) C’s name and (ii) the lexical labels of the
cluster of synonymous LU-microframes for F.

2. The lexical overlap between (i) the syntactic head of C’s name determined
iteratively using the Collins Algorithm [26] and (ii) the lexical labels of the
cluster of synonymous LU-microframes for f .

3. The lexical overlap between the descriptions (the longer text labels some-
times identified as comments).

4. If C is a class, the lexical overlap between the union of labels and descrip-
tions of the outgoing properties, upweighting the labels by a factor of 10.
When available, the labels and descriptions of the ranges are added too.

For all features, we lemmatize and filter out stop words (closed word classes)
and use TF-IDF to compute the feature values (although the second feature is
boolean in practice).

In Section 5.1, we test this method using a gold standard manually created
for Freebase [6], which is a typical case of a large, open-ended schema, where
a fully automatic approach becomes more necessary.

Additional Heuristics. A high-accuracy heuristic can be applied for those
source KBs that are linked to WordNet, leveraging that FrameBase includes a
significant part of WordNet synset as synset-microframes, which are linked to
FrameNet-based LU-microframes.

The heuristic works as follows. If a given source KB class C is associated
with a WordNet synset, the synset-microframe based on this synset is looked
up in FrameBase. If found, this is the match, and if it is not found, a class C′

is selected that is the next most specific WordNet-based parent of C. That is,
C′ ⊃ C ∧ (C′′ ⊃ C → C′′ = C′). Now a synset-microframe is searched for C′.
If it is not found, the process is repeated until a match is found, or a maximum
number of steps is reached (e.g., 6), in order to avoid overly general rules. With
this method, a sound rule can still be created, even if it loses some specificity,
and it accounts for the fact that not all synsets are mapped in FrameBase.

This heuristic is particularly relevant for YAGO2s, whose upper class
hierarchy is based on WordNet nouns, which makes the mapping obvious.
However, it also applies to any other KB for which a mapping to WordNet
exists, even if this is an external or a-posteriori one. Since WordNet is a very
commonly used linguistic resource, this is reasonably common in LOD KBs.
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5 Evaluation

5.1 Integration Rules Created

In this section we present examples of creating integration rules with Al-
gorithm 1 for the test cases of YAGO2s, Freebase (2014-09-21 version), and
WikiData (2015-09-28 version).

Creation of Class-Frame Integration Rules

Freebase. To evaluate the results of this method on an arbitrary KB, we pro-
duced a manual gold standard consisting of 31 classes and 141 external prop-
erties from Freebase [6], paired with their candidate frames or FE properties,
respectively. The gold standard is available at http://framebase.org/data.
Using two independent annotators, we obtained a Cohen’s kappa (inter-
annotator agreement) k = 0.69 for class to macroframe mappings, and k = 0.38
for property to frame element mappings. The second is lower because it ac-
cumulates the errors from the first, which illustrates how difficult it is to
create a gold standard for structured knowledge integration. The classes were
randomly chosen from Freebase, disregarding classes whose candidate set
did not include a valid match in FrameBase. Freebase was chosen for testing
this method because it features Compound Value Types (CVTs), which have
a similar role to frames, but we are also able to map some non-CVT classes.
Out of a total of 155 outgoing properties for the randomly chosen Freebase
classes, 141 could successfully manually be matched to frame elements in the
gold standard.
Table E.1: Evaluation of mapping external
classes to FrameBase classes.

B-1 B-2 Our Method

Logit SVM

Recall 0.21 0.60 0.50 0.77
Precision 0.12 0.15 0.88 0.77
F1 0.15 0.24 0.63 0.77

Table E.2: Evaluation of mapping
external properties to FrameBase
properties.

Metric Score

Precision 0.81
Recall 0.30
Accuracy 0.36

Table E.1 shows the results for automatic class mappings, averaging over
10 random training/test partitions of ratio 2:1. We compare three different
methods.

• Baseline 1 (B-1) takes the frame class with maximum lexical overlap in
names (as in feature 1 of our method) and for which the candidate set
F(x) consists of all FrameBase classes (which is a sort of metric that can
be configured with the Link Specification language in Silk [12], a state-of-
the-art ontology alignment system). However ontology alignment systems
alone cannot produce complex mappings.
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• Baseline 2 (B-2) uses the same measure as above, but applying the candidate
set F(C) chosen in our method, described in Section 4.3.

• Our method described in Section 4.3, using a logistic regression (logit) clas-
sifier and the functional assumption in conjunction with a fixed acceptance
threshold of p > 0.5, where p is the probability obtained from the logit.

• Our method described in Section 4.3, using a support vector machine (SVM)
with radial kernel, selecting, for each source KB class, the candidate frame
whose score is highest, given by the distance to the frontier (functional
assumption).

Table E.2 provides the results obtained by our method for properties, averaging
over 10 random training/test partitions of the ground truth data, each of ratio
2:1. Precision and recall are calculated with respect to the gold standard. We
obtain higher precision with the logit method because we use the output
probabilities to apply a condition that filters out false positives at the cost of a
lower recall. Both classifier-based methods outperform the baseline.

Note that in general, word sense disambiguation is considered a hard
and yet unsolved problem in natural language processing. This is particular
relevant when matching properties that come with little or no metadata. For ex-
ample, the Freebase classes education.academic_post and base.banned.exiled must
be mapped to the Employing and Residence-reside.v frames, respectively, for
which there is no obvious lexical connection. The same applies when mapping,
for example, Freebase properties education.academic_post.institution and geog-
raphy.river.length to frame elements Employing-Employer and Natural_features-
Descriptor, respectively. A complete high-precision integration of Freebase
into another knowledge base thus requires a larger community effort with
additional manual revisions. Our system can be used to automatically propose
suggestions to speed up this process.

YAGO. 450 class-frame integration rules were automatically created for
YAGO2s. The results are given in Table E.3. It shows how the number
of matches decreases as n increases and the WordNet-based heuristic for
mappingsC−F(C) moves up the WordNet hierarchy. For n > 6 the results are
negligible. The ratio of correctly matched entities is 0.789, which is equiva-
lent to the precision of the WordNet-FrameNet mapping used for creating
the schema [7] – via clustering of near-equivalent microframes, which uses
other links in FrameNet and WordNet that are annotated by experts and
therefore expected to be nearly error-free. Figure E.7 provides an example of a
class-frame integration rule created for YAGO2s.

Property-Frame Integration Rules

State-of-the-art ontology alignment systems cannot produce something com-
parable to property-frame integration rules because the binary links produced
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CONSTRUCT { ?s a :frame-Change_of_leadership-revolt.n ;
:fe-Change_of_leadership-Place ?o .

} WHERE { ?s a/rdfs:subClassOf yago:wordnet_rebellion_100962129 .
OPTIONAL { ?s yago:happenedIn ?o } }

Fig. E.7: Class-Frame rule, automatically generated for integrating YAGO2s.

Table E.3: Number of created class-frame rules for YAGO2s. Matches(n) denotes the number of
matches obtained for n being the maximum number of generalization steps. For each column, the
left side shows the number of created rules and the right side the number of triples in YAGO2s
matching these rules. endedOnDate has no significant occurrence in YAGO2s and was therefore
omitted.

happenedIn happenedOnDate startedOnDate

Rules Triples Rules Triples Rules Triples

Matches(0) 38 11,149 86 16,836 4 13
Matches(1) 25 944 83 3,579 5 5
Matches(2) 24 469 58 14,329 1 1
Matches(3) 15 1,232 39 2,315 1 2
Matches(4) 9 540 30 986 0 0
Matches(5) 5 42 14 121 0 0
Matches(6) 2 2 11 39 0 0

All matches 118 14,378 321 38,205 11 21
No match 42 633 148 13,195 0 0
Total 160 15,011 469 51,400 11 21

% Match 73% 95% 68% 74% 100% 100%

by these systems (equality, subsumption, etc.) cannot reflect the complex 4-ary
nature of property-frame integration rules.

WikiData. We use the general method to automatically extract property-
frame rules from WikiData. We evaluate it on YAGO2s, as we can re-use the
manually created FrameBase mappings for YAGO2s (described below) as a
ground truth. Evaluating the results directly, we obtain a precision of 0.80,
and using the YAGO integration rules as ground truth we obtain a recall of
0.21. Figure E.5 shows an example of a rule extracted from WikiData.

YAGO. Using the RDF ontology with manually specified heuristics mentioned
in Section 4.3, 62 out of the 77 non-metadata properties in YAGO2s (i.e., 81%)
could be perfectly integrated into FrameBase using simple property-frame
rules.

6 Conclusion

In this paper, we have shown that knowledge base heterogeneity is a problem
that goes beyond just the use of different identifiers that need to be aligned.
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We provide a general analysis of declarative constructs – integration rules –
that can also achieve kinds of mappings other than basic entity alignments. We
further show that FrameBase is able to incorporate multiple broad-coverage
knowledge sources, despite their structural heterogeneity, opening up the
possibility for it to serve as a hub for semantic integration of other KBs.

We also provide practical methods to produce these rules, combining gen-
eral methods with heuristics. The quality of the output is certainly not perfect,
but while traditional ontology alignment is already a difficult task, complex
mappings have combinatorially more possible candidates and are thus much
harder. Our results constitute a first step towards a more comprehensive
linking of knowledge.

The total size of the instance data obtained from these source KBs is
40,411,393 statements, which renders it the largest collection of facts linked to
FrameNet.

All FrameBase data (schema, ReDer rules, integration rules, instance data,
and gold standards) is published under a Creative Commons CC–BY 4.0
International license at http://framebase.org.
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1. Introduction

Abstract

Currently, datasets in the Linked Open Data (LOD) cloud are mostly
connected by properties such as owl:sameAs, rdfs:subClassOf, or
owl:equivalentProperty. These properties either link pairs of entities that
are equivalent or express some other binary relationship such as subsumption. In
many cases, however, this is not sufficient to link all types of equivalent knowledge.
Often, a relationship exists between an entity in one dataset and what is represented
by a complex pattern in another, or between two complex patterns. In this paper, we
present a method for linking datasets that is expressive enough to support these cases.
It consists of integration rules between arbitrary datasets and a mediated schema. We
also present and evaluate a method to create these integration rules automatically.

1 Introduction

The most common way in which datasets in the Linked Open Data (LOD)
cloud are currently connected to each other is by means of triples express-
ing simple one-to-one relationships. The most well-established property is
owl:sameAs, which indicates equivalence between entities. Others, such as
owl:equivalentClass and owl:equivalentProperty describe equivalences
for classes and properties. Previous work has exposed widespread cases of mis-
use of the owl:sameAs property and proposed alternatives expressing different
forms of near-identity [1, 2]. Additionally, properties such as rdfs:subClassOf
and rdfs:subPropertyOf denote subsumption between classes and properties.
Still, all of these properties have in common that they are binary predicates.
Thus, they always link two individual items.

Knowledge in different datasets can, however, be related in other ways
than via a direct one-to-one relationship between a pair of entities. Often,
a relation may exist between an entity in one dataset and what is captured
using a complex pattern in another, or between two complex patterns. For
example, when using binary predicates, an example class such as BirthEvent
in one dataset cannot simply be linked to a property such as bornOnDate or
bornInPlace from another schema or dataset. Yet, these two sources clearly
capture the same sort of knowledge, especially if the class BirthEvent is the
domain of properties such as personBorn, date, and place. The first-order
logic expression in Figure F.1 formalizes one of these more complex relations.
Even more complex patterns are possible, as illustrated in Figure F.2. In this
example, the complex pattern covers more information than captured by the
simpler pattern using the property stopConstructionOf.

In contrast to binary relationships, related work has only paid minimal
attention to complex patterns. The EDOAL format [3] and an ontology of cor-
respondence patterns [4] have been created as a way to express and categorize
complex correspondences between ontologies. These methods, however, do
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not address the actual integration, i.e., the method to establish these relation-
ships. The iMAP system [5] explores a space of possible complex relationships
between the values of entries in two relational databases, for instance address
= concat(city,state). Ritze et al. [6] use a rule-based approach for detect-
ing specific kinds of complex alignment patterns between entities in small
ontologies.

In this paper, we generalize to a more general method for linking datasets
through a mediated schema, that can support cases such as the above-
mentioned examples. In addition, we propose an automatic approach to create
some complex integration rules, which can be combined with existing 1-to-1
links. We use a mediated schema as a hub because the resulting star topology
reduces the complexity of the overall linking from quadratic to linear with
respect to the number of datasets. More specifically, we use FrameBase [7–9],
a rich schema based on linguistic frames, as the mediated schema, because it
is highly expressive and possesses the metadata and structures that enable
automatic creation of mappings. Additionally, it has a strong connection to
natural language.

As SPARQL has become a common standard with the necessary expressive-
ness to support logical rules, we implement schema mappings and integration
rules as SPARQL construct queries (Figures F.1 and F.2). However, the system
can easily be adapted to other formalisms and implementations.

∀v1v2(

∃e1(

t f (e1, a, BirthEvent) ∧
t f (e1, subject, v1) ∧
t f (e1, date, v2) ∧

)

↔
ts(v1, bornOnDate, v2)

)

Fig. F.1: Complex relation between two schemas, expressed in first-order logic

2 Complex Integration Rules

In order to connect complex patterns across different data sources, we develop
an automatic method to produce integration rules that convert information
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∀v1v2 (

∃e1 (

t f (e1, a, Construction) ∧
t f (e1, createdEntity, v1) ∧
t f (e2, a, StopProcess) ∧
t f (e2, cause, v2) ∧

)

↔
ts(v2, stopsConstructionO f , v1)

)

Fig. F.2: Very complex relation between two schemas, expressed in first-order logic.

from arbitrary sources to information expressed using the FrameBase schema.
This method consists of three operations.

1. Creating Candidate Properties in FrameBase: We first identify complex
patterns within FrameBase that might match properties from other sources.
For each of these complex patterns, we define a new candidate property
as a shorthand form, with a concise human-readable text label. All of this
is done automatically by exploiting the linguistic annotations available in
FrameBase. The result is a large set of matching candidates in FrameBase.

2. Processing Candidate Properties in the Source Datasets: We canonicalize
properties in the source datasets by extending their names.

3. Matching: We match the (refined) names of the properties from the source
dataset with the names of the binary candidate properties prepared for
FrameBase. When a sufficiently high match is encountered, we produce an
integration rule that connects the source property with the complex triple
pattern.

2.1 Creating Candidate Properties in FrameBase

The first step is to identify complex patterns in FrameBase to which other data
sources could potentially be matched. For each of these complex patterns, we
define a simple new binary candidate properties that serves as a shorthand
form between two variables present in the complex pattern. In FrameBase ter-
minology, these new properties are called Direct Binary Predicates (DBPs) and
their relationship to the original complex patterns in FrameBase is expressed
via Reification–Dereification (ReDer) rules [7]. As a result, we obtain a large
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candidate set of binary predicates to which properties from other datasets can
be matched.

In order to detect relevant complex patterns in FrameBase, we exploit its
ties to natural language.

Binary Predicates Based on Verbs and Nouns For relationships typically
expressed using verbs, we have already equipped FrameBase with a set of
direct binary predicates and corresponding reification-dereification rules [7].
Figure F.3 illustrates the structure of such a ReDer rule, while Figure F.4
provides an example of a DBP with the verb “destroyed” as the syntactic head.

?s <DIRECT_BINARY_PREDICATE> ?o
l
<FRAME_INSTANCE> a <FRAME_CLASS> ,
<FRAME_INSTANCE> <FRAME_ELEMENT-S> ?s ,
<FRAME_INSTANCE> <FRAME_ELEMENT-O> ?o .

Fig. F.3: The general pattern of a simple dereification rule

?s dbp-Destroying-destroyedByMeans ?o
l
f type frame-Destroying-destroy.v ,
f fe-Destroying-Undergoer ?s ,
f fe-Destroying-Means ?o .

Fig. F.4: Example of a simple dereification rule

Our previous work has already produced some DBPs based on
verbs [7] (such as in the example in Figure F.4), and nouns [9], such as
isCauseOfEffect.

However, in all of these cases, the reified side of the Reification–
Dereification rules (the one at the bottom in the examples) was restricted
to a specific pattern using three lines, such as the ones in Figures F.3 and F.4.

Binary Predicates Based on Adjectives To these noun and verb-based DBPs,
we now add new binary predicates based on adjectives, using a generalization
to more complex patterns such as the one illustrated in Figure F.2. One can
view these as very complex patterns, as they are more involved than the ones
considered previously in Figure F.3.

FrameNet [10], a database of frames used to annotate the semantics of
natural language, forms the backbone of frames in FrameBase. In FrameNet,
different frames represent different kinds of events or situations with partic-
ipants, called Frame Elements (FEs). Frames also have Lexical Units (LUs),
which are words and terms that are associated to that frame, and may evoke
that frame when appear in a text. Example texts are semantically parsed by
annotating places where a LU is evoking a frame, and neighboring words or
phrases are the values of some of the FEs belonging to that frame. FrameBase
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Creation Rule: Copula+Adjective
Create DBP with name “is LU Prep FE-o” if
IsAdjective(LU) and phrase-type-o==PP[Prep]
and grammatical-function-s==Ext
and grammatical-function-o==Dep

Fig. F.5: Method for creating new adjective-based DBPs

?s dbp-Sound_level-isLoudToDegree ?o
l
f type frame-Sound_level-loud.a ,
f fe-Sound_level-Entity ?s ,
f fe-Sound_level-Degree ?o .

Fig. F.6: Example of an adjective-based dereification rule using the copula “to be”

represents frames and LUs as classes that can be instantiated and FEs as
properties whose frame is their domain.

Figure F.5 summarizes how to create adjective-based DBPs using
FrameNet’s example annotations of English sentences. We define two tar-
get types of FEs: FE-s, the FE that should connect to the subject of the triple
whose property is the DBP; and FE-o, the FE that should connect to the object.
Figure F.3 shows how these two FEs are used in a ReDer rule. For an adjective
in a sentence that is annotated with a frame, we need to check whether the
text annotation also contains two FEs that fulfill the following conditions.
First, the phrase type of FE-o needs to be a prepositional phrase (PP) with
preposition Prep. Second, the grammatical function of FE-s needs to be that of
a subject (Ext). And third, the grammatical function of FE-o needs to be that
of a dependent (Dep). Figure F.6 presents an example of a DBP created with
this method.

Although most occurrences of adjectives in the FrameNet annotations
involve the verb “to be”, pseudo-copulas “to seem” and “to become” can
also be combined with any adjective. Therefore, we generate all possible
DBPs with these three copulas for all adjectives. For “to be” there are no
additional semantics (Figure F.6). The pseudo-copulas, however, carry addi-
tional semantics, which are expressed in a more complex pattern with an
additional frame instance (Figures F.7 and F.8). Figure F.7 presents an example
using the Becoming frame and the FE fe-Becoming-Final_state instead of
fe-Becoming-Final_category (in FrameNet the former is used with adjec-
tives and adjective phrases, while the latter is used with nouns and noun
phrases). Figure F.8 shows an example for the Appearance frame.
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?s dbp-Sound_level-becomesLoudToDegree ?o
l
f type frame-Sound_level-loud.a
f fe-Sound_level-Entity ?s
f fe-Sound_level-Degree ?o
f’ type frame-Becoming-become.v
f’ fe-Becoming-Entity ?s
f’ fe-Becoming-Final_state f

Fig. F.7: Example of an adjective-based dereification rule using the pseudo-copula “to become”

?s dbp-Sound_level-seemsLoudToDegree ?o
l
f type frame-Sound_level-loud.a
f fe-Sound_level-Entity ?s
f fe-Sound_level-Degree ?o
f’ type frame-Appearance-seem.v
f’ fe-Appearance-Phenomenon ?s
f’ fe-Appearance-Inference f

Fig. F.8: Example of an adjective-based dereification rule using the pseudo-copula “to seem”

2.2 Processing Candidate Properties in the Source Datasets

Having prepared a set of candidate predicates, each standing for a complex
pattern in FrameBase, we now turn to the source datasets that we wish to
connect. For a given source dataset, we process all its properties. Property
names are often composed of a single word that is highly polysemous. This
is particularly true when the verbs “to be” or “to have” are omitted, which
unfortunately is very often the case. For example, many datasets use prop-
erty names such as address instead of hasAddress, or father instead of
isFatherOf.

Our approach consists of the following six steps.

1 If the name p of a property is a past participle, it can be extended with the
prefix “is” (without postfix “of”).

2 If the name p of a property is a noun or a noun phrase, and a range
is declared for the property, let X be a set containing p’s name and the
hypernyms of all its word senses (obtained from WordNet [11]). If for any
element x in X, p is a substring of x or x is a substring of p, then p can be
extended with the prefix “has”.

3 The same rule as above, but using the domain instead of the range, which
allows p to be extended with the prefix “is” and postfix “of”.
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4 If the property is symmetric, we can introduce extensions both with “has”
and with “is”+ . . . +“of”.

5 For every property p corresponding to the pattern “is X of”, an inverse
property can be created of the form “has X”.

6 For every property p corresponding to the pattern “has X”, an inverse
property can be created of the form “is X of”.

This process resembles a sort of canonicalization of entity names [12], but in
our case for properties. Note that steps 4–5 can also be carried out on the
DBPs with identical results.

This canonicalization has independent value beyond its use for matching
as in this paper; especially when the canonicalization, as in our case, does not
merely make the names conform to a given pattern but also less ambiguous
as well as easier to understand by humans.

2.3 Matching

The final step is to match properties across datasets. We focus on creating
matches between direct binary predicates in FrameBase and the refined prop-
erty names of other sources.

In order to find matches, we use bag-of-words cosine similarity measures
that are optimized for the task at hand. We tokenize the names, but do not
use stemming, since we want to increase specificity. We also do not perform
stopword removal, because, unlike in the typical use case of matching large
documents, common words such as prepositions can be relevant in this context
(consider “run for” versus “run against”).

Each source dataset property is compared to each DBP using a weighted
combination of measures.

w1 cos(vSDP
1 , vDBP

1 ) + w2 cos(vSDP
2 , vDBP

2 ) + w3c1 + w4c2

• cos(vSDP
1 , vDBP

1 ) is the cosine between the vector for the name of the source
dataset property vSDP

1 and the vector for the DBP’s name vDBP
1 . For DBPs,

we remove the “frame-element-object (FE-o)” name [7] because these do not
occur very frequently. For instance, “original” is ommitted for “is copy of
original”.

• cos(vSDP
2 , vDBP

2 ) is the cosine between vectors with additional terms describ-
ing the properties’ semantics. vSDP

2 includes terms from the name of the
property, plus from the domain and the range if available. vDBP

2 includes
the terms from the DBP’s name, plus the FE-o, the FE-s, and the name and
description of the associated frame as well as all its superframes.
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• c1 has value 1 if the frame element FE-o is classified as Core FE if FrameNet,
which means that it instantiates a conceptually necessary component of a
frame. These kinds of frames are more likely to appear. The value is also 1
if the FE is about Time or Place, because this information is also frequent in
datasets.

• c2 is the same for FE-s.

The DBP with the highest score is chosen, if this is higher than a threshold
T. The vector of weights w is set to w = (0.7, 0.1, 0.1, 0.1) so that the three last
elements favor the closest match whenever there is a tie for cos(vSDP

1 , vDBP
1 ),

which can happen between two DBPs that only differ by the FE-o name.
cos(vSDP

2 , vDBP
2 ) is computationally more heavy and, for reasons of efficiency,

it is only evaluated when cos(vSDP
1 , vDBP

1 ) is higher than Tw1. The value of the
global threshold is set at T = w1 so cos(vSDP

1 , vDBP
1 ) = 1 is enough to fire a

rule.

3 Results

We test our method on DBpedia [13]. We canonicalized 1,608 DBpedia proper-
ties and evaluated a random sample of 40, out of which 32 turned out to be
correct. Of the 8 that were incorrect, 2 were also incorrect in their original DB-
pedia form, resulting in a true precision of 85%. Some examples are presented
in Table F.1.

Table F.1: Example canonicalized properties.

source property IRI

source property name canonicalization

http://dbpedia.org/property/currentlyRunBy

currently run by is currently run by

http://dbpedia.org/ontology/goldenRaspberryAward

golden raspberry award has golden raspberry award

http://dbpedia.org/ontology/statistic

statistic is statistic of

http://dbpedia.org/ontology/linkTitle

link title has link title

http://dbpedia.org/ontology/firstLeader

first leader has first leader

We obtained a total of 315 integration rules (some examples below). We
evaluated a random sample of 40, of which 29 were valid and symmetric,
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1 was valid but mapped to a generalization of the meaning, 8 were wrong
originating from a correct (yet sometimes with incomplete name) property,
and 2 were wrong but also incorrect in DBpedia. The resulting precision for
valid rules was 79%. Below we reproduce some obtained integration rules.

CONSTRUCT {
_:r a :frame-Appearance-smell.v .
_:r :fe-Appearance-Phenomenon ?S .
_:r :fe-Appearance-Characterization ?O .

} WHERE {
?S <http://dbpedia.org/property/smellsLike> ?O .

}

CONSTRUCT {
_:r a :frame-Residence-reside.v .
_:r :fe-Residence-Resident ?S .
_:r :fe-Residence-Location ?O .

} WHERE {
?S <http://dbpedia.org/property/residesIn> ?O .

}

CONSTRUCT {
_:r a :frame-Experiencer_focus-dislike.v .
_:r :fe-Experiencer_focus-Experiencer ?S .
_:r :fe-Experiencer_focus-Content ?O .

} WHERE {
?S <http://dbpedia.org/property/dislikes> ?O .

}

CONSTRUCT {
_:r a :frame-Possession-own.v .
_:r :fe-Possession-Owner ?S .
_:r :fe-Possession-Possession ?O .

} WHERE {
?S <http://dbpedia.org/ontology/owns> ?O .

}

This is an example of a wrong rule.

CONSTRUCT {
_:r a :frame-Education_teaching-school.v .
_:r :fe-Education_teaching-Student ?S .
_:r :fe-Education_teaching-Skill ?O .

} WHERE {
?S <http://dbpedia.org/property/schooledAt> ?O .

}
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?s dbp-Awareness-developsUnderstandingOfContent ?o
l
f type frame-Progress-develop.v
f fe-Progress-Entity ?s
f fe-Progress-Post_state f’
f’ type frame-Awareness-understanding.n
f’ fe-Awareness-Cognizer ?s
f’ fe-Awareness-Content ?o

Fig. F.9: Example of a very complex noun-based ReDer rule

4 Future Work

We are currently working on creating very complex patterns for certain DBPs
whose syntactic head is a noun for which the governing verb (the verb whose
object is the noun) adds semantics in a similar way as the pseudo-copulas in
Section 2.1. Figure F.9 shows an example of a very complex noun-based ReDer
rule. In this case, it is not possible to work with all possible combinations of
governing verbs as we did with the copulas, because many verbs will not make
sense (compare “develop understanding” with “run understanding”). There-
fore, we must use the governing verb from FrameNet’s example sentences.
Because many verbs can be associated with different frames, the right frame
must be chosen on the reified side of the ReDer rule. Due to the high number
of possible verbs that could be governing nouns in the example sentences,
an automatic disambiguation method is necessary. Likewise, an automatic
selection of the FE connecting the frames for the noun and the governing verb
is necessary, e.g., Post_state in Figure F.9.

We are also working on creating integration rules to express very complex
reification patterns for certain linguistic patterns in the property name. For
instance, Figure F.10 shows an example expressing amounts for property
names satisfying the regular expression (has )?number of (.*), which is
relatively common among LOD datasets mined from tables with statistics. The
recall of this method can be increased if the canonicalization is also extended
to complete these patterns in case parts of them are omitted. For instance, for
the example about amounts given above, the prefix “has number of” could be
added to those properties whose name is a countable noun or a noun phrase,
and whose range is a positive integer (in LOD datasets typically implemented
as literals with datatypes xsd:nonNegativeInteger).

Finally, we are also working on combining all these rules with other types
of rules that map entities of the same type (classes with classes, properties with
properties), and can be built re-using existing owl:sameAs ontology alignment
systems. This combination will allow arbitrarily complex mappings, not only
between the external datasets and FrameBase, but transitively between the
external datasets.
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?s http://dbpedia.org/ontology/numberOfCounties ?o
l
f type frame-Quantity
f fe-Quantity-Individuals

<http://dbpedia.org/property/counties>
f fe-Quantity-Quantity ?o
f’ type frame-Inclusion
f’ fe-Awareness-Part f
f’ fe-Awareness-Total ?s

Fig. F.10: Example of a very complex integration rule to express amounts

5 Conclusion

In this paper, we have shown the importance of establishing complex map-
pings between linked open datasets, transcending the space of binary re-
lationships that can be captured using simple links of type owl:sameAs,
rdfs:subClassOf, or rdfs:subPropertyOf. We have shown schema-level me-
thods to create these complex mappings, using a star-based topology with a
wide schema as a central hub, and exploiting its connections to computational
linguistics. As part of this process, we have also provided heuristics to extend,
disambiguate, and canonicalize the names of properties in the source datasets.
We have evaluated our approach on DBpedia, finding that it yields encourag-
ing results across different domains. Finally, we have outlined future work to
create even more integration rules involving complex patterns.
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1. Introduction

Abstract

An increasing number of structured knowledge bases have become available on the
Web, enabling many new forms of analytics and applications. However, the fact these
are being published by different parties with heterogeneous vocabularies and ontologies
also leads to formidable data integration challenges. This paper presents Klint, a
web-based system that automatically creates mappings to transform knowledge from
original data sources into a large unified schema, and allows them to be reviewed
and edited by users with a streamlined interface. In this way, it allows human-level
accuracy with minimum human effort.

1 Introduction

The Web of Data now includes a rich and increasing amount of structured
knowledge bases and has enabled many new applications and forms of
analytics. These are usually available in a format based on subject-predicate-
object triples, such as RDF, yet they are modelled in different ways and
querying them jointly becomes a daunting task, even if they are available under
a single endpoint. The reason is that, in order to capture all relevant knowledge,
a structured query will have to consist of a disjunction of all possible semantic
patterns occurring in the myriad of heterogeneous vocabularies used in the
data.

Automatic data integration would solve this, but is often an AI-hard prob-
lem, especially since many applications require knowledge with a precision
of 90% or higher. Moreover, existing work in this area has mostly focused
on connecting entries via binary properties such as owl:sameAs. However,
these only connect individual identifiers but cannot easily capture mappings
between more complex patterns of triples that represent the same information
but are structurally different.

In this paper, we present Klint (Knowledge integrator), a Web-based system
enabling semi-automatic schema integration. Given one or more existing RDF
ontologies, Klint generates tentative integration rules from these ontologies
into a unified schema. For this unified schema, Klint relies on FrameBase [1],
a wide-coverage, highly expressive and extensible schema that can be used
to represent and integrate [2] a wide range of knowledge from many sources
in a homogeneous and seamless way. Simultaneously, Klint offers an agile
and simple interface that enables the user to inspect and adapt the tenta-
tive integration rules, achieving the desired balance between precision and
scalability.

2 Assisted Schema Integration

Klint allows a user to integrate one or more entire knowledge bases into
FrameBase with minimum effort. An input knowledge base can be loaded
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Fig. G.1: The Klint interface integrating elements from DBpedia – Klint used the contextual and lex-
ical information from the source elements to suggest two candidate values for the integrated type
(selected node, “conflict”), for which the correct assigned value, Hostile_encounter-conflict.n
was the first suggestion. The FrameBase properties were auto-inserted and some with high lexical
overlap were automatically integrated as well. The complex structures that invoke some additional
frames were created using the direct search function.

from an RDF file or a SPARQL endpoint. Other structured data formats can
also easily be used after being pre-processed with a suitable RDF converter1.

Integration Heuristics. Klint automatically creates complex integration rules
for each element in the source schema, using intelligent integration algorithms
based on linguistic annotations in FrameBase [2], extended with a support
vector machine learning from a labeled training set.

Interface. Each integration rule is then represented as a graph in the right
pane (see Figure G.1). Users can navigate across different integration rules
with the buttons at the top bar, making modifications in a given graph if this is
found necessary. Variable nodes are shown in red and represent universally
quantified variables over entities. They bind the pattern from the source KB
with the integrated FrameBase pattern. The remaining nodes are classified
according to the type of entity they represent.

• Source nodes (shown in green) represent resources from the source KB and
connect two different variable nodes, forming a knowledge pattern in the
source KB.

• FrameBase nodes (colored in different shades of blue) represent FrameBase
resources and also connect variable nodes. They provide the translation of
the source pattern to FrameBase.

1http://www.w3.org/wiki/ConverterToRdf
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3. Conclusion

• Auxiliary nodes (colored gray) represent resources from third-party know-
ledge bases, usually representing common idioms or very specific entities.

The nodes are connected via directed edges that represent triples. Since an RDF
triple involves three resources, each triple is represented by two successive
edges, one from the subject to the predicate and another from the predicate to
the object.

Both edges and nodes can be added, deleted, or edited. When a node is
selected, the left panel is activated, where the user can make changes.

Automatic Suggestions. When selecting a FrameBase node from an automat-
ically created integration rule, the integration engine behind Klint provides an
ordered list of alternative suggestions for its value in the left pane, in case the
default choice was not the correct one. If users still do not find an appropriate
choice in the list, they can use the search box to conduct a custom search. This
search re-uses the algorithm of the integration engine, but allows free input.

Klint also assists when a FrameBase node is created from scratch, but
not given a value. Once the new node is connected to others (and therefore
is given a context), Klint will be able to use the integration engine and the
constraints given by the context to suggest possible values.

When an element from the candidate list on the left is chosen, and this
element is a class, associated FrameBase predicates are added as well, con-
nected via subject-predicate edges. Users can select the ones they find relevant
by completing the property-object edges, and delete or just ignore the rest,
which will not produce complete triples. In some cases, our system will also
automatically produce entire triples for certain predicates.

3 Conclusion

We have presented Klint, a web-based framework that allows the user to
supervise the automatic integration of heterogeneous knowledge bases, by
providing a user-friendly graph-based interface that allows to review and
curate complex integration rules produced by state-of-the-art integration
algorithms.
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