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Abstract

This work involves the analysis of musical instrument sounds, the creation of timbre

models, the estimation of the parameters of the timbre models and the analysis of the

timbre model parameters.

The timbre models are found by studying the literature of auditory perception, and by

studying the gestures of music performance.

Some of the important results from this work are an improved fundamental frequency

estimator, a new envelope analysis method, and simple intuitive models for the sound of

musical instruments. Furthermore a model for the spectral envelope is introduced in this

work. A new function, the brightness creation function, is introduced in the spectral

envelope model.

The timbre model is used to analyze the evolution of the different timbre parameters

when the fundamental frequency is changed, but also for different intensity, tempo, or

style. The main results from this analysis are that brightness rises with frequency, but

nevertheless the fundamental has almost all amplitude for the high notes. The attack and

release times generally fall with frequency. It was found that only brightness and

amplitude are affected by a change in intensity, and only the sustain and release times are

affected when the tempo is changed.

The different timbre models are also used for the classification of the sounds in musical

instrument classes with very good results. Finally, listening tests have been performed,

which assessed that the best timbre model has an acceptable sound quality.

Resumé

Dette arbejder omhandler analyse af musikinstrumenter, dannelse af modeller af

musikinstrumenters klangfarve, estimering af klangfarve model parametre og analyse af

modelparametrene.

Klangfarvemodellerne er fundet ved at gennemgå lydperceptorisk litteratur, og ved at

studere musikudøvelse.

Nogle vigtige resultater fra dette arbejde er en forbedret fundamental frekvens

estimator, en ny envelope analysemetode, og simple intuitive modeller af musiklyd.

Desuden er en model af den spektrale envelope udviklet. I den forbindelse er en ny

funktion for syntese af lyd med en given ‘brightness’ udviklet.

Klangfarvemodellen er brugt til at analysere udviklingen af de forskellige

klangfarveattributter, når fundamentalfrekvensen ændres, men også for forskellige



intensiteter, tempi og stil. De vigtigste konklusioner fra dette arbejde er, at ‘brightness’

stiger med frekvens; men fundamentalen har alligevel næsten al amplitude for de høje

toner. ‘Attack’ og ‘release’ tiderne falder med frekvensen. Af intensitets- og

tempoændringer fandtes, at kun ‘brightness’ og amplituden ændres når intensiteten ændres,

og at kun ‘sustain’ og ‘release’ tiderne ændres når tempoet ændres.

De forskellige klangfarvemodeller er også brugt til klassifikation af lyd i

instrumentklasser med meget godt resultat. Lytteforsøg godtgjorde, at den bedste

klangfarvemodel har en acceptabel lydkvalitet.

Résumé

Ce travail traite l’analyse des sons musicaux, la création des modèles de timbre,

l’estimation des paramètres des modèles de timbre, ainsi que l’analyse des paramètres des

modèles.

Les modèles de timbre ont été trouvés dans la littérature de la perception auditive et en

étudiant les gestes du musicien.

Quelques résultats importants du travail présenté ici sont une estimation améliorée de la

fréquence fondamentale. Une nouvelle méthode pour l’estimation des temps d’attaque et

de relâchement a été developpée, ainsi que des modèles intuitifs de sons d’instrument de

musique. Un nouveau modèle d’enveloppe spectrale a été défini, ainsi qu’une fonction qui

donne un son avec la brillance indiquée.

Les modèles de timbre sont utilisés pour l’analyse de l’évolution des paramètres des

timbres en fonction de la fréquence fondamentale, de l’intensité, du tempo ou du style. Le

résultat principal de cette analyse est que la brillance monte avec la fréquence, mais que la

fondamentale a presque toute l’amplitude dans les aigüs. Les temps d’attaque et

relâchement diminuent avec la fréquence fondamentale. Pour une variation de l’intensité,

seul l’amplitude et la brillance sont affectées. Seuls les temps de maintien et relâchement

changent avec le tempo.

Le modèle de timbre est aussi utilisé pour la classification des sons dans des classes

d’instruments avec de très bons resultats. Finalement, des tests d’ecoute de tous les

modèles ont permis de conclure que le meilleur modèle de timbre possède une qualité de

son acceptable.
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Chapter 1

1. Introduction

The initial inspiration for this work was the need to understand the transitions of

musical sounds. The transition was soon defined as being the variation over time of pitch,

loudness and timbre, and the classification of these variations. [Strawn 1985] offers further

insight on the transitions of musical instruments. Pitch and loudness are fairly well known

parameters, but timbre is less well defined, although generally defined as multi-

dimensional.

Timbre then naturally became the main subject of this work. Two approaches were

tested to understand the dimensions of timbre, the first by examining the physical gestures

associated with playing an instrument and the other by looking at the perception and

psychoacoustic literature. This can be seen as a global approach, encompassing both the

performer of a musical instrument and the auditor of the sounds produced. The conclusions

of the two approaches were then used in the analysis and modeling of musical instrument

sounds.

The analysis of transitions was eventually left out, and the work is now done on isolated

musical instrument sounds. The goal is to find a few parameters which are relevant to

human perception and which model music sounds well. Furthermore, the evolution of
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sounds, as a function of playing style, loudness, or note played, should also be well

modeled. Ideally, this would equal a musical instrument, but much work remains before

this goal is achieved. Instead, this work is the basis for a better understanding of what

timbre is, and also the basis for a digital musical instrument with potentially the same

timbre quality and versatility as an acoustic instrument, in expression as good as the best

acoustical instruments.

The model of musical sounds presented here can be used as a basis for compression of

(musical) sounds, for interactive distributed music, or for research in composition with

timbre. For a survey on timbre composition, see for instance [Barrière et al. 1991].

In general terms, musical informatics research can be helpful for classical music

research, for auditory perception research and for the auditory display research.

Fundamental methods developed in the music informatics community can potentially find

uses in any domain.

1.1. Framework

This work balances on the border between analysis and synthesis of sounds of musical

instruments, which can be seen as an example of analysis by synthesis [Risset 1991].

Analysis is done on sounds, but also on the parameters of preceding analysis. This is

done so that the important timbre attributes of a sound will emerge. The last model will

present some parameters which are important timbre attributes, but which in an automatic

framework, can not (yet) resynthesize an acceptable sound. However, this is believed to be

more a problem with the estimation of the parameters of the models than with the models

themselves. Therefore, it is believed that the models can be used to synthesize good quality

sounds, if the parameters are adjusted appropriately.

Each model has an inverse function, which allows one to recreate the input parameters

from the output parameters. The recreation is never identical, and some of the perceptual

loss can be found by studying the listening test results in Chapter 12.

The different steps of the analysis/model/synthesis can be seen in figure 1.1. The sounds

are first analyzed into additive parameters, where sinusoidals, called partials, with time-

varying amplitude and frequency are added together. The sinusoidals correspond often,

although not always, to the fundamental and the harmonic overtones of the sound being

analyzed. Then the partials are analyzed, and a few perceptually important parameters are

found and stored in the High Level Attribute (HLA) model. This is done for each partial.
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In the Minimum Description Attribute (MDA) model, the parameters of the HLA model

are defined by the fundamental value and the evolution over partial index. Finally, the

Instrument Definition Attribute (IDA) model includes the MDA parameters for the full

playing range of an instrument. The IDA model is therefore a collection of many MDA

sets.

In the MDA and the IDA models, the partials need to be quasi-harmonic. This is not the

case for the additive and the HLA models.

All models have an inverse function, which permits recreating the previous level

parameters all the way to the resynthesis of the sound.

IDA-1

Analysis HLA MDA IDA

MDA-1HLA-1Synthesis

Figure 1.1. Complete flow chart of analysis and modeling in this work.

Visualization of the additive parameters is useful when a view of the general shape of

the sound is needed. The HLA parameters are useful when the timbre attributes, such as

the attack time or the brightness of a sound, need to be visualized. The MDA model

introduces a model of the spectral envelope. The MDA model is assumed to contain all the

information of a sound in the fewest possible parameters.

The IDA model parameters are useful when the difference between instruments, or

between expressions of the same instrument, needs to be analyzed or visualized.

Furthermore, the validity of each model can be estimated by the ability of the

parameters of the model to classify the sounds in instrument families. Some experiments

on the classification have been performed in the validation of the timbre models presented

in Chapter 11 with good results.



Chapter 1. Introduction

4

1.2. Work Methodology

The first part of this work consisted in finding expressions of musical instruments. This

work was conducted by interviewing musicians, and recording musical instruments in as

many expressions as possible.

When the goal of this work was restated into finding a model for the timbre of musical

instruments, an iterative process of finding the parameters of such a model began. The

parameters of the model are of course very dependent on the analysis model of the sound.

The analysis model was therefore first defined to be additive.

The additive parameters generally model only the voiced part of the sound, and the

noise analysis should therefore be found. The use of a better additive analysis method

allows the choice of the less frequently used model of noise using the irregularity of the

additive parameters.

When the analysis parameters were chosen, the analysis of musical instrument sounds

could begin. Quality of the analysis was judged by listening to the resynthesized sounds

and by analyzing the resulting additive parameters. At the same time, the timbre model

was initiated. This was done by experimenting with simple models of the additive

parameters, and by studying the auditory perception literature. The quality of the timbre

models was evaluated by listening to the resynthesis of the sounds from the models, and by

analyzing the parameters of the model. The initial analysis and the first timbre model, the

HLA model, were changed if necessary. Furthermore, new musical sounds were recorded,

if another dimension of the timbre space was to be evaluated. Then the simpler timbre

model, the MDA model, was initiated and the process was repeated, now including another

level.

Finally, the full instrument model, the IDA model, was introduced. Now the parameters

could be analyzed as a function of the playing range, or other expressive scales. The

underlying models were evaluated on the basis of this analysis, and changed when

necessary. Furthermore, listening tests were performed, and classification experiments

using the timbre models were also performed. All this gave rise to more modification of

the timbre models, after which the quality of each model was again evaluated.

This ascending methodology was necessary, since no timbre models were found in the

literature. The deductive conclusions are not strictly speaking unique. Nevertheless, this
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methodology is believed to be the best for this work. The relatively dispersive literature

search has facilitated finding better models and better foundations for the models chosen.

Conclusive timbre models with promising applications are introduced in this work.

1.3. Structure of the Document

Chapter 2 presents the musical instruments, the control and perception of musical

sounds, the timbre and the additive model. Chapter 3 introduces an improved fundamental

frequency estimator, and the estimation of the initial frequencies used in the analysis

chapter. Chapter 4 explains the analysis of the additive parameters and compare two

methods, the well-known FFT-based analysis, and a new analysis method, developed by

Philippe Guillemain [Guillemain et al. 1996], based on a linear sum of gaussian kernels.

The conclusion is that the new analysis method, here called the LTF analysis, has a time

resolution that is twice as good as the optimal two-pass FFT-based analysis.

Chapter 5 explains the envelope model and compares two methods for the extraction of

envelope times: the first, which finds the envelope times at a certain percentage of the

maximum amplitude, and a new method developed here, which finds the envelope times

by analyzing the derivative of the amplitude envelope. This method, which is called the

slope method, performs significantly better than the simpler percent-based method.

Chapter 6 introduces the HLA model, which models the sound with a few perceptually

relevant parameters for each partial: spectral envelope, mean frequencies, envelope, and

amplitude and frequency irregularities (shimmer and jitter).

Chapter 7 introduces the spectral envelope model used in the MDA model that is

presented in Chapter 8. The spectral envelope model parameters include brightness, and a

function for the creation of a signal with a given brightness is given in the additive and in

the time domain. The MDA model is based on the HLA model, but it further models the

partial evolution for each parameter.

Chapter 9 introduces the IDA model, which is a model for the evolution of the MDA

parameters as a function of the fundamental frequency. This chapter also discusses the

evolution of the timbre attributes as a function of fundamental frequency, intensity, tempo

or style. Several important results of this analysis are given in Chapter 9.

Chapter 10 introduces the timbre modifications of the different timbre models. Chapter

11 examines the validity of the timbre models by classification methods. The result is that

the timbre attributes can classify 150 sounds from the full playing range of five
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instruments with no errors. Chapter 12 verifies the validity of the resynthesis of the timbre

models by performing listening tests. Chapter 13, finally, offers a conclusion and a

proposal for further work.
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Chapter Two

2. Musical Instruments

In this chapter the musical instrument is presented from the two most common points of

view, the gestural, and the perceptive. The gestural point of view discusses the playing of

an instrument, while the perceptive point of view discusses the perception involved in

listening to musical instrument sounds. Based on some initial research into the control of

musical instruments, a database of musical instrument sounds has been created.

Furthermore, the model of the sound of the musical instrument is presented here. The

conclusion of the perceptive research reviews is the basis of the timbre models in the

following chapters.

2.1. Introduction

A model of musical instruments should obey two fundamental obligations. It needs

good sound quality and easy control of the important expression attributes.

This chapter investigates the literature on auditory perception, timbre analysis and

control of musical instruments. The conclusions from this chapter are used in the following
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chapters to create the models of musical instruments. The discussions of musical

instruments have also been important for the choice of musical instruments that are used in

the analysis of the timbre models. The control of musical instruments is investigated by

analyzing the current situation and proposals for future systems of digital musical

instrument interfaces. Some results from the research on reaction time from different

stimuli are also given.

The timbre conclusions are given from a review of auditory perception literature and

from verbal attribute research.

The musical instruments being analyzed in this work are the quasi-harmonic

instruments. The term quasi-harmonic denotes instruments whose partial frequencies are

close to harmonic. This means that for example the drums, cymbals, and carillons have

been excluded.

The actual instruments being analyzed have been chosen for the quality of expression,

for general recognition, and for availability.

In this chapter the control of musical instruments is discussed in section 2.2, then the

timbre of musical sounds is discussed in section 2.3. The additive model of musical sounds

is presented in section 2.4, with a discussion of the phase sensitivity in paragraph 2.4.2.

The database of musical instrument is discussed in section 2.5. Finally a conclusion is

offered.

2.2. Control

The control of a musical instrument is here defined to be the physical process of moving

or manipulating the parts of the musical instrument to produce sounds. The analysis of the

control of musical instruments was done in an early stage of this work and only

summarized here. Some general reflections on the control of musical instruments can be

found in [Jensen 1996a], and an overview of the control of the violin can be found in

[Jensen 1996b]. This research is the basis for the constitution of the database of musical

instrument sounds, and the classification of the sounds in families of intensity, style, or

other parameters, such as the speed of the bow of the violin.

In mainstream computer-based music, control is generally achieved with the Musical

Instruments Digital Interface (MIDI) interface [IMA 1983]; most often through a piano

like Midi Master Keyboard [Jensen 1988].
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[Moore 1988] criticized the “degree of control intimacy” of MIDI. Several replacements

have been proposed without success, see for instance [ZIPI 1994].

Much other work in control of musical instruments, or gesture research, has been done.

[Vertegaal et al. 1996] stresses the importance of a “tight relationship between the

musician and the instrument.” [Wanderley et al. 1998] present their work in gestural

research, as well as the gestural research discussion group, which they manage.

A system which is perhaps comparable to acoustic instruments is presented in [Cadoz et

al. 1984], [Cadoz et al. 1990]. The haptic interface, which gives sensory feedback to the

performer, seems to enhance intimacy considerably.

[Jensen 1996a] argues that even though there are many dimensions to the control of a

musical instrument, the performer concentrates only on a few of the controls at any given

time. An argument for or against this hypothesis can perhaps be found in the literature on

human reaction time. [Leonard 1959] did a much-cited work in which he studied the

reaction time when one or several fingers were stimulated with a 50 Hz vibration. His

results show “a difference between simple reaction time and two-choice times, but no

systematic differences between 2, 4, or 8 choices.” This would imply that a human could

react to 8 choice stimuli just as fast as to 2 choice stimuli. His results were not replicated in

a later study, [Hoopen et al. 1981], which shows that the reaction time increases with the

number of choices. This increase in reaction time is not present however, if the stimulus is

strong. Other results from this research include the reaction time as function of

stimuli/reaction location [Hasbroucq et al. 1986] and as a function of stimuli intensity

[Hasbroucq et al. 1989]. The results are that the reaction is faster when the stimulus is

strong, and when the reaction comes from the same location as the stimuli. The reaction

times are generally between 200 and 500 mS. The potentially difficult choice of haptic

feedback to the performer can be simplified by studying the physical reaction literature.

The reaction time literature can also be of use when designing the real-time interface

between the performer and the synthetic musical instrument. More research is needed,

however, before enough conclusions can be made. This issue is not further pursued, since

the real-time issue is not investigated in this work.

[Friberg 1991] and [Friberg et al. 1991] introduced rules for the improvement of

computer performance, which can give information on the most important expression

parameters.
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The control of a musical instrument is intimately related to the structure of the

instrument and the production of the sound. Some good textbooks on the acoustics of

musical instruments are [Backus 1970] and [Benade 1990] and [Fletcher et al. 1993].

2.3. Timbre Dimensions

Timbre is defined in [ASA 1960] as that which distinguishes two sounds with the same

pitch, loudness and duration. This definition defines what timbre is not, not what it is.

Timbre is generally assumed to be multidimensional. For the sake of simplicity, it is

assumed in this work that timbre is the perceived quality of a sound, where some of the

dimensions of the timbre, such as pitch, loudness and duration, are well understood, and

others, including the spectral envelope, time envelope, etc., are still under debate. In most

research, however, the pitch, loudness and duration are dissociated from the timbre.

In general, it is accepted that the frequency/perceived pitch scale, or amplitude/

perceived loudness scale, is not linear [Handel 1989]. It is interesting to model the

perceptive scale, since the values of the model would have a more intuitive scale, and the

errors in the modeling would be perceptually minimized. For some parameters, such as the

pitch, this effect is not modeled here, since there already exists an accepted musical scale,

the 12 tones per octave scale.

Future work which models non-harmonic, non-acoustic instruments could potentially

have much use of the frequency/perceived pitch and the amplitude/perceived loudness

scales.

In this work, it is assumed that timbre models two different aspect of the sounds: The

identity of the sound and the expression of the sound.

The identity of a sound is the ability to recognize a sound as the sound of, for instance, a

piano, and the expression of a sound is the ability to recognize the sound as a high-pitched

piano, or a soft piano, for instance.

Here, a survey of literature on timbre is presented. The conclusion of this survey will

help in designing the models of the timbre.

2.3.1. Identity

The identity of a sound is defined in this work as the timbre cues that make possible the

identification of the instrument that produces the sound. Other identities could define the
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player of the instrument that produced the sound, the location of the instrument or the

media that distributed the sound.

The difficulty of timbre identity research is often increased by the fact that many timbre

parameters are more similar for different instrument sounds with the same pitch, than for

sounds from the same instrument with different pitch. For instance, many timbre

parameters of a high pitched piano sound are closer to the parameters of a high-pitched

flute sound than to a low-pitched piano sound. Nevertheless, human perception always

identifies the instrument correctly.

2.3.2. Pitch, Loudness and Duration

Pitch, loudness and duration are the most common expression parameters used for

isolated sounds in music. Pitch defines the perceived note of the sound, loudness the

perceived intensity of the sound and duration the length of the sound [Lindsay | 1977].

Pitch is in its simplest form seen as the fundamental frequency; this is the model

adopted here. When the fundamental frequency is missing, it can be recreated from the

difference of higher harmonic overtones.

Intensity is most often expressed in dB, sometimes in perceived dB, which is called

phon, where the intensity at a given frequency is the same as the intensity at 1kHz. The

sound also has an auditory threshold, under which it can no longer be perceived, and a pain

threshold. Additionally, the dB scale can be converted to the loudness scale in sones. This

scale indicates that the same change in dB doesn’t give the same perceived change in sones

in low intensities as in high intensities. See [Handel 1989] for more details. The intensity is

measured in linear scale throughout this document.

Duration is here expressed in milliseconds (mS); it is the length of the sound. No

attempt has been made to find the perceived duration although it is believed that this work

finds attack onsets close to the perceived onset. See [Gordon 1987] for a study of the

perceptual attack time.

Research which aim is to understand the basic mechanism in hearing has been pursued

for many years [Møller 1973]. This has given rise to more elaborate models, which take

into account the functioning of the auditory system [Meddis et al. 1991a].
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2.3.3. Dissimilarity Tests

The dissimilarity test is a common method of finding similarity in the timbre of

different musical instruments. The dissimilarity tests are performed by asking subjects to

judge the dissimilarity of a number of sounds. A multidimensional scaling is then used on

the scores, and the resulting dimensions are analyzed to find the relevant timbre quality.

[Grey 1977] found the most important timbre dimension to be the spectral envelope.

Furthermore, the attack-decay behavior and synchronicity were found important, as were

the spectral fluctuation in time and the presence or not of high frequency energy preceding

the attack.

[Iverson et al. 1993] tried to isolate the effect of the attack from the steady state effect.

The surprising conclusion was that the attack contained all the important features, such as

the spectral envelope, but also that the attack characteristics were present in the steady

state. Later studies [Krimphoff et al. 1994], refined the analysis, and found the most

important timbre dimensions to be brightness, attack time, and the spectral fine structure.

[Grey et al. 1978], [Iverson et al. 1993] and [Krimphoff et al. 1994] compared the

subject ratings with calculated attributes from the spectrum. [Grey et al. 1978] found that

the centroid of the bark [Sekey et al. 1984] domain spectral envelope correlated with the

first axis of the analysis. [Iverson et al. 1993] also found that the centroid of the spectral

envelope, here calculated in the linear frequency domain, correlated with the first

dimension. [Krimphoff et al. 1994] also found the brightness to correlate well with the

most important dimension of the timbre. In addition, they found the log of the rise time

(attack time) to correlate with the second dimension of the timbre, and the irregularity of

the spectral envelope to correlate with the third dimension of the timbre. [McAdams et al.

1995] further refined this hypothesis, substituting spectral irregularity with spectral flux.

The dissimilarity tests performed so far do not indicate any noise perception. [Grey

1977] introduced the high frequency noise preceding the attack as an important attribute,

but it was later discarded in [Iverson et al. 1993]. This might be explained by the fact that

no noisy sounds were included in the test sounds. [McAdams et al. 1995] promises a study

with a larger set of test sounds. It might also be explained by the fact that the most

common analysis methods doesn’t permit the analysis of noise, which then cannot be

correlated with the ratings.
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2.3.4. Verbal Attributes

Timbre is best defined in the human community outside the scientific sphere by its

verbal attributes. [von Bismarck 1974a] had subjects rate speech, musical sounds and

artificial sounds on 30 verbal attributes. He then did a multidimensional scaling on the

result, and found 4 axes, the first associated with the verbal attribute pair dull-sharp, the

second compact-scattered, the third full-empty and the fourth colorful-colorless. The dull-

sharp axis was further found to be determined by the frequency position of the overall

energy concentration of the spectrum. The compact-scattered axis was determined by the

tone/noise character of the sound. The other two axes were not attributed to any specific

quality.

2.3.5. Noise

The noise of a musical instrument, or of any sound, is in itself a multidimensional

attribute. Much work on the noise of the human voice has been done. [Richard 1994] offers

a survey of speech noises. [Klingholz 1987] divides the aperiodic component into 2 types.

The first type consists of the additive noises, which are colored or white noise, and not

correlated with the pitched sound. Additive noises are either transients, or quasi-stationary.

The other noise component is the random fluctuation of the fundamental frequency, jitter,

and the random fluctuation of the amplitude, shimmer. Still another noise type is the

change of waveform, which [Klingholz 1987] calls structural noise, but which is generally

called aperiodicity.

For musical instruments, noise can be divided into additive noises, jitter, shimmer, and

aperiodicity [McIntyre et al. 1981].

2.3.6. Roughness

Another important timbre attribute is roughness [Terhardt 1974]. Roughness is a

measure of fast beats between two partials of the sound, which have the perceptual quality

roughness. It is closely related to dissonance-consonance [Plomb et al. 1965]. The

roughness, or dissonance, is most often used in the analysis of the consonance of two or

more sounds, but it is equally applicable in the analysis of the roughness of one sound.

Roughness is related to the theory of critical bands [Zwicker et al. 1957], in that the

partials that create the beat must be in the same critical band. Therefore, roughness is

assumed to be zero in a harmonic sound with a fundamental frequency above 262 Hz

[Terhardt 1974]. Roughness is not used in this work, although it seems promising in the



Chapter 2. Musical Instruments

14

modeling of the transient of for instance the clarinet, where spurious frequencies

sometimes increase the perceived roughness in the attack.

2.4. Additive Model

The additive model has been chosen in this work for the known analysis/synthesis

qualities of this model. Many analysis/synthesis systems using the additive model exists

today, including SMS [Serra et al. 1990], the lemur program [Fitz et al. 1996] and the

diphone program [Rodet et al. 1997]. Other methods investigated include the physical

models [Jaffe et al. 1983], the granular synthesis [Truax 1994], and the wavelet analysis/

synthesis [Kronland-Martinet 1988].

The additive model is well suited for the analysis of pitched sounds. In this model, the

sound is supposed to be the sum of a number of sinusoidals with time-varying amplitude

and frequency,

sound(t) = ak (t) * s i n ( k( )
= 0

t

∫ + 0, k
k =1

N

∑ ) (2.1)

The sinusoidals are denoted partials which corresponds to harmonic overtones when the

sound is harmonic. Then the frequencies of the partials are multiples of the fundamental

frequency.

The frequency of the harmonic partials is equidistant in the frequency domain. The first

many harmonic overtone frequencies fall close to the notes in the 12-tone/octave scale.

The relation between the strong overtones of compound musical sounds is what defines the

consonance of the interval [Kameoka et al. 1969].

The additive parameters are best viewed in a three-dimensional plot, as shown in figure

2.1, where the axes are time, frequency, and amplitude.

The lines in the plot indicate the evolution of the amplitude and frequency of each

partial. This plot shows a test signal which is harmonic with a fundamental frequency of

100 Hz.
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All frequencies are static and the partial

frequencies are 100, 200, 300, 400, 500, 600,

700 and 800 Hz.

The closest line (to the left) is the

fundamental. The amplitude of the

fundamental is first zero for 100 mS, then it

follows a linear slope from 1500 to 500 for

800 mS and then it is zero for another 100 mS.

The amplitude of the seven upper partials is

half of the amplitude of the preceding partial.

The total duration of the sound is 1 second.

0
200

400
600

800

0

200

400

600

800
0

200

400

600

800

1000

1200

1400

1600

100 Hz test signal

Frequency Time

A
m

pl
itu

de

Figure 2.1. Additive parameters plot. The x axis
is time in mS, the y axis is frequency in Hz and the z
axis is amplitude.

2.4.1. Time-Frequency Analysis

The additive parameters are found by a time/frequency analysis. In the time/frequency

analysis, the amplitudes and frequencies are estimated at each time step. A time resolution

and a frequency resolution are involved in the time/frequency analysis. Rather than talk

about frequency resolution, frequency discrimination is often a more valid criterion.

Unfortunately, time resolution and frequency discrimination are mutually incompatible,

which means that if a better time resolution is sought, then a worse frequency

discrimination is obtained. In general terms, a better time resolution is obtained for higher

fundamental frequencies of harmonic sound, which is in accordance both with the fact that

the higher frequencies generally have faster attack times (see the analysis of the IDA

model parameters in Chapter 9), and that frequency spacing is larger for these sounds. The

time resolution should be at least as good as the fastest transient time under analysis, in the

order of a few mS.

2.4.2. Phase

There have been many debates on the importance of the relative phase of the

sinusoidals. The survey of the literature is not facilitated by the confusion of initial phase

and running phase (beats). Only the initial phase are studied here. This corresponds to 0,k

in equation (2.1). Early research on the functioning of the ear had two opposing views, the

frequency domain model, which states that phase differences cannot be heard, and the

temporal model, which states that phase is important.



Chapter 2. Musical Instruments

16

Perceptive experiments, cited below, involving two, three or more sinusoidals are

formal. The phase is important. [Plomb et al. 1969] resumes the previous research, and

performs additional experiments. His conclusion is that phase difference can be heard, and

he further compares the maximum effect of phase change to the perceptual difference of

three close vowels. He also concludes that the phase effect is greater for low frequencies.

[Buunen 1976] uses the phase to compare envelope detection and finds that envelope

detection in the human can be described as a low-pass filter with a cut-off frequency of

between 30 and 100 Hz. This translates into a better envelope detection if the envelope is

slow, or if the envelope change is large.

[Paterson 1987] makes additional experiments and further models phase sensitivity and

[Meddis et al. 1991b] offer a refined model of the auditory system, which explains at least

some of the phase effects. This model replaces the early temporal peak-picking methods

for fundamental frequency estimations with a series of autocorrelations of band-pass

filtered signals. The argument is that the ear is mostly phase sensitive only within

frequency channels. Paterson experiments involve phase sensitivity as a function of

fundamental frequency, harmonic number, level, and duration. His conclusions are “a) the

timbre of musical notes below middle C on the keyboard depends on component phase

relations, and b) the quality of most mens’ voices and many womens’ voices depends on

component phase relations.” [McAuley et al. 1986] seems to reach the same conclusions in

their work on analysis/synthesis using additive parameters.

Although the initial phase is important to the perception of a sound, “this effect is quite

weak, and it is generally inaudible in a normally reverberant room where phase relations

are smeared” [Risset et al. 1982].

In conclusion, the initial phase seems important for timbre perception in low

frequencies (below middle C, 262 Hz), at least in a non-reverberant listening situation.

Unfortunately, neither the initial phase, nor phase coupling, has been modeled in this

thesis. It is therefore labeled future work.

2.5. Database

To have some material to analyze, it is necessary to have a database of sounds. Several

such databases are available on the commercial marked; the most widespread is probably

the McGill University Master Samples (MUMS) [Opolko et al. 1988].
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Commercial musical instrument databases do not generally have different tempi,

intensity or style for the full playing range of a musical instrument. New recordings were

therefore judged necessary.

Based on the preliminary research in timbre and control, a selection of different musical

instruments from different families has been recorded. The facilities and material can be

called semi-professional, all recordings being done on DAT and transferred digitally to the

computer network. Some of the performing musicians were professional and some were

amateurs. This doesn’t seem to influence the quality of the recordings much, since the

material is essentially non-musical.

The instruments in the database are the violin, the viola, the cello, the saxophone, the

clarinet, the flute, the soprano voice and the piano. Some of the instruments, such as the

violin, have many degrees of physical freedom; the speed, force angle and direction of the

bow is only a small subset. Others instruments only have a few degrees of physical

freedom; the piano player, for instance, can influence only the position, or the speed, of the

key(s), and the pedals.

The recording details can be found in appendix A.

2.6. Conclusions

The sound of the musical instrument can be qualified by the timbre or the identity and

the gestures. Gestures associated with musical instruments are well defined by common

musical terms, such as note, loudness, tempo or style. Timbre defines the identity and the

expression of a musical sound. It seems to be a multi-dimensional quality. Generally,

timbre is separated from the expression attributes pitch, loudness, and length of a sound.

Furthermore, research has shown that timbre consists of the spectral envelope, an

amplitude envelope function, which can be attack, decay, or more generally, the

irregularity of the amplitude of the partials, and noise. Other perceptive attributes, such as

brightness and roughness, can also be helpful in understanding the dimensions of timbre.

The quasi-harmonic musical instrument sounds are generally well defined by their

additive coefficients, which, in a listening situation without reverberation, should retain the

phase relations if the fundamental frequency is below middle C (262 Hz).
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Chapter Three

3. Fundamental Frequency Estimation

In this chapter the estimation of the fundamental frequency of a musical sound is

presented. The fundamental frequency is generally seen as the frequency of the first strong

partial (the fundamental), or as the frequency difference between two adjoining harmonic

overtones. The frequency differences are used to find the fundamental frequency here and

the estimation of the fundamental frequency of quasi-harmonic sounds is improved in this

work by fitting the estimated frequencies to the ideal quasi-harmonic frequencies. A

fundamental frequency tracker is also introduced. Furthermore, an estimation of strong

frequencies present in a musical sound is presented. The strong frequency estimations

found in this chapter are used in the time/frequency analysis in the next chapter.

3.1. Introduction

The fundamental frequency of a musical sound is an important timbre attribute. The

fundamental frequency is here found by matching a stretched harmonic curve to the

frequencies of the partials found by the Fast Fourier Transform (FFT) analysis. Not all

stretched harmonic components are found by the initial FFT analysis. Those not found are
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reinserted, and the non-harmonic partials are removed before the curve fitting. The

frequencies extracted from the stretched curve along with the strong non-harmonic

components are used as the basis for the estimation of the time-varying frequency and

amplitude of the partials.

Several algorithms for the estimation of fundamental frequency have been presented in

the last few decades. The fundamental frequency estimation can be done in the time

domain [Rabiner et al. 1976], [Rabiner 1977], [Kroon et al. 1990], the cepstrum domain

[Noll 1967], or the frequency domain [Doval et al. 1991]. [Freed et al. 1997] proposes a

database of a wide range of sounds for the objective comparison of pitch estimation

techniques.

The frequency domain estimation of the fundamental frequency seems to be

predominant today, and an implementation of a frequency domain fundamental frequency

estimator is presented here. The general idea is to estimate the fundamental by the

difference in frequency of the neighboring harmonic components. This standard method

for the estimation of fundamental frequency is improved in this work by matching a

perfect stretched harmonic curve to the estimated quasi-harmonic partial frequencies.

This chapter starts with the estimation of the FFT candidates in section 3.2, the

fundamental frequency estimation is presented in section 3.3, and the quasi-harmonic

frequencies are estimated in 3.4, along with non-harmonic components, which are here

called the spurious frequencies. The pitch tracker is presented in section 3.5, and the

chapter ends with a conclusion.

3.2. FFT candidates

The FFT candidates are found by performing an FFT on a strong segment of the sound,

and estimating the frequencies and amplitudes of the peaks of the absolute of the FFT.

Weak peaks close to stronger peaks are removed by a line that imitates the masking of the

auditory system. Although the sounds are supposed to be pseudo-harmonic, no such

hypothesis is used in the FFT analysis. All candidates that are strong enough are saved.

The frequency and amplitude estimation is improved by interpolating between frequency

bins. More details on the FFT can be found in, for instance, [Steiglitz 1996] and [Press et

al. 1997].
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3.2.1. Frequency and Amplitude Estimation

The estimation of strong partials is done through the Fast Fourier Transform (FFT) on a

strong segment of the sound. The strong segment is defined as being the segment after the

strongest segment in the sound. This is usually the segment after the attack segment. This

segment is used, since there is often too much transient behavior in the attack segment.

The FFT is a fast implementation of the discrete Fourier transform,

yn = ske
i 2 nk / N

k = 0

N −1

∑ (3.1)

where sk  is the discrete time signal and n is the frequency bin index, from which the

frequency can be calculated,

fk = sr n / N (3.2)

sr is the sample rate. The inverse discrete Fourier Transform is defined as,

sn =
1

N
yke

−i 2 nk / N

k =0

N −1

∑ (3.3)

In general, the time signal is multiplied by a window to avoid discontinuity effects,

yk = FFT(sk ⋅ hw ) (3.4)

In this work the window used is a hamming window [Harris 1978],

hw = 0.54 − 0.46cos(2 k /(N −1)) (3.5)

When the frequency domain signal yk  is available, the frequencies and amplitudes can

be found simply by looking for maximums of the absolute value of yk . When a maximum

is found in iy  then,

fk = sr iy / N (3.6)

and,

ak = yk (iy ) (3.7)

As can be seen, the frequency resolution is dependent on the blocksize N . A better

frequency resolution can be obtained by interpolation if a gauss window is used,

hw = e
−

(k − N

2
) 2

2
2

(3.8)
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Then it can be shown that, if we know the maximum in the FFT domain, i y , the

maximum is displaced by,

cor =
0.5*( log(y

k
(iy − 1) ) − log( y

k
(iy + 1) ))

(log( yk (iy −1) ) − 2 . 0 * l o g (yk (iy) ) + log( yk (iy + 1)))
(3.9)

and the new frequencies and amplitudes are,

fk =
sr (iy + cor)

N
(3.10)

ak = exp(log( yk (iy ) ) − 0 . 2 5 *cor *(log( yk(iy − 1) ) − log( yk(iy + 1) )) (3.11)

This interpolation is helpful, even if a gauss window is not used. Initial comparisons

indicate that the frequency estimation is improved by the same order of magnitude as using

two FFTs one sample apart and calculating the frequency from the phase differences.

Other methods of decreasing the errors of the frequency estimation can be found in [Quinn

1994].

When a maximum is found, the frequency domain vector yk  is set to zero below i y

while the derivative is positive, and above i y  when the derivative is negative. The search

for maximums continues until more than M partials have been found, or until the partial is

weaker than a ratio times the strongest partial.

3.2.2. Masking

In order not to get too many unusable

partials, here called spurious partials, which

are usually found close to the quasi-harmonic

partials, yk  is superposed by a window w y ,

which is 0.9 multiplied with the maximum of

yk  over 2 *w sz  samples. This puts a line

slightly below the maximum of the partials,

but above the noise and most of the spurious

partials. The FFT-based peak search is

illustrated in figure 3.1 for a piano sound. The

x-axis is the frequency and the y-axis is the

log of the amplitude.
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Figure 3.1. FFT-based peak search for a piano
sound. Found peaks are marked with a ‘+’. The
solid line below the peaks is the masking line.
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The plus signs denote the amplitudes and frequencies of the partials found. The spurious

frequencies and noise are generally placed below the masking line. The line imitates the

auditory masking of weak partials [Small 1959], [Schroeder et al. 1979]; however, the goal

is not to estimate only perceived partials, but to eliminate noise, since weak partials can

become perceptible by some subsequent processing of the data.

Unfortunately, the masking sometimes

leaves some undesired spurious partials in the

analysis.

The FFT candidates for a piano sound can

be seen in figure 3.2. The x-axis is the

frequency, and the y-axis is the amplitude.

The strong, harmonic partials of the sound are

easy to see above the noise floor. The weak

partials below strong partials are generally

spurious partials, or sometimes very weak

harmonic partials in between stronger partials.
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Figure 3.2. FFT candidates for the piano sound.

The high frequency partials seem to be close to the noise floor, although many of them

have the correct frequency.

The next sections indicate the method developed in this work to find the fundamental

frequency, the harmonic components, and other non-harmonic partials that are strong

enough to be perceived (spurious partials).

3.3. Fundamental frequency estimation

The initial frequency candidates are here used to estimate the fundamental frequency.

The process is as follows. First, only the frequencies whose amplitude is above a certain

threshold are used. Next, the frequency differences are calculated, using the first frequency

as the first difference. Then, all frequency differences that lie outside a percentage of the

mean frequency are removed. The percentage is lowered and the process is repeated until

the percentage is low enough. The mean of the filtered frequencies is the first estimation of

the fundamental frequency. This estimation is used to add missing harmonic frequencies

and remove non-harmonic frequencies from the FFT frequency candidates. The resulting

frequencies are now the overtones of a quasi-harmonic sound. By quasi-harmonic is meant
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that the frequencies can be either stretched, or compressed, so that the frequency of the

harmonic partial k is a little higher or lower than k times the fundamental.

3.3.1. Frequency Difference Fundamental Estimation

The first step of the process is to calculate the frequency differences of the FFT

frequency candidates,

fd = f1 − 0, f2 − f1, f3 − f2 , . . . (3.12)

Then, the mean of the frequency difference is calculated, which is the first fundamental

frequency estimation,

fund = mean( fd) (3.13)

Now frequency differences whose values differ by a threshold from the mean of the

frequency differences are eliminated. This process is repeated with smaller and smaller

threshold, until no more frequencies are eliminated.

It is necessary to take into account the inharmonicity of the sound, since the frequency

difference of higher partials of, for instance, the piano can be very different from the

fundamental.

This is done using the difference of the frequency difference, which is calculated for

adjoining harmonic partials as,

fdd k = fdk − fdk −1 (3.14)

and removing the local average of the difference of the frequency difference from the

frequency differences,

fd k
' = fdk −

1

L
fddk − l

l =1

L

∑ (3.15)

L is in the order of a few overtones.

The frequency differences for the frequencies whose amplitude is above a certain

threshold are shown in figure 3.3 (top). The frequencies which lies within a threshold of

the mean of the difference of the frequencies are shown in figure 3.3 (bottom). Remember

that they are corrected for inharmonicity.
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The mean of the filtered frequencies in

figure 3.3 (bottom) is the first estimation of

the fundamental frequency. The estimation is

265.5 Hz.

The frequencies that are removed are often

at double the fundamental frequency if a

harmonic partial is missing. These can be

divided by two to obtain a better fundamental

frequency estimation.
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Figure 3.3. Frequency differences for the piano
before (top) and after (bottom) filtering.

The fundamental frequency estimation at this point is,

fund = mean( fd ' ) (3.16)

where fd’ is the frequency differences vector of length N after elimination of linear

inharmonicity deviations.

3.3.2. Missing Frequencies

With the fundamental frequency estimation, fund, it is possible to recognize the

frequency candidates that are indeed harmonic components, and eliminate the non-

harmonic components.

It is also necessary to add missing

harmonic components in order to perform the

curve fitting on the stretched harmonic curve.

This is done by estimating a local fundamental

frequency for each overtone as shown in

equation (3.12), and adding fdk to the

preceding harmonic partial if no harmonic

component is found. To reduce the error, the

local fundamental is averaged over several

partials.
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Figure 3.4. Frequency differences after cleaning
frequencies. ‘+’ indicates original frequencies, ‘*’
are chosen from several candidates, and ‘o’ are new
inserted frequencies.
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In figure 3.4 the result of the cleaning of the frequencies of a piano sound is shown. The

frequency differences, i.e. the frequencies of the partials minus the frequencies of the

preceding partials, are plotted divided by the partial index.

The inharmonicity, that is, the stretched frequency of the upper partials, see section

3.3.3, is clear to see. Only few frequencies are inserted, these are denoted by a ‘o’. The

other partial frequencies have been copied from the analyzed frequencies, denoted with ‘+’

signs, or chosen from several candidates, denoted with ‘*’.

The fundamental frequency can here be estimated by eye to about 262 Hz.

3.3.3. Fit Stretched Harmonic Curve.

When the fundamental frequency is found, the harmonic overtones of many musical

instruments can be analyzed, simply by looking at multiples of the fundamental frequency.

Unfortunately, not all musical instruments have pure harmonic partial frequencies. For

instance, the piano, due to the stiffness of the strings, has sharp upper partial frequencies;

i.e. the frequencies are higher than the fundamental multiplied by the harmonic partial

index. According to [Fletcher 1964], “the 40th partial can be two full notes sharp”. The

frequencies that are not exactly harmonic are said to be quasi-harmonic. The formula for

the quasi-harmonic frequencies of a stiff piano string is,

f k = kf0 1+ k2 (3.17)

where f0  is the fundamental frequency and  is the inharmonicity.

The values of f0 and  are found using a

nonlinear least-squares curve fit [Moré 1977].

To minimize the error in the important low

partials, the curve fit is done on the

frequencies divided by the partial index. The

frequencies divided by the partial index for

the piano sound are plotted in figure 3.5 with

the estimated frequencies given by the

formula (3.17). 0 5 10 15 20 25 30
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Figure 3.5. Frequency divided by the partial
index with estimated stretched curve for the piano
sound.
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The frequencies in figure 3.5 are not the same as the frequencies in figure 3.4, which are

the difference between adjoining partials.

The inharmonicity of the piano is clearly seen in figure 3.5. The fundamental frequency,

which is the frequency of the stretched harmonic curve at index 1, is calculated to be 261.5

Hz. The inharmonicity index  is 3.6*10-4.

With the stretched harmonic curve fit, the estimation of the fundamental frequency is

terminated.

3.4. Initial Frequencies

In this paragraph, the strong partials of a sound are found. These are a good initial

estimation of the frequency content of a sound, and they can be used to further analyze the

sound. One obvious way of finding these frequencies is by using the FFT candidates as

described in section 3.2. These are often missing some harmonic partials, and introduce too

many spurious frequencies or false partials. For these reasons, the frequencies of the

stretched curve found in paragraph 3.3.3 are used instead. The sounds are supposed to be

quasi-harmonics, but there can also be strong non-harmonic partials, which are here called

spurious frequencies. These are therefore also added to the initial frequencies.

3.4.1. Harmonic Frequencies

The harmonic frequencies are found from the FFT candidates as explained in section

3.3 by first estimating the fundamental frequency, and then removing spurious frequencies,

adding missing harmonic components, and finally fitting a stretched harmonic curve to

these frequencies, which ensures that large frequency estimation errors are eliminated.

3.4.2. Spurious Partials

The stretched harmonic partials found in the preceding paragraph are often enough to

define a sound. Sometimes, however, different behavior introduces non-harmonic partials

[Conklin 1997]. These are here called spurious partials, and they can sometimes be

stronger than the neighboring harmonic frequencies. It is therefore necessary to introduce

them in the initial frequencies. The spurious frequencies can also participate in the

identification of the instrument, although they are rarely desired in a musical situation.

The spurious frequencies are found by comparing the original FFT candidates from

section 3.2 with the stretched inharmonic frequencies found in paragraph 3.3.3. A spurious
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frequency is introduced, if it is sufficiently far away from the neighboring frequencies and

if it is relatively strong compared with the neighboring frequencies and compared to the

strongest partial.

The combination of the quasi-harmonic frequencies and the spurious frequencies are

used as initial frequencies in the linear time/ frequency analysis in the next chapter.

3.4.3. Spectrogram Analysis

The spectrogram is a good starting point for the estimation of the frequency content of a

sound. Unfortunately, the spectrogram is as noisy as the FFT used in the creation of the

spectrogram. However, image-processing techniques can be useful in the analysis of

spectrograms. The estimation of the initial moving frequency could be improved by the

image analysis methods used in the scale-space research [Lindeberg 1996]. Notably,

Joachim Weichert has introduced an anisotropic diffusion filtering in [Weickert 1999] and

also performed some initial experiments on the spectrogram of musical sounds in

[Weickert 1998]. This topic has not been further pursued here, but it seems promising, if

initial frequencies are necessary, as is the case for the LTF additive analysis in the next

chapter.

3.5. Pitch Tracker

The pitch is one of the most important timbre attributes, and it is also the most common

expression control in musical instruments. Therefore, a pitch tracker is necessary if the

evolution of all the timbre attributes is to be followed. The pitch track is done in three

steps, first the fundamental frequency of each short segment is found using the methods

presented in section 3.3. Then the instantaneous frequency [Boashash 1992] is found by

removing all but the fundamental frequency from the FFT of the segment, and doing an

inverse FFT on the result. Finally, the frequency evolution is segmented. This work is only

a feasibility analysis, and it is not used in the rest of this thesis. More proved methods for

pitch tracking can be found in, for instance, [Medan et al. 1991] for the speech signal, and

in [Quirós et al. 1994] and [Dorkan et al. 1994] for musical signals.

This feasibility study is presented using two short melodies, a flute melody, and a viola

melody, the spectrogram of which are shown in figure 3.6 and figure 3.7. Notice the

absence of the fundamental in the two first notes of the viola melody in the spectrogram

plot in figure 3.7.
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Figure 3.6. Spectrogram of the flute melody.
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Figure 3.7. Spectrogram of viola melody.

3.5.1. Moving Fundamental Frequency

The moving fundamental frequency is found by the method used in section 3.3, using a

fairly short blocksize. This fundamental frequency estimation, while relatively exact, is

unfortunately rather slow. The fundamental frequency estimation of a short flute extract is

shown in figure 3.8 and for a short sound of four notes of a viola is shown in figure 3.9.
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Figure 3.8. Moving fundamental frequency for
the flute melody.
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Figure 3.9. Moving fundamental frequency for
the viola melody.

The estimation could be significantly improved, if the blocks were to be aligned at the

pitch change times, or, if an overlap analysis were performed.

3.5.2. Instantaneous Frequency

The moving fundamental frequency estimation found in paragraph 3.5.1 sometimes

doesn’t have a good enough time resolution. Therefore, a better estimation is found by

removing all but the fundamental of the FFT, and doing an inverse FFT on the result,
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ˆ y = FFT −1(FFT(snd) ⋅h fund ) (3.18)

where hfund is a window that covers the fundamental only in the frequency domain.

The moving frequency is then the derivative of the arc tangent of the result of the

inverse FFT,

fr =
sr

2 t
arctan(

ℜ(ˆ y )

ℑ(ˆ y )
)

 
 
  

 
(3.19)

To reduce the amount of data, the mean of each period of fr is taken. The resulting

frequency is shown in figure 3.10 and figure 3.11. Notice how badly this method works for

the viola sound. This is explained by the fact that the fundamental frequency is almost non-

existent for the first two notes.
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Figure 3.10. Instantaneous frequency of the flute
melody.
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Figure 3.11. Instantaneous frequency of the viola
melody.

3.5.3. Curve Segmentation

The instantaneous frequencies found in paragraph 3.5.2 are error-prone and not easily

manipulated. The frequencies are therefore simplified into a curve, where short deviations

are removed, and static parts are simplified into line segments.

The curve is found by first creating a coarser frequency curve by taking the mean over

256 samples. A new note is now found by moving the time ahead, and checking the

frequency difference. When a big enough difference is found, and the time gap is big

enough, a new note is found. The time is now reversed in the fine time resolution

frequency curve until the old note is found. This is the start time for the new note.

The resulting frequency curves for the flute and viola melodies are shown in figure 3.12

and figure 3.13.
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This method is very helpful in removing some of the noise on the instantaneous

frequencies, without losing the good time resolution. No comparison has been made with

other pitch tracking algorithms. Pitch tracking is a very difficult area, and it is believed that

the method presented here, at this stage, is not stable enough. More work remains before

an unsupervised use of the method can be undertaken.

The pitch track has been used on the analysis of vibrato sounds with some success.

However, the pitch track is less stable than the fundamental frequency estimation in

section 3.3, and in an automatic analysis situation, which is the case in this work where

hundreds of sounds are analyzed, the pitch track is not yet stable enough. Since most

sounds have static frequencies, it has not been a major concern and the pitch tracker has

not been used in the rest of this work.
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Figure 3.12. Instantaneous frequency and
extracted curve for the flute melody.
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Figure 3.13. Instantaneous frequency and
extracted curve for the viola melody.

3.6. Conclusions

The estimation of fundamental frequency, initial frequencies, and moving pitch was

presented. This work has improved the classical fundamental frequency estimation by a

curve fit with a stretched harmonic curve, which fits the frequency of the partials of stiff

strings. This permits the estimation of the pitch of quasi-harmonic sounds, such as the

piano tones.

The initial frequencies of a sound are here defined to be the harmonic overtones, with

additional strong amplitude spurious partials.
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The pitch track is performed using frequency domain filtering and inverse FFT, but the

result is not yet satisfactory. Better results could potentially be obtained if image-

processing techniques were used on spectrograms.

In conclusion, this chapter presents a good fundamental estimation, a fair initial

frequency estimation, and a promising pitch tracking method. The initial frequencies are

used in the linear time frequency analysis in the next chapter.
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Chapter Four

4. Analysis/Synthesis

In this chapter two methods for analyzing musical sounds are compared. The additive

model is used, where the sound is modeled as a sum of sinusoidals, also called partials,

with time-varying amplitude and frequency. The sounds can be resynthesized with no loss

of quality, if the analysis is good, by adding the sinusoidals together.

Two analysis methods are compared, the classical FFT-based method, and a new

method, based on a linear time-frequency representation [Guillemain et al. 1996]. This

method, which is here called the LTF analysis, is used in the following chapters due to the

better time resolution of the analysis, which means that faster transients, such as the attack

of the sound of the piano, can be analyzed more accurately. The LTF analysis is improved

in this work by the estimation of initial frequencies in the preceding chapter, which permit

a stable, unsupervised analysis of musical sounds.
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4.1. Introduction

The analysis/synthesis of sounds of musical instruments is generally accomplished by

using a model of a sum of sinusoidals. Here two techniques for the analysis of musical

sounds are compared, the FFT-based analysis [McAuley et al. 1986], and the linear

time/frequency analysis [Guillemain et al. 1996].

Already in the last century, musical instrument tones were divided into their Fourier

series [Rayleigh 1896]. Early techniques for the time-varying analysis of the additive

parameters are presented by [Matthews et al. 1961] and [Freedman 1967]. [Robinson

1982] gives a historical perspective of spectrum estimation methods. Other more recent

techniques for the analysis of musical signals are the proven heterodyne filtering [Grey et

al. 1977], the wavelet analysis [Kronland-Martinet 1988], the atomic decomposition [Chen

et al. 1996], [Gribonval et al. 1996] and the modal distribution analysis [Pielemeier et al.

1996]. [Ding et al. 1997] has presented an interesting analysis by synthesis method.

Synthesis of the additive parameters has been done in real time for many years [Jensen

1989].

The analysis of musical signals is done in the time/frequency domain. There are two

resolutions to the analysis, the time resolution, where a resolution of a few mS is

necessary, and the frequency resolution, where an accuracy of a few cents is necessary

[Pielemeier et al. 1996]. There are 100 cents between each semitone. Generally, not so

much the frequency resolution is a problem, but instead the separation of partials in the

frequency domain. The analysis is often a compromise between a good separation, and a

good time-resolution. The FFT-based analysis generally optimizes the time-resolution by a

two-pass analysis, one with a good time-resolution, and one with a good frequency-

resolution. Nonetheless, it has a poor time-resolution, and several alternatives with better

time resolution have been introduced to replace the FFT-based analysis.

This chapter starts with an implementation of the FFT-based analysis in section 4.2 and

the linear time-frequency analysis is presented in its simplest form in section 4.3. A

comparison is made between the two methods in section 4.4, the resynthesis is discussed in

section 4.5, and finally a conclusion is proposed.
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4.2. Fast Fourier Transform Based Additive Analysis

Several FFT-based [Allen 1977] sinusoidal analysis systems for sounds have been

presented in the past [McAuley et al. 1986], sometimes with the addition of a stochastic

component model of additive noise [Serra et al. 1990], [Møller 1996].

The FFT-based analysis is generally done on a sliding time-domain window. The FFT

peaks are found by analyzing the FFT of a windowed time signal, as explained in the

fundamental frequency estimation in Chapter 3. The peaks for a segment are then attached

to the preceding segments’ partial tracks.

4.2.1. Sliding Window Analysis

The model of the sound to analyze is a sum of sinusoidals with varying frequency and

amplitude,

s(t) = ap(t)sin( p ( )
t = 0
∫ + 0, p )

p=1

N

∑ (4.1)

The FFT is done on overlapping blocks of the signal s(t), the blocksize is B and the

block is k. The stepsize is Bs, so the peak searching for the block k is done on the samples

of s from k Bs to k Bs+B. The FFT is done using a hamming window. The output of the FFT

is then,

yk = FFT(s(kBs ...kBs + B − 1) ⋅ hw) (4.2)

yk is then used to look for peaks in the frequency domain as explained in Chapter 3. The

window hw is assumed to be a hamming window with normalized amplitude, so that the

sum of all elements in hw equals one [McAuley et al. 1986]. The output amplitudes and

frequencies from block k are fk and ak. Each block can have a variable number of peaks.

4.2.2. Better Timing Resolution

The frequencies found above are used to perform a discrete fourier transform (DTF) on

the exact frequency, using a window size B that is four times the period of the

fundamental.

yk ( ) = s(n + kBs )e
i n

n=0

B−1

∑ ⋅ hw(n) (4.3)

This gives a slightly better amplitude value and the best timing-resolution with an FFT-

based method obtained in this work. Shorter windows do not separate partials well enough.
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[McAuley et al. 1986] used a hamming window with a size of 2.5 times the period, but it

has not been possible to recreate their results here. [Serra et al. 1990] uses a Kaiser

window of 4 period length and [Ando et al. 1993] uses a window size of four periods with

a hanning window.

[Harris 1978] discussed the use of windows in harmonic analysis using the discrete

Fourier transform.

4.2.3.  Partial Track

In order to get a useful series of partials it is supposed that the frequencies and

amplitudes can be connected in a series of connected lines, called tracks. The frequencies

of these tracks can be harmonic, but they don’t have to be, and there are often some shorter

spurious partials in between the long strong (harmonic) tracks. Several methods for

tracking partials have been developed, local optimized techniques, [McAuley et al. 1986],

[Serra et al. 1990], or globally optimized techniques using hidden markov modeling

[Depalle et al. 1993].

Here, a simple local optimized algorithm is used. When the frequencies and the

amplitudes are slowly varying, and the sounds are harmonic, the task of connecting the

points is fairly easy, but noise and natural variations often disturb the partials.

Supposing the partials up to time segment k have been connected. The k block has N

partials and the k+1 block has M partials. Generally M ≠ N.

The partials connect if the difference in frequency, and perhaps also the difference in

amplitude, is small. All the close frequencies are analyzed and a matching value is

calculated for each one of them,

match(n,m) = ka ak +1
n − ak

m + k f fk +1
n − f k

m (4.4)

where partial n from block k+1 is connected to the partial from block k with the best

(lowest) match. The weights k f  and ka  are chosen experimentally. In this work, as is

generally the case, k f  is set to one, and ka  is set to zero. A more stable tracking is obtained

if the slopes of the frequency and amplitude are used. Notably, partial crossing is then

possible [Depalle et al. 1993]. It is also worth noting that the tracking performs much

better when the frequency and amplitude estimations are good. A notable improvement

was observed when the spectral interpolation was used.
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A track dies if no match is made for several blocks, and a track is born if there is no

match possible for a partial.

4.2.4. FFT Conclusions.

The results of the FFT-based analysis can be seen in figure 4.1 to figure 4.4.
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Figure 4.1. FFT analyzed additive parameters
for the viola.
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Figure 4.2. FFT analyzed additive parameters
for the trumpet.
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Figure 4.3. FFT analyzed additive parameters
for the piano.
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Figure 4.4. FFT analyzed additive parameters
for the flute.

Although the result is generally satisfactory, it is clear that some phenomena are not

well analyzed with this method. The attack of the piano sound seems blurred, and the noise

in the flute has disappeared. The trumpet has a good resynthesis with the FFT-based

additive analysis, and the viola also seems acceptable. The partial tracking still has some

problems with low amplitude partials that come and go, especially in the flute sound.

These are easily removed, and not shown in the FFT plots.
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The main problem seems to be the lack of realism and presence in the resynthesized

sounds. It seems related to the lack of fast transients and noise in the resynthesized sounds.

Visually, the viola seems to have a lot of transient behavior in the attack. Most sounds

have a false partial in the high energy, low frequency region. The trumpet looks very nice,

which also corresponds to the good quality of the resynthesis. The piano also looks very

good, but the resynthesis is slightly dull and blurred.

The problems are caused by the limited time resolution in the FFT analysis, which is

caused by the time/frequency limitation. This limitation states that the frequency support of

a frequency domain window is inversely proportional to the time support of the inverse

transform of the same window.

Therefore, to get a frequency domain

window small enough, so that it does not

touch the adjoining partials, a large time

domain window is necessary, as can be seen

in figure 4.5. The top plot shows 3 time

domain windows, and the bottom plot shows

the FFT of the same windows multiplied by a

sinusoid. The time domain window should be

small so that it discriminates between two

close phenomena, but the frequency domain

window also needs to be small, so it separates

two close partials. This is mutually exclusive.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

time

am
pl

itu
de

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

frequency

am
pl

itu
de

Figure 4.5. Illustration of the time / frequency
window discrimination. A small time domain
window yields a large frequency domain window,
and vice verse.

4.3. Linear Time/Frequency Analysis

Philippe Guillemain [Guillemain 1994] has developed a solution to the time

window/frequency window limitation. Here, the influence of adjoining partials is

eliminated by putting loose limitations on the frequency domain behavior of a filter.

In figure 4.6 it is shown that even large frequency domain windows with a short time

support, can be combined to the characteristics wanted. A linear combination of the dotted

windows is used to create the solid line frequency domain filter.
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Limitations are used to create the resulting

filter. The limitations are that the filter are one

at the frequency analyzed, and zero

everywhere on all other frequencies.

It can be shown that a linear combination

of gaussians conserves the same time-support

as each gaussian individually.
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Figure 4.6. Principle of the LTF filter
construction. Time domain (top) and frequency
domain (bottom).

4.3.1. Constructing the Filters

The full theory of this analysis method can be found in [Guillemain 1994] and

[Guillemain et al. 1996]. In the following, the zero-order filter is exposed. Zero-order

meaning that the filter is one at the frequency being analyzed, and zero on all other initial

frequencies. In the first order filter, the derivative is zero on all frequencies being analyzed.

This stabilizes the filters, since it ensures that the frequency behavior is slowly varying in

the neighborhood of the analyzed frequency.

The model of the signal s(t)  to analyze is a sum of sinusoidals,

s(t) = ak (t)sin( kt)∑ (4.5)

The variations of ak (t) are supposed to be much slower than s(t) .

The Gabor transform is performed on the signal,

Lg ( , ) = s(t)W(t − )e− i (t − )dt∫ (4.6)

which can be found in the frequency domain, by the Parseval relation,

Lg ( , ) = s( ) ˆ W ( − )e i d∫ (4.7)

since the signal is known, the discrete version of (4.7) is further developed,

Lg ( , ) =
ak

2
( ˆ W ( k − )ei k + ˆ W (− k − )e−i k )

k =1

N

∑ (4.8)
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Lg ( , ) = ak

2
( ˆ W ( k − ) + ˆ W (− k − ))cos( k )

k =1

N

∑

            + i
ak

2
( ˆ W ( k − ) − ˆ W (− k − ))sin( k )

k =1

N

∑
(4.9)

Since Lg ( , )  is known, the equation (4.9) is further developed at the initial

frequencies,

ak

2
( ˆ W ( k − p) + ˆ W (− k − p ))cos( k )

k =1

N

∑ = Re(Lg( , p )) (4.10)

ak

2
( ˆ W ( k − p) − ˆ W (− k − p ))sin( k )

k =1

N

∑ = Im(Lg( , p )) (4.11)

1<p<N. This gives two linear systems, N equations and N unknown variables, where N

is the number of partials.

Wp ,k Xk ( ) = Lg ( )
k =1

N

∑ (4.12)

The elements of the first system is given by,

1Wp, k =
1

2
( ˆ W ( k − p) + ˆ W (− k − p )) (4.13)

and the elements of the second system is,

2Wp, k =
1

2
( ˆ W ( k − p) − ˆ W (− k − p )) (4.14)

The signal at frequency k can now be calculated,

Xk ( )=1Wp ,k
−1 Re(Lg ( ))+ 2Wp,k

−1 Im(Lg ( )) (4.15)

Remember that the signal is supposed to be a sum of sinusoidals, so

Xk ( ) = a k ( )e i k (4.16)

The output vector k is thus a complex partial with amplitude ak. The zero order analysis

assumes that all time derivatives of ak are zero. As a result, the analysis performs better

when ak is a smooth function.

In practice, the frequencies and the amplitudes are often extracted using a time domain

or a frequency domain filter. Therefore (4.15) is developed. The resulting filters then

become [Guillemain et al. 1996],
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X k(t) =

1Wk ,p
−1

ˆ W ( − p) + ˆ W ( + p )

2
+

2Wk , p
−1

ˆ W ( − p) − ˆ W ( + p )

2

 

 
 

 
 

 

 
 

 
 p=1

N

∑ s( )ei d∫ (4.17)

Xk (t) = Fk ( )
p=1

N

∑ s( )ei d∫ (4.18)

F( )  is a filter banc of dimension N, with the following properties.

1) Fk( p ) = p, k ,  Fk(− p ) = 0 ,  p , k∈ 1 , N[ ]

2) The time support of Fk  is equal to the time support of W(t)

3) Fk (t)  convoluted with Ak sin( kt + Φk )
k =1

N

∑  is Ake
i ( k t +Φ k ), k ∈ 1,N[ ]

This signifies that the output of filter Fk is zero for all initial frequencies except fk and

that the time-support of Fk is equal to the time support of the window W(t). Since no

hypothesis has been made on the window, the frequency domain window W(t) can spread

over several partials without ruining the good properties of Fk.

A gauss window is used in this work. The standard deviation of W(t) is found by setting

the value of W(t) to a constant value at the closest neighboring initial frequency.

The time domain filter is used in this work, and it is,

Fk (t) = W(t) ⋅(1Wk , p
− 1 cos( pt) + i⋅2Wk , p

−1 sin( pt))
p =1

N

∑ (4.19)

The frequency domain filter characteristics

can be seen in figure 4.7 along with the log of

the absolute spectrum of a flute sound. This

filter has the characteristics wanted, it is 1 at

the frequency analyzed and 0 for all other

frequencies. The filters have rebounds

between the initial frequencies, but this does

not generally disturb the analysis. This zero-

order filter does not guarantee smooth

response at the initial frequencies.
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Figure 4.7. Zero-order filters and signal FFT for
a flute sound.
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The filters can be improved by setting the frequency derivatives of the filters to zero at

the initial frequencies. The additional conditions are used to model amplitudes with

nonzero derivatives.

The filters used in the rest of this work are the filters of order 1. See [Guillemain 1994]

and [Guillemain et al. 1996] for details on higher order analysis.

Before the signal is analyzed with the filter, the initial frequencies, that is the

frequencies being analyzed, must be determined.

4.3.2. Initial Frequencies

In order to perform the analysis, it is necessary to know the frequencies that are

interesting in the sound. They are found by the initial frequency estimation presented in the

fundamental frequency estimation in Chapter 3. The initial frequencies now consist of all

the quasi-harmonic frequencies and strong non-harmonic frequencies.

The estimated frequencies are used in the time-frequency analysis, since they are

believed to be better than the FFT-analyzed frequencies which are sometimes misjudged,

and which are often missing some harmonic components.

With the introduction of initial frequencies, the filters can be constructed, as described

in paragraph 4.3.1. The frequencies and amplitudes of the partials are extracted in

paragraph 4.3.4, but first a method for the elimination of rebounds of the filters is

presented.

4.3.3. Rebounds

Although the filters used in the analysis

have the desired properties, notably, the

frequency response is one at the frequency

being analyzed, and zero at all other

frequencies, they sometimes introduce

frequency domain rebounds, which, if they are

positioned in strong noise, can ruin the

analysis. In figure 4.8 the rebounds can clearly

be seen in the noisy low-frequency range of

the piano sound.
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Figure 4.8. Rebounds of filter.
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Since the noise is much stronger than the weak upper partials, it can sometimes disturb

the analysis. The frequencies of some of the partials of the piano can be misjudged due to

the hammer noise present in the rebound frequency area. By misjudged is meant that the

analyzed frequency is no longer close to the initial frequency. Although this may be

desirable in some situations, especially in a direct resynthesis, where the mechanical noise

is restituted with the harmonic components, it makes some simple operations on the partial

frequency impossible, such as the estimation of the mean frequency.

Therefore, a method of eliminating these rebounds is introduced. It eliminates the

rebounds in strong noise so the estimation of the partial amplitude and frequency is not

influenced by the noise component.

In order to minimize the disturbance of the elimination, it is done only when necessary,

i.e. when the rebound amplitude is much larger than the partial amplitude. The filter and

the signal are transformed into the frequency domain by FFT, and multiplied. To have the

same number of points, the maximums of every N points of the signal FFT are used,

sf = FFT ( filter) ⋅ FFT(signal) (4.20)

The maximum of |sf| outside the partial

being analyzed is now compared with the

maximum of |sf| in the frequency being

analyzed. If it is relative strong, the filter at

the strong frequency is multiplied with an

inverted hamming the size of the fundamental.

sf is calculated again and the process is

repeated until there are no more strong

amplitudes outside the frequency being

analyzed.

The original and manipulated filters can be

seen in figure 4.9 (top). The FFT of the signal

is shown in figure 4.9 (middle). It is clear that

the fifth partial is very weak.
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Figure 4.9. Detail of the FFT of Filter (top),
signal (middle) and result of filtering for the fifth
partial of the piano sound. x axis is frequency bins,
and y-axis is amplitude. Original (dotted) and after
elimination of rebounds (solid).

The magnitude of the fifth partial analyzed with the original filter, and with the

manipulated filter (dotted), can be seen in figure 4.9 (bottom). The influence of the strong

fourth partial has been eliminated.
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The first 5 partial frequencies of a piano sound, as analyzed by the filter without

rebound elimination can be seen in figure 4.10 and the same 5 partial frequencies as

analyzed by the filter with rebound elimination can be seen in figure 4.11.

The elimination of rebounds has clearly succeeded. The dip in the middle of the first

half of the fifth partial has disappeared, and there seems to be less noise in the silent

second half.

The elimination of rebounds should not be done in an analysis/synthesis situation, but

only when other features are to be extracted from the partials, such as the mean frequency.

In such a case, the elimination of the rebounds stabilizes the feature extraction.
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Figure 4.10. The 5 first harmonic overtones of
piano C4 sound.
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Figure 4.11. The 5 first harmonic overtones of
piano C4 after elimination of rebounds.

4.3.4. Frequency and Amplitude Extraction

The filters from paragraph 4.3.1 can now be constructed with the initial frequencies

found in paragraph 4.3.2. The output of filter k is,

Xk (t) = s * Fk = s( )Fk (t − )d∫ (4.21)

and the corresponding frequency and amplitude are

f k(t) =
sr

2 t
arctan(

ℜ(X k(t))

ℑ(X k(t))
)

 
 
  

 
 (4.22)

ak (t) = Xk (t) (4.23)

The phase must be unwrapped before the frequency difference is calculated.
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4.3.5. Data Reduction

The resulting partial frequencies and amplitudes can be obtained for each sample, but

this resolution introduces too much data (more than the sampled sound), and a data-

reduction scheme is necessary. Two approaches have been tested, piecewise linear

approximation [Bernstein et al. 1976], [Horner et al. 1996] and averaging over one period

[Grey et al. 1977]. Although piecewise linear approximation potentially has a better data

reduction, the method seems to introduce artifacts in the sound when modeling noise in the

additive parameters, and the simpler averaging over one period was chosen. This data

reduction method is also justified by the time resolution of this analysis, as shown in

section 4.4. The period averaging, which guarantees synchronous partials, also simplifies

subsequent operations on the additive parameters [Wessel 1997].

4.4. Comparison of FFT and LTF Analysis

The LTF analysis seems to render a more faithful reproduction of the sounds. This is

believed to be due to the better time-resolution of this analysis method. In order to

compare the time resolution of the two analysis methods, a few test signals have been

created and analyzed with the two methods. The calculated time-resolution and mean

square of the error results are then compared.

4.4.1. Test Signals

The test signals created are 4 one-second sounds with 8 harmonic partials. All partials

have the same amplitude slope, first 1/8-second silence, then a linear slope from maximum

amplitude to 1/3 of maximum amplitude for 3/4 seconds, and then 1/8-second silence. The

sounds have fundamental frequencies 30 Hz, 100 Hz, 300 Hz and 1000 Hz. For an

example of the test signal, see figure 2.1.

4.4.2. Analysis

The test sounds are first analyzed using the FFT and the linear time/frequency (LTF)

analysis. No smoothing has been done on the LTF analyzed parameters. The resulting

spurious partials are removed. The rise time and the fall time of each partial, defined as the

time between 10 % and 90 % of the amplitude, are calculated. Furthermore, the frequency

and amplitude errors are defined as the mean of the square of the error between the original
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partial and the analyzed partial and normalized by the maximum amplitude and the mean

frequency respectively.

The amplitude and frequency errors are,

ferror =
1

Nsustain

fsustain − mean( fsustain)

mean( fsustain)

 
 
  

 
 

2

∑ (4.24)

aerror =
1

Nsustain

asustain − ramp(amax ,amax / 3 )

amax

 
 
  

 
 

2

∑ (4.25)

4.4.3. Results

The time resolutions for the attack (top) and the release (bottom) are showed in figure

4.12. The ‘o’ are the FFT times, and the ‘*’ the LTF times. The errors are shown in figure

4.13 for the amplitude (top) and the frequency (bottom). The plots are made for the mean

of the error of the eight partials.
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Figure 4.12. Time resolution for 4 test signals.
FFT analysis is ‘o’ and LTF analysis is ‘*’.
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Figure 4.13. Amplitude error (top) and
frequency error (bottom) for the FFT analysis ‘o’
and the LTF analysis ‘*’.

The time-resolution for the FFT is about twice the period time, which corresponds well

with the fact that a hamming window of four times the period is used, and the effective

time support is about half the window length. The LTF time resolution is about equal to the

period length, which is about twice as good as the FFT time resolution.

The amplitude and frequency error is generally smaller for the LTF analysis method

than for the FFT-based analysis. The frequency error is relatively constant over the

frequency range. One exception is the 1 kHz test signal, where the LTF analysis performs

badly, probably due to overshot of the short filters, and the FFT performs very well,
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perhaps because the frequencies fall exactly on the frequency bins of the FFT. The LTF

filters are of order 1 and the discontinuity at the slope edges are not well handled by this

method. This is not a problem generally, since real life signals generally are smooth

enough.

4.5. Resynthesis

The additive parameters for four sounds analyzed with the LTF method are shown in

figure 4.14 to figure 4.17.
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Figure 4.14. LTF based additive parameters for
the viola.
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Figure 4.15. LTF based additive parameters for
the piano.
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Figure 4.16. LTF based additive parameters for
the trumpet.
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Figure 4.17. LTF based additive parameters for
the flute.

Visually, the main difference between the LTF parameters and the FFT parameters in

figure 4.1 to figure 4.4 are the noise on the high partials of the flute, and the faster

irregularities in the viola and the trumpet. Furthermore, the LTF analysis does not have any

spurious frequencies, or tracks that are born or die in the middle of the sound. The noise in
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the LTF analysis is present in the additive parameters. The sum of the magnitude of the

analyzing LTF filters is close to one for all frequencies, which guarantees the

reconstruction of the additive noise.

The sounds of the LTF analysis are definitely better than the sounds from the FFT-

based analysis. The main differences are the additive noise in the flute sound, and the more

distinct attack of the piano. Generally, the LTF method seems to render a more realistic

resynthesis. The sounds have more presence, and a greater realism, as compared with the

sounds from the FFT-based analysis. Some of the degradations in the resynthesis can

probably be attributed to the omission of phase information. [McAuley et al. 1986] has

compared the resynthesis with and without phase information. Their conclusions are that

the omission of phase information made the resynthesis different than the original, whereas

the resynthesis with phase information was not. This was more pronounced for low-pitched

voices. They also model noisy speech and found that “the noise took on a tonal quality that

was unnatural and annoying”, if the phase information was not used. Phase has not been

included in this work.

Since phase was used in none of the analyzing methods in this chapter, the conclusion is

still that the LTF analysis performs significantly better than the FFT-based analysis.

The linear time-frequency analysis method seems well adapted for musical sounds.

Because of the looser constraints in the frequency domain, it has a better timing resolution

than the FFT. This timing resolution obviously better models fast transition, but it also

permits the analysis of noise, both variations in the partial amplitude (shimmer) and

variations in the partial frequency (jitter) [Richard et al. 1996]. Its good timing resolution

permits a successful analysis of traditionally difficult phenomena, such as the fast attack of

the piano, and the additive noise in the flute.

4.6. Conclusions

In this chapter, two methods for additive analysis of musical sounds are compared. The

conclusion is that a new method, called linear time-frequency analysis (LTF) performs

significantly better than the classical FFT-based analysis. Details were given for both

methods, and this work presents a new method for the restitution of good frequency

analysis of weak partials for the LTF analysis.

The analysis methods were compared, both the time resolution and the mean square

amplitude and frequency errors were calculated for several test signals for both methods.
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The LTF analysis has twice as good time resolution, with significantly lower frequency

and amplitude errors.

The quality of the resynthesis of the LTF analysis is very good. Even though the partial

amplitude and frequency are averaged over one period, it is virtually impossible to

distinguish between the original and the resynthesized sound. However, some doubt can

still be expressed as to whether the phase should be included in the additive parameters.

More work remains before this issue has been resolved. It seems clear (cf. Chapter 2) that

the ear is sensitive to differences in phase, at least for low frequencies.

The LTF analysis presented in this chapter is used in the following chapters for the

analysis of musical sounds. The FFT-based method is not used in the rest of this work.
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Chapter Five

5. Envelope Modeling

This chapter models the envelope of the partials. The envelope is the evolution over

time of the amplitude of a sound. It is one of the important timbre attributes. A faithful

reproduction of a noiseless sound with no glissando or vibrato can be created using the

individual amplitude envelopes of the additive parameters. Unfortunately, the analyzed

amplitude envelopes often contain too much information to be easily manipulated. A

model of the envelope is therefore necessary.

The envelope model presented here is relatively simple, having only 4 split-points. The

main characteristics of this model is the attack, the sustain or decay, and the release.

Two methods for the extraction of the attack and release times are compared: one

method finds the envelope times by comparing the amplitude with a percentage of the

maximum of the envelope, and a new method developed here finds the envelope times by

analyzing the derivatives of the amplitude. This method performs significantly better than

the classical percent-based method.
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5.1. Introduction

The modeling of amplitude or other time-

varying parameter in discrete time/value pairs

is as old as electronic music. The ADSR

envelope generator, which was introduced

with the first analog synthesizers, divides the

envelope in four steps, Attack, Decay, Sustain

and Release, see figure 5.1. The ADSR

approach relies on an exponential envelope,

which corresponds well with the perceptual

quality of the amplitude.
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Figure 5.1. ADSR envelope.

Generally though, the ADSR model is used only on ‘total’ control parameters, such as

amplitude, or filter frequency, and not on individual additive partials.

The additive parameters have traditionally

been modeled in line segments [Bernstein et

al. 1976]. The idea is that a continuous curve

can be simplified in a series of line segments

and the error, which is the difference between

the continuous curve and the line segment

curve, is negligible. See figure 5.2 for an

illustration of the line-segment approximation.

The crosses indicate the split points and the

original envelope is shown in a dotted line.

The number of line segments is a function of

the maximum error tolerated. There are 8 line

segments in figure 5.2.
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Figure 5.2. Line segment approximation of
envelope.

The envelope of a musical sound has been the object of many studies. [Schaeffer 1966]

proposes a classification of attack genres. [Freedman 1967] models the envelope as

cascading exponentials. [Strong et al. 1967] models the envelope in linear segments

multiplied with a smoothed error. [Tellman et al. 1995] models the envelope with an

attack-decay model including other features, such as tremolo.
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Analysis of the envelope parameters can be used in auditory perception research.

[Gordon 1987] analyses the perceptual attack time of musical tones. [Krimphoff et al.

1994] correlates measured attack times with perceptual input from listening tests.

Physical models of musical instruments show that the decay of a flute tube excited by a

Dirac is an exponential [Ystad et al. 1996]. This is also the case for the guitar (and other

string instruments) [Karjalainen et al. 1993].

The envelope model can be seen as a data reduction of the additive parameters. [Strawn

1980], [Charbonneau 1981] and [Horner et al. 1996] compare different envelope

approximations.

The model introduced in this work combines the intuitive simplicity of the ADSR

model with the flexibility of the additive model. The idea is to model each partial

amplitude as four time/value pairs, here called start of attack (soa), end of attack (eoa),

start of release (sor) and end of release (eor). Furthermore, the interval between each split

point is modeled by a curve the quality of which (exponential/logarithmic) can be varied

with one parameter. The soa, eoa, sor, eor model corresponds to the physical act of

introducing energy into a system for a certain time. The difference between the start and

the end of attack (attack time) and release (release time) is thus the time it takes the system

to settle for this partial. This is the attack-sustain-release type of sound. If instead energy is

introduced only once, such as in the plucked string, and the system is later damped, the

attack-decay-release type of sound is produced. The model presented here models both

types of sounds.

This model does not take into account tremolo or other effects. The sounds are

supposed to be glissando-, vibrato- and tremolo-free, but these effects can be added to the

additive parameters at any time.

This chapter first describes the timing extraction in section 5.2 with two different

methods, and a comparison between the methods. The curve form between the split points

is modeled in section 5.3. The envelope reconstruction is presented in section 5.4 and the

additive parameters are created from the envelope parameters in section 5.5. Some novel

ideas on the sharpening of the envelope are presented in section 5.6 and the chapter

finishes with a conclusion.
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5.2. Timing Extraction

The envelope times are important timbre attributes. The attack time, for instance, is

recognized as one of the most important timbre attributes [Krumhansl 1989], [McAdams et

al. 1995]. The envelope times found here are the start and end of the attack and release.

Two methods have been tested for the extraction of envelope times. The first, here

dubbed the percent method, consists of finding the maximum of the curve to be modeled,

and then finding the first or last time in the curve where the value is above a constant

percent of the maximum. This method has several drawbacks: it is sensitive to noise, and it

doesn’t really model the release time consistently if the sound is of the decay type. For

these reasons, a new method has been developed, called the slope method. Here the attack

and release are found by searching for the maximum and minimum of the derivative of the

curve. The start and end of the attack and release are found by following the derivative

until it is less (more) than a constant value times the maximum (minimum). To reduce

noise sensitivity, the slope method is performed on a smoothed curve, and the times are

followed through the less and less smoothed curve until the unsmoothed case.

5.2.1. Percent Method

The percent method consists of finding the maximum of the curve and then finding the

times where the amplitude is higher than a certain percent. The percent method has been

used in [Krimphoff et al. 1994] to correlate the perceptive dimension attack with the

measured values.

The percents chosen here are 10% for the start of attack (soa) and the end of release

(eor) times, 90% for the end of attack (eoa), and 70% for the start of release (sor).

Given the amplitude of one partial, the soa time is the first time the amplitude is above

10%, the eoa time is the first time the amplitude is above 90%, the sor is the last time the

amplitude is above 70% and the eor time is the last time the amplitude is above 10%.

As can be seen in figure 5.4, the amplitude evolution is quite different for the four

instruments being analyzed. The piano has a relatively fast attack, and a typical decay-

release form, the release occurring when the damper is placed on the strings. It is very easy

to see the release time at circa 500 mS.

Unfortunately, the release times for the piano analyzed with the percent method shown

in figure 5.3 doesn’t correspond very well the times observed in figure 5.4. It is not the
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same for all partials, varying from almost 200 mS for the fundamental to less than 100 mS

for the highest partials in a non-continuous manner.

The times found by the percent method are

plotted in figure 5.3 for the viola, the trumpet,

the piano and the flute. The x-axis is the

partial index, and the y-axis is the time. The

different curves are the split-point times, the

lowest being the soa, followed by the eoa, the

sor, and the highest one, the eor. Only quasi-

harmonic partial times are shown.

The durations of the sounds are easy to

see, it is about 1 second for the viola, 500 mS

for the piano and the trumpet and 3 seconds

for the flute.
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Figure 5.3. Percent times for the viola, the
trumpet, the piano and the flute.

Although it is possible to adjust the

percents so as to find the correct sor time for

one partial, it is impossible to find the good

sor time for all partials with the percent

method, due to the difference in slope in the

decay part.

The trumpet sound has the typical trumpet

evolution, with different attack and release

times for the different partials, the low

partials starting faster and ending later than

the high partials. In fact, there is no constant

soa time as for the flute and the piano, but

more like a continuous slope from circa 10

mS for the fundamental to almost 50 mS for

the highest partial.
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Figure 5.4. Amplitude curves for the viola, the
trumpet, the piano and the flute.

Although the viola, trumpet and flute times are better than the piano times, there is a lot

of noise on the times.

In conclusion, the percent times seem to correspond rather badly with what is observed

in figure 5.4; they are noisy and the piano release times are completely wrong.
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5.2.2. Slope Method

In the slope method, the envelope times are found by analyzing the derivative of the

amplitude of the partial analyzed. The attack is found where the derivative is maximum in

the first half of the sound, and the release is found where the derivative is minimum in the

last half of the sound. In the initial search for times, done on a heavily smoothed envelope,

the extremes of the attack and the release are found when the derivative is a constant

multiplied by the maximum of the derivative. There are two constants, one for the soa, eoa

and the eor, and one for the sor. The first constant, which is close to zero, model a curve

which either starts or ends in zero, or ends in maximum, just after the attack. Therefore, the

derivative is here zero-positive, whereas the sor curve can sometimes be, as in the piano

release, a slow slope to a fast slope, in which case the derivative goes from one negative

value, which indicates sustain, to a larger negative value which indicates release. Therefore

the second constant is larger than the first constant.

The slope method is then; first find the maximum of the derivative, which corresponds

to the middle of the attack, atm

atm = max(
t
envelopesmoothed ) (5.1)

then follow the derivative both backward and forward in time until it is smaller than a

constant multiplied with the maximum of the amplitude. This is the start and end of the

attack. The same is done for the release, although it is here the minimum value of the

derivative that is searched, and the middle of the release, rtm, that is found,

rtm = min(
t
envelopesmoothed ) (5.2)

The principle is illustrated in figure 5.5, where the smoothed envelope (top) and the first

derivative (bottom) are shown for the viola, the piano, the trumpet and the flute. The start

and end of the attack and release are indicated with ‘+’. It can clearly be seen that the

soa/eoa/eor times are much closer to the zero of the derivative, and thus closer to the end

of the slope, whereas the sor time has a larger negative derivative, which permits both the

analysis of attack-decay-release and attack-sustain-release type of sound.
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Figure 5.5. Amplitude and first derivative for the smoothed fundamental of four sounds with
envelope times found with the slope method.

Notably, this envelope analysis method captures the decay release split point of the

piano perfectly. All times seem to be close to the edges of the attack and the release and

the higher constant used in the search for the start of release don’t seem to disturb the non-

decay sounds very much. Of course, the times found in the heavily smoothed case don’t

correspond to the times in the unsmoothed case, and it is thus necessary to ‘follow’ the

times from the smoothed to the unsmoothed envelope.

The smoothing is done by multiplying the FFT of the envelope by the FFT of a

gaussian. The larger the gaussian, the more smoothed the envelope. The method for

following the points from the smoothed to the unsmoothed envelope has been borrowed

from the scale-space theory used in image processing [Lindeberg 1996].

Scale-space is a model of the blur of the images seen at different distances. The blur is

modeled by convoluting the images with a gauss with a variable standard deviation. Large

structures can then be found if the standard deviation is large (images seen at a distance)

and details can be found if the standard deviation is small (images seen at close range).

Many methods developed in the scale-space community could potentially find use in

music informatics research, including the edge-detection following used here, but also top-

point classification [Johansen 1994], deblurring and anisotropic filtering. Deblurring is

used in section 5.6 and anisotropic filtering has been tested in Chapter 3.

The method for following the envelope times from the smoothed to the unsmoothed

case is summarized below.

The local maximums and minimums of the second derivative of the envelope are found,

typically by searching the zero-crossing of the third derivative. This corresponds to the end
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points of a slope, as can be seen in figure 5.6. When the envelope is less smoothed, the

slope is steeper, and the slope points found correspond more to the unsmoothed case. In the

unsmoothed case, there are typically many points, as can be seen in figure 5.7. It is thus

necessary to use enough smoothing steps so the slope points can be followed.
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Figure 5.6. Envelope of smoothed trumpet
fundamental and first three derivatives with the
slope points.
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Figure 5.7. Slope points in different smoothing of
the trumpet fundamental. Unsmoothed (top) to very
smoothed (bottom)

Nevertheless, the times are adjusted after each smoothing step so it doesn’t occur in the

middle of the slope, or in a local minimum. Furthermore, if the slope point is chosen from

many candidates, the closest to the middle of the attack (or release) is selected. This

ensures that the attack and release get shorter in the unsmoothed case, as they should.

The resulting times for the viola, the

trumpet, the piano and the flute are shown in

figure 5.8.

The main difference between these times

and the times found by the percent method in

figure 5.3 is the start of release (sor) times

found for the piano. As can be seen, the sor

times now correspond roughly to the times

that can be seen in figure 5.4. Furthermore, all

times seem less noisy, and the behavior of the

times is clearer now.
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Figure 5.8. Slope times for the viola, the
trumpet, the piano and the flute.

For instance, it is clear now that the flute attack times are shorter for the high partials

than for the low partials.
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The envelope time errors caused by noise in the weak upper partials are not present in

figure 5.8.

5.2.3. Percent vs. Slope

Generally, the times from the slope method seem less noisy than the times found with

the percent method.

It is also obvious when studying in detail the split points from the percent and the slope

method, that the slope method finds split points much closer to the edge of the envelope,

whereas the percent method never falls exactly on the edge. Therefore, the curves between

the split points in the slope method become closer to the natural envelope, whereas the

envelope of the percent method sometimes also contains the ends of the adjoining envelope

slopes. The percent method is also sensitive to higher peaks, or noise, in the middle of the

envelope. This can cause the percent method to indicate that both the attack and the release

are positioned close to such a peak. In conclusion, the slope method seems more accurate

and less noise sensitive than the percent method.

5.2.4. Relative Amplitude (percents)

In the slope analysis, the envelopes have variable amplitudes at the split points as

opposed to the percent method, where the amplitude is a fixed percent of the maximum of

the amplitude of the partial. The variable sor percents permit the modeling of both

sustained or decaying sounds.
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Figure 5.9. Attack (top) and release (bottom) percents for the four instruments.

The relative amplitudes, that is, the split point amplitudes divided by the maximum of

the envelope amplitudes are shown in figure 5.9 for the attack (top) and release (bottom).
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The x-axis is the partial index and the y-axis is the relative amplitude (percents) at the split

points. The two lines in each plot are the start and end percents of each curve (attack or

release).

The trumpet values seem very good, as does the piano attack. The piano release is much

lower, since it is the time of release of the note that has been found where the strings

already have lost some energy in the decay segment. This seems true for all instruments to

a lesser degree, although it is probably caused by the analysis derivative threshold, which

is higher for the release.

5.3. Curve Form

An estimation of the envelope times is now available, but the curve between the

envelope points is not known. The evolution between the envelope points is modeled by a

curve which has parameter defined exponential/logarithmic slope. This curve presumably

models all the curves possible. Obviously, no oscillation or irregularity is modeled, but

these are assumed to be either tremolo or noise. Tremolo is not modeled in this work and

the noise model is presented in Chapter 6.

There are five segments with a curve form for each partial; the start, attack, sustain,

release and end segments.

5.3.1. Curve Model

No hypothesis is made on the slope of the envelope curve between split points. Instead,

the slope is modeled by a curve whose curve form can be set with one parameter.

The curve used for the modeling of the envelope for one segment is

Curves = v0 + (v1 − v0 )(1 − (1 − x)n )
1

n (5.3)

The x value is normalized between zero and one. The value of n is always positive.

Another curve form, which may have a more physical relevance, is the exponential curve,

eCurves = v0 + (v1 − v0)
en ⋅x −1

en − 1
(5.4)

Unfortunately, no resynthesis comparisons have been made between the two curves.

The two curves are quite similar, but the equation (5.4) has the problem of being undefined

when n equals zero.
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The exponential curve is probably

preferable from a physical point of view, but

the curve from equation (5.3) has been used in

the rest of this work.

The form of this curve can be seen in figure

5.10. The slope form changes as a function of

n. When n is close to zero, the curve is

exponential, when n is one, the curve is linear,

and the curve is logarithmic when n is greater

than one. This curve should now be fitted to

the envelopes between the envelope times

found.
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Figure 5.10. Different slopes for the envelope
curve going from 0 to 1.

5.3.2. Language Conventions

The curve forms of the envelopes of many sounds are analyzed in the following

chapters, and in order to understand the analysis, the appellations for the different curve

forms must be clear.

The different curve forms possible are shown in figure 5.11 for the attack (top) and

release (bottom).

The attack, or any positive slope, is said to

be logarithmic when n>1 and exponential

when n<1. The release, or any negative slope,

is said to be exponential when n>1 and

logarithmic when n<1.

Furthermore, an attack with curve form

value n1 is said to be more exponential than

another attack with curve form value n2 if

n1<n2, or more logarithmic if n1>n2.

A release with curve form value n1 is said

to be more exponential than another release

with curve form value n2 if n1>n2, or more

logarithmic if n1<n2.
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Figure 5.11. Possible curve forms for the
attack(top) and release (bottom).
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5.3.3. Curve Fitting

The curve form value n is found by minimizing the least-square error,

Error = Curvet − Envelopet( )2

t =1

N

∑ (5.5)

The curve-fitting problem is nonlinear, and the Levenberg-Marquardt method is used to

solve it.

Implementation details can be found in

[Moré 1977] and an example of the curve

found can be seen in figure 5.12. The curve

value n is 1.8.

The sustain segments that have the same

amplitude at the start and end have no defined

curve form values, which are then random

and often quite large. This is often the case

for the start or end segments as well.

The attack and release segments curve

form values are generally well defined.
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Figure 5.12. Curve Fitting for the attack of the
trumpet fundamental.

The curve form values for the attack, sustain and release for the viola, trumpet, piano

and flute are plotted as a function of the partial index in figure 5.13. The top plots are the

attack curve form values, the middle plots are the values for the sustain, and the bottom

plots are the values for the release.
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Figure 5.13. Curve form values for the slope analysis. Attack (top), sustain (middle) and release
(bottom). Notice the different y scale for the sustain curve form.
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The curve forms are close to linear, sometimes slightly logarithmic or exponential. It is

interesting to observe the evolution of the curve form of the attack for the viola, the

trumpet and the flute, which changes shape from quite logarithmic to quite exponential.

The reason for this is not clear. It doesn’t look very correlated with the amplitude percents

in figure 5.9, and although it seems rather correlated with the envelope times in figure 5.8,

it seems that the higher partials have a more exponential behavior than the lower partials.

5.4. Reconstruction of the Envelope

The envelope can now be recreated by concatenating the envelope segments with the

analyzed envelope times, percents and curve forms.

The envelope consists of five elements, the start segment, attack segment, sustain

segment, release segment and end segment. All envelopes start and end at zero amplitude

by default.

The recreated envelopes of the fundamental of the viola, the trumpet, the piano and the

flute are shown in figure 5.14 for the percent (top) and slope (bottom) based envelope

analysis. The envelope split points are marked with plus signs in the plots.
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Figure 5.14. Original and percents (top) and slope (bottom) fundamental envelope for four sounds.

It can clearly be seen in the piano envelopes that the slope method gives the correct

envelope break times. The percent method missed the attack of the viola due to noise

preceding the attack, and especially the release of the piano, since the decay is not

analyzed well with the percent method. The trumpet end of release percent is rather high,

since the trumpet has been cut off before the end of release.
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5.5. Recreation of the Additive Parameters

The additive parameters can be recreated from the envelope parameters, if each partial

envelope is multiplied by the maximum amplitude of that partial, as found in the spectral

envelope. The frequencies are set to the mean of the original frequencies.

The original, percent and slope additive parameters can be seen for the flute in figure

5.15, for the piano in figure 5.16, for the trumpet in figure 5.17 and for the flute in figure

5.18. The left plot is the original, the middle is the percent parameter plot and the right plot

is the slope parameter plot. The frequencies of the reconstructed additive parameters are

static with the value of the mean of the original analyzed frequencies.
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Figure 5.15. Viola additive parameters. Original (left), percent-based (middle) and slope-based
(right).

0
200

400
600

800
1000

0
1000

2000

3000
4000

5000
0

500

1000

1500

2000

2500

3000

3500

4000

Piano

Frequency Time

A
m

pl
itu

de

0
200

400
600

800
1000

0
1000

2000

3000
4000

5000
0

500

1000

1500

2000

2500

3000

3500

Percent Piano

Frequency Time

A
m

pl
itu

de

0
200

400
600

800
1000

0
1000

2000

3000
4000

5000
0

500

1000

1500

2000

2500

3000

3500

4000

Slope Piano

Frequency Time

A
m

pl
itu

de

Figure 5.16. Piano additive parameters. Original (left), percent-based (middle) and slope-based
(right).

Although it is difficult to distinguish all details here, it is quite obvious that the slope

envelope time analysis improves the reconstruction of the additive parameters

significantly. The slope-based additive parameters do not have the sharp edges that the

percent-based additive parameters have where no segment change should happen. The

slope-based additive parameters also fall closer to the split points in many occurrences,

thereby allowing a better curve fit.

The piano additive parameters look much closer to the original envelope for the slope-

based analysis than for the percent-based analysis.
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Figure 5.17. Trumpet additive parameters. Original (left), percent-based (middle) and slope-based
(right).
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Figure 5.18. Flute additive parameters. Original (left), percent-based (middle) and slope-based
(right).

Obviously, the best method for judging a model of a sound is to recreate the sound by

the parameters of the model chosen. The resynthesis of the viola, trumpet, piano and flute

sounds are very close to the original for both the percent and the slope envelope analysis.

The main omission is the noise of the flute, and a general lack of presence in all sounds.

Even though the percent envelope time analysis performs worse than the slope analysis,

this fact is partially masked by the curve form. Nevertheless, careful listening reveals the

artificial character of the sounds of the percent method, especially in the attack of the flute.

This artificial character of the sound was not discernible with the slope analysis sounds.

Although visually the percent method performs worse in the release, the informal

listening tests mostly revealed problems in the attack.

5.6. Envelope Sharpening

Since the extraction of amplitude envelopes often is the result of an analysis using a

window function, which introduces averaging, the envelope can be assumed to be less

‘sharp’ than the real envelope. A method for sharpening the envelopes would potentially

restore the envelopes to the original form. In image processing, a deblurring technique has

been used for some time [Hummel et al. 1987], [Kimia et al. 1993], [Haar Romeny et al.
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1994], [Mair et al. 1996]. It is based on the assumption that images are blurred by a

convolution with a gaussian. The deblurring is done by multiplying the Fourier domain

signal by an inverse gauss. This increases the high frequency content of the signal.

Although the method is unstable under bad conditions, it has been tested with some

success in image processing.

Initial experiments with deblurring of the envelope are promising. It seems that this

method can be used not only in the estimation of envelope times, but also in the

modification of the additive parameters, perhaps permitting a better synthesis of fast

transients. Furthermore, related methods have been used in time/frequency analysis

[Gonçalvès et al. 1998].

5.7. Conclusion

A model for the amplitude of the additive parameters of a quasi-harmonic sound has

been presented. It is based on four envelope time/value pairs and corresponding curve

forms.

This model represents a ‘clean’ additive parameter set well. By clean is meant that the

frequencies are static and noise-less, and that the amplitudes are noise-less. Furthermore it

is assumed that there is no vibrato, glissando or tremolo.

This work presents a new envelope estimation method based on the analysis of the slope

of the envelope. This method presents significantly better results than a simpler percent-

based model. The estimation of important timbre attributes, such as the attack and release

times, is improved, and the resynthesis of sounds from the slope analysis is better than the

sounds from the percent analysis.

The introduction in this work of a simple intuitive envelope model with variable split-

point amplitudes models both sustained and decaying sounds.

The envelope model with slope analysis of the envelopes can thus be said to model

satisfactorily a harmonic noiseless sound with no vibrato or tremolo. This envelope model

is used in the HLA model in Chapter 6, which also introduces a model of the noise and

irregularities of the envelopes.
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Chapter Six

6. High Level Attributes

In this chapter, the additive parameters found by the analysis presented in Chapter 4 are

further modeled. The assumption that a musical sound fits the envelope model introduced

in Chapter 5, with silence, attack, sustain or decay, release and again silence, is used.

The High Level Attribute (HLA) model is created by extracting meaningful parameters

from the very large additive parameter data set. The parameters of the HLA model can be

divided into amplitude envelope, spectral envelope, frequency, and noise. It can be used to

resynthesize sounds, morph between sounds, or understand timbre features of a sound. The

sounds created from the HLA model are of good quality. The HLA model is the main

timbre model in this work, although it still has too many parameters to permit a

visualization of the timbre attributes of several sounds. This problem is addressed in the

following chapters.
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6.1. Introduction

The additive parameter description is a good model of quasi-harmonic sounds, but it has

a very large, non-intuitive parameter set.

The High Level Attribute term was coined in [Serra et al. 1997]. They state, “from ...

sinusoidal plus residual model higher level attributes such as: pitch, spectral shape, vibrato,

or attack characteristics can be extracted”.

The HLA model introduced in this work can be seen as a data reduction of the additive

parameters. Other data reductions techniques include the Group Additive Synthesis

[Kleczowski 1989], [Eaglestone et al. 1990], [Cheung et al. 1996], where similar partials

are grouped together to improve efficiency. Other means of improving efficiency in the

resynthesis of the additive parameters include the multirate additive synthesis [Phillips et

al. 1996] or the inverse FFT synthesis [Rodet et al. 1992].

The HLA model resembles a new class of speech coders, called sinusoidal coders

[Gersho 1994], and especially the hybrid harmonic coding algorithms [Marques et al.

1994], although the HLA model is designed especially for isolated musical sounds.

Other uses of related methods include [Tellman et al. 1995] who uses envelope time

points to morph between different musical sounds. Back in 1966 [Strong et al. 1966]

synthesized wind instruments with a combination of spectral and temporal envelopes.

[Rodet et al. 1987] use spectral envelopes as a filter with different source models,

including the additive model.

The HLA model models each partial in a few pertinent parameters: the amplitude

envelope, the spectral envelope, frequencies, and noise parameters. The maximum

amplitude defines the spectral envelope, the mean frequency defines the frequency of each

partial, the envelope is based on an attack-sustain-release, or attack-decay-release model

presented in Chapter 5, and finally the irregularity of the partial amplitude and frequency

models the noise of the sound. The HLA model has a fixed parameter size, dependent only

on the number of partials, and the parameters of the HLA model have an intuitive

perceptive quality.

The HLA model can be used to resynthesize the sound, with some or all of the

parameters of the model. In this way, the validity of each parameter of the HLA model can

be verified.
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The chapter starts with an overview of the additive analysis in section 6.2, then the

spectral amplitude model is presented in section 6.3, the frequency model is presented in

section 6.4. An overview of the envelope model is presented in section 6.5 and the noise

model is presented in section 6.6.

Finally a proposed visualization of the HLA parameters is introduced in section 6.7, the

recreation of the additive parameters is presented in section 6.8 and the chapter ends with a

conclusion.

6.2. Additive Parameter Analysis

The additive parameters are analyzed by the LTF analysis method presented in the

analysis chapter.

The additive parameters are smoothed over one period of each sound and only pseudo-

harmonic partials are saved. The good timing resolution of the LTF analysis permits a

better analysis of fast transients, such as the attack of the piano, but it also models better

the noise of the sound. This is used in the noise model, which models the noise as the

irregularity on the amplitude and frequency of the partials.

6.3. Spectral Envelope

The spectral envelope is defined in this work as the maximum amplitude of each partial.

The spectral envelope is very important for the perceived effect of the sound; indeed,

the spectral envelope alone is often enough to distinguish or recognize a sound.

This is especially true for the recognition of vowels, which are entirely defined by the

spectral envelope.

Nevertheless, the spectral envelope alone is not enough to recreate any sound with

realism.

The spectral envelopes for four musical instrument sounds are plotted in figure 6.1. The

y-axis is the amplitude, where the amplitude scales are the same for all four sounds, and

the x-axis is the partial index, which is proportional to the frequency.

Each spectral envelope has a distinct look, although there is almost no formant

structure.
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The viola spectrum has a very irregular

shape, which is probably caused by the

different damping of the modes [Benade

1990]. The piano has some missing (weak)

partials, which are missing because these

modes are annulled due to the hammer impact

position [Hall et al. 1987]. The trumpet has

the typical rising spectrum for the low partials

[Benade 1973]. The flute is a higher pitched

sound and thus naturally it has less energy in

the higher partials.
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Figure 6.1. Spectral Envelope for the viola, the
piano, the trumpet and the flute.

The flattening of the spectral envelope for the high partial index is probably due to

background noise.

6.4. Frequency

The frequency of each partial is modeled as the mean of the frequency for the sustain

part. Most sustained instruments are supposed to be perfectly harmonic. The piano, in

contrast, has inharmonic partial frequencies due to the stiffness of the strings [Fletcher

1964].

The frequencies are best viewed divided

by the partial index as seen in figure 6.2.

The frequencies divided by the partial

index have a constant value for perfectly

harmonic sound, if the partials contain only

the harmonic overtones, as is the case here.

The degree of inharmonicity for the piano is

easy to see. Notice the y-axis scale for the

piano. The high order partial frequencies can

be misjudged due to the presence of noise,

and should not be relied upon.
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Figure 6.2. Frequency divided by the partial
index for the viola, the piano, the trumpet and the
flute.

The presence of inharmonicity in the piano certainly adds a flavor to the sound, and it is

necessary to keep the frequency of each partial, instead of assuming clean harmonic

frequencies.
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6.5. Envelope

The envelope of each partial is modeled in five segments, a start and end segment,

supposedly close to silent, and an attack, sustain segment and release segment. Thus, there

are 6 amplitude/time split points, where the first is (0,0) and the last amplitude also is zero,

since all partials are supposed to start and end in silence. The amplitudes are saved as a

percentage of the maximum of the amplitude, and the times are saved in mS. Furthermore,

the curve form for each segment is modeled by a curve, which has an appropriate

exponential/logarithmic form.

A further development of the envelope analysis can be found in Chapter 5. A short

description of the method used to find the envelope times, percents and curve forms will

nevertheless follow here. The slope method, which was developed in this work, is

necessary for the proper estimation of the attack and release times.

6.5.1. Timing Analysis

The attack and release segments are found

by searching the maximum and the minimum

of the derivative of the amplitude of each

partial, and the start and end of each segment

is found by following the derivative until its

absolute value is below the maximum times a

threshold.

The method can be seen in figure 6.3. Here

the amplitude of the fundamental of the piano

is plotted with its first derivative. The ‘+’

depict the split points. As can be seen, the

start of release threshold is larger than the

other three thresholds.
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Figure 6.3. Envelope (top) and first derivative
(bottom) times for the fundamental of the piano.

This is so the release of the piano and other plucked/damped instruments, which have a

decay/release envelopes can be properly analyzed.

The envelopes are in general too noisy for this analysis, so it is done on a heavily

smoothed envelope.



Chapter 6. High Level Attributes

72

The smoothing ensures that the local minimum of the derivative, as seen in figure 6.3,

do not ruin the analysis.

The envelope times are then followed from the smoothed to the unsmoothed envelope

by a method inspired by the scale-space theory [Lindeberg 1996].

This method succeeds, as can be seen in figure 6.3, to find the proper release time for

the piano sound. The attack has also been properly estimated, even though the derivative of

the amplitude decreases to below zero in the middle of the attack. These fast variations are

not present in the smoothed envelope, which is used for the first estimation of the envelope

times. Again, see the envelope modeling in Chapter 5 for more details.

The perceptually most important envelope parameters seem to be the attack and release

times. These are easily calculated from the difference between the absolute times, and they

are shown in figure 6.4. The top plots are the attack times, and the bottom plots are the

release times.

5 10 15 20
0

100

200

300

viola attack

tim
es

 (
m

S
)

5 10 15 20
0

50

100

150

piano attack

partial index

tim
es

 (
m

S
)

5 10 15 20
0

50

100

150

200

250

viola release

tim
es

 (
m

S
)

5 10 15 20
0

50

100

150

200

piano release

partial index

tim
es

 (
m

S
)

5 10 15 20
0

50

100

150

trumpet attack

tim
es

 (
m

S
)

5 10 15
0

100

200

300

400

flute attack

tim
es

 (
m

S
)

5 10 15 20
0

50

100

150

200

trumpet release

partial index

tim
es

 (
m

S
)

5 10 15
0

20

40

60

80

flute release

partial index

tim
es

 (
m

S
)

Figure 6.4. Attack (top) and release (bottom) times for the viola, the piano, the trumpet and the
flute.

The estimations of the attack and release times are not noiseless, but some observations

can still be made. The release times are normally in the same range as the attack times,

except for the flute, which has very fast release times. The viola attack and release seems

to decrease with frequency, from about 200 mS to 100 mS. The piano has a fairly constant

attack and release time of about 50 mS. The trumpet attack and release times increase with

frequency, from around 50 mS to 150 mS. The flute attack seems to decrease from almost

300 mS to zero for the high partials. These can be misjudged because of the additive noise

present in the flute sound.
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The attack and release times seem rather reliable, and the behavior of these times gives

a lot of information about the musical sound.

6.5.2. Curve Form Analysis

The curve form of each segment is modeled by a curve with appropriate logarithmic or

exponential form. The curve form is usually close to linear, sometimes logarithmic and

sometimes exponential.

The curve used for the modeling of the envelope for one segment is

Curves = v0 − (v1 − v0 )(1 − (1 − x)n )
1

n (6.1)

and the curve form value n is found by minimizing the squared error,

Error = Curvet − Envelopet( )2

t =1

N

∑ (6.2)

The resulting envelopes can be seen in

figure 6.5 (dotted) with the original envelopes

for the fundamental of four instruments. It is

interesting to see the general form of the

viola, the trumpet and the flute, where the

envelope initially rises to a value close to the

maximum, but then weakens slightly and then

rises to the maximum value. This seems to

support the quietest point of the envelope

introduced in [Tellman et al. 1995], although

this parameter has not been judged

perceptually important enough to be included

here.
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Figure 6.5. Original and recreated fundamental
envelope for the viola, the piano, the trumpet and
the flute.

The piano has an irregularity in the attack. This irregularity is also present the attack of

most of the trumpet partials. This effect has not been found in the literature, and it has not

been found necessary to model it in the envelope model, but it is instead modeled in the

noise in the next section.
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6.6. Noise

Although the recreated envelopes in figure 6.5 have the general shape of the original

envelope, it is easy to see that there is a great deal of irregularity left, which is not

modeled. The same holds true for the frequency. The noise on the amplitude envelope is

called shimmer, and the noise on the frequency is called jitter [Richard et al. 1996].

Shimmer and jitter are modeled for the attack, sustain and release segments. The noise is

supposed to have a Gaussian distribution; the amplitude of the noise is then characterized

by the standard deviation. The frequency magnitude of the noise is modeled, as is the

correlation between the shimmer and jitter of each partial and the fundamental.

Other noise models of musical sounds include the residual noise in the FFT [Serra et al.

1990], [Møller 1996] and the random point process model of music noises [Richard et al.

1993] or speech noise [Richard 1994], [Richard et al. 1996]. Models of noise on

sinusoidals include the narrow band basis functions (NBBF) in speech models [Marques et

al. 1994]. In music analysis, [Fitz et al. 1995] have introduced the bandwidth enhanced

sinusoidal modeling. Both models model only jitter, not shimmer. Other analysis of the

noise, and irregularity of the music sounds include the analysis of aperiodicity [McIntyre et

al. 1981], [Schumacher et al. 1990], and the analysis of higher order statistics [Dubnov et

al. 1996], [Dubnov et al. 1997].

6.6.1. Distribution of Partial Noise

Shimmer and jitter are supposed to be normally distributed, and the amplitude is

calculated by the standard deviation. Shimmer is correlated with the maximum amplitude

of the partial, whereas jitter is correlated with the mean of the frequency of the partial. The

shimmer and jitter standard deviations are therefore modeled as a percentage of the value

of the amplitude curve model and the mean frequency,

shimmer = std(
at − ct

ct

) (6.3)

jitter = std(
ft − f 

f 
) (6.4)

a and f are the time-varying amplitudes and frequencies of the partial, |f| is the mean

frequency and ct is the curve found by the envelope model. If the noise magnitude has a

peak above zero frequency, it is assumed to be vibrato, or tremolo, and removed before the

std calculation.
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Resynthesis of the sound with either shimmer or jitter makes it possible to evaluate the

importance of each parameter, and even though shimmer and jitter each add a quality to

the sound, shimmer seems more important, at least for the flute sound. This is probably

because the amplitude model is too simple for the actual amplitude, especially for long

sounds, and not necessarily because shimmer is more perceptible than jitter.

6.6.2. Spectrum of Partial Noise

The spectrum of shimmer and jitter is supposed to be band-limited, and is modeled as

white noise passed through a single-tap recursive filter,

noiset = noiset − a ⋅ noiset −1 (6.5)

The magnitude response of this filter is [Steiglitz 1996],

H( ) =
1

1+ a2 + 2a ⋅cos( )
(6.6)

The filter coefficient a is found by a least-squares fit to the original noise frequency

magnitude response.

The influence of the standard deviation and filter coefficients of the shimmer and the

jitter can be seen in figure 6.6 to figure 6.9. The power spectral density (PSD) [Press et al.

1997] estimation of a single sinusoidal with variable shimmer and jitter parameters is

plotted.
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Shimmer is an additive component in the frequency domain, whereas jitter increases the

bandwidth of the sinusoidal.

When the filter coefficient decreases towards –1 the bandwidth of the sinusoidal

decreases. A filter coefficient of zero gives band-pass noise.

Shimmer has an additive noise quality; the std increase gives the effect of more noise,

and the filter coefficient decrease (toward -1) gives the effect of more band-pass noise.

For jitter, the std increases the noise, which has a different quality than shimmer, more

band-passed it seems, and the noise quality of the filter coefficient decrease goes from an

additive noise to modulating frequency, ending in low-frequency jitter modulation.

6.6.3. Correlation of Partial Noise

The correlation of the shimmer and the jitter is calculated between each partial and the

fundamental. This is done to separate correlated noise from non-correlated noises. Other,

more elaborate models, such as the phase coupling between partials, have not been tested.

The standard deviation, filter coefficient and the correlation for the jitter of the four test

sounds can be seen in figure 6.10. The standard deviation of the jitter, normalized with the

frequency, is shown on top, the filter coefficients in the middle, and the correlation in the

bottom plot. All y scales have been normalized to facilitate comparison.

The shimmer parameters are shown in figure 6.11 with the same disposition of the

parameters.
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Figure 6.10. Partial frequency noise (jitter) parameters. Standard deviation (top), filter coefficients
(middle) and correlation (bottom) for the viola (left), the piano, the trumpet and the flute (right).
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Figure 6.11. Partial amplitude noise (shimmer) parameters for the viola (left), the piano, the
trumpet and the flute (right).

The jitter parameters have some common features for all sounds. The jitter std is very

low for the low strong partials, and rising for the weak upper partials. The filter

coefficients are approaching zero for the high partials. The correlation is falling slowly

with partial index.

There seems to be a noticeable similarity between the two string sounds, viola and

piano, and the two wind sounds, trumpet and flute. Shimmer generally has a lower filter

coefficient, and thus more low-frequency energy, which seems to be caused by mismatch

of the simple envelope approximation. The shimmer std is much higher than the jitter std,

and rising with partial index, except for the trumpet, which has a fairly stable shimmer std.

The shimmer correlation does not seem significantly higher than the jitter correlation, as

should be expected.
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6.6.4. Resynthesis of Noise

The shimmer and jitter noise of each partial is the sum of two filtered noises, one

independent nsi , and one common to all partials, nsc . In order to avoid abrupt changes in

the noise, it is recreated using three envelopes.

The attack noise envelope is a ramp going linearly from zero at the beginning of the

attack, to one at the middle of the attack and again to zero at the end of the attack.

The release noise envelope is similar,

whereas the sustain noise envelope is one in

all of the sustain region going linearly to zero

in the middle of the attack and the release.

The noise envelopes can be seen in figure

6.12. The attack and release noise envelopes

are zero at the split points. This makes sense,

since the error also is zero at the split points.

 The sustain noise, which generally is

much lower than the attack and release noises,

is prolonged into the attack and release

segments to avoid abrupt changes.

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Noise envelopes

time (mS)

am
pl

itu
de

Attack Sustain Release

Figure 6.12. Noise envelopes. Attack and Release
(dashed) and Sustain (solid).

The total shimmer or jitter for partial k and segment s is,

nss ,k = envelope s,k (t) ⋅ s , k ⋅ filters ,k ((1 − c k ) ⋅ nss ,k
i + ck ⋅nss

c) (6.7)

where ck is the correlation coefficient for the partial k and s,k is the standard deviation for

segment s and partial k. The three shimmer segments are now added to the clean envelope

at the appropriate times, and the three jitter segments are added to the static frequency for

the partial. The start and end segments do not have any noise.

6.6.5. Noise Conclusion

The jitter and shimmer are here modeled by a normal distribution with mean zero.

Furthermore the spectrum of the noise is modeled using a simple recursive filter. This

seems to be sufficient in many situations, but it leaves room for improvements. Although

the noise effectively seems to be gaussian, it might not always have the same skewness, or

kurtosis [Press et al. 1997]. Skewness is a measure of the asymmetry of the distribution,
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and kurtosis is a measure of the peakedness of the distribution. Experiments with higher

order moments have not been performed here. [Ystad 1998] finds the distribution of the

source of the flute to be exponential, and offers an algorithm for the construction of an

exponentially distributed noise. [Dubnov et al. 1997] finds the phase coupling to be an

important characteristic of musical instruments. This might be an important addition to the

noise model. It is somehow difficult to judge the quality of the noise of the resynthesis

here, since the amplitude model is not assumed to give an identical shape, and much of the

shimmer noise, or irregularity, originates from this fact.

6.7. HLA Visualization

The HLA set can be divided into 4 groups, the spectral envelope, the frequencies, the

envelope and the noise parameters. The envelope group can be further divided into the

envelope timing, the envelope percents, and the envelope curve forms. The noise can be

divided into the shimmer and jitter standard deviations, the shimmer and jitter filter

coefficients, and the shimmer and jitter correlation.

In total, there are 10 groups, which can be plotted in one figure in 5 rows and 2

columns. The left column has from the top to the bottom the spectral envelope, the

frequencies divided by the partial index, and envelope timing, the envelope percents and

the envelope curve forms. The right column has from the top to the bottom the shimmer

standard deviation, the jitter standard deviation, the shimmer filter coefficients, the jitter

filter coefficients and the shimmer and jitter correlation.

In figure 6.13, figure 6.14, figure 6.15 and figure 6.16 are shown the complete HLA set

for the 4 sounds, viola, piano, trumpet and flute. To improve visibility, only the 16 first

partials are plotted.

The spectral envelope (top left) and the frequencies (second from top left) have only

one curve each. The spectral envelope is plotted in the log domain.

The envelope timing (third from top left) has four curves, the start of attack time ‘o’, the

end of attack time ‘*’, the start of release time ‘x’, and the end of release ‘+’. The percents

(fourth from top left) also have four curves with the same symbols, the curve forms

(bottom left) have 5 curves, the start curve ‘+’ the attack curve ‘o’, the sustain curve ‘*’,

the release curve ‘x’ and the end curve ‘.’. For the sake of clarity, the start curve and the

end curve are dotted.
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The noise attributes generally have 3 curves, attack ‘o’, sustain ‘*’, and release ‘x’, with

the exception of the noise correlation, where the shimmer is ‘o’ and the jitter is ‘*’. The

shimmer std is plotted top right, the shimmer filter coefficient is second from top right, the

jitter std is third from top right, the jitter filter coefficients are fourth from top right, and

the noise correlations are plotted bottom right.
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Figure 6.13. Complete HLA set for the viola
sound.
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Figure 6.14. Complete HLA set for the piano
sound.

The viola has a quite irregular spectral envelope, with much energy in the high partials.

The frequencies seem perfectly harmonic. The estimation of the envelope parameters

seems stable; the attack and release times decrease with frequency, as does the end of

release percents. This is an indication of the faster decay of the higher partials. The attack

curve form seems to change from logarithmic for the low partials, to exponential for the

high partials.

The shimmer std increases with frequency, whereas the jitter std is rather stable. The

shimmer filter coefficient is close to -1 for the fundamental, rising towards zero for the

high partials. The filter coefficients are higher for the high partials, it seems, because of the

shorter duration of these partials. The short partials have by definition a better curve fit,

which translates into a low shimmer filter coefficient. The jitter filter coefficients are more

stable. The correlation is decreasing slightly for both the shimmer and jitter for the viola

sound.

The piano spectral envelope has a weak formant at the eighth partial. The frequencies

are stretched, the envelope times rather stable. The end of release percents is much lower

than the end of attack percents due to the decay slope of the envelope and falling with the

partial index. The attack and release shimmer is rather high, with a relatively low filter
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coefficient for the attack segment, indicating fast irregularities. The jitter correlation is

lower than the shimmer correlation for the piano.
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Figure 6.15. Complete HLA set for the trumpet
sound.
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Figure 6.16. Complete HLA set for the flute
sound.

The trumpet has a strong formant at around the fifth partial. The frequencies are

harmonic. The attack and release times increase considerably with the partial index for the

trumpet. This is part of what gives the characteristic trumpet sound [Risset 1965]. The

percents are very close to one for all partials, which proves the validity of the envelope

times. There is not much noise in the trumpet partials, although the attacks of the first few

partials have more high frequency noise, which can be seen by the high std of the first

partials and the relatively high values of the attack filter coefficients.

The flute has few strong partials. The frequency of the strong partials is harmonic, and

the other frequencies are noisy. The envelope times are difficult to see, since the flute

sound is so long. The percents decrease with frequency. There is rather much shimmer in

the flute sound, indicating more additive noise, although the shimmer filter coefficient is

close to -1, which is more an indication of envelope curve misfit. The jitter correlation is

rather low for the flute.

In conclusion, the HLA parameters give important information about the sound they

derive from. The spectral envelope, the length, the attack and release characteristics and

the noises are easily seen in the HLA visualization, or compared with other sounds.

6.8. Recreation of the Additive Parameters.

The additive parameters are recreated from the HLA by first creating clean amplitudes

with the envelope model presented in section 6.5 and frequencies with the frequency
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model presented in section 6.4, and then adding the noise on the parameters as explained in

paragraph 6.6.4. The noise is added in the attack, sustain and release segments. There is no

noise in the start or end segments, since they are assumed to be silent.

The original and recreated additive parameters for 4 sounds can be seen in figure 6.17

(viola), figure 6.18 (piano), figure 6.19 (trumpet) and figure 6.20 (flute). The left plots are

the original LTF analyzed additive parameters and the right plots are the HLA model

recreated additive parameters.
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Figure 6.17. Original and MDA recreated additive parameters for the viola.
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Figure 6.18. Original and MDA recreated additive parameters for the piano.

The visual shape of the additive parameters is well preserved, obviously without having

an identical form. The noise part of the parameters is random, so it is never two times the

same sound, or the same visual shape. Some differences in the noises are nonetheless clear.

This might be explained by the simple filter model of the noise, or by an incomplete

description of the noise distribution.



Chapter 6. High Level Attributes

83

0
100

200
300

400

0
1000

2000

3000

4000

5000
0

500

1000

1500

2000

2500

Trumpet

Frequency Time

A
m

pl
itu

de

0
100

200
300

400

0
1000

2000

3000

4000

5000
0

500

1000

1500

2000

2500

Trumpet HLA

Frequency Time

A
m

pl
itu

de

Figure 6.19. Original and MDA recreated additive parameters for the trumpet.
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Figure 6.20. Original and MDA recreated additive parameters for the flute.

The resynthesis of the sounds from the HLA permits the evaluation of the validity of the

HLA model. Generally, the HLA model is good for the synthesis of musical sounds. The

pitch, loudness and duration are recreated flawlessly, as is most of the timbre attributes.

The sounds are always identifiable although always different from the original sounds. The

quality of the HLA model resynthesis is generally very good, and typical features, such as

formants, noise, or sharp attacks are always present in the resynthesis.

Although the HLA model is sensitive to bad fundamental estimation and bad curve

fitting, which tends to increase the noise factor [Marques et al. 1994], this does not seem to

be a serious problem. The quality of the HLA is also degraded, if there is vibrato or

tremolo in the original sounds. This translates into noise in the HLA model.
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6.9. Conclusion

This work presents a new model of musical instrument sounds. The HLA model models

the additive parameters in a few intuitive parameters: the spectral envelope, amplitude

envelope, mean frequency, and noise.

The HLA model is well suited for isolated sounds. It does not model vibrato, tremolo or

glissando, which are supposed to be user-provided, that is, performance expressions.

Listening tests presented in Chapter 12 show that musical sounds are resynthesized well

with this model. Furthermore, the HLA model parameters help in the understanding of

timbre and the perceived difference of sounds. Important timbre cues, such as the spectral

envelope, the envelope timing, and the noise are easily extracted and visualized from this

model.

The HLA model, as implemented here, permits an automatic analysis/synthesis of

musical sounds with a small parameter size. The fixed parameter size of the HLA model is

helpful when comparing sounds, or when timbre morphing is performed. However, the

HLA model does not permit the visualization of a single timbre attribute, such as the attack

time, for many sounds. Therefore, the HLA model is further simplified in the next

chapters.
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Chapter Seven

7. Spectral Envelope Model

The spectral envelope is here defined to be the maximum amplitude of the quasi-

harmonic partials of a sound. This chapter presents a model of the spectral envelope, based

on some perceptually meaningful attributes. These attributes are calculated on the quasi-

harmonic components of the original spectrum. In the reconstruction, a new spectrum is

created with the same attribute values as the original spectrum.

This model, using perceptive attributes, is valid for non-formantic sounds. Initial

listening tests have confirmed the validity of the model.

The purpose of this work is to create a stable analysis/synthesis method of the spectral

envelope, using a few intuitive parameters.

When interpolating from one spectral envelope to another, the spectral envelope model

permits in theory the displacement of important timbre features, instead of the lowering of

one feature and the increasing of the other.
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7.1. Introduction

This chapter models the spectral envelope of musical sounds. The spectral envelope is

defined as the maximum of the amplitudes of the quasi-harmonic overtones. Based on the

spectral envelope, a few perceptually important parameters can be calculated, and used for

the subsequent recreation of a synthetic spectral envelope with the same perceptual timbre.

Furthermore, these parameters can be calculated for a time-varying spectrum, and a

synthetic spectrum can be recreated with the same time-varying perceptual values. The

parameters of the spectral envelope model are the brightness, tristimulus, odd value,

irregularity and maximum amplitude.

The spectral shape of a sound is often modeled by a source/filter strategy. This is the

case when modeling speech [Klatt 1980], where the source generally is divided into a

voiced part, which is defined by the dB/octave slope, and a noise part. The filter is

generally a number of resonators, which corresponds to the formants of speech. More

accurate source models for the voiced part of the speech have been introduced in for

instance [Fant et al. 1985] and [Veldhuis 1998]. Often the filters are modeled by the linear

predictive coding (LPC) [Rabiner et al. 1978]. Several papers use the spectral envelope as

the filter part [Strong et al. 1966], [Rodet et al. 1987], [Rodet et al. 1992], [Horner et al.

1995].

In music research, the spectral envelope is often created by a non-linear function, such

as frequency modulation (FM) [Chowning 1973], and a great number of similar techniques

[Arfib 1978], [le Brun 1979], [Mitsuhashi 1982], [de Poli 1984], which, while generating

complex spectra with low processor cost, generally lacked both analysis techniques, and

intuitive control. Many attempts have been made to match the parameters of a processor-

effective algorithm, such as the FM, to the parameters of an acoustic sound. [Beauchamp

1982] used the brightness to match the FM parameters, while [Horner et al. 1993] used

genetic algorithms for the same task. This doesn’t make the underlying parameters more

intuitive, however. [Ystad et al. 1996] matched additive parameters to a waveguide model

parameter, which permits a greater intuitive understanding through physical parameters.

[Moorer 1976] introduced the discrete summation formulas, which are here called the

brightness creation function. The easy calculation and recreation of brightness with these

formulas, presented in this work, have not been found in the literature.
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The chapter starts with a definition of the spectral attributes and the calculation

formulas for the parameters used in the model in section 7.2. A brightness creation

function in the additive and the time domain is presented in paragraph 7.2.2. The spectral

envelope model is presented in section 7.3, along with the recreation of the spectral

envelope in paragraph 7.3.5. The time-varying spectral envelope is presented in section

7.4. An initial study of a formant model is presented in section 7.5, and finally there is a

conclusion.

7.2. Analysis of Perceptive Attributes

The spectral envelope is here defined as the maximum amplitudes of the harmonic

additive parameters. The spectral envelope is an important attribute of the timbre of a

sound [McAdams et al. 1995].

Figure 1 shows the spectral envelope for

four typical musical sounds. It has, as can be

seen, some features visible to the eye, such as

the slope of the envelope and the irregularity

of the spectrum. It also has a noticeable noise

floor for some of the sounds, but this

influences neither the analysis, nor the

perception of the sound.

The trumpet has a strong resonance located

around the fifth partial. It is shown in this

work that the spectral envelope model

presented here can model low partial

resonances (formants).
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Figure 7.1. Spectral Envelope for the viola, the
piano, the trumpet and the flute.

The parameters of the spectral envelope model are found by analyzing the spectral

envelope. The additive parameters are found using the linear time/frequency (LTF)

analysis method presented in Chapter 4. Only the quasi-harmonic partials are saved. The

amplitudes and frequencies of the analysis areak ,t  and f k,t , where k is the partial index and

t is the time index. When the time index is omitted, the spectrum is supposed to be static.

The static spectral envelope is here calculated as the maximum amplitude of each quasi-

harmonic partial.
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7.2.1. Brightness

Brightness is calculated as the spectral centroid, [Beauchamp 1982], which is correlated

with the subjective quality brightness [McAdams et al. 1995]. The brightness is calculated

as

brightness = ( kak
k =1

N

∑ ) / ak
k =1

N

∑ (7.1)

A closely related attribute is sharpness [von Bismarck 1974b], which, like the

brightness, correlates with the perception of brightness. If the partial multiplication k is

replaced with the frequency of the partial, the brightness is expressed in Hertz. For

harmonic sounds, this is equivalent to multiplying the partial index brightness with the

fundamental. The partial index brightness is used in the rest of this work, if nothing else is

stated. Other calculations of brightness can be done with the square amplitudes, with the

log amplitudes, with real frequencies, instead of overtone index, as stated above, or with

bark scale [Sekey et al. 1984] frequencies.

A good function to create additive parameters with a given brightness is,

ak = B−k (7.2)

The brightness of equation (7.2) has a simple expression, if the number of partials is set

to infinity,

brightness =
k ⋅ B−k∑

B−k∑
=

B

B −1
(7.3)

Brightness is thus infinity when B is 1 and decreasing when B is increasing. The value

B is easy to calculate, if a given brightness Tb is researched,

B =
Tb

Tb −1
(7.4)
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The amplitudes found with the equation

(7.2) have been calculated for the 4 sounds in

figure 7.1. Only the quasi-harmonic partials

have been included, and the x-axis is the

partial index. The resulting curves are shown

in figure 7.2. The brightness is indicated with

a ‘*’ at the x-axis.

The synthetic spectral envelope, recreated

with the brightness only, restitutes much of

the sound, but brightness alone is generally

not enough to model a sound.
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Figure 7.2. Spectral envelope for the viola, the
piano, the trumpet and the flute with simple
brightness matched curve. The brightness of each
sound in marked with a '*'.

7.2.2. Time domain Brightness Function

Incidentally, the brightness function in equation (7.2) can be found in the time domain.

This is done by setting the amplitudes as Diracs on the harmonic frequencies,

sB( ) = B ⋅ B−k

k =1

∞

∑ (Dirac( − k 0 ) + Dirac( + k 0)) (7.5)

and taking the inverse fourier transform on that. The resulting time domain function is,

after simplifications,

sB( t) =
1

⋅
Bcos( 0t) −1

B−1 + B − 2 c o s ( 0t)
(7.6)

This function can easily be implemented with low processor cost. The time domain

brightness function for a fixed brightness is shown in figure 7.3 (top), with the

corresponding frequency magnitude (bottom). It is clear that this function has the

characteristic linear frequency slope in the log amplitude domain. The resulting brightness

for the equation (7.6) is given in equation (7.3). The value of B is found using equation

(7.4). This is thus a very easy way of creating a time domain signal with a given

brightness. The function given by the equation (7.6) is here called the brightness creation

function (BCF). The BCF is equivalent to the discrete summation formulas presented in

[Moorer 1976], which also gives the formulas for non-infinite summation, and for two

sided spectra. [Moorer 1976] did not make the important connection between the discrete

summation formulas and the brightness presented here.
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The time domain signal for a varying brightness, going from 1 to 10 is shown in figure

7.4. The signal for brightness close to 1 is approximating a sinusoidal, as it should.

0 20 40 60 80 100 120 140

0

0.5

1

time (mS)

am
pl

itu
de

0 1000 2000 3000 4000 5000 6000 7000 8000
100

101

102

103

frequency (Hz)

Figure 7.3. Time domain (top) and frequency
domain brightness function. The partial index
brightness is set to 3.0.
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Figure 7.4. Time domain brightness function
with variable brightness going from 1 to 10.

The time domain brightness function can of course be used to recreate a sound with a

given (time varying) brightness, amplitude and frequency. For this, equation (7.6),

multiplied with the amplitude, is used. The sound resulting from the BCF synthesis is of

good quality, although rather clean, and missing the roughness and noise of the original

sounds.

This function is considered here as very promising, if it is subsequently filtered to

obtain the correct tristimulus and odd values, it could be a very cheap way of creating

realistic musical sounds. The sum of several non-infinity summations could also improve

the resynthesis quality. The BCF could be used as a source signal in both musical and

speech sounds.

The BCF can give aliasing effects, if the brightness and/or the fundamental frequency

are high. The aliasing are high partials above the nyquist frequency (sample rate/2) which

are folded back into the audible spectrum. Although the aliasing might not be a problem in

most cases, since the partial index brightness generally decreases with the fundamental

frequency of a sound, if the BCF is to be put in use, the aliasing problem must be solved.

No aliasing has been detected for the few sounds, which have been resynthesized using the

BCF.
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To verify whether a sound is causing aliasing effects, the amplitude of the partial at the

nyquist frequency must be known. The amplitudes above this are all weaker than this

amplitude.

The amplitude of the k partial is,

ak = B−( k −1) (7.7)

and the partial index at the nyquist frequency is,

knyquist =
samplerate / 2

f0

(7.8)

Aliasing does not occur, if the amplitude of the partial at the nyquist frequency is low,

anyquist = B
−( k nyquist −1) < (7.9)

When analyzing anyquist  for some instruments, it seems that the violin has a much higher

value than other instruments (piano, clarinet, flute and soprano). The value of anyquist  is

rather constant for an instrument, regardless of fundamental frequency. It is around 10-9 for

the piano, 10-3 for the violin, 10-5 for the clarinet and the flute, and 10-7 for the soprano

voice. This would mean that the amplitude at the hearing limit of a musical instrument is

constant, regardless of fundamental frequency.

In conclusion, the BCF could probably be used for most musical sounds without

disturbing aliasing effects.

Nevertheless, in some situations, the

aliasing must be prevented. The spectrums

from the BCF for 4 different brightness are

shown in figure 7.5. The fundamental is 200

Hz, and the sample rate is 32 kHz. Aliasing

occurs when the brightness value is above

about 10.

The aliasing could be prevented by taking

the non-infinite sum of terms in equation (7.5)

as proposed in [Moorer 1976]. The B term in

equation (7.4) would then have to be

recalculated.
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Figure 7.5. Resulting spectrum of the BCF for 4
signals with fundamental 200 Hz and sample rate 32
kHz. Brightness 2 (top), 4, 8 and 16 (bottom).
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Other techniques exist to do this, for instance, by bandlimiting the signal [Stilson et al.

1996]. This would prevent the BCF from having energy above the nyquist, regardless of

brightness or frequency.

Although the time-domain BCF is very promising, for several reasons the timbre

models used here are all modeled in the additive domain. No further use of this time-

domain function is made in this work, but it could often replace the additive parameters

with little or no loss of quality.

In conclusion, a time domain brightness creation function (BCF) has been presented.

The spectrum of the BCF is linear in the log amplitude domain, and the brightness is easily

calculated from, or given to the function. The combination of the BCF and dynamic filters

could potentially create realistic musical instrument synthesis.

7.2.3. Tristimulus

The tristimulus values have been introduced in [Pollard et al. 1982] as a timbre

equivalent to the color attributes in the vision. The tristimulus is used in [Pollard et al.

1982] to analyze the transient behavior of musical sounds. Other uses of the tristimulus

includes the classification [Kostek et al. 1996], and the analysis of source spectrum of the

flute [Ystad 1998]. The tristimulus are here defined as,

tristimulus1 =
a1

ak
k = 1

N

∑
(7.10)

tristimulus2 =
a2 +a3 + a4

a k
k =1

N

∑
(7.11)

tristimulus3 =
ak

k =5

N

∑
a k

k =1

N

∑
(7.12)
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It is best plotted in a diagram where

tristimulus 2 is a function of tristimulus 3. In

such a diagram, the three corners of the low

left triangle denote strong fundamental, strong

mid-range, and strong high frequency partials.

The tristimulus diagram can be seen in figure

7.6 along with the tristimulus for four musical

instruments.

Notice that the sum of the three tristimulus

equals 1. It is necessary only to use 2 out of

the 3 tristimulus. Tristimulus 1 and 2 are

saved.
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Figure 7.6. Tristimulus values for four sounds.

7.2.4. Odd/Even Relation

The odd/even relation is well known from for instance, the lack of energy in the even

partials of the clarinet [Benade et al. 1988]. To avoid too much correlation between the

odd parameter and the tristimulus 1 parameter, the odd parameter is calculated from the

third partial,

odd = ( a2 k −1)/ a k
k =1

N

∑
k =2

N / 2

∑ (7.13)

even = ( a2 k) / ak
k =1

N

∑
k = 1

N /2

∑ (7.14)

Since tristimulus 1 + odd + even equals 1, it is necessary only to save one of the two

relations. The odd parameter is saved.

7.2.5. Irregularity

Several studies have pointed at the importance of the irregularity of the spectrum

[Krimphoff et al. 1994]. Irregularity is defined in [Krimphoff et al. 1994] as the sum of the

amplitude minus the mean of the preceding, same and next amplitude,

irregularity = ak −
ak −1 + ak + ak +1

3k = 2

N −1

∑ (7.15)
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although in the log10 domain. In this paper, an alternative calculation of the irregularity is

used, where the irregularity is the sum of the square of the difference in amplitude between

adjoining partials,

irregularity = ( (ak − ak +1)2 )/ ak
2

k =1

N

∑
k =1

N

∑ (7.16)

and the N+1 partial is supposed to be zero. The irregularity value calculated in this way is

most often, although not always, below 1. It is by definition always below 2.

Changing irregularity definitely changes the perceived timbre of the sound.

Irregularity changes the amplitude relations in the same tristimulus group. Since the

tristimulus 2 value is large, this is where irregularity has the greatest influence.

The change of irregularity translates therefore principally into a change in the ratio

between the second and the fourth partial amplitude. The third partial is fixed by the odd

value.

The spectral envelope for 4 different

values of the irregularity is shown in figure

7.7. The values of the brightness (5), the odd

(0.3), and the tristimulus 1 (0.25) and 2 (0.5)

are kept at the same value for all 4 plots. The

perceived effect of the different values of the

irregularity is rather big.
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Figure 7.7. Spectral Envelope for four different
irregularities, 0, 0.1, 0.4 and 0.7. Brightness=5,
tristimulus 1=0.25, tristimulus 2=0.5, odd=0.3.

7.3. Spectral Envelope Model

This section presents a method of recreating N synthetic amplitudes, whose form,

judged by the perceptual attributes, is similar to the original spectrum. The spectral

envelope is modeled by the attributes presented in section 7.2; brightness, tristimulus1,

tristimulus2, odd and irregularity. There are 5 attributes and N amplitudes. N is assumed to

be greater than 5. There is thus an infinity of solutions. To limit the number of solutions,
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the 5 to N upper harmonic components are set to an exponentially decreasing amplitude,

and the 4 first harmonic components are then found.

The 4 perceptual attributes, omitting for the time the irregularity, are used,

Tb = brightness = ( kak
k =1

N

∑ ) / ak
k =1

N

∑ (7.17)

T1 = tristimulus1 =a1 / ak
k =1

N

∑ (7.18)

T2 = tristimulus2 = (a2+a3 + a4 ) / ak
k =1

N

∑ (7.19)

To = odd = ( a2k −1 )/ ak
k =1

N

∑
k = 2

N / 2

∑ (7.20)

7.3.1. The High Harmonic Components

In order to limit the number of solutions, the high harmonic components are set,

ak = B−k ,k = 5,7,.., N (7.21)

ak = koB
− k ,k = 6,8,.., N (7.22)

where B is the brightness coefficient, and ko  is the odd coefficient. If the spectrum were to

be defined by the formulas (7.21) and (7.22), although with the index k ranging from 1 and

2 respectively, B and ko  are calculated to be,

B =
Tb

Tb −1
(7.23)

ko = (B + B2 −1)
To

1 − To

(7.24)

The low harmonic components are then easily found as explained in 7.3.2, but,

unfortunately, the resulting low amplitudes are sometimes negatives, as shown in 7.3.3.

Another estimation of B and ko  is then necessary to find positive amplitudes.

7.3.2. The Low Harmonic Components

Given the equations (7.21) and (7.22), the equations (7.17) to (7.20) can now be

rewritten in the matrix form,



Chapter 7. Spectral Envelope Model

96

T1 −1 T1 T1 T1

T2 T2 − 1 T2 −1 T2 −1

Tb − 1 Tb − 2 Tb − 3 Tb − 4

To To −1 To To −1

 

 

 
 
 

 

 

 
 
 

×

a1

a2

a3

a4

 

 

 
 
 

 

 

 
 
 

=

T1koB
−(2 k −1) +

k =3

N

∑ T1B−2 k

k =3

N

∑

T2 koB−(2 k −1) +
k = 3

N

∑ T2B
−2 k

k =3

N

∑

(Tb − (2k −1)) koB−(2 k −1) +
k =3

N

∑ (Tb − (2k −1))B−2 k

k = 3

N

∑

TokoB−(2 k −1) +
k =3

N

∑ ToB
−(2 k )

k =3

N

∑

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

(7.25)

There are now 4 equations with 4 unknown, which are the amplitudes a1 to a4. The

solutions for the amplitudes are, if N equals infinity, and after simplifications,

a1 =
(1+ koB)T1

B4(1− B2 )(T1 + T2 −1)
(7.26)

a2 =
(1 + koB)(4 − 3T1 − Tb − To + B2 (−6 + 5T1 + 2T2 + Tb + To ))

2B4(B2 − 1)2(T1 + T2 − 1)
(7.27)

a3 =
To + koB(1 − T1 − Tb − To)

B4(B2 − 1)( T1 + T2 −1)
(7.28)

a4 =
−4 + 3T1 + 2T2 + Tb − To + B2 (6 − 5T1 − 4T2 − Tb + To )

2B4(B2 − 1)2(T1 + T2 − 1)

+
koB(−2 + T1 + Tb − To + B2(4 − 3T1 − 2T2 − Tb + To ))

2B4(B2 − 1)2(T1 + T2 − 1)

(7.29)

Unfortunately, the solutions sometimes have negative values, dependent on the initial

values of B and ko . The next paragraph will find B and ko  which will always give positive

amplitudes.

7.3.3. Finding the Positive Range

The four low harmonic component amplitudes given by equations (7.26) to (7.29)

always have a solution, but unfortunately, the solution sometimes gives negative values to

one or more of the amplitudes. This problem can be solved by choosing the coefficients B

and ko so that the first four amplitudes are positive.

By analyzing the amplitude equations (7.26) to (7.29), it is found that a1 is always

positive, a2 and a3 are positive when B is smaller than lim2 and lim3 respectively, and a4  is

positive when B is greater than lim4. The solutions for lim2, lim3 and lim4 are found by
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setting the corresponding amplitude to zero and isolating B. The limits are a function of T1,

T2, To and Tb which are known, and ko which is unknown.

The range of B for positive a1 to a4 is,

Brange(ko ) = [lim4,min(lim 2,lim 3)] (7.30)

The solutions to the limits lim2 and lim3 are,

lim2 =
−4 + 3T1 + Tb + To

−4 + 3T1 + Tb + To − −6 + 5T1 + 2T2 + Tb + To

(7.31)

lim3 =
To

ko (T1 + T2 + To − 1) + To

(7.32)

The solution for lim4 is too long to be written here, but it is easily found using, for

instance Mathematica [Wolfram 1996]. The range of B can of course be empty, in which

case ko is swept until a positive range is found. This gives a multitude of possible solutions,

one of which must be chosen. The choice is made using the irregularity function, as shown

in paragraph 7.3.4.

7.3.4. Finding Best Irregularity

The irregularity is the normalized square difference between the amplitudes of the

partials. Of course, some irregularity originates from the brightness and the odd value,

which gives a minimal value to the irregularity, but higher irregularity can be found by

changing the values of B and ko  in equations (7.26) to (7.29).
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Figure 7.8. a(1) to a(4) in Brange.
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Figure 7.9. The irregularity) in Brange.

The irregularity is used to choose the values of B and ko, but the different irregularity

values also change the perceived effect of the sound.
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With the results for the amplitudes in the preceding paragraphs, the irregularity can now

be calculated for a given B and ko. The goal is to find B and ko that gives a wanted

irregularity. Unfortunately, it is not possible to solve the irregularity equation, so B is

swept over Brange for a number of ko until the irregularity is correct. The irregularity form in

Brange can be seen in figure 7.9. The correct irregularities are shown with ‘*’. There can be

0, 1 or 2 correct irregularities. If there is no solution, Brange is swept for a new ko. If there is

one solution, it is chosen. If there are 2 solutions, the solution closest to the middle is

selected, since that would be the solution if there were only one correct irregularity. There

are two solutions in figure 7.9, and the left solution is selected. ko is swept, starting from 1,

alternatively increasingly lower and higher than 1, until a solution is found.

7.3.5. Recreation of Spectral Envelope

With the B and ko found, the synthetic amplitudes are now created, using the formulas

(7.21), (7.22) and (7.26) to (7.29).

Since the spectral envelope parameters are not orthogonal, there are values that do not

have a solution. These are generally the result of analysis of very low amplitudes, or the

result of modifications of the spectral envelope parameters. If no solution is possible, the

values of T1, T2, and To are slowly approached to a normalized value, and the spectral

envelope creation is iterated until a solution is found. The default values of T1, T2, and To

are the values these parameters would have in a clean BCF.

The synthetic spectral envelopes, which

are here multiplied by the maximum of the

original amplitude, can be seen in figure 7.10.

The sounds created from the spectral

envelopes in figure 7.10 are very close to the

original sounds from figure 7.1. Notice that

the model of the spectral envelope is able to

recreate the low formantic structure in the

trumpet sound. The noise floor of the piano

and the viola is of course not recreated, but

this doesn’t matter since it doesn’t add to the

sound quality, these partials being too low to

be perceivable.
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Figure 7.10. Synthetic spectral envelopes for the
viola, the piano, the trumpet and the flute.
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The resulting brightness of the modeled spectral envelope is always a little low, since

there is a finite number of partials, and the model has been created with an infinity of

partials. This could probably be adjusted, but the change in brightness is generally very

small and it has not been judged to have any perceptual effect.

In conclusion, a spectral envelope model has been presented. It has a fixed parameter

size. The parameters of the model permits a faithful recreation of the amplitudes from

which the model parameters were found, including low formantic structures.

7.4. Time Varying Spectral Envelope

The spectral envelope model parameters can be calculated for the time-varying

spectrum, and the synthetic time-varying amplitudes can be created from these parameters.

This is a good test of the stability of the solution, and moreover, it permits listening to

complete sounds, where a judgment can be made on, for instance the attack segment.

The time varying spectral envelope model parameters for the four test sounds can be

seen in figure 7.11 for the viola, in figure 7.12 for the piano, in figure 7.13 for the trumpet

and in figure 7.14 for the flute. The top left plot is the brightness, the top right plot is the

tristimulus, the bottom left plot is the odd, and the bottom right plot is the irregularity. The

tristimulus is plotted only for the times where the amplitude is above 10 percent of the

maximum amplitude. There is no time axis for the tristimulus, where tristimulus 2 is

plotted as a function of tristimulus 3, but the time can be followed from the start ‘+’ to the

end ‘o’.
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Figure 7.11. Time varying spectral envelope
parameters for the viola.
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Figure 7.12. Time varying spectral envelope
parameters for the piano.
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Figure 7.13. Time varying spectral envelope
parameters for the trumpet.
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Figure 7.14. Time varying spectral envelope
parameters for the flute.

The spectral envelope parameters seems rather stable in the sustain part of the sound.

The trumpet has much higher brightness in the middle of the sound than in the

beginning and end of the sustain, even though the amplitude is rather stable throughout the

sustain. The flute also has this behavior, although not as pronounced. The viola and the

piano have falling brightness with time. These observations are made on the non-zero

amplitude times, as observed in figure 7.15.

The viola has a lot of tristimulus variations, but most of this probably occurs in the

attack. The trumpet has almost no tristimulus 1 and the flute has no tristimulus 3. The

trumpet has a relatively high odd value, and the flute has a low odd value. The viola has a

very high irregularity where the trumpet has a very low irregularity.

The recreated spectral envelope is

normalized, and then multiplied by the time

varying maximum amplitude of each sound,

which can be seen in figure 7.15.

The amplitudes are rather smooth and

stable in the sustain part of the sound for all

instruments. This is not the amplitude of the

fundamental or any one partial, but the

maximum amplitude of all partials at each

time segment. Nevertheless, many

observations can be made from figure 7.15.
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Figure 7.15. Time varying amplitude of the four
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(bottom).
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The viola has a relative slow attack and release, the piano has a rather fast attack and a

decay slope. The trumpet attack is faster than the release, whereas the flute attack is much

slower than the release. The flute has a pronounced irregularity (shimmer) on the

amplitudes. This probably originates from the additive blowing noise of the flute. The

additive noise is also present in the spectral envelope model parameters for the flute.

The recreated additive parameters of the spectral model parameters created from four

sounds are shown in figure 7.16. The spectral model parameters have been calculated and

the spectral envelope has been recreated for each time frame. The frequencies have been

modeled using a simple model with the fundamental frequency and the inharmonicity for

each time frame. More details on the frequency model can be found in Chapter 3.

The resynthesized sounds keep the realism of the original sounds, and are generally

very hard to distinguish from the originals, although the noise is not modeled perfectly

with this model. Including the tristimulus, the odd and the irregularity certainly improves

the sound quality from the quality of the sounds created with the BCF in paragraph 7.2.2.
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Figure 7.16. Original (top) and spectral envelope model (bottom) recreated additive parameters for
4 sounds, viola, piano, trumpet and flute.

The parameters of the spectral envelope model seem to recreate a stable spectral

envelope for all the time frames. The sound quality of the spectral model resynthesis with

frequencies using a simple model is significantly better than the sounds using static

frequencies, but still not as good as the sounds recreated using the original frequencies.

7.5. Formants

The formants are resonant frequencies in the spectral envelope. The relative frequency

and amplitude of the formants of speech defines which vowel is being pronounced
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[Rabinet et al. 1978], [Klatt 1980]. Although few musical instruments have strong

formants, a preliminary study of a formant model has been made, in the hope of being able

to model the singing voice. The search for formants is made on the difference between the

original spectral envelope and the recreated spectral envelope. The formants are supposed

to be positioned above the 5th partial, and they can be both positive and negative. When a

large error is found above the fifth partial, the error is modeled by a gaussian, and the

gaussian is removed from the error signal. This is repeated until no more formants are

found. The formants are now added to the modeled spectral envelope, and the process of

finding formants is repeated.

Only formants wider than a threshold are saved. This decreases the chance of finding

noise, or other spectral irregularities.

The formants are found by looking at the error signal,

ek = ˆ a k − ak (7.33)

Where â is the synthetic spectral envelope and a is the original spectral envelope. The

maximum absolute error is now found, and modeled by a gaussian, which is defined by its

amplitude, position and standard deviation,

tg = ag ⋅ e
− (k− k0 ) 2

2
2

(7.34)

The amplitude of the gaussian is set to the error at position k0, and the standard

deviation is found by taking the mean of the standard deviations calculated on the left and

the right of the maximum amplitude error. The gaussian is now subtracted from the error,

and the new maximum error is found and modeled. This is repeated until the maximum

error found is below a threshold. The formants are now defined by a sum of a few

gaussians,

formants = tg∑ (ag ,k0 , ) (7.35)

and the new spectral envelope is

ˆ a f = ˆ a + formants (7.36)

This creates a new spectral envelope including the strong formant regions. Although

this method definitely reduces the error of the spectral envelope from the spectral model

including the formants, there is no guarantee that the formants model really model

formants, and not irregularities in the spectral envelope.
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There is a higher probability of finding real

formants if the sigma threshold of the

gaussian is made bigger. In that way, only

large formants are allowed. This could make

the analysis miss peaked formants, though.

The gaussian seem to match the error well in

the few examples which have been tested, but

no formal study of the validity of the gaussian

form have been made.

The process of finding the formants is

illustrated in figure 7.17 (top).
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Figure 7.17. Illustrations of the formant search
using a low ‘a’ sound. Top plot is original (solid),
synthetic (dash-dotted), and with formants (dotted)
spectral envelope, bottom plot is formants only.

The solid line is the original spectral envelope, the dashdotted line is the spectral model

envelope and the dashed line is the spectral model and formant contribution spectral

envelope. The bottom plot shows the formant contribution.

The formant analysis correctly finds two positive formants at 15 and 25, and a negative

formant at around 10, although doubt could be expressed whether the positive formants

should be stronger, and the non-formantic spectral envelope should be weaker above the

6th partial. The recreated spectral envelope is much closer to the original spectral

envelope.

In conclusion, a formant analysis method has been described. It models the formants as

a sum of gaussians in the linear amplitude domain. The addition of the formant model

decreases the error of the spectral model, but the formants found by the formant analysis

does not always correspond to the real formants. The formant model is not used in the rest

of this work.

7.6. Conclusion

This work presents a new spectral envelope model. It models the spectral envelope with

a few perceptually important attributes, but nevertheless, the visual shape of the envelope

is often preserved. The parameters of the spectral model have been found in the literature

of auditory perception, and they are brightness, the odd/even relation, tristimulus, and

irregularity. The most important parameter is brightness, and functions for creating a signal

with a given brightness have been found for the additive domain and for the time domain.
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The combination of these parameters models a source spectrum, including formantic

structure in the low partials. Most musical instruments can be modeled with this model, but

unfortunately not the strong formantic structure of the human voice. An initial study of a

formant model has therefore been performed. The formant model presented here reduces

the error of the spectral model, but there is no guarantee it really models the formants and

not other irregularities of the spectral envelope. The spectral envelope model with formants

is not used in the rest of this document.

By analyzing a time-varying spectral envelope, a good restitution of harmonic sounds

can be made. This indicates that this spectral envelope model is stable and well chosen.
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Chapter Eight

8. Minimal Description Attributes

In this chapter, the parameters found in the HLA model presented in chapter 6 are

further modeled by the partial evolution. This is done to extract the smallest number of

parameters necessary to define a sound from the HLA model. Some of these parameters,

such as the fundamental frequency, have an immediate perceptual value. Amplitude is

modeled using the spectral envelope model in the preceding chapter, but most parameters

keep the same unit as in the HLA model.

The Minimal Description Attributes (MDA) model generally has two values for each

attribute, a fundamental value, and a partial evolution value. The fundamental value is

useful when the value of an attribute is to be visualized, but the full MDA parameter set is

necessary if a sound is to be resynthesized.

8.1. Introduction

The MDA model is an attempt to distill the minimum number of parameters necessary

to characterize the identity and quality of an instrument. In order to do this, the high level
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attributes calculated in the preceding chapter are used, but instead of keeping one

parameter for each attribute and partial, a model of the curve along the partial axis for each

attribute is found and modeled using few parameters.

The MDA model is created by curve fitting [Lancaster et al. 1986] the data of the HLA

model to a simple curve. The simple curve should either have physical relevance [Fletcher

et al. 1991] or minimize the perceptual error. The spectral envelope is modeled, as

explained in Chapter 7, by minimizing the perceptual error using parameters correlated

with perception [McAdams et al. 1995]. The frequencies are modeled using frequencies

that corresponds to the frequencies of the quasi-harmonic partials of a stiff string [Fletcher

1964] or the frequencies of the impulse response of the flute [Ystad et al. 1996].

Not much literature involving the model of envelope or noise parameters as a function

of partial index has been found. [Charbonneau 1981] models the attack and release times

using a fourth order polynomial. [Ando et al. 1993] analyze the shimmer and jitter

standard deviation, and plot it as a function of harmonic index, but they do not offer a

model of the harmonic evolution.

The MDA model is kept as simple as possible. The amplitudes are modeled using the

algorithms developed in Chapter 7, the frequencies are modeled using a simple stretched

harmonics model, and the other parameters, including the envelope and the noise

attributes, are modeled using a simple exponential curve. The exponential curve has been

chosen from a selection of linear, polynomial and other curves by performing informal

listening tests.

In addition to the parameters describing the amplitudes, frequencies and the exponential

curve for all other attributes, an error term is also calculated for each attribute. This error

term can be used, in theory, to recreate several variations of the same performance, in the

same manner that an instrumentalist never sounds exactly the same each time he or she

plays a note. This corresponds to the variants in [Risset et al. 1982].

This chapter starts with a definition of the frequency model in section 8.2. The spectral

envelope model is discussed in section 8.3. The generic model using an exponential curve

is presented in section 8.4, and the error term is discussed in section 8.5. The analysis from

the HLA model is detailed in section 8.6 and the recreation of HLA models is explained in

section 8.7. The sound quality of the MDA model is discussed in section 8.8, and the

chapter ends with a conclusion.
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8.2. Frequency Model

The frequencies of the partials are important to the perceived timbre of the sounds. A

simple model of the frequencies is used here, which can model quasi-harmonic sounds

with stretched or compressed harmonic frequencies. The frequencies are characterized by 2

parameters, the fundamental frequency and the inharmonicity, which is a measure of how

much the higher partials are ‘stretched’ above or ‘compressed’ below the ideal harmonic

frequency.

The frequency model is based on a model for the frequencies of a stiff string [Fletcher

1964]. The frequency of the partial k of a stiff string is,

f k = kf0 1+ k2 (8.1)

where f0  is the fundamental frequency and  is the inharmonicity. The values of f0 and 

are found using a nonlinear least-squares curve fit [Moré 1977]. The same model is used

when analyzing the frequencies of the impulse response of the flute [Ystad et al. 1996],

although  is here negative.

The frequencies, divided by the partial

index, for 4 musical instrument sounds, can

be seen in figure 8.1, along with the MDA

model frequencies.

The inharmonicity for the piano is easy to

see. Notice the y-axis scale for the piano,

since what is shown is the partial frequency

divided by the partial index, the difference

between two tones in the 40th partial is 320

Hz, 60 Hz more than the fundamental, which

is about 260 Hz.
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Figure 8.1. Analyzed frequency (solid), and
MDA model frequency (dotted) for 4 instrument
sounds, viola, piano, trumpet and flute.

The weak high order partial frequencies can be misjudged due to the presence of noise,

and they are not used in the curve fit. The estimated frequencies can be seen in the dotted

line.

The presence of inharmonicity in the piano certainly adds a flavor to the sound, and it is

necessary to use the inharmonicity model, instead of assuming clean harmonic frequencies.
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The viola seems perfectly harmonic, the piano has stretched partial frequencies, the

trumpet also has almost perfectly harmonic frequencies, whereas the frequencies of the

upper partials of the flute have been misjudged due to noise, and the flute inharmonicity

value is estimated to be non-zero. The values of the inharmonicity of the four sounds are

1.2⋅10-06, 3.4⋅10-04, 3.6⋅10-05 and 6.6⋅10-04. The flute has erroneously a higher inharmonicity

value than the piano.

8.3. Amplitude Model

The amplitudes are described by the spectral envelope model introduced in Chapter 7.

The sounds are assumed to lack a formantic structure, or other resonant behavior, although

provisions for formants have been made. The attributes describing the amplitudes are

brightness [Beauchamp 1982], tristimulus [Pollard et al. 1982], the odd/even relation

[Fletcher et al. 1991] and irregularity [Krimphoff et al. 1994]. See [McAdams et al. 1995]

for a review of these and other timbre attributes. The formulas for the spectral envelope

attribute calculations are,

Tb = brightness = ( kak )
k =1

N

∑ / ak
k =1

N

∑ (8.2)

T1 = tristimulus1 =a1 / ak
k =1

N

∑ (8.3)

T2 = tristimulus2 = (a2+a3 + a4 ) / ak
k =1

N

∑ (8.4)

To = odd = ( a2k −1 )/ ak
k =1

N

∑
2

N / 2

∑ (8.5)

irregularity = ( (ak − ak +1)2 )/ ak
2

k =1

N

∑
1

N

∑ (8.6)

For the recreation of the amplitudes from the spectral envelope attributes, see the

spectral envelope model in Chapter 7. The recreation creates amplitudes, which are

exponentially decaying, combined with an odd/even relation, above the 5th partial,

whereas the first 5 partials have an individual shape. The recreations usually keep the

shape of the spectral envelope, and more important, since they are derived from perceptual

research, the perceptual quality of the sound.
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The original spectral envelopes of 4

musical instruments are shown in figure 8.2,

along with the MDA model spectral envelope

(dotted). It is interesting to see that the

different spectral parameters permit a good

resynthesis of a formant, if it is below the 5th

harmonic, as seen in the trumpet example.

The perceptive spectral envelope model

parameters keep the original values for all

sounds.
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Figure 8.2. Spectral envelope four 4 musical
instruments, with the MDA model spectral envelope
(dotted).

8.4. Generic Parameter Model

The rest of the parameters in the HLA model are modeled by a simple exponential

curve with 2 parameters,

ck = v0 * ev1k (8.7)

where k is the partial index, v0 and v1 are the parameters of the MDA model curve ck.

To estimate the parameters v0 and v1, an initial estimation is first found by linear least

square curve fit [Schwarz 1989] in the log domain. This initial estimation is then used in a

non-linear least square curve fit [Moré 1977] with the original measured values.

The estimation of the parameters is improved by using only the strong partials of the

sound, as explained in paragraph 8.4.1.3.

8.4.1. Envelope Parameters

The envelope is the time-varying amplitude of each partial. The envelopes are here

normalized between zero and one. The maximum amplitude of each partial is stored in the

spectral envelope.

The parameters of the envelope model are the envelope times, the envelope relative

amplitudes (percents), and the envelope segments curve forms.
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8.4.1.1 Envelope Times

The parameters that are estimated here are the start time, the attack time, the sustain

time, the release time, and the total length. Furthermore the start of attack, end of attack,

start of release and end of release percents of the maximum amplitude are modeled along

with the curve form for the 5 segments.

The times are modeled as the relative times between segments for the attack and

release, and as the absolute times for the start, the sustain and the end. The attack and

release times for the 4 sounds are plotted in figure 8.3 along with the MDA model times

(dotted). The HLA parameters are rather noisy, so the exponential model is rather

unfounded in some situations, but the attribute values seem to be respected in general.
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Figure 8.3. Attack and release times for the 4 sounds, with the MDA model envelope times (dotted).
Attack (top) and release (bottom).

The envelope times are generally well modeled with the exponential curve. The flute

attack is especially well modeled. However, noise and bad analysis often perturb the

envelope time values; this is the case for the piano attack, for instance. All in all, the

envelope times are well modeled by the simple exponential curve. Notice the atypical

behavior of the trumpet attack and release, where the high partials are slower than the low

partials. The release times deviate in the low partials of the trumpet, since the total time of

all five segments otherwise would have been greater than the end time.

8.4.1.2 Envelope Percents and Curve Forms

The percents are the relative amplitudes of the partials at the split points. There are 4

percents, for the start of attack, the end of attack, the start of release and the end of release.

The percents multiplied by the spectral envelope value for the same partial yields the split

point amplitude.



Chapter 8. Minimal Description Attributes

111

The curve form is the shape of the segments. There are five curve forms, for the start,

the attack, the sustain, the release and the end segments.

The end of attack and start of release relative amplitudes for the 4 sounds are plotted in

figure 8.4 with the MDA model parameters (dotted), and the attack and release curve

forms are plotted in figure 8.5 with the MDA model parameters (dotted). The curve form

values are set to a default value (1) if the curve is too short. This is visible in the upper

partials of the piano.
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Figure 8.4. End of attack (top) and start of release (bottom) percents for the 4 sounds with the
MDA model parameters (dotted).
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Figure 8.5. Attack and release curve form for the 4 sounds with the MDA model parameters
(dotted).

The percents seem to fit the exponential model well. The improvement explained in

8.4.1.3 is very visible in the piano release relative amplitudes.
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The viola, piano and flute percents are falling with frequency, whereas the trumpet

release is rising with frequency. The trumpet attack percents seem constant. The percents

seem rather correlated with the attack and release times in figure 8.3.

The double curve in the release percents for the piano is probably explained by noise in

the higher partials, which could increase the percent values.

The exponential model generally seems to fit the curve forms very well, although

mostly because the curve form values are relatively constant. The viola curve form values

seems rather exponential, the piano values are not very reliable because of the short piano

attack and the relatively important transient behavior.

The trumpet and the flute curve form values have a shape which seems reliable and

which is not modeled by the exponential curve. Nevertheless, the deviations are small and

this has not been found perceptually important.

8.4.1.3 Weak Partials

The weak upper partials often disturb the estimation of the parameters of the

exponential model. For this reason, they are removed from the data before the estimation.

One important example is found in the release percents for the piano.

The upper partials of the piano are very

weak, and more sensitive to noise and bad

analysis.

The piano release percents are shown in

figure 8.6 with the recreated percents made

with all partials (dashdotted), and with only

the first 32 strong partials (dotted).

The curve forms are obviously very

different, and the dotted curve would be

preferred, since the high partials, which are

modeled better with the model using all

partials, are relatively weak and inaudible.
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Figure 8.6. Piano release percents (solid) with all
partials model(dashdotted) and 32 first partials
model (dotted).

The modeling of all exponential curves are therefore made using only the partials whose

amplitude is above a threshold relative to the maximum amplitude. This improvement is

used in the rest of this work.
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8.4.2. Noise Parameters

The noise on the frequency of the partials (jitter) and the noise on the amplitude of the

partials (shimmer) are modeled in the attack, sustain and release segments by 2 parameters

in each segment, one for the standard deviation and one for the single-tap recursive filter

coefficient. Furthermore, the correlation between the fundamental and the other partials

shimmer and jitter are modeled for the full length of each partial.

The shimmer parameters for the sustain part of the sound are plotted in figure 8.7, with

the standard deviation (top), the filter coefficient (middle), and the correlation (bottom).

Some of the partials are too short to permit an estimation of the noise parameters; these are

therefore set to default values.
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Figure 8.7. Sustain shimmer parameters for the 4 instruments with the MDA values (dotted).
Standard deviation (top), filter coefficient (middle) and correlation (bottom).

The shimmer parameters don’t seem to fit the exponential model very well, with the

exception of the correlation. This is in part explained by noise on the high and weak

partials, but still, it seems that the important noise parameters need another model, which

fits the data better.

The jitter parameters for the sustain part of the four sounds are plotted in figure 8.8. The

standard deviations are plotted on top, the filter coefficients are plotted in the middle and

the correlations are plotted in the bottom. The jitter model has the same problem as the

shimmer model. The data is not very exponential, and very noisy, so the recreated curve

sometimes fits the noise of the curves more than the important partial values.
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Figure 8.8. Sustain Jitter parameters for the 4 instruments with the MDA values (dotted). Standard
deviation (top), filter coefficient (middle) and correlation (bottom).

8.4.3. Comments on the Noise Model

The noise parameters are very sensitive to the weight of the timbre attribute parameters.

One important example is the sustain jitter standard deviation, as seen in figure 8.8. The

lower partials obviously have very little jitter for all four instruments, and the higher order

partials have an important jitter standard deviation. When modeling this with the

exponential form, the lower partials get a too large jitter standard deviation, especially for

the viola and the flute sounds. This completely changes the perception of the noise of these

instruments; the relatively high-frequency noise is transformed into a low-frequency

rumble.

An alternative to the exponential curve could be, for instance, a polynomial. A second

order polynomial has been tested with good results. The exponential curve given in

equation (8.7) is replaced with the second order polynomial given by,

ck = v0 + v1k + v2k
2 (8.8)

where k is the partial index. The parameters of the polynomial model are found using the

linear least-squares fit [Schwarz 1989]
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The standard deviation of the shimmer and

the jitter of the flute are plotted in figure 8.9

for the exponential model (dotted) and the

second order polynomial model (dashdotted).

The lowest partials get less noise with the

polynomial model, which generally seems to

fit the data better. When listening to sounds

recreated with the two models, the difference

in sound quality is important. Where the

exponential model has got a rumble quality to

the sound, the second order polynomial noise

quality is much closer to the original.
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Figure 8.9. Flute shimmer (top) and jitter
(bottom) with exp. model (dotted) and 2nd order
polynomial model (dashdotted).

This is because the polynomial model restitutes the low jitter and shimmer of the strong

low partials, whereas the exponential model gives the low partials too much jitter and

shimmer.

The different models don’t change much for the other three test sounds. Unfortunately,

the polynomial noise model was introduced after the listening tests performed in Chapter

12 so no objective measure of its quality has been made. It seems, definitely, that the

exponential model is not suited for the modeling of the important noise standard

deviations. A second order polynomial performs better. Another option is to weight the

HLA values before the curve fit.

8.5. Error Term Calculation

Although the curves above fit the data in the least-squares sense, they are by no means

equivalents. The difference between the clean exponential curve and the data is assumed to

be related to the execution of the sound, and the error can, if modeled properly, introduce

new executions of the same sound, i.e. of the same instrument, player and style, in the

same environment.

The error between the data curve and the exponential curve is supposed to be normal

distributed, and it is modeled by the standard deviation. The error is furthermore divided

into an odd and an even error, which have a separate mean value. This is done so that for

instance bad analysis of the weak even partials of the clarinet will not introduce too much

noise in the strong odd partials. The error is weighted by dividing by the partial index, and
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recreated by multiplying by the partial index. This ensures that the normally strong lower

partials don’t get a high error from the weak, and error prone, higher partials.

Although it is possible to recreate a deviation from the exponential curve, which is

similar to the error, it does not always give the same perceptual quality. One reason for this

could be that the error is not random, but instead correlated, either between attributes, or

between sounds from the same instrument. It could also be suspected that the error term is

related to the model of the sounds, or the estimation of the model parameters.

One way of finding out is to look at the correlation between different error terms. The

correlation of the different timbre attribute errors for 4 musical instrument sounds are

analyzed here.

The error for the attribute i and the partial k is

ek
i = ( pk

i − vk
i ) / k (8.9)

where pi is the HLA timbre attribute i and vi is the MDA modeled timbre attribute i. The

error has NxM terms, N is the number of partials and M is the number of timbre attributes.

The error i is said to be mostly correlated with another timbre attribute j when

j = max(correlation(e i ,e i≠ j)) (8.10)

When analyzing the correlation of the errors, the different timbre classes are in general

mostly correlated with another attribute from the same timbre class, for instance the sustain

time is mostly correlated with the release time for 3 out of 4 instruments. There are

exceptions: the release curve form error is mostly correlated with the release shimmer std,

which leads to the conclusion that if the curve form is wrong, then the error is important.

The start of attack percent is correlated with an attack error for 3 out of 4 instruments,

which indicates again that if the envelope is wrong then the error is large. This is probably

an analysis error, and not a feature of the sounds. The sustain and release shimmer std is

mostly correlated with envelope attributes for 7 out of 8 correlations. The release jitter

filter coefficient is mostly correlated with 4 envelope attributes.

In conclusion, it seems that the error is dependent more on the analysis, than on the

actual quality of the sound. Further work is needed in order to use the error term

successfully in the resynthesis of sounds.
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8.6. Analysis from HLA Attributes

The HLA parameters presented in Chapter 6 are all that is needed to create the MDA

parameters. The envelope times have been modified, so that the attack, sustain and release

times are relative, and not absolute. The amplitudes and frequencies are analyzed by the

methods in sections 8.2 and 8.3 and the other parameters are calculated by the methods

exposed in section 8.4. Care must be taken when estimating the filter coefficient

parameters, since the filter coefficients are negative.

8.7. Recreation of HLA Attributes

The recreation of the HLA parameters is straightforward, once some simple numerical

limits are respected. All the parameters must be positive, with the exception of the filter

coefficients, which lie between -1 and 0. The noise correlation values are always between

zero and one, with the first value, which is not used in the curve fit, equal to one. The

frequencies are calculated by the formula (8.1). The amplitudes are calculated by the

method introduced in Chapter 7.

The complete HLA parameter set, recreated from the MDA parameters, without error,

for the same four sounds as in the Chapter 6, is plotted in figure 8.10, figure 8.11, figure

8.12 and figure 8.13. The corresponding HLA parameters with error in the parameters are

plotted in figure 8.14, figure 8.15, figure 8.16 and figure 8.17.

The spectral envelope (top left) and the frequencies (second from top left) have only

one curve each. The envelope timing (third from top left) has four curves, the start of

attack time ‘o’, the end of attack time ‘*’, the start of release time ‘x’, and the end of

release ‘+’. The percents (fourth from top left) also have four curves with the same

symbols, the curve forms (bottom left) have 5 curves, the start curve ‘+’ the attack curve

‘o’, the sustain curve ‘*’, the release curve ‘x’ and the end curve ‘.’. For the sake of clarity,

the start and end curves are dotted. The shimmer std (top right), jitter std (second from top

right), shimmer filter coefficients (third from top right) and ), jitter filter coefficients

(fourth from top right) have 3 curves, attack ‘o’, sustain ‘*’, and release ‘x’. The noise

correlation is shown bottom right with the shimmer ‘o’ and the jitter ‘*’.

The spectral envelopes for the four sounds are quite different. The flute has no

amplitude in the high partials, where the viola has relatively high amplitude for the 16

partial. The trumpet has a very visible formant region around the fifth partial.
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Both the flute and the piano have stretched frequencies, but in the case of the flute it is

because of noise on the weak upper partials, whereas the piano really has a stretched

frequency curve.
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Figure 8.10. Recreated HLA parameters for the
viola.
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Figure 8.11. Recreated HLA parameters for the
piano.
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Figure 8.12. Recreated HLA parameters for the
trumpet.
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Figure 8.13. Recreated HLA parameters for the
flute.

The piano has rather static envelope times for all partials. The trumpet envelope times

have the typical shape, where the higher partials attack ends later and the release starts

earlier. The flute envelope times are difficult to see, because of the relatively long sound,

but the low partials attack seems longer than the high partials attack. The viola also has

shorter upper partial attacks.

The piano percents are very low for the start of release split point. The start of attack

and end of release percents are low for all sounds, whereas the end of attack is high for all



Chapter 8. Minimal Description Attributes

119

sounds except the flute, where both the end of attack and the start of release percents drop

with frequency.

The curve form values are generally close to one for the attack of all sounds. The start

and end values are not very important, since they model segments that are close to silent.

The trumpet attack is exponential, as is the viola and piano releases.

The shimmer std values are much higher than the jitter std values, as could be expected.

The trumpet has a relatively low shimmer std, and the flute has a relatively high shimmer

std. The piano has very high shimmer and jitter std for the attack and release segments.

The jitter filter coefficients are generally higher than the shimmer filter coefficients.

This can be explained by the simple amplitude model, which gives the shimmer a low

frequency quality.

Correlation is generally lower for the jitter than for the shimmer. This could again be

explained by the simple amplitude model. The frequency model is of course very good,

since the frequencies are supposed to be static.
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Figure 8.14. Recreated HLA parameters of the
viola, with error term.
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Figure 8.15 Recreated HLA parameters of the
piano, with error term.

The MDA parameters with error term are often quite close visually to the corresponding

HLA parameters, which can be seen in section 6.7 on page 79 in Chapter 6. The amount of

noise is an indication of the success of the model parameter estimation, as shown in section

8.5. The spectral envelope and frequency curves seem relatively clean, and the envelope

parameters are also generally rather clean, with the exception of the curve forms, although

the important attack curve form curve is still visible.

There is more error on the noise parameters, with the exception of the correlation. The

filter coefficients are very noisy.
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Figure 8.16 Recreated HLA parameters of the
trumpet, with error term.
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Figure 8.17 Recreated HLA parameters of the
flute, with error term.

All MDA parameters have the same amount of noise, maybe with the exception of the

trumpet, which seems cleaner.

8.8. Sound Synthesis from the MDA

The sound synthesis from the MDA is done through the HLA and the additive

parameters as described in Chapter 6. In principle the MDAs create a sound with the same

complexity as the other models. In figure 8.18 (viola), figure 8.19 (piano), figure 8.20

(trumpet) and figure 8.21 (flute) the additive parameters from the original analysis (left),

the recreated additive parameters from the MDA parameters without error term (middle)

and with error term (right) are shown.

Visually, the viola, piano and trumpet seems to have kept the shape of the parameters,

whereas the flute is very distorted by noise. This translates into a greater impairment of the

sound.
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Figure 8.18. Additive parameters for the viola. Original (left) MDA without error (middle) and
MDA with error (right).
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Figure 8.19. Additive parameters for the piano. Original (left) MDA without error (middle) and
MDA with error (right).
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Figure 8.20. Additive parameters for the trumpet. Original (left) MDA without error (middle) and
MDA with error (right).
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Figure 8.21. Additive parameters for the flute. Original (left) MDA without error (middle) and
MDA with error (right).

The trumpet sounds close to the original, the viola and the piano sound different, and

the flute is very distorted; indeed, the noise of the flute has a different quality. Still, the

sounds are very much recognizable, and the problem can be traced to the fact that the

lower stronger partials have a too big noise value. This can perhaps be solved with another

noise model, as proposed in 8.4.3, or with different weighting of the noise values. The

sound synthesis from MDA parameters with error term is still identifiable, but this model

sometimes introduced artifacts, such as high frequency jitter or loose partials, which stick

out from the otherwise homogenous sound. Aside from the artifacts, the sound is definitely

different without being another instrument, so this method seems promising. Still, the

parameters created from the MDA with error need to be limited in some way, so the

annoying artifacts do not occur.
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8.9. Conclusion

A number of essential timbre attributes are fond in the MDA model. These parameters

can be used to resynthesize a sound, as shown in this chapter, but they can also be used to

visualize important timbre attributes, as shown in Chapter 9. They can be used as a

template in the modification of sounds, as shown in Chapter 10 and they can be used for

the classification of musical instrument sounds, as shown in Chapter 11. The sound quality

of the resynthesis from the MDA model is evaluated in the listening tests performed in

Chapter 12.

Although these parameters are visually close to the HLA parameter set, and the sounds

created from the MDA parameters are perceptually close to the HLA sounds, the sound

quality is not as good. The problem seems to be the noise parameters, which, when

modeled with an exponential curve, often give the wrong value to the lower partials. A

polynomial model seems to correspond better to the important noise standard deviation

values.

Analysis of the error terms shows that it is often a result of bad parameter estimation,

rather than the result of a bad model. Nevertheless, the parameters give a good restitution

of the sound, if the analysis is performed correctly. The trumpet, for instance, has a very

close resemblance to the original. Further improvements to the models would be a better

noise standard deviation model, or a different weight on the different parameters. The

MDA model is also improved by using only the lower strong partials in the estimation of

the parameters of the model.

The frequencies are well modeled by the fundamental and the inharmonicity, the

amplitudes are well modeled by the spectral envelope model as long as there are no

formants. The envelope times, percents and curve forms are generally well modeled with

the exponential curve, if the weaker, noisy high partials are not used in the estimation of

the parameters. Improving the noise model would probably give the best improvement in

sound quality.

The MDA model finds a few important parameters for the sound, and while some

problems with the parameter estimation exists, the MDA model parameters are believed to

be a good guess of the minimum number of parameters necessary to describe a musical

instrument sound.
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Chapter Nine

9. Instrument Definition Attributes

In this chapter the timbre attributes for many executions of the same instrument are

collected in the Instrument Definition Attributes (IDA) model, in half octave bands. This

shows clearly the evolutions of the timbre attributes as a function of fundamental

frequency. Furthermore, the IDA model can visualize changes from different playing

styles, or different intensities. The IDA parameters are assumed to give a complete

description of a musical instrument, ranging from the definition of the timbre of one sound,

to the evolution of the timbre as a function of note or expression.

The evolution of the timbre attributes is analyzed here as a function of fundamental

frequency, intensity, tempo and style. Some simple rules of timbre changes have been

found which are helpful when changing, for instance, the pitch of a sound. The IDA model

contain all information about a musical instrument, and it can be used to create sounds in

the full playing range of the instrument, although the resynthesis quality is not yet

satisfactory.
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9.1. Introduction

It is not enough to model one sound of a musical instrument to recreate the music of

that instrument. It is also important to model the evolution of timbre from the low notes to

the high notes of the instrument. Furthermore the evolutions from low velocity to high

velocity, from different playing styles, such as legato and staccato etc., are also important.

For this reason, the instrument definition attributes (IDA) model has been introduced. This

model keeps the mean of every MDA parameter for each half octave, for each playing

style, intensity, etc. The MDA model is presented in Chapter 8. The sound can then be

recreated by choosing the note and interpolating the intensity, style, etc. Although further

work is needed to achieve an acceptable quality of the recreated sounds, the IDA is useful

when the evolution of the timbre attributes are analyzed. If a resynthesis of good quality is

needed, the IDA parameters could be derived from the HLA model presented in Chapter 6

instead of the MDA model, but this creates other problems, such as the variable number of

partials in the HLA model.

Some indications of the evolution of the timbre attributes can be found in general books

on musical acoustics [Backus 1970], [Benade 1990], [Rossing 1990]. Gregory Sandell has

a web site [Sandell 1998] with plots of the brightness, irregularity and loudness for

different musical instruments, which correlate well with the values found here. The physics

of musical instruments [Fletcher et al. 1991] may also be of help in evaluating the

evolution of the different timbre attributes as a function of fundamental frequency,

intensity or other parameters.

This chapter starts with a presentation of the IDA frequency scale in section 9.2. The

IDA values are calculated in section 9.3. The different IDA classes are enumerated in

section 9.4, and the evolutions of different MDA parameters as a function of fundamental

frequency for different instruments are analyzed in section 9.5. The intensity evolution of

piano sounds is analyzed in section 9.6, and an analysis of the parameters with two

different tempi of the clarinet is presented in section 9.7. The analysis of three different

styles of the cello is presented in section 9.8. The sound quality of the resynthesis from the

IDA model is discussed in section 9.9. Finally a conclusion is offered.



Chapter 9. Instrument Definition Attributes

125

9.2.  Half Octave Bands

The IDA attributes are the same as the MDA attributes, but they are collected for many

sounds of one instrument. A number of sounds in the full playing range of a musical

instrument are analyzed, and the MDA parameters are created for each sound. The IDA

value for each parameter and IDA frequency index is then the mean of the values from the

MDAs with fundamental frequency within the corresponding band.

The IDA frequency range is divided into 15 bands in the log2 domain of the

fundamental frequency. The bands range from 32 Hz to 4 kHz in half octave steps. All

MDA parameters are then searched for each band, and the ones whose fundamental

frequency is between the band ± 1/4 octave are used. Each parameter (spectral envelope,

frequencies, envelope, noise, etc.), including the partial evolution, of the band is set to the

mean of the corresponding parameter of the MDAs used. If no MDAs are found, it is

probably outside the playing range of this instrument, and the closest MDA is used.

The MDA parameter values with the fundamental frequency f0 are added to the IDA

step if,

log2( f0) ≥ (i + 9 ) / 2−
1

4
& log2( f0) < (i + 9 ) / 2+

1

4
(9.1)

This means that the frequency range for each IDA index step is

1 (26.9 Hz to 38.1 Hz)

2 (38.1 Hz to 53.8 Hz)

3 (53.8 Hz to 76.1 Hz)

4 (76.1 Hz to 107.6 Hz)

5 (107.6 Hz to 152.2 Hz)

6 (152.2 Hz to 215.3 Hz)

7 (215.3 Hz to 304.4 Hz)

8 (304.4 Hz to 430.5 Hz)

9 (430.5 Hz to 608.9 Hz)

10 (608.9 Hz to 861.1 Hz)

11 (861.1 Hz to 1217.7 Hz)

12 (1217.7 Hz to 1722.2 Hz)

13 (1722.2 Hz to 2435.5 Hz)

14 (2435.5 Hz to 3444.3 Hz)

15 (3444.3 Hz to 4871.0 Hz)

The IDA frequency scale can be seen in figure 9.1. The scale range is divided into half-

octave steps.
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Figure 9.1. Approximative IDA frequency bands for different musical instruments (picture taken
from [Lindsay et al. 1977]).
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The IDA parameters become more stable, the more sounds there are in each frequency

band. Initially it was believed that the IDA could remedy some analysis errors, i.e. the

MDA parameter errors might be great, but the mean of the errors would be zero. This

seems true for the visualization of the timbre attributes, but no such conclusion can be

made for the resynthesis, maybe because not enough sounds have been used in the creation

of the IDAs, or possibly because the errors in the MDA model are very correlated.

9.3. IDA Parameter Calculation

The IDA model parameters are derived from the MDA model parameters, which in turn

are extracted from the HLA model parameters. The HLA model parameters are calculated

from the additive parameters, which are analyzed from the sampled sound.

The additive parameters are calculated using the LTF analysis method as explained in

Chapter 4. The initial frequencies used in the analysis are the frequencies found in Chapter

3, with one important exception. The fundamental frequency estimation is given the note

of the sound to analyze. The initial frequency search is therefore simplified: first find the

frequency differences that are close to the given note, then do the stretched frequencies

curve fit, and finally look for spurious frequencies. It was necessary to use this method in

order to eliminate the influence of the fundamental frequency estimation error.

The HLA parameters are calculated from the additive parameters as explained in

Chapter 6 and the MDA parameters are calculated from the HLA parameters as explained

in Chapter 8.

The value for each IDA frequency band is set for each parameter to the mean of the

corresponding values of all MDA which have the fundamental frequency in the frequency

band.

IDAk = mean(MDA( f0 ∈bandk )) (9.2)

If there is no MDA with fundamental frequency in a frequency band, the closest MDA

is used. This ensures that all IDA values always are set. If there is only one available MDA

for the creation of an IDA class, then the IDA parameters are equivalent to the MDA

parameters, although lacking the fundamental frequency.

The parameters of the plots in this chapter are the values of the fundamental, recreated

from the fundamental values (v0 in equation (8.7) on page 109) and the partial evolution

value.
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9.4. IDA Classes

A separate IDA is created for each playing style, intensity or other class, since not all

instruments have the same number of playing styles, and it would be difficult to organize

them in the same manner for all instruments.

Typical classes are the different intensities of an instrument, such as piano, mezzo forte,

or forte. Other classes are the different playing styles of an instrument, such as legato,

staccato, etc., and the tempo of the execution. Furthermore, it is interesting to classify the

instruments in the physical dimensions of the gestures of the instrumentalist, such as the

speed or the position of the bow in the violin.

Often, fewer samples are available for some of the IDA classes than for other. Then the

attributes from the largest class should be used in case no MDA is available for the target

class, with a difference value added. For instance, if both the target classa and the largest

classb have MDAs at frequency band k, but the IDA values are wanted from classa and

frequency band j, where only classb has MDA values. Then the resulting values could be

the values of classa plus the difference between the values from classb and classa, in the

closest frequency band k where both classes have MDA parameters,

IDAj
a = HLAb ( f0 ∈band j) + HLAa ( f0 ∈bandk ) − HLAb( f0 ∈bandk) (9.3)

If no common frequency band exists, other more elaborate schemes could be found, but

this is beyond the scope of this work. Generally, it probably makes more sense to use the

values from the closest frequency band where values from MDAs exist.

9.5. Fundamental Frequency Evolution

In this section, the evolutions of all timbre attributes are analyzed as a function of

fundamental frequency. The analysis is done on five instruments, the piano, the violin, the

clarinet, the flute and the soprano. All instruments have sounds from the normal playing

range of the instrument. These are the same sounds used in the classification in Chapter 11

and in the listening tests in Chapter 12.

9.5.1. Spectral Envelope Evolution

The spectral envelope parameters are brightness, tristimulus, the odd/even relation,

irregularity and amplitude. The spectral envelope model parameters are plotted in figure

9.2 for the piano, in figure 9.3 for the violin, in figure 9.4 for the clarinet, in figure 9.5 for
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the flute and in figure 9.6 for the flute. The parameters which are plotted are the brightness

in Hz, that is the partial index brightness multiplied by the fundamental frequency (top

left), the odd value (bottom left), the tristimulus 1 and 2 (top right) and the irregularity

(bottom right). All x-axes, except for the tristimulus are in IDA frequency band index. Two

plus signs at the x-axis depict the fundamental frequency range of the instrument of the

plot. The tristimulus plots do not have an IDA frequency band axis, but the curve can be

followed from the lowest frequency ‘+’ to the highest frequency ‘o’.

The brightness’ in partial index for 5 instruments are plotted in figure 9.8 and the

amplitudes for all five sounds are plotted in figure 9.7.
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Figure 9.2. Spectral parameters for the piano.
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Figure 9.3. Spectral parameters for the violin

The spectral envelope attributes changes seem very important when changing the

fundamental frequency. An initial analysis of the spectral envelope attribute changes

reveals some properties of these attributes, which corresponds to most of the instruments.

The attributes that seem to have an simple law associated with the fundamental frequency

change are brightness, tristimulus, odd and amplitude.

The partial index brightness multiplied by the square octave index is roughly constant

for most instruments. This is a handy guideline, if the pitch of a sound is modified, and

gross spectral envelope effects avoided. The amplitude divided by the log of the octave is

also more or less constant over the full fundamental frequency range for most instruments.

Tristimulus 1 divided by the octave, and tristimulus 2 multiplied by the octave are fairly

constant for all sounds, as is the odd times the square octave. All these observations are

valid for most of the instruments to some degree.
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Figure 9.4. Spectral parameters for the clarinet.
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Figure 9.5. Spectral parameters for the flute.

Except perhaps for brightness and amplitude, these rules are not valid in all cases. They

can be used, though, if the pitch of a sound is to be changed, and no other information of

the timbre attribute changes for that pitch is available.
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Figure 9.6. Spectral parameters for the soprano.
Brightness (top left), tristimulus (top right), odd
(bottom left) and irregularity (bottom right).
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Figure 9.7. Amplitude for the 5 instruments.
Piano (solid), violin, (dotted), clarinet, (dashdotted),
flute, (dashed) and soprano (+-solid).

All instruments except the soprano have frequency brightness rising with the

fundamental frequency. The piano has a rising brightness curve, going from almost 500 Hz

at the lowest notes, to above 2000 Hz at the highest notes. This is in strong contrast to the

soprano voice, which has a stable brightness at about 1200 Hz. This can be explained by

the fact that the soprano needs to keep the same formantic structure all the time, since the

same vowel is used for all notes.

Nevertheless, the frequency brightness rise is not so dramatic as the tristimulus 1 rise

for the piano, so the fundamental has more relative strength for the high notes.
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The partial index brightness shown in

figure 9.8 makes it clear that most instruments

have most of the amplitude in the

fundamental for the highest frequencies, since

brightness always tends towards one for the

highest pitches.

The tristimulus general trend is towards

the fundamental corner. This is especially true

for the flute. The violin has a fairly constant

tristimulus 2 value, and the clarinet has a

rising tristimulus 2 value. Common to all

sounds is a falling tristimulus 3 value,

indicating weaker high-frequency amplitudes.
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Figure 9.8. Partial index brightness for 5
instruments. Piano (solid), violin, (dotted), clarinet,
(dashdotted), flute, (dashed) and soprano (+-solid).

The tristimulus 1 value for the piano goes from nearly zero for the low notes to close to

one for the high notes. It is also interesting to observe the jump in tristimulus 1 at about 2/3

of the scale. This might be explained by the difference in string quality, the number of

strings or the string coating.

It is also interesting to observe the

tristimulus curves for the soprano: first

tristimulus 2 rises, and then tristimulus 1.

This might be explained by the place of the

first formant: for the low notes the first

formant is placed above the 4th partial, but as

the fundamental frequency rises, the 4th, 3rd

and finally 2nd partial are amplified by the

first formant. Finally the fundamental is

placed in the formant region, which is

consequently forced to rise with the

fundamental. See [Sundberg 1987] for a

further explanation of this phenomena.
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Figure 9.9. Odd plus tristimulus 1 for the five
instruments. Piano (solid), violin, (dotted), clarinet,
(dashdotted), flute, (dashed) and soprano (+-solid).

The odd value is falling with the fundamental frequency for all five instruments. This

seems to be more because the fundamental amplitude is rising than because the odd/even

relation is changing. This can be verified by adding the tristimulus 1 to the odd.
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The odd plus tristimulus 1 for the five instruments are plotted in figure 9.9. The soprano

has the highest values, followed by the clarinet. The violin has the lowest values. The

piano and flute values rise with the fundamental frequency. These values are more stable

than the odd values.

The irregularity value is rising with the fundamental frequency for the piano, flute, and

to a lesser degree, the soprano. This is correlated with the tristimulus 1 value. When only

the fundamental has strong amplitude, the irregularity is by definition 1. The clarinet and

the violin have, by contrast, a falling irregularity, which to some degree is caused by the

weak fundamental of the low notes, but also by the general irregular shape of the spectral

envelope of the low notes for these two instruments, due to the weak modes.

Amplitude is strongly correlated with the fundament frequency for all instruments,

except the violin, which has a more stable amplitude. The piano seems to have two regions

for the amplitude, which is probably explained by the shift of string quality, or string

number of each note. The clarinet also seems to have two regions for the amplitude; this is

probably explained by the shift of mode for the high frequencies [Fletcher et al. 1991].

9.5.2. Frequency Parameter Evolution

The MDA model frequency attributes consist of the fundamental frequency, and the

harmonicity. The IDA model does not save the fundamental frequency of each MDA, since

it is inherent in the model: the IDA bands indicate the log of the fundamental frequency.

Therefore, the only frequency parameter in the IDA model is the inharmonicity.

The inharmonicities of the five sounds are

shown in figure 9.10. The inharmonicity is

rather noisy, especially for the high

frequencies, because of the small number of

partials, but it definitely seems to rise with the

fundamental frequency for the piano.

Remember that the center frequency of band

12 is 1500 Hz, which means that there is only

a maximum of 10 partials with the sampling

rate used here (32 kHz). 2 4 6 8 10 12 14
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Figure 9.10. Inharmonicity for the 5 instruments.
Piano (solid), violin, (dotted), clarinet, (dashdotted),
flute, (dashed) and soprano (+-solid).
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If the frequencies of these partials are estimated poorly, the resulting inharmonicity

value could be important, even though there was no inharmonicity.

9.5.3. Envelope Evolution

The envelope attributes are the envelope times, curve forms, and percents. The most

interesting envelope times are the attack time and the release time. The attack and release

envelope parameters are shown in figure 9.11 for the piano, in figure 9.12 for the violin, in

figure 9.13 for the clarinet, in figure 9.14 for the flute and finally in figure 9.15 for the

soprano. The left three plots are the attack time (top), the end of attack percent, and the

attack curve form (bottom). The three right plots are the corresponding release parameters.

The sustain curve form and length for the five instruments are shown in figure 9.16 and the

start curve form and percents are shown in figure 9.17.

The attack time can be divided up into slow attacks, flute, clarinet and soprano, at about

100 mS, and fast attacks, violin and piano, at below 50 mS. Most instruments seem to have

faster attacks for higher notes, but this is very clear for the flute, and especially for the

piano, which goes from about 80 mS for low notes to about 20 mS for high notes. The

violin seems to have a stable attack time, independent of the fundamental frequency.
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Figure 9.11. Envelope parameters for the piano
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Figure 9.12. Envelope parameters for the violin.

The release time values are slightly noisier, probably due to the decay/sustain model of

the analysis. Nevertheless, the general trend seems to be that release is more independent

of the fundamental frequency than the attack times. The violin, flute and soprano have

relatively stable release times, and only the piano and the clarinet have a decaying release

time, which for the clarinet is about the same as the attack time. The piano has slower
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release than attack times, whereas the violin, flute and soprano have faster release than

attack times.
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Figure 9.13. Envelope parameters for the
clarinet.
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Figure 9.14. Envelope parameters for the flute.

The curve forms seem close to linear for most attacks and releases. The attack curve

forms can be divided into logarithmic for the piano, clarinet and soprano, and exponential

for the violin and flute. The release curve forms seem exponential for all instruments.
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Figure 9.15. Envelope parameters for the
soprano. Attack (left) and release (right). Time
(top), percents (middle) and curve form (bottom)
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Figure 9.16. Sustain Curve form (top) and
sustain length (bottom) for the 5 instruments. Piano
(solid), violin, (dotted), clarinet, (dashdotted), flute,
(dashed) and soprano (+-solid).

The sustain curve form values, which can be seen in figure 9.16 (top), are always above

1. Since the start of release percents is lower than the end of attack percents in almost all

cases, this indicates an exponential decay maybe because all instruments are played in a

percussive style.
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It is hard to make other observations on the curve form, since it is very dependent on the

correct estimation of the envelope times. The attack curve form value seems to rise slightly

with the fundamental frequency for some instruments, indicating a more logarithmic attack

for higher fundamental frequencies.

The sustain times in figure 9.16 (bottom) are rather constant. The sounds are short,

especially the flute and the clarinet. Since all sounds from one instrument come from the

same recording session, they are all of the same duration and the invariance of the sustain

times shows the success of the sustain time estimation. Only the soprano has sustain time

rising with the fundamental frequency.

The clarinet and soprano start segment

curve forms, seen in figure 9.17, decrease

with the fundamental frequency, almost

reaching zero. This gives very exponential

curves, which rise abruptly at the start of the

attack.

The slope envelope detection method

should not normally be sensitive to noise, and

an inspection of the amplitudes of the additive

partials of the relevant sounds reveals that

they are indeed exponential in the start

segment, more rounded for the clarinet, and

rising very abruptly for the soprano.
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Figure 9.17. Start curve form (top ) and start of
attack percents (bottom) for the 5 instruments.
Piano (solid), violin, (dotted), clarinet, (dashdotted),
flute, (dashed) and soprano (+-solid).

9.5.4. Noise Evolution

The noise attributes are the standard deviation, the filter coefficient and the correlation

of the irregularity on the amplitude of the partials, the shimmer, and of the irregularity on

the frequency of the partials, the jitter.

The noise parameters are plotted in figure 9.18 for the piano, in figure 9.19 for the

violin, in figure 9.20 for the clarinet, in figure 9.21 for the flute, and finally in figure 9.22

for the soprano. The left three plots are shimmer parameters and the right three plots jitter

parameters. The top plot is the standard deviation, the middle plot is the filter coefficient,

and the bottom plot is the correlation.

The correlation is measured between the fundamental and the first partial.
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The attack noise standard deviation for shimmer (top) and jitter (bottom) are shown in

figure 9.23.
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Figure 9.18. Noise parameters for the piano.
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Figure 9.19. Noise parameters for the violin.
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Figure 9.20. Noise parameters for the clarinet.
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Figure 9.21. Noise parameters for the flute.

The noise attributes seem to be the timbre attributes that are causing most disturbances

in the resynthesis of the MDA models. Bad analysis of the envelope values yields bad

shimmer values, and bad analysis of the fundamental frequency, or inharmonicity yields

bad jitter values. Furthermore, even small glissando or vibrato values can ruin the analysis

of the frequencies.

Nevertheless, most noise values are stable and trustworthy. The shimmer and jitter are

normalized by the amplitude and frequency, and the standard deviation (std) is generally

placed between 0 and 1. The shimmer std is often close to 0.3, whereas the jitter std

generally is well below 0.1.
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The shimmer standard deviations are rather stable for all instruments except the piano.

The flute and violin have higher shimmer than the clarinet and soprano. The clarinet has

very low shimmer. The piano has a rising shimmer standard deviation. Since the filter

coefficients at the same time tends towards -1, this might be caused by a bad curve form

model or fitting, but it could also be attributed to the beating of mistuned strings.
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Figure 9.22. Noise parameters for the soprano.
Shimmer (left) and jitter (right). Standard deviation
(top), filter coefficient (middle) and correlation
(bottom).
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Figure 9.23. Attack shimmer (top) and jitter
(bottom) ) for the 5 instruments. Piano (solid),
violin, (dotted), clarinet, (dashdotted), flute,
(dashed) and soprano (+-solid).

The jitter standard deviation is around 0.01 for the piano and the violin. The clarinet has

almost no jitter std, whereas the flute and especially the soprano have high jitter std.

The filter coefficients indicate the level of low-pass filter slope of the noise. Generally,

the filter coefficient value -1 indicates bad curve fitting; this can be seen also on the

shimmer for the high notes of all instruments except the violin. The high notes of the

soprano and the flute have filter coefficient value -1 for both the shimmer and the jitter.

These jitter values are probably caused by the relatively low frequency vibrato on many of

the notes.

The jitter filter coefficients seem to be higher than the shimmer filter coefficients in

most cases. This translates into more energy in the high frequencies of the jitter. The

combination of high standard deviation and low filter coefficient values for the jitter

generally yields bad sound quality, with slow random variations on the frequencies.

The attack noise standard deviations for shimmer (top) and jitter (bottom) are shown in

figure 9.23. The attack shimmer std generally falls with the fundamental frequency. The

soprano has the lowest attack shimmer std, followed by the piano and the three other

instruments close together. The violin has very large jitter std for the low frequencies.
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The correlation between the fundamental and the first partial generally rises with the

fundamental frequency, reaching almost one in many cases. The shimmer and jitter

correlation values are very similar for all instruments. This is surprising, since the envelope

curve form model normally should give higher shimmer correlation.

9.6. Loudness

Loudness is another important timbre attributes. Loudness is often noted in music

notation with terms like mezzo forte, piano, forte, etc. In this paragraph, the different

loudnesses of a Yamaha Disklavier with different MIDI [IMA 1983] velocities are

analyzed. The disklavier is an acoustic grand piano with an added MIDI control unit,

which permits the recording of MIDI data, and the control through MIDI data. Three

different MIDI velocities have been recorded in the full playing range, 40 (piano), 72

(mezzo forte) and 104 (forte). The mezzo forte sounds are the same as the piano sounds in

section 9.5.

The complete playing ranges of three different velocities of the piano are shown in the

following figures. Four plots are combined in all figures. The solid lines show the IDA

values for all the sounds, the dotted lines the values from the piano (MIDI velocity 40)

sounds, the dashdotted lines the values for the mezzo forte (MIDI velocity 72) sounds and

the dashed lines the IDA values for the forte (MIDI velocity 104) sounds. Figure 9.24

shows the spectral envelope, figure 9.25 the maximum amplitude, figure 9.26 the

inharmonicity, figure 9.27 the envelope parameters, figure 9.28 the sustain curve form

values, and figure 9.29 the noise parameters for the different loudnesses of the piano.

The spectral envelope is the attribute that a priori changes the most with loudness. This

holds true here, but the first observation is the high correlation of the different loudnesses

for all attributes.

9.6.1. Spectral Envelope Parameters

The spectral envelope values for the different loudnesses of the piano are shown in

figure 9.24. Brightness is top left, tristimulus is top right, odd is bottom left and irregularity

is bottom right. The amplitudes are shown in figure 9.25 for all loudnesses.

Brightness is larger for the forte sounds than for the piano sounds. Furthermore, the

total value is very close to the mezzo forte, indicating that the mezzo forte sounds are

indeed in the middle between the piano and the forte sounds. The piano sounds have less
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odd value, which correlates with the fact that they have less brightness and thus more

energy in the fundamental. The piano sounds also have more tristimulus 2, probably for

the same reason.
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Figure 9.24. Spectral Envelope parameters for
three different loudnesses for the piano. All
loudnesses (solid), piano (dotted), mezzo forte
(dashdotted) and forte (dashed).
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Figure 9.25. IDA fundamental amplitude for
three different loudnesses for the piano. All
loudnesses (solid), piano (dotted), mezzo forte
(dashdotted) and forte (dashed).

The irregularity shape is exactly the same for all loudnesses. The reason for this shape is

not clear at this point, but it could be related to the change of quality and number of the

strings. The piano sounds seem to have more irregularity at the high frequencies, but this

could perhaps be attributed to the difficulty of analyzing weak signals.

The amplitudes shown in figure 9.25 have the same shape for all four curves. The forte

is stronger than the piano, of course, and the total curve is very close to the mezzo forte,

which again indicates that the mezzo forte is exactly between the forte and the piano

loudnesses.

9.6.2. Frequency Parameters

Inharmonicity for the different loudnesses of the piano can be seen in figure 9.26.

The inharmonicities also have the same shape for all curves. The piano sounds have a

more irregular shape, which again could be attributed to the difficulty of analyzing weak

signals. The inharmonicity increases with the fundamental frequency for the mezzo forte

and the forte sounds.
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The estimated values show clearly that the

piano sounds have less inharmonicity than the

forte sounds in the high notes.

Whether this is an effect of the analysis,

which often is less reliable for the weak

sounds, is unclear at this stage. The high

fundamental frequency inharmonicity is also

less reliable than the low fundamental

frequency inharmonicity, due to the fewer

partials to calculate the inharmonicity from.

The low fundamental frequency

inharmonicities have no reliable difference

among the loudnesses
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Figure 9.26. Inharmonicity for three different
loudnesses for the piano. All loudnesses (solid),
piano (dotted), mezzo forte (dashdotted) and forte
(dashed).

9.6.3. Envelope Parameters

The envelope parameters for the different loudnesses of the piano can be seen in figure

9.27. The left three plots are the attack time (top), the attack percents (middle) and the

attack curve forms. The right three plots give the corresponding values for the release.

The curve form (top) and the length (bottom) of the sustain for the different loudnesses

of the piano are shown in figure 9.28. The sustain curve form values are reliable, since the

start of release percents are much lower than the end of attack percents.

The attack times are remarkably similar for

all loudnesses. They decrease linearly from

around 100 mS to below 20 mS for all

loudnesses. The release times first increase in

the very low frequencies for all loudnesses,

after which they decrease linearly, from

almost 200 mS to around 20 mS, in the

normal playing range. The highest notes have

more noise, but the mezzo forte and forte

values, which are less sensitive to noise,

continue to decrease.
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Figure 9.27. Envelope parameters for three
different loudnesses for the piano. All loudnesses
(solid), piano (dotted), mezzo forte (dashdotted) and
forte (dashed).
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The attack percent values are rather stable

close to 1, but the release percents decrease

with the fundamental frequency, which

indicates a faster decrease rate for the highest

notes. The attack curve form is close to linear,

getting slightly more logarithmic at higher

frequencies and with more noise, or

irregularity, at the high frequencies. The forte

sounds are more logarithmic than the piano

sounds at high frequencies.

The release curve form values seem

dependent on the loudness for the full

fundamental frequency range.
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Figure 9.28. Sustain curve form values (top) and
sustain length (bottom) for three different
loudnesses for the piano. All loudnesses (solid),
piano (dotted), mezzo forte (dashdotted) and forte
(dashed).

The piano sounds have a more exponential release than the forte sounds. The release

curve form also rises with the fundamental frequency up to about midrange after which it

falls again, indicating a more exponential release for the midrange sounds. The curve form

values are rather constant, but rising for the high notes. The values are always above 1,

which indicates an exponential decay, more exponential for high frequencies. The noises

on the sustain curves, especially the peak in the midrange, are in part due to noise from the

piano sounds.

The sustain lengths are rather constant and, since both the attack and release times

decrease with the fundamental frequency, indicate shorter high fundamental frequency

sounds.

9.6.4. Noise Parameters

The sustain noise parameters for the different loudnesses of the piano are shown in

figure 9.29. The shimmer parameters are shown in the left column and the jitter parameters

in the right column. The top plots show the standard deviation, the middle plots show filter

coefficients, and the bottom plots show correlation. The combinations of all loudnesses are

shown as a solid line, the piano values are dotted, the mezzo forte values dashdotted and

the forte values dashed.

The noise parameter curves are also very correlated with the different loudnesses. The

shimmer standard deviation value starts at around 0.4, then it decreases to just above 0.1 at
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around 200 Hz, after which it increases to almost 1 at 1.5 kHz. This behavior is the same

for all loudnesses, although the piano sounds seem to have a slightly lower shimmer std for

low frequencies.

The jitter standard deviation values also

have the same shape for all loudnesses, but

here the piano sounds have more jitter std

than the forte sounds in the high notes.

The shimmer filter coefficient decreases

from around -0.8 to almost -1. The jitter filter

coefficients also decrease, with some

interruptions which are believed to be noise,

from around -0.1 to around -0.6.

Shimmer and jitter correlations increase

with the fundamental frequency for the

mezzo-forte sounds, but decrease with the

fundamental frequency for the piano and forte

sounds.
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Figure 9.29. Noise parameters for three different
loudnesses for the piano. All loudnesses (solid),
piano (dotted), mezzo forte (dashdotted) and forte
(dashed).

Attack shimmer and jitter standard

deviations are shown in figure 9.30. The

shimmer is rather constant, with a std between

0.3 and 0.5. The jitter exhibits large

variations. Since the large jitter std values

occur for the mezzo forte and forte sounds, it

seems that forte sounds have more transient

behavior than piano sounds. However, this

does not seem to be true for the low mid

range. The piano sounds always have low

jitter std, despite the fact that weak sounds are

generally harder to analyze.
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Figure 9.30. Attack shimmer (top) and jitter
(bottom) std. All loudnesses (solid), piano (dotted),
mezzo forte (dashdotted) and forte (dashed).
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9.6.5. Loudnesses conclusions

Three conclusions can be drawn from the analysis of the IDAs from the piano sounds

with different loudnesses. First of all, the difference in loudness translates mostly into a

difference in the spectral envelope parameters, and especially into a difference in the

brightness and amplitudes. Secondly, most curves are very similar across loudnesses, even

those suspected to be rather noisy. Third, the piano IDA parameters are generally more

noisy than the forte parameters. The piano sounds also have more noise than the forte

sounds, and the forte noises are more correlated than the piano sounds. Additional changes

in the IDA model parameters for a change in the loudness of a piano include a change in

release curve form, piano sounds having a more exponential release. Piano sounds seem to

have less inharmonicity and forte sounds have more jitter in the attack.

In conclusion, the IDA values seem eminently suitable for the analysis of different

loudnesses. The IDA values are generally very stable, and the differences among

loudnesses are very clear.

9.7. Tempo

Tempo is another important expression parameter. Tempo is generally written in scores

with terms such as moderato, allegro, etc. Here, two performances with different tempi of

the clarinet are analyzed. The tempi are allegro and moderato. The loudnesses are a mix of

piano and forte and the playing style is staccato. The full playing range of the clarinet is

available for the two tempi. In the following figures the combined IDA values are plotted

in a solid line, the allegro values are plotted in a dotted line, and the moderato values are

plotted with a dashed line. The amplitude of the different tempi is plotted in figure 9.32.

The clarinet sounds here are generally not the same as the clarinet sounds in section 9.5,

which consist more of tenuto executions.

9.7.1. Spectral Envelope Parameters

The spectral envelope parameters for the clarinet with different tempi are shown in

figure 9.31. The top left plot is brightness, the top right plot is the tristimulus, the bottom

left plot is the odd value and the bottom right plot is irregularity. In all plots the solid line

denotes the complete clarinet values, the dotted line the allegro values and the dashdotted

line the moderato values.
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Figure 9.31. Spectral envelope parameters for
the clarinet with different tempi. Total (solid),
allegro (dotted) and moderato (dashdotted).
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Figure 9.32. Amplitude for the clarinet with
different tempi. Total (solid), allegro (dotted) and
moderato (dashdotted).

There seems to be no significant differences in the spectral envelope for the different

tempi. Brightness is perhaps a little higher for the high notes of the allegro execution.

Brightness is rather constant for the full playing range of the clarinet. The tristimulus

first heads towards the fundamental, but then deviates towards the midrange in the upper

half of the playing range. This might be explained by the change of register.

The odd value, which is calculated from the third partial, is falling with the fundamental

frequency. This is because of the rising fundamental amplitude.

The irregularity value starts above 1. There is generally a very high irregularity because

of the weak even partials.

The amplitude curves are very similar for the different tempi. The low fundamental

frequency amplitudes decrease slightly, whereas the high fundamental frequency

amplitudes increase from below 1000 to above 3000. This is the case for all tempi. Only

the edge (lowest and highest fundamental frequencies) values are different for the different

tempi.

9.7.2. Frequency Parameters

Inharmonicity is generally very close to zero for the clarinet and it is not plotted here.

There is not very much irregularity in the inharmonicity, even for the high error-prone

notes. This may be because of the high number of notes used here, by the combination of

piano and forte executions. The clarinet is not expected to have any inharmonicity, and

none is found here. It is also the only instrument with absolutely no inharmonicity in figure

9.10.
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9.7.3. Envelope Parameters

The attack and release envelope parameters for the different tempi of the clarinet are

shown in figure 9.33. The left plots are the attack values, the right plot are the release

values. Top plots are the times, middle plots are the percents and bottom plots are the

curve form values. The sustain curve form (top) and time (bottom) are shown in figure

9.34.
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Figure 9.33. Attack and release envelope
parameters for the different tempi of the clarinet.
Total (solid), allegro (dotted) and moderato
(dashdotted).
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Figure 9.34. Sustain curve form (top) and times
(bottom) for the different tempi of the clarinet.
Total (solid), allegro (dotted) and moderato
(dashdotted).

The envelope parameters are a priori the parameters that change most with tempo.

The low note attack parameters are not influenced by the different tempi but the high

moderato notes have a higher attack time. The release times are higher for the moderato

clarinet, which also has a slightly higher percent value for the release. The sustain times

are of course longer for the moderato than for the allegro sound, although for the highest

fundamental frequency this situation is inverted. This is compensated for by the longer

release times. Since the percents of the moderate sounds also rise with the fundamental

frequency, it would seem that the longer release and shorter sustain times for the highest

notes are an effect of the estimation of the parameters. The decay is more exponential for

the high fundamental frequencies.

9.7.4. Noise Parameters

The noise parameters for the different tempi of the clarinet are shown in figure 9.35.

The left plots are the shimmer values and the right plots the jitter values. The top plots are
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the standard deviation, the middle plots the filter coefficient values and the bottom plots

the correlation values.

There is not much significant change in the

noise values for the different tempi. The main

observation is again the similarity of the

curves for the different tempi, which shows

the success of the parameter estimation.

The shimmer and jitter std for the moderato

sounds seems slightly lower than the allegro

values.

The shimmer std seems stable at around

0.2, and the jitter std at around 0.02.

Both the shimmer and the jitter noise

coefficient fall with the fundamental

frequency.
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Figure 9.35. Noise parameters for the different
tempi of the clarinet. Total (solid), allegro (dotted)
and moderato (dashdotted).

Shimmer correlation is constant, whereas jitter correlation falls slightly with the

fundamental frequency.

9.7.5. Tempo Conclusions

The envelope times are the parameters that change the most with the change in tempo.

The attack times do not change significantly, but the sustain and release times do. The sum

of the sustain and release times is always larger for the moderato than for the allegro

executions. The spectral envelope does not change with the tempo. There is more jitter and

shimmer for the allegro executions than for the moderato executions.

9.8. Style

The influence of the style of execution on the timbre attributes is analyzed here. Three

different styles are analyzed for the cello: staccato, spiccato and legato. The loudness of

all executions is mezzo forte, and the tempo is moderato for the legato, and allegro for the

staccato and spiccato. The difference in tempo is unfortunate and does not facilitate the

identification of pertinent attributes in the style dimension.

In the following figures, the combination of all cello sounds is plotted with a solid line,

the staccato executions with a dotted line, the spiccato executions with a dashdotted line



Chapter 9. Instrument Definition Attributes

147

and the legato executions with a dashed line. The amplitudes of the different styles of the

cello are shown in figure 9.37.

9.8.1. Spectral Envelope Parameters

The spectral envelope parameters for the different styles of the cello are shown in figure

9.36. The top left plot is brightness, the top right plot is tristimulus, the bottom left plot is

the odd value and the bottom right plot is irregularity. The solid lines are the values for all

sounds, the dotted line for the staccato sounds, the dashdotted line for the spiccato sounds

and the dashed lines for the legato sounds.
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Figure 9.36. Spectral envelope parameters for
the different styles of the cello. Complete cello set
(solid), staccato (dotted), spiccato (dashdotted) and
dashed (legato).
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Figure 9.37. Amplitudes for the different styles of
the cello. Complete cello set (solid), staccato (dotted),
spiccato (dashdotted) and dashed (legato).

Brightness, odd and irregularity values are not influenced very much by the different

styles.

Brightness is rising with the fundamental frequency from around 700 Hz for the low

notes to around 2 kHz for the high notes.

The tristimulus has a funny loop in the middle for all three styles. Here, first the T2 is

increasing, then the T1, then the T3, and finally the T2 is increasing again. This may be an

indication of a low resonance, in which first the midrange partials, and then the

fundamental is placed.

The odd value is decreasing, but again, this is more because of decreasing partial index

brightness, than because of a change in the odd value.

Irregularity starts at a rather high value for the lowest fundamental frequencies,

decreasing fast to a stable value of about 0.4 for all styles.
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The amplitudes have more differences than would be expected from the relatively

homogenous spectral envelope parameters. The legato has a much lower amplitude than

the other styles.

9.8.2. Frequency Parameters

Inharmonicity is very low for all the cello notes, indicating good initial frequency

estimation for this instrument. If anything, inharmonicity is falling slightly with the

fundamental frequency for all styles.

9.8.3. Envelope Parameters

The attack and release envelope parameters for the cello are shown in figure 9.38. The

left three plots are the attack values and the right three plots the release values.

Top plots are the envelope times, middle

plots the percents and bottom plots the curve

form values. Complete cello set values are

plotted with a solid line, staccato values with

a dotted line, spiccato values with a

dashdotted line and legato values with a

dashed line.

The legato has a longer attack time for the

low notes, but a shorter attack time for the

high notes, and a shorter release time for all

notes. This is obviously dependent on the

segmentation of the legato sounds, if the

separation is made close to the attack, then

the attack times are short, otherwise the

release times are short.
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Figure 9.38. Envelope parameters for the
different styles of the cello. Complete cello set
(solid), staccato (dotted), spiccato (dashdotted) and
dashed (legato).

In the legato style, the notes are almost glued together, and the total attack and release

time should be shorter than the staccato or spiccato times. This is probably the reason for

the short release times for the legato.

The legato sound also has a smaller attack percent value, indicating a softer attack, with

no clear peak at the end of the attack. This is also corroborated with the larger attack curve

form values for the legato sound, indicating a more logarithmic form in the attacks of the
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legato sounds. The legato release percents are also higher than the percents for the other

executions. The release curve form values are close to one for all executions and rising

slightly with the fundamental frequency. The main difference between the staccato and the

spiccato is that the staccato has longer release times.

The sustain curve form (top and times (bottom) for the different executions of the cello

are shown in figure 9.39 and the start (top) and end (bottom) times are shown in figure

9.40. The decay curve form values are more noisy for the longer legato sounds, which

have perfectly sustained envelopes.
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Figure 9.39. Sustain curve form (top) and times
(bottom) for the different styles of the cello.
Complete cello set (solid), staccato (dotted), spiccato
(dashdotted) and dashed (legato).
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Figure 9.40. Start (top) and end (bottom) times
for the different styles of the cello. Complete cello
set (solid), staccato (dotted), spiccato (dashdotted)
and dashed (legato).

No difference has been found so far between the spiccato and the staccato sounds.

When listening to the sounds, it seems that the largest difference is in the delay between

the sounds. This might be lost in the segmentation of the sounds, but it can be deduced

from the sustain times in figure 9.39. Here the spiccato sounds are shorter than the staccato

sounds. Since the tempi are equivalent for the two executions, the conclusion is that

spiccato sounds have more silence between the sounds.

The start and end times for the fundamental and the different styles are shown in figure

9.40. Both the start and end times are very short, indicating that segmentation is done close

to the attack and release for all sounds.

In conclusion, the style change on the envelope parameters is hard to detect for these

sounds, since they do not have the same tempo. The legato has higher attack times, lower

attack percents and higher attack curve form values. This is all an indication of softer

attack. The legato has a shorter release time and higher release percents, which are
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indications that the sound has been cut off, either by the segmentation, or by the execution,

preparing for the next note. The staccato and spiccato styles are mainly differentiated by

the pause between the notes, spiccato having a longer pause than staccato, but this is

masked by the segmentation of the sounds.

9.8.4. Noise Parameters

The noise parameters for the different executions of the cello are shown in figure 9.41.

The left plots are the shimmer values and the right plots the jitter values. The top plots are

the standard deviation, the middle plots the filter coefficients and the bottom plots the

correlation. Complete cello set values are plotted with a solid line, staccato values with a

dotted line, spiccato values with a dashdotted line and legato values with a dashed line.

Few significant differences among the

styles have been found in the noise

parameters.

Shimmer standard deviation is rather stable

for all styles at around 0.2. Jitter standard

deviation is very small, with the exception of

the low staccato sounds, which may be caused

by bad analysis.

The legato shimmer filter coefficients are

much lower than the other filter coefficients.

The relatively longer legato sounds and

consequently worse envelope model may

explain this.
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Figure 9.41. Noise parameters for the different
styles of the cello.

The jitter filter coefficients are very close to zero, indicating a band-pass noise.

Correlation is close to 0.5 for both shimmer and jitter for all sounds and styles.

9.8.5. Style Conclusions

The conclusions from the analysis of the cello sounds with different styles are made

difficult because of the different tempi of the different styles and because of the

uncertainty caused by segmentation.

Nonetheless, the legato was generally found to have a longer attack and short release

time, and a more rounded attack. It also has shorter release and higher release percents.
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The style seems to influence only the envelope parameters, but a difference in shimmer

filter coefficient was detected for the legato sounds. This is explained by the worse fit on

long sounds of the simple envelope model, which cannot model tremolo, or other voluntary

amplitude variations. No changes were detected in the spectral envelope values for the

different styles of the cello. The difference between the staccato and spiccato styles is

mostly related to the pause between the sounds.

9.9. Sound Recreation from IDA Parameters

An MDA parameter set for a given fundamental frequency is extracted from the IDA

parameter set, by finding the corresponding IDA frequency band, and copying the

parameters from this band into the MDA. The HLA parameters and additive parameters

can then be created, and finally a sound can be synthesized.

Morphing between different IDA classes is done by multiplying each IDA with a

coefficient, and ensuring that the sum of all coefficients equals one.

The quality of the IDA sound synthesis is generally very close to the MDA quality. No

significant difference in quality has been found, so the conclusions from the MDA in

Chapter 8 are also valid here. No improvement or deterioration has been found from the

summation of many MDA parameters.

9.10. Conclusions

The IDA parameter set is helpful in analyzing the evolution of timbre attributes across

the playing range of an instrument. Some timbre attribute evolutions are common for many

instruments, whereas others have individual evolutions for each instrument, which can

sometimes be explained by the characteristics of the instrument. The analysis of the IDA

parameter evolution across playing range, loudness or other classes, is helpful in

understanding which timbre attributes are responsible for what sound quality change.

The partial index brightness is decreasing with fundamental frequency, giving most of

the amplitude to the fundamental for the highest fundamental frequencies. The frequency

brightness is increasing with the fundamental frequency for most instruments. One

exception is the violin, which has a fairly constant brightness. The attack time and to a

lesser degree the release times decrease with the fundamental frequency. Again the

exception is the violin, which has a fairly constant attack time. Noise is not very influenced
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by the fundamental frequency, although the shimmer standard deviation often rises with

the fundamental frequency.

A change in loudness influences only the spectral envelope parameters, notably

brightness and amplitude, which both increases with loudness. A decrease in tempo

modifies the envelope time by increasing the sustain and release times. The shimmer filter

coefficient decreases with a decrease in tempo, indicating a low-frequency rumbling

irregularity, which is probably caused by the poor envelope model. The change in style

also modifies the envelope parameters most, the legato having softer attack and shorter

releases. The difference between staccato and spiccato is related to the length of the

silence between sounds.

The IDA parameters generally recreate the identity of the instrument in resynthesis but

the sound quality is the same as for the MDA parameters. Although it is believed that the

IDA parameters are sufficient for a good resynthesis of a musical sound, more work

remains before this can be achieved.
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Chapter Ten

10. Timbre Modifications

One of the exciting things to do with the timbre models is to modify the parameters and

listen to the effect on the sound. Since the timbre model attributes are well understood, the

modifications on the timbre are intuitive and the effects that are sought for are easily

implemented. The modifications can be either of the expression parameters, such as the

pitch, or the identity of the sound. All timbre models can be modified, or used as templates

in the modification of another model, but this chapter focuses on the modification of the

additive parameters. Furthermore, the concatenation of two sounds is discussed. The

modifications presented in this chapter can be used to ‘play’ the different timbre models.

10.1. Introduction

This chapter discusses the modifications of the parameters of the timbre models. The

modifications can involve either an expression, such as the pitch, or the identity of the

sound. The expression modifications must be possible in real-time, ‘on the fly’, and this is

also highly desirable for the other modifications, although no special attention has been put

into this problem.
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Most people who work in the analysis/synthesis of sounds do expressive or timbre

manipulations. [Bode 1984] offers a non-exhaustive review of early sound modifications.

[Allen 1977] modified the sound in the fourier domain, [Quatieri et al. 1986] made speech

transformations in the additive domain. Other synthesis techniques with good possibilities

for timbre manipulation are the granular synthesis [Roads 1988] and the physical modeling

[Jaffe et al. 1983]. [Lent 1989] proposes a method for efficient pitch shifting of sounds.

[Fitz et al. 1996] made timbre manipulation using additive parameters, and [Tellman et al.

1995] used the same parameters to do timbre morphing. [Rovan et al. 1997] made

expressive changes in the additive domain and [Arcos et al. 1997] uses case-based

reasoning system to generate expressive musical performance with SMS [Serra et al.

1990]. The diphone program [Rodet et al. 1997] is also used for the manipulation and

concatenation of additive or other parameters.

The advantage of this work is to have available a complete timbre model, as for instance

the HLA model presented in Chapter 6, or the MDA model presented in Chapter 8, into

which the additive parameters are to be shaped.

Several types of modifications can be made, first, there are inter-model modifications,

where two parameter sets from the same model are combined, and then there are extra-

model modifications where the parameters from one model are used to modify the

parameters of the other model. Furthermore, there is the timbre morph, where two sounds

are transformed into another sound, which is somewhere intermediate in the timbre space.

Individual timbre attribute modification, where one or a few attributes are modified, is also

possible.

The modifications of the HLA or MDA parameters, or between the HLA and the MDA

parameters are relatively straightforward, therefore this chapter focuses on the

modification of the additive parameters with a HLA template.

The modifications of the expressive parameters pitch, loudness and duration are

discussed in section 10.2 and the inter model modifications are discussed in section 10.3.

Section 10.4 talks about the concatenation of two sounds and the modification method

developed in this work of the additive parameters is presented in section 10.5. The quality

of the resynthesis is discussed in section 10.6 and the chapter ends with a conclusion in

section 10.7.
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10.2. Pitch, Loudness and Duration

Here the most important parameters of the timbre are modified. These modifications

can be made on any type of model, and independent of modifications of other parameters.

Generally, the modifications can be made real-time, thus enhancing the vivacity of an

instrument.

10.2.1. Pitch

The pitch of a sound is the perceived fundamental frequency of a sound. The

modification of the pitch is done here by modifying the mean frequencies of the individual

partials. Therefore, changing the pitch from sounda to soundb consist of modifying the

mean of each partial frequency from the value from sounda to the value from soundb,

f k(t) = fk
a(t) ⋅

f k
b

f k
a (10.1)

where f k
a(t) is the original time-varying frequency of partial k. This means that only the

mean frequency of each partial is changed. This is true for the additive and the HLA

models. For the MDA model, where the frequency is modeled by the fundamental

frequency and inharmonicity index, these two values are changed in order to change the

pitch. When an intermediate value is wanted, the frequencies are modified by a ratio times

parametera plus another ratio times parameterb,

f k(t) = fk
a(t) ⋅

(1 − r) ⋅ f k
a + r ⋅ f k

b

f k
a (10.2)

where 0 ≤ r ≤ 1 . In the case of the HLA model, the frequencies have no time index, which

can thus be omitted. If the individual partial frequencies are not available, all frequencies

are changed by the same ratio.

The aforementioned modifications can be stored in all the models, but the vibrato effect

can only be stored in the additive model. Vibrato consists of multiplying an offset low-

frequency waveform vib(t) (typically a sinusoidal) to the frequency of the partials,

f k(t) = fk (t) ⋅ (1 + vib(t)) (10.3)

Typical values of the vibrato are a few percents, and often the vibrato is delayed

slightly, but the values of these parameters are chosen at performance time, and not further

discussed here.
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10.2.2. Loudness

Loudness is the perceived intensity of a sound. Loudness is modified by changing the

maximum of the amplitude of the partials. The modifications of the amplitudes are made in

a manner similar to the pitch modifications. The transformation from sounda to soundb is

done by multiplying the time-varying amplitudes ak
a(t) by the maximum of the target

amplitude, and dividing by the maximum of the original amplitude for each partial k,

ak (t) = ak
a(t) ⋅

max(ak
b (t))

max( ak
a(t))

(10.4)

In the case of morphing between two sounds, the amplitude is,

ak (t) = ak
a(t) ⋅

(1 − r) ⋅ max(ak
a (t)) + r ⋅max(ak

b (t))

max(ak
a(t))

(10.5)

where 0 ≤ r ≤ 1 . Again, in the case of the HLA model, the frequencies have no time index,

which can thus be omitted. If the individual amplitudes of the target sound are not

available, all amplitudes are changed by the same ratio. The MDA model is modified by

setting the spectral envelope parameters.

The slow oscillating of the amplitudes is called tremolo, and tremolo can only be stored

or added to the additive model. Tremolo is created by adding a low-frequency waveform

trem(t) to the amplitude of the partials,

ak (t) = ak (t) ⋅(1+ trem(t)) (10.6)

By multiplying with the original amplitudes it is ensured that there is no tremolo in the

silence, and that the tremolo decreases gracefully when the amplitude decreases. Normal

tremolo values are between 10% and 50%. A tremolo ten times the vibrato seems to give

about the same perceptive effect.

10.2.3. Duration

The duration is the perceived length of the sound. The duration is here modified by

changing the sustain length of each partial,

tsustain,k
b = tsustain,k

b + tmod (10.7)

where

tmod = tlength
b − tlength

a (10.8)
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is the difference of length between sounda and soundb. If tmod < 0 , the new sustain length

can become negative. If this happens, it is necessary to decrease the attack and release

times, to ensure that the envelope has the right length. It is important that all partial lengths

are changed by the same amount, since otherwise the individual release times will not be

synchronized, which is very perceivable.

If the absolute value of tmod is large, it might be necessary to either duplicate or cut out

parts of the sustain segment, to maintain the same noise frequency magnitude.

The modifications of the sustain length can give rise to artifacts in the sound if it is an

attack-decay-release type of sound. In that case, it is necessary to change the decay slope to

accommodate for the change in length. In for instance the piano, augmenting the length

without changing the slope gives the sound an unnatural strength in the end of the decay.

The slope is defined in the HLA model by the percent values at the end of attack and the

start of release and the curve form. The sound can very well be of sustain type even though

the start of release value is much lower than the end of attack value, if the curve form is

‘bending over’ in the end. Nevertheless, the curve form is ignored, and the decay is

simplified into a linear form, where the value at the start of release is changed, if it is

smaller than the end of release value,

v sor = v eoa
a + (vsor

a − veoa
a )

t sustain
b

tsustain
a (10.9)

Obviously, this value is truncated at zero, since the amplitude can not be negative.

Although the linear shape is a simplification of the real decay form, the modification of the

start of release value according to a linear model seems to correct the sustain length

problem.

10.2.4. Number of Partials

The number of partials is a fairly simple attribute. Although it may be important when

the higher partials contain much energy, in general, the number of partials is not very

crucial. It can be important, nonetheless, to add or remove partials, for instance when

combining a high flute sound with a low piano sound.

In general terms, if the goal is to transform sounda into soundb, and sounda has Na

partials, and soundb has Nb partials, then the resulting sound should have Nb partials.

If Na>Nb then the Nb+1 to Na partials are removed from the sounda. This is easily done,

whether sounda is modeled by additive parameters, or HLA parameters. The MDA and
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IDA models don’t include the partial number, so the question doesn’t arise for these

models.

If Nb>Na, partials must be added to sounda. If sounda is modeled by the HLA, then the

corresponding MDA parameters are calculated, and a new HLA with Nb parameters is

created. The Na+1 to Nb partials from the new HLA are then copied to the same partials in

the original HLA. If sounda is defined by additive parameters, then two methods can be

used to create the Na+1 to Nb partials. The first consists of creating the corresponding HLA

and MDA, and a new HLA with Nb partials, and finally creating Na+1 to Nb synthetic

partials which are added to the additive parameters of sounda. The second method, which

has been adopted here, consists of copying the Na partial to all the missing partials, and

modify only the amplitude and frequency of these partials, so they correspond to the upper

partials from the synthetic HLA of the same sound, with Nb partials.

If a sound is created in between sounda and soundb, it can be supposed that the number

of partials is an intermediate value, and the number of partials of the resulting sound is,

N = r ⋅ Na + (1 − r) ⋅ Nb (10.10)

where 0 ≤ r ≤ 1 .

10.3. Inter-Model Modifications

In this section the modification of sounda into soundb is discussed. Both sounds are

supposed to be defined by the same model, be it the additive, the HLA, or the MDA model.

The additive parameter model consists of k partials with time-varying amplitude and

frequency.

The HLA model is presented in Chapter 6. It consists of the spectral envelope, the mean

frequencies, the envelope times, percents and curve form values, the shimmer and jitter

values. Most parameters have values for each segment of the envelope, and all values are

individual for each partial.

The MDA is presented in Chapter 8. It consists of the same parameter types, but the

spectral envelope is modeled by brightness, tristimulus 1 and 2, the odd value, irregularity

and maximum amplitude. The mean frequencies are modeled by the fundamental value and

inharmonicity, and all other parameters are modeled by the fundamental value and the

value of an exponential, which models the evolution across the partial index.
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The modification of the additive parameters necessitates the normalization of the length.

This is done by changing the full length of each partial using the method exposed in

paragraph 10.5.3.1. Furthermore, the number of partials must be equal for both sounds.

This is done by the method presented in 10.2.4. The amplitudes and frequencies of sounda

and soundb are then morphed by the following formulas,

ak (t) = r ⋅ ak
b( t) + (1− r) ⋅ak

a (t) (10.11)

fk(t) = r ⋅ fk
b (t) + (1− r) ⋅ fk

a( t) (10.12)

More than two sounds can of course be used to create the output parameters.

This method suffers from the lack of temporal cues, and an improved method of the

modification of the additive parameters is introduced in section 10.5.

If the HLAa is to be modified partly into HLAb, the number of partials must first be

normalized, as explained in paragraph 10.2.4. Then the HLA sets can be combined easily,

in fact then,

HLA = r ⋅ HLAb + (1− r) ⋅ HLAa (10.13)

Here, the spectral envelope features might not be well interpolated.

The MDA models are combined, or morphed, ‘straight out of the box’,

MDA = r ⋅ MDAb + (1− r) ⋅ MDAa (10.14)

Care must be taken when morphing the filter coefficient values for shimmer and jitter if

the fundamental frequency of the sounds are very different, since the filter coefficient

values are dependent on the sampling rate of the additive parameters, which is equal to the

fundamental frequency, f0. (cf. the data reduction in section 4.3.5 in Chapter 4).

In conclusion, the inter model modifications are relatively straight forward, but the

averaging method used can remove important information, such as the noise, and the

interpolation of perceptually important features may not be handled properly in the good

quality additive or HLA models.

10.4. Concatenation

When playing two sounds one after the other, the sounds need to be concatenated. If the

sounds are played with a silence between them, the sounds can be created individually, and

then concatenated with the suitable silence in between. However, if the second sound is
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interrupting the first, care must be taken so that the two sounds sound right. The

concatenation can define important timbre cues, such as the style of the execution.

The concatenation involves the times of the envelope. The start and end segments are

minimized to the smallest length that permits a common start and end of the sound. This

restitutes the effective duration of the sound. The original start and end segments are used

only if there is a pause between the sounds.

Two types of concatenation are possible, the superposition of the new sound parameters

on the old, and the replacement of the old by the new sound parameters. Superposition is

used for example when changing the string in the violin and replacement is used when

playing a new note on the same string.

Concatenation is here discussed on the additive parameters, using the HLA model as a

template for the sounds.

10.4.1. Superposition

The superposition of soundb on or after sounda is done simply by adding the additive

parameters of soundb at time t to the additive parameters of sounda. Timing is ensured by

setting the time zero of soundb as the time of the earliest start of attack.

Superposition is also used when playing chords. One problem with the superposition of

additive parameters is the large number of partials that results from the superposition of

several sounds. Cleaning out masked [Small 1959] partials could potentially reduce the

number of partials resulting from superposition.

10.4.2. Replacement

Replacement is the normal mode when playing a melody with the additive parameters.

Here, the amplitude and frequency of the partials of sounda are transformed into the values

of soundb. The time of the transformation, tp, can be set, and it defines the length of the

portamento of the transition.

Assuming that the end of sounda, te
a, and the start of soundb, ts

b, are available. ts
b is

defined as the earliest attack time, and the partials of soundb prior to this time are not used.

The parameters of soundb are inserted at time t+tp, and the amplitudes and frequencies of

sounda at time t are modified into the amplitudes and frequencies of soundb at time ts
b. If

the sounda is longer than t+tp, the remaining part is not used.
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The frequencies at the portamento segment of the output sound are the sum of the two

frequencies, multiplied by two curves that ensure that the frequencies change from those of

sounda to those of soundb.

f k(t) = fk
a(t) ⋅ curve(0,

f0
b

f0
a ,tp) + fk

b (t) ⋅curve(
f0

a

f0
a ,0, tp) (10.15)

where f0 is the fundamental frequency. The function curve(a,b,t) makes a curve from value

a to value b with length t. The curve form is not specified here, but it could instead be

specified at performance time, preferably using some real-time sensor.

The replacement can also be used to play a melody with the same additive parameter

set, but if the pitch is changed by more than half an octave, the sound generally loses

realism, and it needs to be modified as explained in the next section.

A simple modification would be to change only the brightness; the resulting brightness

should be (cf. The IDA analysis in Chapter 9),

Br = Br0 /
log( f0

b )

log( f0
a )

 
 
  

 
 

2

(10.16)

where Br0 is original brightness. This change means brightness decreases when the pitch is

increased. Other parameters, which seem to have a constant evolution across pitch,

independent of the instrument, are tristimulus, odd, amplitude and attack time. These

parameters must be changed if a natural sound is wanted across a large pitch or intensity

range. More information on the evolution of the timbre attributes as a function of pitch can

be found in Chapter 9.

10.5. Additive Modifications

In this section, the transformation of the additive parameters of sounda into soundb is

discussed. The soundb is defined by the HLA parameters. The sounda HLA parameters are

also available. The HLA parameters are indicated with a hat on the parameters. The

transformation is done in several steps: first the spectral envelope is transformed, then the

pitch, then the amplitude envelope is transformed in several steps, and finally the shimmer

and jitter are transformed. All of these steps can be done individually, if only some of the

timbre attributes should be changed. The final modifications give a sound that is very close

to soundb. In the following, the transformation of a piano sound (a) into a trumpet sound

(b) is illustrated.
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10.5.1. Spectral Envelope

The amplitudes are modified in the same manner as explained in paragraph 10.2.2. The

time-varying amplitude of each partial is multiplied by the static spectral envelope of

soundb and divided by the static spectral envelope of sounda,

ak (t) = ak
a(t) ⋅

âk
b

âk
a (10.17)

The hat on the parameters indicates here that they are derived from the HLA model. âk is

the spectral envelope value at partial k (the maximum amplitude of the partial k).

The spectral envelope of the original and

the modified additive parameters of the piano

sound are shown in figure 10.1. The trumpet

spectral envelope is not shown, since it is

identical to the modified piano spectral

envelope.

The modification of the spectral envelope

is a powerful modification, which changes the

sound substantially. Nonetheless, the identity

of the sound is not transformed just by

modifying the spectral envelope, since the

same instrument can have very different

spectral envelopes in different playing ranges.
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Figure 10.1. Spectral Envelope of the original
(solid) and modified (dotted) piano.

This is the first step in transforming sounda into soundb. The next step is to change the

frequencies of the output additive parameters. This changes the pitch of the resulting

sound.

10.5.2. Frequency

The frequencies are modified in the same manner as explained in paragraph 10.2.1. The

frequency of each partial is multiplied by the new frequency envelope and divided by the

old frequency envelope,

f k(t) = fk
a(t) ⋅

ˆ f k
b

ˆ f k
a

(10.18)
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where the HLA frequency ˆ f k
a  in this case is the mean frequency of partial k in the sustain

region.

The original and transformed frequencies

of the piano sound are shown in figure 10.2.

The original piano frequencies, divided by the

partial index, constitute the solid line and the

modified piano frequencies, which are

identical to the trumpet frequencies, constitute

the dotted line. It is clear that the original

piano has a greater inharmonicity index than

the trumpet. The fundamental frequencies are

very close, so the sound is not changed very

much by this modification. The trumpet has a

slightly higher fundamental frequency than

the piano, but no partial frequency stretching.

The highest frequencies of the trumpet are

probably misjudged due to noise.
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Figure 10.2. Mean frequencies, divided by the
partial index, of the original (solid) and modified
(dotted) piano.

This is the second step in the transformation of the piano sound into a trumpet sound.

The additive parameters now have the same mean frequencies and maximum amplitudes as

the resulting sound. The next steps involve the modifications of the amplitude envelope

and noise parameters.

10.5.3. Envelope

The envelope is an important timbre attribute. The envelope model is presented in

Chapter 5. It is defined for each partial in the HLA model as the times, percents and curve

forms of an attack-sustain-release or attack-decay-release model, which also includes a

start and an end segment. The envelopes of the partials of the piano sounda is transformed

into the envelope form of the trumpet soundb by first modifying the envelope times, then

changing the envelope percents, and finally changing the curve forms.

10.5.3.1 Envelope Times

The envelope times of the sounda is changed into the times of soundb by adding a linear

slope lincurve for each segment. The slope has the value zero at the start of the slope and

the difference between the new and the old segment length at the end of the slope,
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t s,k (t) = ts ,k
a (t) + lincurve(0, ˆ t s, k

b − ˆ t s ,k
a , ˆ t s,k

a ) (10.19)

The time with a hat and no t parameter is the length of the segment from the HLA

model. The time with parameter t is the time at envelope index t. The function

lincurve(a,b,t) makes a linear curve from a to b with length t. This accelerates or

decelerates the times so it is equal to the new length at the end of the segment. The

envelope time modifications are done for the start, attack, sustain, release and end

segments for all partials.

The modified envelope of the fundamental

is shown in figure 10.3. The modified

envelope has first been multiplied so the

maximum value is the same as the target

value, as explained in paragraph 10.5.1. The

target envelope has been created from the

clean (noiseless) HLA parameters of the

trumpet sound.

The plus signs denote the split points for

the original and the wanted envelope.

Already, the envelope has a good

resemblance to the target envelope, although

the sustain curve form is wrong. These

parameters are corrected in the following two

paragraphs.
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Figure 10.3. Original (top), target, and modified
(bottom) fundamental envelope after time
modification.

10.5.3.2 Envelope Percents

The next step is to change the envelope percents. The envelope percents are the relative

amplitudes at the split points. This modification is done for each percent by multiplying the

adjoining segment envelopes with a linear slope, which is 1 at the far ends, and the

percentb divided by the percenta at the split point. The modification of, for instance, the

sustain segment of partial k is then,

as, k(t) = as,k
a (t) ⋅(lincurve(

ˆ p eoa ,k
b

ˆ p eoa , k
a ,1, ts,k ) ⋅lincurve(1,

ˆ p sor, k
b

ˆ p sor , k
a ,t s,k )) (10.20)

ˆ p eoa, k  is the percent at the end of attack, and ˆ p sor ,k is the percent at the start of release.

The envelope percent changes are done for the soa, eoa, sor and eor percents.
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The original, target and modified envelopes after the percent modification of the

fundamental are shown in figure 10.4. The main difference here is that the percent of the

piano in the end of release split point is almost zero, whereas the corresponding trumpet

percent is very large. The linear slope value then becomes very large, and the curve can be

substantially modified. What happened here is that the characteristic peak at the end of the

decay of the piano was amplified, so it is very visible. Since this phenomenon is not

included in the HLA model, it is normal and necessary that it is transmitted from the piano

to the trumpet sound.

The fundamental partial of the trumpet

actually ends in the eor split point. This is not

very visible in figure 10.4, but it becomes

visible after the resampling is performed in

paragraph 10.5.4. Although the envelope

doesn’t look any closer to the target envelope

after this modification, the next step, which is

the modification of the curve form, will show

that this is the case.
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Figure 10.4. Original (top), target, and modified
(bottom) fundamental envelope after the percents
modification.

10.5.3.3 Envelope Curve Forms

The envelope curve form is the last step in the modification of the amplitude envelopes.

The curve form is a simple equation with three parameters, v1, v2 and n.

curve(t) = v1 +(v2 − v1) ⋅(1− (1 − t)n )
1

n (10.21)

where v1  and v2  are the start and end values, which are found by multiplying the percent

with the spectral envelope value for the corresponding segment and partial. t is the time

index, and n is the curve form.

The modification for each segment from curvea to curveb is made by adding curveb and

subtracting curvea,

as, k(t) = as,k
a (t) + curveb(t) − curvea(t) (10.22)
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This can be done, since the length, start and end points are the same for both curves

after the timing and percent modifications. The modification of the curve forms is done for

the start, attack, sustain, release and end segments.

The envelope of the fundamental of the

piano is shown in figure 10.5. It is obvious

that the curve form of the piano now is really

close to the curve form of the trumpet. The

main difference is the peak at the end of the

release, which is very characteristic of the

piano.

It is now clear that the previous

modifications of the envelope percents

actually approached the source envelope to

the target envelope even though it sometimes

seemed the opposite was happening.
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Figure 10.5. Original (top), target, and modified
fundamental envelope after the curve form
modification.

The envelope timing and percent modification are necessary first steps if the curve form

modification shall succeed.

The modification of the curve form of the envelope finishes the third step of the

transformation of the piano sounda to the trumpet soundb. The partials now have a close

physical resemblance, as can be seen in figure 10.5, but the sound still is different, so the

noise attributes are changed next.

10.5.4. Noise Modification

The noise is an important attribute of the timbre, and it is here modeled as the

irregularities on the amplitudes (shimmer) and frequencies (jitter) of the partials. The noise

model is presented in Chapter 6. The partials need to be resampled after the frequency and

envelope modifications, since the noise is calculated on the partials with a sampling rate of

the fundamental frequency of the sound. The sampling conversion is done by linear

interpolation. Better results may be obtained with better interpolation methods, but so far

no sound artifacts have been observed with the simple linear interpolation.

If the fundamental frequency modification has been important, or the segment length

changes are important, then it may be necessary to revise the segment length modification
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method, since the high frequency content of the noise of, for instance, a very short segment

changed into a very long segment, is dilated to be almost non-existent.

10.5.4.1 Shimmer

Shimmer is the noise on the amplitude of the partials. It is modeled in the HLA model

with two parameters, the standard deviation and the filter coefficient of a single-tap

recursive filter.

The magnitude response of a single-tap recursive filter with one parameter a is

[Steiglitz 1996],

H( ) =
1

1+ a2 + 2a ⋅cos( )
(10.23)

The shimmer is first extracted by subtracting the clean soundb envelope from the

modified sounda envelope, and normalizing with the clean envelope,

shimmers, k =
es, k

b (t) − ˆ e s,k
b (t)

ˆ e s, k
b (t)

(10.24)

where es, k  is the amplitude envelope for the partial k, and ˆ e s, k  is the clean envelope for the

same segment and partial. The shimmer parameters need to be recalculated, instead of

extracted from the HLA model, since it has been substantially modified in the previous

paragraphs. The filter coefficient is now calculated from the shimmer, and the modified

shimmer with the desired frequency magnitude is calculated by multiplying by the new

filter magnitude responseb and dividing by the old filter magnitude responsea in the

frequency domain,

shimmers, k = FFT−1(FFT(shimmer) ⋅
H( )b

H( )a ) (10.25)

The standard deviation is then calculated from the modified shimmer, and the shimmer

is again modified by multiplying by the wanted standard deviationb and dividing by the

calculated standard deviationa,

shimmers, k =
b

a shimmers,k (10.26)

This creates a new noise with the target standard deviation and filter coefficient values.

The noise is reinserted into the clean envelopeb by multiplying it with the clean envelopea

and adding it,
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es, k
a = ˆ e s,k

a (1 + shimmers,k ) (10.27)

The sustain shimmer for the fundamental of the piano is seen in figure 10.6 before and

after shimmer modification (dotted). The top plot is the frequency domain noise, and the

bottom plot is the time domain noise.
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Figure 10.6. Frequency magnitude response (top)
and time signal (bottom) for sustain shimmer of the
fundamental of the piano, original (solid) and
modified (dotted).
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Figure 10.7. Original (top), clean trumpet
envelope, and modified piano fundamental envelope
after the shimmer modification.

It seems fairly obvious that the trumpet has a more low-pass noise with a higher

standard deviation. The standard deviation values are 2% for the piano fundamental, and

9% for the trumpet. The filter coefficient changes from -0.93 for the piano to -0.98 for the

trumpet. The resampling has made obvious the large end of release percent for the trumpet

sound, which has been cut off before the end of the release.

10.5.4.2 Jitter

Jitter is the irregularities on the frequencies of the partials. The jitter is modeled in the

HLA as the shimmer is, with two parameters; the standard deviation and the filter

coefficient of a single-tap recursive filter, which has the mean-square frequency magnitude

response approximation of the original noise magnitude response. Jitter is calculated as the

frequency minus the mean of the frequency, divided by the mean of the frequency for each

segment and partial,

jitters,k =
fs, k

a − f s,k
a

f s, k
a (10.28)

Jitter is modified in the same manner as the shimmer, first the filter coefficient is

calculated from the jitter, then the frequency magnitude response is modified,
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jitters,k = FFT−1 (FFT (jitter) ⋅
H( )b

H( )a ) (10.29)

The standard deviation is then calculated from the modified jitter, and the jitter is again

modified by multiplying by the wanted standard deviationb and dividing by the calculated

standard deviationa,

jitters,k =
b

a jitters,k (10.30)

Finally, the resulting frequency is,

f s,k
a = ˆ f s,k

a (1 + jitters,k ) (10.31)

The jitter for the sustain part of the fundamental can be seen in figure 10.8 in the

frequency domain (top) and the time domain (bottom). The dotted line is the jitter after

modification.

The resulting time varying frequency is shown in figure 10.9, with the original piano

and the clean trumpet frequencies, which have been offset to facilitate reading of the plot.
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Figure 10.8. Original and modified (dotted)
fundamental jitter of the piano. Frequency response
(top) and time domain (bottom).
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Figure 10.9. Original piano fundamental
frequency (top), clean trumpet frequency (middle)
and modified piano frequency (bottom). The
frequencies have been offset to facilitate reading.

The jitter of the trumpet is more low-pass and it has a slightly higher standard deviation.

This corresponds well with the piano standard deviation 0.1% and the trumpet standard

deviation 0.4%. The filter coefficient is -0.27 for the piano and -0.72 for the trumpet. The

important visual difference in figure 10.9 between the original and modified piano

frequencies is due to the greater standard deviation for the piano in the attack and release
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(about 4 times greater). The plus signs at the x-axis denote the split points in the trumpet

sound.

Shimmer and jitter are modified for the attack, sustain and release for all partials. The

correlation is not modified in this chapter.

10.5.5. Verification

The modification of the noise parameters concludes the modification of the additive

parameters of a piano sounda into a trumpet soundb. It is now supposed to have the same

HLA parameters as the trumpet. To compare the HLA parameters, the HLA set of the

modified additive parameters of the piano sound is calculated.

The analyzed HLA parameters of the additive parameters of the modified piano are

shown in figure 10.10 and the original trumpet attributes are shown in figure 10.11.
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Figure 10.10. Modified piano High Level
Attributes
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Figure 10.11. Original trumpet High Level
Attributes.

The spectral envelope, frequency and envelope parameters match fairly well, whereas

the noise parameters do differ somewhat. The spectral envelope and frequency values are

changed by the noise components, and the other parameters are offset by different

envelope time values. A slight difference in envelope times may give rise to a more

important difference in the percent and in the curve form, which then changes the noise

values altogether. The important envelope parameters match well, and the resynthesis of

the sounds is of good quality, as seen in section 10.6 Therefore the conclusion of the

additive modification is that it clearly changes the perceptive quality of sounda into that of

soundb.
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10.6. Resynthesis

The additive parameters modified in section 10.3 can now be visualized and used for

synthesis of sounds. The additive parameters for the piano before and after modifications

can be seen in figure 10.12. The additive parameters in the middle clearly have the shape

of the trumpet parameters to the right. The irregularities and noise on the partials is of

course different, but this doesn’t change the identity of the resynthesized sound.
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Figure 10.12. Additive parameters for the piano (left), the modified piano(middle) and the trumpet
(right).

The resynthesis of many modifications of different sounds permits the conclusion that

this modification is indeed very efficient, in fact so much so the original instrument in all

cases is impossible to recognize. The new instrument identity seems obvious and the sound

quality is generally very good. The sounds sometimes have a problem of loose harmonics,

that is, harmonics that stick out of the sound. Although it is difficult to state that the sounds

must have been created by the instrument it was modified into, it still sounds very close to

that.

The modification of one sound into the same sound doesn’t change the timbre

perceptively. This shows the stability of the timbre modification method.

10.7. Conclusions

This work presents a stable method for the timbre modification with high sound quality

and very good timbre identity restitution. This method has numerous applications, ranging

from the creation of hybrid sounds, the control of synthetic sounds by acoustic instruments,

as proposed in [Møller 1997] to the creation of sounds in inaccessible playing ranges. The

method is equally fitted for the transformation of one sound into another sound, or into the

same sound with another fundamental frequency, or with another intensity. The quality of

the resynthesis is generally as good as the quality of the original parameters.
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Modifications of the expression parameters pitch, intensity and duration of a sound is

also presented, and some general indications of the modification of timbre necessary to

retain a realistic sound when these parameters are changed is given.
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Chapter Eleven

11. Verification of the Timbre Models

Although the timbre parameters extracted in the previous chapters seem to assist in the

understanding of timbre, no formal verification of their validity has been made. The goal

here to show the ability of these parameters to classify correctly a great number of sounds.

The success of the classification confirms the validity of the timbre models, and

suggests the use of these models for the automatic identification of musical instruments.

Furthermore, analysis of the classification ability of the different attributes helps in

understanding the importance of these attributes in the perception of musical instruments.

Two different approaches are used here, principal component analysis (PCA), and

classification. The PCA is helpful in understanding the significance of the different timbre

attributes and a large number of sounds in the full playing range of five different

instruments are classified with no errors, thus proving the validity of the timbre attributes.
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11.1. Introduction

The different models of the timbre attributes are the HLA, MDA and IDA models. The

HLA model presented in Chapter 6 has individual envelopes, noise, amplitude and

frequency for each partial. The MDA model presented in Chapter 8 has a simple model of

every MDA parameter as a function of the partial index, and the IDA model presented in

Chapter 9 additionally models the evolution of all parameters from low notes to high notes.

It is here attempted to verify the validity of the different timbre models presented in this

work. One way of verification is the listening tests performed in the next chapter. In this

chapter, several methods are used to see if the timbre attributes classify the sounds into the

instrument families correctly.

Classification using timbre attributes is a difficult task. The principal component

analysis of the timbre attributes can be compared to the perceptual scaling of musical

timbres [Grey 1977]. See also the dissimilarity section in Chapter 2. [Scheirer et al. 1997]

presents a robust speech/music discriminator using brightness and other parameters.

[Dubnov et al. 1997] shows the importance of phase coupling in the classification of

musical instruments. In general terms, musical instrument classification can be compared

to the task of speaker identification [Doddington 1985].

Two methods of analyzing timbre attributes are used in this work; the principal

component analysis (PCA) and classification using the log likelihood [Frieden 1983].

[Skovenborg 1997] used similar methods on the time-varying amplitudes of the harmonic

overtones of a small musical data set.

Other interesting methods, which are not investigated in this work, include the

classification in binary trees using maximum entropy, which has proven successful in

speech recognition research [Bahl et al. 1989], [Bahl et al. 1991], [Jensen 1993]. Analysis

of the maximum entropy decisions used to create the binary trees could potentially give

important information about the timbre attributes.

This chapter starts with a presentation of the data used in the classification in section

11.2, followed by an overview of the timbre attributes in section 11.3. Section 11.4

presents the classification using the amplitudes at the nyquist frequency of an ideal spectral

envelope. The Principal Component Analysis (PCA) of the timbre attributes is presented in

section 11.5. The classification of the timbre data using the log likelihood is performed in

section 11.6. Finally a conclusion is offered.



Chapter 11. Verification of the Timbre Models

175

11.2. Sounds

The data used in this classification are the timbre attributes of a number of sounds.

These sounds come from five instruments: the piano, the violin, the clarinet, the flute and

the soprano voice. The sounds used in this chapter are the same sounds that are used in the

listening tests in Chapter 12.

Each instrument contributes with 30

sounds; there are thus 150 sounds in all. All of

the sounds from each instrument are

distributed in the normal playing range, as can

be seen in figure 11.1. The sounds are played

in detaché, staccato or tenuto, intensity mezzo

forte. The distribution over the full playing

range makes the classification of the sounds

more difficult, since two sounds in the upper

playing range from two different instruments

are often more similar than two sounds from

the same instrument with different pitch.
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Figure 11.1. Frequency range of instruments.

11.3. Timbre Attributes

The classification is made on a subset of the MDA parameters. No automatic method

for the extraction of the minimal subset necessary and sufficient for the classification of

the sounds in musical instrument classes has been found. Instead a combination of the

analysis of the parameters and the PCA and classification results are used to add or remove

parameters, until no more parameters can be removed without degrading the classification.

A short overview of all timbre models is given here, although only the results of the

MDA parameter analysis are given.

11.3.1. HLA

The HLA model is presented in Chapter 6. There are 30 HLA attributes for each partial.

These are 5 envelope times, 4 envelope percents, 5 envelope curve forms, 3 noise std and 3

noise filter coefficients for shimmer and jitter, the shimmer and jitter correlation, the mean
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frequency and maximum amplitude for each partial. The HLA values are not used in this

chapter.

11.3.2. MDA

The MDA model is presented in Chapter 8. The MDA generally has the same

parameters as the HLA, but instead of having one separate value for each partial, the MDA

has a fundamental value and an exponential value. The frequency is modeled by the

fundamental and the inharmonicity index, and the spectral envelope is modeled by the

tristimulus 1 & 2, odd, brightness, irregularity and maximum amplitude.

In this work, only the fundamental values of each attribute are used.

Some of the attributes are related to the length or the amplitude of the sounds; these are

the start length, the sustain length, the total length, and the maximum amplitude, and they

are removed, because not all sounds are performed with the same duration or loudness.

The fundamental frequency is also removed.

Since many of the attributes seem correlated, they are also removed. The attack and

release noise values are assumed to be correlated with the sustain noise, and therefore

removed.

The start segment, release segment and end segment curve forms are judged

insignificant and therefore removed. The attack curve form is judged important, since the

attack is one of the perceptually most important segments.

The start, attack and end percents are also removed. The start of release percents are

judged important in distinguishing between sustained sounds and decaying sounds, such as

the piano.

The frequency brightness is used, expressed in Hz, but all other spectral envelope

attributes are expressed in partial number.

The remaining MDA attributes are used in the rest of this chapter, unless otherwise

noted.

There are 16 attributes, which can further be divided into several timbre classes,

spectral envelope attributes, envelope attributes, shimmer attributes and jitter attributes, as

can be seen in figure 11.2.
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• Spectral Envelope Attributes

• Tristimulus 1

• Tristimulus 2

• Odd

• Brightness

• Irregularity

• Envelope Attributes

• Attack Time

• Release Time

• Start of Release Percents

• Attack Curve Form

• Shimmer Attributes

• Sustain Shimmer std

• Sustain Shimmer filter coefficient

• Shimmer Correlation

• Jitter Attributes

• Sustain Jitter std

• Sustain Jitter filter coefficient

• Jitter Correlation

• Inharmonicity

Figure 11.2. Timbre attributes used in the classification.

11.3.3. IDA

The IDA model is presented in Chapter 9. The IDA values are the same as the MDA

values, except that they are averaged across one half octave in 15 steps, from 32 Hz to 4

kHz. The IDA values are not used in this chapter.

11.4. Nyquist Frequency Amplitude

The nyquist frequency is the sample rate frequency divided by two. It is the highest

frequency that can be analyzed with the fourier analysis. Here it is assumed to be the limit

of the hearing capability, which means that frequencies above cannot be heard by the

human ear. The nyquist frequency thus has a relevance to human perception. This is a

simple assumption, the validity of which can be discussed. See for instance [Oohashi et al.

1997] for a study of the physiological and psychological effects of high frequency

components.

This section will analyze the amplitudes of the ideal amplitude at the nyquist frequency.

By ideal, it is assumed that the higher partial amplitudes are defined only by the brightness

of the sound, and not by any resonances, or noise. Assuming that the brightness of the

sound is Tb, the ideal spectral envelope is then defined by the exponential series,

ak = B−( k −1) (11.1)
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where B is defined as (cf. Chapter 7),

B =
Tb

Tb −1
(11.2)

The partial index at the nyquist frequency is,

knyquist =
samplerate / 2

f0

(11.3)

and the amplitude of the partial at the nyquist frequency is then,

anyquist = B
−( k nyquist −1) (11.4)

The frequency brightness for the five

instruments are shown in figure 11.3.

The ideal spectral envelopes, that is the

values of equation (11.1), calculated with the

partial index brightness of five instruments,

are shown in figure 11.4 and the amplitudes

of the same instrument sound at the nyquist

frequency are shown in figure 11.5. The

instrument order is piano, violin, clarinet,

flute and soprano. All axis have been

normalized between instruments.

The nyquist frequency is here 16 kHz.
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Figure 11.3. Frequency brightness for five
instruments, piano, violin, clarinet, flute and
soprano. x axis is sound index and y axis is
frequency.

It is clear that the violin has higher amplitude at the nyquist frequency than the other

instruments. The value of anyquist is then capable of classifying the violin with few errors.

The clarinet and the flute have the values at about 10-4.The piano has the lowest values of

anyquist for most notes and the soprano has values in between the clarinet/flute and the piano

values. This makes up four distinct groups, where most of the instruments can be

positioned without errors. If the sounds are separated by the limits 5.8e-04, 1.7e-06 and

1.3e-08, the classification finds 28 violins with no errors, 57 clarinet/flute with 6 errors, 15

soprano with 7 errors and 25 piano with 12 errors. Total correct classification 125/150 with

25 errors. Remember though that this is the classification in four groups, whereas the

classification in section 11.6 is done in five groups.
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The values of anyquist therefore are interesting in the classification of musical instruments.

The values of anyquist seems to give better classification than the frequency brightness in

figure 11.3, which have more overlap between instruments.
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Figure 11.4. Ideal spectral envelope plotted up to
nyquist for five instruments, piano, violin, clarinet,
flute and soprano. x axis is sound index and y axis is
amplitude.
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Figure 11.5. Amplitudes at nyquist for five
instruments, piano, violin, clarinet, flute and
soprano. x axis is sound index and y axis is
amplitude.

In conclusion, the fundamental combined with brightness can give a fair classification.

11.5. Principal Component Analysis

In the Principal Component Analysis [Frieden 1983], the covariance-matrix of the

timbre attributes is created, and the eigenvalues are calculated. When the eigenvalues are

sorted decreasing, the eigenvectors corresponding to the L largest eigenvalues are enough

to classify the data. Related techniques have been used for many years in the classification

of musical instruments from perceptive input [Grey 1977], [Krumhansl 1989], [Iverson et

al. 1993], [Krimphoff et al. 1994], [McAdams et al. 1995]. PCA has been used in [Sandell

et al. 1995] for the data reduction of additive parameters. [Hourdin et al. 1997] uses a

related multidimensional scaling for the same purpose.

Often, the 3 most prominent dimensions are used and plotted in a three-dimensional

space. The separation into classes can then be verified visually.

If X is the NxM matrix of N timbre attributes, M sounds, first

Cx = cov( X) (11.5)

is calculated and diagonalized,
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The diagonal elements are sorted and assigned to λ. The value of λ indicates how much

of the energy of the original timbre attributes is connected to the corresponding dimension.

Therefore, if most of the energy of X is contained in the first L elements of the eigenvalues

λ, then X can be transformed into the subspace spanned by the L first eigenvectors EL.

The transformation to the eigen subspace is done by multiplying the eigenvector EL with

the original timbre attributes,

X
∧

= EL ⋅ X (11.6)

The squared error is then the sum of the L+1 to N elements in λ.

The PCA is performed on the fundamental

value of the MDA attributes, described in

paragraph 11.3.2, with the addition of the

release curve form, and the envelope percents.

The sorted eigenvalues are shown in figure

11.6. Figure 11.6 suggests that more than

three dimensions are necessary to classify the

data. Nevertheless, the first three dimensions

are calculated and plotted. The analysis of this

plot will give an idea of the distribution of the

sounds in the multi-dimensional timbre space.
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Figure 11.6. Sorted eigenvalues for the MDA
timbre attributes.

The three-dimensional plot of the first 3 dimensions of the eigenvectors is shown in

figure 11.7. The piano is ‘x’, the violin is ‘+’, the clarinet is ‘o’, the flute is ‘.’ and the

soprano is ‘x’. Separation into the different instrument classes is quite good, although the

flute doesn’t seem to be in its own group.

To facilitate reading, the data is also plotted on the three visible planes. The three-

dimensional data is the one in the middle (top). The other three groups are the data plotted

on the planes.

The soprano and the violin sounds are well grouped in two separate clusters. The flute

also seems well separated, but the piano and the clarinet sounds are not well isolated in

these three dimensions. More dimensions are necessary to separate all five instruments.
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Figure 11.7. The 5 instruments in the 3 first PCA dimensions. The piano is ‘*’, the violin is ‘+’, the
clarinet is ‘o’, the flute is ‘.’ and the soprano is ‘x’. Observe that the data is also plotted on the x, y and z
plane. The upper cluster in the middle is the 3D plot.

It is interesting to see what attributes are

prominent in the PCA coordinates. The 3 first

eigenvectors are shown in figure 11.8. The

first dimension is indicated with ‘*’, the

second dimension is plotted with ‘+’ and the

third dimension is plotted with ‘o’.

The first dimension has prominent values

(above 0.3) for sustain shimmer & jitter filter

coefficients, shimmer & jitter correlation,

Tristimulus 1 and Odd. This dimension seems

to be principally related to the noise and the

spectral envelope.
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Figure 11.8. Eigenvalues for the first 3 PCA
dimensions.
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The second dimension has prominent eigenvector values for release time, start of

release percent, sustain shimmer std and brightness. This dimension seems to be

principally related to the decay envelope and brightness. The third dimension has

prominent values for attack time, start of release percent and end of release percent, and is

mostly related to the envelope.

11.6. Classification

In the classification, the timbre attribute data is first classified in the different

instrument classes. To avoid using the same data for the classification and the test, the

classification is performed using the leave one out (LOO) method, on all data except the

sound being tested.

The log likelihood function for normal-distributed data is used as a classifier,

di ,k =
1

2
log(Ci ) +

1

2
(X k − mi)

T Ci
−1(Xk − mi) (11.7)

where Ci  is the covariance matrix of the class i, Xk  is the attributes of sound k and mi  is

the mean of the class i. This model is anisotropic, which means that the shape of each class

is an ellipsoid.

To ensure invertability of Ci an isotropic noise term ε is added to the diagonal elements

of Ci. The value of ε is chosen in order to optimize classification.

The LOO method is as follows. The classes are created for all data except the data of

the sound k that is being classified. The distance is then calculated for the five instrument

classes, and the sound is placed in the class to which it has the smallest distance. This is

repeated for all sounds.

If all 16 timbre attributes, as defined in paragraph 11.3.2 are used, then there is no error

in the classifications. It can therefore be concluded that these 16 timbre dimensions are

enough to separate the 5 instrument sounds.

Next, to verify the influence of the individual timbre attributes, the timbre attributes are

divided into classes, envelope, shimmer, jitter and spectral envelope. The clustering is

done for each timbre attribute class, and the number of errors are
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Attribute class: : total errors, (piano, violin, clarinet, flute & soprano)

Envelope (4 attributes) : 55 errors, (10, 9, 8, 17 & 11)

Shimmer(3 attributes) : 66 errors, (11, 7, 12, 12 & 24)

Jitter (3 attributes) : 68 errors, (20, 4, 27, 9 & 8)

Spectral Envelope (5 attributes) : 24 errors, (7, 1, 5, 3 & 8)

The piano has 48 errors cumulated, the violin has 21 errors, the clarinet has 52 errors,

the flute has 41 errors and the soprano has 51 errors cumulated.

If each timbre attribute is clustered individually, then the only attribute, which has

fewer than 70 errors, is brightness, which has 56 errors. All other timbre attributes yield

90+ errors. Brightness combined with the fundamental frequency yields 43 errors.

11.7. Conclusions

In this chapter, an analysis of the importance of the timbre dimensions is performed.

Three methods have been tested: standard PCA, classification using the log likelihood

function for normal distributed data, and a simple classification using the brightness and

the fundamental frequency.

The PCA revealed some important timbre dimensions, the spectral envelope, noise and

envelope being the most important. Although the PCA results are not convincing, it has

been of help in choosing which timbre attributes to use in the classification.

Classification using only the brightness and the fundamental frequency by calculating

the amplitude at the hearing limit of each sound gave good classification results.

The verification of the timbre model has shown that a subset of the MDA parameters is

enough to classify 150 sounds from 5 musical instruments without errors. It can therefore

be concluded that these attributes are important to the timbre model, since the

classification was made on the same criteria as human classification of musical instruments

is made. Indeed, it would seem that this classification is better than the human

classification, since several subjects in the listening tests performed on the same sounds

had difficulty recognizing some of the instruments, even from the original sounds.

It can tentatively be said about the attributes that were used for the classification that

they can be divided into several groups: attack envelope, release envelope, noise quality,

amplitude irregularity and spectral envelope. None of the subgroups can classify the

sounds well, although the spectral envelope, and notably brightness, is a good classifier.
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The order of importance of the timbre attribute classes in order of ability to classify might

be spectral envelope, envelope and noise.
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Chapter Twelve

12. Listening Tests

This chapter presents the results of listening tests performed to objectively evaluate the

quality of the sounds resynthesized from the different timbre models. Five models are

evaluated: the original sounds, the analysis/synthesis sounds, the HLA model sounds, the

MDA model sounds, and the IDA model sounds. The results of the listening tests show

that the analysis/synthesis and the HLA models generally score above annoying

degradation, whereas the MDA and IDA sound quality is unacceptable. Analysis of the

scores can help in improving the timbre models, or the estimation of the timbre model

parameters

12.1. Introduction

In this chapter, the quality of the different timbre models is measured by subjective

quality as judged by a number of listeners, called subjects.

Not many objective listening tests have been performed in the music community to

evaluate synthesis methods. [Strong et al. 1966] evaluated the spectral/time envelope



Chapter 12. Listening Tests

186

model with listening tests. [Grey et al. 1977] compared analysis/synthesis and different

data-reductions, and [Sandell et al. 1995] evaluated the PCA-based data reduction with

listening tests.

The listening tests performed here have been inspired by the listening tests performed

for the evaluation of speech and music compression. The method used is called double

blind triple stimulus with hidden reference [ITU-R 85/10 1994]. A practical application of

this test can be found in [Nielsen 1995]. The subjects are presented with three sounds, the

first always being the reference and the two next sounds are the reference and the modeled

sound in random order. The subjects are then asked to rate the two sounds, called B and C,

against the reference sound (the original) in a scale from 1.0 to 5.0. The scale indicates the

degree of impairment. The subjects are allowed to listen to each sequence again, as many

times as necessary.

The test performed here differs from normal double blind triple stimulus with hidden

reference tests because the sounds under test are short, and there is no use changing

between sounds while listening to them, as is usual when longer music pieces are under

test. Instead, the test subjects are allowed to repeat all three sounds as many times as

necessary.

12.2. Rating scales

The scales used have been borrowed from [ITU-R 85/10 1994]. The impairment of the

modeled sounds is judged in five steps, although the subjects are asked to give one decimal

to the score when possible.

The scale is,

Score Impairment

5.0 Imperceptible

4.0 Perceptible, but not annoying

3.0 Slightly annoying

2.0 Annoying

1.0 Very annoying

In Danish, the language of this test, this translates to [Poulsen 1996],

Vurdering Forringelse
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5.0 Ikke hørbar

4.0 Hørbar, men ikke generende

3.0 Lidt generende

2.0 Generende

1.0 Meget generende

It is stressed that what is judged are musical sounds, and what is judged is the

impairment were the sounds to occur in a normal musical situation. This means, for

instance, that if the subject believes that the sound is another recording from the same

playing condition on the same instrument, or instrument type, which can sound quite

different, but the quality is natural, then the score is 4 or above. The scores 3, 2 and 1 are

used when the identity of the sound has been altered, or when the quality of the sound is

deteriorated. The score 4 or higher is also used when the impaired sound is better than the

original sound.

12.3. Original Sounds

There are sounds from 5 different instruments in the test: piano, violin, clarinet, flute

and soprano voice. The sounds are fairly short, typically less than one second long, and

they range over the normal playing range of each instrument. There are 15 sounds for each

instrument. These are the same sounds that are used in the classification in Chapter 11,

although every second sound is used here.

12.4. Model Sounds

There are 5 models in this test, the original, analysis/synthesis, HLA, MDA, and IDA

sounds.

Analysis/synthesis is done with the linear time/frequency analysis presented in Chapter

4, spurious frequencies are analyzed, but not resynthesized and partials are smoothed over

one period. The maximum number of partials is 54, and the note of each analyzed sound is

given to the analysis, to reduce the influence of the fundamental frequency estimation

error, as explained in Chapter 9.

The HLA model sounds are created as described in Chapter 6. The MDA model is

presented in Chapter 8 and the IDA model
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in Chapter 9. The MDA and IDA model sounds are made with no error term.

12.5. Listening panel

It is preferable to have only musicians, or music people, in the listening panel, because

of their improved listening ability and vocabulary. 24 people are chosen to the panel, aged

between 22 and 61 years.

The mean age of all subjects is 28.3 year. There are 19 male subjects and 5 female

subjects, and divided into 5 non-musicians, 11 amateur-musicians and 8 musicians or

music students.

12.6. Training

In training, the subjects are supposed to familiarize themselves with the sounds, the

facilities, and the impairment scale. Training was done immediately prior to the test. First

the subjects were presented with a paper with instructions. The content of the instructions

(in Danish) can be found in appendix B.

In the first half of the training the subjects are presented with 5 typical sounds in the

different modeling schemes; original, analysis/synthesis, HLA, MDA, and IDA. The first

half of the training is done sequentially, and cannot be repeated.

The second half of the training is 5 normal double blind triple stimulus with hidden

reference tests, where the subject can ask the supervisor questions, and the supervisor

verify that the subject has understood the test procedure.

The subjects are presented with a paper with the impairment scale before the training is

performed. This scale was generally only consulted in the beginning of the tests.

12.7. Test Procedure

The tests are performed with matlab [Mathworks 1992] on a Power Macintosh 7500,

with a Sennheiser HD560 ovation II headphone connected to the headphone output of the

Macintosh. The subjects are not allowed to adjust the amplitude, which is set to the

maximum possible.

The Macintosh is placed behind a screen, but the room is not silent, and there can be

some noise in the background. Although this may influence the results, it has been judged
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that the impairments of the sound are so pronounced that it will not influence the judgment

dramatically.

The total number of tests for each subject is 345, which is 5 models times 5 instruments

times 15 sounds, minus the training sounds.

The sounds are presented in a random order. When the subject has listened to the three

sounds, A, B, and C, he is asked to give an impairment score for B, and then C. When the

C impairment score is validated, the subject can select the next test samples. The input is

done with the numerical keyboard, and the subject can at any time press 0 to listen to the

three sounds again.

The test lasts about 2 hours, and subjects are asked to take a break after 1 hour. If

necessary, the second half of the test is done at a later time. This was the case for about

half of the subjects.

12.8. Subject Comments

The subjects were asked to write on a paper general comments about the sound, and

about the test procedure. The comments were generally related to the test procedure, the

impairment scale, or the original and resynthesized sounds.

12.8.1. The Test Procedure

The test procedure didn’t get many comments, although some people complained about

not being able to recognize the original instrument, others wanted clicks in the beginning

and in the end removed. One subjects wanted a scrollbar, instead of the numerical input.

This would probably have improved the accuracy slightly. Many subjects said they were

unable to judge on a decimal scale, and consequently only gave integer scores.

12.8.2. The Impairment Scale

The impairment scale was difficult for many subjects. It seems that many people tried to

fill out the scale, giving the 5 models as heard in the first part of the training 5.0, 4.0, 3.0,

2.0 and 1.0 respectively. Others had a different scale, with a jump from the HLA model to

the MDA. The MDA and IDA usually performed equally badly. One subject complained

that it really was two things being judged: the quality of the resynthesized sound, and how

different it was to the original sound.
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12.8.3. The Sounds

The sounds got more comments. The piano sounds lacked attack in the otherwise good

models, and got noisy in the bad models. A few resynthesized sounds sounded better than

the original according to many subjects, lacking unwanted noise, or sounding cleaner.

Violin and flute sometimes had less noise, while still sounding good. One subject

complained about high frequency fluctuations (jitter). This is an indication that the high

partials are badly analyzed. The violin was judged too sharp by one subject, lacking

spectral quality by another subject. The flute loses brilliance, or breathing noise quality,

according to several subjects. The soprano was easy to judge, according to some subjects.

The normal musical situation was understood differently by the subjects; some

understood it as a concert situation, where blow or hammer noises are not heard, while

others understood it as an isolated situation, where all noises are heard.

That the sounds were often too short to judge was a recurrent comment.

A general consensus seems to be that even the worse model retained the identity of the

sound. This is important although not well founded. Some of the sounds were so short that

some subjects had difficulty identifying the instrument, even of the original sound.

The models were also identifiable by some subjects. One subject with a particularly

good identification of the IDA model (almost all scores were 1 for this model) replied

when asked that he found the sounds from this model sounded very good. This was not

generally the case, though. Most subjects found that the bad score models sounded bad.

Comments like ‘It sounds like a modem’ were heard.

12.9. Statistical Presentation

When all subjects have performed the test, the data is collected, and the rating

difference, which is the rating for the modeled sound minus the rating for the reference, is

calculated. This is the degradation of the model. If the degradation is larger than zero, the

subject has misjudged the modeled sound. This is not supposed to happen, since most

modeled sounds have a pronounced difference. The result mean degradation is then

presented as a function of model type, sound type and frequency.
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12.9.1. Model Degradation

In figure 12.1, the mean degradations of the

5 models are plotted, with the 95 %

confidence interval.

The original sounds have zero degradation,

as expected, the Analysis/Synthesis model has

a perceptible, but not annoying degradation,

the HLA model has a slightly annoying

degradation, and the MDA and the IDA

models have an annoying degradation.

Since the scale is not entirely reliable, it is

perhaps more interesting to look at the relative

positions of the different models.
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Figure 12.1. Mean degradation and 95 %
confidence interval for the 5 models for all
instruments and subjects.

The A/S model is positioned relatively close to the original, and the MDA and IDA

models are both positioned close to the annoying degradation. The HLA model is

positioned in between the A/S and MDA models, although a little lower than the exact

middle. The HLA model introduces the worse degradation, which can be explained, as

shown below, by the noise model of the HLA.

The next result from the listening tests is the degradation for each instrument. The

analysis of the degradation can help in understanding the reasons for the low score of the

timbre models.

12.9.2. Instrument Degradation

The mean degradations for the five instruments for all five models are shown in figure

12.2. The clarinet has the best score and the soprano the worst. The piano and flute also

have a lower score, and the violin is next best.

The reason for the relatively worse score for the piano is probably the fast attack of the

piano, which is difficult to analyze, but it could also be explained by the lower notes of the

piano, and the better ability of subjects to judge low notes.
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The soprano has bad scores because of

vibrato on many of the sounds, which is

transformed into noise in the HLA model. The

flute also has some tremolo, which is not well

modeled in the HLA model.

Although no screening has been performed,

the score for each subject has been analyzed

to understand the use of the scale of the

subjects, and to see, if any subjects have a

large confidence interval.
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Figure 12.2. Mean degradation for the five
instruments for all models and all subjects.

12.9.3. Subject Scores

The mean degradation for the subjects is

shown in figure 12.3. The total degradation

for each subject lies in the range between -1

and -2.5. There is a tendency for musicians to

have a lower score than non-musicians, but

there are exceptions.

The dispersive score for the subjects is an

indication of the confusion of the scale.

Another scale is probably needed for the

HLA, MDA and IDA sounds, which does not

try to recreate a sound, but only some of the

perceptive qualities of that sound.
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Figure 12.3. Mean degradation for the subjects
for all models and all instruments.

All subjects have roughly the same confidence interval. Therefore, no screening was

deemed necessary. All subjects are used in all of the degradation analysis.

The relatively worse score for the piano is now analyzed.

12.9.4. Analysis/Synthesis Instrument Degradation

In figure 12.4 the mean degradation for the five instruments for all subjects, but only for

model 2 (A/S) is shown. The instrument families with fast attacks, piano and violin,

perform notably worse than instruments with slower attacks.
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The bad piano scores can also be explained by the relatively low pitch of many of the

piano notes.

The soprano performs well in the

analysis/synthesis, even though the vibrato on

many of the notes is not analyzed correctly.

This can be explained by the constant

frequency magnitude of the sum of the

analysis filters. The constant frequency

magnitude ensures that all the signal is present

in the analysis, even though the partial is not

positioned exactly on the frequency of the

filter.
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Figure 12.4. Mean degradation for the 5
instruments for al subject and model 2 (A/S).

12.9.5. Degradation as a Function of Fundamental Frequency

Figure 12.5 shows the mean degradation

for the piano, model 2 (analysis/synthesis), all

subjects, as a function of fundamental

frequency. Degradation is clearly greater for

the low fundamental frequencies. This can

have several explanations: perhaps the timing

resolution for the low frequencies is not good

enough, and the fast attacks get blurred.

Another explanation, which remains to be

verified, is that sounds with low fundamental

frequency have too many partials, some of

which are not analyzed.
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Figure 12.5. Mean degradation for the piano
sound and model 2 (A/S) for all subjects, as a
function of fundamental frequency.

Phase could also be influential in the bad performance of the low pitch piano notes. The

phase perception is greater for low frequencies, as shown in the phase section in Chapter 2.

Finally, the low piano notes have a very complex spectrum, with non-harmonic partials

which are not kept in the additive analysis.

Whatever the reason, the analysis does not always perform well, getting scores

approaching the annoying degradation. This should be taken into account when evaluating

the HLA, MDA and IDA models, for instance by defining the mean degradation for these



Chapter 12. Listening Tests

194

models as the difference of the scores for these models and the score for model 2 (A/S).

The degradation for the HLA model then approaches the perceptible, but not annoying

degradation.

12.9.6. The HLA Instrument Degradations

The mean degradation for the HLA model

is shown in figure 12.6. The flute and notably

the soprano perform much worse than the

other instruments. The reason for the flute

degradation in this model might be a poor

model of the flute noise, but it may also be

because the flute has some tremolo effect,

which is not well taken into account in the

HLA model.

The soprano definitively has a vibrato on

most of the sounds.
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Figure 12.6. Mean degradation for the HLA
model, all subjects, as a function of instrument.

The vibrato is not modeled in the HLA model. Small vibrato is removed, whereas large

vibrato is not analyzed well in the A/S stage, and therefore translated into noise in the HLA

model. The vibrato is so pronounced that it is impossible for the linear time frequency

analysis to succeed in the higher partials, since they would move across several partials,

when the frequency deviates. Although this is not very perceptive in the analysis/synthesis

model sounds, the vibrato effect is translated into noise in the HLA model.

12.9.7. MDA Instrument Degradation

The mean degradation of the MDA model as a function of instrument is shown in figure

12.7.

The soprano still performs notably worse than the other instruments, although all of

them performs worse than in the HLA model.
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The degradation between the HLA and the

MDA models seems to be independent of the

instrument. This degradation could be

attributed to the spectral envelope model, or to

the correlation of the irregularities in the HLA

parameters.

Furthermore, bad frequency estimation,

rendering a different pitch in the MDA model

could also be the cause of bad scores. 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 12.7. Mean degradation for the MDA
model, all subjects, as a function of instrument.

12.9.8. The IDA Instrument Degradations

The IDA degradation is similar to the

MDA degradation and is shown in figure 12.8.

Obviously, the soprano couldn’t get more

degraded, much as the other instruments all

fall by about the same amount.

The MDA parameter values probably need

to be weighted before the mean is taken and

put in the IDA model.

Again, bad pitch estimation, rendering a

different pitch in the IDA model could also be

the cause of bad scores.
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Figure 12.8. Mean degradation for the IDA
model, all subjects, as a function of instrument.

Next, the relatively bad score for the soprano is analyzed.

12.9.9. Model Degradation with Soprano Removed

The mean degradation for all 5 models with the soprano removed is plotted in figure

12.9. The degradation from model 2 (A/S) to model 3 (HLA) has clearly diminished. This

is due to the bad analysis of the vibrato in the soprano instrument.
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The HLA, MDA and IDA scores increase

by the same amount when the soprano is

removed. This indicates the MDA and IDA

scores are relative to the HLA score, i.e. when

the HLA score changes, the MDA and IDA

scores change by the same amount.

The removal of the soprano does not

change the A/S score significantly.
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Figure 12.9. Mean degradation for the 5 models
for all instruments and subjects, with the soprano
removed.

12.9.10. Complete Scores

The conclusions from the preceding paragraphs can be verified by analyzing the

complete scores.

The complete scores for the 5 instruments and the 5 models are shown in figure 12.10.

The mean scores for all subjects are shown.

The original scores are marked with a ‘o’,

the A/S scores are marked with a ‘x’, the HLA

scores with a ‘*’, the MDA scores with a ‘+’,

and the IDA scores are the lowest scores

marked with a ‘o’. The lines between the best

and the worst models indicate which

instrument it is. The piano is solid, the violin

is dotted, the clarinet is dashdotted, the flute is

dashed, and the soprano has an empty line.

The scores are sorted by the HLA scores.
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Figure 12.10. Complete scores for the 75 sounds
and the 5 models.

First of all, the HLA scores varies from better than perceptible, but not annoying to

almost very annoying. The violin seems to have many sounds with good HLA scores,

whereas most of the worst scores are for the soprano sounds as could be expected, due to

the presence of vibrato in the soprano sounds. All the scores seem to be sorted, with the

original sound scores highest, followed by the A/S, the HLA, the MDA and the IDA

scores. Only few of the IDA scores are better than the same scores for the MDA.
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Furthermore, the instruments seem to be grouped: the violin sounds are placed in two

groups, the piano also are in two groups, divided by the second violin group. Most of the

soprano sounds are grouped in the lowest HLA scores. Most of the flute sounds are

grouped in the second half of the figure, whereas the clarinet sounds seem more scattered

in the first half of the plot.

The best HLA score sounds have a perfect A/S score, and the worst HLA score sounds

have an even worse MDA and IDA score. Generally, the good HLA score sounds seems to

have good A/S, MDA and IDA scores, and the bad HLA score sounds seem to have bad

A/S, MDA and IDA scores.

12.10. Conclusions

The listening tests have been performed for enough subjects under good conditions. An

improvement would have been to have a scrollbar, instead of the numerical input.

Furthermore, the scale used in this test might not be appropriate, since there actually are

two things under test: the quality of the resynthesized sound and the difference between the

original and the resynthesized sounds. One modification to the degradation scale would be

to have degradation 1 be ‘Unrecognizable’, and degradation 2 be ‘Very annoying’, or add a

0 degradation ‘Unrecognizable’.

The listening tests have shown that the analysis/synthesis performs above ‘Perceptible,

but not annoying’, except for the low frequency piano sounds. The HLA model performs

significantly better than the MDA and the IDA models and generally above slightly

annoying.

The listening tests have been instrumental in understanding the reasons for the sound

degradation in the timbre models. The results presented here can be used to further

improve the timbre models, and the estimation of the timbre model parameters.
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Chapter Thirteen

13. Conclusions

In this chapter the methods and results in the preceding chapters are summarized. The

main accomplishment of this work has been the construction of a model of the timbre of

isolated musical instrument sounds. Several new methods or improvements of existing

methods for the estimation of the parameters of the timbre models have also been

presented. The timbre models can be used to resynthesize sounds, and they are useful when

analyzing timbre evolution as a function of pitch, loudness, tempo or style.

The timbre models have been evaluated by performing listening tests on the resynthesis

of sounds from the parameters of the model, and by performing classification of sounds in

instrument classes using the parameters of the model. Finally, timbre modification

methods, which permit “playing” the models, have also been presented.

13.1. The Timbre Models

 The general goal of this work was to find a model of the timbre of isolated quasi-

harmonic musical sounds. This model, the High Level Attributes (HLA) model, was
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presented in Chapter 6. The HLA model analyses the additive parameters and extracts

pertinent, intuitive parameters.

The analysis of the additive parameters is summarized in Chapter 4. Two methods for

the analysis of musical sounds were compared, the FFT-based analysis and a new method,

developed by Philippe Guillemain [Guillemain et al. 1996], which is here called the Linear

Time Frequency (LTF) analysis method. A comparison of the two methods reveals that the

LTF analysis has a time resolution that is twice as good as the FFT-based analysis. The

LTF analysis is therefore used in the rest of this work. The LTF analysis necessitates an

estimation of the frequencies to analyze. This estimation is performed in Chapter 3. An

improved fundamental frequency estimator, which estimates the fundamental of stretched

harmonic sounds is presented in that chapter.

The HLA parameters consist of the spectral envelope, which is the maximum of each

partial, the mean frequency of each partial, a simple envelope function and noise

parameters.

The envelope model consists of five segments, start, attack, sustain, release and end for

each partial. Each segment has a start and an end relative value, the start and end times and

a value of the curve form (exponential/logarithmic) of the segment. The envelope model is

presented in Chapter 5. A new estimation of the envelope times based on the analysis of

the derivative of the envelope is presented, which performs better than a widely used

percents-based method of estimating the times. The envelope model introduced in this

work, which has variable split-point amplitudes, models equally well attack-decay-release

(percussive) and attack-sustain-release (sustained) sounds.

Noise is modeled as the irregularity at the amplitude (shimmer) and frequency (jitter) of

the partials. This noise model seems to recreate both correlated and additive noises well.

The shimmer or jitter of each partial is modeled with the standard deviation and the filter

coefficient of a simple filter, which have the same magnitude response as the noise. The

noise model is presented in Chapter 6.

The HLA model has few intuitive parameters, and it can resynthesize an analyzed sound

with high quality. The sounds are rarely identical, though, since the simple envelope model

cannot recreate the amplitude variations faithfully. Nevertheless, the timbre identity of the

sound is recreated flawlessly.

The HLA model still has some drawbacks. The size of the model is fixed, except for the

number of partials. While this is rarely a problem, it makes comparing a high pitched flute
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with five partials with a low piano sound with fifty partials difficult. The important spectral

envelope also needs a model, if timbre morphing is to be performed. The morphing

between two resonances in the spectral envelope should ideally move the resonance from

the first position to the second. This is not the case with the spectral envelope, which also

lacks simple, intuitive understanding. Furthermore, it should be possible to visualize most

parameters with one parameter, which could be the fundamental value.

For these reasons, the Minimal Description Attribute (MDA) model was developed. It is

presented in Chapter 8. The main feature of the MDA model is the spectral envelope

model, which is presented in Chapter 7. The spectral envelope model parameters are

brightness, the odd value, tristimulus and irregularity. Brightness is a measure of the mean

of the spectrum; a low value indicates much amplitude in the fundamental whereas a high

brightness value indicates strong high partials. Brightness is highly correlated with the

perceptual quality brightness. The odd value is a measure of the amplitude of odd partials.

Tristimulus is the measure of the amplitudes of three groups, the first consisting of the

fundamental, the second of the first three overtones, and the third of the remaining

overtones. Irregularity is a measure of the difference in amplitude between adjoining

partials. These values are calculated for the spectral envelope, and this work presents a

method that recreates a spectral envelope with the same spectral envelope model parameter

values.

The fundamental and inharmonicity model the frequencies of the partials.

The value of the fundamental and an exponential parameter define the partial index

evolutions of the other parameters, which are the envelope times, percents and curve forms

and the shimmer and jitter standard deviation, filter coefficients and correlations.

The MDA model can model only quasi-harmonic sounds, because of the structure of the

parameters. Some evidence that the estimation of the MDA model parameters could be

improved is given in Chapter 8.

The MDA model seems well adapted for isolated musical sounds. It solves some of the

problems of the HLA model, although the sound quality of the resynthesis from the MDA

model is significantly lower than the resynthesis from the HLA model parameters. The

spectral envelope now has an intuitive model and most parameters have a fundamental

value, which can be used when visualizing the timbre attributes. However, the HLA, or

MDA models can only model one sound. Most musical instruments have a pitch range,

intensity range and several styles.
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These can be modeled in the Instrument Definition Attributes (IDA) model. The IDA

model parameters are the same as the MDA model, but they are collected for all pitches of

an instrument in 15 half-octave bands. The IDA model is introduced in Chapter 9. The

analysis of the evolution of the IDA model parameters is also presented in that chapter, for

the fundamental frequency evolution, but also for different loudnesses, tempi and style.

The IDA model facilitates the analysis of both spectral envelope, inharmonicity, envelope

and noise parameters. Some of the conclusions from the analysis of the IDA parameters are

that the partial index brightness decreases with the fundamental frequency, giving most of

the amplitude to the fundamental for the highest fundamental frequencies. The attack time

also decreases with the fundamental frequency, reaching as much as one fourth of the time

of the low notes in the high notes. The intensity increase translates into an increase in both

amplitude and brightness. Tempo change is seen most in the sustain and release length, as

could be expected.

13.2. Timbre Modifications

Timbre modifications are presented in Chapter 10. Methods for the modifications of the

important expression parameters pitch, duration and loudness are given, as well as timbre

morphing methods for the different timbre models. When changing the pitch, duration or

loudness of a sound, many other parameters also need to be modified, in order to retain the

realism of the sound. This is explained in Chapter 10.

The modification of the better quality additive parameters is presented in detail. The

modification of the additive parameters can be done with the HLA model as a template.

The template can be another sound, or an interpolation between two sounds. If the

interpolation is chosen, the MDA model can be used to interpolate some, or all of the

parameters. All timbre attributes can be changed, be it spectral envelope, frequencies,

envelope, or noise.

The sound quality of the modification of the additive parameters is of good quality.

Gradual changes of most timbre attributes can be made with consistent perceptual result.

This makes this work suitable for the timbre scale composition [Wessel 1979]. The better

quality of the additive parameters also makes it interesting to use this timbre modification

method, if the perceptual effect of different timbre attribute changes is to be analyzed.
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13.3. Timbre Model Evaluation

The timbre model evaluation is done by two different approaches. The first approach

involves the classification of the sounds in instrument classes. If the classification can be

made with few timbre attributes, it is an indication of the pertinence of the timbre

attributes.

The classification was performed using the log likelihood for normal distributed data. A

subset of the timbre attributes was found, by trial and error, and by analyzing the results of

a Principal Component Analysis (PCA). The PCA revealed the importance of the spectral

envelope model, the attack time, the release percents and most noise parameters. Only the

fundamental values of the MDA model were used in the classification.

150 sounds from five musical instruments, piano, violin, clarinet, flute and soprano, in

the full playing range of each instrument, were classified with no errors. 16 parameters

were used in the classification, and the order of importance of the timbre attribute classes

is estimated to be spectral envelope, amplitude envelope and noise.

Another evaluation method of the timbre models was performed by asking listeners,

who are called subjects, to compare the recreated sounds with the originals and judge the

impairment of the resynthesis. This evaluates the quality of the resynthesis of the models,

but it does not always confirm or infirm the validity of the model, since the bad quality of

the resynthesis also can be attributed to problems with the estimation of the parameters of

the model.

The impairment of the additive analysis is better than perceptible, but not annoying,

except for the low piano notes. This problem is attributed to either bad timing resolution,

or the lack of phase information in the additive model. Other causes could also be too few

partials, or the lack of spurious partials, which model the transient behavior of, for

instance, the piano attack.

The HLA model impairment was generally better than slightly annoying, except for the

soprano. The reason for the bad score of the soprano sounds is the vibrato present in these

sounds. The vibrato is so important, the sounds cannot be analyzed correctly and the

vibrato is interpreted as noise, which degrades the sounds considerably in the resynthesis.

The MDA and the IDA resynthesis are comparable, but the MDA model almost always

scores just above the IDA model. The impairments of these two models are in between

annoying and very annoying. Some of the problems with the MDA and IDA models lie
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with the noise parameters. The low strong amplitudes often inherit the noise from the

upper weak partials. This can be solved by weighting the parameters before the curve fit,

or by using another model of the partial index evolution of the noise parameters.

13.4. Future Directions

The problems with the timbre models presented in this work are related to the

estimation of the model parameters, and the validity of the model. The validity of the

model relates principally to sounds that have not been discussed in this work, such as

sounds with vibrato or tremolo, speech sounds, etc.

13.4.1. Parameter Estimation

The timbre models introduced in this work are believed to be valid and pertinent.

Several new methods for the estimation of the model parameters have been presented in

this work. However, some problems still persist. In the additive model, the relative phase

of the partials is not saved with the frequency and the amplitude. Some evidence exists that

this is indeed important for the quality of the resynthesis. Furthermore, phase coupling has

also been shown to be a good classification parameter [Dubnov et al. 1997]. The

importance of phase should therefore be evaluated, and the phase should perhaps be

included in all the timbre models.

The additive parameter analysis should be improved to also handle vibrato or glissando.

Several methods of accomplishing this have been evaluated. The estimation of the initial

frequencies using a pitch tracker has shown some promising results. This method is not

ready for automatic analysis, however. The pitch track is a difficult problem, and more

work is needed before this method can be put into use. Initial evaluation of the possibility

of analyzing the frequency content using spectrograms has also been done. This method

could be improved by the techniques found in the scale-space community in the vision

research. Finally, the linear time frequency (LTF) implementation used in this work could

be extended to also handle varying frequency.

The improvement of the analysis would solve some of the noise problems in the HLA

model. This problem consists of vibrato or glissando being transformed into noise.

Periodic noises are removed in the noise analysis, but if vibrato is important, the additive

analysis does not perform well, and the HLA analysis does not get good parameters to

analyze.
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The spectral envelope and the frequency model seem to work well for the sounds

analyzed. The envelope model also performs well, although long sounds seem to have

higher shimmer values. The noise model is rather simple, and seems to be the attribute that

is causing the most impairment in the resynthesis. One improvement would be to include

higher order statistic models, such as skewness or kurtosis [Press et al. 1997].

The main problem with the Minimum Description Attribute (MDA) model is the noise

parameter estimation. This problem could be solved easily, by using a different weight, or

another model. Analysis of higher quality noises, such as whisper, should be performed to

see if the noise model handles spectral envelope information. If not, a model similar to the

spectral envelope model should be introduced for the noise standard deviations.

Another important issue in the MDA model is the parameter relationship, hereby

meaning the departures from the curves found in the MDA of the parameters of the HLA

model. Even if most parameters are well analyzed, and fit the MDA model, the MDA

resynthesis is rarely as realistic as the HLA model resynthesis. This has to do with the

parameter relationship. The MDA resynthesis would be improved if the error model of the

MDA could incorporate these relationships.

The IDA model is dependent on the quality of the MDA model. One problem with the

IDA model is the summation of parameters from several sounds into the same IDA

frequency band. If one sound timbre attribute values are heavily off it could impair the

mean of the parameters. An illustrative example would be the jitter standard deviation. If

the jitter is close to zero for a few sounds, but very large for one sound, the resulting IDA

value would gain too much importance, resulting in a too noisy sound. Such situations

must be prevented in the IDA model parameter estimation. It impairs not only the

resynthesis of the sounds, but also the analysis of the parameters.

13.4.2. Model Scope

The timbre models presented in this work can handle most sounds (the additive model),

or most isolated sounds (the HLA model), or handle only quasi-harmonic sounds (the

MDA and IDA models). The additive and HLA models could potentially handle noise and

non-harmonic sounds.

The HLA model handles only isolated sounds, but they could be very noisy without

needing additions to the HLA model. Typical expression features, such as vibrato, or

tremolo, cannot be modeled with the HLA model. This would not introduce a major



Chapter 13. Conclusions

206

change in conception, since the major problem is the lack of analysis tools. Furthermore,

most expression parameters can and should be added by the performer at synthesis.

However, the vibrato effect is quite complex [Mellody et al. 1997] and the relations

between timbre attributes need modeling, if a faithful, good quality vibrato is to be created.

The singing voice also needs an improved model, at least for the MDA and the IDA

models. Related research has already proven the validity of the additive model [McAuley

et al. 1986] or models similar to the HLA model [Marques et al. 1994] in the modeling of

speech. Initial studies of a formant model has shown promising results, and this could be a

valuable addition to the MDA and the IDA models, which would permit the modeling of

formantic structures in the spectral envelope.

In a larger scope, the timbre models should handle other musical instruments, such as

percussive instruments, carillons, etc. The HLA model can probably model these

instruments well, if the additive parameters are correct, but the MDA and IDA models can

handle only quasi-harmonic sounds. Analysis of the frequency relationship in these

instruments could potentially find suitable models of the frequencies of non-harmonic

sounds.

Further on, all kinds of timbre attributes of concrete sounds [Shaeffer 1966] should be

incorporated in the timbre models. Industry noises and animal sounds, for instance, are

considered musical sounds by many.
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A. Sound Recordings

A.1. Violin

• Material.

• Violin

• Microphone Sony ECM 909, placed at ca 1m.

• DAT Denon DTR-80P

• Room normal furnished, ca, 5*3 m, H=2.5m.

• All recordings played by Elisa Andersen.

• A normal scale is played in two register, high (treble) or low (bas) notes

• Executions with different

• tempo (fast, slow)

• style (legato, spiccato, staccato)

• intensity (piano, mezzo-forte, forte)

• filename: style-intensity-tempo.aiff

• Parameter varying executions,

• Bow Flat angle (2 times)

• Bow Long angle

• Bow Position (4 positions)

• Bow Pressure (3 pressures)

• Bow Speed (3 speeds)

• Vibrato Speed (3 times)

• Vibrato Extend (3 times)

• Normal to spring staccato

• filename: parameter-note.aiff
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A.2. Viola

• Material.

• Viola

• Microphone Sony ECM 909 placed at ca 1m.

• DAT Denon DTR-80P

• Room normal furnished, ca, 5*3 m, H=3m.

• All recordings played by Klaus Hansen.

• Executions with different

• tempo (fast, slow)

• style (col_legno, con_sordino, detache, flautando, legato, martele, pizzicato,

spiccato, staccato, sul_ponticello, sul_tasto)

• filename: style-tempo.aiff

• Parameter varying executions,

• Bow Position, Bow Direction, Bow Elasticity

• Bow Flat angle, Bow Long angle

• Bow Force, Bow Speed

• flageolet, glissando

• Left Finger Timing, Silencing, Strings

• Tremolo, Vibrato Speed, Vibrato Extend

• Viola Angle, Viola Direction, Viola Position, Viola Slope

• filename: parameter.aiff
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A.3. Cello

• Material.

• Cello

• Microphone Sony ECM 909 placed at ca 1m.

• DAT Denon DTR-80P

• Room, heavy furnished, ca, 5*3 m, H=2m.

• All recordings played by Dan Tørning.

• a simple scale is played in different,

• tempo (fast, slow)

• style (legato, spiccato, staccato)

• intensity (pianissimo, fortissimo)

• range (bas, mid, treble)

• filename: style-tempo-range.aiff (intensity is mezzo-forte)

legato-intensity.aiff (slow, wide range

• Parameter varying executions, One single note per execution, bas or treble note

• bow speed (3 speeds & 4 speeds)

• bow pressure, (3 pressures)

• bow long angle,

• bow angle, (45 degree & 0 degree, twice)

• bow elasticity,

• vibrato speed,

• vibrato extent,

• attack (legato to spiccato),

• filename: Parameter-note.aiff
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A.4. Saxophone

• Material.

• tenor Saxophone Selmer Balanced Action 38, Otto Link #6 mouthpiece, pico

royal 3 1/2 (worn)

• Microphone Sony ECM 909 placed at ca 1m.

• DAT Denon DTR-80P

• Room: normal furnished, ca, 5*3 m, H=3m.

• All recordings played by Brian Thorsbro.

• A ‘C’ scale and a ‘C7’ accord is played in different executions

• normal

• soft (less blow force, lower jaw withdrawn)

• hard (more blow force, less opening)

• subtones (soft lower jaw, big mouth opening)

• sing (sing into the moutpiece)

• attack (with and without tongue)

• filename: execution-speed.aiff
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A.5. Clarinet

• Material.

• Clarinet Sib Noblet

• Microphone AKG C410, placed at ca 1 m.

• DAT Sony TCD-D10 Pro

• Room dimensions. 6.2*4.2 height=3.4 (m)

• All recordings played by Richard Kronland-Martinet

• Executions with different

• tempo (allegro, moderato)

• style (legato, staccato, tenuto)

• intensity (piano, mezzo-forte, forte)

• Notes mi-sol-sib-do, and same intervals 1 octave and 1 fifth higher

• filename: clar-intensity-tempo-style.aiff

• crescendo, staccato and tenuto, mi2 and si4

• filename: clar-note-cresc[-ten].aiff
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A.6. Flute

• Material.

• Flute traversière en do ‘C’, ‘Mateki’

• Microphone AKG C410, placed close to the mouth.

• DAT Sony TCD-D10 Pro

• Room dimensions. 6.2*4.2 height=3.4 (m)

• All recordings played by Sølvi Ystad

• Andante for flute, Mozart KV315 (extract)

• filename: flut-kv315.aiff

• Executions with different

• tempo (allegro, moderato)

• style (legato, staccato, tenuto, detache)

• intensity (piano, mezzo-forte, forte)

• Notes do-mi-fa-sol-do, from do3 to do5

• filename: flut-intensity-tempo-style.aiff

• crescendo, staccato and legato, sol3 and sol4 and do4

• double-tongue and octaviation effects

• vibrato in sol4

• filename: flut-note-cresc[-sta].aiff

 flut-octav.aiff

 flut-intensity-doubletongue.aiff
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A.7. Soprano

• Material

• Soprano Voice (lyrique)

• Microphone, placed at ca 1m.

• DAT.

• Room normal furnished, ca, 5*3 m, H=3m.

• All recordings performed by Karin Andersen.

• A normal scale is performed with different vowels and consonants and intensitys.

• Executions with different

• style (legato, tenuto)

• intensity (piano, mezzo-forte, forte)

• vowels (a-o-y)

• consonant (none-k-b)

• filename: style-(consonant)vowel-intensity.aiff

• Furthermore, the high and low registers are performed in ‘a’ mf.

• filename: high_register.aiff

low_register.aiff

• A crescendo was also performed.

• filename: crescendo.aiff
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A.8. Piano

• Material.

• Piano MIDI Yamaha Disklavier C6

• Microphone KM84i (electrostatic, cardoid) placed 25 cm above the Mi3 string.

• Preamp. Sonosax SX PR.

• DAT Sony TCD-D10 Pro

• Room dimensions. 6.2*4.2 height=3.4 (m)

• No lock on the piano.

• All recordings done with MIDI in an isolated room

• Isolated sounds, each file one octave, twelve notes 400 ms long each.

• filename: oXoY.aiff, X is octave and Y is velocity, (40, 72 or 104)



Appendix B. Listening test instructions in danish

B-1

B. Listening test instructions in danish
Oplæring

I oplæringsfasen skal lytteren lære at identificere og genkende forskellig forvrængning og forringelse som
er skabt af det system der står under test. Når oplæringsfasen er overstået skal du vide hvad du lytter efter.
Bagefter vil du blive spurgt om at blind-teste de samme slags lyde som du hører i oplæringsfasen. I
oplæringsfasen skal du også lære test-proceduren.

Du vil høre både referensen (originalet) og den genskabte (komprimerede) lyd. Den første lyd er altid
referensen og de næste to lyde er referensen og den komprimerede lyd i tilfældig rækkefølge. Du skal så
vurdere forringelsen af de to sidste lyde i forhold til den første. Det er altså forringelsen mellem den første og
den anden lyd, og forringelsen mellem den første og den tredje lyd der skal vurderes. Lydene er typiskt under
et sekund lange og de kan høres igen, hvis nødvendigt. I lytteprøven skal du vurdere forringelsen i en skala
fra 5.0 til 1.0.

Forringelse

5.0 Ikke hørbar

4.0 Hørbar, men ikke generende

3.0 Lidt generende

2.0 Generende

1.0 Meget generende

Fordi en af de to lyde der står under test altid er den samme som referensen, skal et af de to vurderinger
altid være 5. Hvis en af lydene lyder bedre end referensen, så betyder det at der er en ‘Hørbar, men ikke
generende’ forskel og vurderingen bør ligge mellem 4.0 og 4.9.

Du bør tænke over hvordan du bedømmer de lydforringelser du hører i oplæringsfasen, men du bør ikke
diskutere dette med andre forsøgspersoner.

Blind Forsøg

Formålet med blind-testen er at vurdere lyde af den type du kommer til at høre i oplæringsfasen.

I hver forsøg vil du høre 3 lyde, hvor den første altid er referensen, og de to næste er referensen og den
komprimerede lyd i tilfældig rækkefølge. Du bliver ikke fortalt, hvilken af de to lyde der er referensen og
hvilken der er den komprimerede lyd, derfor kaldes testen ‘blind’. Fordi en af lydene altid er den samme som
originalen, skal en af vurderingerne altid være 5. Den anden vurdering skal gives i forhold til hvor brugbar
lyden ville være i en almindelig musikalsk situation. Det betyder at hvis lyden lyder godt og som det samme
instrument som originalet så skal den vurderes højt, også selvom den lyder anderledes end originalet. Der bør
ikke laves vurdering for tonehøjdeforskelle, længdeforskelle, eller lydstyrkeforskelle.


