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Abstract

Thiswork involves the analysis of musical instrument sounds, the creation of timbre
models, the estimation of the parameters of the timbre models and the analysis of the

timbre model parameters.

The timbre models are found by studying the literature of auditory perception, and by
studying the gestures of music performance.

Some of the important results from this work are an improved fundamental frequency
estimator, a new envelope analysis method, and simple intuitive models for the sound of
musical instruments. Furthermore a model for the spectral envelope isintroduced in this
work. A new function, the brightness creation function, is introduced in the spectral

envelope model.

The timbre model is used to analyze the evolution of the different timbre parameters
when the fundamental frequency is changed, but also for different intensity, tempo, or
style. The main results from this analysis are that brightness rises with frequency, but
nevertheless the fundamental has ailmost all amplitude for the high notes. The attack and
release times generally fall with frequency. It was found that only brightness and
amplitude are affected by a change in intensity, and only the sustain and release times are

affected when the tempo is changed.

The different timbre models are also used for the classification of the soundsin musical
instrument classes with very good results. Finally, listening tests have been performed,
which assessed that the best timbre model has an acceptable sound quality.

Resumeé

Dette arbgder omhandler analyse af musikinstrumenter, dannelse af modeller af
musikinstrumenters klangfarve, estimering af klangfarve model parametre og analyse af
model parametrene.

Klangfarvemodellerne er fundet ved at gennemga lydperceptorisk litteratur, og ved at
studere musikudevel se.

Nogle vigtige resultater fra dette arbegjde er en forbedret fundamental frekvens
estimator, en ny envelope anaysemetode, og simple intuitive modeller af musiklyd.
Desuden er en model af den spektrale envelope udviklet. | den forbindelse er en ny
funktion for syntese af lyd med en given ‘brightness udviklet.

Klangfarvemodellen er brugt til at anaysere udviklingen af de forskellige
klangfarveattributter, nar fundamentalfrekvensen amndres, men ogsa for forskellige



intensiteter, tempi og stil. De vigtigste konklusioner fra dette arbejde er, at ‘brightness
stiger med frekvens, men fundamentalen har alligevel nassten a amplitude for de hgje
toner. ‘Attack’ og ‘release’ tiderne falder med frekvensen. Af intensitetss og
tempoaandringer fandtes, at kun ‘brightness’ og amplituden aandres nar intensiteten amdres,
og at kun ‘sustain’ og ‘release’ tiderne andres nar tempoet aandres.

De forskellige klangfarvemodeller er ogsd brugt til klassifikation af lyd i
instrumentklasser med meget godt resultat. Lytteforseg godtgjorde, at den bedste
klangfarvemodel har en acceptabel lydkvalitet.

Résumeé

Ce travail traite I'analyse des sons musicaux, la création des modéles de timbre,
I’ estimation des paramétres des modéles de timbre, ainsi que I’ analyse des parametres des
modeles.

Les modéles de timbre ont été trouvés dans la littérature de la perception auditive et en
étudiant les gestes du musicien.

Quelques résultats importants du travail présentéici sont une estimation améliorée de la
fréguence fondamentale. Une nouvelle méthode pour I’ estimation des temps d’ attaque et
de relachement a été developpée, ains que des modéles intuitifs de sons d’ instrument de
musique. Un nouveau modeéle d’ enveloppe spectrale a été défini, ainsi qu’ une fonction qui
donne un son avec la brillance indiguée.

Les modéles de timbre sont utilisés pour |’analyse de I’ évolution des parametres des
timbres en fonction de la fréguence fondamentale, de I’ intensité, du tempo ou du style. Le
résultat principal de cette analyse est que la brillance monte avec la fréquence, mais que la
fondamentale a presque toute I'amplitude dans les aigls. Les temps d attaque et
reléchement diminuent avec la fréquence fondamentale. Pour une variation de I’intensité,
seul I’amplitude et la brillance sont affectées. Seuls les temps de maintien et relachement
changent avec le tempo.

Le modéle de timbre est aussi utilisé pour la classification des sons dans des classes
d'instruments avec de tres bons resultats. Finalement, des tests d ecoute de tous les
modéles ont permis de conclure que le meilleur modéle de timbre posséde une qualité de
son acceptable.
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Chapter 1. Introduction

Chapter 1

1. Introduction

Theinitial inspiration for this work was the need to understand the transitions of
musical sounds. The transition was soon defined as being the variation over time of pitch,
loudness and timbre, and the classification of these variations. [ Strawn 1985] offers further
insight on the transitions of musical instruments. Pitch and loudness are fairly well known
parameters, but timbre is less well defined, although generally defined as multi-
dimensional.

Timbre then naturally became the main subject of this work. Two approaches were
tested to understand the dimensions of timbre, the first by examining the physical gestures
associated with playing an instrument and the other by looking at the perception and
psychoacoustic literature. This can be seen as a global approach, encompassing both the
performer of amusical instrument and the auditor of the sounds produced. The conclusions
of the two approaches were then used in the analysis and modeling of musical instrument

sounds.

The analysis of transitions was eventually left out, and the work is now done on isolated
musical instrument sounds. The goa isto find afew parameters which are relevant to

human perception and which model music sounds well. Furthermore, the evolution of
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sounds, as afunction of playing style, loudness, or note played, should also be well
modeled. Ideally, thiswould equal amusical instrument, but much work remains before
thisgoal is achieved. Instead, thiswork is the basis for a better understanding of what
timbreis, and also the basisfor adigital musical instrument with potentially the same
timbre quality and versatility as an acoustic instrument, in expression as good as the best

acoustical instruments.

The model of musical sounds presented here can be used as a basis for compression of
(musical) sounds, for interactive distributed music, or for research in composition with

timbre. For a survey on timbre composition, see for instance [Barriere et al. 1991].

In general terms, musical informatics research can be helpful for classical music
research, for auditory perception research and for the auditory display research.
Fundamental methods developed in the music informatics community can potentially find

uses in any domain.

1.1. Framework

Thiswork balances on the border between analysis and synthesis of sounds of musical

instruments, which can be seen as an example of analysis by synthesis [Risset 1991].

Analysisis done on sounds, but also on the parameters of preceding analysis. Thisis
done so that the important timbre attributes of a sound will emerge. The last model will
present some parameters which are important timbre attributes, but which in an automatic
framework, can not (yet) resynthesize an acceptable sound. However, thisis believed to be
more a problem with the estimation of the parameters of the models than with the models
themselves. Therefore, it is believed that the models can be used to synthesize good quality
sounds, if the parameters are adjusted appropriately.

Each model has an inverse function, which allows one to recreate the input parameters
from the output parameters. The recreation is never identical, and some of the perceptual

loss can be found by studying the listening test results in Chapter 12.

The different steps of the analysis/model/synthesis can be seen in figure 1.1. The sounds
are first analyzed into additive parameters, where sinusoidals, called partials, with time-
varying amplitude and frequency are added together. The sinusoidals correspond often,
although not always, to the fundamental and the harmonic overtones of the sound being
analyzed. Then the partials are analyzed, and a few perceptually important parameters are

found and stored in the High Level Attribute (HLA) model. Thisis done for each partial.
2
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In the Minimum Description Attribute (MDA) model, the parameters of the HLA model
are defined by the fundamental value and the evolution over partial index. Finally, the
Instrument Definition Attribute (IDA) model includes the MDA parameters for the full
playing range of an instrument. The IDA model istherefore a collection of many MDA
Sets.

In the MDA and the IDA models, the partials need to be quasi-harmonic. Thisis not the
case for the additive and the HLA models.
All models have an inverse function, which permits recreating the previous level

parameters all the way to the resynthesis of the sound.

Analvsis TP HLA » MDA P DA

@7 Synthesis (4 HLA! < MDA IDA™

Figure 1.1. Complete flow chart of analysisand modeling in thiswork.

Visualization of the additive parametersis useful when aview of the general shape of
the sound is needed. The HLA parameters are useful when the timbre attributes, such as
the attack time or the brightness of a sound, need to be visualized. The MDA model
introduces a model of the spectral envelope. The MDA model is assumed to contain all the

information of a sound in the fewest possible parameters.

The IDA model parameters are useful when the difference between instruments, or

between expressions of the same instrument, needs to be analyzed or visualized.

Furthermore, the validity of each model can be estimated by the ability of the
parameters of the model to classify the sounds in instrument families. Some experiments
on the classification have been performed in the validation of the timbre models presented

in Chapter 11 with good results.
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1.2. Work Methodology

Thefirst part of thiswork consisted in finding expressions of musical instruments. This
work was conducted by interviewing musicians, and recording musical instrumentsin as
many expressions as possible.

When the goal of thiswork was restated into finding a model for the timbre of musical
instruments, an iterative process of finding the parameters of such a model began. The
parameters of the model are of course very dependent on the analysis model of the sound.
The analysis model was therefore first defined to be additive.

The additive parameters generally model only the voiced part of the sound, and the
noise analysis should therefore be found. The use of a better additive analysis method
allows the choice of the less frequently used model of noise using the irregularity of the

additive parameters.

When the analysis parameters were chosen, the analysis of musical instrument sounds
could begin. Quality of the analysis was judged by listening to the resynthesized sounds
and by analyzing the resulting additive parameters. At the same time, the timbre model
was initiated. Thiswas done by experimenting with simple models of the additive
parameters, and by studying the auditory perception literature. The quality of the timbre
models was evaluated by listening to the resynthesis of the sounds from the models, and by
analyzing the parameters of the model. The initial analysis and the first timbre model, the
HLA model, were changed if necessary. Furthermore, new musical sounds were recorded,
if another dimension of the timbre space was to be evaluated. Then the simpler timbre
model, the MDA model, was initiated and the process was repeated, now including another
level.

Finally, the full instrument model, the IDA model, was introduced. Now the parameters
could be analyzed as a function of the playing range, or other expressive scales. The
underlying models were evaluated on the basis of this analysis, and changed when
necessary. Furthermore, listening tests were performed, and classification experiments
using the timbre models were also performed. All this gave rise to more modification of

the timbre models, after which the quality of each model was again evaluated.

This ascending methodology was necessary, since no timbre models were found in the

literature. The deductive conclusions are not strictly speaking unique. Nevertheless, this



Chapter 1. Introduction

methodology is believed to be the best for thiswork. The relatively dispersive literature

search has facilitated finding better models and better foundations for the models chosen.

Conclusive timbre models with promising applications are introduced in this work.

1.3. Structure of the Document

Chapter 2 presents the musical instruments, the control and perception of musical
sounds, the timbre and the additive model. Chapter 3 introduces an improved fundamental
frequency estimator, and the estimation of theinitial frequencies used in the analysis
chapter. Chapter 4 explains the analysis of the additive parameters and compare two
methods, the well-known FFT-based analysis, and a new analysis method, developed by
Philippe Guillemain [Guillemain et al. 1996], based on alinear sum of gaussian kernels.
The conclusion is that the new analysis method, here called the LTF analysis, hasatime

resolution that is twice as good as the optimal two-pass FFT-based analysis.

Chapter 5 explains the envelope model and compares two methods for the extraction of
envelope times: the first, which finds the envel ope times at a certain percentage of the
maximum amplitude, and a new method developed here, which finds the envelope times
by analyzing the derivative of the amplitude envelope. This method, which is called the
slope method, performs significantly better than the simpler percent-based method.
Chapter 6 introduces the HLA model, which models the sound with a few perceptually
relevant parameters for each partial: spectral envelope, mean frequencies, envelope, and
amplitude and frequency irregularities (shimmer and jitter).

Chapter 7 introduces the spectral envelope model used in the MDA model that is
presented in Chapter 8. The spectral envelope model parameters include brightness, and a
function for the creation of asignal with a given brightnessis given in the additive and in
the time domain. The MDA model is based on the HLA model, but it further models the

partial evolution for each parameter.

Chapter 9 introduces the IDA model, which isamodel for the evolution of the MDA
parameters as a function of the fundamental frequency. This chapter also discusses the
evolution of the timbre attributes as a function of fundamental frequency, intensity, tempo
or style. Several important results of this analysis are given in Chapter 9.

Chapter 10 introduces the timbre modifications of the different timbre models. Chapter
11 examines the validity of the timbre models by classification methods. The result is that

the timbre attributes can classify 150 sounds from the full playing range of five
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instruments with no errors. Chapter 12 verifies the validity of the resynthesis of the timbre
models by performing listening tests. Chapter 13, finally, offers a conclusion and a
proposal for further work.
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Chapter Two

2. Musical | nstruments

In this chapter the musical instrument is presented from the two most common points of
view, the gestural, and the perceptive. The gestural point of view discusses the playing of
an instrument, while the perceptive point of view discusses the perception involved in
listening to musical instrument sounds. Based on someinitia research into the control of
musical instruments, a database of musical instrument sounds has been created.
Furthermore, the model of the sound of the musical instrument is presented here. The
conclusion of the perceptive research reviews is the basis of the timbre modelsin the

following chapters.

2.1. Introduction

A model of musical instruments should obey two fundamental obligations. It needs

good sound quality and easy control of the important expression attributes.

This chapter investigates the literature on auditory perception, timbre analysis and

control of musical instruments. The conclusions from this chapter are used in the following
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chapters to create the models of musical instruments. The discussions of musical
instruments have aso been important for the choice of musical instruments that are used in
the analysis of the timbre models. The control of musical instrumentsis investigated by
analyzing the current situation and proposals for future systems of digital musical
instrument interfaces. Some results from the research on reaction time from different

stimuli are also given.

The timbre conclusions are given from areview of auditory perception literature and

from verbal attribute research.

The musical instruments being analyzed in this work are the quasi-harmonic
instruments. The term quasi-harmonic denotes instruments whose partial frequencies are
close to harmonic. This means that for example the drums, cymbals, and carillons have

been excluded.

The actual instruments being analyzed have been chosen for the quality of expression,

for general recognition, and for availability.

In this chapter the control of musical instrumentsis discussed in section 2.2, then the
timbre of musical soundsis discussed in section 2.3. The additive model of musical sounds
IS presented in section 2.4, with adiscussion of the phase sensitivity in paragraph 2.4.2.
The database of musical instrument is discussed in section 2.5. Finally aconclusionis
offered.

2.2. Control

The control of amusical instrument is here defined to be the physical process of moving
or manipulating the parts of the musical instrument to produce sounds. The analysis of the
control of musical instruments was done in an early stage of thiswork and only
summarized here. Some general reflections on the control of musical instruments can be
found in [Jensen 1996a], and an overview of the control of the violin can be found in
[Jensen 1996b]. Thisresearch isthe basis for the constitution of the database of musical
instrument sounds, and the classification of the sounds in families of intensity, style, or

other parameters, such as the speed of the bow of the violin.
In mainstream computer-based music, control is generally achieved with the Musical

Instruments Digital Interface (MIDI) interface [IMA 1983]; most often through a piano
like Midi Master Keyboard [Jensen 1988].
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[Moore 1988] criticized the “ degree of control intimacy” of MIDI. Several replacements

have been proposed without success, see for instance [ZIPI 1994].

Much other work in control of musical instruments, or gesture research, has been done.
[Vertegaal et al. 1996] stresses the importance of a“tight relationship between the
musician and the instrument.” [Wanderley et al. 1998] present their work in gestural

research, as well as the gestural research discussion group, which they manage.

A system which is perhaps comparable to acoustic instruments is presented in [Cadoz et
al. 1984], [Cadoz et al. 1990]. The haptic interface, which gives sensory feedback to the

performer, seems to enhance intimacy considerably.

[Jensen 1996a] argues that even though there are many dimensionsto the control of a
musical instrument, the performer concentrates only on afew of the controls at any given
time. An argument for or against this hypothesis can perhaps be found in the literature on
human reaction time. [Leonard 1959] did a much-cited work in which he studied the
reaction time when one or several fingers were stimulated with a 50 Hz vibration. His
results show “a difference between simple reaction time and two-choice times, but no
systematic differences between 2, 4, or 8 choices.” Thiswould imply that a human could
react to 8 choice stimuli just as fast asto 2 choice stimuli. His results were not replicated in
alater study, [Hoopen et al. 1981], which shows that the reaction time increases with the
number of choices. Thisincrease in reaction timeis not present however, if the stimulusis
strong. Other results from this research include the reaction time as function of
stimuli/reaction location [Hasbroucq et al. 1986] and as a function of stimuli intensity
[Hasbroucq et al. 1989]. The results are that the reaction is faster when the stimulusis
strong, and when the reaction comes from the same location as the stimuli. The reaction
times are generally between 200 and 500 mS. The potentially difficult choice of haptic
feedback to the performer can be simplified by studying the physical reaction literature.

The reaction time literature can also be of use when designing the real-time interface
between the performer and the synthetic musical instrument. More research is needed,
however, before enough conclusions can be made. Thisissue is not further pursued, since

the real-time issue is not investigated in this work.
[Friberg 1991] and [Friberg et al. 1991] introduced rules for the improvement of
computer performance, which can give information on the most important expression

parameters.
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The control of amusical instrument is intimately related to the structure of the
instrument and the production of the sound. Some good textbooks on the acoustics of
musical instruments are [Backus 1970] and [Benade 1990] and [Fletcher et al. 1993].

2.3. Timbre Dimensions

Timbre isdefined in [ASA 1960] as that which distinguishes two sounds with the same

pitch, loudness and duration. This definition defines what timbre is not, not what it is.

Timbre is generally assumed to be multidimensional. For the sake of simplicity, itis
assumed in thiswork that timbre is the perceived quality of a sound, where some of the
dimensions of the timbre, such as pitch, loudness and duration, are well understood, and
others, including the spectral envelope, time envelope, etc., are still under debate. In most

research, however, the pitch, loudness and duration are dissociated from the timbre.

In general, it is accepted that the frequency/perceived pitch scale, or amplitude/
perceived loudness scale, is not linear [Handel 1989]. It isinteresting to model the
perceptive scale, since the values of the model would have a more intuitive scale, and the
errors in the modeling would be perceptually minimized. For some parameters, such asthe
pitch, this effect is not modeled here, since there already exists an accepted musical scale,
the 12 tones per octave scale.

Future work which models non-harmonic, non-acoustic instruments could potentially
have much use of the frequency/perceived pitch and the amplitude/perceived loudness

scales.

In thiswork, it is assumed that timbre models two different aspect of the sounds. The

identity of the sound and the expression of the sound.

The identity of a sound is the ability to recognize a sound as the sound of, for instance, a
piano, and the expression of a sound is the ability to recognize the sound as a high-pitched

piano, or a soft piano, for instance.

Here, asurvey of literature on timbre is presented. The conclusion of this survey will

help in designing the models of the timbre.

2.3.1. Identity

The identity of asound is defined in this work as the timbre cues that make possible the

identification of the instrument that produces the sound. Other identities could define the

10
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player of the instrument that produced the sound, the location of the instrument or the
media that distributed the sound.

The difficulty of timbre identity research is often increased by the fact that many timbre
parameters are more similar for different instrument sounds with the same pitch, than for
sounds from the same instrument with different pitch. For instance, many timbre
parameters of a high pitched piano sound are closer to the parameters of a high-pitched
flute sound than to alow-pitched piano sound. Nevertheless, human perception aways

identifies the instrument correctly.

2.3.2. Pitch, Loudness and Duration

Pitch, loudness and duration are the most common expression parameters used for
isolated sounds in music. Pitch defines the perceived note of the sound, loudness the

perceived intensity of the sound and duration the length of the sound [Lindsay | 1977].

Pitchiisin its simplest form seen as the fundamental frequency; thisisthe model
adopted here. When the fundamental frequency ismissing, it can be recreated from the

difference of higher harmonic overtones.

Intensity is most often expressed in dB, sometimesin perceived dB, which is called
phon, where the intensity at a given frequency is the same as the intensity at 1kHz. The
sound also has an auditory threshold, under which it can no longer be perceived, and a pain
threshold. Additionally, the dB scale can be converted to the loudness scale in sones. This
scale indicates that the same change in dB doesn’t give the same perceived change in sones
inlow intensities asin high intensities. See [Handel 1989] for more details. Theintensity is

measured in linear scale throughout this document.

Duration is here expressed in milliseconds (mS); it is the length of the sound. No
attempt has been made to find the perceived duration although it is believed that this work
finds attack onsets close to the perceived onset. See [Gordon 1987] for a study of the
perceptual attack time.

Research which aim isto understand the basic mechanism in hearing has been pursued
for many years [Mgaller 1973]. This has given rise to more elaborate models, which take
into account the functioning of the auditory system [Meddis et al. 19914].

11
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2.3.3. Dissimilarity Tests

The dissimilarity test is a common method of finding similarity in the timbre of
different musical instruments. The dissimilarity tests are performed by asking subjects to
judge the dissimilarity of a number of sounds. A multidimensional scaling is then used on
the scores, and the resulting dimensions are analyzed to find the relevant timbre quality.
[Grey 1977] found the most important timbre dimension to be the spectral envel ope.
Furthermore, the attack-decay behavior and synchronicity were found important, as were
the spectral fluctuation in time and the presence or not of high frequency energy preceding
the attack.

[Iverson et al. 1993] tried to isolate the effect of the attack from the steady state effect.
The surprising conclusion was that the attack contained all the important features, such as
the spectral envelope, but also that the attack characteristics were present in the steady
state. Later studies [Krimphoff et al. 1994], refined the analysis, and found the most

important timbre dimensions to be brightness, attack time, and the spectral fine structure.

[Grey et al. 1978], [Iverson et al. 1993] and [Krimphoff et al. 1994] compared the
subject ratings with calculated attributes from the spectrum. [Grey et al. 1978] found that
the centroid of the bark [Sekey et al. 1984] domain spectral envelope correlated with the
first axis of the analysis. [Iverson et al. 1993] also found that the centroid of the spectral
envelope, here calculated in the linear frequency domain, correlated with the first
dimension. [Krimphoff et al. 1994] also found the brightness to correlate well with the
most important dimension of the timbre. In addition, they found the log of the rise time
(attack time) to correlate with the second dimension of the timbre, and the irregularity of
the spectral envelope to correlate with the third dimension of the timbre. [McAdams et al.
1995] further refined this hypothesis, substituting spectral irregularity with spectral flux.

The dissimilarity tests performed so far do not indicate any noise perception. [Grey
1977] introduced the high frequency noise preceding the attack as an important attribute,
but it was later discarded in [Iverson et al. 1993]. This might be explained by the fact that
no noisy sounds were included in the test sounds. [McAdams et al. 1995] promises a study
with alarger set of test sounds. It might also be explained by the fact that the most
common analysis methods doesn’t permit the analysis of noise, which then cannot be
correlated with the ratings.
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Chapter 2. Musical Instruments

2.3.4. Verbal Attributes

Timbre is best defined in the human community outside the scientific sphere by its
verbal attributes. [von Bismarck 1974a] had subjects rate speech, musical sounds and
artificial sounds on 30 verbal attributes. He then did a multidimensional scaling on the
result, and found 4 axes, the first associated with the verbal attribute pair dull-sharp, the
second compact-scattered, the third full-empty and the fourth colorful-colorless. The dull-
sharp axis was further found to be determined by the frequency position of the overall
energy concentration of the spectrum. The compact-scattered axis was determined by the
tone/noise character of the sound. The other two axes were not attributed to any specific
quality.

2.3.5. Noise

The noise of amusical instrument, or of any sound, isinitself a multidimensional
attribute. Much work on the noise of the human voice has been done. [Richard 1994] offers
asurvey of speech noises. [Klingholz 1987] divides the aperiodic component into 2 types.
The first type consists of the additive noises, which are colored or white noise, and not
correlated with the pitched sound. Additive noises are either transients, or quasi-stationary.
The other noise component is the random fluctuation of the fundamental frequency, jitter,
and the random fluctuation of the amplitude, shimmer. Still another noise typeisthe
change of waveform, which [Klingholz 1987] calls structural noise, but which is generally
called aperiodicity.

For musical instruments, noise can be divided into additive noises, jitter, shimmer, and
aperiodicity [Mclntyre et al. 1981].

2.3.6. Roughness

Another important timbre attribute is roughness [ Terhardt 1974]. Roughnessis a
measure of fast beats between two partias of the sound, which have the perceptual quality
roughness. It is closely related to dissonance-consonance [Plomb et al. 1965]. The
roughness, or dissonance, is most often used in the analysis of the consonance of two or

more sounds, but it is equally applicable in the analysis of the roughness of one sound.

Roughness is related to the theory of critical bands [Zwicker et al. 1957], in that the
partials that create the beat must be in the same critical band. Therefore, roughnessis
assumed to be zero in a harmonic sound with a fundamental frequency above 262 Hz

[Terhardt 1974]. Roughness is not used in this work, although it seems promising in the
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Chapter 2. Musical Instruments

modeling of the transient of for instance the clarinet, where spurious frequencies

sometimes increase the perceived roughnessin the attack.

2.4. Additive M odel

The additive model has been chosen in thiswork for the known analysis/synthesis
gualities of this model. Many analysig/synthesis systems using the additive model exists
today, including SMS [Serraet al. 1990], the lemur program [Fitz et al. 1996] and the
diphone program [Rodet et al. 1997]. Other methods investigated include the physical
models [Jaffe et al. 1983], the granular synthesis [Truax 1994], and the wavelet analysis/
synthesis [Kronland-Martinet 1988].

The additive model iswell suited for the analysis of pitched sounds. In this model, the
sound is supposed to be the sum of a number of sinusoidals with time-varying amplitude

and frequency,

sound(t) :éN. g (t) * singp, (t)dt +d,,) (2.1)

=0
The sinusoidals are denoted partials which corresponds to harmonic overtones when the
sound is harmonic. Then the frequencies of the partials are multiples of the fundamental
frequency.
The frequency of the harmonic partialsis equidistant in the frequency domain. The first
many harmonic overtone frequencies fall close to the notes in the 12-tone/octave scale.
The relation between the strong overtones of compound musical soundsis what defines the

consonance of theinterval [Kameoka et al. 1969].

The additive parameters are best viewed in a three-dimensiona plot, as shown in figure

2.1, where the axes are time, frequency, and amplitude.

The linesin the plot indicate the evolution of the amplitude and frequency of each
partial. This plot shows atest signal which is harmonic with afundamental frequency of
100 Hz.
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All frequencies are static and the partial 100 Hz test signal
freguencies are 100, 200, 300, 400, 500, 600,
700 and 800 Hz. 1600

The closest line (to the left) isthe
fundamental. The amplitude of the

fundamental isfirst zero for 100 mS, then it

follows alinear slope from 1500 to 500 for

800 mS and then it is zero for another 100 mS.

400

The amplitude of the seven upper partialsis Erequency 0o .

half of the amplitude of the preceding partial. Figure 2.1. Additive parameter s plot. The x axis
. ] istimein mS, they axisisfrequency in Hz and the z
Thetotal duration of the sound is 1 second. axisisamplitude.

2.4.1. Time-Frequency Analysis

The additive parameters are found by atime/frequency analysis. In the time/frequency
analysis, the amplitudes and frequencies are estimated at each time step. A time resolution
and afrequency resolution are involved in the time/frequency analysis. Rather than talk
about frequency resolution, frequency discrimination is often amore valid criterion.
Unfortunately, time resolution and frequency discrimination are mutually incompatible,
which means that if a better time resolution is sought, then a worse frequency
discrimination is obtained. In general terms, a better time resolution is obtained for higher
fundamental frequencies of harmonic sound, which is in accordance both with the fact that
the higher frequencies generally have faster attack times (see the analysis of the IDA
model parametersin Chapter 9), and that frequency spacing is larger for these sounds. The
time resolution should be at least as good as the fastest transient time under analysis, in the

order of afew mS.

2.4.2. Phase

There have been many debates on the importance of the relative phase of the
sinusoidals. The survey of the literature is not facilitated by the confusion of initial phase

and running phase (beats). Only theinitial phase are studied here. This correspondsto ¢,

in equation (2.1). Early research on the functioning of the ear had two opposing views, the
frequency domain model, which states that phase differences cannot be heard, and the

tempora model, which states that phase is important.
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Perceptive experiments, cited below, involving two, three or more sinusoidals are
formal. The phase isimportant. [Plomb et al. 1969] resumes the previous research, and
performs additional experiments. His conclusion is that phase difference can be heard, and
he further compares the maximum effect of phase change to the perceptual difference of
three close vowels. He also concludes that the phase effect is greater for low frequencies.
[Buunen 1976] uses the phase to compare envel ope detection and finds that envelope
detection in the human can be described as alow-pass filter with a cut-off frequency of
between 30 and 100 Hz. This translates into a better envel ope detection if the envelopeis

slow, or if the envelope change is large.

[Paterson 1987] makes additional experiments and further model s phase sensitivity and
[Meddis et al. 1991b] offer arefined model of the auditory system, which explains at |east
some of the phase effects. This model replaces the early temporal peak-picking methods
for fundamental frequency estimations with a series of autocorrelations of band-pass
filtered signals. The argument is that the ear is mostly phase sensitive only within
frequency channels. Paterson experiments involve phase sensitivity as a function of
fundamental frequency, harmonic number, level, and duration. His conclusions are “a) the
timbre of musical notes below middle C on the keyboard depends on component phase
relations, and b) the quality of most mens' voices and many womens' voices depends on
component phase relations.” [McAuley et al. 1986] seems to reach the same conclusionsin

their work on analysis/synthesis using additive parameters.

Although the initial phase isimportant to the perception of a sound, “this effect is quite
weak, and it is generally inaudible in a normally reverberant room where phase relations
are smeared” [Risset et al. 1982].

In conclusion, theinitial phase seems important for timbre perception in low
frequencies (below middle C, 262 Hz), at |east in anon-reverberant listening situation.
Unfortunately, neither theinitial phase, nor phase coupling, has been modeled in this
thesis. It istherefore labeled future work.

2.5. Database

To have some material to analyze, it is necessary to have a database of sounds. Several
such databases are available on the commercia marked; the most widespread is probably
the McGill University Master Samples (MUMYS) [Opolko et al. 1988].
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Commercial musical instrument databases do not generally have different tempi,
intensity or style for the full playing range of amusical instrument. New recordings were

therefore judged necessary.

Based on the preliminary research in timbre and control, a selection of different musical
instruments from different families has been recorded. The facilities and material can be
called semi-professional, all recordings being done on DAT and transferred digitally to the
computer network. Some of the performing musicians were professional and some were
amateurs. This doesn’t seem to influence the quality of the recordings much, since the

material is essentially non-musical.

The instruments in the database are the violin, the viola, the cello, the saxophone, the
clarinet, the flute, the soprano voice and the piano. Some of the instruments, such asthe
violin, have many degrees of physical freedom; the speed, force angle and direction of the
bow isonly asmall subset. Others instruments only have afew degrees of physical
freedom; the piano player, for instance, can influence only the position, or the speed, of the
key(s), and the pedals.

The recording details can be found in appendix A.

2.6. Conclusions

The sound of the musical instrument can be qualified by the timbre or the identity and
the gestures. Gestures associated with musical instruments are well defined by common
musical terms, such as note, loudness, tempo or style. Timbre defines the identity and the
expression of amusical sound. It seemsto be a multi-dimensional quality. Generally,
timbre is separated from the expression attributes pitch, loudness, and length of a sound.
Furthermore, research has shown that timbre consists of the spectral envelope, an
amplitude envelope function, which can be attack, decay, or more generally, the
irregularity of the amplitude of the partials, and noise. Other perceptive attributes, such as

brightness and roughness, can also be helpful in understanding the dimensions of timbre.

The quasi-harmonic musical instrument sounds are generally well defined by their
additive coefficients, which, in alistening situation without reverberation, should retain the

phase relations if the fundamental frequency is below middle C (262 Hz).
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Chapter Three

3. Fundamental Frequency Estimation

In this chapter the estimation of the fundamental frequency of amusical sound is
presented. The fundamental frequency is generally seen as the frequency of the first strong
partial (the fundamental), or as the frequency difference between two adjoining harmonic
overtones. The frequency differences are used to find the fundamental frequency here and
the estimation of the fundamental frequency of quasi-harmonic soundsisimproved in this
work by fitting the estimated frequencies to the ideal quasi-harmonic frequencies. A
fundamental frequency tracker is also introduced. Furthermore, an estimation of strong
frequencies present in amusical sound is presented. The strong frequency estimations

found in this chapter are used in the time/frequency analysisin the next chapter.

3.1. Introduction

The fundamental frequency of amusical sound is an important timbre attribute. The
fundamental frequency is here found by matching a stretched harmonic curve to the
frequencies of the partials found by the Fast Fourier Transform (FFT) analysis. Not all

stretched harmonic components are found by theinitial FFT analysis. Those not found are
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Chapter 3. Fundamental Frequency Estimation

reinserted, and the non-harmonic partials are removed before the curve fitting. The
frequencies extracted from the stretched curve along with the strong non-harmonic
components are used as the basis for the estimation of the time-varying frequency and

amplitude of the partials.

Several algorithms for the estimation of fundamental frequency have been presented in
the last few decades. The fundamental frequency estimation can be done in the time
domain [Rabiner et al. 1976], [Rabiner 1977], [Kroon et al. 1990], the cepstrum domain
[Noll 1967], or the frequency domain [Doval et al. 1991]. [Freed et al. 1997] proposes a
database of awide range of sounds for the objective comparison of pitch estimation

techniques.

The frequency domain estimation of the fundamental frequency seemsto be
predominant today, and an implementation of afrequency domain fundamental frequency
estimator is presented here. The general ideais to estimate the fundamental by the
difference in frequency of the neighboring harmonic components. This standard method
for the estimation of fundamental frequency isimproved in thiswork by matching a

perfect stretched harmonic curve to the estimated quasi-harmonic partial frequencies.

This chapter starts with the estimation of the FFT candidates in section 3.2, the
fundamental frequency estimation is presented in section 3.3, and the quasi-harmonic
frequencies are estimated in 3.4, along with non-harmonic components, which are here
called the spurious frequencies. The pitch tracker is presented in section 3.5, and the

chapter ends with a conclusion.

3.2. FFT candidates

The FFT candidates are found by performing an FFT on a strong segment of the sound,
and estimating the frequencies and amplitudes of the peaks of the absolute of the FFT.
Weak peaks close to stronger peaks are removed by aline that imitates the masking of the
auditory system. Although the sounds are supposed to be pseudo-harmonic, no such
hypothesisis used in the FFT analysis. All candidates that are strong enough are saved.
The frequency and amplitude estimation isimproved by interpolating between frequency
bins. More details on the FFT can be found in, for instance, [Steiglitz 1996] and [Press et
al. 1997].
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3.2.1. Frequency and Amplitude Estimation

The estimation of strong partials is done through the Fast Fourier Transform (FFT) on a
strong segment of the sound. The strong segment is defined as being the segment after the
strongest segment in the sound. Thisis usually the segment after the attack segment. This

segment is used, since there is often too much transient behavior in the attack segment.
The FFT isafast implementation of the discrete Fourier transform,

N-1
%, = dse™ ™ (3D

k=0

where s, isthe discrete time signal and n is the frequency bin index, from which the

frequency can be calculated,

f, =sn/N (3.2

s isthe samplerate. The inverse discrete Fourier Transform is defined as,

1 No—l )
Sn - a yke-IZka/ N (33)
N =0

In general, the time signal is multiplied by awindow to avoid discontinuity effects,

Y« = FFT(s,>,) (3.4)

In thiswork the window used is a hamming window [Harris 1978],

h, = 0.54 - 0.46cos(Ztk /(N - 1)) (3.5)
When the frequency domain signal y, is available, the frequencies and amplitudes can
be found simply by looking for maximums of the absolute value of y, . When a maximum

isfoundin iy then,

f =si,/N (3.6)

and,

a = (i, 37)
As can be seen, the frequency resolution is dependent on the blocksize N. A better

frequency resolution can be obtained by interpolation if a gauss window is used,

k- D)2
—_

h,=e 2 (38)
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Then it can be shown that, if we know the maximum in the FFT domain, iy the

maximum is displaced by,

0.5* (lody, (i, - 1)) - log(ly, i, + 1))

- 3.9
> loa (i, - D) - 2.0* 1ol ()] +loa(ly. G, + 1)) 59
and the new frequencies and amplitudes are,
_ 5(i, +cor)
f=30 (3.10)

3, = exp(log(ly, (i,)) - 0.25%or *(log(|y, (i, - 1)) - log(ly,(i, +1))  (3.11)
Thisinterpolation is helpful, even if agauss window is not used. Initial comparisons
indicate that the frequency estimation isimproved by the same order of magnitude as using

two FFTs one sample apart and cal culating the frequency from the phase differences.
Other methods of decreasing the errors of the frequency estimation can be found in [Quinn
1994].

When amaximum is found, the frequency domain vector vy, is set to zero below i
while the derivative is positive, and above i, when the derivative is negative. The search

for maximums continues until more than M partials have been found, or until the partial is

weaker than aratio times the strongest partial.

3.2.2. Masking

In order not to get too many unusable FFT peak search

-
2,

partials, here called spurious partials, which

N
o
>

are usually found close to the quasi-harmonic

]
partials, y, is superposed by awindow w,, MM"’ |

[N
o
c

-
S}

which is 0.9 multiplied with the maximum of

amplitude

=
S}
w

y, over 2 *w, samples. This putsaline
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dlightly below the maximum of the partials,

._.
DD—\
:

but above the noise and most of the spurious
partlals The FFT-based peak searchis L0 S oob T adod o~ Tsco0” "eooo T 700 T o0

frequency (Hz)
illustrated in figure 3.1 for a piano sound. The Figure 3.1. FFT-based peak search for a piano
o o sound. Found peaksare marked witha‘+'. The
x-axisisthe frequency and the y-axisisthe  solid line below the peaksisthe masking line.

log of the amplitude.
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The plus signs denote the amplitudes and frequencies of the partials found. The spurious
freguencies and noise are generally placed below the masking line. The line imitates the
auditory masking of weak partials [Small 1959], [Schroeder et al. 1979]; however, the goal
is not to estimate only perceived partials, but to eliminate noise, since weak partials can

become perceptible by some subsequent processing of the data.

Unfortunately, the masking sometimes

10% %

leaves some undesired spurious partialsin the *
anaysis. o

The FFT candidates for a piano sound can xx

[
o
°
T
*
*

be seenin figure 3.2. The x-axisisthe

Amplitude

frequency, and the y-axis is the amplitude. X .

The strong, harmonic partials of thesound are '/ o

easy to see above the noise floor. The weak e Fyy
par“ a|s bel ow grong par-“ a|S are genera”y 107 1000 2000 3000 4000 sc)fégqug%ég ( gg;oo 8000 9000 10000 11000
spurious partials, or sometimes very weak Figure 3.2. FFT candidatesfor the piano sound.

harmonic partialsin between stronger partials.

The high frequency partials seem to be close to the noise floor, although many of them

have the correct frequency.

The next sections indicate the method developed in this work to find the fundamental
frequency, the harmonic components, and other non-harmonic partials that are strong

enough to be perceived (spurious partias).

3.3. Fundamental frequency estimation

Theinitial frequency candidates are here used to estimate the fundamental frequency.
The process is as follows. First, only the frequencies whose amplitude is above a certain
threshold are used. Next, the frequency differences are calculated, using the first frequency
asthefirst difference. Then, all frequency differences that lie outside a percentage of the
mean frequency are removed. The percentage is lowered and the processis repeated until
the percentage is low enough. The mean of the filtered frequencies is the first estimation of
the fundamental frequency. This estimation is used to add missing harmonic frequencies
and remove non-harmonic frequencies from the FFT frequency candidates. The resulting

frequencies are now the overtones of a quasi-harmonic sound. By quasi-harmonic is meant
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that the frequencies can be either stretched, or compressed, so that the frequency of the

harmonic partial kis alittle higher or lower than k times the fundamental.

3.3.1. Frequency Difference Fundamental Estimation

Thefirst step of the processis to calculate the frequency differences of the FFT

frequency candidates,

fd=f-01f,- f,f,- f,... (3.12)
Then, the mean of the frequency difference is calculated, which is the first fundamental

frequency estimation,

fund = mean( fd) (3.13)
Now frequency differences whose values differ by athreshold from the mean of the
frequency differences are eliminated. This processis repeated with smaller and smaller

threshold, until no more frequencies are eliminated.

It is necessary to take into account the inharmonicity of the sound, since the frequency
difference of higher partials of, for instance, the piano can be very different from the

fundamental .
Thisis done using the difference of the frequency difference, which is calculated for
adjoining harmonic partials as,
fdd, = fd, - fd, , (3.14)
and removing the local average of the difference of the frequency difference from the

frequency differences,

L
fd, = fd, - %é fdd, | (3.15)
=1

L isin the order of afew overtones.

The frequency differences for the frequencies whose amplitude is above a certain
threshold are shown in figure 3.3 (top). The frequencies which lies within a threshold of
the mean of the difference of the frequencies are shown in figure 3.3 (bottom). Remember

that they are corrected for inharmonicity.
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The mean of the filtered frequenciesin
figure 3.3 (bottom) is the first estimation of

the fundamental frequency. The estimation is

265.5 Hz.

The frequencies that are removed are often

at double the fundamental frequency if a
harmonic partial is missing. These can be

divided by two to obtain a better fundamental

frequency estimation.
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Figure 3.3. Frequency differencesfor the piano

before (top) and after (bottom) filtering.

The fundamental frequency estimation at this point is,

fund = mean(fd )

(3.16)

where fd’ is the frequency differences vector of length N after elimination of linear

inharmonicity deviations.

3.3.2. Missing Frequencies

With the fundamental frequency estimation, fund, it is possible to recognize the

frequency candidates that are indeed harmonic components, and eliminate the non-

harmonic components.

It is also necessary to add missing

harmonic components in order to perform the
curve fitting on the stretched harmonic curve.

Thisis done by estimating alocal fundamental

frequency for each overtone as shownin
equation (3.12), and adding fd, to the
preceding harmonic partial if no harmonic

component is found. To reduce the error, the

local fundamental is averaged over several

partials.
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Figure 3.4. Frequency differences after cleaning

frequencies. ‘' +' indicates original frequencies, ‘*’

are chosen from several candidates, and ‘0’ are new

inserted frequencies.
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In figure 3.4 the result of the cleaning of the frequencies of a piano sound is shown. The
frequency differences, i.e. the frequencies of the partials minus the frequencies of the

preceding partials, are plotted divided by the partial index.

The inharmonicity, that is, the stretched frequency of the upper partials, see section
3.3.3, isclear to see. Only few frequencies are inserted, these are denoted by a‘o’. The
other partial frequencies have been copied from the analyzed frequencies, denoted with ‘ +’

signs, or chosen from several candidates, denoted with **’.

The fundamental frequency can here be estimated by eye to about 262 Hz.

3.3.3. Fit Stretched Har monic Curve.

When the fundamental frequency is found, the harmonic overtones of many musical
instruments can be analyzed, ssimply by looking at multiples of the fundamental frequency.
Unfortunately, not all musical instruments have pure harmonic partial frequencies. For
instance, the piano, due to the stiffness of the strings, has sharp upper partial frequencies,
I.e. the frequencies are higher than the fundamental multiplied by the harmonic partial
index. According to [Fletcher 1964], “the 40" partial can be two full notes sharp”. The
frequencies that are not exactly harmonic are said to be quasi-harmonic. The formulafor

the quasi-harmonic frequencies of a stiff piano string is,

f = ki J1+pK (3.17)

where f, isthe fundamental frequency and § is the inharmonicity.

Thevaluesof f;and f arefound using a 300

nonlinear least-squares curve fit [Moré 1977]. 2t

To minimize the error in the important low 2001

N

®

a
T

partials, the curvefit is done on the

N

®

=]
T

frequencies divided by the partial index. The

N

N
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T

frequency/partial index

frequencies divided by the partial index for

270

the piano sound are plotted in figure 3.5 with

265

the estimated frequencies given by the c

260

formula (3.17). 0 5 O 3 2

Figure 3.5. Frequency divided by the partial
index with estimated stretched curvefor the piano
sound.
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The frequenciesin figure 3.5 are not the same as the frequencies in figure 3.4, which are

the difference between adjoining partials.

The inharmonicity of the piano is clearly seenin figure 3.5. The fundamental frequency,
which is the frequency of the stretched harmonic curve at index 1, is calculated to be 261.5
Hz. The inharmonicity index f is 3.6*10™.

With the stretched harmonic curve fit, the estimation of the fundamental frequency is
terminated.

3.4. Initial Frequencies

In this paragraph, the strong partials of a sound are found. These are agood initial
estimation of the frequency content of a sound, and they can be used to further analyze the
sound. One obvious way of finding these frequenciesis by using the FFT candidates as
described in section 3.2. These are often missing some harmonic partials, and introduce too
many spurious frequencies or false partials. For these reasons, the frequencies of the
stretched curve found in paragraph 3.3.3 are used instead. The sounds are supposed to be
quasi-harmonics, but there can aso be strong non-harmonic partials, which are here called

spurious frequencies. These are therefore also added to the initial frequencies.

3.4.1. Harmonic Frequencies

The harmonic frequencies are found from the FFT candidates as explained in section
3.3 by first estimating the fundamental frequency, and then removing spurious frequencies,
adding missing harmonic components, and finally fitting a stretched harmonic curveto

these frequencies, which ensures that large frequency estimation errors are eliminated.

3.4.2. Spurious Partials

The stretched harmonic partials found in the preceding paragraph are often enough to
define a sound. Sometimes, however, different behavior introduces non-harmonic partials
[Conklin 1997]. These are here called spurious partials, and they can sometimes be
stronger than the neighboring harmonic frequencies. It is therefore necessary to introduce
them in the initial frequencies. The spurious frequencies can also participate in the

identification of the instrument, although they are rarely desired in amusical situation.

The spurious frequencies are found by comparing the original FFT candidates from

section 3.2 with the stretched inharmonic frequencies found in paragraph 3.3.3. A spurious
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frequency isintroduced, if it is sufficiently far away from the neighboring frequencies and
if it isrelatively strong compared with the neighboring frequencies and compared to the
strongest partial.

The combination of the quasi-harmonic frequencies and the spurious frequencies are

used asinitial frequenciesin the linear time/ frequency analysisin the next chapter.

3.4.3. Spectrogram Analysis

The spectrogram is a good starting point for the estimation of the frequency content of a
sound. Unfortunately, the spectrogram is as noisy as the FFT used in the creation of the
spectrogram. However, image-processing techniques can be useful in the analysis of
spectrograms. The estimation of the initial moving frequency could be improved by the
image analysis methods used in the scale-space research [Lindeberg 1996]. Notably,
Joachim Weichert has introduced an anisotropic diffusion filtering in [Weickert 1999] and
also performed some initial experiments on the spectrogram of musical soundsin
[Weickert 1998]. Thistopic has not been further pursued here, but it seems promising, if
initial frequencies are necessary, asis the case for the LTF additive analysisin the next

chapter.

3.5. Pitch Tracker

The pitch is one of the most important timbre attributes, and it is also the most common
expression control in musical instruments. Therefore, a pitch tracker is necessary if the
evolution of all the timbre attributes is to be followed. The pitch track is done in three
steps, first the fundamental frequency of each short segment is found using the methods
presented in section 3.3. Then the instantaneous frequency [Boashash 1992] is found by
removing al but the fundamental frequency from the FFT of the segment, and doing an
inverse FFT on the result. Finally, the frequency evolution is segmented. Thiswork isonly
afeasibility analysis, and it isnot used in the rest of thisthesis. More proved methods for
pitch tracking can be found in, for instance, [Medan et al. 1991] for the speech signal, and
in[Quirés et al. 1994] and [Dorkan et al. 1994] for musical signals.

Thisfeasibility study is presented using two short melodies, aflute melody, and aviola
melody, the spectrogram of which are shown in figure 3.6 and figure 3.7. Notice the
absence of the fundamental in the two first notes of the viola melody in the spectrogram
plot in figure 3.7.
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Figure 3.6. Spectrogram of the flute melody. Figure 3.7. Spectrogram of viola melody.

3.5.1. Moving Fundamental Frequency

The moving fundamental frequency is found by the method used in section 3.3, using a
fairly short blocksize. This fundamental frequency estimation, while relatively exact, is
unfortunately rather slow. The fundamental frequency estimation of a short flute extract is

shown in figure 3.8 and for a short sound of four notes of aviolais shown in figure 3.9.
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Figure 3.8. Moving fundamental frequency for Figure 3.9. Moving fundamental frequency for
the flute melody. the viola melody.

The estimation could be significantly improved, if the blocks were to be aligned at the

pitch change times, or, if an overlap analysis were performed.

3.5.2. Instantaneous Frequency

The moving fundamental frequency estimation found in paragraph 3.5.1 sometimes
doesn’t have a good enough time resolution. Therefore, a better estimation is found by
removing all but the fundamental of the FFT, and doing an inverse FFT on the result,
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Chapter 3. Fundamental Frequency Estimation

y = FFT }(FFT(snd) *,,,) (3.18)
where hy,,, isawindow that covers the fundamental only in the frequency domain.

The moving frequency is then the derivative of the arc tangent of the result of the

inverse FFT,

arctan(—=-

o ate A9)

(3.19)

To reduce the amount of data, the mean of each period of fr istaken. The resulting
freguency is shown in figure 3.10 and figure 3.11. Notice how badly this method works for
the viola sound. Thisis explained by the fact that the fundamental frequency is almost non-

existent for the first two notes.
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Figure 3.10. Instantaneous frequency of the flute Figure 3.11. Instantaneous frequency of the viola
melody. melody.

3.5.3. Curve Segmentation

The instantaneous frequencies found in paragraph 3.5.2 are error-prone and not easily
manipulated. The frequencies are therefore simplified into a curve, where short deviations

are removed, and static parts are simplified into line segments.

The curveisfound by first creating a coarser frequency curve by taking the mean over
256 samples. A new note is now found by moving the time ahead, and checking the
frequency difference. When a big enough difference is found, and the time gap is big
enough, anew noteisfound. The timeis now reversed in the fine time resolution

frequency curve until the old note is found. Thisisthe start time for the new note.

The resulting frequency curves for the flute and viola melodies are shown in figure 3.12

and figure 3.13.
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Chapter 3. Fundamental Frequency Estimation

This method is very helpful in removing some of the noise on the instantaneous
freguencies, without losing the good time resolution. No comparison has been made with
other pitch tracking algorithms. Pitch tracking is avery difficult area, and it is believed that
the method presented here, at this stage, is not stable enough. More work remains before

an unsupervised use of the method can be undertaken.

The pitch track has been used on the analysis of vibrato sounds with some success.
However, the pitch track isless stable than the fundamental frequency estimation in
section 3.3, and in an automatic analysis situation, which is the case in thiswork where
hundreds of sounds are analyzed, the pitch track is not yet stable enough. Since most
sounds have static frequencies, it has not been a major concern and the pitch tracker has
not been used in the rest of thiswork.
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Figure 3.12. Instantaneous frequency and Figure 3.13. I nstantaneous frequency and
extracted curve for the flute melody. extracted curvefor the viola melody.

3.6. Conclusions

The estimation of fundamental frequency, initial frequencies, and moving pitch was
presented. Thiswork hasimproved the classical fundamental frequency estimation by a
curve fit with a stretched harmonic curve, which fits the frequency of the partials of stiff
strings. This permits the estimation of the pitch of quasi-harmonic sounds, such as the

piano tones.

Theinitial frequencies of a sound are here defined to be the harmonic overtones, with

additional strong amplitude spurious partials.
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Chapter 3. Fundamental Frequency Estimation

The pitch track is performed using frequency domain filtering and inverse FFT, but the
result is not yet satisfactory. Better results could potentially be obtained if image-

processing techniques were used on spectrograms.

In conclusion, this chapter presents a good fundamental estimation, afair initial
frequency estimation, and a promising pitch tracking method. The initial frequencies are

used in the linear time frequency analysisin the next chapter.
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Chapter 4. Analysis/Synthesis

Chapter Four

4. Analysig/Synthesis

In this chapter two methods for analyzing musical sounds are compared. The additive
model is used, where the sound is modeled as a sum of sinusoidals, also called partials,
with time-varying amplitude and frequency. The sounds can be resynthesized with no loss
of quality, if the analysisis good, by adding the sinusoidals together.

Two analysis methods are compared, the classical FFT-based method, and a new
method, based on a linear time-frequency representation [Guillemain et al. 1996]. This
method, which is here called the LTF analysis, is used in the following chapters due to the
better time resolution of the analysis, which means that faster transients, such as the attack
of the sound of the piano, can be analyzed more accurately. The LTF analysisisimproved
in thiswork by the estimation of initial frequenciesin the preceding chapter, which permit

a stable, unsupervised analysis of musical sounds.
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Chapter 4. Analysis/Synthesis

4.1. Introduction

The analysis/synthesis of sounds of musical instrumentsis generally accomplished by
using amodel of a sum of sinusoidals. Here two techniques for the analysis of musical
sounds are compared, the FFT-based analysis[McAuley et al. 1986], and the linear
time/frequency analysis [Guillemain et al. 1996].

Already in the last century, musical instrument tones were divided into their Fourier
series [Rayleigh 1896]. Early techniques for the time-varying analysis of the additive
parameters are presented by [Matthews et al. 1961] and [Freedman 1967]. [Robinson
1982] gives a historical perspective of spectrum estimation methods. Other more recent
techniques for the analysis of musical signals are the proven heterodyne filtering [Grey et
al. 1977], the wavelet analysis [Kronland-Martinet 1988], the atomic decomposition [Chen
et al. 1996], [Gribonval et al. 1996] and the modal distribution analysis [Pielemeier et al.
1996]. [Ding et al. 1997] has presented an interesting analysis by synthesis method.

Synthesis of the additive parameters has been donein real time for many years [Jensen
1989].

The analysis of musical signalsis donein the time/frequency domain. There are two
resolutions to the analysis, the time resolution, where aresolution of afew mSis
necessary, and the frequency resolution, where an accuracy of afew centsis necessary
[Pielemeier et al. 1996]. There are 100 cents between each semitone. Generally, not so
much the frequency resolution is a problem, but instead the separation of partialsin the
frequency domain. The analysisis often a compromise between a good separation, and a
good time-resolution. The FFT-based analysis generally optimizes the time-resolution by a
two-pass analysis, one with a good time-resolution, and one with a good frequency-
resolution. Nonetheless, it has a poor time-resolution, and severa aternatives with better

time resolution have been introduced to replace the FFT-based analysis.

This chapter starts with an implementation of the FFT-based analysisin section 4.2 and
the linear time-frequency analysisis presented in its simplest form in section 4.3. A
comparison is made between the two methods in section 4.4, the resynthesisis discussed in

section 4.5, and finally a conclusion is proposed.
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4.2. Fast Fourier Transform Based Additive Analysis

Several FFT-based [Allen 1977] sinusoidal analysis systems for sounds have been
presented in the past [McAuley et al. 1986], sometimes with the addition of a stochastic
component model of additive noise [Serraet al. 1990], [Maller 1996].

The FFT-based analysisis generally done on a dliding time-domain window. The FFT
peaks are found by analyzing the FFT of awindowed time signal, as explained in the
fundamental frequency estimation in Chapter 3. The peaks for a segment are then attached
to the preceding segments’ partial tracks.

4.2.1. Sliding Window Analysis

The model of the sound to analyze is a sum of sinusoidals with varying frequency and

amplitude,

S(t) = 8 3, (1SN G, (1) + ) (4.1)

The FFT is done on overlapping blocks of the signal s(t), the blocksize is B and the
block isk. The stepsize is B,, so the peak searching for the block k is done on the samples
of sfrom k B, to k B;+B. The FFT is done using a hamming window. The output of the FFT

isthen,

Y, = FFT(S(kB..kB,+ B- 1) xh,) (4.2
Y, isthen used to look for peaks in the frequency domain as explained in Chapter 3. The
window h,, is assumed to be a hamming window with normalized amplitude, so that the
sum of all elementsin h,, equals one [McAuley et al. 1986]. The output amplitudes and

frequencies from block k are f and a*. Each block can have a variable number of peaks.

4.2.2. Better Timing Resolution

The frequencies found above are used to perform a discrete fourier transform (DTF) on
the exact frequency, using awindow size B that is four times the period of the

fundamental.

%) = & Ln+kB)E" 4, (n) (43)

This gives adlightly better amplitude value and the best timing-resolution with an FFT-
based method obtained in this work. Shorter windows do not separate partials well enough.
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[McAuley et al. 1986] used a hamming window with a size of 2.5 times the period, but it
has not been possible to recreate their results here. [Serra et al. 1990] uses a Kaiser
window of 4 period length and [Ando et al. 1993] uses a window size of four periods with

a hanning window.

[Harris 1978] discussed the use of windows in harmonic analysis using the discrete

Fourier transform.

4.2.3. Partial Track

In order to get auseful series of partiasit is supposed that the frequencies and
amplitudes can be connected in a series of connected lines, called tracks. The frequencies
of these tracks can be harmonic, but they don’t have to be, and there are often some shorter
spurious partials in between the long strong (harmonic) tracks. Several methods for
tracking partials have been developed, local optimized techniques, [McAuley et al. 1986],
[Serraet al. 1990], or globally optimized techniques using hidden markov modeling
[Depalleet al. 1993].

Here, asimple local optimized algorithm is used. When the frequencies and the
amplitudes are owly varying, and the sounds are harmonic, the task of connecting the

pointsisfairly easy, but noise and natural variations often disturb the partials.

Supposing the partials up to time segment k have been connected. The k block has N
partials and the k+1 block has M partials. Generally M 1 N.

The partials connect if the difference in frequency, and perhaps also the differencein
amplitude, issmall. All the close frequencies are analyzed and a matching value is

calculated for each one of them,

metch(nm) =k faf - afl+ k|2, - 1] (44)
where partial n from block k+1 is connected to the partial from block k with the best
(lowest) match. The weights k, and k, are chosen experimentally. In thiswork, asis
generally the case, k, isset to one, and k, isset to zero. A more stable tracking is obtained

If the slopes of the frequency and amplitude are used. Notably, partial crossing is then
possible [Depalle et al. 1993]. It is also worth noting that the tracking performs much
better when the frequency and amplitude estimations are good. A notable improvement

was observed when the spectral interpolation was used.
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A track diesif no match is made for several blocks, and atrack isborn if thereisno

match possible for a partial.

4.2.4. FFT Conclusions.

The results of the FFT-based analysis can be seen in figure 4.1 to figure 4.4.
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Although the result is generally satisfactory, it is clear that some phenomena are not
well analyzed with this method. The attack of the piano sound seems blurred, and the noise
in the flute has disappeared. The trumpet has a good resynthesis with the FFT-based
additive analysis, and the viola al so seems acceptable. The partial tracking still has some
problems with low amplitude partials that come and go, especialy in the flute sound.

These are easily removed, and not shown in the FFT plots.
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The main problem seemsto be the lack of realism and presence in the resynthesized

sounds. It seems related to the lack of fast transients and noise in the resynthesized sounds.

Visually, the viola seemsto have alot of transient behavior in the attack. Most sounds
have afalse partial in the high energy, low frequency region. The trumpet looks very nice,
which also corresponds to the good quality of the resynthesis. The piano also looks very
good, but the resynthesisis dightly dull and blurred.

The problems are caused by the limited time resolution in the FFT analysis, which is
caused by the time/frequency limitation. This limitation states that the frequency support of
afrequency domain window isinversely proportional to the time support of theinverse

transform of the same window.

Therefore, to get afrequency domain

window small enough, so that it does not

amplitude

touch the adjoining partials, alargetime

domain window is necessary, as can be seen

1
time

in figure 4.5. The top plot shows 3 time

domain windows, and the bottom plot shows 08|

the FFT of the same windows multiplied by a

amplitude

sinusoid. The time domain window should be o2
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small so that it discriminates between two 0 frequency

. Figure4.5. lllustration of thetime/ frequency
close phenomena’ but the frequency domain window discrimination. A small time domain

' and vice ver se.

two close partials. Thisis mutually exclusive.

4.3. Linear Time/Frequency Analysis

Philippe Guillemain [Guillemain 1994] has developed a solution to the time
window/frequency window limitation. Here, the influence of adjoining partialsis

eliminated by putting loose limitations on the frequency domain behavior of afilter.

Infigure 4.6 it is shown that even large frequency domain windows with a short time
support, can be combined to the characteristics wanted. A linear combination of the dotted

windows is used to create the solid line frequency domain filter.
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Limitations are used to create the resulting )

0.8

filter. The limitations are that the filter are one
at the frequency analyzed, and zero 0al

everywhere on all other frequencies.
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Figure 4.6. Principle of the LTF filter
construction. Time domain (top) and frequency
domain (bottom).

4.3.1. Constructing the Filters
The full theory of this analysis method can be found in [Guillemain 1994] and

[Guillemain et al. 1996]. In the following, the zero-order filter is exposed. Zero-order
meaning that the filter is one at the frequency being analyzed, and zero on all other initial
frequencies. In the first order filter, the derivative is zero on all frequencies being analyzed.
This stabilizes the filters, since it ensures that the frequency behavior is slowly varying in

the neighborhood of the analyzed frequency.

The model of the signal s(t) to analyzeisasum of sinusoidals,

s(t) = & a(H)sine,b) (4.5)
The variations of a, (t) are supposed to be much slower than s(t) .

The Gabor transform is performed on the signal,

L, (t,0) = CBHW(t - t)e " dt (4.6)

which can be found in the frequency domain, by the Parseval relation,

L, (t,0) = (0 )W - o) do (4.7)

since the signal is known, the discrete version of (4.7) is further devel oped,

L) =4 W, - )+ W-w, - a)e™) (48)
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L) =8 2 WO, - @) W(-0, - ))oosto,)
. (4.9)
+i8 W0, - @) - W0, - a))sin(o,)

k=1

Since L,(v,a) isknown, the equation (4.9) is further developed at the initial

frequencies,
éN %(W(wk - O‘p)"'VAV(' Wy - Otp))COS(cok‘c) = Re(Lg(r'ap)) (4'10)
2 %(W(mk - a,) - W o, - a,))sin(o,7) = Im(Ly () (4.11)

=~
1l

1

1<p<N. This givestwo linear systems, N equations and N unknown variables, where N

IS the number of partials.

é’)\‘l W, X, ) = L,(v) (4.12)

The elements of thefirst systemis given by,

1 -~ ~
W, = —Z(W((uk - o) *W(- o, - a,)) (4.13)
and the elements of the second systemis,

W, = —;(W(mk o) - W, - a,)) (4.14)

The signal at frequency k can now be calculated,
X, @)=V, Re(L, (1))+ W, Im(L, (v)) (4.15)

Remember that the signal is supposed to be a sum of sinusoidals, so

X, @) =a, (@)e"" (4.16)

The output vector k is thus a complex partial with amplitude a,. The zero order anaysis
assumes that all time derivatives of a, are zero. As aresult, the analysis performs better
when a, is a smooth function.

In practice, the frequencies and the amplitudes are often extracted using a time domain
or afrequency domain filter. Therefore (4.15) is developed. The resulting filters then
become [Guillemain et al. 1996],
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_'. L W(o - ap)+W(w +a,) +u
|

N P
XO=@i = 2 ys(w) € do (4.17)
L, W(o - ap)- W +a,)
TP 2 b
X, (1) = o'gNl F (@ )s()e"" do (4.18)

F(w) isafilter banc of dimension N, with the following properties.
1) [Fer,)| =8 [F(-0p)|=0, p,&[1,N
2) The time support of F, isequal to the time support of W(t)
N\ H ~
3) E(t) convoluted with § A sin(,t+F,) is A€“** ) kT [LN]
k=1
This signifies that the output of filter F, iszero for al initial frequencies except f, and
that the time-support of F, is equal to the time support of the window W(t). Since no

hypothesis has been made on the window, the frequency domain window W(t) can spread

over several partials without ruining the good properties of F,.

A gauss window is used in thiswork. The standard deviation of W(t) isfound by setting
the value of W(t) to a constant value at the closest neighboring initial frequency.

The time domain filter isused in thiswork, and it is,

F(t) = 5 W(t) X'V, , cos(or t) +i¥W, s sin(at)) (4.19)

)

The frequency domain filter characteristics
can be seen in figure 4.7 along with the log of
the absolute spectrum of a flute sound. This
filter has the characteristics wanted, itis 1 at
the frequency analyzed and O for all other

Signal and filter abs(FFT)

frequencies. The filters have rebounds

between the initial frequencies, but this does

not generally disturb the analysis. This zero- AA/AA\ /A\A -\
g\ N\ \ G\ S\ S\

Order fllter dOES nOt guarantee S,nooth 00 500 1000 1500 ZOOIQrequzesnocg/ (H%OOO 35 0 40 0 4500 OO
o . Figure4.7. Zero-order filtersand signal FFT for
response at theinitial frequencies. aflute sound.
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The filters can be improved by setting the frequency derivatives of the filters to zero at
theinitial frequencies. The additional conditions are used to model amplitudes with

nonzero derivatives.

The filters used in the rest of thiswork are the filters of order 1. See [Guillemain 1994]
and [Guillemain et al. 1996] for details on higher order analysis.

Before the signal is analyzed with the filter, theinitial frequencies, that is the
frequencies being analyzed, must be determined.

4.3.2. Initial Frequencies

In order to perform the analysis, it is necessary to know the frequencies that are
interesting in the sound. They are found by the initial frequency estimation presented in the
fundamental frequency estimation in Chapter 3. The initial frequencies now consist of all

the quasi-harmonic frequencies and strong non-harmonic frequencies.

The estimated frequencies are used in the time-frequency analysis, since they are
believed to be better than the FFT-analyzed frequencies which are sometimes misjudged,

and which are often missing some harmonic components.

With the introduction of initial frequencies, the filters can be constructed, as described
in paragraph 4.3.1. The frequencies and amplitudes of the partials are extracted in
paragraph 4.3.4, but first a method for the elimination of rebounds of thefiltersis
presented.

4.3.3. Rebounds
Although the filters used in the analysis

have the desired properties, notably, the

frequency responseis one at the frequency

T
o
©

being analyzed, and zero at all other

o
=)

frequencies, they sometimes introduce

Signal and filter abs(FFT)

frequency domain rebounds, which, if they are

o
~

positioned in strong noise, can ruin the

I
N

analysis. In figure 4.8 the rebounds can clearly

be i n the noi W |OW-f ra:luer]cy rar]ge Of 0 500 1000 1500 ZUOFOrequZeSnUC(; (Hg)OOO 3500 4000 4500 5000

the piano sound. Figure 4.8. Rebounds of filter.
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Since the noise is much stronger than the weak upper partials, it can sometimes disturb
the analysis. The frequencies of some of the partials of the piano can be misudged due to
the hammer noise present in the rebound frequency area. By misjudged is meant that the
analyzed frequency is no longer close to the initial frequency. Although this may be
desirable in some situations, especialy in adirect resynthesis, where the mechanical noise
is restituted with the harmonic components, it makes some simple operations on the partial

frequency impossible, such as the estimation of the mean frequency.

Therefore, amethod of eliminating these rebounds is introduced. It eliminates the
rebounds in strong noise so the estimation of the partial amplitude and frequency is not

influenced by the noise component.

In order to minimize the disturbance of the elimination, it is done only when necessary,
i.e. when the rebound amplitude is much larger than the partial amplitude. The filter and
the signal are transformed into the frequency domain by FFT, and multiplied. To have the

same number of points, the maximums of every N points of the signal FFT are used,

sf = FFT(filter)xFFT(signal) (4.20)

The maximum of |sf| outside the partial
being analyzed is now compared with the 2 | | | ) \
maximum of |sf| in the frequency being l | | | /
analyzed. If it isrelative strong, thefilter at 3020 ? 7 7 N ?
the strong frequency is multiplied with an =l J\ u
inverted hamming the size of the fundamental. % 10 20 % 20 50
sf is calculated again and the processis i | | | |
repeated until there are no more strong Z | | | // / |

o] 10 20 30 40 50

amplitudes outside the frequency being

Figure 4.9. Detail of the FFT of Filter (top),
analyzed. signal (middle) and result of filtering for the fifth
partial of the piano sound. x axisisfrequency bins,
and y-axisisamplitude. Original (dotted) and after

seenin figure 4.9 (top). The FFT of thesignal  &imination of rebounds (solid).
isshown in figure 4.9 (middle). It is clear that
the fifth partial is very weak.

The original and manipulated filters can be

The magnitude of the fifth partial analyzed with the original filter, and with the
manipul ated filter (dotted), can be seen in figure 4.9 (bottom). The influence of the strong
fourth partial has been eliminated.

43



Chapter 4. Analysis/Synthesis

Thefirst 5 partial frequencies of a piano sound, as analyzed by the filter without
rebound elimination can be seen in figure 4.10 and the same 5 partial frequencies as
analyzed by the filter with rebound elimination can be seen in figure 4.11.

The elimination of rebounds has clearly succeeded. The dip in the middle of the first
half of the fifth partial has disappeared, and there seemsto be less noise in the silent
second half.

The elimination of rebounds should not be done in an analysis/synthesis situation, but
only when other features are to be extracted from the partials, such as the mean frequency.

In such a case, the elimination of the rebounds stabilizes the feature extraction.
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4.3.4. Frequency and Amplitude Extraction

Thefilters from paragraph 4.3.1 can now be constructed with the initial frequencies
found in paragraph 4.3.2. The output of filter kis,

X, (t) =s* R = (p(r)R (t - T)dv (4.21)
and the corresponding frequency and amplitude are

~

_s d& AX()0
f () = o ot garctan( AX.(0) )ra (4.22)

8, (1) =[X,(1) (4.23)
The phase must be unwrapped before the frequency difference is calculated.
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4.3.5. Data Reduction

The resulting partial frequencies and amplitudes can be obtained for each sample, but
this resolution introduces too much data (more than the sampled sound), and a data-
reduction scheme is necessary. Two approaches have been tested, piecewise linear
approximation [Bernstein et al. 1976], [Horner et al. 1996] and averaging over one period
[Grey et al. 1977]. Although piecewise linear approximation potentially has a better data
reduction, the method seems to introduce artifacts in the sound when modeling noise in the
additive parameters, and the smpler averaging over one period was chosen. This data
reduction method is also justified by the time resolution of thisanalysis, as shownin
section 4.4. The period averaging, which guarantees synchronous partials, also simplifies

subsequent operations on the additive parameters [Wessel 1997].

4.4. Comparison of FFT and LTF Analysis

The LTF analysis seems to render a more faithful reproduction of the sounds. Thisis
believed to be due to the better time-resolution of this analysis method. In order to
compare the time resolution of the two analysis methods, afew test signals have been
created and analyzed with the two methods. The calculated time-resolution and mean

square of the error results are then compared.

4.4.1. Test Signals

Thetest signals created are 4 one-second sounds with 8 harmonic partials. All partials
have the same amplitude slope, first 1/8-second silence, then alinear slope from maximum
amplitude to 1/3 of maximum amplitude for 3/4 seconds, and then 1/8-second silence. The
sounds have fundamental frequencies 30 Hz, 100 Hz, 300 Hz and 1000 Hz. For an
example of the test signal, seefigure 2.1.

4.4.2. Analysis
The test sounds are first analyzed using the FFT and the linear time/frequency (LTF)

analysis. No smoothing has been done on the LTF analyzed parameters. The resulting
spurious partials are removed. The rise time and the fall time of each partial, defined as the
time between 10 % and 90 % of the amplitude, are calculated. Furthermore, the frequency

and amplitude errors are defined as the mean of the square of the error between the origina
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partial and the analyzed partial and normalized by the maximum amplitude and the mean
frequency respectively.

The amplitude and frequency errors are,

--2
ferror — 1 2 mf(\; sustain ~ mean(fsusiajn)g (424)
Nsustaj n € mean( fsustajn) 2
.2
o = ‘/ 5 (o - (AW 2 /1 (4.25)
Nsustain € amax 2
4.4.3. Results

The time resolutions for the attack (top) and the release (bottom) are showed in figure
4.12. The*o' arethe FFT times, and the **’ the LTF times. The errors are shown in figure
4.13 for the amplitude (top) and the frequency (bottom). The plots are made for the mean
of the error of the eight partials.
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Figure4.12. Timeresolution for 4 test signals. Figure 4.13. Amplitude error (top) and
FFT analysisis‘0’ and LTF analysisis‘*’. frequency error (bottom) for the FFT analysis ‘o’

and theLTF analysis‘*’.

The time-resolution for the FFT is about twice the period time, which corresponds well
with the fact that a hamming window of four times the period is used, and the effective
time support is about half the window length. The LTF time resolution is about equal to the

period length, which is about twice as good as the FFT time resolution.

The amplitude and frequency error is generally smaller for the LTF analysis method
than for the FFT-based analysis. The frequency error isrelatively constant over the
frequency range. One exception isthe 1 kHz test signal, where the LTF analysis performs

badly, probably due to overshot of the short filters, and the FFT performs very well,
46



Chapter 4. Analysis/Synthesis

perhaps because the frequencies fall exactly on the frequency bins of the FFT. The LTF

filters are of order 1 and the discontinuity at the slope edges are not well handled by this

method. Thisis not a problem generaly, sincereal life signals generally are smooth

enough.

4.5. Resynthesis

The additive parameters for four sounds analyzed with the LTF method are shown in

figure 4.14 to figure 4.17.
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Visually, the main difference between the LTF parameters and the FFT parametersin
figure 4.1 to figure 4.4 are the noise on the high partias of the flute, and the faster
irregularities in the viola and the trumpet. Furthermore, the LTF analysis does not have any

spurious frequencies, or tracks that are born or die in the middle of the sound. The noise in
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the LTF analysisis present in the additive parameters. The sum of the magnitude of the
analyzing LTF filtersis close to one for all frequencies, which guarantees the

reconstruction of the additive noise.

The sounds of the LTF analysis are definitely better than the sounds from the FFT-
based analysis. The main differences are the additive noise in the flute sound, and the more
distinct attack of the piano. Generally, the LTF method seemsto render a more realistic
resynthesis. The sounds have more presence, and a greater realism, as compared with the
sounds from the FFT-based analysis. Some of the degradationsin the resynthesis can
probably be attributed to the omission of phase information. [McAuley et al. 1986] has
compared the resynthesis with and without phase information. Their conclusions are that
the omission of phase information made the resynthesis different than the original, whereas
the resynthesis with phase information was not. This was more pronounced for low-pitched
voices. They also model noisy speech and found that “the noise took on atonal quality that
was unnatural and annoying”, if the phase information was not used. Phase has not been

included in this work.

Since phase was used in none of the analyzing methods in this chapter, the conclusion is
still that the LTF analysis performs significantly better than the FFT-based analysis.

The linear time-frequency analysis method seems well adapted for musical sounds.
Because of the looser constraints in the frequency domain, it has a better timing resolution
than the FFT. Thistiming resolution obviously better models fast transition, but it aso
permits the analysis of noise, both variations in the partial amplitude (shimmer) and
variations in the partial frequency (jitter) [Richard et al. 1996]. Its good timing resolution
permits a successful analysis of traditionally difficult phenomena, such as the fast attack of

the piano, and the additive noise in the flute.

4.6. Conclusions

In this chapter, two methods for additive analysis of musical sounds are compared. The
conclusion is that a new method, called linear time-frequency analysis (LTF) performs
significantly better than the classical FFT-based analysis. Details were given for both
methods, and this work presents a new method for the restitution of good frequency

analysis of weak partialsfor the LTF analysis.

The analysis methods were compared, both the time resolution and the mean square

amplitude and frequency errors were calculated for several test signals for both methods.
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The LTF analysis has twice as good time resolution, with significantly lower frequency

and amplitude errors.

The quality of the resynthesis of the LTF analysisis very good. Even though the partial
amplitude and frequency are averaged over one period, it is virtually impossible to
distinguish between the original and the resynthesized sound. However, some doubt can
still be expressed as to whether the phase should be included in the additive parameters.
More work remains before this issue has been resolved. It seems clear (cf. Chapter 2) that

the ear is sengitive to differences in phase, at least for low frequencies.

The LTF analysis presented in this chapter is used in the following chapters for the
analysis of musical sounds. The FFT-based method is not used in the rest of thiswork.
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Chapter Five

5. Envelope M odeling

This chapter models the envelope of the partials. The envelope is the evolution over
time of the amplitude of a sound. It is one of the important timbre attributes. A faithful
reproduction of a noiseless sound with no glissando or vibrato can be created using the
individual amplitude envelopes of the additive parameters. Unfortunately, the analyzed
amplitude envel opes often contain too much information to be easily manipulated. A

model of the envelope is therefore necessary.

The envelope model presented hereis relatively simple, having only 4 split-points. The

main characteristics of thismodel is the attack, the sustain or decay, and the release.

Two methods for the extraction of the attack and release times are compared: one
method finds the envel ope times by comparing the amplitude with a percentage of the
maximum of the envelope, and a new method devel oped here finds the envel ope times by
analyzing the derivatives of the amplitude. This method performs significantly better than
the classical percent-based method.
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5.1. Introduction

The modeling of amplitude or other time-
varying parameter in discrete time/value pairs
isasold as electronic music. The ADSR
envelope generator, which was introduced
with the first analog synthesizers, divides the
envelope in four steps, Attack, Decay, Sustain
and Release, seefigure 5.1. The ADSR
approach relies on an exponential envelope,
which corresponds well with the perceptual
quality of the amplitude.
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Figureb5.1. ADSR envelope.

Generally though, the ADSR model is used only on ‘total’ control parameters, such as

amplitude, or filter frequency, and not on individual additive partials.

The additive parameters have traditionally
been modeled in line segments [Bernstein et
al. 1976]. Theideaisthat a continuous curve
can be simplified in a series of line segments
and the error, which is the difference between
the continuous curve and the line segment

curve, isnegligible. Seefigure 5.2 for an

illustration of the line-segment approximation.

The crosses indicate the split points and the
original envelope is shown in adotted line.
The number of line segments is a function of
the maximum error tolerated. There are 8 line

segmentsin figure 5.2.
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Figure5.2. Line segment approximation of
envelope.

The envelope of amusical sound has been the object of many studies. [ Schaeffer 1966]

proposes a classification of attack genres. [Freedman 1967] models the envelope as

cascading exponentias. [Strong et al. 1967] models the envelope in linear segments

multiplied with a smoothed error. [Tellman et al. 1995] models the envelope with an

attack-decay model including other features, such as tremolo.
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Chapter 5. Envelope Modeling

Analysis of the envelope parameters can be used in auditory perception research.
[Gordon 1987] analyses the perceptual attack time of musical tones. [Krimphoff et al.
1994] correlates measured attack times with perceptual input from listening tests.

Physical models of musical instruments show that the decay of aflute tube excited by a
Dirac is an exponential [Ystad et al. 1996]. Thisis also the case for the guitar (and other
string instruments) [Karjalainen et al. 1993].

The envelope model can be seen as a data reduction of the additive parameters. [ Strawn
1980], [Charbonneau 1981] and [Horner et al. 1996] compare different envelope

approximations.

The model introduced in this work combines the intuitive smplicity of the ADSR
model with the flexibility of the additive model. The ideaisto model each partial
amplitude as four time/value pairs, here called start of attack (soa), end of attack (eoa),
start of release (sor) and end of release (eor). Furthermore, the interval between each split
point is modeled by a curve the quality of which (exponential/logarithmic) can be varied
with one parameter. The soa, eoa, sor, eor model corresponds to the physical act of
introducing energy into a system for a certain time. The difference between the start and
the end of attack (attack time) and release (release time) is thus the time it takes the system
to settle for this partial. Thisis the attack-sustain-release type of sound. If instead energy is
introduced only once, such asin the plucked string, and the system is later damped, the
attack-decay-release type of sound is produced. The model presented here models both

types of sounds.

This model does not take into account tremolo or other effects. The sounds are
supposed to be glissando-, vibrato- and tremolo-free, but these effects can be added to the

additive parameters at any time.

This chapter first describes the timing extraction in section 5.2 with two different
methods, and a comparison between the methods. The curve form between the split points
ismodeled in section 5.3. The envelope reconstruction is presented in section 5.4 and the
additive parameters are created from the envelope parametersin section 5.5. Some novel
ideas on the sharpening of the envelope are presented in section 5.6 and the chapter

finishes with a conclusion.
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5.2. Timing Extraction

The envelope times are important timbre attributes. The attack time, for instance, is
recognized as one of the most important timbre attributes [Krumhansl 1989], [McAdams et

al. 1995]. The envelope times found here are the start and end of the attack and release.

Two methods have been tested for the extraction of envelope times. The first, here
dubbed the percent method, consists of finding the maximum of the curve to be modeled,
and then finding the first or last time in the curve where the value is above a constant
percent of the maximum. This method has several drawbacks: it is sensitive to noise, and it
doesn’t really model the release time consistently if the sound is of the decay type. For
these reasons, a new method has been developed, called the slope method. Here the attack
and release are found by searching for the maximum and minimum of the derivative of the
curve. The start and end of the attack and release are found by following the derivative
until it isless (more) than a constant value times the maximum (minimum). To reduce
noise sensitivity, the slope method is performed on a smoothed curve, and the times are

followed through the less and less smoothed curve until the unsmoothed case.

5.2.1. Percent Method

The percent method consists of finding the maximum of the curve and then finding the
times where the amplitude is higher than a certain percent. The percent method has been
used in [Krimphoff et al. 1994] to correlate the perceptive dimension attack with the

measured val ues.

The percents chosen here are 10% for the start of attack (soa) and the end of release

(eor) times, 90% for the end of attack (eoa), and 70% for the start of release (sor).

Given the amplitude of one partial, the soatime isthe first time the amplitude is above
10%, the eoa time is the first time the amplitude is above 90%, the sor isthe last time the

amplitude is above 70% and the eor time is the last time the amplitude is above 10%.

As can be seen in figure 5.4, the amplitude evolution is quite different for the four
instruments being analyzed. The piano has arelatively fast attack, and atypical decay-
release form, the rel ease occurring when the damper is placed on the strings. It is very easy

to see therelease time at circa 500 mS.

Unfortunately, the release times for the piano analyzed with the percent method shown

in figure 5.3 doesn’t correspond very well the times observed in figure 5.4. It is not the
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same for al partials, varying from almost 200 mS for the fundamental to less than 100 mS

for the highest partials in a non-continuous manner.

The times found by the percent method are
plotted in figure 5.3 for the viola, the trumpet,
the piano and the flute. The x-axisisthe
partial index, and the y-axisisthetime. The
different curves are the split-point times, the
lowest being the soa, followed by the eoa, the
sor, and the highest one, the eor. Only quasi-

harmonic partial times are shown.

The durations of the sounds are easy to
see, it isabout 1 second for the viola, 500 mS
for the piano and the trumpet and 3 seconds

for the flute.

Although it is possible to adjust the
percents so as to find the correct sor time for
one partial, it isimpossible to find the good
sor time for all partials with the percent
method, due to the difference in slopein the

decay part.

The trumpet sound has the typical trumpet
evolution, with different attack and release
times for the different partials, the low
partials starting faster and ending later than
the high partials. In fact, there is no constant
soatime as for the flute and the piano, but
more like a continuous slope from circa 10
mS for the fundamental to aimost 50 mS for
the highest partial.
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Figure 5.3. Percent times for the viola, the
trumpet, the piano and the flute.
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Figure5.4. Amplitude curvesfor theviola, the
trumpet, the piano and theflute.

Although the viola, trumpet and flute times are better than the piano times, thereisalot

of noise on the times.

In conclusion, the percent times seem to correspond rather badly with what is observed

in figure 5.4; they are noisy and the piano release times are completely wrong.
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5.2.2. Slope Method

In the slope method, the envelope times are found by analyzing the derivative of the
amplitude of the partial analyzed. The attack is found where the derivative is maximum in
thefirst half of the sound, and the release is found where the derivative is minimum in the
last half of the sound. In theinitial search for times, done on a heavily smoothed envel ope,
the extremes of the attack and the release are found when the derivative is a constant
multiplied by the maximum of the derivative. There are two constants, one for the soa, eoa
and the eor, and one for the sor. The first constant, which is close to zero, model a curve
which either starts or endsin zero, or ends in maximum, just after the attack. Therefore, the
derivative is here zero-positive, whereas the sor curve can sometimes be, asin the piano
release, a slow slope to afast slope, in which case the derivative goes from one negative
value, which indicates sustain, to a larger negative value which indicates release. Therefore

the second constant is larger than the first constant.

The slope method is then; first find the maximum of the derivative, which corresponds
to the middle of the attack, at,,

at, = max(% envelope, yhed ) (5.1)

then follow the derivative both backward and forward in time until it is smaller than a
constant multiplied with the maximum of the amplitude. Thisis the start and end of the
attack. The sameis done for the release, although it is here the minimum value of the

derivative that is searched, and the middle of the release, rt,, that is found,

re, =mi n(% envelope,, e ) (5.2

The principleisillustrated in figure 5.5, where the smoothed envelope (top) and the first
derivative (bottom) are shown for the viola, the piano, the trumpet and the flute. The start
and end of the attack and release are indicated with *+'. It can clearly be seen that the
soa/eoaleor times are much closer to the zero of the derivative, and thus closer to the end
of the slope, whereas the sor time has alarger negative derivative, which permits both the

analysis of attack-decay-release and attack-sustai n-rel ease type of sound.
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Figure5.5. Amplitude and first derivative for the smoothed fundamental of four soundswith
envelope times found with the slope method.

Notably, this envelope analysis method captures the decay release split point of the
piano perfectly. All times seem to be close to the edges of the attack and the release and
the higher constant used in the search for the start of release don’t seem to disturb the non-
decay sounds very much. Of course, the times found in the heavily smoothed case don’t
correspond to the times in the unsmoothed case, and it is thus necessary to ‘follow’ the

times from the smoothed to the unsmoothed envelope.

The smoothing is done by multiplying the FFT of the envelope by the FFT of a
gaussian. The larger the gaussian, the more smoothed the envelope. The method for
following the points from the smoothed to the unsmoothed envel ope has been borrowed

from the scale-space theory used in image processing [Lindeberg 1996].

Scale-space isamodel of the blur of the images seen at different distances. The blur is
modeled by convoluting the images with a gauss with a variable standard deviation. Large
structures can then be found if the standard deviation is large (images seen at a distance)

and details can be found if the standard deviation is small (images seen at close range).

Many methods developed in the scale-space community could potentially find usein
music informatics research, including the edge-detection following used here, but also top-
point classification [Johansen 1994], deblurring and anisotropic filtering. Deblurring is
used in section 5.6 and anisotropic filtering has been tested in Chapter 3.

The method for following the envel ope times from the smoothed to the unsmoothed

case is summarized below.

The local maximums and minimums of the second derivative of the envelope are found,

typically by searching the zero-crossing of the third derivative. This corresponds to the end
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points of a slope, as can be seen in figure 5.6. When the envelope is less smoothed, the

slope is steeper, and the slope points found correspond more to the unsmoothed case. In the

unsmoothed case, there are typically many points, as can be seenin figure 5.7. It isthus

necessary to use enough smoothing steps so the slope points can be followed.

trumpet fundamental envelope
1000 T T T T

500 M
0 ‘ ‘ ‘ ‘ A A ‘

0 100 200 300 400 500 600 700 800 900 1000
T T T T T T T T T

o%ﬁ,

I I I I I I I I I
100 200 300 400 500 600 700 800 900 1000

I I I I
600 700 800 900

I I I I
100 200 300 400

time (ms) 1000

Figure5.6. Envelope of smoothed trumpet
fundamental and first three derivatives with the
slope points.
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Figure5.7. Slope pointsin different smoothing of
the trumpet fundamental. Unsmoothed (top) to very
smoothed (bottom)

Nevertheless, the times are adjusted after each smoothing step so it doesn’'t occur in the

middle of the slope, or in alocal minimum. Furthermore, if the slope point is chosen from

many candidates, the closest to the middle of the attack (or release) is selected. This

ensures that the attack and release get shorter in the unsmoothed case, as they should.

The resulting times for the viola, the
trumpet, the piano and the flute are shown in

figure 5.8.

The main difference between these times
and the times found by the percent method in
figure 5.3 isthe start of release (sor) times
found for the piano. As can be seen, the sor
times now correspond roughly to the times
that can be seen in figure 5.4. Furthermore, al
times seem less noisy, and the behavior of the

timesis clearer now.
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Figure5.8. Slopetimesfor theviola, the
trumpet, the piano and the flute.

For instance, it is clear now that the flute attack times are shorter for the high partias

than for the low partials.
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The envelope time errors caused by noise in the weak upper partials are not present in

figure 5.8.

5.2.3. Percent vs. Slope

Generally, the times from the slope method seem less noisy than the times found with
the percent method.

It is also obvious when studying in detail the split points from the percent and the slope
method, that the slope method finds split points much closer to the edge of the envelope,
whereas the percent method never falls exactly on the edge. Therefore, the curves between
the split points in the slope method become closer to the natural envelope, whereas the
envelope of the percent method sometimes also contains the ends of the adjoining envelope
slopes. The percent method is also sensitive to higher peaks, or noise, in the middle of the
envelope. This can cause the percent method to indicate that both the attack and the release
are positioned close to such a peak. In conclusion, the slope method seems more accurate

and less noise sensitive than the percent method.

5.2.4. Relative Amplitude (per cents)

In the slope analysis, the envel opes have variable amplitudes at the split points as
opposed to the percent method, where the amplitude is a fixed percent of the maximum of
the amplitude of the partial. The variable sor percents permit the modeling of both

sustained or decaying sounds.
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Figure5.9. Attack (top) and release (bottom) percentsfor thefour instruments.

The relative amplitudes, that is, the split point amplitudes divided by the maximum of
the envelope amplitudes are shown in figure 5.9 for the attack (top) and release (bottom).
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The x-axisisthe partial index and the y-axis is the relative amplitude (percents) at the split
points. The two linesin each plot are the start and end percents of each curve (attack or

release).

The trumpet values seem very good, as does the piano attack. The piano release is much
lower, sinceit isthe time of release of the note that has been found where the strings
already have lost some energy in the decay segment. This seemstrue for all instruments to
alesser degree, although it is probably caused by the analysis derivative threshold, which

is higher for the release.

5.3. Curve Form

An estimation of the envelope times is now available, but the curve between the
envelope pointsis not known. The evolution between the envelope points is modeled by a
curve which has parameter defined exponential/logarithmic slope. This curve presumably
models al the curves possible. Obviously, no oscillation or irregularity is modeled, but
these are assumed to be either tremolo or noise. Tremolo is not modeled in this work and

the noise model is presented in Chapter 6.

There are five segments with a curve form for each partial; the start, attack, sustain,

release and end segments.

5.3.1. Curve Modd

No hypothesis is made on the slope of the envelope curve between split points. Instead,

the slope is modeled by a curve whose curve form can be set with one parameter.

The curve used for the modeling of the envelope for one segment is

1
Curve, =v, +(v, - )1 - @- x)")" (5.3
The x value is normalized between zero and one. The value of n is always positive.

Another curve form, which may have a more physical relevance, isthe exponential curve,

e -1
e"-1
Unfortunately, no resynthesis comparisons have been made between the two curves.

eCurve, = v, +(V, - V,) (5.4

The two curves are quite similar, but the equation (5.4) has the problem of being undefined

when n equals zero.
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The exponential curveis probably

preferable from a physical point of view, but

the curve from equation (5.3) has been used in

the rest of this work.

The form of this curve can be seen in figure

5.10. The slope form changes as a function of

n. When nisclose to zero, the curveis

exponential, when nisone, the curveislinear,
and the curve islogarithmic when n is greater

than one. This curve should now befitted to

the envel opes between the envelope times

found.

5.3.2. Language Conventions
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curvegoing from 0to 1.

The curve forms of the envelopes of many sounds are analyzed in the following

chapters, and in order to understand the analysis, the appellations for the different curve

forms must be clear.

The different curve forms possible are shown in figure 5.11 for the attack (top) and

release (bottom).

The attack, or any positive slope, is said to

be logarithmic when n>1 and exponential

when n<1. Therelease, or any negative slope,

is said to be exponential when n>1 and

logarithmic when n<1.

Furthermore, an attack with curve form

value n, is said to be more exponential than

another attack with curve form value n, if

n,<n,, or more logarithmic if n;>n,.

A release with curve form value n, is said

to be more exponential than another release

with curve form value n, if n;>n,, or more

logarithmic if n,<n,.
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Chapter 5. Envelope Modeling

5.3.3. Curve Fitting

The curve form value n is found by minimizing the least-square error,

N

Error = § (Curve - Envelope)’ (5.5)

t=1
The curve-fitting problem is nonlinear, and the Levenberg-Marquardt method is used to

solveit.

Implementation details can be found in fute fundamentl attack
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form values are generally well defined.

The curve form values for the attack, sustain and release for the viola, trumpet, piano
and flute are plotted as a function of the partial index in figure 5.13. The top plots are the
attack curve form values, the middle plots are the values for the sustain, and the bottom

plots are the values for the release.
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Figure 5.13. Curveform valuesfor the slope analysis. Attack (top), sustain (middle) and release
(bottom). Notice the different y scale for the sustain curve form.
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Chapter 5. Envelope Modeling

The curve forms are close to linear, sometimes slightly logarithmic or exponential. It is
interesting to observe the evolution of the curve form of the attack for the viola, the
trumpet and the flute, which changes shape from quite logarithmic to quite exponential .
The reason for thisisnot clear. It doesn’'t look very correlated with the amplitude percents
in figure 5.9, and although it seems rather correlated with the envelope timesin figure 5.8,
it seems that the higher partials have a more exponential behavior than the lower partials.

5.4. Reconstruction of the Envelope

The envel ope can now be recreated by concatenating the envel ope segments with the

analyzed envel ope times, percents and curve forms.

The envel ope consists of five elements, the start segment, attack segment, sustain
segment, release segment and end segment. All envelopes start and end at zero amplitude
by default.

The recreated envelopes of the fundamental of the viola, the trumpet, the piano and the
flute are shown in figure 5.14 for the percent (top) and slope (bottom) based envelope
analysis. The envelope split points are marked with plus signsin the plots.
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Figure5.14. Original and percents (top) and slope (bottom) fundamental envelope for four sounds.

It can clearly be seen in the piano envel opes that the slope method gives the correct
envel ope break times. The percent method missed the attack of the viola due to noise
preceding the attack, and especially the release of the piano, since the decay is not
analyzed well with the percent method. The trumpet end of release percent is rather high,

since the trumpet has been cut off before the end of release.
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Chapter 5. Envelope Modeling

5.5. Recreation of the Additive Parameters

The additive parameters can be recreated from the envelope parameters, if each partial
envelope is multiplied by the maximum amplitude of that partial, as found in the spectral

envelope. The frequencies are set to the mean of the original frequencies.

The original, percent and slope additive parameters can be seen for the flute in figure
5.15, for the piano in figure 5.16, for the trumpet in figure 5.17 and for the flute in figure
5.18. Theleft plot isthe original, the middle is the percent parameter plot and the right plot
Is the slope parameter plot. The frequencies of the reconstructed additive parameters are

static with the value of the mean of the original analyzed frequencies.

Percent Viola Slope Viola

Amplitude

Frequency oo Time Frequency oo Time Frequency 0 Time

Figureb5.15. Viola additive parameters. Original (Ieft), percent-based (middle) and slope-based
(right).

Piano Percent Piano Slope Piano

Frequency o Time Frequency 0o Time

Figure5.16. Piano additive parameters. Original (Ieft), per cent-based (middle) and slope-based
(right).

Although it is difficult to distinguish all details here, it is quite obvious that the slope
envelope time analysis improves the reconstruction of the additive parameters
significantly. The slope-based additive parameters do not have the sharp edges that the
percent-based additive parameters have where no segment change should happen. The
slope-based additive parameters also fall closer to the split points in many occurrences,

thereby allowing a better curve fit.

The piano additive parameters ook much closer to the original envelope for the slope-

based analysis than for the percent-based analysis.
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Figure5.17. Trumpet additive parameters. Original (Ieft), per cent-based (middle) and slope-based
(right).
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Figureb5.18. Flute additive parameters. Original (left), percent-based (middle) and slope-based
(right).

Obvioudly, the best method for judging a model of a sound isto recreate the sound by
the parameters of the model chosen. The resynthesis of the viola, trumpet, piano and flute
sounds are very close to the original for both the percent and the slope envelope analysis.

The main omission is the noise of the flute, and a general lack of presencein al sounds.

Even though the percent envelope time analysis performs worse than the slope analysis,
thisfact is partially masked by the curve form. Nevertheless, careful listening reveals the
artificial character of the sounds of the percent method, especially in the attack of the flute.

This artificial character of the sound was not discernible with the slope analysis sounds.

Although visually the percent method performs worse in the release, the informal
listening tests mostly revealed problems in the attack.

5.6. Envelope Sharpening

Since the extraction of amplitude envelopes often is the result of an analysisusing a
window function, which introduces averaging, the envelope can be assumed to be less
‘sharp’ than the real envelope. A method for sharpening the envel opes would potentially
restore the envelopes to the original form. In image processing, a deblurring technique has
been used for some time [Hummel et al. 1987], [Kimia et al. 1993], [Haar Romeny et al.
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Chapter 5. Envelope Modeling

1994], [Mair et al. 1996]. It is based on the assumption that images are blurred by a
convolution with a gaussian. The deblurring is done by multiplying the Fourier domain
signal by an inverse gauss. This increases the high frequency content of the signal.
Although the method is unstable under bad conditions, it has been tested with some
success in image processing.

Initial experiments with deblurring of the envelope are promising. It seems that this
method can be used not only in the estimation of envelope times, but also in the
modification of the additive parameters, perhaps permitting a better synthesis of fast
transients. Furthermore, related methods have been used in time/frequency analysis
[Gongalves et al. 1998].

5.7. Conclusion

A model for the amplitude of the additive parameters of a quasi-harmonic sound has
been presented. It is based on four envel ope time/value pairs and corresponding curve

forms.

This model represents a‘clean’ additive parameter set well. By clean is meant that the
frequencies are static and noise-less, and that the amplitudes are noise-less. Furthermore it

Is assumed that there is no vibrato, glissando or tremolo.

Thiswork presents a new envelope estimation method based on the analysis of the slope
of the envelope. This method presents significantly better results than a simpler percent-
based model. The estimation of important timbre attributes, such as the attack and release
times, isimproved, and the resynthesis of sounds from the slope analysisis better than the

sounds from the percent analysis.

Theintroduction in thiswork of asimple intuitive envelope model with variable split-
point amplitudes models both sustained and decaying sounds.

The envel ope model with slope analysis of the envel opes can thus be said to model
satisfactorily a harmonic noiseless sound with no vibrato or tremolo. This envelope model

isused in the HLA model in Chapter 6, which aso introduces a model of the noise and

irregularities of the envelopes.
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Chapter 6. High Level Attributes

Chapter Six

6. High Level Attributes

In this chapter, the additive parameters found by the analysis presented in Chapter 4 are
further modeled. The assumption that a musical sound fits the envelope model introduced

in Chapter 5, with silence, attack, sustain or decay, release and again silence, is used.

The High Level Attribute (HLA) model is created by extracting meaningful parameters
from the very large additive parameter data set. The parameters of the HLA model can be
divided into amplitude envelope, spectral envelope, frequency, and noise. It can be used to
resynthesize sounds, morph between sounds, or understand timbre features of a sound. The
sounds created from the HLA model are of good quality. The HLA model isthe main
timbre model in thiswork, although it still has too many parameters to permit a
visualization of the timbre attributes of several sounds. This problem is addressed in the

following chapters.
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6.1. Introduction

The additive parameter description is a good model of quasi-harmonic sounds, but it has
avery large, non-intuitive parameter set.

The High Level Attribute term was coined in [Serra et al. 1997]. They state, “from ...
sinusoidal plusresidual model higher level attributes such as. pitch, spectral shape, vibrato,
or attack characteristics can be extracted”.

The HLA model introduced in this work can be seen as a data reduction of the additive
parameters. Other data reductions techniques include the Group Additive Synthesis
[Kleczowski 1989], [Eaglestone et al. 1990], [Cheung et al. 1996], where similar partials
are grouped together to improve efficiency. Other means of improving efficiency in the
resynthesis of the additive parameters include the multirate additive synthesis [Phillips et
al. 1996] or the inverse FFT synthesis[Rodet et al. 1992].

The HLA model resembles anew class of speech coders, called sinusoidal coders
[Gersho 1994], and especially the hybrid harmonic coding algorithms [Marques et al.
1994], athough the HLA model is designed especially for isolated musical sounds.

Other uses of related methods include [Tellman et al. 1995] who uses envelope time
points to morph between different musical sounds. Back in 1966 [Strong et al. 1966]
synthesized wind instruments with a combination of spectral and temporal envelopes.
[Rodet et al. 1987] use spectral envelopes as afilter with different source models,

including the additive model.

The HLA model models each partial in afew pertinent parameters. the amplitude
envelope, the spectral envelope, frequencies, and noise parameters. The maximum
amplitude defines the spectral envelope, the mean frequency defines the frequency of each
partial, the envelope is based on an attack-sustain-rel ease, or attack-decay-rel ease model
presented in Chapter 5, and finally the irregularity of the partial amplitude and frequency
model s the noise of the sound. The HLA model has a fixed parameter size, dependent only
on the number of partials, and the parameters of the HLA model have an intuitive
perceptive quality.

The HLA model can be used to resynthesize the sound, with some or all of the
parameters of the model. In thisway, the validity of each parameter of the HLA model can
be verified.
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The chapter starts with an overview of the additive analysisin section 6.2, then the
spectral amplitude model is presented in section 6.3, the frequency model is presented in
section 6.4. An overview of the envelope model is presented in section 6.5 and the noise
model is presented in section 6.6.

Finally a proposed visualization of the HLA parametersisintroduced in section 6.7, the

recreation of the additive parametersis presented in section 6.8 and the chapter ends with a

conclusion.

6.2. Additive Parameter Analysis

The additive parameters are analyzed by the LTF analysis method presented in the
analysis chapter.

The additive parameters are smoothed over one period of each sound and only pseudo-
harmonic partials are saved. The good timing resolution of the LTF analysis permitsa
better analysis of fast transients, such as the attack of the piano, but it also models better
the noise of the sound. Thisis used in the noise model, which models the noise as the

irregularity on the amplitude and frequency of the partials.

6.3. Spectral Envelope

The spectral envelope is defined in thiswork as the maximum amplitude of each partial.

The spectral envelope is very important for the perceived effect of the sound; indeed,
the spectral envelope aone is often enough to distinguish or recognize a sound.

Thisis especidly true for the recognition of vowels, which are entirely defined by the
spectral envelope.

Nevertheless, the spectral envelope aloneis not enough to recreate any sound with

realism.

The spectral envelopes for four musical instrument sounds are plotted in figure 6.1. The
y-axisis the amplitude, where the amplitude scales are the same for all four sounds, and

the x-axisisthe partial index, which is proportional to the frequency.

Each spectral envelope has a distinct look, although there is almost no formant

structure.
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The viola spectrum has avery irregular
shape, which is probably caused by the
different damping of the modes [Benade
1990]. The piano has some missing (weak)
partials, which are missing because these
modes are annulled due to the hammer impact
position [Hall et al. 1987]. The trumpet has
the typical rising spectrum for the low partias
[Benade 1973]. Theflute is a higher pitched
sound and thus naturally it has less energy in

the higher partials.
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Figure6.1. Spectral Envelope for theviola, the
piano, thetrumpet and the flute.

The flattening of the spectral envelope for the high partial index is probably due to

background noise.

6.4. Frequency

The frequency of each partial is modeled as the mean of the frequency for the sustain

part. Most sustained instruments are supposed to be perfectly harmonic. The piano, in

contrast, has inharmonic partial frequencies due to the stiffness of the strings [Fletcher

1964].
The frequencies are best viewed divided

by the partial index as seen in figure 6.2.

The frequencies divided by the partial
index have a constant value for perfectly
harmonic sound, if the partials contain only
the harmonic overtones, asis the case here.
The degree of inharmonicity for the piano is
easy to see. Notice the y-axis scale for the
piano. The high order partial frequencies can
be migudged due to the presence of noise,

and should not be relied upon.
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Figure 6.2. Frequency divided by the partial

index for theviola, the piano, the trumpet and the

flute.

The presence of inharmonicity in the piano certainly adds a flavor to the sound, and it is

necessary to keep the frequency of each partial, instead of assuming clean harmonic

frequencies.
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6.5. Envelope

The envelope of each partial is modeled in five segments, a start and end segment,
supposedly close to silent, and an attack, sustain segment and rel ease segment. Thus, there
are 6 amplitude/time split points, where the first is (0,0) and the last amplitude also is zero,
since all partials are supposed to start and end in silence. The amplitudes are saved as a
percentage of the maximum of the amplitude, and the times are saved in mS. Furthermore,
the curve form for each segment is modeled by a curve, which has an appropriate

exponential/logarithmic form.

A further development of the envelope analysis can be found in Chapter 5. A short
description of the method used to find the envel ope times, percents and curve forms will
nevertheless follow here. The slope method, which was developed in thiswork, is

necessary for the proper estimation of the attack and release times.

6.5.1. Timing Analysis

The attack and release segments are found pleno

4000

by searching the maximum and the minimum
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The method can be seen in figure 6.3. Here
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is plotted with itsfirst derivative. The‘ +’ Figure 6.3. Envelope (top) and first derivative
. . . (bottom) times for the fundamental of the piano.
depict the split points. As can be seen, the
start of release threshold is larger than the

other three thresholds.

Thisis so the release of the piano and other plucked/damped instruments, which have a

decay/rel ease envel opes can be properly analyzed.

The envelopes are in general too noisy for this analysis, so it is done on a heavily

smoothed envelope.
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The smoothing ensures that the local minimum of the derivative, as seen in figure 6.3,

do not ruin the analysis.

The envelope times are then followed from the smoothed to the unsmoothed envelope
by a method inspired by the scale-space theory [Lindeberg 1996].

This method succeeds, as can be seen in figure 6.3, to find the proper release time for
the piano sound. The attack has aso been properly estimated, even though the derivative of
the amplitude decreases to below zero in the middle of the attack. These fast variations are
not present in the smoothed envelope, which is used for the first estimation of the envelope

times. Again, see the envelope modeling in Chapter 5 for more details.

The perceptually most important envel ope parameters seem to be the attack and release
times. These are easily calculated from the difference between the absol ute times, and they
are shown in figure 6.4. The top plots are the attack times, and the bottom plots are the
release times.
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Figure 6.4. Attack (top) and release (bottom) timesfor the viola, the piano, the trumpet and the
flute.

The estimations of the attack and release times are not noiseless, but some observations
can still be made. The release times are normally in the same range as the attack times,
except for the flute, which has very fast release times. The viola attack and rel ease seems
to decrease with frequency, from about 200 mS to 100 mS. The piano has afairly constant
attack and release time of about 50 mS. The trumpet attack and release times increase with
frequency, from around 50 mSto 150 mS. The flute attack seems to decrease from almost
300 mSto zero for the high partials. These can be misjudged because of the additive noise
present in the flute sound.
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The attack and release times seem rather reliable, and the behavior of these times gives

alot of information about the musical sound.

6.5.2. Curve Form Analysis

The curve form of each segment is modeled by a curve with appropriate logarithmic or
exponential form. The curve form is usually close to linear, sometimes logarithmic and

sometimes exponential .

The curve used for the modeling of the envelope for one segment is

Curve, =V, - (v,- ,)1- @- x)”)F‘l (6.2

and the curve form value n is found by minimizing the squared error,

Error = éN (CurveI - Envelopef (6.2)
t=1

The resulting envelopes can be seenin Vo o
figure 6.5 (dotted) with the original envelopes ::: 4000
for the fundamental of four instruments. It is géwoo ;ZZZ
interesting to see the general form of the a0 "o
viola, the trumpet and the flute, where the 0 ime ms) T RO
envelopeinitially risesto avalue close to the 600 = 6000 =
maximum, but then weakens slightly and then ;22 ;222
rises to the maximum value. This seemsto S0 o
support the quietest point of the envelope mzo g o mozo 1000 20003000
introduced in [Tellman et al. 1995], although Figure6.5. Original and recreated fundamental
thiss parameter has not been judged ?Q(\a/(fall SF:for theviola, the piano, the trumpet and

perceptually important enough to be included
here.

The piano has an irregularity in the attack. Thisirregularity is also present the attack of
most of the trumpet partials. This effect has not been found in the literature, and it has not
been found necessary to model it in the envelope model, but it isinstead modeled in the

noise in the next section.
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6.6. Noise

Although the recreated envelopes in figure 6.5 have the general shape of the original
envelope, it is easy to see that there isagreat dea of irregularity left, which is not
modeled. The same holds true for the frequency. The noise on the amplitude envelopeis
called shimmer, and the noise on the frequency is called jitter [Richard et al. 1996].
Shimmer and jitter are modeled for the attack, sustain and release segments. The noiseis
supposed to have a Gaussian distribution; the amplitude of the noise is then characterized
by the standard deviation. The frequency magnitude of the noiseis modeled, asisthe

correlation between the shimmer and jitter of each partial and the fundamental.

Other noise models of musical sounds include the residual noisein the FFT [Serraet al.
1990], [Mgller 1996] and the random point process model of music noises [Richard et al.
1993] or speech noise [Richard 1994], [Richard et al. 1996]. Models of noise on
sinusoidals include the narrow band basis functions (NBBF) in speech models [Marques et
al. 1994]. In music analysis, [Fitz et al. 1995] have introduced the bandwidth enhanced
sinusoidal modeling. Both models model only jitter, not shimmer. Other analysis of the
noise, and irregularity of the music sounds include the analysis of aperiodicity [McIntyre et
al. 1981], [Schumacher et al. 1990], and the analysis of higher order statistics [Dubnov et
al. 1996], [Dubnov et al. 1997].

6.6.1. Distribution of Partial Noise

Shimmer and jitter are supposed to be normally distributed, and the amplitude is
calculated by the standard deviation. Shimmer is correlated with the maximum amplitude
of the partial, whereas jitter is correlated with the mean of the frequency of the partial. The
shimmer and jitter standard deviations are therefore model ed as a percentage of the value

of the amplitude curve model and the mean frequency,

—aqd G
i = gd(———= 6.3

f-f
Ojitter — Std(t_];) (6.4)

a and f are the time-varying amplitudes and frequencies of the partial, |f| isthe mean
frequency and ¢, is the curve found by the envelope model. If the noise magnitude has a
peak above zero frequency, it is assumed to be vibrato, or tremolo, and removed before the

std calculation.
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Resynthesis of the sound with either shimmer or jitter makes it possible to evaluate the
importance of each parameter, and even though shimmer and jitter each add a quality to
the sound, shimmer seems more important, at least for the flute sound. Thisis probably
because the amplitude model istoo simple for the actual amplitude, especially for long

sounds, and not necessarily because shimmer is more perceptible than jitter.

6.6.2. Spectrum of Partial Noise

The spectrum of shimmer and jitter is supposed to be band-limited, and is modeled as

white noise passed through a single-tap recursive filter,

noisg = NOisg, - axoisg (6.5)
The magnitude response of thisfilter is[Steiglitz 1996],

1
J1+a + 2a>cos(m)

Thefilter coefficient a isfound by aleast-squares fit to the original noise frequency

H(w ) = (6.6)

magnitude response.

The influence of the standard deviation and filter coefficients of the shimmer and the
jitter can be seen in figure 6.6 to figure 6.9. The power spectral density (PSD) [Press et al.
1997] estimation of asingle sinusoidal with variable shimmer and jitter parametersis
plotted.
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Figure 6.9. Influence of thefilter coefficient of
thejitter from O (top), -0.3, -0.7, -0.9, -0.99 (bottom).
No shimmer, std of thejitter is0.1.

Shimmer is an additive component in the frequency domain, whereas jitter increases the

bandwidth of the sinusoidal.

When the filter coefficient decreases towards —1 the bandwidth of the sinusoidal

decreases. A filter coefficient of zero gives band-pass noise.

Shimmer has an additive noise quality; the std increase gives the effect of more noise,

and the filter coefficient decrease (toward -1) gives the effect of more band-pass noise.

For jitter, the std increases the noise, which has a different quality than shimmer, more

band-passed it seems, and the noise quality of the filter coefficient decrease goes from an

additive noise to modulating frequency, ending in low-frequency jitter modulation.

6.6.3. Correlation of Partial Noise

The correlation of the shimmer and the jitter is calculated between each partial and the

fundamental. Thisis done to separate correlated noise from non-correlated noises. Other,

more elaborate models, such as the phase coupling between partials, have not been tested.

The standard deviation, filter coefficient and the correlation for the jitter of the four test

sounds can be seen in figure 6.10. The standard deviation of the jitter, normalized with the

frequency, is shown on top, the filter coefficients in the middle, and the correlation in the

bottom plot. All y scales have been normalized to facilitate comparison.

The shimmer parameters are shown in figure 6.11 with the same disposition of the

parameters.
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trumpet and the flute (right).

The jitter parameters have some common features for all sounds. Thejitter std isvery
low for the low strong partials, and rising for the weak upper partials. The filter

coefficients are approaching zero for the high partials. The correlation is falling slowly
with partial index.

There seems to be a noticeable similarity between the two string sounds, viola and
piano, and the two wind sounds, trumpet and flute. Shimmer generally has alower filter
coefficient, and thus more low-frequency energy, which seemsto be caused by mismatch
of the simple envelope approximation. The shimmer std is much higher than the jitter std,
and rising with partial index, except for the trumpet, which has afairly stable shimmer std.

The shimmer correlation does not seem significantly higher than the jitter correlation, as
should be expected.
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6.6.4. Resynthesis of Noise

The shimmer and jitter noise of each partial isthe sum of two filtered noises, one
independent ns', and one common to all partials, ns°. In order to avoid abrupt changesin

the noise, it isrecreated using three envel opes.

The attack noise envelope is aramp going linearly from zero at the beginning of the

attack, to one at the middle of the attack and again to zero at the end of the attack.

The release noise envelope is similar, Noise envelopes

whereas the sustain noise envelopeisonein Attack Sustain Release

all of the sustain region going linearly to zero
in the middle of the attack and the release.

o
©

The noise envelopes can be seen in figure

amplitude
o
(=2

6.12. The attack and release noise envelopes

I
IS
T

are zero at the split points. This makes sense,
0.2F

since the error also is zero at the split points.

0

The Sustain nOise, Wthh genera”y iS 100 200 300 400 [imgﬂ)(?ns) 600 700 800 900 1000

(dashed) and Sustain (solid).

Is prolonged into the attack and release

segments to avoid abrupt changes.

Thetotal shimmer or jitter for partial k and segment sis,

ns,, =envelope,, (t)*o, , xfilter,, (L - ¢,)g , +¢, Ns) (6.7)
where ¢, is the correlation coefficient for the partial k and o, is the standard deviation for
segment s and partial k. The three shimmer segments are now added to the clean envelope
at the appropriate times, and the three jitter segments are added to the static frequency for

the partial. The start and end segments do not have any noise.

6.6.5. Noise Conclusion

The jitter and shimmer are here modeled by a normal distribution with mean zero.
Furthermore the spectrum of the noise is modeled using asimple recursivefilter. This
seems to be sufficient in many situations, but it leaves room for improvements. Although
the noise effectively seemsto be gaussian, it might not always have the same skewness, or

kurtosis [Press et al. 1997]. Skewness is a measure of the asymmetry of the distribution,
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and kurtosis is a measure of the peakedness of the distribution. Experiments with higher
order moments have not been performed here. [Y stad 1998] finds the distribution of the
source of the flute to be exponential, and offers an algorithm for the construction of an
exponentially distributed noise. [Dubnov et al. 1997] finds the phase coupling to be an
important characteristic of musical instruments. This might be an important addition to the
noise model. It is somehow difficult to judge the quality of the noise of the resynthesis
here, since the amplitude model is not assumed to give an identical shape, and much of the

shimmer noise, or irregularity, originates from this fact.

6.7. HL A Visualization

The HLA set can be divided into 4 groups, the spectral envelope, the frequencies, the
envel ope and the noise parameters. The envelope group can be further divided into the
envel ope timing, the envelope percents, and the envelope curve forms. The noise can be
divided into the shimmer and jitter standard deviations, the shimmer and jitter filter

coefficients, and the shimmer and jitter correlation.

In total, there are 10 groups, which can be plotted in one figurein 5 rows and 2
columns. The left column has from the top to the bottom the spectral envelope, the
frequencies divided by the partial index, and envelope timing, the envel ope percents and
the envelope curve forms. The right column has from the top to the bottom the shimmer
standard deviation, the jitter standard deviation, the shimmer filter coefficients, thejitter

filter coefficients and the shimmer and jitter correlation.

In figure 6.13, figure 6.14, figure 6.15 and figure 6.16 are shown the complete HLA set
for the 4 sounds, viola, piano, trumpet and flute. To improve visibility, only the 16 first

partials are plotted.

The spectral envelope (top left) and the frequencies (second from top left) have only

one curve each. The spectral envelope is plotted in the log domain.

The envelope timing (third from top left) has four curves, the start of attack time ‘o', the
end of attack time ‘*’, the start of release time ‘x’, and the end of release ‘+'. The percents
(fourth from top left) also have four curves with the same symbols, the curve forms
(bottom left) have 5 curves, the start curve ‘+' the attack curve ‘o', the sustain curve ‘*’,
the release curve ‘x’ and the end curve ‘.. For the sake of clarity, the start curve and the

end curve are dotted.
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The noise attributes generally have 3 curves, attack ‘o', sustain ‘*’, and release ‘x’, with
the exception of the noise correlation, where the shimmer is ‘o’ and thejitter is**’. The
shimmer std is plotted top right, the shimmer filter coefficient is second from top right, the
jitter std isthird from top right, the jitter filter coefficients are fourth from top right, and

the noise correlations are plotted bottom right.

" Amp., Freq. & Envelope Attributes Noise Attributes Amp., Freq. & Envelope Attributes Noise Attributes

[N

[N

4
° HMW ]
| M

=4
3
4
o

5 10 15 5 10 15

) log amplitude
=
ON
S
) log amplitude
=
%
o
N}

15

o

(Hz]

o
[
ex (H.

NN

%N~

Saoa

o
n

296
294
2? KKK KKK
290
288
286

flindex (Hz,

c

o

L

KN

times (ms)
ul
o
= O O

I

percents
o
o
o
ul
percents
o
ul

R
> 2 1O

I

N o L
4
@

o

n
curve forms

5v s N

=)

=) "

i
o
o
o
Noise corr. Jitter coeffsShimmer coeffs. jitter Std ~ Shimmer Std
o
o o
times (ms)
u
o
3 e
.
o 5 ‘o
Noise corr. Jitter coeffs.Shimmer coeffs. jitter Std ~ Shimmer Std
o
o

curve forms
=

o

o |

5 1 10 15 I 15 10
Partial index Partial index Partial index Partial index

Figure 6.13. Complete HLA set for theviola Figure 6.14. Complete HL A set for the piano
sound. sound.

The violahas aquiteirregular spectral envelope, with much energy in the high partials.
The frequencies seem perfectly harmonic. The estimation of the envelope parameters
seems stable; the attack and rel ease times decrease with frequency, as does the end of
release percents. Thisis an indication of the faster decay of the higher partials. The attack
curve form seems to change from logarithmic for the low partials, to exponentia for the
high partials.

The shimmer std increases with frequency, whereas the jitter std is rather stable. The
shimmer filter coefficient is close to -1 for the fundamental, rising towards zero for the
high partials. The filter coefficients are higher for the high partials, it seems, because of the
shorter duration of these partials. The short partials have by definition a better curve fit,
which trandates into alow shimmer filter coefficient. Thejitter filter coefficients are more
stable. The correlation is decreasing slightly for both the shimmer and jitter for the viola
sound.

The piano spectral envelope has aweak formant at the eighth partial. The frequencies
are stretched, the envelope times rather stable. The end of release percentsis much lower
than the end of attack percents due to the decay slope of the envelope and falling with the
partial index. The attack and release shimmer is rather high, with arelatively low filter
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coefficient for the attack segment, indicating fast irregularities. The jitter correlation is

lower than the shimmer correlation for the piano.
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The trumpet has a strong formant at around the fifth partial. The frequencies are
harmonic. The attack and release times increase considerably with the partial index for the
trumpet. Thisis part of what gives the characteristic trumpet sound [Risset 1965]. The
percents are very close to one for al partials, which proves the validity of the envelope
times. Thereis not much noise in the trumpet partials, athough the attacks of the first few
partials have more high frequency noise, which can be seen by the high std of the first
partials and the relatively high values of the attack filter coefficients.

The flute has few strong partials. The frequency of the strong partials is harmonic, and
the other frequencies are noisy. The envelope times are difficult to see, since the flute
sound is so long. The percents decrease with frequency. There is rather much shimmer in
the flute sound, indicating more additive noise, athough the shimmer filter coefficient is
closeto -1, which ismore an indication of envelope curve misfit. The jitter correlation is
rather low for the flute.

In conclusion, the HLA parameters give important information about the sound they

derive from. The spectral envelope, the length, the attack and rel ease characteristics and

the noises are easily seen in the HLA visualization, or compared with other sounds.

6.8. Recreation of the Additive Parameters.

The additive parameters are recreated from the HLA by first creating clean amplitudes

with the envelope model presented in section 6.5 and frequencies with the frequency
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model presented in section 6.4, and then adding the noise on the parameters as explained in
paragraph 6.6.4. The noise is added in the attack, sustain and release segments. Thereisno

noise in the start or end segments, since they are assumed to be silent.

The original and recreated additive parameters for 4 sounds can be seen in figure 6.17
(viola), figure 6.18 (piano), figure 6.19 (trumpet) and figure 6.20 (flute). The left plots are
the original LTF analyzed additive parameters and the right plots are the HLA model
recreated additive parameters.
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Figure6.17. Original and MDA recreated additive parametersfor theviola.
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Figure 6.18. Original and MDA recreated additive parametersfor the piano.

The visual shape of the additive parametersiswell preserved, obviously without having

an identical form. The noise part of the parametersisrandom, so it is never two times the

same sound, or the same visual shape. Some differencesin the noises are nonetheless clear.

This might be explained by the ssmple filter model of the noise, or by an incomplete

description of the noise distribution.
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Figure 6.19. Original and MDA recreated additive parametersfor the trumpet.
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Figure 6.20. Original and MDA recreated additive parametersfor theflute.

The resynthesis of the sounds from the HLA permits the evaluation of the validity of the
HLA model. Generally, the HLA model is good for the synthesis of musical sounds. The
pitch, loudness and duration are recreated flawlessly, asis most of the timbre attributes.
The sounds are aways identifiable although aways different from the original sounds. The
quality of the HLA model resynthesis is generally very good, and typical features, such as
formants, noise, or sharp attacks are always present in the resynthesis.

Although the HLA model is sensitive to bad fundamental estimation and bad curve
fitting, which tends to increase the noise factor [Marques et al. 1994], this does not seem to
be a serious problem. The quality of the HLA is also degraded, if there isvibrato or

tremolo in the original sounds. This transglates into noise in the HLA model.
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6.9. Conclusion

Thiswork presents a new model of musical instrument sounds. The HLA model models
the additive parametersin afew intuitive parameters. the spectral envelope, amplitude

envelope, mean frequency, and noise.

The HLA model iswell suited for isolated sounds. It does not model vibrato, tremolo or
glissando, which are supposed to be user-provided, that is, performance expressions.
Listening tests presented in Chapter 12 show that musical sounds are resynthesized well
with this model. Furthermore, the HLA model parameters help in the understanding of
timbre and the perceived difference of sounds. Important timbre cues, such as the spectral
envelope, the envelope timing, and the noise are easily extracted and visualized from this
model.

The HLA model, asimplemented here, permits an automatic analysis/synthesis of
musical sounds with asmall parameter size. The fixed parameter size of the HLA model is
helpful when comparing sounds, or when timbre morphing is performed. However, the
HLA model does not permit the visualization of a single timbre attribute, such as the attack
time, for many sounds. Therefore, the HLA model is further smplified in the next

chapters.



Chapter 7. Spectral Envelope Maodel

Chapter Seven

/. Spectral Envelope M odel

The spectral envelope is here defined to be the maximum amplitude of the quasi-
harmonic partials of a sound. This chapter presents amodel of the spectral envelope, based
on some perceptually meaningful attributes. These attributes are calculated on the quasi-
harmonic components of the original spectrum. In the reconstruction, a new spectrum is
created with the same attribute values as the original spectrum.

This model, using perceptive attributes, is valid for non-formantic sounds. Initial

listening tests have confirmed the validity of the model.

The purpose of thiswork isto create a stable analysis/synthesis method of the spectral

envelope, using afew intuitive parameters.

When interpolating from one spectral envelope to another, the spectral envelope model
permitsin theory the displacement of important timbre features, instead of the lowering of

one feature and the increasing of the other.
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7.1. Introduction

This chapter models the spectral envelope of musical sounds. The spectral envelopeis
defined as the maximum of the amplitudes of the quasi-harmonic overtones. Based on the
spectral envelope, afew perceptually important parameters can be calculated, and used for
the subsequent recreation of a synthetic spectral envelope with the same perceptual timbre.
Furthermore, these parameters can be calculated for atime-varying spectrum, and a
synthetic spectrum can be recreated with the same time-varying perceptual values. The
parameters of the spectral envelope model are the brightness, tristimulus, odd value,

irregularity and maximum amplitude.

The spectral shape of a sound is often modeled by a sourceffilter strategy. Thisisthe
case when modeling speech [Klatt 1980], where the source generally is divided into a
voiced part, which is defined by the dB/octave slope, and a noise part. Thefilter is
generally anumber of resonators, which corresponds to the formants of speech. More
accurate source models for the voiced part of the speech have been introduced in for
instance [Fant et al. 1985] and [V eldhuis 1998]. Often the filters are modeled by the linear
predictive coding (LPC) [Rabiner et al. 1978]. Several papers use the spectral envelope as
thefilter part [Strong et al. 1966], [Rodet et al. 1987], [Rodet et al. 1992], [Horner et al.
1995].

In music research, the spectral envelope is often created by a non-linear function, such
as frequency modulation (FM) [Chowning 1973], and a great number of similar techniques
[Arfib 1978], [le Brun 1979], [Mitsuhashi 1982], [de Poli 1984], which, while generating
complex spectrawith low processor cost, generally lacked both analysis techniques, and
intuitive control. Many attempts have been made to match the parameters of a processor-
effective algorithm, such as the FM, to the parameters of an acoustic sound. [ Beauchamp
1982] used the brightness to match the FM parameters, while [Horner et al. 1993] used
genetic algorithms for the same task. This doesn’t make the underlying parameters more
intuitive, however. [ Y stad et al. 1996] matched additive parameters to a waveguide model

parameter, which permits a greater intuitive understanding through physical parameters.

[Moorer 1976] introduced the discrete summation formulas, which are here called the
brightness creation function. The easy calculation and recreation of brightness with these

formulas, presented in this work, have not been found in the literature.
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The chapter starts with a definition of the spectral attributes and the calculation
formulas for the parameters used in the model in section 7.2. A brightness creation
function in the additive and the time domain is presented in paragraph 7.2.2. The spectral
envelope model is presented in section 7.3, along with the recreation of the spectral
envelope in paragraph 7.3.5. The time-varying spectral envelopeis presented in section
7.4. Aninitia study of aformant model is presented in section 7.5, and finally thereisa

conclusion.

7.2. Analysis of Perceptive Attributes

The spectral envelope is here defined as the maximum amplitudes of the harmonic
additive parameters. The spectral envelope is an important attribute of the timbre of a
sound [McAdams et al. 1995].

Figure 1 shows the spectral envelope for vola Jano

four typical musical sounds. It has, as can be 10° 10°
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10 10

amplitude
amplitude
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around the fifth partial. It isshown in this Figure 7.1. Spectral Envelopefor theviola, the
iano, the trumpet and the flute.

work that the spectral envelope model P P

presented here can model low partial

resonances (formants).

The parameters of the spectral envelope model are found by analyzing the spectral
envelope. The additive parameters are found using the linear time/frequency (LTF)
analysis method presented in Chapter 4. Only the quasi-harmonic partials are saved. The

amplitudes and frequencies of the analysisarea, , and f,,, wherekisthe partial index and

kt?
t isthe time index. When the time index is omitted, the spectrum is supposed to be static.
The static spectral envelope is here calculated as the maximum amplitude of each quasi-

harmonic partial.
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7.2.1. Brightness

Brightnessis calculated as the spectral centroid, [Beauchamp 1982], which is correlated
with the subjective quality brightness [McAdams et al. 1995]. The brightnessis calcul ated

as

N N
brightness = (3 ka,) /A a, (7.1)
k=1

k=1

A closely related attribute is sharpness [von Bismarck 1974b], which, like the
brightness, correlates with the perception of brightness. If the partial multiplication k is
replaced with the frequency of the partial, the brightnessis expressed in Hertz. For
harmonic sounds, thisis equivalent to multiplying the partial index brightness with the
fundamental. The partial index brightnessis used in the rest of thiswork, if nothing elseis
stated. Other calculations of brightness can be done with the square amplitudes, with the
log amplitudes, with real frequencies, instead of overtone index, as stated above, or with
bark scale [Sekey et al. 1984] frequencies.

A good function to create additive parameters with a given brightnessis,

a =B (7.2)
The brightness of equation (7.2) has a simple expression, if the number of partialsis set
toinfinity,
3 kB K
brightness = ao — = B (7.3
asBb B-1

Brightnessis thus infinity when B is 1 and decreasing when B isincreasing. The value

B iseasy to calculate, if agiven brightness T, is researched,

B= (7.4)
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The amplitudes found with the equation
(7.2) have been calculated for the 4 soundsin
figure 7.1. Only the quasi-harmonic partials
have been included, and the x-axisisthe
partial index. The resulting curves are shown
in figure 7.2. The brightnessis indicated with
a‘'*’ a the x-axis.

The synthetic spectral envelope, recreated
with the brightness only, restitutes much of
the sound, but brightness alone is generally

not enough to model a sound.

7.2.2. Time domain Brightness Function

Chapter 7. Spectral Envelope Maodel
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Incidentally, the brightness function in equation (7.2) can be found in the time domain.

Thisis done by setting the amplitudes as Diracs on the harmonic frequencies,

¥
s,(0) = B>@ B¥(Dirac( - kw,)+ Dirac(o + ko,))

k=1

(7.5)

and taking the inverse fourier transform on that. The resulting time domain function is,

after smplifications,

Bcos(w,t) - 1
B'+B- 2cosf,t)

s(t) ==
T

(7.6)

This function can easily be implemented with low processor cost. The time domain

brightness function for afixed brightness is shown in figure 7.3 (top), with the

corresponding frequency magnitude (bottom). It is clear that this function has the

characteristic linear frequency slope in the log amplitude domain. The resulting brightness

for the equation (7.6) is given in equation (7.3). The value of B isfound using equation

(7.4). Thisisthus avery easy way of creating atime domain signal with agiven

brightness. The function given by the equation (7.6) is here called the brightness creation

function (BCF). The BCF is equivalent to the discrete summation formulas presented in

[Moorer 1976], which also gives the formulas for non-infinite summation, and for two

sided spectra. [Moorer 1976] did not make the important connection between the discrete

summation formulas and the brightness presented here.
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The time domain signal for avarying brightness, going from 1 to 10 is shown in figure

7.4. The signal for brightness close to 1 is approximating a sinusoidal, asit should.
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Figure 7.3. Time domain (top) and frequency Figure 7.4. Time domain brightness function
domain brightnessfunction. The partial index with variable brightness going from 1 to 10.
brightnessisset to 3.0.

The time domain brightness function can of course be used to recreate a sound with a
given (time varying) brightness, amplitude and frequency. For this, equation (7.6),
multiplied with the amplitude, is used. The sound resulting from the BCF synthesisis of
good quality, although rather clean, and missing the roughness and noise of the original

sounds.

This function is considered here as very promising, if it is subsequently filtered to
obtain the correct tristimulus and odd values, it could be a very cheap way of creating
realistic musical sounds. The sum of several non-infinity summations could also improve
the resynthesis quality. The BCF could be used as a source signal in both musical and

speech sounds.

The BCF can give diasing effects, if the brightness and/or the fundamental frequency
are high. The aliasing are high partials above the nyquist frequency (sample rate/2) which
are folded back into the audible spectrum. Although the aliasing might not be a problem in
most cases, since the partial index brightness generally decreases with the fundamental
frequency of asound, if the BCF isto be put in use, the aliasing problem must be solved.
No aliasing has been detected for the few sounds, which have been resynthesized using the
BCF.
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To verify whether a sound is causing aliasing effects, the amplitude of the partial at the

nyquist frequency must be known. The amplitudes above this are all weaker than this

amplitude.

The amplitude of the k partia is,

a =B *Y

and the partial index at the nyquist frequency is,

_ samplerate/ 2
nyquist f—
0

k

(7.7)

(7.8)

Aliasing does not occur, if the amplitude of the partia at the nyquist frequency islow,

1)

—_ - (knyquis'
a'nyquist =B <e

(7.9)

When analyzing a4 for some instruments, it seems that the violin has a much higher

value than other instruments (piano, clarinet, flute and soprano). Thevalue of & IS

rather constant for an instrument, regardless of fundamental frequency. It is around 10° for

the piano, 10° for the violin, 10° for the clarinet and the flute, and 10 for the soprano

voice. Thiswould mean that the amplitude at the hearing limit of amusical instrument is

constant, regardless of fundamental frequency.

In conclusion, the BCF could probably be used for most musical sounds without

disturbing aliasing effects.

Nevertheless, in some situations, the
aliasing must be prevented. The spectrums
from the BCF for 4 different brightness are
shown in figure 7.5. The fundamental is 200
Hz, and the sample rate is 32 kHz. Aliasing
occurs when the brightness value is above
about 10.

The aliasing could be prevented by taking
the non-infinite sum of termsin equation (7.5)
as proposed in [Moorer 1976]. TheBtermin
equation (7.4) would then have to be
recal culated.
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Figure 7.5. Resulting spectrum of the BCF for 4
signalswith fundamental 200 Hz and samplerate 32
kHz. Brightness 2 (top), 4, 8 and 16 (bottom).
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Other techniques exist to do this, for instance, by bandlimiting the signal [Stilson et al.
1996]. Thiswould prevent the BCF from having energy above the nyquist, regardless of
brightness or frequency.

Although the time-domain BCF is very promising, for several reasons the timbre
models used here are all modeled in the additive domain. No further use of this time-
domain function is made in this work, but it could often replace the additive parameters

with little or no loss of quality.

In conclusion, atime domain brightness creation function (BCF) has been presented.
The spectrum of the BCF islinear in the log amplitude domain, and the brightness is easily
calculated from, or given to the function. The combination of the BCF and dynamic filters

could potentially create realistic musical instrument synthesis.

7.2.3. Tristimulus

The tristimulus values have been introduced in [Pollard et al. 1982] as atimbre
equivalent to the color attributesin the vision. The tristimulusis used in [Pollard et al.
1982] to analyze the transient behavior of musical sounds. Other uses of the tristimulus
includes the classification [Kostek et al. 1996], and the analysis of source spectrum of the
flute [ Y stad 1998]. The tristimulus are here defined as,

trigtimulusL = ok (7.10)
[¢}
a &
k=1
tristimulus2 = w (7.10)
[¢]
a
k=1
&
a &
tristimulus3 = £32 (7.12)
(¢}
a &

k

1
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It is best plotted in adiagram where

tristimulus 2 is afunction of tristimulus 3. In

such a diagram, the three corners of the low os}

Strong
Mid-range

|left triangle denote strong fundamental, strong ~ *' ™"
mid-range, and strong high frequency partials.

o5k * Flute % Piano

Thetristimulus diagram can be seeninfigure  =,,|

Tristimilus 2

* Viola

7.6 adong with the tristimulus for four musical 3}

instruments.

Strong *
0.1+ Strong High-Frequency

Notice that the sum of thethreetristimulus =~ oo peret

0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

0.5
Tristimilus 3
equals 1. Itis necessary only to use 2 out of Figure 7.6. Tristimulus valuesfor four sounds.
the 3 tristimulus. Tristimulus 1 and 2 are

saved.

7.2.4. Odd/Even Relation

The odd/even relation is well known from for instance, the lack of energy in the even
partials of the clarinet [Benade et al. 1988]. To avoid too much correlation between the
odd parameter and the tristimulus 1 parameter, the odd parameter is calculated from the
third partial,

Nol 2 c’>\‘

odd =(a &, 1)/ a a (7.13)
k=2 k=1
N°/2 é\l

even=(a &,) /a & (7.14)
k=1 k=1

Sincetristimulus 1 + odd + even equals 1, it is necessary only to save one of the two

relations. The odd parameter is saved.

7.2.5. Irregularity

Severa studies have pointed at the importance of the irregularity of the spectrum
[Krimphoff et al. 1994]. Irregularity is defined in [Krimphoff et al. 1994] as the sum of the

amplitude minus the mean of the preceding, same and next amplitude,

N-1
irregularity = Q a, - 81+ A By

(7.15)
k=2 3
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although in the 1og10 domain. In this paper, an alternative calculation of the irregularity is
used, where the irregularity is the sum of the square of the difference in amplitude between

adjoining partials,

N N
irregularity =(Q (&, - a..)°) @ & (7.16)
k=1 k=1
and the N+1 partial is supposed to be zero. The irregularity value calculated in thisway is
most often, although not always, below 1. It is by definition always below 2.
Changing irregularity definitely changes the perceived timbre of the sound.

Irregularity changes the amplitude relations in the same tristimulus group. Since the

tristimulus 2 value islarge, thisis where irregularity has the greatest influence.

The change of irregularity trandates therefore principally into a change in theratio

between the second and the fourth partial amplitude. The third partial is fixed by the odd

value.
The SpeCtral envel Ope for 4 dlfferent 10 Irregularity=0.0 10 Irregularity=0.1
values of theirregularity is shown in figure 10° 10°
7.7. The values of the brightness (5), the odd gz gi
£ £
(0.3), and the tristimulus 1 (0.25) and 2 (0.5) 10° 10°
are kept at the same value for all 4 plots. The S T
Irregularity=0.4 Irregularity=0.7
perceived effect of the different valuesof the ™ = -
10° 10
irregularity is rather big. 2107 2102
%101 gml
10° 10°
10 20 30 40 107 10 20 30 40
partial index partial index

Figure7.7. Spectral Envelope for four different
irregularities, 0, 0.1, 0.4 and 0.7. Brightness=5,
tristimulus 1=0.25, tristimulus 2=0.5, odd=0.3.

7.3. Spectral Envelope Model

This section presents a method of recreating N synthetic amplitudes, whose form,
judged by the perceptual attributes, is similar to the original spectrum. The spectral
envelope is modeled by the attributes presented in section 7.2; brightness, tristimulusl,
tristimulus2, odd and irregularity. There are 5 attributes and N amplitudes. N is assumed to

be greater than 5. There is thus an infinity of solutions. To limit the number of solutions,
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the 5 to N upper harmonic components are set to an exponentially decreasing amplitude,

and the 4 first harmonic components are then found.

The 4 perceptual attributes, omitting for the time the irregularity, are used,

N N
T, = brightness = (§ ka,) /A a, (7.17)
k=1 k=1
J
T, =trisimulusl=a,/Q a, (7.18)
k=1
J
T, =tristimulus2 = (a,+a, +a,) /A a, (7.19)
k=1
NO/ 2 é\l
T,=odd =(a ax.,) a (7.20)
k=2 k=1

7.3.1. The High Harmonic Components

In order to limit the number of solutions, the high harmonic components are set,
a =B*k=57.,N (7.21)

a =kB“k=68,..,N (7.22)
where B is the brightness coefficient, and k, is the odd coefficient. If the spectrum were to

be defined by the formulas (7.21) and (7.22), athough with the index k ranging from 1 and
2 respectively, B and k, are calculated to be,

5= (7.23)

TO
1-1,

The low harmonic components are then easily found as explained in 7.3.2, but,

k,=(B+F -1 (7.24)

unfortunately, the resulting low amplitudes are sometimes negatives, as shownin 7.3.3.

Another estimation of B and k, isthen necessary to find positive amplitudes.

7.3.2. The Low Harmonic Components

Given the equations (7.21) and (7.22), the equations (7.17) to (7.20) can now be

rewritten in the matrix form,
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ég‘ 2k-1 lo\l 2k
A TkB Y+ TB
€= k=3
e-lz_' 1 Tj_ -E_ -I-l u éail:l ?é\l TK)B_(Zk_g +éN.TB_2k
A - A ¢ 2 2
eTz Tz'l Tz'l Tz'lu, %u_ékzs k=3
-1 T,-2 T,-3 T,-40 €U~y N
ng T T T 1§ & éa (T, - (2k- DkB D +3 (T, - (2k- 1))B*
o o~ 0 o ~ U Ak=3 k=3
ad _lz)koB-(zk-l) +&’3'1 TOB-(zk)
&=3 k=3

(7.25)
There are now 4 equations with 4 unknown, which are the amplitudes a, to a,. The

solutions for the amplitudes are, if N equalsinfinity, and after simplifications,

1+ Kk B)T,
8= — ( 2k0 )Ty (7.26)
B*(1- B)(T, +T,- ]
- - - 2 -
a2:(1+koB)(4 3T, 12, 2To+l3 (-6+5T +2T,+ T, +T)) (7.27)
2B(B°- (T, +T,- D
— To:-kozB(l- Tl- Tb- To) (728)
B(B™- AT, +T,- D
Q= -4+ 3T +2T,+T,- T,+B*(6- 5T,- 4T,- T, +T.)
‘o 2B*(B*- D)X(T, +T,-
( ) (T +T,- 9 (7.29)

JKB(2+T +T, - T+ B(4- 3T,- 2T,- T, +T,)
2B%(B°- D°(T,+T,- 9

Unfortunately, the solutions sometimes have negative values, dependent on theinitia

values of B and k,. The next paragraph will find B and k, which will always give positive

amplitudes.

7.3.3. Finding the Positive Range

The four low harmonic component amplitudes given by equations (7.26) to (7.29)
always have a solution, but unfortunately, the solution sometimes gives negative values to
one or more of the amplitudes. This problem can be solved by choosing the coefficients B

and k, so that the first four amplitudes are positive.

By analyzing the amplitude equations (7.26) to (7.29), it isfound that a, is aways
positive, a, and a, are positive when B is smaller than lim, and lim;, respectively, and a, is

positive when B is greater than lim,. The solutions for lim,, lim, and lim, are found by
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setting the corresponding amplitude to zero and isolating B. The limits are afunction of T,

T,, T, and T, which are known, and k, which is unknown.
The range of B for positive a, to a, is,

B ae(k;) =[lim,,min(lim ,lim,)] (7.30)

The solutions to the limitslim, and lim, are,

J-A+3T +T +T,
lim, = 0 (7.31)

i \/'4+3T1+-|L T, - \/'6+5T1+2T2+Tb sl

lim, = % (7.32)

m, =
(T +T+T,- D)+T,

The solution for lim, istoo long to be written here, but it is easily found using, for

instance Mathematica [Wolfram 1996]. The range of B can of course be empty, in which
case k, is swept until a positive range is found. This gives a multitude of possible solutions,
one of which must be chosen. The choice is made using the irregul arity function, as shown

in paragraph 7.3.4.

7.3.4. Finding Best Irregularity

The irregularity is the normalized square difference between the amplitudes of the
partials. Of course, some irregularity originates from the brightness and the odd value,
which givesaminimal value to the irregularity, but higher irregularity can be found by

changing the values of B and k, in equations (7.26) to (7.29).
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Figure 7.8. a(1) to a(4) in B, . Figure7.9. Theirregularity) in B, g

Theirregularity is used to choose the values of B and k,, but the different irregularity

values also change the perceived effect of the sound.
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With the results for the amplitudes in the preceding paragraphs, the irregularity can now
be calculated for agiven B and k,. The goal isto find B and k, that gives awanted

irregularity. Unfortunately, it is not possible to solve the irregularity equation, so B is

swept over B, for anumber of k, until the irregularity is correct. Theirregularity formin

B.ange CaN be seen in figure 7.9. The correct irregularities are shown with **’. There can be

0, 1 or 2 correct irregularities. If there is no solution, B, is swept for anew k. If thereis

one solution, it is chosen. If there are 2 solutions, the solution closest to the middleis

selected, since that would be the solution if there were only one correct irregularity. There

aretwo solutionsin figure 7.9, and the | eft solution is selected. k, is swept, starting from 1,

aternatively increasingly lower and higher than 1, until a solution is found.

7.3.5. Recreation of Spectral Envelope

With the B and k, found, the synthetic amplitudes are now created, using the formulas

(7.21), (7.22) and (7.26) to (7.29).

Since the spectral envelope parameters are not orthogonal, there are values that do not

have a solution. These are generally the result of analysis of very low amplitudes, or the

result of modifications of the spectral envelope parameters. If no solution is possible, the

valuesof T, T,, and T, are slowly approached to a normalized value, and the spectral

envelope creation isiterated until asolution is found. The default valuesof T,, T,, and T,

are the values these parameters would have in a clean BCF.

The synthetic spectral envelopes, which

are here multiplied by the maximum of the

original amplitude, can be seenin figure 7.10.

The sounds created from the spectral
envelopesin figure 7.10 are very close to the
original sounds from figure 7.1. Notice that
the model of the spectral envelopeis able to
recreate the low formantic structure in the
trumpet sound. The noise floor of the piano
and the violais of course not recreated, but
this doesn’t matter since it doesn’t add to the
sound quality, these partials being too low to

be perceivable.

98

viola piano

N
o
N
o
S

=
S}
w
=
o
w

amplitude
=
o
™
amplitude

[
o
° .

=
o
N
o

,_.
<
N
5]

0 20/ 30 0 20 30
partial index partial index

trumpet flute

4
/\ 10°

2 102

1 ’ 1

5 10 15 20 25
partial index

2R
o o
w
i
o
>

amplitude
= =
o o
amplitude
=
o

N
o
°
N
o
°

=
o
o
=
o

10 15
partial index

Figure 7.10. Synthetic spectral envelopesfor the
viola, the piano, the trumpet and the flute.



Chapter 7. Spectral Envelope Maodel

The resulting brightness of the modeled spectral envelope is always alittle low, since
thereisafinite number of partias, and the model has been created with an infinity of
partials. This could probably be adjusted, but the change in brightnessis generally very
small and it has not been judged to have any perceptual effect.

In conclusion, a spectral envelope model has been presented. It has a fixed parameter
size. The parameters of the model permits a faithful recreation of the amplitudes from

which the model parameters were found, including low formantic structures.

7.4. TimeVarying Spectral Envelope

The spectral envelope model parameters can be calculated for the time-varying
spectrum, and the synthetic time-varying amplitudes can be created from these parameters.
Thisisagood test of the stability of the solution, and moreover, it permits listening to

complete sounds, where ajudgment can be made on, for instance the attack segment.

The time varying spectral envelope model parameters for the four test sounds can be
seeninfigure 7.11 for the viola, in figure 7.12 for the piano, in figure 7.13 for the trumpet
and in figure 7.14 for the flute. The top left plot is the brightness, the top right plot is the
tristimulus, the bottom left plot is the odd, and the bottom right plot isthe irregularity. The
tristimulus is plotted only for the times where the amplitude is above 10 percent of the
maximum amplitude. There is no time axis for the tristimulus, where tristimulus 2 is

plotted as afunction of tristimulus 3, but the time can be followed from the start * +* to the

end‘o’.
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10 B06 10 206
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Figure 7.11. Time varying spectral envelope Figure7.12. Timevarying spectral envelope
parametersfor theviola. parametersfor the piano.
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Figure 7.13. Time varying spectral envelope
parametersfor the trumpet.
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Figure 7.14. Time varying spectral envelope
parametersfor theflute.

The spectral envelope parameters seems rather stable in the sustain part of the sound.

The trumpet has much higher brightness in the middle of the sound than in the

beginning and end of the sustain, even though the amplitude is rather stable throughout the

sustain. The flute also has this behavior, although not as pronounced. The viola and the

piano have falling brightness with time. These observations are made on the non-zero

amplitude times, as observed in figure 7.15.

Theviolahasalot of tristimulus variations, but most of this probably occursin the

attack. The trumpet has almost no tristimulus 1 and the flute has no tristimulus 3. The

trumpet has arelatively high odd value, and the flute has alow odd value. The violahas a

very high irregularity where the trumpet has avery low irregularity.

The recreated spectral envelopeis
normalized, and then multiplied by the time
varying maximum amplitude of each sound,

which can be seenin figure 7.15.

The amplitudes are rather smooth and
stable in the sustain part of the sound for all
instruments. Thisis not the amplitude of the
fundamental or any one partial, but the
maximum amplitude of all partials at each
time segment. Nevertheless, many

observations can be made from figure 7.15.
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Figure 7.15. Time varying amplitude of the four
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The viola has arelative slow attack and release, the piano has arather fast attack and a
decay slope. The trumpet attack is faster than the release, whereas the flute attack is much
slower than the release. The flute has a pronounced irregularity (shimmer) on the
amplitudes. This probably originates from the additive blowing noise of the flute. The

additive noiseis also present in the spectral envelope model parameters for the flute.

The recreated additive parameters of the spectral model parameters created from four
sounds are shown in figure 7.16. The spectral model parameters have been calculated and
the spectral envelope has been recreated for each time frame. The frequencies have been
modeled using a simple model with the fundamental frequency and the inharmonicity for

each time frame. More details on the frequency model can be found in Chapter 3.

The resynthesized sounds keep the realism of the original sounds, and are generally
very hard to distinguish from the originals, athough the noise is not modeled perfectly
with thismodel. Including the tristimulus, the odd and the irregularity certainly improves
the sound quality from the quality of the sounds created with the BCF in paragraph 7.2.2.
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Figure 7.16. Original (top) and spectral envelope model (bottom) recreated additive parametersfor
4 sounds, viola, piano, trumpet and flute.

The parameters of the spectral envelope model seem to recreate a stable spectral
envelope for al the time frames. The sound quality of the spectral model resynthesis with
frequencies using a simple model is significantly better than the sounds using static

frequencies, but still not as good as the sounds recreated using the original frequencies.

7.5. Formants

The formants are resonant frequencies in the spectral envelope. The relative frequency

and amplitude of the formants of speech defines which vowel is being pronounced
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[Rabinet et al. 1978], [Klatt 1980]. Although few musical instruments have strong
formants, a preliminary study of aformant model has been made, in the hope of being able
to model the singing voice. The search for formants is made on the difference between the
original spectral envelope and the recreated spectral envelope. The formants are supposed
to be positioned above the 5th partial, and they can be both positive and negative. When a
large error is found above the fifth partial, the error is modeled by a gaussian, and the
gaussian is removed from the error signal. Thisis repeated until no more formants are
found. The formants are now added to the modeled spectral envelope, and the process of

finding formantsis repeated.
Only formants wider than a threshold are saved. This decreases the chance of finding

noise, or other spectral irregularities.

The formants are found by looking at the error signal,

8 =& - & (7.33)
Where & is the synthetic spectral envelope and a isthe original spectral envelope. The
maximum absolute error is now found, and modeled by a gaussian, which is defined by its
amplitude, position and standard deviation,

- (k- k)?
t,=a,e (7.34)

The amplitude of the gaussian is set to the error at position k,, and the standard
deviation isfound by taking the mean of the standard deviations calculated on the left and
the right of the maximum amplitude error. The gaussian is now subtracted from the error,
and the new maximum error isfound and modeled. Thisis repeated until the maximum
error found is below athreshold. The formants are now defined by a sum of afew

gaussians,

formants = & t,(a, ko) (7.35)

and the new spectral envelopeis

a, =a+ formants (7.36)
This creates a new spectral envelope including the strong formant regions. Although
this method definitely reduces the error of the spectral envelope from the spectral model
including the formants, there is no guarantee that the formants model really model

formants, and not irregularities in the spectral envelope.
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Thereis ahigher probability of finding real

formants if the sigmathreshold of the w0
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The solid line is the original spectral envelope, the dashdotted line is the spectral model
envelope and the dashed line is the spectral model and formant contribution spectral
envelope. The bottom plot shows the formant contribution.

The formant analysis correctly finds two positive formants at 15 and 25, and a negative
formant at around 10, although doubt could be expressed whether the positive formants
should be stronger, and the non-formantic spectral envelope should be weaker above the
6th partial. The recreated spectral envelope is much closer to the original spectral

envelope.

In conclusion, aformant analysis method has been described. It models the formants as
asum of gaussiansin the linear amplitude domain. The addition of the formant model
decreases the error of the spectral model, but the formants found by the formant analysis
does not always correspond to the real formants. The formant model is not used in the rest

of thiswork.

7.6. Conclusion

Thiswork presents a new spectral envelope model. It models the spectral envelope with
afew perceptually important attributes, but nevertheless, the visual shape of the envelope
is often preserved. The parameters of the spectral model have been found in the literature
of auditory perception, and they are brightness, the odd/even relation, tristimulus, and
irregularity. The most important parameter is brightness, and functions for creating asignal

with a given brightness have been found for the additive domain and for the time domain.
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The combination of these parameters models a source spectrum, including formantic
structure in the low partials. Most musical instruments can be modeled with this model, but
unfortunately not the strong formantic structure of the human voice. An initial study of a
formant model has therefore been performed. The formant model presented here reduces
the error of the spectral model, but there is no guarantee it really models the formants and

not other irregularities of the spectral envelope. The spectral envelope model with formants
isnot used in the rest of this document.

By analyzing atime-varying spectral envelope, a good restitution of harmonic sounds

can be made. Thisindicates that this spectral envelope model is stable and well chosen.
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Chapter Eight

8. Minimal Description Attributes

In this chapter, the parameters found in the HLA model presented in chapter 6 are
further modeled by the partial evolution. Thisis done to extract the smallest number of
parameters necessary to define a sound from the HLA model. Some of these parameters,
such as the fundamental frequency, have an immediate perceptual value. Amplitudeis
modeled using the spectral envelope model in the preceding chapter, but most parameters
keep the same unit asin the HLA model.

The Minimal Description Attributes (MDA) model generally has two values for each
attribute, afundamental value, and a partial evolution value. The fundamental valueis
useful when the value of an attribute is to be visualized, but the full MDA parameter set is
necessary if asound isto be resynthesized.

8.1. Introduction

The MDA model is an attempt to distill the minimum number of parameters necessary

to characterize the identity and quality of an instrument. In order to do this, the high level

105



Chapter 8. Minimal Description Attributes

attributes calculated in the preceding chapter are used, but instead of keeping one
parameter for each attribute and partial, amodel of the curve along the partial axis for each

attribute is found and modeled using few parameters.

The MDA model is created by curve fitting [Lancaster et al. 1986] the data of the HLA
model to asimple curve. The simple curve should either have physical relevance [Fletcher
et al. 1991] or minimize the perceptual error. The spectral envelope is modeled, as
explained in Chapter 7, by minimizing the perceptual error using parameters correlated
with perception [McAdams et al. 1995]. The frequencies are modeled using frequencies
that corresponds to the frequencies of the quasi-harmonic partials of a stiff string [Fletcher
1964] or the frequencies of the impulse response of the flute [Y stad et al. 1996].

Not much literature involving the model of envelope or noise parameters as a function
of partia index has been found. [Charbonneau 1981] models the attack and release times
using a fourth order polynomial. [Ando et al. 1993] analyze the shimmer and jitter
standard deviation, and plot it as afunction of harmonic index, but they do not offer a

model of the harmonic evolution.

The MDA model is kept as simple as possible. The amplitudes are modeled using the
algorithms developed in Chapter 7, the frequencies are modeled using a simple stretched
harmonics model, and the other parameters, including the envelope and the noise
attributes, are modeled using a simple exponential curve. The exponential curve has been
chosen from a selection of linear, polynomial and other curves by performing informal
listening tests.

In addition to the parameters describing the amplitudes, frequencies and the exponential
curvefor al other attributes, an error term is also calculated for each attribute. This error
term can be used, in theory, to recreate several variations of the same performance, in the
same manner that an instrumentalist never sounds exactly the same each time he or she

plays anote. This correspondsto the variantsin [Risset et al. 1982].

This chapter starts with a definition of the frequency model in section 8.2. The spectral
envelope model is discussed in section 8.3. The generic model using an exponential curve
Is presented in section 8.4, and the error term is discussed in section 8.5. The analysis from
the HLA model is detailed in section 8.6 and the recreation of HLA modelsis explained in
section 8.7. The sound quality of the MDA model is discussed in section 8.8, and the

chapter ends with a conclusion.
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8.2. Frequency Model

The frequencies of the partials are important to the perceived timbre of the sounds. A
simple model of the frequenciesis used here, which can model quasi-harmonic sounds
with stretched or compressed harmonic frequencies. The frequencies are characterized by 2
parameters, the fundamental frequency and the inharmonicity, which is a measure of how
much the higher partials are * stretched’ above or ‘ compressed’ below the ideal harmonic
frequency.

The frequency model is based on amodel for the frequencies of a stiff string [Fletcher
1964]. The frequency of the partial k of a stiff stringis,

f = ki \1+pK (8.2
where f; is the fundamental frequency and § is the inharmonicity. The values of f; and

are found using a nonlinear |east-squares curve fit [Moré 1977]. The same model is used
when analyzing the frequencies of the impulse response of the flute [ Y stad et al. 1996],
although B is here negative.

The frequencies, divided by the partial
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The weak high order partial frequencies can be misudged due to the presence of noise,
and they are not used in the curve fit. The estimated frequencies can be seen in the dotted
line.

The presence of inharmonicity in the piano certainly adds aflavor to the sound, and it is

necessary to use the inharmonicity model, instead of assuming clean harmonic frequencies.
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The viola seems perfectly harmonic, the piano has stretched partial frequencies, the
trumpet also has almost perfectly harmonic frequencies, whereas the frequencies of the
upper partials of the flute have been misjudged due to noise, and the flute inharmonicity
value is estimated to be non-zero. The values of the inharmonicity of the four sounds are
1.240%, 3.440%, 3.620% and 6.6:40%. The flute has erroneously a higher inharmonicity

value than the piano.

8.3. Amplitude M odel

The amplitudes are described by the spectral envelope model introduced in Chapter 7.
The sounds are assumed to lack aformantic structure, or other resonant behavior, although
provisions for formants have been made. The attributes describing the amplitudes are
brightness [Beauchamp 1982], tristimulus [Pollard et al. 1982], the odd/even relation
[Fletcher et al. 1991] and irregularity [Krimphoff et al. 1994]. See [McAdams et al. 1995]
for areview of these and other timbre attributes. The formulas for the spectral envelope

attribute calculations are,

N N
T, = brightness = (8 ka,)/ Q a, (8.2)
k=1 k=1
J
T, =tristimulusl=a,/Q a, (8.3
k=1
J
T, = tristimulus2 = (a,+a, +a,) /A a, (8.4)
k=1
NO/ 2 Cl)\l
T,=odd =(Q ay.,)/ a & (8.5
2 k=1
5 2\ & 2
irregularity =(Q (a, - a.,)°)/ a a (8.6)
1 k=1

For the recreation of the amplitudes from the spectral envelope attributes, see the
spectral envelope model in Chapter 7. The recreation creates amplitudes, which are
exponentially decaying, combined with an odd/even relation, above the 5th partial,
whereas the first 5 partials have an individual shape. The recreations usually keep the
shape of the spectral envelope, and more important, since they are derived from perceptual

research, the perceptual quality of the sound.
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The original spectral envelopes of 4 Vo Jano

N

musical instruments are shown in figure 8.2, 00| Vean o\

along with the MDA model spectral envelope = T

_ \ . 102 \
(dotted). It isinteresting to see that the 10° 10° \/Mm

amplitude

=
o

amplitude

5
Y

different spectral parameters permit a good 0 partiangex ¥ partialindex 0 %
. . . trumpet .\ flute
resynthesis of aformant, if itisbelow the5th TR
10 \N 10° '\\
harmonic, as seen in the trumpet example. 2102 210 e
i 2101 %101
The perceptive spectral envelope model 00 "
parameters keep the original values for all 0t 0 ie w5 107 S oanle
sounds. Figure 8.2. Spectral envelope four 4 musical
instruments, with the MDA model spectral envelope

(dotted).

8.4. Generic Parameter M odel

Therest of the parametersin the HLA model are modeled by a simple exponential

curve with 2 parameters,

C = Vp* e (8.7)
where kisthe partia index, v, and v, are the parameters of the MDA model curve c,.

To estimate the parameters v, and v;, an initial estimation is first found by linear least
square curve fit [Schwarz 1989] in the log domain. Thisinitial estimation isthen usedin a

non-linear least square curve fit [Moré 1977] with the original measured values.

The estimation of the parametersisimproved by using only the strong partials of the
sound, as explained in paragraph 8.4.1.3.

8.4.1. Envelope Parameters

The envelope is the time-varying amplitude of each partial. The envelopes are here
normalized between zero and one. The maximum amplitude of each partial is stored in the
spectral envelope.

The parameters of the envelope model are the envel ope times, the envelope relative

amplitudes (percents), and the envelope segments curve forms.
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8.4.1.1 Envelope Times

The parameters that are estimated here are the start time, the attack time, the sustain
time, the release time, and the total length. Furthermore the start of attack, end of attack,
start of release and end of release percents of the maximum amplitude are modeled along

with the curve form for the 5 segments.

The times are modeled as the relative times between segments for the attack and
release, and as the absolute times for the start, the sustain and the end. The attack and
release times for the 4 sounds are plotted in figure 8.3 along with the MDA model times
(dotted). The HLA parameters are rather noisy, so the exponential model is rather

unfounded in some situations, but the attribute values seem to be respected in general.
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Figure 8.3. Attack and release timesfor the 4 sounds, with the MDA model envelope times (dotted).
Attack (top) and release (bottom).

The envel ope times are generally well modeled with the exponential curve. The flute
attack is especially well modeled. However, noise and bad analysis often perturb the
envelope time values; thisis the case for the piano attack, for instance. All in al, the
envelope times are well modeled by the ssmple exponentia curve. Notice the atypical
behavior of the trumpet attack and release, where the high partials are slower than the low
partials. The release times deviate in the low partials of the trumpet, since the total time of

all five segments otherwise would have been greater than the end time.

8.4.1.2 Envelope Per cents and Curve Forms

The percents are the relative amplitudes of the partials at the split points. There are 4
percents, for the start of attack, the end of attack, the start of release and the end of release.
The percents multiplied by the spectral envelope value for the same partia yields the split
point amplitude.
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The curve form is the shape of the segments. There are five curve forms, for the start,

the attack, the sustain, the release and the end segments.

The end of attack and start of release relative amplitudes for the 4 sounds are plotted in
figure 8.4 with the MDA model parameters (dotted), and the attack and release curve
forms are plotted in figure 8.5 with the MDA model parameters (dotted). The curve form
values are set to a default value (1) if the curve istoo short. Thisisvisible in the upper

partials of the piano.
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Figure 8.4. End of attack (top) and start of release (bottom) percentsfor the 4 soundswith the
MDA model parameters (dotted).
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Figure 8.5. Attack and release curveform for the 4 soundswith the MDA model parameters
(dotted).

The percents seem to fit the exponential model well. The improvement explained in

8.4.1.3isvery visiblein the piano release relative amplitudes.
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The viola, piano and flute percents are falling with frequency, whereas the trumpet

release is rising with frequency. The trumpet attack percents seem constant. The percents

seem rather correlated with the attack and release timesin figure 8.3.

The double curve in the release percents for the piano is probably explained by noise in

the higher partials, which could increase the percent values.

The exponential model generally seemsto fit the curve forms very well, although

mostly because the curve form values are relatively constant. The viola curve form values

seems rather exponential, the piano values are not very reliable because of the short piano

attack and the relatively important transient behavior.

The trumpet and the flute curve form values have a shape which seems reliable and

which is not modeled by the exponentia curve. Nevertheless, the deviations are small and

this has not been found perceptually important.

8.4.1.3 Weak Partials

The weak upper partials often disturb the estimation of the parameters of the

exponential model. For this reason, they are removed from the data before the estimation.

One important example is found in the release percents for the piano.

The upper partials of the piano are very
weak, and more sensitive to noise and bad
analysis.

The piano release percents are shown in
figure 8.6 with the recreated percents made
with all partials (dashdotted), and with only
thefirst 32 strong partials (dotted).

The curve forms are obviously very
different, and the dotted curve would be
preferred, since the high partials, which are
modeled better with the model using all
partias, are relatively weak and inaudible.
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The modeling of al exponential curves are therefore made using only the partials whose

amplitude is above a threshold relative to the maximum amplitude. Thisimprovement is

used in the rest of this work.
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8.4.2. Noise Parameters

The noise on the frequency of the partials (jitter) and the noise on the amplitude of the
partials (shimmer) are modeled in the attack, sustain and release segments by 2 parameters
in each segment, one for the standard deviation and one for the single-tap recursive filter
coefficient. Furthermore, the correlation between the fundamental and the other partials
shimmer and jitter are modeled for the full length of each partial.

The shimmer parameters for the sustain part of the sound are plotted in figure 8.7, with
the standard deviation (top), the filter coefficient (middle), and the correlation (bottom).
Some of the partials are too short to permit an estimation of the noise parameters; these are

therefore set to default values.
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Figure8.7. Sustain shimmer parametersfor the 4 instrumentswith the MDA values (dotted).
Standard deviation (top), filter coefficient (middle) and correlation (bottom).

The shimmer parameters don’'t seem to fit the exponential model very well, with the
exception of the correlation. Thisisin part explained by noise on the high and weak
partials, but still, it seems that the important noise parameters need another model, which
fits the data better.

The jitter parameters for the sustain part of the four sounds are plotted in figure 8.8. The
standard deviations are plotted on top, the filter coefficients are plotted in the middle and
the correlations are plotted in the bottom. The jitter model has the same problem as the
shimmer model. The datais not very exponential, and very noisy, so the recreated curve

sometimes fits the noise of the curves more than the important partial values.

113



Chapter 8. Minimal Description Attributes
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Figure 8.8. Sustain Jitter parametersfor the 4 instrumentswith the MDA values (dotted). Standard
deviation (top), filter coefficient (middle) and correlation (bottom).

8.4.3. Comments on the Noise M odel

The noise parameters are very sensitive to the weight of the timbre attribute parameters.
One important example is the sustain jitter standard deviation, as seenin figure 8.8. The
lower partials obviously have very little jitter for all four instruments, and the higher order
partials have an important jitter standard deviation. When modeling this with the
exponential form, the lower partials get atoo large jitter standard deviation, especially for
the viola and the flute sounds. This completely changes the perception of the noise of these

instruments; the relatively high-frequency noiseis transformed into alow-frequency
rumble.

An alternative to the exponential curve could be, for instance, a polynomial. A second
order polynomial has been tested with good results. The exponential curve givenin
equation (8.7) is replaced with the second order polynomial given by,

C, =V, + Vvk+vk® (8.8)
where k is the partial index. The parameters of the polynomia model are found using the
linear least-squares fit [ Schwarz 1989]
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The standard deviation of the shimmer and fue exp. shimmer
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guality is much closer to the original.

Thisis because the polynomial model restitutes the low jitter and shimmer of the strong
low partials, whereas the exponential model gives the low partials too much jitter and

shimmer.

The different models don’t change much for the other three test sounds. Unfortunately,
the polynomial noise model was introduced after the listening tests performed in Chapter
12 so0 no objective measure of its quality has been made. It seems, definitely, that the
exponential model is not suited for the modeling of the important noise standard
deviations. A second order polynomial performs better. Another option isto weight the

HLA values before the curve fit.

8.5. Error Term Calculation

Although the curves above fit the data in the | east-squares sense, they are by no means
equivaents. The difference between the clean exponential curve and the data is assumed to
be related to the execution of the sound, and the error can, if modeled properly, introduce
new executions of the same sound, i.e. of the same instrument, player and style, in the

same environment.

The error between the data curve and the exponentia curve is supposed to be normal
distributed, and it is modeled by the standard deviation. The error is furthermore divided
into an odd and an even error, which have a separate mean value. Thisis done so that for
instance bad analysis of the weak even partials of the clarinet will not introduce too much
noise in the strong odd partials. The error is weighted by dividing by the partial index, and
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recreated by multiplying by the partial index. This ensures that the normally strong lower
partials don’t get a high error from the weak, and error prone, higher partials.

Although it is possible to recreate a deviation from the exponential curve, whichis
similar to the error, it does not always give the same perceptual quality. One reason for this
could be that the error is not random, but instead correlated, either between attributes, or
between sounds from the same instrument. It could also be suspected that the error termis

related to the model of the sounds, or the estimation of the model parameters.

One way of finding out isto look at the correlation between different error terms. The
correlation of the different timbre attribute errors for 4 musical instrument sounds are

analyzed here.

The error for the attribute i and the partia kis

e = (p - V)/k (8.9)
where p' isthe HLA timbre attribute i and V' isthe MDA modeled timbre attributei. The
error has NxM terms, N is the number of partials and M is the number of timbre attributes.

The error i issaid to be mostly correlated with another timbre attribute j when

j =max(correlation(e',e" )) (8.10)

When analyzing the correlation of the errors, the different timbre classes are in general
mostly correlated with another attribute from the same timbre class, for instance the sustain
time ismostly correlated with the release time for 3 out of 4 instruments. There are
exceptions: the release curve form error is mostly correlated with the release shimmer std,
which leads to the conclusion that if the curve form iswrong, then the error isimportant.
The start of attack percent is correlated with an attack error for 3 out of 4 instruments,
which indicates again that if the envelope is wrong then the error islarge. Thisis probably
an analysis error, and not afeature of the sounds. The sustain and release shimmer std is
mostly correlated with envelope attributes for 7 out of 8 correlations. The release jitter
filter coefficient is mostly correlated with 4 envel ope attributes.

In conclusion, it seems that the error is dependent more on the analysis, than on the
actual quality of the sound. Further work is needed in order to use the error term

successfully in the resynthesis of sounds.
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8.6. Analysisfrom HLA Attributes

The HLA parameters presented in Chapter 6 are all that is needed to create the MDA
parameters. The envel ope times have been modified, so that the attack, sustain and release
times are relative, and not absolute. The amplitudes and frequencies are analyzed by the
methods in sections 8.2 and 8.3 and the other parameters are calculated by the methods
exposed in section 8.4. Care must be taken when estimating the filter coefficient

parameters, since the filter coefficients are negative.

8.7. Recreation of HL A Attributes

The recreation of the HLA parametersiis straightforward, once some simple numerical
limits are respected. All the parameters must be positive, with the exception of the filter
coefficients, which lie between -1 and 0. The noise correlation values are always between
zero and one, with the first value, which is not used in the curve fit, equal to one. The
frequencies are calculated by the formula (8.1). The amplitudes are calculated by the
method introduced in Chapter 7.

The complete HLA parameter set, recreated from the MDA parameters, without error,
for the same four sounds as in the Chapter 6, is plotted in figure 8.10, figure 8.11, figure
8.12 and figure 8.13. The corresponding HLA parameters with error in the parameters are
plotted in figure 8.14, figure 8.15, figure 8.16 and figure 8.17.

The spectral envelope (top left) and the frequencies (second from top left) have only
one curve each. The envelope timing (third from top left) has four curves, the start of
attack time‘0’, the end of attack time **’, the start of release time ‘x’, and the end of
release ‘+'. The percents (fourth from top left) also have four curves with the same
symbols, the curve forms (bottom left) have 5 curves, the start curve ‘+' the attack curve
‘0’, the sustain curve **’, the release curve ‘X’ and the end curve ‘.’ . For the sake of clarity,
the start and end curves are dotted. The shimmer std (top right), jitter std (second from top
right), shimmer filter coefficients (third from top right) and ), jitter filter coefficients
(fourth from top right) have 3 curves, attack ‘o', sustain ‘*’, and release ‘x’. The noise

correlation is shown bottom right with the shimmer ‘o’ and the jitter **".

The spectral envelopes for the four sounds are quite different. The flute has no
amplitude in the high partials, where the viola has relatively high amplitude for the 16

partial. The trumpet has avery visible formant region around the fifth partial.
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Both the flute and the piano have stretched frequencies, but in the case of the fluteitis

because of noise on the weak upper partials, whereas the piano really has a stretched

frequency curve.
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The piano has rather static envelope timesfor all partials. The trumpet envelope times

have the typical shape, where the higher partials attack ends later and the release starts

earlier. The flute envelope times are difficult to see, because of the relatively long sound,

but the low partials attack seems longer than the high partials attack. The viola also has

shorter upper partial attacks.

The piano percents are very low for the start of release split point. The start of attack

and end of release percents are low for al sounds, whereas the end of attack is high for all
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sounds except the flute, where both the end of attack and the start of release percents drop
with frequency.

The curve form values are generally close to one for the attack of al sounds. The start
and end values are not very important, since they model segments that are close to silent.
The trumpet attack is exponential, asis the viola and piano releases.

The shimmer std values are much higher than the jitter std values, as could be expected.
The trumpet has arelatively low shimmer std, and the flute has arelatively high shimmer
std. The piano has very high shimmer and jitter std for the attack and release segments.

The jitter filter coefficients are generally higher than the shimmer filter coefficients.
This can be explained by the simple amplitude model, which gives the shimmer alow
frequency quality.

Correlation is generally lower for the jitter than for the shimmer. This could again be
explained by the smple amplitude model. The frequency model is of course very good,

since the frequencies are supposed to be static.
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Figure 8.14. Recreated HL A parameters of the Figure 8.15 Recreated HL A parametersof the

viola, with error term. piano, with error term.

The MDA parameters with error term are often quite close visualy to the corresponding
HLA parameters, which can be seen in section 6.7 on page 79 in Chapter 6. The amount of
noiseis an indication of the success of the model parameter estimation, as shown in section
8.5. The spectral envelope and frequency curves seem relatively clean, and the envelope
parameters are also generally rather clean, with the exception of the curve forms, although
the important attack curve form curve is still visible.

There is more error on the noise parameters, with the exception of the correlation. The

filter coefficients are very noisy.
119



Chapter 8. Minimal Description Attributes

B Amp., Freq. & Envelope Attributes Noise Attributes

210 21 Amp., Freq. & Envelope Attributes Noise Attributes
2 o 8 104 T 1
£ M% 5 05 El 2
£10° EW = ]
s E ey L g2 £0.5
g Y * 510 £
=2 5 10 15 a 5 10 15 ) =
= 0.2 o B
F270 b=t —
z & o) -
% 50.1 z &
5 260 2 > 550 s
-§ = o P 2 g
g 5 10 15 £ 500 s
7500 g 0 @
E 8 > g
= 0. £
g g-05 L =2000 5.
£ E .8 o4 £
=R =T
& 5 10 15 L T 5 E
g b e 0 . 5 10 15 a
c 3 o) 2
805 ©-0.5 € g
g g Sos 3.
o 5 4 15 8
5 10 15 b=t B A =
g2 g L 5 10 15
£ S 02 .
2 i 20.5 £ §
. @0. /
2 2 L \ A 205
5 4 3
30 Z o0 g |, + =]
5 10 15 5 10 15 ot VAV Z 0 «
Partial index Partial index 5 10 15 15

5 10
Partial index Partial index

Figure 8.16 Recreated HL A parameters of the

trumpet, with error term, Figure 8.17 Recreated HL A parameters of the

flute, with error term.

All MDA parameters have the same amount of noise, maybe with the exception of the

trumpet, which seems cleaner.

8.8. Sound Synthesisfrom the MDA

The sound synthesis from the MDA is done through the HLA and the additive
parameters as described in Chapter 6. In principle the MDAS create a sound with the same
complexity as the other models. In figure 8.18 (viola), figure 8.19 (piano), figure 8.20
(trumpet) and figure 8.21 (flute) the additive parameters from the original analysis (left),
the recreated additive parameters from the MDA parameters without error term (middie)
and with error term (right) are shown.

Visually, the viola, piano and trumpet seems to have kept the shape of the parameters,
whereas the flute is very distorted by noise. Thistranslates into a greater impairment of the

sound.

Vol Viola MDA Viola MDA#error

Figure 8.18. Additive parametersfor theviola. Original (Ieft) MDA without error (middle) and
MDA with error (right).
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Piano Piano MDA Piano MDA*error

Frequency 070 . Frequency oo

Figure 8.19. Additive parametersfor the piano. Original (left) MDA without error (middle) and
MDA with error (right).

Trumpet Trumpet MDA Trumpet MDA+error

Figure 8.20. Additive parametersfor thetrumpet. Original (left) MDA without error (middle) and
MDA with error (right).

Flute Flute MDA Flute MDA-error

Figure 8.21. Additive parametersfor the flute. Original (Ieft) MDA without error (middle) and
MDA with error (right).

The trumpet sounds close to the original, the viola and the piano sound different, and
the flute is very distorted; indeed, the noise of the flute has a different quality. Still, the
sounds are very much recognizable, and the problem can be traced to the fact that the
lower stronger partials have atoo big noise value. This can perhaps be solved with another
noise model, as proposed in 8.4.3, or with different weighting of the noise values. The
sound synthesis from MDA parameters with error term is still identifiable, but this model
sometimes introduced artifacts, such as high frequency jitter or loose partials, which stick
out from the otherwise homogenous sound. Aside from the artifacts, the sound is definitely
different without being another instrument, so this method seems promising. Still, the
parameters created from the MDA with error need to be limited in some way, so the

annoying artifacts do not occur.
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8.9. Conclusion

A number of essential timbre attributes are fond in the MDA model. These parameters
can be used to resynthesize a sound, as shown in this chapter, but they can also be used to
visualize important timbre attributes, as shown in Chapter 9. They can be used as a
template in the modification of sounds, as shown in Chapter 10 and they can be used for
the classification of musical instrument sounds, as shown in Chapter 11. The sound quality
of the resynthesis from the MDA model is evaluated in the listening tests performed in
Chapter 12.

Although these parameters are visually close to the HLA parameter set, and the sounds
created from the MDA parameters are perceptually close to the HLA sounds, the sound
quality is not as good. The problem seems to be the noise parameters, which, when
modeled with an exponential curve, often give the wrong value to the lower partials. A
polynomia model seems to correspond better to the important noise standard deviation

values.

Analysis of the error terms shows that it is often aresult of bad parameter estimation,
rather than the result of a bad model. Nevertheless, the parameters give a good restitution
of the sound, if the analysisis performed correctly. The trumpet, for instance, has a very
close resemblance to the original. Further improvements to the models would be a better
noise standard deviation model, or a different weight on the different parameters. The
MDA model is aso improved by using only the lower strong partials in the estimation of

the parameters of the model.

The frequencies are well modeled by the fundamental and the inharmonicity, the
amplitudes are well modeled by the spectral envelope model aslong as there are no
formants. The envelope times, percents and curve forms are generally well modeled with
the exponentia curve, if the weaker, noisy high partials are not used in the estimation of
the parameters. Improving the noise model would probably give the best improvement in
sound quality.

The MDA model finds afew important parameters for the sound, and while some
problems with the parameter estimation exists, the MDA model parameters are believed to
be a good guess of the minimum number of parameters necessary to describe a musical

instrument sound.
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Chapter Nine

0. Instrument Definition Attributes

In this chapter the timbre attributes for many executions of the same instrument are
collected in the Instrument Definition Attributes (IDA) model, in half octave bands. This
shows clearly the evolutions of the timbre attributes as a function of fundamental
frequency. Furthermore, the IDA model can visualize changes from different playing
styles, or different intensities. The IDA parameters are assumed to give a complete
description of amusical instrument, ranging from the definition of the timbre of one sound,

to the evolution of the timbre as afunction of note or expression.

The evolution of the timbre attributes is analyzed here as a function of fundamental
frequency, intensity, tempo and style. Some simple rules of timbre changes have been
found which are helpful when changing, for instance, the pitch of a sound. The IDA model
contain all information about a musical instrument, and it can be used to create soundsin
the full playing range of the instrument, although the resynthesis quality is not yet
satisfactory.
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9.1. Introduction

It is not enough to model one sound of amusical instrument to recreate the music of
that instrument. It is also important to model the evolution of timbre from the low notes to
the high notes of the instrument. Furthermore the evolutions from low velocity to high
velocity, from different playing styles, such as legato and staccato etc., are aso important.
For this reason, the instrument definition attributes (IDA) model has been introduced. This
model keeps the mean of every MDA parameter for each half octave, for each playing
style, intensity, etc. The MDA model is presented in Chapter 8. The sound can then be
recreated by choosing the note and interpolating the intensity, style, etc. Although further
work is needed to achieve an acceptable quality of the recreated sounds, the IDA is useful
when the evolution of the timbre attributes are analyzed. If aresynthesis of good quality is
needed, the IDA parameters could be derived from the HLA model presented in Chapter 6
instead of the MDA model, but this creates other problems, such as the variable number of
partialsin the HLA model.

Some indications of the evolution of the timbre attributes can be found in general books
on musical acoustics [Backus 1970], [Benade 1990], [Rossing 1990]. Gregory Sandell has
aweb site [Sandell 1998] with plots of the brightness, irregularity and loudness for
different musical instruments, which correlate well with the values found here. The physics
of musical instruments [Fletcher et al. 1991] may also be of help in evaluating the
evolution of the different timbre attributes as a function of fundamental frequency,

intensity or other parameters.

This chapter starts with a presentation of the IDA frequency scale in section 9.2. The
IDA values are calculated in section 9.3. The different IDA classes are enumerated in
section 9.4, and the evolutions of different MDA parameters as a function of fundamental
frequency for different instruments are analyzed in section 9.5. The intensity evolution of
piano sounds is analyzed in section 9.6, and an analysis of the parameters with two
different tempi of the clarinet is presented in section 9.7. The analysis of three different
styles of the cello is presented in section 9.8. The sound quality of the resynthesis from the
IDA model isdiscussed in section 9.9. Finally aconclusion is offered.
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9.2. Half Octave Bands

The IDA attributes are the same as the MDA attributes, but they are collected for many
sounds of one instrument. A number of soundsin the full playing range of amusical
instrument are analyzed, and the MDA parameters are created for each sound. The IDA
value for each parameter and IDA frequency index is then the mean of the values from the

MDAs with fundamental frequency within the corresponding band.

The IDA frequency range is divided into 15 bands in the log2 domain of the
fundamental frequency. The bands range from 32 Hz to 4 kHz in half octave steps. All
MDA parameters are then searched for each band, and the ones whose fundamental
frequency is between the band + 1/4 octave are used. Each parameter (spectral envelope,
frequencies, envelope, noise, etc.), including the partial evolution, of the band is set to the
mean of the corresponding parameter of the MDAs used. If no MDAs arefound, it is
probably outside the playing range of thisinstrument, and the closest MDA is used.

The MDA parameter values with the fundamental frequency f, are added to the IDA
stepif,

log,(f,) 2 (i+9)/2:11&Iogz(f0)<(i+9)/2r—i (9.1

This means that the frequency range for each IDA index step is

1(26.9 Hzt0 38.1 Hz) 9 (430.5 Hz to 608.9 Hz)

2 (38.1 Hz t0 53.8 Hz) 10 (608.9 Hz to 861.1 Hz)

3 (53.8 Hz to 76.1 Hz) 11 (861.1 Hz to 1217.7 Hz)
4 (76.1 Hz to 107.6 Hz) 12 (1217.7 Hz to 1722.2 Hz)
5 (107.6 Hz to 152.2 Hz) 13 (1722.2 Hz to 2435.5 Hz)
6 (152.2 Hz to 215.3 Hz) 14 (2435.5 Hz to 3444.3 Hz)
7 (215.3 Hz to 304.4 Hz) 15 (3444.3 Hz to 4871.0 Hz)
8 (304.4 Hz t0 430.5 Hz)

The IDA freguency scale can be seen in figure 9.1. The scale range is divided into half-

octave steps.
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Figure9.1. Approximative I DA freguency bandsfor different musical instruments (picturetaken
from [Lindsay et al. 1977]).
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The IDA parameters become more stable, the more sounds there are in each frequency
band. Initialy it was believed that the IDA could remedy some analysis errors, i.e. the
MDA parameter errors might be great, but the mean of the errors would be zero. This
seems true for the visualization of the timbre attributes, but no such conclusion can be
made for the resynthesis, maybe because not enough sounds have been used in the creation

of the IDAS, or possibly because the errorsin the MDA model are very correlated.

9.3. IDA Parameter Calculation

The IDA model parameters are derived from the MDA model parameters, which in turn
are extracted from the HLA model parameters. The HLA model parameters are calculated
from the additive parameters, which are analyzed from the sampled sound.

The additive parameters are calculated using the LTF analysis method as explained in
Chapter 4. Theinitial frequencies used in the analysis are the frequencies found in Chapter
3, with one important exception. The fundamental frequency estimation is given the note
of the sound to analyze. The initial frequency search is therefore ssmplified: first find the
frequency differences that are close to the given note, then do the stretched frequencies
curve fit, and finally look for spurious frequencies. It was necessary to use this method in

order to eliminate the influence of the fundamental frequency estimation error.

The HLA parameters are calculated from the additive parameters as explained in
Chapter 6 and the MDA parameters are calculated from the HLA parameters as explained
in Chapter 8.

The value for each IDA frequency band is set for each parameter to the mean of the
corresponding values of all MDA which have the fundamental frequency in the frequency
band.

IDA, =mean(MDA(f, T band,)) (9.2
If thereisno MDA with fundamental frequency in afrequency band, the closest MDA
isused. Thisensuresthat all IDA values always are set. If thereis only one available MDA
for the creation of an IDA class, then the IDA parameters are equivalent to the MDA
parameters, although lacking the fundamental frequency.

The parameters of the plotsin this chapter are the values of the fundamental, recreated
from the fundamental values (v, in equation (8.7) on page 109) and the partial evolution

value.
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9.4. IDA Classes

A separate IDA is created for each playing style, intensity or other class, since not all
instruments have the same number of playing styles, and it would be difficult to organize

them in the same manner for all instruments.

Typical classes are the different intensities of an instrument, such as piano, mezzo forte,
or forte. Other classes are the different playing styles of an instrument, such as legato,
staccato, etc., and the tempo of the execution. Furthermore, it isinteresting to classify the
instruments in the physical dimensions of the gestures of the instrumentalist, such as the

speed or the position of the bow in the violin.

Often, fewer samples are available for some of the IDA classes than for other. Then the
attributes from the largest class should be used in case no MDA is available for the target
class, with a difference value added. For instance, if both the target class® and the largest
class’ have MDAs at frequency band k, but the IDA values are wanted from class® and
frequency band j, where only class® has MDA values. Then the resulting val ues could be
the values of class? plus the difference between the values from class’ and class?, in the
closest frequency band k where both classes have MDA parameters,

IDA’ = HLA(f, T band,) + HLA®(f, T band,) - HLA’(f,T band,) (9.3)
If no common frequency band exists, other more elaborate schemes could be found, but
thisis beyond the scope of thiswork. Generally, it probably makes more sense to use the

values from the closest frequency band where values from MDAS exist.

9.5. Fundamental Frequency Evolution

In this section, the evolutions of all timbre attributes are analyzed as a function of
fundamental frequency. The analysisis done on five instruments, the piano, the violin, the
clarinet, the flute and the soprano. All instruments have sounds from the normal playing
range of the instrument. These are the same sounds used in the classification in Chapter 11

and in the listening tests in Chapter 12.

9.5.1. Spectral Envelope Evolution

The spectral envelope parameters are brightness, tristimulus, the odd/even relation,
irregularity and amplitude. The spectral envelope model parameters are plotted in figure
9.2 for the piano, in figure 9.3 for the vialin, in figure 9.4 for the clarinet, in figure 9.5 for
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the flute and in figure 9.6 for the flute. The parameters which are plotted are the brightness
in Hz, that isthe partial index brightness multiplied by the fundamental frequency (top
left), the odd value (bottom left), the tristimulus 1 and 2 (top right) and the irregularity
(bottom right). All x-axes, except for the tristimulus are in IDA frequency band index. Two
plus signs at the x-axis depict the fundamental frequency range of the instrument of the
plot. The tristimulus plots do not have an IDA frequency band axis, but the curve can be
followed from the lowest frequency ‘+ to the highest frequency ‘o'.

The brightness’ in partial index for 5 instruments are plotted in figure 9.8 and the

amplitudes for all five sounds are plotted in figure 9.7.
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Figure 9.2. Spectral parametersfor the piano. Figure 9.3. Spectral parametersfor theviolin

The spectral envel ope attributes changes seem very important when changing the
fundamental frequency. Aninitial analysis of the spectral envelope attribute changes
reveals some properties of these attributes, which corresponds to most of the instruments.
The attributes that seem to have an simple law associated with the fundamental frequency

change are brightness, tristimulus, odd and amplitude.

The partial index brightness multiplied by the square octave index is roughly constant
for most instruments. Thisis a handy guideline, if the pitch of a sound is modified, and
gross spectral envelope effects avoided. The amplitude divided by the log of the octaveis
also more or less constant over the full fundamental frequency range for most instruments.
Tristimulus 1 divided by the octave, and tristimulus 2 multiplied by the octave are fairly
constant for al sounds, asis the odd times the square octave. All these observations are

valid for most of the instruments to some degree.
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Figure 9.4. Spectral parametersfor theclarinet. Figure 9.5. Spectral parametersfor theflute.

Except perhaps for brightness and amplitude, these rules are not valid in all cases. They
can be used, though, if the pitch of a sound is to be changed, and no other information of
the timbre attribute changes for that pitch is available.
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Figure 9.6. Spectral parametersfor thesoprano.  Figure9.7. Amplitude for the 5instruments.
Brightness (top left), tristimulus (top right), odd Piano (solid), violin, (dotted), clarinet, (dashdotted),
(bottom left) and irregularity (bottom right). flute, (dashed) and soprano (+-solid).

All instruments except the soprano have frequency brightness rising with the
fundamental frequency. The piano has arising brightness curve, going from almost 500 Hz
at the lowest notes, to above 2000 Hz at the highest notes. Thisisin strong contrast to the
soprano voice, which has a stable brightness at about 1200 Hz. This can be explained by
the fact that the soprano needs to keep the same formantic structure all the time, since the

same vowsel is used for all notes.

Nevertheless, the frequency brightness rise is not so dramatic as the tristimulus 1 rise

for the piano, so the fundamental has more relative strength for the high notes.
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The partial index brightness shown in
figure 9.8 makesiit clear that most instruments
have most of the amplitude in the
fundamental for the highest frequencies, since
brightness always tends towards one for the
highest pitches.

The tristimulus general trend is towards
the fundamental corner. Thisis especialy true
for the flute. The violin has afairly constant
tristimulus 2 value, and the clarinet has a
rising tristimulus 2 value. Common to all
soundsisafalling tristimulus 3 value,

indicating weaker high-frequency amplitudes.
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Figure 9.8. Partial index brightnessfor 5
instruments. Piano (solid), violin, (dotted), clarinet,
(dashdotted), flute, (dashed) and soprano (+-solid).

The tristimulus 1 value for the piano goes from nearly zero for the low notes to close to

one for the high notes. It is aso interesting to observe the jJump in tristimulus 1 at about 2/3

of the scale. This might be explained by the difference in string quality, the number of

strings or the string coating.

It isalso interesting to observe the
tristimulus curves for the soprano: first
tristimulus 2 rises, and then tristimulus 1.
This might be explained by the place of the
first formant: for the low notes the first
formant is placed above the 4™ partial, but as
the fundamental frequency rises, the 4™, 3
and finally 2™ partial are amplified by the
first formant. Finally the fundamental is
placed in the formant region, which is
consequently forced to rise with the
fundamental. See [Sundberg 1987] for a

further explanation of this phenomena.

Odd + Tristimulus 1
T

Odd+tril
o
n

2 s s 8 0 12 14
IDA frequency band
Figure9.9. Odd plustristimulus 1 for thefive
instruments. Piano (solid), violin, (dotted), clarinet,
(dashdotted), flute, (dashed) and soprano (+-solid).

The odd value is falling with the fundamental frequency for all five instruments. This

seems to be more because the fundamental amplitude is rising than because the odd/even

relation is changing. This can be verified by adding the tristimulus 1 to the odd.
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The odd plustristimulus 1 for the five instruments are plotted in figure 9.9. The soprano
has the highest values, followed by the clarinet. The violin has the lowest values. The
piano and flute values rise with the fundamental frequency. These values are more stable

than the odd values.

Theirregularity value is rising with the fundamental frequency for the piano, flute, and
to alesser degree, the soprano. Thisis correlated with the tristimulus 1 value. When only
the fundamental has strong amplitude, the irregularity is by definition 1. The clarinet and
the violin have, by contrast, afalling irregularity, which to some degree is caused by the
weak fundamental of the low notes, but also by the general irregular shape of the spectral

envelope of the low notes for these two instruments, due to the weak modes.

Amplitudeis strongly correlated with the fundament frequency for all instruments,
except the violin, which has a more stable amplitude. The piano seemsto have two regions
for the amplitude, which is probably explained by the shift of string quality, or string
number of each note. The clarinet also seems to have two regions for the amplitude; thisis
probably explained by the shift of mode for the high frequencies [Fletcher et al. 1991].

9.5.2. Frequency Parameter Evolution

The MDA model frequency attributes consist of the fundamental frequency, and the
harmonicity. The IDA model does not save the fundamental frequency of each MDA, since
itisinherent in the model: the IDA bands indicate the log of the fundamental frequency.

Therefore, the only frequency parameter in the IDA model is the inharmonicity.

The inharmonicities of the five sounds are

x 1073 Inharmonicity

shown in figure 9.10. The inharmonicity is
rather noisy, especially for the high 2r
frequencies, because of the small number of Al

partias, but it definitely seemsto rise with the

fundamental frequency for the piano.
Remember that the center frequency of band |
12 is 1500 Hz, which means that there is only

amaximum of 10 partials with the sampling

rate U%d here (32 kHZ) 2 ¢ ° ID»‘A frequgncy band o 12 14

Figure9.10. Inharmonicity for the 5 instruments.
Piano (solid), violin, (dotted), clarinet, (dashdotted),
flute, (dashed) and soprano (+-solid).
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If the frequencies of these partials are estimated poorly, the resulting inharmonicity

value could be important, even though there was no inharmonicity.

9.5.3. Envelope Evolution

The envel ope attributes are the envel ope times, curve forms, and percents. The most

interesting envelope times are the attack time and the release time. The attack and release

envel ope parameters are shown in figure 9.11 for the piano, in figure 9.12 for the violin, in

figure 9.13 for the clarinet, in figure 9.14 for the flute and finally in figure 9.15 for the

soprano. The left three plots are the attack time (top), the end of attack percent, and the

attack curve form (bottom). The three right plots are the corresponding rel ease parameters.

The sustain curve form and length for the five instruments are shown in figure 9.16 and the

start curve form and percents are shown in figure 9.17.

The attack time can be divided up into slow attacks, flute, clarinet and soprano, at about

100 mS, and fast attacks, violin and piano, at below 50 mS. Most instruments seem to have

faster attacks for higher notes, but thisis very clear for the flute, and especially for the

piano, which goes from about 80 mS for low notes to about 20 mS for high notes. The

violin seemsto have a stable attack time, independent of the fundamental frequency.

time (m

100 K/\ﬁ

5 10 ~ 15
end of attack percent (fundamental)

15 \/I/V\ﬁ

Attack Time (fundamental)

5 10
Attack Curve Form

5 10
IDA frequency band

" 15

15

@

time (m

300

200

100

o4 t
5 10 15
start of release percent (fundamental)

1

0.5

0k

2
15
1
0.5

ok

Release Time (fundamental)

Attack Time (fundamental)

Release Time (fundamental)

time (MS)

_— A

time (m

Wﬁ

5 10 15
end of attack percent (fundamental)

5 10 15
start of release percent (fundamental)
1

-

PN =

5 10
Release Curve Form

5 10 15
Attack Curve Form

5 10
Release Curve Form

TN

—

ﬁ//\/—/

5 10 15
IDA frequency band

Figure 9.11. Envelope parametersfor the piano
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Figure 9.12. Envelope parametersfor theviolin.

The release time values are dightly noisier, probably due to the decay/sustain model of

the analysis. Nevertheless, the general trend seems to be that release is more independent

of the fundamental frequency than the attack times. The violin, flute and soprano have

relatively stable release times, and only the piano and the clarinet have a decaying release

time, which for the clarinet is about the same as the attack time. The piano has slower
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release than attack times, whereas the violin, flute and soprano have faster release than

attack times.
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Figure 9.13. Envelope parametersfor the Figure 9.14. Envelope parametersfor the flute.
clarinet.

The curve forms seem close to linear for most attacks and rel eases. The attack curve
forms can be divided into logarithmic for the piano, clarinet and soprano, and exponential

for the violin and flute. The release curve forms seem exponential for all instruments.
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Figure 9.15. Envelope parameters for the Figure 9.16. Sustain Curve form (top) and
soprano. Attack (left) and release (right). Time sustain length (bottom) for the 5 instruments. Piano

(top), percents (middle) and curve form (bottom) (solid), violin, (dotted), clarinet, (dashdotted), flute,
(dashed) and soprano (+-solid).

The sustain curve form values, which can be seen in figure 9.16 (top), are always above
1. Since the start of release percentsislower than the end of attack percentsin amost all
cases, thisindicates an exponential decay maybe because all instruments are played in a

percussive style.
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It is hard to make other observations on the curve form, sinceiit is very dependent on the

correct estimation of the envelope times. The attack curve form value seems to rise slightly

with the fundamental frequency for some instruments, indicating a more logarithmic attack

for higher fundamental frequencies.

The sustain times in figure 9.16 (bottom) are rather constant. The sounds are short,

especialy the flute and the clarinet. Since al sounds from one instrument come from the

same recording session, they are all of the same duration and the invariance of the sustain

times shows the success of the sustain time estimation. Only the soprano has sustain time

rising with the fundamental frequency.

The clarinet and soprano start segment
curve forms, seenin figure 9.17, decrease
with the fundamental frequency, amost
reaching zero. This gives very exponential

curves, which rise abruptly at the start of the

attack.

The slope envel ope detection method

should not normally be sensitive to noise, and

an inspection of the amplitudes of the additive

partials of the relevant sounds reveal s that

they are indeed exponential in the start

segment, more rounded for the clarinet, and

rising very abruptly for the soprano.

9.5.4. Noise Evolution
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Figure9.17. Start curveform (top ) and start of

attack percents (bottom) for the 5 instruments.

Piano (solid), violin, (dotted), clarinet, (dashdotted),

flute, (dashed) and soprano (+-solid).

The noise attributes are the standard deviation, the filter coefficient and the correlation

of the irregularity on the amplitude of the partials, the shimmer, and of the irregularity on

the frequency of the partials, the jitter.

The noise parameters are plotted in figure 9.18 for the piano, in figure 9.19 for the

violin, in figure 9.20 for the clarinet, in figure 9.21 for the flute, and finally in figure 9.22

for the soprano. The l€eft three plots are shimmer parameters and the right three plots jitter

parameters. The top plot is the standard deviation, the middle plot is the filter coefficient,

and the bottom plot is the correlation.

The correlation is measured between the fundamental and the first partial.
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The attack noise standard deviation for shimmer (top) and jitter (bottom) are shownin
figure 9.23.
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Figure 9.18. Noise parametersfor the piano.
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Figure 9.19. Noise parametersfor theviolin.
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Figure 9.20. Noise parametersfor theclarinet.
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Figure 9.21. Noise parametersfor theflute.

The noise attributes seem to be the timbre attributes that are causing most disturbances

in the resynthesis of the MDA models. Bad analysis of the envelope values yields bad

shimmer values, and bad analysis of the fundamental frequency, or inharmonicity yields

bad jitter values. Furthermore, even small glissando or vibrato values can ruin the analysis

of

the frequencies.

Nevertheless, most noise values are stable and trustworthy. The shimmer and jitter are

normalized by the amplitude and frequency, and the standard deviation (std) is generaly

placed between 0 and 1. The shimmer std is often close to 0.3, whereas the jitter std

generaly iswell below 0.1.
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The shimmer standard deviations are rather stable for all instruments except the piano.
The flute and violin have higher shimmer than the clarinet and soprano. The clarinet has
very low shimmer. The piano has a rising shimmer standard deviation. Since the filter
coefficients at the same time tends towards -1, this might be caused by a bad curve form
model or fitting, but it could also be attributed to the beating of mistuned strings.
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'Figure 9.22. Noise parameters for the soprano. Figure 9.23. Attack shimmer (top) and jitter
Shimmer (left) and jitter (right). Standard deviation  (hottom) ) for the 5 instruments. Piano (solid),
(top), filter coefficient (middle) and correlation violin, (dotted), clarinet, (dashdotted), flute,
(bottom). (dashed) and soprano (+-solid).

Thejitter standard deviation is around 0.01 for the piano and the violin. The clarinet has

almost no jitter std, whereas the flute and especially the soprano have high jitter std.

Thefilter coefficients indicate the level of low-pass filter slope of the noise. Generally,
the filter coefficient value -1 indicates bad curve fitting; this can be seen also on the
shimmer for the high notes of all instruments except the violin. The high notes of the
soprano and the flute have filter coefficient value -1 for both the shimmer and the jitter.
Thesejitter values are probably caused by the relatively low frequency vibrato on many of

the notes.

The jitter filter coefficients seem to be higher than the shimmer filter coefficientsin
most cases. This tranglates into more energy in the high frequencies of thejitter. The
combination of high standard deviation and low filter coefficient values for the jitter

generaly yields bad sound quality, with slow random variations on the frequencies.

The attack noise standard deviations for shimmer (top) and jitter (bottom) are shown in
figure 9.23. The attack shimmer std generally falls with the fundamental frequency. The
soprano has the lowest attack shimmer std, followed by the piano and the three other
instruments close together. The violin has very largejitter std for the low frequencies.
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The correlation between the fundamental and the first partial generally rises with the
fundamental frequency, reaching almost one in many cases. The shimmer and jitter
correlation values are very similar for all instruments. Thisis surprising, since the envelope

curve form model normally should give higher shimmer correlation.

9.6. Loudness

Loudness is another important timbre attributes. Loudness is often noted in music
notation with terms like mezzo forte, piano, forte, etc. In this paragraph, the different
loudnesses of a'Yamaha Disklavier with different MIDI [IMA 1983] velocities are
analyzed. The disklavier is an acoustic grand piano with an added MIDI control unit,
which permits the recording of MIDI data, and the control through MIDI data. Three
different MIDI velocities have been recorded in the full playing range, 40 (piano), 72
(mezzo forte) and 104 (forte). The mezzo forte sounds are the same as the piano soundsin

section 9.5.

The complete playing ranges of three different velocities of the piano are shown in the
following figures. Four plots are combined in all figures. The solid lines show the IDA
values for al the sounds, the dotted lines the values from the piano (MIDI velocity 40)
sounds, the dashdotted lines the values for the mezzo forte (MIDI velocity 72) sounds and
the dashed lines the IDA vaues for the forte (MIDI velocity 104) sounds. Figure 9.24
shows the spectral envelope, figure 9.25 the maximum amplitude, figure 9.26 the
inharmonicity, figure 9.27 the envel ope parameters, figure 9.28 the sustain curve form

values, and figure 9.29 the noise parameters for the different loudnesses of the piano.
The spectral envelopeis the attribute that a priori changes the most with loudness. This

holds true here, but the first observation is the high correlation of the different loudnesses
for al attributes.

9.6.1. Spectral Envelope Parameters

The spectral envelope values for the different loudnesses of the piano are shown in
figure 9.24. Brightnessis top left, tristimulus is top right, odd is bottom left and irregularity
is bottom right. The amplitudes are shown in figure 9.25 for all loudnesses.

Brightnessis larger for the forte sounds than for the piano sounds. Furthermore, the
total valueis very close to the mezzo forte, indicating that the mezzo forte sounds are

indeed in the middle between the piano and the forte sounds. The piano sounds have less
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odd value, which correlates with the fact that they have less brightness and thus more
energy in the fundamental. The piano sounds also have more tristimulus 2, probably for

the same reason.
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Figure 9.24. Spectra] Enve]ope parametersfor Figure 9.25. DA fundamental amplitudefor
three different loudnesses for the piano. All three different loudnesses for the piano. All
loudnesses (solid), piano (dotted), mezzo forte loudnesses (solid), piano (dotted), mezzo forte
(dashdotted) and forte (dashed). (dashdotted) and forte (dashed).

Theirregularity shapeis exactly the same for all loudnesses. The reason for this shapeis
not clear at this point, but it could be related to the change of quality and number of the
strings. The piano sounds seem to have more irregularity at the high frequencies, but this
could perhaps be attributed to the difficulty of analyzing weak signals.

The amplitudes shown in figure 9.25 have the same shape for all four curves. The forte
Is stronger than the piano, of course, and the total curve is very close to the mezzo forte,
which again indicates that the mezzo forte is exactly between the forte and the piano

|oudnesses.

9.6.2. Frequency Parameters
Inharmonicity for the different loudnesses of the piano can be seen in figure 9.26.

The inharmonicities also have the same shape for all curves. The piano sounds have a
more irregular shape, which again could be attributed to the difficulty of analyzing weak
signals. The inharmonicity increases with the fundamental frequency for the mezzo forte

and the forte sounds.
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The estimated values show clearly that the
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9.6.3. Envelope Parameters

The envelope parameters for the different loudnesses of the piano can be seen in figure
9.27. The left three plots are the attack time (top), the attack percents (middle) and the

attack curve forms. The right three plots give the corresponding values for the release.

The curve form (top) and the length (bottom) of the sustain for the different loudnesses
of the piano are shown in figure 9.28. The sustain curve form values are reliable, since the

start of release percents are much lower than the end of attack percents.

The attack times are remarkably similar for
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values, which are |ess sensitive to noise, Figure 9.27. Envelope parametersfor three

different loudnesses for the piano. All loudnesses
(solid), piano (dotted), mezzo forte (dashdotted) and
forte (dashed).

continue to decrease.
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The attack percent values are rather stable Sustaln Gurve Form

closeto 1, but the release percents decrease

with the fundamental frequency, which il \

indicates a faster decrease rate for the highest

notes. The attack curve form is closeto linear, ®  DAfrequencyband
Sustain times

getting slightly more logarithmic at higher 1000 ‘ : ——

800
frequencies and with more noise, or ool — f

irregularity, at the high frequencies. The forte
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sounds at high frequencies. Figure 9.28. Sustain curve form values (top) and
sustain length (bottom) for three different
The release curve form values seem loudnesses for the piano. All loudnesses (solid),
i f f
dependent on the loudness for the full E’ézr;?e(g)c_’“ed)’ mezzo forte (dashdotted) and forte

fundamental frequency range.

The piano sounds have a more exponential release than the forte sounds. The release
curve form also rises with the fundamental frequency up to about midrange after which it
falls again, indicating a more exponential release for the midrange sounds. The curve form
values are rather constant, but rising for the high notes. The values are aways above 1,
which indicates an exponential decay, more exponential for high frequencies. The noises
on the sustain curves, especially the peak in the midrange, are in part due to noise from the

piano sounds.

The sustain lengths are rather constant and, since both the attack and release times
decrease with the fundamental frequency, indicate shorter high fundamental frequency

sounds.

9.6.4. Noise Parameters

The sustain noise parameters for the different loudnesses of the piano are shown in
figure 9.29. The shimmer parameters are shown in the left column and the jitter parameters
in the right column. The top plots show the standard deviation, the middle plots show filter
coefficients, and the bottom plots show correlation. The combinations of all loudnesses are
shown as a solid line, the piano values are dotted, the mezzo forte values dashdotted and
the forte values dashed.

The noise parameter curves are also very correlated with the different loudnesses. The

shimmer standard deviation value starts at around 0.4, then it decreases to just above 0.1 at

141



Chapter 9. Instrument Definition Attributes

around 200 Hz, after which it increasesto almost 1 at 1.5 kHz. This behavior isthe same

for all loudnesses, although the piano sounds seem to have a dlightly lower shimmer std for

low frequencies.

The jitter standard deviation values also
have the same shape for all loudnesses, but
here the piano sounds have more jitter std

than the forte sounds in the high notes.

The shimmer filter coefficient decreases
from around -0.8 to amost -1. Thejitter filter
coefficients also decrease, with some
interruptions which are believed to be noise,

from around -0.1 to around -0.6.

Shimmer and jitter correlations increase
with the fundamental frequency for the
mezzo-forte sounds, but decrease with the
fundamental frequency for the piano and forte

sounds.

Attack shimmer and jitter standard
deviations are shown in figure 9.30. The
shimmer is rather constant, with a std between
0.3 and 0.5. Thejitter exhibits large
variations. Since the large jitter std values
occur for the mezzo forte and forte sounds, it
seems that forte sounds have more transient
behavior than piano sounds. However, this
does not seem to be true for the low mid
range. The piano sounds aways have low
jitter std, despite the fact that weak sounds are

generaly harder to analyze.
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9.6.5. L oudnesses conclusions

Three conclusions can be drawn from the analysis of the IDAs from the piano sounds
with different loudnesses. First of all, the difference in loudness translates mostly into a
difference in the spectral envelope parameters, and especially into adifference in the
brightness and amplitudes. Secondly, most curves are very similar across loudnesses, even
those suspected to be rather noisy. Third, the piano IDA parameters are generally more
noisy than the forte parameters. The piano sounds aso have more noise than the forte
sounds, and the forte noises are more correlated than the piano sounds. Additional changes
in the IDA model parameters for a change in the loudness of a piano include a changein
release curve form, piano sounds having a more exponential release. Piano sounds seem to

have less inharmonicity and forte sounds have more jitter in the attack.

In conclusion, the IDA values seem eminently suitable for the analysis of different
loudnesses. The IDA values are generally very stable, and the differences among

loudnesses are very clear.

9.7. Tempo

Tempo is another important expression parameter. Tempo is generally written in scores
with terms such as moderato, allegro, etc. Here, two performances with different tempi of
the clarinet are analyzed. The tempi are allegro and moderato. The loudnesses are amix of
piano and forte and the playing style is staccato. The full playing range of the clarinet is
available for the two tempi. In the following figures the combined IDA values are plotted
inasolid line, the allegro values are plotted in a dotted line, and the moderato values are
plotted with a dashed line. The amplitude of the different tempi is plotted in figure 9.32.

The clarinet sounds here are generally not the same as the clarinet soundsin section 9.5,

which consist more of tenuto executions.

9.7.1. Spectral Envelope Parameters

The spectral envelope parameters for the clarinet with different tempi are shown in
figure 9.31. The top left plot is brightness, the top right plot is the tristimulus, the bottom
left plot isthe odd value and the bottom right plot isirregularity. In al plots the solid line
denotes the compl ete clarinet values, the dotted line the allegro values and the dashdotted

line the moderato values.
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Figure 9.31. Spectral envelope parametersfor Figure 9.32. Amplitudefor theclarinet with
the clarinet with different tempi. Total (solid), different tempi. Total (solid), allegro (dotted) and
allegro (dotted) and moderato (dashdotted). moderato (dashdotted).

There seems to be no significant differencesin the spectral envelope for the different

tempi. Brightnessis perhaps a little higher for the high notes of the allegro execution.

Brightnessis rather constant for the full playing range of the clarinet. The tristimulus
first heads towards the fundamental, but then deviates towards the midrange in the upper
half of the playing range. This might be explained by the change of register.

The odd value, which is calculated from the third partial, is falling with the fundamental

frequency. Thisis because of the rising fundamental amplitude.

Theirregularity value starts above 1. There is generally avery high irregularity because

of the weak even partials.

The amplitude curves are very similar for the different tempi. The low fundamental
frequency amplitudes decrease dlightly, whereas the high fundamental frequency
amplitudes increase from below 1000 to above 3000. Thisisthe case for all tempi. Only
the edge (lowest and highest fundamental frequencies) values are different for the different
tempi.

9.7.2. Frequency Parameters

Inharmonicity is generally very closeto zero for the clarinet and it is not plotted here.
Thereis not very much irregularity in the inharmonicity, even for the high error-prone
notes. This may be because of the high number of notes used here, by the combination of
piano and forte executions. The clarinet is not expected to have any inharmonicity, and
noneis found here. It is also the only instrument with absolutely no inharmonicity in figure

9.10.
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9.7.3. Envelope Parameters

The attack and release envelope parameters for the different tempi of the clarinet are
shown in figure 9.33. The left plots are the attack values, the right plot are the release
values. Top plots are the times, middle plots are the percents and bottom plots are the
curve form values. The sustain curve form (top) and time (bottom) are shown in figure
9.34.
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Figure 9.33. Attack and release envelope Figure 9.34. Sustain curveform (top) and times
parametersfor the different tempi of the clarinet. (bottom) for the different tempi of the clarinet.
Total (solid), allegro (dotted) and moderato Total (solid), allegro (dotted) and moderato
(dashdotted). (dashdotted).

The envelope parameters are a priori the parameters that change most with tempo.

The low note attack parameters are not influenced by the different tempi but the high
moderato notes have a higher attack time. The release times are higher for the moderato
clarinet, which also has adightly higher percent value for the release. The sustain times
are of course longer for the moderato than for the allegro sound, although for the highest
fundamental frequency this situation isinverted. Thisis compensated for by the longer
release times. Since the percents of the moderate sounds also rise with the fundamental
frequency, it would seem that the longer release and shorter sustain times for the highest
notes are an effect of the estimation of the parameters. The decay is more exponential for

the high fundamental frequencies.

9.7.4. Noise Parameters

The noise parameters for the different tempi of the clarinet are shown in figure 9.35.

The l€eft plots are the shimmer values and the right plots the jitter values. The top plots are
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the standard deviation, the middle plots the filter coefficient values and the bottom plots

the correlation values.

There is not much significant change in the
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coefficient fall with the fundamental
frequency.
Shimmer correlation is constant, whereas jitter correlation falls ightly with the

fundamental frequency.

9.7.5. Tempo Conclusions

The envel ope times are the parameters that change the most with the change in tempo.
The attack times do not change significantly, but the sustain and release times do. The sum
of the sustain and release times is always larger for the moderato than for the allegro
executions. The spectral envelope does not change with the tempo. There is more jitter and

shimmer for the allegro executions than for the moderato executions.

9.8. Style

The influence of the style of execution on the timbre attributes is analyzed here. Three
different styles are analyzed for the cello: staccato, spiccato and legato. The loudness of
all executions is mezzo forte, and the tempo is moderato for the legato, and allegro for the
staccato and spiccato. The difference in tempo is unfortunate and does not facilitate the

identification of pertinent attributes in the style dimension.

In the following figures, the combination of all cello soundsis plotted with asolid line,

the staccato executions with a dotted line, the spiccato executions with a dashdotted line
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and the legato executions with a dashed line. The amplitudes of the different styles of the
cello are shown in figure 9.37.

9.8.1. Spectral Envelope Parameters

The spectral envelope parameters for the different styles of the cello are shown in figure
9.36. The top left plot is brightness, the top right plot istristimulus, the bottom left plot is
the odd value and the bottom right plot isirregularity. The solid lines are the values for all
sounds, the dotted line for the staccato sounds, the dashdotted line for the spiccato sounds

and the dashed lines for the legato sounds.
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Figure 9.36. Spectraj envel ope par ametersfor Figure 9.37. Ampl itudesfor the different Styles of

the different styles of the cello. Completecelloset ~ thecello. Complete cello set (solid), staccato (dotted),
(solid), staccato (dotted), spiccato (dashdotted) and  Spiccato (dashdotted) and dashed (legato).
dashed (legato).

Brightness, odd and irregularity values are not influenced very much by the different
styles.

Brightnessis rising with the fundamental frequency from around 700 Hz for the low
notes to around 2 kHz for the high notes.

The tristimulus has a funny loop in the middle for al three styles. Here, first the T2 is
increasing, then the T1, then the T3, and finally the T2 isincreasing again. This may be an
indication of alow resonance, in which first the midrange partials, and then the
fundamental is placed.

The odd value is decreasing, but again, thisis more because of decreasing partial index
brightness, than because of a change in the odd value.

Irregularity starts at arather high value for the lowest fundamental frequencies,
decreasing fast to a stable value of about 0.4 for all styles.
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The amplitudes have more differences than would be expected from the relatively
homogenous spectral envelope parameters. The legato has a much lower amplitude than
the other styles.

9.8.2. Frequency Parameters

Inharmonicity isvery low for al the cello notes, indicating good initial frequency
estimation for thisinstrument. If anything, inharmonicity is falling slightly with the
fundamental frequency for all styles.

9.8.3. Envelope Parameters

The attack and release envelope parameters for the cello are shown in figure 9.38. The

left three plots are the attack values and the right three plots the release values.

Top plots are the envelope times, middle
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segmentation of the legato sounds, if the
separation is made close to the attack, then
the attack times are short, otherwise the

rel ease times are short.

In the legato style, the notes are ailmost glued together, and the total attack and release
time should be shorter than the staccato or spiccato times. Thisis probably the reason for

the short release times for the legato.

The legato sound also has a smaller attack percent value, indicating a softer attack, with
no clear peak at the end of the attack. Thisis aso corroborated with the larger attack curve

form values for the legato sound, indicating a more logarithmic form in the attacks of the
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legato sounds. The legato release percents are also higher than the percents for the other
executions. The release curve form values are close to one for al executions and rising
dlightly with the fundamental frequency. The main difference between the staccato and the

spiccato is that the staccato has longer release times.

The sustain curve form (top and times (bottom) for the different executions of the cello
are shown in figure 9.39 and the start (top) and end (bottom) times are shown in figure
9.40. The decay curve form values are more noisy for the longer legato sounds, which

have perfectly sustained envel opes.
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Figure 9.39. Sustain curve form (top) and times Figure 9.40. Start (top) and end (bottom) times
(bottom) for the different styles of the cello. for the different styles of the cello. Complete cello
Complete cello set (solid), staccato (dotted), spiccato  set (solid), staccato (dotted), spiccato (dashdotted)
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No difference has been found so far between the spiccato and the staccato sounds.
When listening to the sounds, it seems that the largest differenceisin the delay between
the sounds. This might be lost in the segmentation of the sounds, but it can be deduced
from the sustain times in figure 9.39. Here the spiccato sounds are shorter than the staccato
sounds. Since the tempi are equivalent for the two executions, the conclusion is that

spiccato sounds have more silence between the sounds.

The start and end times for the fundamental and the different styles are shown in figure
9.40. Both the start and end times are very short, indicating that segmentation is done close
to the attack and release for all sounds.

In conclusion, the style change on the envelope parameters is hard to detect for these
sounds, since they do not have the same tempo. The legato has higher attack times, lower
attack percents and higher attack curve form values. Thisisall an indication of softer

attack. The legato has a shorter release time and higher release percents, which are
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indications that the sound has been cut off, either by the segmentation, or by the execution,
preparing for the next note. The staccato and spiccato styles are mainly differentiated by
the pause between the notes, spiccato having alonger pause than staccato, but thisis

masked by the segmentation of the sounds.

9.8.4. Noise Parameters

The noise parameters for the different executions of the cello are shown in figure 9.41.
The left plots are the shimmer values and the right plots the jitter values. The top plots are
the standard deviation, the middle plots the filter coefficients and the bottom plots the
correlation. Complete cello set values are plotted with a solid line, staccato values with a

dotted line, spiccato values with a dashdotted line and legato values with a dashed line.
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Figure 9.41. Noise parametersfor the different
styles of the cello.

much lower than the other filter coefficients.
The relatively longer legato sounds and
consequently worse envelope model may
explain this.

Thejitter filter coefficients are very close to zero, indicating a band-pass noise.

Correlation is close to 0.5 for both shimmer and jitter for all sounds and styles.

9.8.5. Style Conclusions

The conclusions from the analysis of the cello sounds with different styles are made
difficult because of the different tempi of the different styles and because of the

uncertainty caused by segmentation.

Nonetheless, the legato was generally found to have alonger attack and short release

time, and a more rounded attack. It also has shorter release and higher release percents.
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The style seems to influence only the envel ope parameters, but a difference in shimmer
filter coefficient was detected for the legato sounds. Thisis explained by the worse fit on
long sounds of the simple envelope model, which cannot model tremolo, or other voluntary
amplitude variations. No changes were detected in the spectral envelope values for the
different styles of the cello. The difference between the staccato and spiccato stylesis

mostly related to the pause between the sounds.

9.9. Sound Recreation from | DA Parameters

An MDA parameter set for a given fundamental frequency is extracted from the IDA
parameter set, by finding the corresponding IDA frequency band, and copying the
parameters from this band into the MDA. The HLA parameters and additive parameters
can then be created, and finally a sound can be synthesi zed.

Morphing between different IDA classesis done by multiplying each IDA with a

coefficient, and ensuring that the sum of all coefficients equals one.

The quality of the IDA sound synthesisis generaly very close to the MDA quality. No
significant difference in quality has been found, so the conclusions from the MDA in
Chapter 8 are dso valid here. No improvement or deterioration has been found from the

summation of many MDA parameters.

9.10. Conclusions

The IDA parameter set is helpful in analyzing the evolution of timbre attributes across
the playing range of an instrument. Some timbre attribute evol utions are common for many
instruments, whereas others have individual evolutions for each instrument, which can
sometimes be explained by the characteristics of the instrument. The analysis of the IDA
parameter evolution across playing range, loudness or other classes, is helpful in

understanding which timbre attributes are responsible for what sound quality change.

The partial index brightness is decreasing with fundamental frequency, giving most of
the amplitude to the fundamental for the highest fundamental frequencies. The frequency
brightness is increasing with the fundamental frequency for most instruments. One
exception is the violin, which has afairly constant brightness. The attack time and to a
lesser degree the release times decrease with the fundamental frequency. Again the

exception isthe violin, which has afairly constant attack time. Noise is not very influenced
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by the fundamental frequency, although the shimmer standard deviation often rises with

the fundamental frequency.

A changein loudness influences only the spectral envelope parameters, notably
brightness and amplitude, which both increases with loudness. A decrease in tempo
modifies the envelope time by increasing the sustain and release times. The shimmer filter
coefficient decreases with a decrease in tempo, indicating a low-frequency rumbling
irregularity, which is probably caused by the poor envelope model. The changein style
also modifies the envel ope parameters most, the legato having softer attack and shorter
releases. The difference between staccato and spiccato is related to the length of the

silence between sounds.

The IDA parameters generally recreate the identity of the instrument in resynthesis but
the sound quality is the same as for the MDA parameters. Although it is believed that the
IDA parameters are sufficient for agood resynthesis of amusical sound, more work

remains before this can be achieved.
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Chapter Ten

10. Timbre M odifications

One of the exciting things to do with the timbre modelsis to modify the parameters and
listen to the effect on the sound. Since the timbre mode! attributes are well understood, the
modifications on the timbre are intuitive and the effects that are sought for are easily
implemented. The modifications can be either of the expression parameters, such as the
pitch, or the identity of the sound. All timbre models can be modified, or used as templates
in the modification of another model, but this chapter focuses on the modification of the
additive parameters. Furthermore, the concatenation of two soundsis discussed. The

modifications presented in this chapter can be used to ‘play’ the different timbre models.

10.1. Introduction

This chapter discusses the modifications of the parameters of the timbre models. The
modifications can involve either an expression, such as the pitch, or the identity of the
sound. The expression modifications must be possible in real-time, ‘on the fly’, and thisis
also highly desirable for the other modifications, although no special attention has been put

into this problem.
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Most people who work in the analysis/synthesis of sounds do expressive or timbre
manipulations. [Bode 1984] offers a non-exhaustive review of early sound modifications.
[Allen 1977] modified the sound in the fourier domain, [Quatieri et al. 1986] made speech
transformations in the additive domain. Other synthesis techniques with good possibilities
for timbre manipulation are the granular synthesis [Roads 1988] and the physical modeling
[Jaffe et al. 1983]. [Lent 1989] proposes a method for efficient pitch shifting of sounds.
[Fitz et al. 1996] made timbre manipulation using additive parameters, and [ Tellman et al.
1995] used the same parameters to do timbre morphing. [Rovan et al. 1997] made
expressive changes in the additive domain and [Arcos et al. 1997] uses case-based
reasoning system to generate expressive musical performance with SMS [Serra et al.
1990]. The diphone program [Rodet et al. 1997] is also used for the manipulation and

concatenation of additive or other parameters.

The advantage of thiswork isto have available a complete timbre model, as for instance
the HLA model presented in Chapter 6, or the MDA model presented in Chapter 8, into
which the additive parameters are to be shaped.

Several types of modifications can be made, first, there are inter-model modifications,
where two parameter sets from the same model are combined, and then there are extra-
model modifications where the parameters from one model are used to modify the
parameters of the other model. Furthermore, there is the timbre morph, where two sounds
are transformed into another sound, which is somewhere intermediate in the timbre space.
Individual timbre attribute modification, where one or afew attributes are modified, is also

possible.

The modifications of the HLA or MDA parameters, or between the HLA and the MDA
parameters are relatively straightforward, therefore this chapter focuses on the

modification of the additive parameters with aHLA template.

The modifications of the expressive parameters pitch, loudness and duration are
discussed in section 10.2 and the inter model modifications are discussed in section 10.3.
Section 10.4 talks about the concatenation of two sounds and the modification method
developed in thiswork of the additive parametersis presented in section 10.5. The quality
of the resynthesisis discussed in section 10.6 and the chapter ends with aconclusion in

section 10.7.
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10.2. Pitch, Loudness and Duration

Here the most important parameters of the timbre are modified. These modifications
can be made on any type of model, and independent of modifications of other parameters.
Generaly, the modifications can be made real-time, thus enhancing the vivacity of an

instrument.

10.2.1. Pitch

The pitch of asound is the perceived fundamental frequency of asound. The
modification of the pitch is done here by modifying the mean frequencies of the individual
partials. Therefore, changing the pitch from sound? to sound® consist of modifying the
mean of each partial frequency from the value from sound® to the value from sound®,

£Db

0= 0% (10.1

k
where f’(t) istheoriginal time-varying frequency of partial k. This means that only the
mean frequency of each partial is changed. Thisistrue for the additive and the HLA
models. For the MDA model, where the frequency is modeled by the fundamental
frequency and inharmonicity index, these two values are changed in order to change the
pitch. When an intermediate value is wanted, the frequencies are modified by aratio times

parameter® plus another ratio times parameter®,
@-n xfka +r <t
f2

where O £ 1 £ 1. In the case of the HLA model, the frequencies have no time index, which

(0 = 1) (10.2)

can thus be omitted. If theindividual partial frequencies are not available, al frequencies
are changed by the sameratio.

The aforementioned modifications can be stored in all the models, but the vibrato effect
can only be stored in the additive model. Vibrato consists of multiplying an offset low-
frequency waveform vib(t) (typically asinusoidal) to the frequency of the partials,

f () = f. ()L +vib(t)) (10.3)
Typical values of the vibrato are afew percents, and often the vibrato is delayed
slightly, but the values of these parameters are chosen at performance time, and not further
discussed here.
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10.2.2. Loudness

Loudnessis the perceived intensity of a sound. Loudness is modified by changing the
maximum of the amplitude of the partials. The modifications of the amplitudes are madein
amanner similar to the pitch modifications. The transformation from sound? to sound® is
done by multiplying the time-varying amplitudes a/(t) by the maximum of the target

amplitude, and dividing by the maximum of the original amplitude for each partial k,
aey L MX (@ (1)
(t) =a (t) x——-= (10.4)
ST a0 (1)
In the case of morphing between two sounds, the amplitude is,

(L - r) >xmax(ag () + r >max(ay (1))
max(ay(t))
where 0 £r £1. Again, in the case of the HLA model, the frequencies have no time index,

a () =al(t) (10.5)

which can thus be omitted. If the individual amplitudes of the target sound are not
available, all amplitudes are changed by the same ratio. The MDA model is modified by
setting the spectral envelope parameters.

The slow oscillating of the amplitudesis called tremolo, and tremolo can only be stored
or added to the additive model. Tremolo is created by adding alow-frequency waveform
trem(t) to the amplitude of the partials,

a (t) =g (t) X{1+trem(t)) (10.6)
By multiplying with the original amplitudesit is ensured that there is no tremolo in the
silence, and that the tremolo decreases gracefully when the amplitude decreases. Normal
tremolo values are between 10% and 50%. A tremolo ten times the vibrato seemsto give

about the same perceptive effect.

10.2.3. Duration

The duration is the perceived length of the sound. The duration is here modified by
changing the sustain length of each partial,

b
sustain,k

b

t o+t (10.7)
sustain,k mod

=t

where

tmod = t12ngth - tIanth (10-8)
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is the difference of length between sound® and sound®. If t,, < 0, the new sustain length

can become negative. If this happens, it is necessary to decrease the attack and release
times, to ensure that the envelope has the right length. It isimportant that all partial lengths
are changed by the same amount, since otherwise the individual release times will not be

synchronized, which is very perceivable.

If the absolute value of ., islarge, it might be necessary to either duplicate or cut out

parts of the sustain segment, to maintain the same noise frequency magnitude.

The modifications of the sustain length can giverise to artifactsin the sound if itisan
attack-decay-release type of sound. In that case, it is necessary to change the decay slope to
accommodate for the change in length. In for instance the piano, augmenting the length
without changing the slope gives the sound an unnatural strength in the end of the decay.
The slopeis defined in the HLA model by the percent values at the end of attack and the
start of release and the curve form. The sound can very well be of sustain type even though
the start of release value is much lower than the end of attack value, if the curveformis
‘bending over’ in the end. Nevertheless, the curve form isignored, and the decay is
simplified into alinear form, where the value at the start of release is changed, if itis
smaller than the end of release value,

b
Var =Vea* (VG - Ve )tm” (10.9)

sustain

Obvioudly, this value istruncated at zero, since the amplitude can not be negative.
Although the linear shapeis asimplification of the real decay form, the modification of the
start of release value according to alinear model seemsto correct the sustain length

problem.

10.2.4. Number of Partials

The number of partialsisafairly ssmple attribute. Although it may be important when
the higher partials contain much energy, in general, the number of partialsis not very
crucial. It can be important, nonetheless, to add or remove partias, for instance when
combining a high flute sound with alow piano sound.

In general terms, if the goal isto transform sound? into sound®, and sound® has N®
partials, and sound® has N° partials, then the resulting sound should have N partials.

If N®>>NP then the N°+1 to N? partial's are removed from the sound®. Thisis easily done,
whether sound® is modeled by additive parameters, or HLA parameters. The MDA and
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IDA models don’t include the partial number, so the question doesn’t arise for these

models.

If N°>N?, partials must be added to sound?. If sound®is modeled by the HLA, then the
corresponding MDA parameters are cal culated, and anew HLA with N° parametersis
created. The N*+1 to N° partials from the new HLA are then copied to the same partialsin
the original HLA. If sound®is defined by additive parameters, then two methods can be
used to create the N*+1 to N® partials. The first consists of creating the corresponding HLA
and MDA, and anew HLA with N° partials, and finally creating N*1 to N° synthetic
partials which are added to the additive parameters of sound®. The second method, which
has been adopted here, consists of copying the N® partial to all the missing partials, and
modify only the amplitude and frequency of these partials, so they correspond to the upper
partials from the synthetic HLA of the same sound, with N® partials.

If asound is created in between sound?® and sound®, it can be supposed that the number

of partialsis an intermediate value, and the number of partials of the resulting sound is,

N =r xN?+ (L- r)>N° (10.10)
whereO£r £1.

10.3. Inter-Model M odifications

In this section the modification of sound?into sound® is discussed. Both sounds are
supposed to be defined by the same model, be it the additive, the HLA, or the MDA model.

The additive parameter model consists of k partials with time-varying amplitude and
frequency.

The HLA model is presented in Chapter 6. It consists of the spectral envelope, the mean
frequencies, the envel ope times, percents and curve form values, the shimmer and jitter
values. Most parameters have values for each segment of the envelope, and al values are
individual for each partial.

The MDA is presented in Chapter 8. It consists of the same parameter types, but the
spectral envelope is modeled by brightness, tristimulus 1 and 2, the odd value, irregularity
and maximum amplitude. The mean frequencies are modeled by the fundamental value and
inharmonicity, and all other parameters are modeled by the fundamental value and the

value of an exponential, which models the evolution across the partial index.
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The modification of the additive parameters necessitates the normalization of the length.
Thisis done by changing the full length of each partial using the method exposed in
paragraph 10.5.3.1. Furthermore, the number of partials must be equal for both sounds.
Thisis done by the method presented in 10.2.4. The amplitudes and frequencies of sound®

and sound® are then morphed by the following formulas,

a (1) =rxa)(t) + (1- r)=a(t) (10.11)

f (t) = rxfl(t)+(1- r)xf3(t) (10.12)
More than two sounds can of course be used to create the output parameters.
This method suffers from the lack of temporal cues, and an improved method of the
modification of the additive parametersisintroduced in section 10.5.
If the HLA®isto be modified partly into HLA®, the number of partials must first be

normalized, as explained in paragraph 10.2.4. Then the HLA sets can be combined easily,
in fact then,

HLA = r sHLA® + (1- r) *HLA® (10.13)
Here, the spectral envelope features might not be well interpolated.

The MDA models are combined, or morphed, ‘ straight out of the box’,

MDA = r MDA" + (1- r) X\MIDA® (10.14)
Care must be taken when morphing the filter coefficient values for shimmer and jitter if
the fundamental frequency of the sounds are very different, since the filter coefficient
values are dependent on the sampling rate of the additive parameters, which is equal to the

fundamental frequency, f,. (cf. the data reduction in section 4.3.5 in Chapter 4).

In conclusion, the inter model modifications are relatively straight forward, but the
averaging method used can remove important information, such as the noise, and the
interpolation of perceptually important features may not be handled properly in the good
quality additive or HLA models.

10.4. Concatenation

When playing two sounds one after the other, the sounds need to be concatenated. If the
sounds are played with a silence between them, the sounds can be created individually, and

then concatenated with the suitable silence in between. However, if the second sound is
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interrupting the first, care must be taken so that the two sounds sound right. The

concatenation can define important timbre cues, such as the style of the execution.

The concatenation involves the times of the envelope. The start and end segments are
minimized to the smallest length that permits a common start and end of the sound. This
restitutes the effective duration of the sound. The original start and end segments are used

only if there is a pause between the sounds.

Two types of concatenation are possible, the superposition of the new sound parameters
on the old, and the replacement of the old by the new sound parameters. Superposition is
used for example when changing the string in the violin and replacement is used when

playing a new note on the same string.

Concatenation is here discussed on the additive parameters, using the HLA model asa

template for the sounds.

10.4.1. Superposition

The superposition of sound® on or after sound® is done simply by adding the additive
parameters of sound® at timet to the additive parameters of sound® Timing is ensured by

setting the time zero of sound® as the time of the earliest start of attack.

Superposition is also used when playing chords. One problem with the superposition of
additive parametersis the large number of partials that results from the superposition of
several sounds. Cleaning out masked [Small 1959] partials could potentially reduce the

number of partials resulting from superposition.

10.4.2. Replacement

Replacement is the normal mode when playing a melody with the additive parameters.
Here, the amplitude and frequency of the partials of sound® are transformed into the values

of sound®. The time of the transformation, t,, can be set, and it defines the length of the

» by
portamento of the transition.

Assuming that the end of sound?, t2, and the start of sound®, t°, are available. t” is
defined as the earliest attack time, and the partials of sound® prior to this time are not used.
The parameters of sound® are inserted at time t+t,, and the amplitudes and frequencies of
sound® at time t are modified into the amplitudes and frequencies of sound® at timet>. If

the sound® is longer than t+t,, the remaining part is not used.
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The frequencies at the portamento segment of the output sound are the sum of the two
frequencies, multiplied by two curves that ensure that the frequencies change from those of

sound? to those of sound®.

b a
f () = £2(t) ><curve(0 k 2ot + £ (t) >curve( : =,0,t)) (10.15)
where f, is the fundamental frequency. The function curve(a,b,t) makes a curve from value
ato value b with length t. The curve form is not specified here, but it could instead be

specified at performance time, preferably using some real-time sensor.

The replacement can also be used to play a melody with the same additive parameter
set, but if the pitch is changed by more than half an octave, the sound generally loses

realism, and it needs to be modified as explained in the next section.

A simple modification would be to change only the brightness; the resulting brightness
should be (cf. The IDA anaysisin Chapter 9),

=By, (00 f;’g ;; (10.16)
where Br, is origina brightness. This change means brightness decreases when the pitch is
increased. Other parameters, which seem to have a constant evolution across pitch,
independent of the instrument, are tristimulus, odd, amplitude and attack time. These
parameters must be changed if a natural sound is wanted across alarge pitch or intensity
range. More information on the evolution of the timbre attributes as a function of pitch can

be found in Chapter 9.

10.5. Additive M odifications

In this section, the transformation of the additive parameters of sound?into sound® is
discussed. The sound” is defined by the HLA parameters. The sound® HLA parameters are
also available. The HLA parameters are indicated with a hat on the parameters. The
transformation is done in several steps. first the spectral envelope is transformed, then the
pitch, then the amplitude envelope is transformed in severa steps, and finally the shimmer
and jitter are transformed. All of these steps can be done individualy, if only some of the
timbre attributes should be changed. The final modifications give a sound that is very close
to sound®. In the following, the transformation of a piano sound (a) into a trumpet sound
(b) isillustrated.
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10.5.1. Spectral Envelope

The amplitudes are modified in the same manner as explained in paragraph 10.2.2. The
time-varying amplitude of each partial is multiplied by the static spectral envelope of
sound® and divided by the static spectral envelope of sound?,

Ab

a,(t) = 8(t) x% (10.17)

The hat on the parameters indicates here that they are derived from the HLA model. & is
the spectral envelope value at partial k (the maximum amplitude of the partial k).

4500

The spectral envelope of the original and Spectral Envelope

the modified additive parameters of the piano

4000

sound are shown in figure 10.1. The trumpet as00 |
spectral envelope is not shown, sinceit is 3000

2500

identical to the modified piano spectral

amplitude

2000

envelope.

1500

The modification of the spectral envelope

1000

is a powerful modification, which changesthe !

sound substantially. Nonethel ess, the identity o : 10 ‘ 20 % %

of the sound is not transformed just by Figure 10.1. Spectral :::I/I::pe of the original
modifying the spectral envelope, since the (solid) and modified (dotted) piano.
same instrument can have very different
spectral envelopesin different playing ranges.
Thisisthefirst step in transforming sound® into sound®. The next step is to change the
frequencies of the output additive parameters. This changes the pitch of the resulting

sound.

10.5.2. Frequency

The frequencies are modified in the same manner as explained in paragraph 10.2.1. The
frequency of each partial is multiplied by the new frequency envelope and divided by the

old frequency envelope,

£b
() = f;‘(t)x}—k (10.18)
k

a
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where the HLA frequency fka in this case is the mean frequency of partia kin the sustain
region.

The original and transformed frequencies Frequencies

290

of the piano sound are shown in figure 10.2.
Theoriginal piano frequencies, divided by the ~ **/
partial index, constitute the solid lineand the ~ 2s0;

modified piano frequencies, which are

freq./partial index
N
~
(9]

identical to the trumpet frequencies, constitute
the dotted line. It is clear that the original

N

3

=]
T

265

piano has a greater inharmonicity index than
//_/

0 5 10

the trumpet. The fundamental frequenciesare 2o

15 20 25 30
partial index

very close, so the sound is not changed very Figure 10.2. Mean frequencies, divided by the

partial index, of theoriginal (solid) and modified

much by this modification. The trumpet has a (dotted) piano.

dlightly higher fundamental frequency than
the piano, but no partial frequency stretching.
The highest frequencies of the trumpet are
probably misjudged due to noise.

Thisisthe second step in the transformation of the piano sound into a trumpet sound.
The additive parameters now have the same mean frequencies and maximum amplitudes as
the resulting sound. The next steps involve the modifications of the amplitude envelope

and noise parameters.

10.5.3. Envelope

The envelope is an important timbre attribute. The envelope model is presented in
Chapter 5. It is defined for each partial in the HLA model as the times, percents and curve
forms of an attack-sustain-release or attack-decay-release model, which also includes a
start and an end segment. The envelopes of the partials of the piano sound® is transformed
into the envelope form of the trumpet sound® by first modifying the envelope times, then

changing the envelope percents, and finally changing the curve forms.

10.5.3.1 Envelope Times
The envelope times of the sound® is changed into the times of sound® by adding a linear
slope lincurve for each segment. The slope has the value zero at the start of the slope and

the difference between the new and the old segment length at the end of the slope,
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to, (1) =, (1) + lincurve(0, £, - t5,t3) (10.19)
The time with a hat and no t parameter is the length of the segment from the HLA
model. The time with parameter t is the time at envelope index t. The function
lincurve(a,b,t) makes alinear curve from ato b with length t. This accelerates or
decelerates the times so it is equal to the new length at the end of the segment. The
envelope time modifications are done for the start, attack, sustain, release and end

segments for al partials.

The modified envelope of the fundamental Fundamental envelope
isshown in figure 10.3. The modified
envelope has first been multiplied so the s500]

4000 -

maximum value is the same as the target 3000

2500

value, as explained in paragraph 10.5.1. The

amplitude

2000

target envel ope has been created from the

1500

clean (noiseless) HLA parameters of the

1000

trumpet sound. cool
The plus signs denote the split points for o 200 @ wn o 500 500
the original and the wanted envelope. Figure 10.3. Original (top), target, and modified
(bottom) fundamental envelope after time
Already, the envel ope has a good modification.

resemblance to the target envel ope, athough
the sustain curve form iswrong. These

parameters are corrected in the following two

paragraphs.

10.5.3.2 Envelope Per cents

The next step is to change the envel ope percents. The envelope percents are the relative
amplitudes at the split points. This modification is done for each percent by multiplying the
adjoining segment envelopes with alinear ope, whichis 1 at the far ends, and the
percent® divided by the percent® at the split point. The modification of, for instance, the
sustain segment of partial k isthen,

~b ~b
a_ (t) = a’,(t) lincurve( gf""’k 1t,) dincurveq, o= t ) (10.20)
eoa, k sor , k

Paa x 1S the percent at the end of attack, and p,, is the percent at the start of release.
The envel ope percent changes are done for the soa, eoa, sor and eor percents.

164



Chapter 10. Timbre Modifications

The original, target and modified envel opes after the percent modification of the
fundamental are shown in figure 10.4. The main difference here is that the percent of the
piano in the end of release split point is almost zero, whereas the corresponding trumpet
percent is very large. The linear slope value then becomes very large, and the curve can be
substantially modified. What happened here is that the characteristic peak at the end of the
decay of the piano was amplified, so it is very visible. Since this phenomenon is not
included in the HLA model, it isnormal and necessary that it is transmitted from the piano

to the trumpet sound.

The fundamental partial of the trumpet Fundamental envelope

4500

actually endsin the eor split point. Thisis not

4000 -

very visible in figure 10.4, but it becomes ss00l
visible after the resampling is performed in 3000

2500 -

paragraph 10.5.4. Although the envelope

amplitude

doesn’t look any closer to the target envelope ™|
1500
after this modification, the next step, which is

1000 -

the modification of the curve form, will show

500 -

that thisisthe case. ol ‘ ‘ ‘ ‘ ‘
0 100 200 timgo((l?ns) 400 500 600

Figure 10.4. Original (top), target, and modified
(bottom) fundamental envelope after the percents
modification.

10.5.3.3 Envelope Curve Forms
The envelope curve form is the last step in the modification of the amplitude envel opes.

The curve form is a simple equation with three parameters, v,, v, and n.

1
curve(t) =v; +(v,- v)x1- @- ")" (10.21)
where v, and v, arethe start and end values, which are found by multiplying the percent
with the spectral envelope value for the corresponding segment and partial. t isthe time

index, and n is the curve form.

The modification for each segment from curve® to curve” is made by adding curve” and

subtracting curve?,

a, (t) = a2 (t) + curve’(t) - curve®(t) (10.22)
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This can be done, since the length, start and end points are the same for both curves
after the timing and percent modifications. The modification of the curve formsis done for

the start, attack, sustain, release and end segments.

The envelope of the fundamental of the Fundamental envelape

4500

piano is shown in figure 10.5. It is obvious

4000

that the curve form of the piano now isreally aso0l
close to the curve form of the trumpet. The 3000

2500

main difference is the peak at the end of the

amplitude

2000

release, which is very characteristic of the

1500

piano.
1000 [
It isnow clear that the previous 500}
modifications of the envelope percents 05 00 260 a0 a0 560 500
time (mS)
actually approached the source envelope to Figure 10.5. Original (top), target, and modified

. . fundamental envelope after thecurveform
the target envelope even though it sometimes | jgification. P

seemed the opposite was happening.

The envel ope timing and percent modification are necessary first stepsif the curve form
modification shall succeed.

The modification of the curve form of the envelope finishes the third step of the
transformation of the piano sound® to the trumpet sound®. The partials now have a close
physical resemblance, as can be seen in figure 10.5, but the sound still is different, so the

noise attributes are changed next.

10.5.4. Noise M odification

The noiseis an important attribute of the timbre, and it is here modeled as the
irregularities on the amplitudes (shimmer) and frequencies (jitter) of the partials. The noise
model is presented in Chapter 6. The partials need to be resampled after the frequency and
envelope modifications, since the noise is calculated on the partials with a sampling rate of
the fundamental frequency of the sound. The sampling conversion is done by linear
interpolation. Better results may be obtained with better interpolation methods, but so far

no sound artifacts have been observed with the simple linear interpolation.

If the fundamental frequency modification has been important, or the segment length

changes are important, then it may be necessary to revise the segment length modification
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method, since the high frequency content of the noise of, for instance, a very short segment

changed into avery long segment, is dilated to be almost non-existent.

10.5.4.1 Shimmer
Shimmer is the noise on the amplitude of the partials. It is modeled in the HLA model
with two parameters, the standard deviation and the filter coefficient of asingle-tap

recursive filter.
The magnitude response of a single-tap recursive filter with one parameter ais
[Steiglitz 1996],
1
J1+a? + 2a>cos(m)

The shimmer isfirst extracted by subtracting the clean sound® envel ope from the

H(w ) = (10.23)

modified sound?® envelope, and normalizing with the clean envelope,

shimmer, , = w (10.24)
& (1)

where g, , isthe amplitude envelope for the partial k, and &, , isthe clean envelope for the
same segment and partial. The shimmer parameters need to be recalculated, instead of
extracted from the HLA model, since it has been substantially modified in the previous
paragraphs. The filter coefficient is now calculated from the shimmer, and the modified
shimmer with the desired frequency magnitude is calculated by multiplying by the new
filter magnitude response” and dividing by the old filter magnitude response® in the

frequency domain,

H(w)"|
H(w)?|

shimmer,, = FFT*(FFT(shi mmer)% ) (10.25)

The standard deviation is then calculated from the modified shimmer, and the shimmer
is again modified by multiplying by the wanted standard deviation® and dividing by the
calculated standard deviation?,

b
shimmer, , = — shimmer,, (10.26)
o

This creates a new noise with the target standard deviation and filter coefficient values.
The noise is reinserted into the clean envelope” by multiplying it with the clean envel ope?
and adding it,
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el = €, @ +shimmer,,) (10.27)
The sustain shimmer for the fundamental of the piano is seen in figure 10.6 before and
after shimmer modification (dotted). The top plot is the frequency domain noise, and the

bottom plot is the time domain noise.
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Figure 10.6. Frequency magnitude response (top) Figure 10.7. Original (top), clean trumpet

600

and time signal (bottom) for sustain shimmer of the envelope, and modified piano fundamental envelope

fundamental of the piano, original (solid) and after the shimmer modification.
modified (dotted).

It seems fairly obvious that the trumpet has a more |ow-pass noise with a higher
standard deviation. The standard deviation values are 2% for the piano fundamental, and
9% for the trumpet. The filter coefficient changes from -0.93 for the piano to -0.98 for the
trumpet. The resampling has made obvious the large end of release percent for the trumpet

sound, which has been cut off before the end of the release.

10.5.4.2 Jitter
Jitter isthe irregularities on the frequencies of the partials. The jitter is modeled in the

HLA asthe shimmer is, with two parameters; the standard deviation and the filter
coefficient of a single-tap recursive filter, which has the mean-sgquare frequency magnitude
response approximation of the original noise magnitude response. Jitter is calculated as the
frequency minus the mean of the frequency, divided by the mean of the frequency for each
segment and partial,

fa - fa
jitter,, = % (10.28)

sk

Jitter is modified in the same manner as the shimmer, first the filter coefficient is

calculated from the jitter, then the frequency magnitude response is modified,
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H@)"|
H)

The standard deviation is then calculated from the modified jitter, and the jitter isagain
modified by multiplying by the wanted standard deviation® and dividing by the calculated

jitter,, = FFT(FFT (jitter)% ) (10.29)

standard deviation?,

0_b
jitter,, = — jitter,, (10.30)
L ,

Finally, the resulting frequency is,

o = fa @+ jitter,) (10.31)
Thejitter for the sustain part of the fundamental can be seenin figure 10.8 in the
frequency domain (top) and the time domain (bottom). The dotted lineisthejitter after
modification.
The resulting time varying frequency is shown in figure 10.9, with the original piano
and the clean trumpet frequencies, which have been offset to facilitate reading of the plot.
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Figure 10.8. Original ar_1d modified (dotted) Figure 10.9. Original piano fundamental
fundament_al jitter of the piano. Frequency response  frequency (top), clean trumpet frequency (middle)
(top) and time domain (bottom). and modified piano frequency (bottom). The

frequencies have been offset to facilitate reading.

Thejitter of the trumpet is more low-pass and it has a slightly higher standard deviation.
This corresponds well with the piano standard deviation 0.1% and the trumpet standard
deviation 0.4%. Thefilter coefficient is-0.27 for the piano and -0.72 for the trumpet. The
important visual differencein figure 10.9 between the original and modified piano

frequenciesis due to the greater standard deviation for the piano in the attack and release
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(about 4 times greater). The plus signs at the x-axis denote the split points in the trumpet
sound.
Shimmer and jitter are modified for the attack, sustain and release for al partials. The

correlation is not modified in this chapter.

10.5.5. Verification

The modification of the noise parameters concludes the modification of the additive
parameters of a piano sound® into atrumpet sound®. It is now supposed to have the same
HLA parameters as the trumpet. To compare the HLA parameters, the HLA set of the
modified additive parameters of the piano sound is calculated.

The analyzed HLA parameters of the additive parameters of the modified piano are
shown in figure 10.10 and the original trumpet attributes are shown in figure 10.11.
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Figure 10.10. Modified piano High Level Figure 10.11. Original trumpet High Level
Attributes Attributes.

The spectral envelope, frequency and envelope parameters match fairly well, whereas
the noise parameters do differ somewhat. The spectral envelope and frequency values are
changed by the noise components, and the other parameters are offset by different
envelope time values. A dlight difference in envelope times may give riseto amore
important difference in the percent and in the curve form, which then changes the noise
values altogether. The important envel ope parameters match well, and the resynthesis of
the sounds is of good quality, as seen in section 10.6 Therefore the conclusion of the
additive modification isthat it clearly changes the perceptive quality of sound®into that of

sound®.
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10.6. Resynthesis

The additive parameters modified in section 10.3 can now be visualized and used for
synthesis of sounds. The additive parameters for the piano before and after modifications
can be seen in figure 10.12. The additive parameters in the middle clearly have the shape
of the trumpet parametersto the right. The irregularities and noise on the partials is of

course different, but this doesn’t change the identity of the resynthesized sound.

ppppp Modified piano Trumpet

Figure 10.12. Additive parametersfor the piano (left), the modified piano(middle) and the trumpet
(right).

The resynthesis of many modifications of different sounds permits the conclusion that
this modification isindeed very efficient, in fact so much so the original instrument in all
cases isimpossible to recognize. The new instrument identity seems obvious and the sound
guality is generaly very good. The sounds sometimes have a problem of |oose harmonics,
that is, harmonics that stick out of the sound. Although it is difficult to state that the sounds
must have been created by the instrument it was modified into, it still sounds very close to
that.

The modification of one sound into the same sound doesn’t change the timbre

perceptively. This shows the stability of the timbre modification method.

10.7. Conclusions

Thiswork presents a stable method for the timbre modification with high sound quality
and very good timbre identity restitution. This method has numerous applications, ranging
from the creation of hybrid sounds, the control of synthetic sounds by acoustic instruments,
as proposed in [Mgller 1997] to the creation of soundsin inaccessible playing ranges. The
method is equally fitted for the transformation of one sound into another sound, or into the
same sound with another fundamental frequency, or with another intensity. The quality of

the resynthesisis generally as good as the quality of the original parameters.
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Modifications of the expression parameters pitch, intensity and duration of asound is
also presented, and some general indications of the modification of timbre necessary to

retain arealistic sound when these parameters are changed is given.
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Chapter Eleven

11. Verification of the Timbre M odels

Although the timbre parameters extracted in the previous chapters seem to assist in the
understanding of timbre, no formal verification of their validity has been made. The goal

here to show the ability of these parameters to classify correctly a great number of sounds.

The success of the classification confirms the validity of the timbre models, and
suggests the use of these models for the automatic identification of musical instruments.
Furthermore, analysis of the classification ability of the different attributes helpsin

understanding the importance of these attributes in the perception of musical instruments.

Two different approaches are used here, principal component analysis (PCA), and
classification. The PCA is helpful in understanding the significance of the different timbre
attributes and a large number of soundsin the full playing range of five different

instruments are classified with no errors, thus proving the validity of the timbre attributes.
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11.1. Introduction

The different models of the timbre attributes are the HLA, MDA and IDA models. The
HLA model presented in Chapter 6 has individual envelopes, noise, amplitude and
frequency for each partial. The MDA model presented in Chapter 8 has a simple model of
every MDA parameter as afunction of the partial index, and the IDA model presented in

Chapter 9 additionally models the evolution of all parameters from low notes to high notes.

It is here attempted to verify the validity of the different timbre models presented in this
work. One way of verification is the listening tests performed in the next chapter. In this
chapter, several methods are used to seeif the timbre attributes classify the soundsinto the

instrument families correctly.

Classification using timbre attributes is a difficult task. The principal component
analysis of the timbre attributes can be compared to the perceptual scaling of musical
timbres [Grey 1977]. See also the dissimilarity section in Chapter 2. [Scheirer et al. 1997]
presents a robust speech/music discriminator using brightness and other parameters.
[Dubnov et al. 1997] shows the importance of phase coupling in the classification of
musical instruments. In general terms, musical instrument classification can be compared
to the task of speaker identification [Doddington 1985].

Two methods of analyzing timbre attributes are used in this work; the principal
component analysis (PCA) and classification using the log likelihood [Frieden 1983].
[Skovenborg 1997] used similar methods on the time-varying amplitudes of the harmonic

overtones of asmall musical data set.

Other interesting methods, which are not investigated in this work, include the
classification in binary trees using maximum entropy, which has proven successful in
speech recognition research [Bahl et al. 1989], [Bahl et al. 1991], [Jensen 1993]. Analysis
of the maximum entropy decisions used to create the binary trees could potentially give

important information about the timbre attributes.

This chapter starts with a presentation of the data used in the classification in section
11.2, followed by an overview of the timbre attributesin section 11.3. Section 11.4
presents the classification using the amplitudes at the nyquist frequency of an ideal spectral
envelope. The Principal Component Analysis (PCA) of the timbre attributes is presented in
section 11.5. The classification of the timbre data using the log likelihood is performed in

section 11.6. Finally a conclusion is offered.
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11.2. Sounds

The data used in this classification are the timbre attributes of a number of sounds.
These sounds come from five instruments:. the piano, the violin, the clarinet, the flute and
the soprano voice. The sounds used in this chapter are the same sounds that are used in the
listening tests in Chapter 12.

Each instrument contributes with 30

5r Soprano SRR RSN

sounds; there are thus 150 soundsin all. All of

451

the sounds from each instrument are

4 Flute HKOREEK K ORKK X ORKK X
distributed in the normal playing range, ascan _ss

3r Clarinet KKEK KKK KK X

instrument

be seen in figure 11.1. The sounds are played

in detaché, staccato or tenuto, intensity mezzo

Violin SORRCK KROOBBK I K KK

forte. The distribution over the full playing Ls)

range makes the classification of the sounds [P0 OO ook

. . . . 05 1 ’ 2 ’ 3 4
more difficult, since two sounds in the upper 10 O equency ) ° 10
playing range from two different instruments Figure 11.1. Frequency range of instruments.

are often more similar than two sounds from

the same instrument with different pitch.

11.3. Timbre Attributes

The classification is made on a subset of the MDA parameters. No automatic method
for the extraction of the minimal subset necessary and sufficient for the classification of
the sounds in musical instrument classes has been found. Instead a combination of the
analysis of the parameters and the PCA and classification results are used to add or remove

parameters, until no more parameters can be removed without degrading the classification.

A short overview of all timbre modelsis given here, although only the results of the

MDA parameter analysis are given.

11.3.1. HLA
The HLA model is presented in Chapter 6. There are 30 HLA attributes for each partial.

These are 5 envelope times, 4 envelope percents, 5 envelope curve forms, 3 noise std and 3

noise filter coefficients for shimmer and jitter, the shimmer and jitter correlation, the mean
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frequency and maximum amplitude for each partial. The HLA values are not used in this

chapter.

11.3.2. MDA

The MDA model is presented in Chapter 8. The MDA generally has the same
parameters asthe HLA, but instead of having one separate value for each partial, the MDA
has a fundamental value and an exponential value. The frequency is modeled by the
fundamental and the inharmonicity index, and the spectral envelope is modeled by the

tristimulus 1 & 2, odd, brightness, irregularity and maximum amplitude.
In thiswork, only the fundamental values of each attribute are used.

Some of the attributes are related to the length or the amplitude of the sounds; these are
the start length, the sustain length, the total length, and the maximum amplitude, and they
are removed, because not all sounds are performed with the same duration or loudness.

The fundamental frequency is also removed.

Since many of the attributes seem correlated, they are aso removed. The attack and
rel ease noise values are assumed to be correlated with the sustain noise, and therefore

removed.

The start segment, release segment and end segment curve forms are judged
insignificant and therefore removed. The attack curve form isjudged important, since the

attack is one of the perceptually most important segments.

The start, attack and end percents are also removed. The start of release percents are
judged important in distinguishing between sustained sounds and decaying sounds, such as

the piano.

The frequency brightnessis used, expressed in Hz, but all other spectral envelope
attributes are expressed in partial number.

The remaining MDA attributes are used in the rest of this chapter, unless otherwise
noted.

There are 16 attributes, which can further be divided into several timbre classes,
spectral envelope attributes, envel ope attributes, shimmer attributes and jitter attributes, as

can be seenin figure 11.2.
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Spectral Envelope Attributes - Shimmer Attributes

- Tristimulus 1 - Sustain Shimmer std

- Tristimulus 2 - Sustain Shimmer filter coefficient
- Odd - Shimmer Correlation

- Brightness - Jitter Attributes

- Irregularity - Sustain Jitter std

Envelope Attributes - Sustain Jitter filter coefficient
- Attack Time - Jitter Correlation

- Release Time - Inharmonicity

- Start of Release Percents

- Attack Curve Form

Figure 11.2. Timbreattributes used in the classification.

11.3.3. IDA

The IDA model is presented in Chapter 9. The IDA values are the same as the MDA
values, except that they are averaged across one half octave in 15 steps, from 32 Hz to 4
kHz. The IDA values are not used in this chapter.

11.4. Nyquist Frequency Amplitude

The nyquist frequency is the sample rate frequency divided by two. It is the highest
frequency that can be analyzed with the fourier analysis. Here it is assumed to be the limit
of the hearing capability, which means that frequencies above cannot be heard by the
human ear. The nyquist frequency thus has a relevance to human perception. Thisisa
simple assumption, the validity of which can be discussed. See for instance [Oohashi et al.
1997] for astudy of the physiological and psychological effects of high frequency

components.

This section will analyze the amplitudes of the ideal amplitude at the nyquist frequency.
By ideal, it is assumed that the higher partial amplitudes are defined only by the brightness
of the sound, and not by any resonances, or noise. Assuming that the brightness of the

sound is T, the ideal spectral envelope is then defined by the exponential series,

a =B *Y (11.1)
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where B is defined as (cf. Chapter 7),

B= T, (11.2)
T,-1
The partia index at the nyquist frequency is,
samplerate/ 2
knyquist = pf— (113)
0
and the amplitude of the partial at the nyquist frequency is then,
Byque =B (11.4)

The frequency brightness for the five

piano violin clarinet flute soprano
— — — — —

instruments are shown in figure 11.3.

The ideal spectral envelopes, that isthe
values of equation (11.1), calculated with the M
partial index brightness of five instruments,
are shown in figure 11.4 and the amplitudes
of the same instrument sound at the nyquist 10° 17 107 1% 1%

frequency are shown infigure 11.5. The

instrument order is piano, violin, clarinet,

£O Zb 30 lb 26 30 lb 26 30 £0 2‘0 30 lb 26 30
flute and soprano. All axis have been

Figure 11.3. Frequency brightnessfor five
instruments, piano, violin, clarinet, flute and
soprano. x axisis sound index and y axisis
frequency.

normalized between instruments.

The nyquist frequency is here 16 kHz.

It is clear that the violin has higher amplitude at the nyquist frequency than the other
instruments. The value of a4 iS then capable of classifying the violin with few errors.
The clarinet and the flute have the values at about 10™*. The piano has the lowest val ues of
8,quis fOr most notes and the soprano has valuesin between the clarinet/flute and the piano
values. This makes up four distinct groups, where most of the instruments can be
positioned without errors. If the sounds are separated by the limits 5.8e-04, 1.7e-06 and
1.3e-08, the classification finds 28 violins with no errors, 57 clarinet/flute with 6 errors, 15
soprano with 7 errors and 25 piano with 12 errors. Total correct classification 125/150 with
25 errors. Remember though that thisisthe classification in four groups, whereas the

classification in section 11.6 isdone in five groups.
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The values of a4 therefore are interesting in the classification of musical instruments.
The values of a4 SeeEMs to give better classification than the frequency brightnessin

figure 11.3, which have more overlap between instruments.

piano violin clarinet flute soprano piano violin clarinet flute soprano
—30° —30° —30° —30° , ———30° 0° 0° °

10° 10°

107 107 + 0%} 107 + 10° Wo'z F 407 102+

10 + 40* + 0+ 10 + 40 | 40* + /\90‘ W\[zo" t

10° + 0+ 10° s s 10°® 40° 10°

10° - 0°® - 10° + 40® 40° 10°®

1070L ooL 40} 4ot 4ot0 4ot

10.120 10000 ‘0-120 10000 0‘120 10000 O-lzo 10000 -° 0 10000 1020 30 10 20 30 . 10 20 30 B 10 20 30 B 10 20 30

Figure 11.4. Ideal spectral envelope plotted up to Figure 11.5. Amplitudes at nyquist for five

nyquist for fiveinstruments, piano, violin, clarinet,  instruments, piano, vialin, clarinet, flute and
flute and soprano. x axisissound index and y axisis soprano. x axisissound index and y axisis
amplitude. amplitude.

In conclusion, the fundamental combined with brightness can give afair classification.

11.5. Principal Component Analysis

In the Principal Component Analysis [Frieden 1983], the covariance-matrix of the
timbre attributes is created, and the eigenvalues are calculated. When the eigenvalues are
sorted decreasing, the eigenvectors corresponding to the L largest eigenvalues are enough
to classify the data. Related techniques have been used for many yearsin the classification
of musical instruments from perceptive input [Grey 1977], [Krumhansl 1989], [Iverson et
al. 1993], [Krimphoff et al. 1994], [McAdams et al. 1995]. PCA has been used in [Sandell
et al. 1995] for the data reduction of additive parameters. [Hourdin et al. 1997] usesa

related multidimensional scaling for the same purpose.

Often, the 3 most prominent dimensions are used and plotted in a three-dimensional

space. The separation into classes can then be verified visualy.

If Xisthe NxM matrix of N timbre attributes, M sounds, first

C, =cov(X) (11.5)
is calculated and diagonalized,
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The diagonal elements are sorted and assigned to | . The value of | indicates how much
of the energy of the original timbre attributes is connected to the corresponding dimension.
Therefore, if most of the energy of X iscontained in the first L elements of the eigenvalues

| , then X can be transformed into the subspace spanned by the L first eigenvectorsE, .
The transformation to the eigen subspace is done by multiplying the eigenvector E; with

the original timbre attributes,

U

X=E xX (11.6)
The squared error isthen the sum of the L+1 to N elementsin | .

The PCA is performed on the fundamental s
value of the MDA attributes, described in 457
paragraph 11.3.2, with the addition of the

w
15
T

release curve form, and the envel ope percents.

w
T

Eigenvalues
N
ol
*

The sorted eigenvalues are shown in figure

11.6. Figure 11.6 suggests that more than i *

three dimensions are necessary to classify the 1: e

data. Nevertheless, the first threedimensions o} T .

are calculated and plotted. The analysisof this % 2 4 & & 1 12 1 1 S

plot will give an idea of the distribution of the Figure 11.6. Sorted eigenvaluesfor the MDA
timbre attributes.

sounds in the multi-dimensional timbre space.

The three-dimensional plot of the first 3 dimensions of the eigenvectorsis shown in
figure 11.7. Thepianois‘x’, theviolinis‘+', theclarinetis‘o’, thefluteis*.” and the
soprano is ‘X’. Separation into the different instrument classes is quite good, although the
flute doesn’t seem to bein its own group.

To facilitate reading, the data is also plotted on the three visible planes. The three-
dimensional dataisthe onein the middle (top). The other three groups are the data plotted

on the planes.

The soprano and the violin sounds are well grouped in two separate clusters. The flute
also seems well separated, but the piano and the clarinet sounds are not well isolated in

these three dimensions. More dimensions are necessary to separate all five instruments.
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PCA coordinate 3

PCA coordinate 2 PCA coordinate 1

Figure11.7. The 5 instrumentsin the 3first PCA dimensions. Thepianois‘*’, theviolinis‘+’, the
clarinetis‘o’, thefluteis'.” and the sopranois‘x’. Observethat the data isalso plotted on thex, y and z
plane. The upper cluster in the middleisthe 3D plot.

It isinteresting to see what attributes are

prominent in the PCA coordinates. The 3 first

Eigenvector 1

eigenvectors are shown in figure 11.8. The

first dimension isindicated with ‘*’, the %

second dimension is plotted with *+' and the

third dimension is plotted with ‘0’.

Eigenvector 2

The first dimension has prominent values o6

(above 0.3) for sustain shimmer & jitter filter

Eigenvector 3
o o
o N R
T T
ol i
o | i
=L o
o
=L o
N
.

o
N}
IS
N
~
=
=)
I
©
N
o

coefficients, shimmer & jitter correlation,

Timbre attribute

Figure 11.8. Eigenvaluesfor thefirst 3 PCA
to be principally related to the noiseand the  dimensions.

Tristimulus 1 and Odd. This dimension seems

spectral envelope.
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The second dimension has prominent eigenvector values for release time, start of
release percent, sustain shimmer std and brightness. This dimension seemsto be
principally related to the decay envelope and brightness. The third dimension has
prominent values for attack time, start of release percent and end of release percent, and is
mostly related to the envelope.

11.6. Classification

In the classification, the timbre attribute dataisfirst classified in the different
instrument classes. To avoid using the same data for the classification and the test, the
classification is performed using the leave one out (LOO) method, on all data except the
sound being tested.

Thelog likelihood function for normal-distributed data is used as a classifier,

i =3 loalCh +5 (X, - M) 67X, - m) (117)
where C. isthe covariance matrix of the classi, X, isthe attributes of sound kand m. is
the mean of the classi. This model is anisotropic, which means that the shape of each class
isan ellipsoid.

To ensure invertability of C, an isotropic noise term e is added to the diagonal elements
of C,.. Thevaue of eischosen in order to optimize classification.

The LOO method is as follows. The classes are created for all data except the data of
the sound k that is being classified. The distance is then calculated for the five instrument
classes, and the sound is placed in the class to which it has the smallest distance. Thisis
repeated for all sounds.

If al 16 timbre attributes, as defined in paragraph 11.3.2 are used, then there is no error
in the classifications. It can therefore be concluded that these 16 timbre dimensions are
enough to separate the 5 instrument sounds.

Next, to verify the influence of the individual timbre attributes, the timbre attributes are
divided into classes, envelope, shimmer, jitter and spectral envelope. The clustering is

done for each timbre attribute class, and the number of errors are
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Attribute class: : total errors, (piano, violin, clarinet, flute & soprano)
Envelope (4 attributes) : 55 errors, (10,9, 8, 17 & 11)

Shimmer(3 attributes) : 66 errors, (11, 7, 12, 12 & 24)

Jitter (3 attributes) : 68 errors, (20, 4, 27,9 & 8)

Spectral Envelope (5 attributes) : 24 errors, (7, 1,5, 3 & 8)

The piano has 48 errors cumulated, the violin has 21 errors, the clarinet has 52 errors,

the flute has 41 errors and the soprano has 51 errors cumulated.

If each timbre attribute is clustered individually, then the only attribute, which has
fewer than 70 errors, is brightness, which has 56 errors. All other timbre attributes yield

90+ errors. Brightness combined with the fundamental frequency yields 43 errors.

11.7. Conclusions

In this chapter, an analysis of the importance of the timbre dimensions is performed.
Three methods have been tested: standard PCA, classification using the log likelihood
function for normal distributed data, and a simple classification using the brightness and

the fundamental frequency.

The PCA revea ed some important timbre dimensions, the spectral envelope, noise and
envel ope being the most important. Although the PCA results are not convincing, it has

been of help in choosing which timbre attributes to use in the classification.

Classification using only the brightness and the fundamental frequency by calculating

the amplitude at the hearing limit of each sound gave good classification results.

The verification of the timbre model has shown that a subset of the MDA parametersis
enough to classify 150 sounds from 5 musical instruments without errors. It can therefore
be concluded that these attributes are important to the timbre model, since the
classification was made on the same criteria as human classification of musical instruments
ismade. Indeed, it would seem that this classification is better than the human
classification, since several subjectsin the listening tests performed on the same sounds

had difficulty recognizing some of the instruments, even from the original sounds.

It can tentatively be said about the attributes that were used for the classification that
they can be divided into several groups: attack envelope, release envelope, noise quality,
amplitude irregularity and spectral envelope. None of the subgroups can classify the

sounds well, although the spectral envelope, and notably brightness, is a good classifier.
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The order of importance of the timbre attribute classesin order of ability to classify might

be spectral envelope, envelope and noise.
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Chapter Twelve

12. Listening Tests

This chapter presents the results of listening tests performed to objectively evaluate the
quality of the sounds resynthesized from the different timbre models. Five models are
evaluated: the original sounds, the analysig/synthesis sounds, the HLA model sounds, the
MDA model sounds, and the IDA model sounds. The results of the listening tests show
that the analysis/synthesis and the HLA models generally score above annoying
degradation, whereas the MDA and IDA sound quality is unacceptable. Analysis of the
scores can help in improving the timbre models, or the estimation of the timbre model

parameters

12.1. Introduction

In this chapter, the quality of the different timbre modelsis measured by subjective
quality as judged by a number of listeners, called subjects.

Not many objective listening tests have been performed in the music community to
evaluate synthesis methods. [ Strong et al. 1966] evaluated the spectral/time envelope
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model with listening tests. [Grey et al. 1977] compared analysis/synthesis and different
data-reductions, and [Sandell et al. 1995] evaluated the PCA-based data reduction with
listening tests.

The listening tests performed here have been inspired by the listening tests performed
for the evaluation of speech and music compression. The method used is called double
blind triple stimulus with hidden reference [ITU-R 85/10 1994]. A practical application of
thistest can be found in [Nielsen 1995]. The subjects are presented with three sounds, the
first dways being the reference and the two next sounds are the reference and the model ed
sound in random order. The subjects are then asked to rate the two sounds, called B and C,
against the reference sound (the original) in ascale from 1.0 to 5.0. The scale indicates the
degree of impairment. The subjects are allowed to listen to each sequence again, as many

times as necessary.

The test performed here differs from normal double blind triple stimulus with hidden
reference tests because the sounds under test are short, and there is no use changing
between sounds while listening to them, asis usual when longer music pieces are under
test. Instead, the test subjects are allowed to repeat al three sounds as many times as

necessary.

12.2. Rating scales

The scales used have been borrowed from [ITU-R 85/10 1994]. The impairment of the
modeled soundsis judged in five steps, although the subjects are asked to give one decimal
to the score when possible.

The scaleis,

Score Impairment

5.0 Imperceptible

4.0 Perceptible, but not annoying
3.0 Slightly annoying

2.0 Annoying

1.0 Very annoying

In Danish, the language of thistest, this translates to [Poulsen 1996],

Vurdering Forringelse
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5.0 Ikke harbar

4.0 Harbar, men ikke generende
3.0 Lidt generende

2.0 Generende

1.0 Meget generende

It is stressed that what is judged are musical sounds, and what is judged isthe
impairment were the sounds to occur in anormal musical situation. This means, for
instance, that if the subject believes that the sound is another recording from the same
playing condition on the same instrument, or instrument type, which can sound quite
different, but the quality is natural, then the scoreis 4 or above. The scores 3, 2 and 1 are
used when the identity of the sound has been altered, or when the quality of the sound is
deteriorated. The score 4 or higher is also used when the impaired sound is better than the

origina sound.

12.3. Original Sounds

There are sounds from 5 different instruments in the test: piano, violin, clarinet, flute
and soprano voice. The sounds are fairly short, typically less than one second long, and
they range over the normal playing range of each instrument. There are 15 sounds for each
instrument. These are the same sounds that are used in the classification in Chapter 11,

although every second sound is used here.

12.4. M odel Sounds

There are 5 modelsin thistest, the original, analysis/synthesis, HLA, MDA, and IDA

sounds.

Analysis/synthesisis done with the linear time/frequency analysis presented in Chapter
4, spurious frequencies are analyzed, but not resynthesized and partials are smoothed over
one period. The maximum number of partialsis 54, and the note of each analyzed sound is
given to the analysis, to reduce the influence of the fundamental frequency estimation

error, as explained in Chapter 9.

The HLA model sounds are created as described in Chapter 6. The MDA model is

presented in Chapter 8 and the IDA model
187



Chapter 12. Listening Tests
in Chapter 9. The MDA and IDA model sounds are made with no error term.

12.5. Listening panel

It is preferable to have only musicians, or music people, in the listening panel, because
of their improved listening ability and vocabulary. 24 people are chosen to the panel, aged
between 22 and 61 years.

The mean age of all subjectsis 28.3 year. There are 19 male subjects and 5 female
subjects, and divided into 5 non-musicians, 11 amateur-musicians and 8 musicians or

music students.

12.6. Training

In training, the subjects are supposed to familiarize themselves with the sounds, the
facilities, and the impairment scale. Training was done immediately prior to the test. First
the subjects were presented with a paper with instructions. The content of the instructions
(in Danish) can be found in appendix B.

Inthefirst half of the training the subjects are presented with 5 typical soundsin the
different modeling schemes; original, analysis/synthesis, HLA, MDA, and IDA. The first
half of the training is done sequentially, and cannot be repeated.

The second half of the training is 5 normal double blind triple stimulus with hidden
reference tests, where the subject can ask the supervisor questions, and the supervisor
verify that the subject has understood the test procedure.

The subjects are presented with a paper with the impairment scale before the training is

performed. This scale was generally only consulted in the beginning of the tests.

12.7. Test Procedure

The tests are performed with matlab [Mathworks 1992] on a Power Macintosh 7500,
with a Sennheiser HD560 ovation |1 headphone connected to the headphone output of the
Macintosh. The subjects are not allowed to adjust the amplitude, which is set to the

maximum possible.

The Macintosh is placed behind a screen, but the room is not silent, and there can be

some noise in the background. Although this may influence the results, it has been judged
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that the impairments of the sound are so pronounced that it will not influence the judgment

dramatically.

The total number of tests for each subject is 345, which is 5 models times 5 instruments

times 15 sounds, minus the training sounds.

The sounds are presented in arandom order. When the subject has listened to the three
sounds, A, B, and C, heis asked to give an impairment score for B, and then C. When the
C impairment score is validated, the subject can select the next test samples. Theinput is
done with the numerical keyboard, and the subject can at any time press 0 to listen to the

three sounds again.

Thetest lasts about 2 hours, and subjects are asked to take a break after 1 hour. If
necessary, the second half of thetest is done at alater time. This was the case for about
half of the subjects.

12.8. Subject Comments

The subjects were asked to write on a paper general comments about the sound, and
about the test procedure. The comments were generally related to the test procedure, the
impairment scale, or the original and resynthesized sounds.

12.8.1. The Test Procedure

The test procedure didn’t get many comments, although some people complained about
not being able to recognize the original instrument, others wanted clicks in the beginning
and in the end removed. One subjects wanted a scrollbar, instead of the numerical inpuit.
This would probably have improved the accuracy dlightly. Many subjects said they were

unable to judge on adecimal scale, and consequently only gave integer scores.

12.8.2. The Impairment Scale

The impairment scale was difficult for many subjects. It seems that many people tried to
fill out the scale, giving the 5 models as heard in the first part of the training 5.0, 4.0, 3.0,
2.0 and 1.0 respectively. Others had a different scale, with ajump from the HLA model to
the MDA. The MDA and IDA usually performed equally badly. One subject complained
that it really was two things being judged: the quality of the resynthesized sound, and how
different it was to the original sound.
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12.8.3. The Sounds

The sounds got more comments. The piano sounds lacked attack in the otherwise good
models, and got noisy in the bad models. A few resynthesized sounds sounded better than
the original according to many subjects, lacking unwanted noise, or sounding cleaner.
Violin and flute sometimes had |ess noise, while still sounding good. One subject
complained about high frequency fluctuations (jitter). Thisis an indication that the high
partials are badly analyzed. The violin was judged too sharp by one subject, lacking
spectral quality by another subject. The flute loses brilliance, or breathing noise quality,

according to severa subjects. The soprano was easy to judge, according to some subjects.

The normal musical situation was understood differently by the subjects, some
understood it as a concert situation, where blow or hammer noises are not heard, while

others understood it as an isolated situation, where all noises are heard.
That the sounds were often too short to judge was a recurrent comment.

A general consensus seems to be that even the worse model retained the identity of the
sound. Thisisimportant although not well founded. Some of the sounds were so short that

some subjects had difficulty identifying the instrument, even of the original sound.

The models were also identifiable by some subjects. One subject with a particularly
good identification of the IDA model (almost all scores were 1 for this model) replied
when asked that he found the sounds from this model sounded very good. This was not
generally the case, though. Most subjects found that the bad score models sounded bad.

Commentslike ‘It sounds like amodem’ were heard.

12.9. Statistical Presentation

When all subjects have performed the test, the data is collected, and the rating
difference, which is the rating for the modeled sound minus the rating for the reference, is
calculated. Thisisthe degradation of the model. If the degradation is larger than zero, the
subject has migudged the modeled sound. Thisis not supposed to happen, since most
modeled sounds have a pronounced difference. The result mean degradation is then

presented as a function of model type, sound type and frequency.
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12.9.1. Model Degradation

In figure 12.1, the mean degradations of the L |
5 models are pl Ott@d, Wlth the 95 % 05k Original AlS HLA MDA IDA

confidence interval. T

05F

s

The original sounds have zero degradation,
as expected, the Analysis/Synthesis model has

-15F

Mean degradation

2k %

-2.5F

a perceptible, but not annoying degradation,

the HLA model has a dightly annoying af ;
degradation, and the MDA and the IDA 357
models have an annoying degradation. TTias e 3 mes 4 s

. . . . o Figure 12.1. Mean degradation and 95 %
Since the scaleis not entirely reliable, itis  confidenceinterval for the 5 modelsfor all

perhaps more interesting to look at the relative 'MS"umentsand subjects

positions of the different models.

The A/S model is positioned relatively close to the original, and the MDA and IDA
models are both positioned close to the annoying degradation. The HLA model is
positioned in between the A/S and MDA models, although alittle lower than the exact
middle. The HLA model introduces the worse degradation, which can be explained, as
shown below, by the noise model of the HLA.

The next result from the listening tests is the degradation for each instrument. The

analysis of the degradation can help in understanding the reasons for the low score of the

timbre models.

12.9.2. Instrument Degradation

The mean degradations for the five instruments for all five models are shown in figure
12.2. The clarinet has the best score and the soprano the worst. The piano and flute also
have alower score, and the violin is next best.

The reason for the relatively worse score for the piano is probably the fast attack of the
piano, which is difficult to analyze, but it could also be explained by the lower notes of the

piano, and the better ability of subjectsto judge low notes.
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12.9.3. Subject Scores
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HLA, MDA and IDA sounds, which does not Figure12.3. Mean_degradation for the subjects
for all modelsand all instruments.

try to recreate a sound, but only some of the

perceptive qualities of that sound.

All subjects have roughly the same confidence interval. Therefore, no screening was

deemed necessary. All subjects are used in all of the degradation analysis.

The relatively worse score for the piano is now analyzed.

12.9.4. Analysig/Synthesis I nstrument Degradation

In figure 12.4 the mean degradation for the five instruments for all subjects, but only for
model 2 (A/S) is shown. The instrument families with fast attacks, piano and violin,

perform notably worse than instruments with slower attacks.
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The bad piano scores can also be explained by the relatively low pitch of many of the
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12.9.5. Degradation as a Function of Fundamental Frequency
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Figure 12.5. Mean degradation for the piano
sound and model 2 (A/S) for all subjects, asa

frequency have too many partials, some of function of fundamental freguency.

verified, isthat sounds with low fundamental

which are not analyzed.

Phase could also be influential in the bad performance of the low pitch piano notes. The
phase perception is greater for low frequencies, as shown in the phase section in Chapter 2.
Finally, the low piano notes have a very complex spectrum, with non-harmonic partials

which are not kept in the additive analysis.

Whatever the reason, the analysis does not always perform well, getting scores
approaching the annoying degradation. This should be taken into account when evaluating
the HLA, MDA and IDA models, for instance by defining the mean degradation for these
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models as the difference of the scores for these models and the score for model 2 (A/S).

The degradation for the HLA model then approaches the perceptible, but not annoying

degradation.

12.9.6. The HL A Instrument Degradations

The mean degradation for the HLA model
is shown in figure 12.6. The flute and notably
the soprano perform much worse than the
other instruments. The reason for the flute
degradation in this model might be a poor
model of the flute noise, but it may also be
because the flute has some tremolo effect,
which is not well taken into account in the
HLA model.

The soprano definitively has avibrato on

most of the sounds.

mean degradation
N =) o
ul N n = Ul o ul =
T : T T T T

)
T

-3.5F

Piano

-4 L

Violin

Clarinet

Flute

Soprano

1

15

2

25

3
Instrument

35

4

4.5

Figure 12.6. Mean degradation for the HLA
model, all subjects, asa function of instrument.

The vibrato is not modeled in the HLA model. Small vibrato is removed, whereas large
vibrato is not analyzed well in the A/S stage, and therefore translated into noise in the HLA

model. The vibrato is so pronounced that it isimpossible for the linear time frequency

analysisto succeed in the higher partials, since they would move across severa partials,

when the frequency deviates. Although thisis not very perceptive in the analysig/synthesis
model sounds, the vibrato effect is translated into noise in the HLA model.

12.9.7. MDA Instrument Degradation

The mean degradation of the MDA model as afunction of instrument is shown in figure

12.7.

The soprano still performs notably worse than the other instruments, although all of

them performs worse than in the HLA model.
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The degradation between the HLA and the
MDA models seems to be independent of the
instrument. This degradation could be
attributed to the spectral envelope model, or to
the correlation of the irregularitiesin the HLA
parameters.

Furthermore, bad frequency estimation,
rendering a different pitch in the MDA model

could also be the cause of bad scores.

12.9.8. The IDA Instrument Degradations

The IDA degradation is similar to the
MDA degradation and is shown in figure 12.8.
Obvioudly, the soprano couldn’t get more
degraded, much as the other instruments al
fall by about the same amount.

The MDA parameter values probably need
to be weighted before the mean is taken and
put in the IDA model.

Again, bad pitch estimation, rendering a
different pitch in the IDA model could also be

the cause of bad scores.

Next, the relatively bad score for the soprano is analyzed.
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12.9.9. Model Degradation with Soprano Removed

The mean degradation for all 5 models with the soprano removed is plotted in figure
12.9. The degradation from model 2 (A/S) to model 3 (HLA) has clearly diminished. This

is due to the bad analysis of the vibrato in the soprano instrument.
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Figure 12.9. M ean degradation for the 5 models
for all instruments and subjects, with the soprano
removed.

12.9.10. Complete Scores

The conclusions from the preceding paragraphs can be verified by analyzing the
compl ete scores.

The complete scores for the 5 instruments and the 5 models are shown in figure 12.10.

The mean scores for all subjects are shown.

The original scores are marked witha ‘o', o5
the A/S scores are marked with a‘x’, the HLA 0P o AT
scoreswitha‘*’, the MDA scoreswitha‘+, '0'5}; il ¥ Al T
and the IDA scores are the lowest scores s g il g XX s
marked witha'o’. Thelinesbetween thebest & _ [T e | )
g

and the worst models indicate which 2l 5 o Tl

instrument it is. The pianois solid, theviolin o~ 1| 1] 21T

s dotted, the clarinet is dashdotted, thefluteis s <. | [ L B

dashed, and the soprano has an empty line. e R ‘é°d R

The scores are sorted by the HLA scores. Figure 12.10. Complete scores for the 75 sounds
and the 5 models.

First of all, the HLA scores varies from better than perceptible, but not annoying to
amost very annoying. The violin seems to have many sounds with good HLA scores,
whereas most of the worst scores are for the soprano sounds as could be expected, due to
the presence of vibrato in the soprano sounds. All the scores seem to be sorted, with the
original sound scores highest, followed by the A/S, the HLA, the MDA and the IDA

scores. Only few of the IDA scores are better than the same scores for the MDA.
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Furthermore, the instruments seem to be grouped: the violin sounds are placed in two
groups, the piano also are in two groups, divided by the second violin group. Most of the
soprano sounds are grouped in the lowest HLA scores. Most of the flute sounds are
grouped in the second half of the figure, whereas the clarinet sounds seem more scattered
in the first half of the plot.

The best HLA score sounds have a perfect A/S score, and the worst HLA score sounds
have an even worse MDA and IDA score. Generally, the good HLA score sounds seemsto
have good A/S, MDA and IDA scores, and the bad HLA score sounds seem to have bad
A/S, MDA and IDA scores.

12.10. Conclusions

The listening tests have been performed for enough subjects under good conditions. An
improvement would have been to have a scrollbar, instead of the numerical input.
Furthermore, the scale used in this test might not be appropriate, since there actually are
two things under test: the quality of the resynthesized sound and the difference between the
origina and the resynthesized sounds. One modification to the degradation scale would be
to have degradation 1 be * Unrecognizable’', and degradation 2 be * Very annoying’, or add a
0 degradation * Unrecognizable'.

The listening tests have shown that the analysis/synthesis performs above ‘ Perceptible,
but not annoying’, except for the low frequency piano sounds. The HLA model performs
significantly better than the MDA and the IDA models and generally above dlightly
annoying.

The listening tests have been instrumental in understanding the reasons for the sound
degradation in the timbre models. The results presented here can be used to further

improve the timbre models, and the estimation of the timbre model parameters.
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Chapter Thirteen

13. Conclusions

In this chapter the methods and results in the preceding chapters are summarized. The
main accomplishment of this work has been the construction of amodel of the timbre of
isolated musical instrument sounds. Several new methods or improvements of existing
methods for the estimation of the parameters of the timbre models have also been
presented. The timbre models can be used to resynthesi ze sounds, and they are useful when

analyzing timbre evolution as a function of pitch, loudness, tempo or style.

The timbre models have been evaluated by performing listening tests on the resynthesis
of sounds from the parameters of the model, and by performing classification of soundsin
instrument classes using the parameters of the model. Finally, timbre modification

methods, which permit “playing” the models, have also been presented.

13.1. The Timbre Models

The general goal of thiswork was to find amodel of the timbre of isolated quasi-
harmonic musical sounds. This model, the High Level Attributes (HLA) model, was
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presented in Chapter 6. The HLA model analyses the additive parameters and extracts

pertinent, intuitive parameters.

The analysis of the additive parametersis summarized in Chapter 4. Two methods for
the analysis of musical sounds were compared, the FFT-based analysis and a new method,
developed by Philippe Guillemain [Guillemain et al. 1996], which is here called the Linear
Time Frequency (LTF) analysis method. A comparison of the two methods reveal s that the
LTF analysis has atime resolution that is twice as good as the FFT-based analysis. The
LTF analysisistherefore used in the rest of thiswork. The LTF analysis necessitates an
estimation of the frequencies to analyze. This estimation is performed in Chapter 3. An
improved fundamental frequency estimator, which estimates the fundamental of stretched

harmonic soundsis presented in that chapter.

The HLA parameters consist of the spectral envelope, which is the maximum of each
partial, the mean frequency of each partial, a simple envel ope function and noise

parameters.

The envelope model consists of five segments, start, attack, sustain, release and end for
each partial. Each segment has a start and an end relative value, the start and end times and
avalue of the curve form (exponential/logarithmic) of the segment. The envelope model is
presented in Chapter 5. A new estimation of the envel ope times based on the analysis of
the derivative of the envelope is presented, which performs better than awidely used
percents-based method of estimating the times. The envelope model introduced in this
work, which has variable split-point amplitudes, models equally well attack-decay-release

(percussive) and attack-sustain-rel ease (sustained) sounds.

Noise is modeled asthe irregularity at the amplitude (shimmer) and frequency (jitter) of
the partials. This noise model seems to recreate both correlated and additive noises well.
The shimmer or jitter of each partial is modeled with the standard deviation and the filter
coefficient of asimple filter, which have the same magnitude response as the noise. The
noise model is presented in Chapter 6.

The HLA model has few intuitive parameters, and it can resynthesize an analyzed sound
with high quality. The sounds are rarely identical, though, since the simple envelope model
cannot recreate the amplitude variations faithfully. Nevertheless, the timbre identity of the
sound is recreated flawlessly.

The HLA model still has some drawbacks. The size of the model is fixed, except for the
number of partials. While thisisrarely a problem, it makes comparing a high pitched flute
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with five partials with alow piano sound with fifty partials difficult. The important spectral
envelope also needs amodel, if timbre morphing is to be performed. The morphing
between two resonances in the spectral envelope should ideally move the resonance from
the first position to the second. Thisis not the case with the spectral envelope, which also
lacks simple, intuitive understanding. Furthermore, it should be possible to visualize most

parameters with one parameter, which could be the fundamental value.

For these reasons, the Minimal Description Attribute (MDA) model was developed. It is
presented in Chapter 8. The main feature of the MDA model is the spectral envelope
model, which is presented in Chapter 7. The spectral envelope model parameters are
brightness, the odd value, tristimulus and irregularity. Brightness is a measure of the mean
of the spectrum; alow value indicates much amplitude in the fundamental whereas a high
brightness value indicates strong high partials. Brightnessis highly correlated with the
perceptual quality brightness. The odd value is a measure of the amplitude of odd partials.
Tristimulus is the measure of the amplitudes of three groups, the first consisting of the
fundamental, the second of the first three overtones, and the third of the remaining
overtones. Irregularity is a measure of the difference in amplitude between adjoining
partials. These values are calculated for the spectral envelope, and this work presents a
method that recreates a spectral envelope with the same spectral envelope model parameter

values.
The fundamental and inharmonicity model the frequencies of the partials.

The value of the fundamental and an exponential parameter define the partial index
evolutions of the other parameters, which are the envel ope times, percents and curve forms

and the shimmer and jitter standard deviation, filter coefficients and correlations.

The MDA model can model only quasi-harmonic sounds, because of the structure of the
parameters. Some evidence that the estimation of the MDA model parameters could be
improved is given in Chapter 8.

The MDA model seems well adapted for isolated musical sounds. It solves some of the
problems of the HLA model, although the sound quality of the resynthesis from the MDA
model is significantly lower than the resynthesis from the HLA model parameters. The
spectral envelope now has an intuitive model and most parameters have a fundamental
value, which can be used when visualizing the timbre attributes. However, the HLA, or
MDA models can only model one sound. Most musical instruments have a pitch range,

intensity range and several styles.
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These can be modeled in the Instrument Definition Attributes (IDA) model. The IDA
model parameters are the same as the MDA model, but they are collected for all pitches of
an instrument in 15 half-octave bands. The IDA model isintroduced in Chapter 9. The
analysis of the evolution of the IDA model parametersis aso presented in that chapter, for
the fundamental frequency evolution, but also for different loudnesses, tempi and style.
The IDA model facilitates the analysis of both spectral envelope, inharmonicity, envelope
and noise parameters. Some of the conclusions from the analysis of the IDA parameters are
that the partial index brightness decreases with the fundamental frequency, giving most of
the amplitude to the fundamental for the highest fundamental frequencies. The attack time
also decreases with the fundamental frequency, reaching as much as one fourth of the time
of the low notes in the high notes. The intensity increase tranglates into an increase in both
amplitude and brightness. Tempo change is seen most in the sustain and release length, as

could be expected.

13.2. Timbre Modifications

Timbre modifications are presented in Chapter 10. Methods for the modifications of the
Important expression parameters pitch, duration and loudness are given, as well astimbre
morphing methods for the different timbre models. When changing the pitch, duration or
loudness of a sound, many other parameters also need to be modified, in order to retain the

realism of the sound. Thisis explained in Chapter 10.

The modification of the better quality additive parametersis presented in detail. The
modification of the additive parameters can be done with the HLA model as atemplate.
The template can be another sound, or an interpolation between two sounds. If the
interpolation is chosen, the MDA model can be used to interpolate some, or all of the
parameters. All timbre attributes can be changed, be it spectral envelope, frequencies,

envelope, or noise.

The sound quality of the modification of the additive parametersis of good quality.
Gradual changes of most timbre attributes can be made with consistent perceptual result.
This makes this work suitable for the timbre scale composition [Wessel 1979]. The better
quality of the additive parameters also makes it interesting to use this timbre modification

method, if the perceptual effect of different timbre attribute changesis to be analyzed.
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13.3. Timbre M odd Evaluation

The timbre model evaluation is done by two different approaches. The first approach
involves the classification of the sounds in instrument classes. If the classification can be
made with few timbre attributes, it is an indication of the pertinence of the timbre
attributes.

The classification was performed using the log likelihood for normal distributed data. A
subset of the timbre attributes was found, by trial and error, and by analyzing the results of
aPrincipal Component Analysis (PCA). The PCA revealed the importance of the spectral
envelope model, the attack time, the rel ease percents and most noise parameters. Only the

fundamental values of the MDA model were used in the classification.

150 sounds from five musical instruments, piano, violin, clarinet, flute and soprano, in
the full playing range of each instrument, were classified with no errors. 16 parameters
were used in the classification, and the order of importance of the timbre attribute classes

is estimated to be spectral envelope, amplitude envelope and noise.

Another evaluation method of the timbre models was performed by asking listeners,
who are called subjects, to compare the recreated sounds with the originals and judge the
impairment of the resynthesis. This evaluates the quality of the resynthesis of the models,
but it does not always confirm or infirm the validity of the model, since the bad quality of
the resynthesis al'so can be attributed to problems with the estimation of the parameters of
the model.

The impairment of the additive analysisis better than perceptible, but not annoying,
except for the low piano notes. This problem is attributed to either bad timing resolution,
or the lack of phase information in the additive model. Other causes could also be too few
partials, or the lack of spurious partials, which model the transient behavior of, for

instance, the piano attack.

The HLA model impairment was generally better than slightly annoying, except for the
soprano. The reason for the bad score of the soprano sounds is the vibrato present in these
sounds. The vibrato is so important, the sounds cannot be analyzed correctly and the

vibrato is interpreted as noise, which degrades the sounds considerably in the resynthesis.

The MDA and the IDA resynthesis are comparable, but the MDA model almost aways
scores just above the IDA model. The impairments of these two models are in between

annoying and very annoying. Some of the problems with the MDA and IDA modelslie
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with the noise parameters. The low strong amplitudes often inherit the noise from the
upper weak partials. This can be solved by weighting the parameters before the curve fit,

or by using another model of the partial index evolution of the noise parameters.

13.4. Future Directions

The problems with the timbre models presented in this work are related to the
estimation of the model parameters, and the validity of the model. The validity of the
model relates principally to sounds that have not been discussed in thiswork, such as

sounds with vibrato or tremolo, speech sounds, etc.

13.4.1. Parameter Estimation

The timbre models introduced in this work are believed to be valid and pertinent.
Several new methods for the estimation of the model parameters have been presented in
thiswork. However, some problems still persist. In the additive model, the relative phase
of the partialsis not saved with the frequency and the amplitude. Some evidence exists that
thisisindeed important for the quality of the resynthesis. Furthermore, phase coupling has
also been shown to be a good classification parameter [Dubnov et al. 1997]. The
importance of phase should therefore be evaluated, and the phase should perhaps be
included in al the timbre models.

The additive parameter analysis should be improved to aso handle vibrato or glissando.
Several methods of accomplishing this have been evaluated. The estimation of theinitial
frequencies using a pitch tracker has shown some promising results. This method is not
ready for automatic analysis, however. The pitch track is a difficult problem, and more
work is needed before this method can be put into use. Initial evaluation of the possibility
of analyzing the frequency content using spectrograms has also been done. This method
could be improved by the techniques found in the scale-space community in the vision
research. Finally, the linear time frequency (LTF) implementation used in thiswork could

be extended to also handle varying frequency.

The improvement of the analysis would solve some of the noise problemsinthe HLA
model. This problem consists of vibrato or glissando being transformed into noise.
Periodic noises are removed in the noise analysis, but if vibrato isimportant, the additive
analysis does not perform well, and the HLA analysis does not get good parameters to

analyze.

204



Chapter 13. Conclusions

The spectral envelope and the frequency model seem to work well for the sounds
analyzed. The envelope model also performs well, athough long sounds seem to have
higher shimmer values. The noise model is rather simple, and seems to be the attribute that
IS causing the most impairment in the resynthesis. One improvement would be to include

higher order statistic models, such as skewness or kurtosis [Press et al. 1997].

The main problem with the Minimum Description Attribute (MDA) model is the noise
parameter estimation. This problem could be solved easily, by using a different weight, or
another model. Analysis of higher quality noises, such as whisper, should be performed to
seeif the noise model handles spectral envelope information. If not, amodel similar to the

spectral envelope model should be introduced for the noise standard deviations.

Another important issue in the MDA model is the parameter relationship, hereby
meaning the departures from the curves found in the MDA of the parameters of the HLA
model. Even if most parameters are well analyzed, and fit the MDA model, the MDA
resynthesisisrarely asrealistic asthe HLA model resynthesis. This has to do with the
parameter relationship. The MDA resynthesis would be improved if the error model of the
MDA could incorporate these relationships.

The IDA model is dependent on the quality of the MDA model. One problem with the
IDA model isthe summation of parameters from several sounds into the same IDA
frequency band. If one sound timbre attribute values are heavily off it could impair the
mean of the parameters. An illustrative example would be the jitter standard deviation. If
thejitter is close to zero for afew sounds, but very large for one sound, the resulting IDA
value would gain too much importance, resulting in atoo noisy sound. Such situations
must be prevented in the IDA model parameter estimation. It impairs not only the

resynthesis of the sounds, but also the analysis of the parameters.

13.4.2. Model Scope

The timbre models presented in this work can handle most sounds (the additive model),
or most isolated sounds (the HLA model), or handle only quasi-harmonic sounds (the
MDA and IDA models). The additive and HLA models could potentially handle noise and

non-harmonic sounds.

The HLA model handles only isolated sounds, but they could be very noisy without
needing additions to the HLA model. Typical expression features, such as vibrato, or

tremolo, cannot be modeled with the HLA model. Thiswould not introduce a major
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change in conception, since the major problem is the lack of analysis tools. Furthermore,

most expression parameters can and should be added by the performer at synthesis.

However, the vibrato effect is quite complex [Mellody et al. 1997] and the relations
between timbre attributes need modeling, if afaithful, good quality vibrato is to be created.

The singing voice also needs an improved model, at least for the MDA and the IDA
models. Related research has aready proven the validity of the additive model [McAuley
et al. 1986] or models similar to the HLA model [Marques et al. 1994] in the modeling of
speech. Initial studies of aformant model has shown promising results, and this could be a
valuable addition to the MDA and the IDA models, which would permit the modeling of

formantic structures in the spectral envelope.

In alarger scope, the timbre models should handle other musical instruments, such as
percussive instruments, carillons, etc. The HLA model can probably model these
instruments well, if the additive parameters are correct, but the MDA and IDA models can
handle only quasi-harmonic sounds. Analysis of the frequency relationship in these
instruments could potentially find suitable models of the frequencies of nhon-harmonic

sounds.

Further on, all kinds of timbre attributes of concrete sounds [ Shaeffer 1966] should be
incorporated in the timbre models. Industry noises and animal sounds, for instance, are

considered musical sounds by many.
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Appendix A. Sound Recordings

A. Sound Recordings

A.1. Violin

Material.
Violin
Microphone Sony ECM 909, placed at ca 1m.
DAT Denon DTR-80P
Room normal furnished, ca, 53 m, H=2.5m.
All recordings played by Elisa Andersen.
A normal scaleis played in two register, high (treble) or low (bas) notes
Executions with different
tempo (fast, slow)
style (legato, spiccato, staccato)
intensity (piano, mezzo-forte, forte)
filename: style-intensity-tempo.aiff
Parameter varying executions,
Bow Flat angle  (2times)

Bow Long angle

Bow Position (4 positions)
Bow Pressure (3 pressures)
Bow Speed (3 speeds)

Vibrato Speed (3 times)
Vibrato Extend (3 times)
Normal to spring staccato

filename: parameter-note.aiff
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A.2.Viola

Material.

Viola

Microphone Sony ECM 909 placed at ca 1m.

DAT Denon DTR-80P

Room normal furnished, ca, 53 m, H=3m.
All recordings played by Klaus Hansen.
Executions with different

tempo (fast, slow)

style (col_legno, con_sordino, detache, flautando, legato, martele, pizzicato,

spiccato, staccato, sul_ponticello, sul_tasto)
filename: style-tempo.aiff
Parameter varying executions,
Bow Position, Bow Direction, Bow Elasticity
Bow Flat angle, Bow Long angle
Bow Force, Bow Speed
flageolet, glissando
Left Finger Timing, Silencing, Strings
Tremolo, Vibrato Speed, Vibrato Extend
ViolaAngle, ViolaDirection, Viola Position, Viola Slope

filename: parameter.aiff
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A.3. Cdlo

Material.
Cello
Microphone Sony ECM 909 placed at ca 1m.
DAT Denon DTR-80P
Room, heavy furnished, ca, 5*3 m, H=2m.
All recordings played by Dan Terning.
asimple scaleis played in different,
tempo (fast, slow)
style (legato, spiccato, staccato)
intensity (pianissimo, fortissimo)
range (bas, mid, treble)
filename: style-tempo-range.aiff (intensity is mezzo-forte)
legato-intensity.aiff (slow, wide range
Parameter varying executions, One single note per execution, bas or treble note
bow speed (3 speeds & 4 speeds)
bow pressure, (3 pressures)
bow long angle,
bow angle, (45 degree & O degree, twice)
bow elasticity,
vibrato speed,
vibrato extent,
attack (legato to spiccato),

filename: Parameter-note.aiff
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A.4. Saxophone

Material.

tenor Saxophone Selmer Balanced Action 38, Otto Link #6 mouthpiece, pico
royal 3 1/2 (worn)

Microphone Sony ECM 909 placed at ca 1m.

DAT Denon DTR-80P

Room: normal furnished, ca, 5*3 m, H=3m.
All recordings played by Brian Thorsbro.

A ‘C’ scaleand a‘C7 accord is played in different executions

normal
soft (less blow force, lower jaw withdrawn)
hard (more blow force, less opening)

subtones  (soft lower jaw, big mouth opening)
sing (sing into the moutpiece)
attack (with and without tongue)

filename: execution-speed.aiff
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A 5. Clarinet

Material.
Clarinet Sib Noblet
Microphone AKG C410, placed at cal m.
DAT Sony TCD-D10 Pro
Room dimensions. 6.2* 4.2 height=3.4 (m)
All recordings played by Richard Kronland-Martinet
Executions with different
tempo (allegro, moderato)
style (legato, staccato, tenuto)
intensity (piano, mezzo-forte, forte)
Notes mi-sol-sib-do, and same intervals 1 octave and 1 fifth higher
filename: clar-intensity-tempo-style.aiff
crescendo, staccato and tenuto, mi2 and si4

filename: clar-note-cresc[-ten].aiff
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A.6. Flute

Material.
Flutetraversiereen do ‘C’, ‘Mateki’
Microphone AKG C410, placed close to the mouth.
DAT Sony TCD-D10 Pro
Room dimensions. 6.2* 4.2 height=3.4 (m)
All recordings played by Salvi Y stad
Andante for flute, Mozart KV 315 (extract)
filename: flut-kv315.aiff
Executions with different
tempo (allegro, moderato)
style (legato, staccato, tenuto, detache)
intensity (piano, mezzo-forte, forte)
Notes do-mi-fa-sol-do, from do3 to do5
filename: flut-intensity-tempo-style.aiff
crescendo, staccato and legato, sol3 and sol4 and do4
double-tongue and octaviation effects
vibrato in sol4
filename: flut-note-cresc[-sta] .aiff
flut-octav.aiff

flut-intensity-doubletongue.aiff

A-6
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A.7. Soprano

Material

Soprano Voice (lyrique)

Microphone, placed at ca 1m.

DAT.

Room normal furnished, ca, 53 m, H=3m.
All recordings performed by Karin Andersen.
A normal scaleis performed with different vowels and consonants and intensitys.
Executions with different

style (legato, tenuto)

intensity (piano, mezzo-forte, forte)

vowels (a-0-y)

consonant (none-k-b)
filename: style-(consonant)vowel-intensity.aiff
Furthermore, the high and low registers are performed in *a’” mf.
filename: high_register.aff

low_register.aiff

A crescendo was aso performed.

filename: crescendo.aiff
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A.8. Piano

Material.
Piano MIDI Y amaha Disklavier C6
Microphone KM84i (electrostatic, cardoid) placed 25 cm above the Mi3 string.
Preamp. Sonosax SX PR.
DAT Sony TCD-D10 Pro
Room dimensions. 6.2* 4.2 height=3.4 (m)
No lock on the piano.
All recordings done with MIDI in an isolated room
Isolated sounds, each file one octave, twelve notes 400 mslong each.

filename: oXoY .aiff, X isoctave and Y isvelocity, (40, 72 or 104)
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Appendix B. Listening test instructions in danish

B. Listening test instructionsin danish

Oplaging

| oplagringsfasen skal lytteren lage at identificere og genkende forskellig forvraangning og forringelse som
er skabt af det system der star under test. Nar oplagringsfasen er overstaet skal du vide hvad du lytter efter.
Bagefter vil du blive spurgt om at blind-teste de samme slags lyde som du harer i oplaaingsfasen. |
oplagingsfasen skal du ogsa lagre test-proceduren.

Du vil hgre b&de referensen (originalet) og den genskabte (komprimerede) lyd. Den farste lyd er altid
referensen og de naeste to lyde er referensen og den komprimerede lyd i tilfaddig raskkefaige. Du skal s&
vurdere forringelsen af deto sidste lydei forhold til den ferste. Det er altsa forringelsen mellem den farste og
den anden lyd, og forringelsen mellem den farste og den tredje lyd der skal vurderes. Lydene er typiskt under
et sekund lange og de kan hgresigen, hvis nadvendigt. | lyttepraven skal du vurdere forringelsen i en skala
fra5.0til 1.0.

Forringelse
5.0 Ikke harbar
4.0 Harbar, men ikke generende
3.0 Lidt generende
20 Generende
1.0 Meget generende

Fordi en af deto lyde der stér under test altid er den samme som referensen, skal et af de to vurderinger
altid veae 5. Hvis en af lydene lyder bedre end referensen, sa betyder det at der er en ‘Hearbar, men ikke
generende’ forskel og vurderingen bar ligge mellem 4.0 og 4.9.

Du bgr teenke over hvordan du bedemmer de lydforringel ser du herer i opleaingsfasen, men du ber ikke
diskutere dette med andre forsggspersoner.

Blind Forsag
Formalet med blind-testen er at vurdere lyde af den type du kommer til at hegre i oplagringsfasen.

| hver forsag vil du hare 3 lyde, hvor den ferste altid er referensen, og de to naeste er referensen og den
komprimerede lyd i tilfaddig rakkefglge. Du bliver ikke fortalt, hvilken af de to lyde der er referensen og
hvilken der er den komprimerede lyd, derfor kaldes testen ‘blind’. Fordi en af lydene altid er den samme som
originalen, skal en af vurderingerne altid vaare 5. Den anden vurdering skal givesi forhold til hvor brugbar
lyden ville vegre i en almindelig musikalsk situation. Det betyder at hvis lyden lyder godt og som det samme
instrument som originalet sa skal den vurderes hgjt, ogsa selvom den lyder anderledes end originalet. Der bar
ikke laves vurdering for tonehgjdeforskelle, laangdeforskelle, eller lydstyrkeforskelle.



