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ENGLISH SUMMARY

Glasses are fascinating materials with a wide range of applications. Glasses within
the aluminosilicate family are relatively inexpensive to manufacture and can be
tailored with superior properties, making them of special industrial interest.
Understanding the composition-structure-property relations in aluminosilicate
glasses can accelerate the design of new compositions with tailored performances.
The goal of this Ph.D. project is to understand the compositional and structural
origins of structure, relaxation behavior, and selected mechanical properties of
aluminosilicate glasses.

First, we have studied the glass structure of aluminosilicates with three different
modifier cations at varying concentration by Raman and nuclear magnetic resonance
spectroscopy. The short and intermediate range order of the glasses depends on the
modifier-aluminum ratio and the field strength of the modifier.

Second, we have used temperature-modulated differential scanning calorimeters,
which function at high temperature (>1000°C), to study relaxation behavior in
calcium aluminosilicate glasses. To do so, we first developed experimental protocols
for the use of the equipment and then applied them to determine the liquid fragility
index and study the enthalpy relaxation through determination of the non-reversing
heat capacity. We found that the accuracy of the activation energy approach for the
determination of liquid fragility is comparable to the Moynihan method known from
linear differential scanning calorimetry. Moreover, a correction is needed to remove
the systematic error in the Arrhenius approximation in the fragility determination.
By comparing the non-reversing heat capacity to molecular dynamics simulations,
we find an apparent correlation between extent of relaxation and network topology
in calcium aluminosilicate glasses.

Third, we studied the effect of time and humidity on the crack initiation probability
(CIP) upon Vicker’s indentation of aluminosilicate glasses. As expected, humid
conditions and longer time result in the initiation of a larger number of
radial/median cracks. We show that the CIP increases drastically when the humidity
increases and that cracks can form at least 24 h after indentation. The study has
quantified the time-scale of indentation cracking and highlighted the need for a
general experimental protocol for crack resistance data to be comparable, as the
environmental humidity greatly affects the crack resistance. Finally, we studied the
pressure dependence of the photoelastic response of aluminosilicate glasses. Today,
photoelasticity is predicted by an empirical model, but we found that the model
cannot account for the structural changes associated with compression at high
temperature and pressure.






DANSK RESUME

Glas er et fascinerende materiale med en bred vifte af applikationer. Glas i
aluminosilikatfamilien er relativt billige at fremstille og kan skraeddersyes med
overlegne egenskaber, hvilket gar dem af serlig industriel interesse. Forstaelse af
det indbyrdes forhold mellem komposition, struktur og egenskaber i
aluminosilikatglas kan fremme udviklingen af nye kompositioner med
skreeddersyede egenskaber. Formalet med dette Ph.d. projekt er at forstd struktur,
relaksation og udvalgte mekaniske egenskaber af aluminosilikatglas pa baggrund af
deres kemiske sammenseetning and struktur.

Vi har studeret glasstrukturen i aluminosilikater med tre forskellige modificerende
kationer i varierende koncentration ved Raman- og kernemagnetisk resonans
spektroskopi. Den korte og middellange orden i glasstrukturen afhaenger af forholdet
imellem aluminium og modificerende kationer og de modificerende Kkationers
feltstyrke.

Derudover har vi brugt temperaturmoduleret differentiel scanningskalorimetri, som
fungerer ved hgj temperatur (> 1000 °C), til at studere relaksation i calcium
aluminiumsilikatglas. Farst udviklede vi en eksperimentel protokol til anvendelsen
af udstyret og anvendte derefter protokollen til at bestemme fragilitet og studere
relaksationsentalpien gennem bestemmelse af den ikke-reversible varmekapacitet.
Vi opdagede, at ngjagtigheden af aktiveringsenergimetoden til bestemmelse af
fragilitet er sammenlignelig med Moynihan-metoden kendt fra linezr differentiel
scanningskalorimetri. Det er ngdvendigt at korrigere de bestemte fragilitetsveerdier
for at fjerne den systematiske fejl i Arrhenius-tilnermelsen i bestemmelsen af
fragilitet. Ved at sammenligne den ikke-reversible varmekapacitet med
molekylerdynamiske simulationer finder vi tilsyneladende en sammenhaeng mellem
omfanget af relaksation og netveerkstopologien i calcium aluminosilikatglas.

Desuden undersggte vi indvirkningen af tid og fugtighed pa sandsynligheden for
revnedannelse ved Vickers indentering af aluminosilikatglas. Som forventet
resulterer fugtige betingelser og lengere tid i dannelsen af et stgrre antal radial-
og/eller medianrevner. Vi viser, at sandsynligheden for revnedannelse stiger
drastisk, nar fugtigheden stiger, og at revner kan dannes mindst 24 timer efter
indentering. Undersggelsen har kvantificeret tidsafhaengigheden af revnedannelse og
understreget behovet for en generel eksperimentel protokol for at
revnedannelsesdata kan sammenlignes, da luftens fugtighed i hgj grad pavirker
modstanden mod revnedannelse. Endelig studerede vi trykafhangigheden af den
fotoelastiske respons i aluminosilikatglas. | dag forudses fotoelasticitet ved en
empirisk model, men vi har beskrevet hvordan modellen ikke tager hgjde for de
strukturelle andringer, der er forbundet med kompression ved hgje temperaturer og
tryk.
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CHAPTER 1. INTRODUCTION

Glass is a fascinating state of matter, resulting in numerous low- and high-tech
applications [1,2]. Historically, glass was primarily used for decorative or practical
applications, such as the glass beads and containers of ancient Mesopotamia [3].
Later, glass was used as a medium for the sun to light up the inside of manmade
buildings, while simultaneous shielding the occupants from wind and weather.
Arguably, the most beautiful examples are the stained glass mosaics in the European
cathedrals [4]. However, during the last two centuries, glass has become an
increasingly high-tech material and its presence in the average human life has
rapidly increased. Most notably as cover and display glasses in our televisions,
computers, and smartphones [5]. However, glass also plays a vital role in, e.g.,
global communication, energy production, and medical technology [6]. The usage of
glass in increasingly advanced applications requires a proportional increase in the
understanding of the underlying chemistry and physics that control the disordered
glass structure and ultimately its macroscopic properties [3].

1.1. BACKGROUND AND CHALLENGES

Most people recognize ‘glass’ as the material windows is made of and therefore
mistakenly consider silicate glass to be the only type of glass. However, glass is a
state of matter and can theoretically be made from any material that can be liquefied
[1,2] and even directly from the solid state [7,8]. Instead, glasses are characterized as
having an amorphous structure and exhibiting a glass transition. Very recently,
Zanotto and Mauro proposed a revised definition of glass [9]:

“Glass is a nonequilibrium, noncrystalline condensed state of matter that
exhibits a glass transition. The structure of glasses is similar to that of their
parent supercooled liquids (SCL), and they spontaneously relax toward the
SCL state. Their ultimate fate, in the limit of infinite time, is to crystallize.”

By considering this definition, the origin of the most well-known glass myth can be
understood. That is, the myth that glass flows. The myth originates from the conical
shape of the individual glass pieces in medieval stained glass mosaics, which are
thicker at the bottom than at the top. This has been disproved several times [4,10—
13] as it would have taken billions of years for the glass to adopt its current conical
shape. However, as just indicated, glass does actually flow. According to the
definition above, glass is not in equilibrium and will continuously relax. That is,
glasses will continuously change their shape and decrease their volume; otherwise it
would not be a glass. The reason that glass scientists argue that the shape of the
medieval stained glass is frozen and not flowing is the impact of temperature and
observation time on the dynamics and relaxation of glass. Although relaxation was
irrelevant in relation to the shape of medieval stained glass [4,10-13], it has
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RELAXATION BEHAVIOR AND MECHANICAL PROPERTIES OF ALUMINOSILICATE GLASSES

attracted increasing interest from glass scientists in recent years, promoted by the
increase in the size and resolution of display screens [14]. Glass relaxation can, e.g.,
occur as density fluctuations on the nanoscale, and the increase in display screen
size increases the effect of glass shrinkage, causing pixel misalignment. The
penetration of electronic devices with 4K and eventually 8K screen resolution
lowers the pixel sizes, further enhancing the effect of relaxation. Furthermore, the
production of liquid crystal and light-emitting diode displays requires the use of high
temperature, enhancing relaxation [5,14-17]. Despite its importance for such
applications, the atomistic mechanism controlling relaxation in glasses remains
poorly understood. An improved understanding of relationship between glass
composition and relaxation will allow both prediction and control of the magnitude
of relaxation [17,18].

For the average glass user, ‘brittle’ is probably the term most intimately related to
glass [9,16]. Despite its versatile properties and high intrinsic strength [19], a major
drawback of glass is its inherent brittleness and tendency to form surface cracks
[20,21]. End-users experience this, e.g., when a stone flings into the wind shield of
their car or when a smart phone is accidentally dropped. The resistance against
cracking has been increased by both optimized composition design and post-
treatments (e.g., thermal tempering, lamination, partial crystallization, and ion
exchange) [1,19]. Historically, the development of more crack-resistant glasses was
based on a trial-and-error approach, with emphasis on quantifying properties.
However, in order to accelerate the design of continuously stronger and more
damage resistant glasses, the current approach is based on understanding the
underlying chemical and physical origin of glass deformation. An example of this is
the structural characterizations of glass compacted by either high isostatic pressure
or indentation in order to understand the structural changes occurring in the glass
when a dropped smartphone hits the ground [22,23].

This Ph.D. project has been partially funded by Corning Incorporated, a company
specializing in the production of specialty glasses. For industrial producers of
display screens for, e.g., televisions and smart phones, the aluminosilicate glass
family is particularly important [24,25], as the introduction of the Al,O; has a
positive impact on relevant properties, such as hardness and thermal endurance [26].
Moreover, the present Ph.D. study has also been partially funded by a grant focusing
on glass deformation under high stress from the Danish Council for Independent
Research. Therefore, the content of this thesis covers both the relaxation behavior
and mechanical properties of industrially relevant aluminosilicate glass
compositions.
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CHAPTER 1. INTRODUCTION

1.2. OBJECTIVES

The objectives of this Ph.D. study are summarized as follows:

1.

Achieve an improved understanding of the structural change occurring in
aluminosilicate glasses under simultaneous high pressure/high temperature
conditions.

Clarify the relationship between configurational heat capacity and the
“fragility” of aluminosilicate glass-forming liquids.

Explore the applicability of temperature-modulated differential scanning
calorimetry to study glass relaxation of oxide glasses and glass-forming
liquids.

Reveal the effect of humidity and time on the kinetics of crack initiation in
aluminosilicate glasses.

Clarify the physical origin of the pressure-induced changes in the photo-
elastic properties of aluminosilicate glasses.

1.3. THESIS CONTENT

This thesis is presented as plurality of seven papers together with an extended
summary as recommended by the Doctoral School of Engineering and Science at
Aalborg University. The papers constitute the main body of this thesis and will be
referred to by their roman numerals:

T.K. Bechgaard, A. Goel, R.E. Youngman, J.C. Mauro, S.J. Rzoska, M.
Bockowski, L.R Jensen, and M.M. Smedskjaer, Structure and mechanical
properties of compressed sodium aluminosilicate glasses: role of non-
bridging oxygens. Journal of Non-Crystalline Solids, 441 (2016), 49-57.
T.K. Bechgaard, G. Scannell, L. Huang, R.E. Youngman, J.C. Mauro, and
M.M. Smedskjaer. Structure of MgO/CaO sodium aluminosilicate glasses:
Raman spectroscopy study. Journal of Non-Crystalline Solids, 470 (2017),
145-151

T.K. Bechgaard, J.C. Mauro, M. Bauchy, Y. Yue, L.A. Lamberson, L.R.
Jensen, and M.M Smedskjaer. Fragility and configurational heat capacity of
calcium aluminosilicate glass-forming liquids. Journal of Non-Crystalline
Solids, 461 (2017), 24-34.

T.K. Bechgaard, O. Gulbiten, J.C. Mauro, and M.M. Smedskjaer.
Parametric study of temperature-modulated differential scanning
calorimetry for high-temperature oxide glasses with varying fragility.
Journal of Non-Crystalline Solids, 484 (2018), 84-94.
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Non-Crystalline Solids, 491 (2018), 64-70.
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CHAPTER 2. ALUMINOSILICATE
GLASSES: FORMATION AND
STRUCTURE

Glass is a state of matter and it can therefore be convenient to group glasses
according to their chemical constituents as the glass chemistry controls its
properties. Typically, glasses have been grouped into organic, metallic,
chalcogenide, and oxide glasses, and more recently also the hybrid metal-organic
framework glass group. The majority of the industrial glass production [18]
continues to be within the silicate subgroup of the oxide glasses. Glasses in this
subgroup has silica (SiO,) as the main component, but can also contain various other
cation oxides, such as, e.g., soda (Na,0), lime (CaO), or alumina (Al,O3) [1,2]. The
group of aluminosilicate glasses is of especial industrial interest as their properties
can be optimized for a range of applications e.g. flat panel display glass [16,27],
scratch resistant cover glass [12], and nuclear waste glass [28]. The addition of
Al,O; to e.g. soda-lime-silica glass drastically changes a broad range of properties,
such as optical properties, chemical resistance, molar volume, thermal properties,
mechanical properties, and thermodynamic behavior [27,29,30], typically resulting
in improved properties.

~
o/ 0
Si—0
:NélJr / 1 ° AI' _— O/
0
Na'
0 / N

}
/\T |

—O0

Figure 1. Schematical 2D representation of the structure of a peralkaline sodium
aluminosilicate glass. The sodium cations can both create non-bridging oxygens (left) or
charge-compensate AI** in tetrahedral confirmation. The dotted lines between Na* and O and
Al represent the ionic attraction.

The oxides present in silicate glasses can be separated into three categories,
depending on their structural role: network formers, network modifiers, and
intermediates. The group of networks formers consists of, e.g., SiO,, GeO,, and
B,0s, which are distinguished by forming relative covalent bonds with oxygen [1,2].
As their classification name implies, these species form the backbone of the glassy
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network. Network modifiers have a low electronegativity and forms highly ionic
bonds with oxygen. Typical modifiers include alkali or alkaline earth oxides, such as
Na,O, K,0, and CaO. The structural role of the network modifier is typically to
depolymerize the structural network, through ionic bonds between the cation and
tetrahedral oxygen on a network former, creating a negatively charged dangling
oxygen, known as a non-bridging oxygen (NBO) [1,2,31] (Figure 1). The
intermediates can undertake the structural role of either the network former or the
network modifier, depending on the chemical environment. The typical intermediate
is Al,Os, but can also be, e.g., TiO, and ZnO. By itself, an intermediate such as
Al,O3 is not able to form a glass using normal melt-quench conditions and when
added to pure SiO,, the intermediate will act as a modifier. However, an additional
modifier cation is able to charge-compensate the AI** ion, allowing it to assume
tetragonal configuration and enter the network analogous to true network formers
[1,2,26].

—

w
: T
E j 1
glass H
>° Fast cooled g\_\\‘a- - :
g !
Slow cooled glass : :
: ! Crystal :
1 1 I
1 N |
1 | I
Temperature— T

Figure 2. The temperature dependence of glass and melt volume. The atomic mobility is high
in the melt and the supercooled liquid, allowing instantaneous structural adaptations to
changes in temperature. Upon further cooling, the increasing viscosity causes an abrupt
change in the slope of the volume-temperature curve during the transition from liquid to solid.

Glasses are typically produced by avoiding crystallization when cooling a melt from
the liquid to the solid glass state. This can be described by the volume-temperature
diagram, which describes the thermal history dependence of the melt volume (Figure
2). Cooling a melt below its melting point typically results in a phase transition,
where the liquid melt is converted into a solid crystal. However, when the cooling
rates is sufficiently large, liquids with good glass-forming ability can be cooled
below their melting point without crystallization and enter the supercooled state.
During cooling, the viscosity of the liquid is sufficiently low for structural
rearrangement to occur instantaneously allowing the liquid volume to be in
equilibrium. As the temperature decreases, the atomic mobility decreases
simultaneously and at a certain temperature, the atomic mobility is too low for the
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CHAPTER 2. ALUMINOSILICATE GLASSES: FORMATION AND STRUCTURE

structure to adapt to the decreasing temperature and the glass transition occurs [1,2].
The time allowed for structural relaxation depends on the cooling rate and therefore
the glass volume decreases with decreasing cooling rate. Understanding the thermal
history dependence of the glass volume is crucial for understanding the propensity
for glass to relax. In the glassy state, the structure and volume is frozen-in.
Subsequent heating can allow sufficient atomic mobility to enable relaxation of the
glass resulting in volume reduction.

2.1. SILICATE GLASSES

Silica glass is the compositionally simplest of the oxide glasses, partially due to the
low number of different structural configurations. In its nature, silica glass is
amorphous and, contrary to its crystalline analogue, it completely lacks a periodic
atomic structure [1,2,26]. However, considerable structural order exists on the short-
range scale. For example, the Si coordination number at ambient pressure is always
four and it features narrow distributions of Si-O bond lengths and O-Si-O angles,
with the latter exhibiting a maximum at 109.7° similar to the SiO, crystal [6,32].
The considerable structural order at this length-scale is termed short-range order.
With increasing observation length scale, the extent of disorder increases. For
example, the distribution of Si-O-Si angles varies from 120° to 180°, due to the
presence of Si-O-Si rings of varying size and shape [6,33,34]. The ring size is not
entirely random, as most of the rings contain 5, 6, or 7 silicon atoms, with a smaller
number of 3- and 4-membered rings [35,36]. This length scale is termed
intermediate-range order.

2.2. ALUMINOSILICATE GLASSES

The properties of aluminosilicate glasses depend on the presence of modifying
cations that can charge-balance AI**, as this determines the concentration of the
dangling non-bridging oxygens (NBO) [26]. Aluminosilicate glasses are thus
divided into peralkaline, meta-aluminous, and peraluminous regimes, in which the
concentration of modifying cations is either lower, equal to, or higher than that of
AI**, respectively. Using an ideal structural model about the interaction between
API** and modifiers, the excess modifiers in peralkaline results in all APF* in
tetrahedral coordination and the presence of some amount of NBO-forming modifier
[37—40].

2.2.1. ALUMINIUM COORDINATION NUMBER

The prevailing models of the structure of aluminosilicate glasses predict that the
structural role of AI** is determined by the aluminum/modifier concentration ratio
([AP*]/[M]) [37-40]. Peralkaline glasses have an excess of modifier compared to
APR* ([APT)/[M] < 1) and all A" will ideally be charge-compensated by modifier
cations into a tetrahedral configuration (AI'Y). The excess modifiers will
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depolymerize the network through NBOs [41]. In tectosilicates ([AI**)/[M] = 1) all
AI** are expected to be fully charge-compensated and in tetrahedral configuration
with no NBOs present. Peraluminous compositions have a deficit of modifier ions
and the prevailing model cannot account for the structural configuration of the
excess AP*. From nuclear magnetic resonance (NMR) spectroscopy studies,
peraluminous compositions have been found to contain AI** in higher coordination
states [42,43].

The model for peralkaline compositions is too simple to describe the structure of
some peralkaline glasses. For highly peralkaline sodium aluminosilicate glasses, all
AI** is expected to be in tetrahedral configuration. In Paper 1, we consider a series of
(75-x)Si0,-xAl,05-25Na,0 glasses with x = 5, 10, 15, 20, and 25. We found non-
negligible contents of AI** in five-fold coordination (AlY), thus violating the simple
model (Figure 3). In the ’Al magic angle spinning nuclear magnetic resonance
(MAS NMR) signal, the two compositions with x = 5 an 10 exhibit a resonance
signal at 20 ppm typically associated with AlY groups. This phenomenon has been
described before and is believed to be a result of the high concentration of NBOs,
shifting the equilibrium Al'Y + NBO « Al towards the Al" side [44].

(a) 80 (b)

-40
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40
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Isofropic Shift (ppm)
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160

160 120 80 40 0 40 -80
27AI NMR Shift (ppm) MAS Shift (ppm)

Figure 3. (a) Al MAS NMR spectra for (75-x)SiO,-xAl,03-25Na,0 compositions with x =
5, 10, 15, 20, and 25. The inset shows the resonances for AlY and AIY' structural units. (b)
2TAl 3QMAS NMR spectrum for the 70Si0,-5A1,05-25Na,0 glass with Al'Y and AlY peaks.
Figures taken from Paper I.

This equilibrium effect can be shifted further by densifying the glasses at high
pressure and temperature, as also discussed in Paper |. High pressure and
temperature have previously been shown to result in increases in the coordination
number of network formers such as B** [45-47] and AI** [48-50]. Here we find that
pressure increases the coordination of AI**, but that it only occurs in glasses with a
high concentration of NBOs (Figure 4). Furthermore, the pressure-induced increase
in AlY increases with increasing NBO concentration. We note that the AI**
concentration increases across the series and the reported fraction in Figure 4 is
related to the specific concentration. However, no change occurs for the glasses with
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high AI** concentration and few or no NBOs. This indicates that the presence of AlY
in peralkaline compositions is intimately related to high NBO concentrations.
Furthermore, we observe trace amounts of six-fold coordinated AI** (AI"), although
too small to quantify (not shown). The conversion of Al"Y to AIY' is believed to
follow the equilibrium AI'Y + 2NBO « A1V,
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Figure 4. Fraction of five-fold coordinated aluminium (AIY) in the (75-X)SiO,-XAl,O;-
25Na,O glass series as a function on the number of non-bridging oxygens per network
tetrahedral (NBO/T). Al" structural units are found in the most peralkaline compositions and
their fraction increases after hot compression. Figures taken from Paper I.

In the ideal model, the role of AI*" in tectosilicates is to be fully charge-
compensated, with no NBOs present. This is the case for sodium aluminosilicate
glasses, as found for the fully charge-compensated compositions (NBO/T = 0) in
Figure 4. However, the ability to charge-compensate Al** is affected by the field
strength (charge-to-size ratio) of the modifier. Monovalent modifiers are able to
charge-compensate AI** approximately independent of the spatial distribution of the
AI**, while divalent modifiers requires AI** to be in immediate vicinity [51].
Consequently, tectosilicates with divalent modifier are more likely to show
deviations from ideality, as for the tectosilicate with calcium as the modifier,
whereAlY concentrations can be up to 6% [25,52]. The glass structure is also
affected by the size of the modifier, as the ionic radius affect the local environment
around the modifier cation [53,54]. The coordination number of the large Ca?" is
around six to seven [55,56], while the coordination numbers around the smaller
Mg*" is reported to be four-, five-, and six-fold [57—65]. This causes Mg?* to behave
partly as network modifier and partly as network former [66].

The structural role of AI** in peraluminous compositions is not described by the
model. The modifier concentration is too low for charge-compensation of AI**, and
instead some of the AI** must act as modifier having a coordination number of five-
or six [42,67]. Alternatively, the formation of oxygen triclusters (three-fold
coordinated oxygen), known from crystalline analogues, is required to charge-
compensate AlI** [28,68,69].

19



RELAXATION BEHAVIOR AND MECHANICAL PROPERTIES OF ALUMINOSILICATE GLASSES

2.2.2. Q" SPECIATION

The bond strength in covalent bridging oxygen is higher than for the ionic bond
between modifying cations and non-bridging oxygens. This can be probed by
Raman spectroscopy. For aluminosilicate glasses, the region 850-1200 cm™ in the
Raman spectrum gives information on the distribution of NBOs on the network
formers, which is described by the Q" speciation. In this terminology n equals the
number of bridging oxygens per tetrahedra (T). Thus a fully polymerized Si** would
be in Q* speciation and if with one NBO the Si** would be a Q°. The wavenumber of
the Raman shift depends on the bond strength. Thus, the signal from structural units
with many NBOs is found at lower wavenumber than fully polymerized species.
Deconvolution of the Raman peak in the 850-1200 cm™ region allows estimation of
the distribution of NBO in the network, as discussed in Paper I. However, it is
challenging to distinguish between AIP* or Si** tetrahedra. Figure 5 shows an
example of such a deconvolution for the 65Si0,-10Al,03-25Na,0 glass. The Raman
spectrum contains the signals from three types of tetrahedral units without any
NBOs: Q*' (~1125 cm™), Q*" (~1100 cm™), and Q" (~1000 cm™) [41,70].
Furthermore, excess concentration of modifiers relative to the AI** concentration
results in signals from tetrahedra with one (Q* at ~1050 cm™) and two NBOs (Q? at
~950 cm™) [41,70].
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Figure 5. (a) Deconvolution of the Q" species in the 850-1250 cm™ frequency range of the
Raman spectra for the 65Si0,-10Al,05-25Na,0 glasses. (b) Relative areas of the Q" Raman
bands for 65Si0,-10Al,05- glasses as a function of the predicted NBO/T content. Figures
taken from Paper I.

The area of each Gaussian fitting peak does not give the “true” concentration of the
structural units, as it also depends on the local environment around the tetrahedra.
However, deconvolution of the peak allows for a qualitative description of the
relationship between NBO/T and different structural units [70]. The summary of the
deconvolution of the peralkaline (75-x)SiO,-xAl,03-25Na,0 glass series is given in
Figure 5b, showing the relative variation of the structural species throughout the
peralkaline region of the sodium aluminosilicate glass series. As the expected
NBO/T ratio increases, fully polymerized structural units are substituted for
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depolymerized species. Interestingly, the deconvolution shows that the Q7
concentration goes through a maximum instead of having the highest concentration
when the NBO/T ratio is highest.

Some information about Q* and Q* species can also be found from another region in
the Raman spectrum. Sodium silicate glasses are characterized by a high
concentration of Q° species see as the signal at 540 cm™ (Figure 6) [41]. This signal
disappears when Al,O; is added to the glass as the Q° species are continuously
converted to Q*, which are found at ~500 cm™. It is also a consequence of the higher
proportion of Al-O bonds, which are weaker than Si-O bonds, shifting the Raman
band to lower wavenumbers.
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Figure 6. Raman spectra of the 300 to 700 cm™ frequency range for the (75-x)SiO,-xAl,05-
25Na,0 glass series, with x = 0, 5, 10, 15, 20, and 25. The Raman peaks associated with Q3
species decrease as modifier ions charge-compensate the increasing amount of AI**. Figure
modified from Paper I.

2.2.3. INTERMEDIATE RANGE STRUCTURE

The intermediate-range order of silicate glasses consist of Si-O-Si rings with varying
ring size. The ring size can be evaluated by Raman spectroscopy, as small
membered rings (3 and 4) typically can be found at specific frequencies between 450
and 650 cm™. Larger rings (>5) are found at lower frequencies and due to their
larger geometric flexibility, they have wider bond angle distributions resulting in
wider signal peaks. The distribution of ring size and bond angles is dependent on the
modifying cations. Silicate glass with sodium as the modifier tends to have a rather
narrow distribution of structural units, as seen from the narrow signal at ~540 cm™.
When divalent modifiers are substituted for sodium, the band broadens. The divalent
modifier presumably results in a larger extent of disorder, as their better ability to
stabilize the network allows for a larger distribution of bond angles and lengths
[71].
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Figure 7. Raman spectra of the three Al-free glasses with similar silica content and varying
modifier cations. The nominal compositions are 8CaO-16Na,0-76SiO, (Ca) and 8MgO-
16Na,0-76SiO, (Mg), and 25Na,0-75SiO, (Na). Some of the intensity different can be
explained by different baseline-correction procedures. Figure taken from Paper II.

2.2.4. AL-AVOIDANCE

Although glasses are random networks, the distribution of network formers in
aluminosilicates is not completely random [72]. The stability of tetrahedral linkages
depends on the coordination of the cations and if the cations can enter a higher
coordination state the stability can be increased. Consequently, Al-O-Al linkages are
stable when at least one of the AI** is in a higher coordination state, which is
atypical especially in peralkaline glasses. Thus, Al-O-Si linkages are generally more
energetically favorable than Al-O-Al linkages [73]. The energetic resistance against
Al-O-Al linkages is termed the Al-avoidance [72]. Al-avoidance can be violated,
e.g., in peraluminous compositions with A" in five- or six-fold coordination. The
field strength of the modifier cations can also affect the AI**/Si** mixing. The
presence of divalent modifiers allows for violation of the Al-avoidance and the
fraction of Al-O-Al linkages increases with increasing Mg/Ca ratio [74,75].

Experimental evidence for a small proportion of Al-O-Al linkages can be found
from the Al MAS NMR data (Figure 3). In glasses with low Al**-content, the
resonance of Al' is found around 60 ppm. This resonance suggests that Al-O-Al
bonds do not exist. For glasses with higher Al**-content, the resonance shifts to 62
ppm, which is an indication that the AI** concentration is so high that the principle
of Al-avoidance is violated. Violation of Al-avoidance also depends on the nature of
the divalent modifier. For example, in Paper 1l we find that both Ca** and Mg**
facilitate a more disordered network than the monovalent Na* through a greater
violation of Al-avoidance. The smaller Mg®* has been reported to increase the
fraction of Al-O-Al bonds more than Ca®* due to its higher ability to stabilize the
network [74,75].
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Figure 8. Raman spectra of 300-700 frequency range for (76-x)SiO2-xAl,05-16Na,0-8RO
glasses, with R = Ca or Mg. The Al-O-Al linkage peak is found at ~560 cm™. The Al-
avoidance occurs at lower modifier concentration in Mg®* containing glasses than in Ca®*
containing glasses. Figure modified from Paper II.

In Paper I, we have compared the ability of Ca** and Mg?* to create Al-O-Al in
glasses of the (76-x)SiO, — xAl,O5; — 16Na,O — 8RO composition, with R = Ca and
Mg. The stabilizing ability can be evaluated through a Raman peak around 560 cm™,
which is attributed to Al-O-Al bridges [41,76]. The appearance of this peak occurs
at lower AI** concentration for Mg?* containing glasses, than for the Ca®* containing
glasses. This suggests that Mg®* has a better stabilizing ability and thus facilities Al-
avoidance better than the larger Ca*".
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CHAPTER 3. GLASS RELAXATION

Glasses are thermodynamically unstable and continuously relax towards their
supercooled liquid state. Thus, glasses always relax, albeit at different rates
depending on the composition, temperature, thermal history etc. [77]. The
mechanism of glass relaxation typically involves small intermolecular
rearrangements, resulting in slight shrinkage [14]. Glass relaxation affects various
glass properties, e.g., density [78], hardness [78], refractive index [79], etc. For
applications such as window glasses, relaxation is not a major problem, whereas it
often needs to be controlled or accounted for in more high-tech applications. For
example, the production of flat-panel displays involves high-temperature processes,
which increase the relaxation rate. This causes problems related to both the extent
and variability in the density fluctuations [5,14]. The extent of the compaction can
be compensated for during the fabrication process, while density fluctuations must
be controlled by composition design. Insufficient control of the relaxation processes
can result in a nonfunctioning display due to pixel misalignment [12].

The simplest method to quantify glass relaxation is arguably by quantifying the
amount of volume shrinkage. However, the structural rearrangements of glass
relaxation occur at the nano-scale. The magnitude of the macroscopic volume
changes is typically too small for precise quantification in standard laboratory
samples sizes using conventional techniques. For example, this can be overcome by
increasing the sample size to above, e.g., 1xl1 m’ area, allowing precise
quantification of the volume relaxation [12]. However, generally it is not a suitable
approach to quantify volume relaxation, as the production of homogenous samples
of that size requires industrial-scale melting facilities. Therefore, the prediction of
glass relaxation either from other properties or from simulations is needed.

In literature, several approaches have been used for the prediction of glass
relaxation. The magnitude of volume relaxation has, for example, been found to
scale with the enthalpy relaxation during the glass transition [80]. The latter has
been widely studied [77,79,81-83], with attempt to predict it from the liquid
fragility [84-92]. Fragility classifies glass-forming liquids according to the extent of
their non-Arrhenius temperature dependence of either viscosity or relaxation time
[93]. The liquid fragility index m, which varies with composition (x), is defined as
the slope of the logarithmic viscosity () versus Tq-scaled inverse temperature (T)
curve at T, where T, is the glass transition temperature (10" Pa s isokom
temperature):

dlog 19n(T,x)
_ dlog1on(Tx) . l
m(x) d(Tg(x)/T) T=Tgy(x) !
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Elsewhere, the relationship between glass composition and the enthalpic driving
force for relaxation have been studied. By designing compositions with low
fragility, the thermodynamic driving force for relaxation can be minimized. This has
been utilized in the studies of Boolchand and co-workers on glasses exhibiting so-
called intermediate phases. In those studies, relaxation effects are claimed to be
minimized through an optimized network topology and low fragility [94-98]. The
relaxation can also be controlled by designing glass compositions with large
activation energy barriers for structural rearrangements. Glasses whose parent glass-
forming liquids are fragile will have a large thermodynamics driving for relaxation,
but a large activation energy results in slow relaxation [14,83]. Minimized structural
relaxation from high fragility compositions have also be found in the reversibility
windows [14]. Recently, molecular dynamics simulations have been used to gain
insights into the dynamics of oxide glass relaxation [15,99].

3.1. FUNDAMENTALS OF DIFFERENTIAL SCANNING
CALORIMETRY ANALYSIS

Physical transitions, such as the glass transition, typically involve the exchange of
heat with the surroundings. Calorimetry is the measurement of heat and often used
to measure the amount of heat required to increase the temperature of a sample.
Calorimetric analyses can therefore be used to study relaxation processes through
quantification of their endothermic processes. In differential scanning calorimetry
(DSC), the change of the difference in heat flow rate to the sample and a reference
material is measured, while subjected to a temperature program. The isobaric heat
capacity (C,) (unit: J K™) of the sample determines the amount of heat required to
increase its temperature. The heat capacity of glasses is fairly constant in the glassy
and liquid states, but undergoes an abrupt change during the glass transition.
Typically, a DSC temperature program involves linear heating/cooling at fixed rates:

T =T, + Bt @)

where Ty is the initial temperature at time t = 0, and $ is the heating rate. DSC is a
versatile probe for determination of, e.g., transition temperatures (glass transition,
crystallization, melting) and the temperature dependence of heat capacity [100].
Despite its success, complications arise, e.g., when analyzing SiO,-rich
compositions. This can result in low signal-to-noise ratio due to the small change in
heat capacity during glass transition and the typical low instrument sensitivity at
high temperature.

Temperature-modulated DSC (TM-DSC) might be a solution to some of these
challenges. In TM-DSC, a superior sensitivity is achieved by superimposing a
sinusoidal heating rate on the standard linear heating rate from DSC with increased
measurement duration as the only drawback [101]. The resulting temperature
program is described by
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T =T, + Bt + Asin(wt), 3)
where Ty is the initial temperature at time t = 0, g is the heating rate, A is the
amplitude of the modulation and w is the angular frequency of the modulation (o =
2n/P, where P is period). An example of the raw TM-DSC data is found in
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Figure 9. Standard raw data from TM-DSC for the 39.8Si0,-31.6Al,03-28.7Ca0O (mol%)
glass. Both the temperature profile and the heat flow curve are sinusoidal according to Eqg. (3).

The post-treatment of raw TM-DSC data is more complicated than for DSC data, but
also provides more information. Through a deconvolution, the raw data can be
separated into a kinetic component and a heat capacity component, identified by the
imaginary heat capacity (Cp”) and real heat capacity (Cp"), respectively [101]. The
kinetic component gives information about, e.g., relaxation and crystallization
processes [101-103]. These transitions are filtered out in the heat capacity
component, which describes the heat capacity of the sample itself. For glasses, the
kinetic component contains the endothermic enthalpy relaxation [101]. The real and
imaginary heat capacities can be obtained by dividing the amplitude of the heat flow
by the amplitude of the heating rate, giving the modulus of the complex heat
capacity (C,):

Cp = Cp(w) +iCy 4)
Due to thermal inertia effects, there is a time delay between input and output defined
by the phase angle (6), which can be used to obtain real and imaginary parts of Cp”
[104]:

¢ =

Cy (a))| cos @ (5)

¢y =|Cy(w)|sing (6)
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For glasses, the imaginary heat capacity is equal to zero far away from the glass
transition, as the timescale of the atomic and molecular motions are much faster than
the temperature modulation (typically 90-200 s). This permits exploration and
characterization of structural relaxation processes in the glass from the phase lag or
the imaginary heat capacity [105-109]. An example of the deconvoluted data is
found in Figure 10.
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Figure 10. Deconvoluted TM-DSC data for 39.8Si0,-31.6Al,05-28.7Ca0 (mol%) glass. The
glass exhibits a sigmoidal change in the real heat capacity during the glass transition, while
the imaginary heat capacity and phase lag are Gaussian-shaped.

In order for the deconvolution procedure to be valid, the input and output (heating
rate and heat flow) must exhibit a linear response [102,110-112]. The linearity can
be evaluated by Lissajous curves that describe the heat flow as a function of heating
rate [113,114]. When the heat transfer is ideal and instantaneous, the Lissajous curve
is linear. However, the heat transfer in glass is not ideal and as a result of thermal
inertia, a linear response results in elliptical shaped Lissajous curves. Linearity can
be lost if the underlying heat rate or the amplitude is too high. Too high
instantaneous heating rate (dT/dt) will result in discrepancies between input (heating
rate) and output (heat flow)

3.2. PREDICTING CONFIGURATIONAL HEAT CAPACITY

Predicting the composition dependence of the magnitude of enthalpy relaxation is of
industrial interest, as it have been found to scale with the magnitude of volume
relaxation [80]. Several studies have attempted to estimate the enthalpy relaxation
from the liquid fragility index [84-92]. In Paper Ill, we have used a recent model
that attempts to combine topology and thermodynamics to predict the extent of
enthalpy relaxation [115].

The heat capacity of the super-cooled liquid consists of both vibrational and

configurational contributions. When cooling from the super-cooled liquid to the
glassy state, the configurational degrees of freedom are lost as a result of the

28



CHAPTER 3. GLASS RELAXATION

increase in viscosity. The heat capacity of the glassy state primarily contains
vibrational degrees of freedom [91], and the heat capacity of the glass (Cy) is thus
approximately equal to the vibrational heat capacity of the liquid at T,. For relatively
strong glass-forming liquids, the vibrational degrees of freedom change only slightly
going from the liquid to the glass and thus the vibrational heat capacity is the same
in the liquid and glassy state. Therefore, the configurational heat capacity is
approximately equal to the difference in heat capacity between the glass and the
liquid. In the model, the configurational heat capacity (Cyconr) is therefore
approximated to be the isobaric heat capacity jump (AC;) between the heat capacity
of the super-cooled liquid (Cy) and heat capacity of the glass (Cpg) at Tq (Cp,cont = Cpi
- Cpg = ACy). The derivation of the model defines the configurational heat capacity
as changes in the configurational enthalpy and entropy, and then combines the
Adam-Gibbs model for equilibrium viscosity with Angell’s definition of fragility.
This is used to establish a relation between the kinetics (m) and thermodynamics
(Cp) (See Ref. [115] for full derivation),

AC, [x, Ty ()] = 258 (22 _ 1), (7)

Tg (X) mo

where A((x,y,z)g) is a proportionality constant and m, is the fragility of a strong
liquid (m = 14.97). The model in Eq. (7) was found to successfully predict Cp conf in @
series of borosilicate glasses [115]. Here, we apply it to aluminosilicate glasses.
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Figure 11. Configurational heat capacity (C,con) as a function of (a) SiO, content for the
(100-2x)Si0O,-xAl,03-xCa0 series and (b) [Al,O3]-[CaO] for the (80-y)SiO,-yAl,05-20Ca0
series. The experimental C o, values was determined by differential scanning calorimetry
and the modeled C, .,ns values was calculated using Eq. (7). Figures taken from Paper II1.

The validity of the model was here tested using two series of calcium
aluminosilicate glasses; a tectosilicate series ((100-2x)SiO,-xAl,03-xCa0) and a
series with constant CaO content ((80-y)SiO,-yAl,05-20Ca0). The model in Eqg. (7)
predicts Cp conf to be proportional to m and inversely proportional to T4 This was the
case for the tectosilicate series and therefore good agreement between data and
model is observed (Figure 11a). The fitting is best for relatively fragile glass formers
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while we find some discrepancies for strong compositions. We suspect these
discrepancies to be a result of the difficulties in obtaining accurate m values for
strong glass formers using calorimetric methods. The constant CaO series exhibited
constant T, and a decrease in m for peraluminous compositions, without a
corresponding drop in C,cons, resulting in a poorer correlation between model and
data (Figure 11b).

The model predicts C, cons Using the scaling factor A. For the tectosilicate series and
the constant CaO series we find A to be 16.0 and 11.8 kJ/mol, respectively. A was
found to be 19 kJ/mol for the series of borosilicate glasses [115] and using literature
data for aluminosilicate, we find A to be 12.7, 13.3, and 16.5 kJ/mol for sodium
aluminosilicate, calcium aluminosilicate, and sodium calcium aluminosilicate
glasses, respectively [116]. These differences between compositions suggest that A
is dependent on the chemical composition.
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Figure 12. C, c;nimodelled from Eq. (7) as a function of experimental C, ¢,or. The tectosilicate
and constant CaO series data are from Paper Il and the data for sodium aluminosilicate
(NAS), calcium aluminosilicate (CAS), and sodium calcium aluminosilicate (NCAS) glasses

are from Ref. [116]. Figure taken from Paper III.
3.3. ANALYZING HIGH-Tg GLASSES USING TM-DSC

Temperature-modulated DSC has been used to analyze organic, chalcogenide,
metallic, and oxide glasses. The applications range from determination of Ty [117—
119] and liquid fragility index [120-122] to the study of relaxation behavior [120-
126] and identifying rigidity transitions [94-97]. All previous studies have been
performed on calorimeters limited to ~1000 K, thereby only allowing analysis of a
minor fraction of silicate glasses [127,128]. Recently, the TM-DSC technique has
become available in commercial high-temperature calorimeters, enabling the
analysis of silicate glass with high T,. However, the design of these calorimeters is
different from the low-temperature ones, thus complicating the data collection and
analysis procedures.
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The usable measurement parameters (8, A, P) cannot be directly transferred from
low- to high-temperature experiments. For example, the furnace design is different,
resulting in different sensitivity. The appropriate underlying heat rate depends on the
sample characteristics, especially the fragility and the width of the glass transition.
Therefore, a universally suitable B value cannot be given. To decrease the
measurement duration, a high underlying heating rate is desired. To study the
different experimental parameters, we thoroughly analyzed a 55Si0O,-25Al,0;-
20Ca0 (mol%) composition (m = 48) in Paper IV. However, too high heating rates
result in sharp and distorted phases due to the shorter observation time (Figure 13a).
Lower B values result in smooth phases with a nearly Gaussian shape, as expected
for homogeneous systems with a normal distribution of relaxation times (Figure
13b).
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Figure 13. Phase lag for the 55Si0,-25A1,05-20Ca0 (mol%) glass around the glass transition
with constant modulation period (P = 150 s) and varying modulation amplitude (A) for
heating rates of (a) 5 K/min and (b) 2 K/min. The phase lag curves are shifted by 0.01 rad for
an easier comparison. Figures taken from Paper IV.

As a rule of thumb, an underlying heating rate of 2 K/min is appropriate for silicate
glasses, as it allows for a sufficient number of periods to be cycled during the
transition from glass to supercooled liquid. However, for strong glass-forming
liquids, a higher underlying heating rate is needed to ensure a sufficient signal-to-
noise ratio. For the strong 86SiO,-7Al,03-7Ca0 (mol%) composition (m < 22), we
observe substantial noise using 8 = 3 K/min. The noise is decreased when increasing
B to 5 K/min (Figure 14). The same difficulties with low signal-to-noise ratio for
strong glass forming melts are known from linear DSC.
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Figure 14. Phase lag curve for the 86SiO,-7Al,05-7Ca0 glass around the glass transition
with constant modulation period (P = 150 s) and varying modulation amplitude (A) for
heating rates of (a) 5 K/min and (b) 3 K/min. Figures taken from Paper 1V.

The selection of the amplitude value is less affected by the sample properties. A
relatively high amplitude is desirable as it provides increased sensitivity, due to the
larger changes in instantaneous heating rate (dT/dt). However, too high amplitudes
will decrease the resolution. For the 55Si0,-25Al,05-20Ca0O (mol%) composition,
we found that a small A value of 1 K results in noise, while increasing it to 5 K
decreases the noise with no loss of resolution (Figure 13b). An amplitude of 5 K
thus appears to be a good initial value for compositions with m = 30-60 (not shown),
while stronger glass-forming liquids can require amplitudes around 7 K (Figure 14).

In order for the deconvolution of raw data to be valid, the sample must respond
linearly to the thermal perturbations. We observe a linear response for the 55SiO,-
25Al1,03-20Ca0 (mol%) composition, when using a heating rate of 2 K/min in
combination with amplitudes of both 1 and 5 K (Figure 15a-b). For heating rates of
5 K/min, the response is linear when the amplitude is high, but loses linearity at low
amplitude (Figure 15c-d). For the combinations of experimental parameters
exhibiting a linear response, the number of modulation periods during the glass
transitions is sufficiently high. However, then a linear response should also be found
for the data in Figure 15c. We suspect that the origin of the non-linear response in
Figure 15c is the low amplitude, indicating that the calorimeter is not able to
accurately control such small perturbations in the heat flow. This highlights the
sensitivity issues for high-temperature calorimeters, which must be solved through
careful experimental design, as described above.
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Figure 15. Lissajous curves for the 55Si0,-25Al,05-20Ca0O (mol%) glass for four
combinations of parameters with constant modulation period (P = 150 s): (a) # = 2 K/min and
A=1K;(b)p=2K/minand A=5K; (c) f=5K/minand A=1K; (d) f=5K/minand A =
5 K. The curves been smoothed using a Savitzky-Golay algorithm [129] without any change
in the overall shape. Figures taken from Paper 1V.

3.4. DETERMINATION OF FRAGILITY USING TM-DSC

Fragility is typically determined directly from viscosity-temperature data. However,
this requires relatively large sample volume of a certain shape, which can be
difficult to obtain for poor glass-formers [130]. Instead fragility can be determined
by DSC using the Moynihan method [131-134], in which the activation energy for
structural relaxation is estimated by varying the cooling/heating rate. However, the
relatively low sensitivity of high-temperature calorimeters complicates the
determination of the fragility index for strong glass-forming liquids and liquids with
high T4 The activation energy for structural relaxation is estimated from the fictive
temperatures at different heating rates.

An alternative approach to determine m of strong glass-forming liquids could be
TM-DSC, as discussed in Paper V. The technique has two advantages over the
Moynihan approach using linear DSC: (i) the superimposed sinusoidal heating rate
gives superior sensitivity and signal-to-noise ratio at high temperatures; (ii) the
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determination of the characteristic temperature (here T,°, T; in Moynihans method)
is more reliable, as T4" is determined at the peak maximum temperature from the
imaginary heat capacity data. The €,/ curve scales relative to the phase lag (¢) (Eq.
(6)) [101] andT,"” can be determined directly from the phase lag (Figure 16). The
characteristic temperature is more reliable, as more data points are used to establish
T," in the Gaussian fit to the phase lag curve compared to determining T¢ from the
two data point on either side of Ty as by the Moynihan method.
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Figure 16. Temperature dependence of the phase lag scanned through the glass transition for
39.8Si0,-31.6 Al,05-28.7Ca0 (mol %) glass with g =2 K/min, A=5K, and P = 180 s. The
maximum in the phase lag peak (T,") is determined from the Gaussian fit. Figure modified
from Paper V.

In previous studies, TM-DSC has been used to determine fragility of chalcogenide
and oxide compositions [120-122], but only for glass-forming systems with low T,
under 800 K. Typically, the fragility is determined using an activation energy
approach analogous to the Moynihan approach. However, instead of changing
cooling/heating rates, the oscillation frequency is changed in the TM-DSC method,
shifting the response to higher temperature. The slope of the frequency dependence
of T4” is then used to estimate the fragility [122] (Figure 17).

Another method to determine fragility by TM-DSC is to construct an Angell plot, by
estimating the relaxation time (r) at Ty". The fragility can then be determined as:

dlog 107(T,x)
mXx) =—F/—— -~ . 8
(x) d(Tg(x)/T) T=Ty(x) 8

The shear relaxation time (z) dependence of temperature (T,”) and the glass
transition temperature (T,) is needed to construct the Angell plot. T, is found from
the phase lag data, while 7 at T, can be approximated by = P/2n [120,121].
Traditionally, T is defined as the temperature at which the equilibrium viscosity » =
10% Pa s [135], while we here define it in terms of the shear relaxation time. ¢
depends on the shear modulus and follows the Maxwell equation (z = #/G). It is
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usually taken to be ~100 s at Ty [136—138]. T, must be determined by extrapolation,
as the period needed to determine T,” directly (~628 s) results in too few modulation
cycles through the glass transition for a valid deconvolution of the raw data [101].
The extrapolation exploits the linear relationship between T,” and z at each
modulation frequency [139]. We not that the shear modulus is composition
dependent and therefore r is not equal to ~100 s at T, for all glasses. The fragility
can then be calculated from the slope in the Angell plot constructed from T,”, the
estimated z, and the extrapolated T, ~ ' (Figure 18).
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¥ 30.0Si0,-35.0A1,0,-34.3Ca0O (m = 57)
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Figure 17. Liquid fragility determination using the activation energy approach. The
logarithmic frequency is plotted as a function ofthe inverse phase peak temperature. The
phase lag and the T shifts to higher temperature as the frequency increases. Figure modified
from Paper V.
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Figure 18. Angell plot of the relaxation time slightly above the glass transition temperature.

The relaxation times have been determined using z = 1/® = P/2x rad/s. The straight lines are

the linear fits to the data. Figure modified from Paper V.
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The validity of the fragility values determined by the two TM-DSC methods is
checked by comparison with values from viscometric data for the same glasses
(Figure 19). The compositions cover tellurites, borates, and silicates, with a wide
range of fragilities (m from 25 to 97) [140,141]. The calorimetric fragilities are
corrected according to the correction procedure in Ref. [130]. The correction is
needed to correct for the systematic DSC underestimation of m, as a result of the
inherent error in the Arrhenian approximation in the fragility determination. After
correction, the activation energy and relaxation time approaches give approximately
identical m values. The fragilities values from viscometry and TM-DSC scale
approximately linearly. The data are comparable to fragility values obtained by the
Moynihan method, suggesting that TM-DSC probes the same type of relaxation as
DSC.
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Figure 19. Corrected fragility values (m) from the Moynihan approach and the two TM-DSC
procedures as a function of the fragility of the same compositions determined from
viscometry (myiseo)- The data are corrected according to the procedure in Ref. [130]. After the
correction, the fragility values from the two TM-DSC procedures become identical. Figure
taken from Paper V.

For the tectosilicate calcium aluminosilicate system, the 81.5Si0,-9.2 Al,05-9.3Ca0
composition is the strongest we have successfully determined the fragility of using
the Moynihan method (m = 22). Using TM-DSC, the improved sensitivity compared
to standard DSC has allowed determination of fragility of the 88.9Si0,-4.6 Al,Oz-
5.5Ca0 glass-forming liquid and potentially even the strong SiO, composition.
However, it should also be noted that the determination of fragility by TM-DSC has
two main disadvantages: (i) the experiment duration is increased compared to the
Moynihan method; (ii) while the composition-dependent trend in fragility can be
successfully reproduced by TM-DSC, there is a tendency to underestimate fragility
values for high-m compositions and overestimate for low-m compositions (data not
shown).
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3.5. UNDERSTANDING GLASS RELAXATION FROM NETWORK
TOPOLOGY

The concept of so-called reversibility windows, which describe compositional
regimes with tailored topology, resulting in non-aging glasses with a minimal
propensity for relaxation, has received significant attention [96]. The concept is
based on a counting of bond stretching and angular constraints, as originally
introduced by Phillips [142]. The concept filters out some chemical details, while
focusing on the network topology. The compositional regimes with minimal
relaxation are found when the network topology results in isostatic networks through
a mean coordination number of 2.4. Networks with a mean coordination number
lower than 2.4 contain floppy modes, making them flexible. If the mean
coordination number is above 2.4, redundant constraints are introduced to the
network, causing the network to be stressed-rigid.

Following these ideas, the extent of glass relaxation should be predictable from the
network topology, i.e., the number of bond constraints per atom. In flexible
networks, the floppy modes result in entropic stress and low kinetic barriers against
relaxation, while the enthalpic stress in the stressed-rigid network results in a high
enthalpic driving force for relaxation [96]. The intermediate isostatic networks
provide the best resistance against relaxation. Experimentally, the reversibility
window can be identified based on Brillouin [143] and neutron scattering [144],
Raman [145] and Mdéssbauer spectroscopy [146], molar volume [147], and TM-DSC
[98] experiments. However, it should be noted that it has also be criticized, as no
convincing structural origin of the reversibility window has hitherto been reported
[126,148]. Furthermore, the compositional regime of the reversibility window
cannot always be predicted from the mean coordination number [148].

Today, the glass compositions with an identified reversibility window are not
industrially relevant [149]. Therefore, there is an interest in identifying silicate
glasses of industrial relevance that exhibit minimal structural relaxation, e.g., for
high-performance display glasses. In some unpublished work, we have used TM-
DSC as a probe to investigate the existence of a reversibility window in the fully
charge-compensated calcium aluminosilicate series. This glass series is chosen
based on molecular dynamics simulations [150], which suggest a mean coordination
number of 2.4 and a minimum in the enthalpy relaxation around the 76SiO,-
12Al1,03-12Ca0 composition (Figure 20). Through the magnitude of the non-
reversing heat flow in the TM-DSC experiment, the enthalpy relaxation can be
approximated. The compositional range exhibiting a minimum in relaxation (AHax)
from molecular dynamics simulations coincides with a minimum in the non-
reversing heat flow from TM-DSC, suggesting that there is a correlation between
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network topology and propensity for relaxation. We propose that the origin of the
minimal relaxation in this narrow compositional regime is due to a combination of
high activation energy barrier against relaxation through low atomic mobility, as the
glass network is isostatic, and low enthalpic driving force for relaxation through low
internal stress.

This can, however, not explain the existence of a second minimum around the
50Si0,-25Al,03-25Ca0 composition (Figure 20). This origin of this minimum is
still under investigation, but we note that it coincides with the minimum in molar
volume, which has previously been suggested as experimental evidence of the
reversibility window [96,147]. Regardless of the physical origin of the two minima,
they coincide with reported probes for identifying the reversibility window and the
results indicate that the relaxation in glass is indeed correlated to network topology.
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Figure 20. Non-reversing heat flow from TM-DSC experiments, molar volume, and
magnitude of relaxation (AHm.) from molecular dynamics (MD) simulations in the (100-
2x)Si0,-xAl,03-xCa0 glass system. The experimental non-reversing heat flow data exhibit
two minima, coinciding with the minimum in AH,,, and molar volume, respectively.
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The mechanical behavior of glasses covers a wide range of properties, including
strength, toughness, crack resistance, hardness, and elasticity. All of these properties
affect the product performance experienced by end-users and must be considered in
the development of new glass compositions and products. For example is the risk of
catastrophic fracture decreased by high toughness and crack resistance
[151,152].Here we describe three phenomena that have remained relatively
unexplored, namely the time- and humidity-dependence of crack initiation and
pressure-induced changes in hardness, crack resistance, and photoelasticity. The
kinetics of crack initiation is almost unexplored, although it profoundly affects, e.g.,
determination of the crack resistance and frangibility of glass. The manipulation of
glass structure and properties at high pressure can guide the development of glasses
with improved mechanical properties through an improved understanding of the
densification mechanism. The photoelastic effect can result in birefringence in glass,
which can be an issue for various optical glasses. Understanding the effect of
pressure is important for understanding the densification mechanism of these
materials under pressure and the corresponding changes in macroscopic properties.

4.1. CRACK INITIATION

Oxide glasses are intrinsically among the strong materials [19], but have the
disadvantage of being brittle [19,153-155]. The brittleness originates from stress-
intensifying surface flaws. The concentrated stress around the flaw results in brittle
failure, as the amorphous structure of glass does not allow for a stable shearing
mechanism to dissipate the stress [156]. Preventing the initiation and propagation of
cracks in glassy materials is one of the most important tasks for producers of
displays for portable devices. In order to develop stronger and tougher glasses, the
nature of crack initiation and propagation must be understood, including the effect
of composition, thermal history, post-treatment, etc.

Much effort have been put into studying crack propagation [154,157,158], while
crack initiation have received less attention. Hirao and Tomozawastudied the effect
of liquid water on crack initiation [159], Striepe et al. [160] showed that the crack
initiation probability depends on the relative humidity and Lawn et al. [161] showed
that the crack initiation probability is a function of both time and atmospheric
environment. The origin of this humidity dependence is reported to be the hydrolysis
of strained network former (T) oxygen bonds [162,163]:

=T-O-T=+ H,0 — 2=TOH

In order to study crack initiation, Vickers indentation is often used. Originally
designed to measure hardness and utilized for its reproducibility and simple sample
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preparation, Vickers indentation have become a preferred tool for determination of
the resistance against cracking in the glass community [151,164-166], as it
simulates real-life failures for many applications. In Vickers indentation, a
pyramidal diamond of 136° angle is loaded onto a polished, flat surface. Normally,
the Vickers hardness is determined from the size of the indent relative to the applied
load. However, when studying crack initiation, the number of initiated cracks is
counted instead. The resistance to crack initiation can be quantified by the crack
resistance (CR) [167], defined as the indentation load that generates an average of
two radial/median crack from the corners of the pyramidal indent. This definition
impedes the determination of crack resistance for anomalous glasses with low
Poisson’s ratio, as their cracking behavior favors ring/cone cracking over
radial/median cracks [168].

Determining crack resistance has become an increasingly popular method for
evaluation of crack initiation [22,23,46,151,160,165,166,169-191]. However, the
experimental procedure varies between research groups and details about the
atmospheric conditions or the time between indentation and crack counting are often
missing, even though these have a large effect on the measured CR values. In order
to compare data from different research group, the crack resistance studies could be
performed in a dry glove box purged with N,. However, in real-life situations,
various concentrations of water vapor is always present and the property testing
must thus ideally also be performed in the presence of gaseous water.

Time

Figure 21: Experimental procedure for determining the time (t) dependence of crack
initiation. After the indenter is unloaded at t = 0, images are continuously collected for 6 h.
Consequently, the time of each pop-in of cracks can be determined. Figure taken from Paper
V1.
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In Paper VI we attempted to elucidate the effect of the atmospheric conditions and
the time between indentation and crack counting on crack initiation. To do so, the
exact time of the pop-in of individual crack was continuously monitored for at least
6 h and counted again after 24 h. In order to test the effect of humidity on crack
initiation, the same glass was indented during winter (relative humidity of 39+8%)
and summer (relative humidity of 70£9%). The experimental setup is visualized in
Figure 21, showing indentation at time t, = 0 and continuously monitoring of each
crack pop-in in order to establish the time-dependence of the crack probability.

When determining crack resistance of glasses, delayed cracking is often observed. In
literature it has been reported to occur at least during the initial 10 min after
indentation [161]. Recently, delayed cracking was studied for 24 h for titanosilicate
glasses and found to cease after 2 h [175]. An example of delayed cracking in our
data can be found in Figure 22. The indent is found to exhibit no crack immediately
after indentation, with the pop-in of two cracks occurring after 353 s. One additional
crack pop-in is observed after both 363 s and 393 s. This example of a single indent
is not representative and the behavior depends on both indentation load and
humidity, but Figure 22 highlights the importance of considering and reporting the
time period between indentation and crack counting when determining the crack
resistance. If the crack initiation probability was compiled from this indent alone,
during a 50 s time span it would be observed to be 0%, 50%, 75%, or 100%.
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Figure 22: Time-dependence of the pop-in of crack for single indent at four different periods
after indentation at a load of 1.96 N with RH = 37.2%. The images show an indent (a)
immidiately after indentation and after 343 s (identical), (b) after 353 s, (c) after 363 s, and (d)
after 393 s. Figures taken from Paper V1.

The effect on the time between indentation and crack counting is visualized in
Figure 23 for a 67.5Si0,-12.5A1,05-20Ca0 glass. The crack resistance is
determined 35 s and 24 h after indentation from at least 20 indents. For low relative
humidity conditions (LRH), the crack resistance is found to be 2.5 N after 35 s.
After 24 h the CR drops by >30% to 1.4 N, as a results of the prolonged time for the
pop-in of cracks to occur. A similar effect is observed under more humid conditions
with a drop in the CR from 1.7 to 1.0 N when counting the cracks after 35 s and 24
h, respectively. The similar pattern is found when changing the humidity instead of
the time between indentation and crack counting. Increased humidity increases the
crack initiation dramatically, resulting in decreasing crack resistance. The effect of
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increasing humidity depends on the applied indentation load. For low load (<1 N),
the residual stress around the indents is low and often insufficient to facilitate the
pop-in of a crack. At high loads (>5 N) the crack initiation probability is very high
regardless of humidity, as the applied stress is sufficiently high to facilitate
cracking.The largest effect of increased humidity is found in the intermediate load
range (1-5 N), where the crack initiation probability can be increased by >20
percentage points when comparing high- to low-humidity conditions as an effect of
the hydrolysis reaction [159,192]. When increasing the humidity, the crack
resistance decrease from 2.5 to 1.7 N and 1.4 to 1.0 N when cracks have been
counted after 35 s and 24 h, respectively.
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Figure 23. Crack initiation probability for the 67.5Si0,-12.5Al,05-20Ca0 (mol%)
composition at low relative humidity (LRH) (full line) and high relative humidity (HRH)
(dashed line) after 35 s (blue line) and 24 h (red line). Figure taken from Paper VI.

To understand the time dependence of the crack initiation, the pop-in of cracks were
counted continuously for several hours (Figure 24). We find that the rate of cracks
initiation is highest within the first seconds and minutes, but a substantial amount of
cracks continue to initiate minutes and hours after indentation. An example is the
curve for the 0.98 N load (full red line) under the low humidity conditions. The
number of cracks after 24 h has more than doubled compared to the initial few
seconds. A similar behavior is also found for the same indentation load at higher
humidity (dashed red line) and for other loads.

Independent of load and humidity, the crack initiation rate decreases with time. The
crack initiation probability rate is high within the first ~300 s after indentation and
most of the crack initiation occurs within the first 3 h, more or less in agreement
with the cease of crack initiation found by Scannell et al. [175]. However, crack
initiation was observed after more than 19 h and when revisiting the indents 1.5 year
after indentation several additional cracks had formed. The decrease in crack
initiation rate with time is directly related to the stress release after the initiation of
new cracks and the depletion of uncracked indent corners.
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Figure 24. Crack initiation probability determined at up to 24 h after indentation at various
load and humidity for the 67.5Si0,-12.5Al,05-20Ca0 glass. The applied loads are 0.49
(black), 0.98 (red), 1.96 (blue), 2.94 (green), and 4.91 N (purple). The data are obtained under
both low (solid lines) and high (dashed) relative humidity conditions. The continuous data
collected was stopped after 22,000 s and therefore the crack initiation probability between
22,200 (vertical dashed line) and 76,500 s has been extrapolated. Figure taken from Paper VI.

Indentation crack resistance is becoming an increasingly popular method to compare
the resistance to surface damage among different glass compositions. However, the
data highlight the importance of a rigorous control of the experimental conditions,
namely the humidity and the time between indentation and crack counting.
Currently, cracks are counted after different time across research groups and the
effect of humidity (either due to geographical location, time of year, or even the
local weather during an experiment) will highly affect the crack resistance values, as
the humidity will fluctuate accordingly. Therefore, we recommend that standardized
protocols must be developed, ideally involving measurements of crack resistance at
a controlled humidity.

Our results also suggest that cracks should not be counted within the first 5 min, as
small variations in the time between ty and the time of crack counting will result in
an erroneous determination of crack initiation probability and crack resistance. It
appears that 3 h is a more appropriate minimum waiting time between indentation
and crack counting, but for practical purposes, a waiting period of 24 h might be the
best option. In addition to time and humidity, the chemical composition of the glass
also needs to be considered, as the reactivity between atmospheric water and glass
greatly depends on the type of network former.

4.2. EFFECT OF DENSIFICATION ON HARDNESS AND CRACK
RESISTANCE

Surface damage is the Achilles heel of glass display screens for portable electronic
devices. An approach to understand the underlying structural origin of a glass being
resistant to cracking is hot compression, in which the glass sample is simultaneously
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exposed to high pressure and high temperature around T4 [45-47,182,193]. The
relatively low viscosity at high temperature results in large structural changes in e.g.
coordination number of network cations. The structural changes occurring during
hot compression are often comparable to those obtained during real-life surface
damage and at the same time enable preparation of bulk samples (unlike, e.g.,
diamond anvil cell densification experiments). This enables ex-situ analyses of the
structural change by e.g. Raman and NMR spectroscopy, facilitating an improved
understanding of the compositional and structural origins of mechanical properties
[23].

Two of the relevant mechanical properties are Vickers hardness and crack resistance
of the glasses. During indentation, the glass deforms through three different
deformation mechanisms: elastic deformation, densification, and shear flow. In
Paper 1, to understand the effect of pressure on the mechanical properties, we choose
a sodium aluminosilicate series with varying NBO/T ratio (25Na,O-xAl,05-(75-
X)SiO,. with x = 0, 5, 10, 15, 20, and 25). During indentation all three deformation
mechanisms occur. Initially, the response is purely elastic. Then both densification
of the glass volume beneath the indenter tip and pile-up caused by shear flow occur.
For uncompressed samples, the hardness increases with increasing Al,O3 content, as
a result of the reduction in the NBO/T ratio [194] (Figure 25). The network rigidity
increases as a results of incorporation of AI** tetrahedra in the network structure,
which increase the resistance against elastoplastic deformation [195].
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Figure 25. Vickers hardness (Hy) measured at an indentation load of 0.98 N for as-prepared
and compressed glasses in the 25Na,0-xAl,03-(75-x)SiO, system as a function of Al,O3
content. Figure taken from Paper I.

After a HP/HT treatment, the hardness is increased for all compositions (Figure 25).
The deformation occurring under the indenter tip still cover all three deformation
mechanisms, but due to the ‘pre-densification’ occurring during the HP/HT
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treatment, the volume available for densification during indentation is decreased.
This is manifested as an increase in hardness, as the ability to deform has decreased
[173].

While hardness is negatively influenced by the presence of NBOs for these sodium
aluminosilicate glasses, the tendency for cracks to initiate is lower in more flexible
glasses. Thus, the crack resistance decreases with increasing Al/Na ratio and
increasing rigidity (Figure 6). The flexible compositions with many NBOs easily
densify, leading to lower residual stress around the indents. This results in a low
driving force for crack initiation and a high crack resistance. The resistance to
densification in rigid low-NBO compositions leads to higher residual stress, high
crack initiation, and low crack resistance [177]. The crack initiation has previously
been attributed to a mismatch between the plastically deformed volume and the
surrounding elastically deformed matter [178,196,197]. In the compressed samples,
the ability to densify and dissipate stress has been reduced. This limits the ability to
further deform during subsequent indentation, resulting in higher residual stress and
decreasing crack resistance for all compositions[173,177].1t is clear from the crack
resistance data that high crack resistance is intimately related to the ability of the
glass to adapt through structural change and densification [23].
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Figure 26. Crack resistance (CR) of the as-prepared and compressed glasses in the 25Na,O-
XAl,03-(75-x)SiO, (mol%) system as a function of Al,O5; content. Hot compression results in
decreasing CR for all glasses. Figure taken from Paper I.

4.3. EFFECT OF DENSIFICATION ON PHOTOELASTICITY

Oxide glasses are well-known for their light transparency, which is exploited in
windows, lightbulbs, display screens, solar-energy glass, microscopes etc. For most
of these applications, the optical pathway of light through the glass is less important,
but for, e.g., the microscope glass, rigorous control of refractive index and specimen
shape is essential for its application. Another example is the optical response of the
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glass to elastic strain, known as the photoelastic effect. Glasses are random networks
that are inherently isotropic due to their lack of long-range order. However, under a
deviatoric stress, glass can exhibit an anisotropic response, including optical
birefringence, which can lead to undesired rotations of polarized light in the glass.
This is of importance for, e.g., display glasses [198-200] and fiber current sensors
[201] to maintain the color rendering or sensing properties [202]. The magnitude of
stress-induced optical birefringence is quantified by the proportionally constant
between applied stress and birefringence, the stress optic coefficient (C):

6 = Cal, )

where ¢ is the difference in the optical path length for light polarization along the
stress axis and the orthogonal direction, ¢ is the applied uniaxial stress, and I is the
sample thickness.

The major component in silicate glasses, SiO,, has a relatively large positive C value
of +3.5x10 *Pa', which is a problem for advanced optical applications
[16,198,201,203]. Other typical components (e.g., Na,O and CaO) can decrease C,
but not sufficiently to reduce C to zero to avoid birefringence. Instead, PbO have
typically been added to counter-balance the C contribution from SiO,, as the
electronic structure of Pb" contributes to decrease C substantially [204—
206].However, recent legislation aims at reducing the presence of lead, as it has
large negative effect on both health and environment. This has motivated research in
the compositional and structural origins of the photoelastic response [198,207,208],
leading to the discovery of new lead-free glass compositions, exhibiting zero-stress
optic response when strained anisotropically [198,206,208-212].

The stress optic coefficient is controlled by the structural response of the glass to
anisotropic stress. If the chemical bonds in the glass are highly directional, such as
the low-coordinated Si** species, the glass tends to distort anisotropically, while the
more highly coordinated modifier ions can be distorted isotropically. Furthermore,
the less directional metallic bonds can be distorted in both the direction of the
anisotropic stress and in the orthogonal direction.

Aiming at developing a predictive model for photoelasticity, Zwanziger and co-
workers [198] used the relations between distortion mechanisms and bonding types.
Relating these through the cation-anion bond length (d) and the cation coordination
number (N.) of the glass components, Zwanziger and co-workers proposed an
empirical model, stating that glasses exhibiting no photoelastic effect have a d/N,
ratio of approximately 0.5 A. Negative birefringence occurs for d/N. ratios > 0.5 A
and positive values occur when the d/N, ratio is < 0.5 A. By studying the glass
structure in detail using both simulations [30,213] and experimental structural
probes [206-208,213,214], the model has shown good qualitative agreement with
data [198].
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In Paper VII we investigated if the structural and topological basis for the empirical
by using hot compression to alter the glass structure. As discussed in Paper VII, the
model cannot accurately predict the change in C when a glass is hot compressed,
suggesting that changes must be made to the empirical model. Recent studies
describe how hot compression results in changes in both bond length and
coordination numbers.The coordination numbers of network formers, such as boron
[45-47] and aluminum [48-50,182] has been found to increase, while hot
compression does not impact the coordination number of modifiers [45]. The bond
length of modifier-oxygen bonds decreases [45,46,49,50,215], while the increasing
coordination numbers of the network-forming cations [48,50,182,216] should
increase the bond length, in order to accommaodate the higher-coordinated species in
the coordination sphere. Overall, the hot compression is expected in result in
decreasing d and increasing N.. This results in a decrease in the d/N. ratio and
therefore an expected increase in C following the Zwanziger model. However, hot
compression of ten aluminosilicate glasses show that C always increases.
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Figure 27. Pressure-induced relative change in stress optic coefficient (AC/Cy) as a function
of pressure-induced relative change in both Young’s (AE/Ey) and shear (AG/Gy) moduli.
Figure taken from Paper VII.

As the Zwanziger model cannot account for the observed change in C, the origin of
the increase in C might be related to the pressure-induced change in elastic moduli,
as a recent study showed that birefringence is related to the resistance of a material
to elastic shear deformation [217]. Both the Young’s and the shear modulus are
found to increase approximately linearly with C (Figure 27). Following its
definition, C is a function of shear modulus (G) through therelation [1],

C= 1 (P12 — P11)- (10)
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where p;, and py; are the Pockels strain-optical coefficients and n is the refractive
index. The Pockels strain-optical coefficients describe the response of the glass
when strained.

From experimental data of shear modulus, refractive index, and stress optic
coefficient, we can easily determine the sum of the Pockels strain-optical
coefficients using Eq. (10) and find that the effect of hot compression on (p1-p11) is
negligible (Figure 28). The magnitude of the Pockels strain coefficients are hardly
affected by the hot compression.

0.15
¢ Annealed
v Compressed In| Eﬁ E
0.10- as
& AR
£ 0.051
0.00 : : T
0.00 0.02 0.04 0.06 0.08

Plastic compressibility (-)

Figure 28. The sum of the Pockel’s strain-optical coefficients of as-prepared and compressed
glasses as a function of the plastic compressibility, which is the relative volume (V) change
measured after hot compression described by —(1/V)(dV/dp). The strain-optical coefficients
are calculated from Eq. (10) using stress optic coefficient and refractive index values obtained
from experiments. Figure modified from Paper VII.

As the Pockels strain-optical coefficients are approximately unaffected by pressure,
the change in C cannot be explained by structural change nor by Zwanziger’s model.
As the pressure-induced change in refractive index is also small (not shown), the
only major property change in Eq. (10) is in the shear modulus. The pressure-
induced decrease in C must therefore primarily be governed by the increase in shear
modulus according to Eg. (10). By considering the C and G values for the studied
aluminosilicate glasses, we find a linear relationship (R?=0.997) between C and G
for both uncompressed and compressed glasses for G values below 30 GPa (Figure
29). This relationship can be rationalized by the glasses having similar compositions
and therefore all glasses have approximately identical Pockels strain-optical
coefficients. Thus, they will behave similarly when strained. The extent of the strain
is mostly controlled by elastic moduli; hence, the stress-optic coefficient will be
controlled by the shear modulus. The two glass compositions with G values around
41-43 GPa stand out by having a high modifier content. The high modifier content
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(>50 mol%) acts to increase the shear modulus, but also introduces a higher ability
to distort isotropically. This results in decreasing Pockels strain-optical coefficients
(seen in Figure 28), changing the proportionality between C and G. In summary, the
Zwanziger model cannot predict the effect of hot compression on the stress optic
coefficient, as the magnitude of C is largely dependent on the shear modulus.
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Figure 29. The relationship between the stress optic coefficient (C) andthe shear modulus (G)
for both annealed (not-compressed) and compressed glasses. The dashed line (R* = 0.997)
represent the linear fit to the dependence of C on G for the glasses with similar Pockels strain-
optical coefficients. The remaining two compositions do not match the linear fit as they have
vastly different Pockels strain-optical coefficients compared to the remaining eigth
compositions. Figure taken from Paper VII.
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CHAPTER 5. GENERAL DISCUSSION
AND PERSPECTIVE

Aluminosilicate glasses form the basis for a wide variety of industrial glass
products. Understanding their composition-structure-property relations is important,
as it can allow prediction of properties directly from the chemical composition. This
enables tailoring the glass properties to match specific applications. In this Ph.D.
thesis, we have investigated various composition-structure-property relations in
aluminosilicate glasses.

In the study of aluminosilicate glass structure, we found links between the field
strength of modifier cation and the fraction of various structural units. For example,
we found a violation of both the standard model for aluminum coordination and Al-
avoidance depending on the modifier cations. We argued that both violations are
positively correlated to the field strength and valence of the maodifiers.
Understanding the rheological properties of glasses and glass-forming melts is based
on understanding this intimate relationship between composition and structure.

A universal understanding of all types of relaxation in glass is important for many
optical applications. The volume relaxation is especially important for producers of
display screens. Studying the relationship between configurational heat capacity and
liquid fragility is relevant, due to the possible proportionality between
configurational heat capacity and volume relaxation. Therefore, a full understanding
of relations between these properties can enable prediction of volume relaxation
directly from fragility. We found good agreement between model predictions of
configurational heat capacity from fragility and experimental data. However, a better
understanding of this relationship is needed to use it actively in the design of glass
compositions with minimal relaxation during re-heating.

To the best of our knowledge, this thesis is the first to use high-temperature
temperature-modulated differential scanning calorimetry (TM-DSC) to oxide
glasses. TM-DSC is a promising technique to study the dynamic behavior of these
materials at high-temperature, as it, compared to standard DSC, provides superior
sensitivity. We have developed experimental protocols for this technique, which
effectively expands the range of glass compositions that are available for
temperature modulated analysis, enabling a deeper understanding of, e.g., relaxation
effects in glasses. The potential applications of TM-DSC include the study of
relaxation and crystallization under isothermal conditions at high temperature and
quantification and separation of thermal events in hyper-quenched mineral fibers.

Understanding the humidity and time dependence of crack initiation is important for
industrial producers of damage-resistant glasses, as their products are used in humid
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environments. As expected, we found a higher tendency for cracks to initiate in a
humid environment and after longer time. A better understanding of the mechanism
of water-assisted initiation of cracks in glass and its relationship with the glass
composition will help improve the design of crack-resistant aluminosilicate glasses.
Our results also give insight to the kinetics of frangibility determination [218], as the
experiment requires delayed fracture as a result of internally stored energy.

For a range of optical applications, tailoring of the photoelastic properties through
glass composition design is needed. Understanding this composition-property
relationship is important for discovering new glass compositions with a minimized
photoelastic effect. Currently the photoelastic effect is predicted from the glass
structure through coordination numbers and bond lengths. We showed that this
empirical model was unable to predict the effect of the structural changes associated
with hot compression on the photoelastic effect. Consequently, the model is
insufficient in predicting the photoelastic effect for aluminosilicate glasses. To
improve the development of zero-stress optic glasses, a model with a physical basis
must be developed. For example, understanding the effect of compression on
photoelasticity affects the determination of compressive stress in ion exchange
glasses. We showed that the substitution of cations during ion exchange hardly
changes the photoelastic properties. We also highlighted the pressure-induced
change in shear modulus, which must be known in order to determine surface
compressive stress in ion-exchanged glasses. Without an accurate quantification of
the change in shear modulus during ion-exhange, the determined surface
compressive stress may be artificially high.
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CHAPTER 6. CONCLUSION

The topic of this thesis has been to study the composition-structure-property
relations in industrial relevant aluminosilicate glasses. Common for all our studies is
the desire to understand the interplay between composition, structure, and properties
in order to accelerate the design of glass compositions for high-tech applications
through the ability to predict properties from either composition and/or structure.

The glass structure is controlled by its chemical composition and thermal and
pressure history. We have investigated the structural dependence on the modifier
cations in aluminosilicate glasses with various amounts of sodium, calcium, and
magnesium using both Raman and nuclear magnetic resonance spectroscopy. We
found strong correlations between the field strength of the modifier and the presence
of *forbidden’ structural units, namely Al" in peralkaline compositions and Al-O-Al
linkages. In glasses containing divalent calcium or magnesium, Al-O-Al linkages
were detected by Raman spectroscopy, suggesting that the high field strength
modifiers have an excellent charge-stabilizing ability. The higher field strength of
magnesium over calcium leads to the appearance of Al-O-Al linkages at lower
modifier concentration and probably also in higher concentration. From NMR
spectroscopy, we found evidence of unexpected five-coordinated aluminum (AlY) in
peralkaline sodium aluminosilicate glasses and found the concentration of AlY to
increase after hot compression. This change in the pressure history causes an
increase in AlY for highly peralkaline glasses only, emphasizing the role of NBOs in
the formation of higher coordinated aluminum species.

The compositional and structural origins of relaxation in glass are not fully
understood. We have investigated the relationship between the configurational heat
capacity and fragility, due to the expected relationship with volume relaxation. We
found that the investigated model predicts configurational heat capacity from
fragility reasonably well with some discrepancies. The scaling factor between these
two quantities appears to be composition dependent, but more studies are needed to
achieve a deeper understanding of the relationship.

A different approach to study relaxation is through measuring the non-reversing heat
capacity from temperature-modulated differential scanning calorimetry. This
technique was hitherto limited to low temperature (< 600°C). In order to use the
TM-DSC for relaxation studies, we first developed an experimental protocol for the
use of TM-DSC at high temperature. Our results highlight the challenges and
importance of ensuring a sufficiently high signal-to-noise ratio through high
amplitudes (5 K). Furthermore, we have shown that for glasses with intermediate
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fragility values (m = 30-50) the underlying heating rate should be ~2 K/min. For
strong compositions with high glass transition temperatures, the underlying heating
rates can be increased up to 5-7 K/min.

Using this experimental protocol for TM-DSC, we successfully determined liquid
fragility of oxide glasses. The technique has an accuracy, which is comparable to the
Moynihan approach for calorimetric determination of fragility, while the error is
smaller due to an easier and more reliable determination of characteristic
temperature. However, there is a tendency for under- and overestimation of the m
values for fragile and strong compositions, respectively, using this technique. A
correction of the calorimetric fragility values is presumably needed, but requires a
larger pool of fragility values determined by TM-DSC.

We have also used the TM-DSC method to determine the non-reversing heat flow of
a series of tectosilicate calcium aluminosilicate glasses in order to investigate non-
aging compositions in the so-called reversibility window. We also compared the
data to molecular dynamics simulations of identical glasses. We find minima in non-
reversing heat flow in both experiments and simulations, indicating some correlation
between the number of topological constraints and the non-reversing heat capacity.

The mechanical properties of aluminosilicates are also very important for their high-
tech applications. It is, for example, essential to prevent the propensity of the display
glasses to form strength-limiting cracks. To achieve a better understanding of
environmental effects, we quantified the load-time-humidity dependence of the
initiation of cracks in aluminosilicate glasses. Increasing the time and humidity will
both increase the propensity of cracks to initiate and therefore affect the crack
resistance negatively. Our results highlight how experimental conditions affect
apparent glass properties. Therefore, when using the crack resistance methodology
as a probe of damage-resistant glasses, we have suggested the use of a standardized
experimental protocol.

Finally, we have evaluated Zwanziger’s model of photoelasticity in glass. The
model suggests that photoelasticity can be predicted from the average coordination
numbers and bond lengths in the glass. As such, the model predicts that the
structural change occurring as a results of hot compression will results in an increase
in the stress optic coefficient. However, hot compression results in a decrease in the
stress optic coefficient. We argue that the empirical model must be revised and in
order to fully understand the phenomenon of photoelasticity, a revised model with a
basis in physics should be developed.
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Clarifying the effect of pressure on the structure of aluminosilicate glasses is important for understanding the
densification mechanism of these materials under pressure and the corresponding changes in macroscopic prop-
erties. In this study, we examine changes in density, network structure, indentation hardness, and crack resis-
tance of sodium aluminosilicate glasses with varying Al/Si ratio and thus non-bridging oxygen (NBO) content
before and after 1 GPa isostatic compression at elevated temperature. With increasing NBO content, the silicate
network depolymerizes, resulting in higher atomic packing density, lower hardness, and higher crack resistance.

ﬁfﬂ?;g;licate glass The ability of the glasses to densify under isostatic compression is higher in the high-NBO glasses, and these
Structure glasses also exhibit more pronounced pressure-induced changes in mechanical properties. The ?’Al NMR data
Non-bridging oxygen show a surprising presence of five-fold aluminum in the as-made high-NBO glasses, with additional formation
Pressure upon compression. Our study therefore provides new insights into the complicated relationship between Al
Indentation coordination and NBO content in aluminosilicate glasses and how it affects their densification behavior.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction means of charge-balancing additional Al tetrahedra [6-8]. An alterna-

The relationship between structure and properties for sodium
aluminosilicate (Na;0-Al,03-Si0;) glasses and glass-forming liquids
with varying thermodynamic variables (e.g., composition, temperature,
and pressure) are important for both industrial and geological process-
es. These glasses are commercially used for various products, such as flat
panel display glass, scratch resistant cover glass, and nuclear waste
glass. The three oxides constitute >80% of andesitic and granitic
magmatic systems and therefore also have important implications for
magma dynamics and properties.

Several structural models have proposed that for Al/Na ratio <1,
i.e., excess Na™ ions, all A’ is found in tetrahedral configuration
(AI'Y) [1-4]. Addition of Al,O5 to an alkali silicate glass ideally leads to
the removal of the network-modifying Na™ ions from their original
role in the network until no more non-bridging oxygen (NBO) atoms
remain [5]. For Al/Na ratio >1, some AI>* ions can no longer be charge
balanced in tetrahedral configuration and some excess Al> " is forced
into higher coordination number (five-fold AlY or six-fold Al'") as a

* Corresponding author.
E-mail address: mos@bio.aau.dk (M.M. Smedskjaer).

http://dx.doi.org/10.1016/j.jnoncrysol.2016.03.011
0022-3093/© 2016 Elsevier B.V. All rights reserved.

tive hypothesis is that Al'Y can be incorporated, even in peraluminous

compositions, without the need for a charge-balancing cation through
association with a three-coordinated oxygen (oxygen tricluster)
[9-11].In any case, it is well accepted that a range of macroscopic prop-
erties (e.g., transport and mechanical) depend on the Al/Na ratio and
thus the network connectivity [12-15], i.e., the fraction of NBOs.
Clarifying the effect of pressure on the structure of aluminosilicate
glasses is important for understanding the densification mechanism of
these materials under pressure and the corresponding changes in mac-
roscopic properties. However, high-pressure experiments are challeng-
ing, partly due to the typical small sample volumes [16], prohibiting
characterization of post-compression properties. In this work, we inves-
tigate sodium aluminosilicate glasses quenched under isostatic pressure
from the glass transition temperature in a nitrogen gas pressure cham-
ber. Although this approach is relatively modest in both temperature
and pressure (~Tg and <1 GPa), it permits permanent densification of
relatively large glass pieces (cm?) that are suitable for characterization
of, e.g., mechanical properties [17,18]. This is because permanent densi-
fication of glass occurs at significantly lower pressures for compression
at elevated temperature compared to that at room temperature [19,20].
Pressure-induced structural changes of aluminosilicates are mani-
fested by changes at both short- and intermediate-range length scales,
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including increase in the local coordination numbers of the network
forming Al and Si cations from 4 to 5 and 6, enabling closer packing of
the structural units. This coordination number change has been report-
ed to involve conversion of NBO to bridging oxygen (BO) [21-24], but in
the absence of NBOs, it can also occur through the formation of oxygen
triclusters [25,26]. The densification mechanism of sodium aluminosili-
cate glasses has also been suggested to include decrease of Na—O bond
distances [23,27,28], decrease of inter-tetrahedral bond angles [29,30],
decrease of average ring size [31], and increase in distribution of Si—O
and Al—O bond lengths [30].

In this work, we study the structure and micromechanical properties
of a series of Na,0-Al,03-SiO, glasses before and after isostatic
compression at elevated temperature. Specifically we study the
influence of NBOs on the changes in structure and properties by
varying the Al/Si ratio at constant Na,O concentration. Our results
provide insight into the composition-dependent structural changes
that facilitate densification of the aluminosilicate network during
compression and the consequence for the micromechanical
properties. Improved understanding of the link between structure and
mechanical properties is important due to the need for more scratch-
resistant and mechanically durable glasses to enable new advanced
glass applications.

2. Experimental section
2.1. Sample preparation

We have prepared six glasses in the (75-x)Si02-xAl;03-25Na,0 sys-
tem with x = 0, 5, 10, 15, 20, and 25. In this series, the [Al,03]/[Na,0]
ratio is <1, and therefore prevailing models of network structure in
peralkaline glasses would indicate sufficient charge-compensating
Na™ ions to keep all A in tetrahedral configuration. High purity pow-
ders of SiO, (Alfa Aesar; >99.5%), Na,COs (Sigma Aldrich; >99%), and
Al,053 (Sigma Aldrich; >99%) were used for glass melting. Homogeneous
mixtures of batches (corresponding to ~70 g of oxides), obtained by ball
milling, were melted in Pt-Rh crucibles at 1650 °C for 2 h in air. The
melts were poured on a metallic table and were initially annealed at
600 °C for 1 h. The chemical compositions of the glasses were
determined using flame emission spectroscopy and inductively coupled
plasma mass spectroscopy. The results are given in Table 1. To ensure
uniform thermal history, the glasses were annealed at their respective
glass transition temperature (Tg) for ~2 h. T, was determined using
differential scanning calorimetry (DSC 449C, Netzsch) at 10 K/min
(Table 1). The glasses were cut to dimensions of about
10 x 10 x 8 mm? and polished to an optical finish.

The six glass compositions were isostatically compressed at 0.5
and 1.0 GPa at their respective ambient pressure T, value (see

Table 1

Analyzed chemical compositions (in mol%), calculated number of non-bridging oxygens
per tetrahedrally coordinated cation (NBO/T), density (p), glass transition temperature
(Ty), and plastic compressibility (3). Compositions are analyzed using inductively coupled
plasma and flame emission spectroscopy, density determined using Archimedes method,
T, determined using differential scanning calorimetry at a rate of 10 K/min, and 3 calculat-
ed from the slopes of the linear fits to density vs. pressure for each composition.

Glass ID Composition (mol%) NBO/T P Ty B
Si0,  ALOs Na,O (=) (gcm™3) (°C) (GPa™ )

Al-0 74.7 0.0 253 0.677 2.437 470 0.0215
Al-5 70.0 5.1 249 0.494 2.456 500 0.0220
Al-10 64.8 10.2 25.0 0.347 2.471 534 0.0221
Al-15 59.6 15.1 253 0.227 2.484 595 0.0187
Al-20 54.6 19.7 25.7 0.128 2.494 638 0.0147
Al-25 49.7 25.2 25.1 0.000 2.498 797 0.0157

Table 1) in a gas pressure reactor with nitrogen as the compression
medium. The system was kept at the high-pressure/high-tempera-
ture condition for 30 min before cooling to room temperature
at 60 K/min, followed by decompression at room temperature
at 30 MPa/min. The setup used for this pressure treatment has
been described in detail in Ref. [17]. X-ray diffraction analyses
showed no evidence of crystallization following the pressure
treatment.

2.2. Density

The density values of the as-prepared and compressed glass samples
were determined using Archimedes' principle with ethanol as the
immersion medium. The weight of each glass sample in both air and
ethanol was measured ten times.

2.3. Indentation

Vickers hardness (Hy) and crack resistance (CR) of as-prepared and
isostatically compressed glasses were measured using a Vickers micro-
indenter (Duramin 5, Struers A/S). The measurements were performed
in air at room temperature with a dwell time of 15 s. Thirty indentations
at each load (0.49, 0.98, 1.96, 2.94, 4.91, 9.81, and 19.6 N) were per-
formed. Hy was calculated at 9.81 N from the length of the indentation
diagonals. CR was determined as the load leading to an average of two
radial/median cracks per indent [35].

2.4. Raman spectroscopy

Raman scattering spectra were measured in backscattering geome-
try with a Renishaw Invia Raman microscope on freshly polished
samples. A diode laser with a wavelength of 532 nm was used as the ex-
citation source. The collected Raman spectra were baseline-corrected
using an asymmetric least square algorithm [32]. Afterwards the proc-
essed spectra were deconvoluted using Fityk software with Gaussian
and Voigt lineshapes.

2.5.27Al NMR Spectroscopy

27Al magic-angle spinning (MAS) nuclear magnetic resonance
(NMR) and triple quantum magic-angle spinning (3QMAS) NMR exper-
iments on both as-prepared and compressed (1.0 GPa) aluminosilicate
glasses were conducted at 16.4 T using a commercial spectrometer
(VNMRs, Agilent) and a 1.6 mm MAS NMR probe (Agilent) with
spinning speeds of 25 kHz. MAS NMR data were acquired using radio
frequency pulses of 0.6 s (equivalent to a /12 tip angle), relaxation
delays of 2 s, and signal averaging of 1000 acquisitions. MAS NMR
data were processed using commercial software, without additional
apodization and referenced to aqueous aluminum nitrate at 0.0 ppm.
A weak background signal from the zirconia MAS rotors was detected
by 2’Al MAS NMR of an empty rotor and subsequently subtracted
from the MAS NMR data of the glass samples. This signal, at approxi-
mately 16 ppm, is clearly distinct from the Al peaks in the glasses, but
nonetheless has been removed to ensure higher accuracy in the 27Al
MAS NMR experiments. Unfortunately, this weak zirconia signal cannot
be removed from 2’Al 3QMAS NMR data, and appears in some of the
spectra as a weak set of contours around 16 ppm in the MAS NMR
dimension.

MQMAS NMR spectra were measured using the three pulse, zero
quantum filtering method [33]. The hard 3m/2 and m/2 pulse widths
were calibrated to 1.8 and 0.7 ps, and the soft reading pulse of the z-filter
was optimized to 10 ps. 48 scans were collected for each of 88 t; points,
using a recycle delay of 1 s. Spectra were processed using commercial
software (VNMR]J, Agilent) and modest line broadening (100 Hz) was
used in processing the 2’Al 3QMAS NMR data. For each resonance in
the 3QMAS NMR spectra, the centers of gravity in the MAS and isotropic
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dimensions, 65¢ and 655, were used to calculate the isotropic chemical
shift (8¢s) and the quadrupolar coupling product (P,) according to

10 17
b5 =37% + 370% M
and
P, = (5gg—e>cc) % f(S) % Vo 1073, )

where f(S) = 10.244 for spin-5/2 nuclei (*’Al), and v, is the resonance
frequency of the quadrupolar nucleus in MHz [34]. P, from Eq. (2) can
be related to the quadrupolar coupling constant (Cq) as Pq =
C4(1 + m2/3)"2, where 7y is the quadrupolar coupling asymmetry
parameter. P; and Cg are often used interchangeably, with small errors
introduced when neglecting the contribution of 1.

3. Results and discussion
3.1. Glass transition temperature and density

As given in Table 1, T, increases with increasing Al,03/Na,0 ratio.
This is because the number of non-bridging oxygens per tetrahedrally
coordinated cation (NBO/T) decreases with increasing Al,03/Na,0O
ratio, i.e., the network connectivity increases. Values of NBO/T are also
given in Table 1, which have been calculated from the analyzed compo-
sitions by assuming that all available Na™ ions are used for charge-
balancing Al tetrahedra and by neglecting the presence of oxygen
triclusters and free oxide. The compositional variation of density is
shown in Fig. 1a. Density increases with increasing Al,O3 content
throughout the studied peralkaline composition space. The measured
values of T, and densities are generally in agreement with those
reported previously [1,36].

For all glass compositions, the density increases approximately
linearly with the applied pressure (Fig. 1a). Since the Al,03-for-SiO,
substitution changes the average molar mass of the glasses, we calculat-
ed the atomic packing factor (APF) of the glasses to evaluate differences
in free volume. APF is the ratio between the minimum theoretical
volume occupied by the ions (assumed to be spherical) and the
corresponding molar volume of the glass. The assumed coordination
numbers (2 for O, 4 for Si and AI'Y, 5 for AlY, and 6 for Na) along with
the corresponding effective ionic radii of Shannon [37] have been used
to calculate the minimum theoretical volume occupied by the ions.
We note that the average coordination number of Na in peralkaline
aluminosilicate glasses is in the range 6-8 [38-40], which would change
the absolute values of APF by maximum 1-2%. The molar volume is cal-
culated as the ratio between the molar mass and measured density from
Table 1. We find that SiO,-rich glasses have a larger atomic packing fac-
tor and thus smaller free volume than the Al,Os-rich compositions
(Fig. 1b).

Based on the linear relation between density and applied pressure
for each glass (Fig. 1a), we calculate the irreversible plastic compress-
ibility, which is defined as —(1/V)(dV/dp). This is the volume change
measured after decompression to ambient pressure. We find that the
plastic compressibility is larger in the SiO,-rich glasses (Table 1). This
is not in agreement with the observed trend in APF, since the glasses
with smaller free volume are more prone to network compaction
upon pressure treatment at elevated temperature. Instead, it appears
that the plastic compressibility of the glasses is positively correlated to
NBO/T as shown in Fig. 1c. That is, flexible glasses containing NBOs ex-
hibit a larger capability to undergo densification.

3.2. Hardness and crack resistance

Vickers hardness has been determined by micro-indentation at
9.81 N and is a measure of the ability of the glasses to resist elastoplastic
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Fig. 1. (a) Density p and (b) atomic packing factor APF of the as-prepared and compressed
sodium aluminosilicate glasses as a function of the Al,05 content. Errors associated with
the p and APF results are smaller than the size of the symbols. APF is calculated as the
ratio between the minimum theoretical volume occupied by the ions and the
corresponding molar volume of the glass. (c) Plastic compressibility as a function of the
calculated number of non-bridging oxygens per tetrahedrally coordinated cation NBO/T.
Plastic compressibility is calculated from the slopes of the linear fits to density vs.
pressure for each composition.

deformation. Hardness increases with increasing Al/Na ratio and then
appears to saturate around [Al,O5] = [Na,0] = 25 mol% (Fig. 2). This
composition dependence is likely caused by the reduction in the
number of NBOs with increasing Al/Na ratio [36]. The reduction in the
number of NBOs increases the rigidity of the network [41], which in
turn decreases the ability of the glass to deform. Isostatic compression
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Fig. 2. Vickers hardness (Hy) of the as-prepared and compressed sodium aluminosilicate
glasses as a function of the Al,O3 content. Hy was measured at an indentation load of
0.98 N. Inset: dependence of the slopes of the hardness vs. pressure curves (dHy/dp) on
the plastic compressibility for the six glasses. The dashed line is a guide for the eye.

increases the hardness of all compositions (Fig. 2). The pressure-
induced increase in hardness has been shown to be related to the ability
of the glass to deform under the indentation tip. The glass volume
available for densification beneath the indentation tip in the
as-prepared glass is larger than that in the corresponding isostatically
compressed glass, resulting in a larger resistance to densification and
an increase in hardness [42]. As shown in the inset of Fig. 2, we find
an apparent positive relation between the slope of the hardness vs
pressure (dHy/dp) and the plastic compressibility, suggesting that the
overall network densification is responsible for the increase in hardness
upon compression.

Crack initiation occurs at sufficiently high loads in a Vickers indenta-
tion test and has been attributed to the mismatch between the plastical-
ly deformed volume and the surrounding elastically deformed matter
|43-45]. The crack resistance (CR) is derived as the load at which an av-
erage of two radial cracks form. CR decreases with increasing Al/Na ratio
(Fig. 3), presumably due to a decrease in the densification ability of glass
as NBOs are removed from the network. A glass that can be easily den-
sified allows for decrease in the residual stress around the indent, which
results in an increase in crack resistance [46]. Hence, the decrease in
densification ability as the glass becomes more rigid decreases its
crack resistance. The pressure-induced decrease in crack resistance is
related to the densification of the glass during hot isostatic compression,
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Fig. 3. Crack resistance (CR) of the as-prepared and compressed sodium aluminosilicate
glasses as a function of the Al,O3 content. CR is defined as the load causing 50% radial
crack probability.

which decreases the ability of the glass to deform further during
subsequent indentation. The decrease in densification degree following
isostatic compression increases the residual stress around the indent,
which results in a decrease in crack resistance [42,46].

3.3. Raman spectroscopy

Raman spectroscopy has been used to study the structural differ-
ences in the glass series due to differences in their composition and
pressure history. The Raman spectra are all collected on glasses at ambi-
ent conditions and can be divided into three regions: low frequency re-
gion (250-700 cm ™ !), intermediate frequency region (700-870 cm™ 1),
and high frequency region (870-1300 cm~!). We note that when
interpreting Raman spectra, it is not possible to distinguish between
Al and Si based tetrahedra [38]. Q" will refer to tetrahedrally coordinat-
ed Si*™ or A with n bridging oxygens and 4-n non-bridging oxygens.
In general, our observations are in agreement with previous Raman
results on related sodium aluminosilicate glasses [47-50].

First we consider the annealed glasses prior to isostatic compression
(Fig. 4). In the low frequency region, two distinct bands are observed.
The Raman shift and intensity of these signals depend on the Al/Na
ratio. In the Al,Os-free glass (Al-0), they are located at ~540 cm ™!
with a shoulder at ~600 cm ™!, corresponding to Q> units and three-
membered tetrahedral rings in the glass, respectively [38]. When the
Al,05 content increases, the Raman shifts of the two bands decrease, ap-
proaching ~490 and ~560 cm™ !, respectively, in the Al-25 glass, which
are illustrated in Fig. 5 for the band at ~500 cm™ . For the Al,Os-
containing glasses, the band at ~500 cm ™' likely corresponds to Q*
units [50]. For Al-5, the higher frequency band is split into two peaks
at ~580 and ~590 cm~', corresponding to three-membered rings
containing one or more Al atoms and pure SiO4 three-membered
rings, respectively [48]. The existence of two distinct signals is explained
by the substitution of Al,O3 into the glass, decreasing the bond strength
in the Al-containing tetrahedral rings and therefore shifting the signal
towards lower frequencies [38]. Furthermore, the intensity of the
lower frequency band at ~540 cm™ ! in the Al,Os-free glass indicates
that a significant proportion of Q> units are present in the glass, whereas
the intensity of the band at ~500 cm™ ! in the Al,Os-containing glasses
indicates the presence of an increasing proportion of Q* units with in-
creasing Al,03 content [38]. The long tail at lower frequencies (~250
to ~450 cm™ '), which is observed in all glasses (Fig. 4), is caused by
the stretching of O atoms in large tetrahedral rings with five or more
members [38].

In the intermediate frequency region, one broad band can be found.
The contributions to the band in this region are strongly convoluted and
poorly known [51], but we note that the peak position systematically

Intensity (a.u.)

300 450 600 750 900 1050 1200
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Fig. 4. Raman spectra of the as-prepared sodium aluminosilicate glasses.
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Fig. 5. Peak positions of the Raman bands around 500 and 750 cm ™!, respectively, for the
as-prepared sodium aluminosilicate glasses as a function of the Al,03 content.

shift towards lower frequencies when substituting Al,03 for SiO,
(Fig. 5). This is explained by a decrease in bond strength due to a
decrease in the force constant as SiO, and Al,O3; mix [52]. In the high
frequency region, two bands are visible in the Raman spectra of the
low-Al,05 glasses (Al-0 to Al-15), while only one band is evident in
the high-Al,03 glasses (Al-20 and Al-25) due to peak broadening and
change of peak position. The position of these bands depend on the
Al/Na ratio, i.e., for Al-0 the signals appear around 950 and 1100 cm™!
and then at lower frequencies as the Al,03 content increases. These
broad bands have been attributed to stretching vibrations of T-O
bonds (T = Si, Al) [53,54] and different peaks are convoluted in them.
Previously three to five Gaussian peaks have been used for fitting and
deconvolution [55,56]. Such spectral deconvolution can reveal
quantitative changes in the Q-speciation of the tetrahedral units,
i.e., changes in connectivity as a function of the Al/Na ratio. An example
of deconvolution of the high frequency band is shown in Fig. 6a for the
Al-10 glass. The Gaussian peaks are Q% (~950 cm™ 1), Q® (~1050 cm™ ),
Q*' (~1125 cm™ 1), Q*" (~1100 cm™ 1), and Q" (~1000 cm™!) units,
which originate from Si—O~ in Q? units [38], Si—O~ in Q units [38],
two Q* units with two different local environments [38], and TO,
tetrahedra [48], respectively. The Q? and Q> peaks are not used to fit
the spectrum for Al-25 since no NBOs are expected in this glass
composition.

We note that the deconvolution does not give “true” concentrations
as the intensity does not only depend on the concentration of the
specific structural unit, but also on the local environment, such as
next-nearest neighbors and number of NBOs etc. Instead, spectral fitting
can be used to qualitatively describe variations in relative proportions of
different structural units [51]. The relative areas of the Gaussian peaks
used for the deconvolution of these high-frequency bands are shown
in Fig. 6b, which reveals an increase in network connectivity with
increasing Al/Na ratio. This is comparable to a recent study of composi-
tionally similar glasses [38]. With the addition of alumina, the relative
concentration of Q*" increases at the expense of species with NBOs,
i.e, Q* and @3, since Na™ is used for charge-compensation of AI> ™ in
tetrahedral configuration rather than depolymerization of the network.
This is coherent with the general structural model of modified
aluminosilicate glasses and the changes in the Raman bands at 490
and 540 cm™~! as described above. The deconvolutions suggest that
AR will preferably enter the network as smaller-angle Q*"" units rather
than larger-angle Q*' units. This preference is explained by the smaller
Al—O—Si tetrahedral angles relative to the Si—O—Si tetrahedral angles
[38].

Compression of bulk glasses at elevated temperature has been
shown to be associated with changes in short- and intermediate-range
glass structure [57-60]. Pressure-induced changes in the Raman spectra
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Fig. 6. Deconvolution of the 850-1250 cm ™~ frequency range of the Raman spectra for the
as-prepared sodium aluminosilicate glasses. (a) Example of deconvolution for the as-
prepared Al-10 glass. Peaks near 950, 1000, 1050, 1100, and 1125 cm™' are due to
vibrations of Q% Q", @3, Q*", and Q*!, respectively (see the text for details). (b) Relative
areas of these Raman bands for the as-prepared glasses as a function of the Al,O3 content.

of aluminosilicate glasses have been found to involve decrease in the
relative intensity of the low-frequency region compared to the high-
frequency region and changes in the relative intensity of different
peaks in the low-frequency region [26]. This effect has been attributed
to a suppression of vibrational motion, either by the formation of
triclusters, or by a development of bonding character between
modifiers and BOs, both of which would inhibit vibrational motions of
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Fig. 7. Raman spectra of the as-prepared and compressed (at 1.0 GPa) Al-5 glass.
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BOs resulting in a decrease in intensity [26]. Comparison of the acquired
Raman spectra of all the as-prepared and compressed glasses in the
present study generally does not reveal such decrease in intensity of
the low-frequency region relative to the high-frequency region. We
have illustrated this in Fig. 7 for the Al-5 glass, which exhibits the largest
increase in density and hardness. Instead we next consider 2’Al NMR
spectroscopy to study the pressure-induced structural changes.

3.4. %Al NMR Spectroscopy

Fig. 8a shows 2’Al MAS NMR spectra of the as-prepared aluminosil-
icate glasses. These spectra are characterized by an intense peak cen-
tered around 60 ppm, which moves to higher frequencies with
increasing Al,03 content. This resonance corresponds to four-fold coor-
dinated aluminum (AI'Y), and the change in MAS NMR shift with Al,O5
content is consistent with the changes in next-nearest neighbor cations
(Si or Al). The Al-5 glass, with smallest MAS NMR shift, has AI"Y
surrounded by silicon, while the high Al,03 glasses, with MAS NMR
shifts approaching 62 ppm, have more instances where aluminum has
replaced silicon as a next-nearest neighbor cation [61]. This is consistent
with mixing of the Al and Si tetrahedra in these networks, as demon-
strated by the Raman spectroscopy results discussed above.

In addition to AI"Y groups, there is some evidence for higher
coordination sites (AlY) in some of these as-prepared glasses. The two
compositions with lowest Al,O3 content, Al-5 and Al-10, exhibit an
additional MAS NMR signal around 20 ppm, as shown in the inset to
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Fig. 8. (a) 2’Al MAS NMR spectra for the five as-made glasses with compositions shown to
the right of each spectrum. The inset shows an expanded view of the shift region for AlY
and A1V for three as-made glasses having a range of Al,O5 content. (b) 2’Al 3QMAS NMR
spectrum for the as-made Al-5 glass. Contours are drawn to display Al'Y and AlY peaks,
as well as a very weak Al"Y spinning sideband to the top of the main peaks.

Fig. 8a. This resonance is consistent with AlY groups, which are
unexpected for these highly peralkaline glasses. Furthermore, this AlY
resonance near 20 ppm is decreasing in intensity with increasing
Al,03 content, and is completely absent for the Al-25 glass, which is
the only glass with Al,O; = Na,O. This behavior in AlV concentration
with glass composition is rather unusual given the prevailing models
for Al'Y compensation in peralkaline aluminosilicate glasses. However,
there have been a couple of related studies showing non-zero AlY
concentrations in highly peralkaline glasses, including the sodium
aluminosilicate system [62]. This work by Malfait and co-workers
suggested that the exchange between NBO and Al" groups was at least
partially responsible for the presence of Al" in peralkaline compositions.
In the case of Al-5 and Al-10 glasses in the present work, the NBO
content is quite high (Table 1) and it is possible that more Al" polyhedra
can be energetically stabilized in such glasses. The presence of higher
coordinated Al in the most peralkaline glasses is also consistent with
an unexpected observation of Ga¥! groups in chalcogenide glasses
having sufficient phosphorus content to fully stabilize Ga in tetrahedral
coordination [63].

A better understanding of the Al environments in these glasses is
achieved through analysis of the 2’Al 3QMAS NMR spectra, where the
positions in both MAS and isotropic dimensions are used to separate
isotropic chemical shifts from quadrupolar coupling induced shifts,
both of which contribute to the MAS NMR shifts in Fig. 8a. These data
also provide enhanced spectral resolution and are often used to identify
aluminum sites with different coordination numbers [64]. The
two-dimensional contour plot in Fig. 8b, for the as-prepared Al-5
glass, shows two distinct resonances, assigned to Al"V and Al groups,
confirming the peak assignments in the corresponding MAS NMR
data. The 3QMAS NMR spectra for these glasses also indicate that
octahedral Al (AIY! groups) do not appear to be present in any of the
as-made glasses. This means that the extra intensity in the inset to
Fig. 8a, attributed to AlY, does indeed belong only to AlY groups, with
little to no contribution from AIVL 6c5 and Pg, the calculations of which
are described in Section 2.5, are given in Table 2 for all of the as-
prepared glasses. The trend in &¢s, which accounts for the changing
MAS NMR shifts of Fig. 8a, confirms an increase in chemical shielding
of 4 ppm between the low and high Al,05 glasses. Such changes in
Al"Y environment are consistent with a gradual change in the local con-
figuration of these tetrahedral network elements, especially in the iden-
tity of next-nearest neighbor cations. Previous NMR studies of glasses in
the sodium aluminosilicate ternary indicate essentially no change in the
chemical shift of AI'Y groups as Al,05 content is increased [38]. Their in-
terpretation was for Al'Y groups being surrounded entirely by silica tet-
rahedra, regardless of the glass composition and consistent with the
Lowenstein rule of aluminum avoidance (i.e., no Al—O—AI connectivi-
ty) [65]. However, the data in Fig. 8a and Table 2 clearly indicate that the
A" groups are progressively deshielded with increasing [Al,Os] in the
current study, suggesting some violation of the aluminum avoidance.

Table 2
27AINMR parameters determined from 3QMAS NMR spectroscopy. Uncertainties in 8cs, Pq
and Intensity are on the order of 4-0.2 ppm, 4-0.2 MHz and 4 0.5%, respectively.

Glass AlY AlY AV
dcs Pq Int  Ocs Pq Int  O¢s Pq Int
(ppm) (MHz) (%) (ppm) (MHz) (%) (ppm) (MHz) (%)
Al-5 62.8 4.42 994 299 4.69 0.6
Al-5,1GPa 628 4.69 97.0 293 498 30 —1 4.6 -
Al-10 63.6 4,54 99.7 31 5.28 0.3
Al-10,1 GPa 63.8 4.69 98.8 29.7 5.15 12
Al-15 64.3 4.76
Al-15,1 GPa 64.5 4.83 99.7 29.6 473 0.3
Al-20 65.3 5.01
Al-20,1 GPa 65.6 5.28
Al-25 66.8 5.82

Al-25,1GPa 67.0 5.94
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Fig. 9. (a) 2’Al MAS NMR spectra for the five compressed (at 1.0 GPa) glasses with
compositions shown to the right of each spectrum. (b) ?’Al 3QMAS NMR spectrum for
the compressed Al-5 glass. Contours are drawn to display Al'Y and Al" peaks, as well as a
very weak Al'Y spinning sideband to the top of the main peaks.

In addition to changes in isotropic chemical shift, the AI'Y groups in

these glasses also are characterized by a progressively larger Pg
(Table 2), pointing towards higher distortion of the tetrahedral units
with increasing Al,Os. This has been associated with changing Al—O
bond distances or possibly a change in interaction between the Al'Y
tetrahedra and charge-compensating sodium cations [38].

Compressed analogues to these sodium aluminosilicate glasses have
also been examined with 2’Al MAS and 3QMAS NMR spectroscopy. The
27A1 MAS NMR spectra for the five compressed glasses are plotted in

AIIV

(a)

Al

Fig. 9a, showing that most aluminum remains in Al'Y polyhedra upon

compression, but given the more apparent Al" signal around 30 ppm,
also shows that some aluminum has been forced into AlY groups with
compression. The increased intensity of the AlY peak is also evident in
27A1 3QMAS NMR spectra of these compressed glasses, as shown by
the contour plot for Al-5 in Fig. 9b. The contours for Al are indeed
more intense after compression of the glass. Full analysis of 6¢s and P,
for the compressed glasses are given in Table 2. The Al"Y groups in the
compressed glasses exhibit nearly identical chemical shifts as in their
as-made counterparts, indicating the close similarity in structural envi-
ronment for AI'Y polyhedra before and after compression. In other
words, compression does not appear to lead to any change in how Al"Y
groups are connected into the glass network (e.g., Al—O—Si and
Al—O0—Al bonding). However, there are distinct changes in P4 with
compression, where for all glass compositions, the P, values increase
with this treatment. This does indicate that the symmetry around Al"Y
polyhedra is impacted by pressure, and the larger magnitude of the
quadrupolar coupling parameter suggests more distortion after
compression. Changes in AlY parameters, both §cs and P, are less sys-
tematic with composition and in fact are probably insignificant given
the low abundance of AlV and correspondingly low signal-to-noise
ratio in the NMR data. 6¢s is around 30 ppm for AlY in both as-made
and compressed glasses, consistent with other studies of Al in alumino-
silicates [49,66]. Likewise, the Pq values around 5 MHz are also similar
between as-made and compressed glasses.

The largest change in aluminum speciation due to glass compression
is a change in Al'Y and Al" site populations. The 2’Al NMR spectra in
Figs. 8 and 9 indicate an increase in AlY concentration with compression,
which is quite apparent when comparing the isotropic projections from
27A1 3QMAS NMR (Fig. 10). Here, isotropic data from the 3QMAS NMR
experiments are overlaid for each glass composition, showing an
increase in AlV content for the two glasses with these polyhedra in
their as-made forms (Al-5 and Al-10), as well as the appearance of AlY
in the Al-15 glass only after compression. All other compressed glasses
do not exhibit AlY resonances in their 2’Al MAS and 3QMAS NMR data,
and thus the concentration of Al" in these glasses is negligible. As
shown by the comparisons in Fig. 10, aluminum coordination is sensi-
tive to compression, similar to previous work on commercial alumino-
silicates [18], and also the fictive temperature dependence of Al
speciation in aluminosilicates [67]. The main change in Al coordination
number occurs in glasses which already contained a non-zero AlY pop-
ulation and high NBO content in their pre-compressed states (Fig. 11).
Al-5 shows an increase of approximately 2.5%, compared to 1% and
0.3% in the Al-10 and Al-15 glasses, respectively (Table 2).

The effects of NBOs and compression on the generation of Al" is
shown in Fig. 11, where NBOs and pressure is positively correlated to
the presence of Al". In agreement with our result, a larger pressure-
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Fig. 10. Isotropic projections from the 2’Al 3QMAS NMR spectra of (a) Al-5 glasses and (b) Al-10 glasses, where as-made glasses are shown in black and compressed glasses (at 1.0 GPa) are

shown in gray. AI'V and AlY resonances are denoted.
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Fig. 11. Fraction of five-fold coordinated aluminum (Al") as a function of the calculated
number of non-bridging oxygens per tetrahedrally coordinated cation NBO/T for as-
prepared and compressed (at 1.0 GPa) sodium aluminosilicate glasses.

induced generation of Al" in aluminosilicate glasses with NBOs has pre-
viously been reported in literature [68-70]. For such glasses, the simple
proposed mechanism in the studied pressure range is Al'V + NBO « Al".
This mechanism has been directly supported by changes in the oxygen
speciation as probed by 70 3Q MAS NMR spectroscopy [68]. Although
not observed herein at 1 GPa, pressure-induced formation of Al" has
also been reported in sodium aluminosilicate glasses with little or no
NBO (e.g., albite NaAlSiz0g) [70,71], suggesting that alternative mecha-
nisms could also be at play at higher pressure ranges, e.g., when most of
the NBOs have already been consumed in increasing the aluminum
coordination number. For example, this could involve formation of
NBO and oxygen triclusters and subsequent consumption of NBO to
form AlY [10,64,70], or transformation of a BO to be coordinated with
AlY through formation of oxygen tricluster [70,71]. Finally, we note
that in addition to changes in AlV concentration, the most peralkaline
glass (Al-5) also shows a small, but detectable amount of Al!, but only
after compression (Fig. 8). This is the only glass, both as-made or com-
pressed, showing any evidence for 6-fold coordinated Al, presumably
because AIY! could be formed by a similar mechanism to that of Al,
ie, AV 4+ 2NBO « AIV.

4. Conclusion

We have investigated the effect of 1 GPa compression at elevated
temperature on structure and mechanical properties of aluminosilicate
glasses with varying Al/Si ratio and thus non-bridging oxygen content.
Raman and 2’Al NMR spectroscopy, density, and Vickers indentation
measurements have been performed. We find that the plastic com-
pressibility (i.e., extent of permanent densification) is positively corre-
lated to the number of non-bonding oxygens per tetrahedral (NBO/T),
i.e., the network flexibility. Hardness increases while the resistance to
initiate radial/median cracks decreases with decreasing NBO/T in the
as-made glasses. Upon compression, hardness increases and crack
resistance decreases as the ability of the glass to densify decreases
upon compression and larger changes in these mechanical properties
are found in the high-NBO compositions, consistent with the higher
plastic compressibility of these glasses. The Raman spectroscopy
measurements on the as-made glasses confirm the expected changes
in Q speciation with Na/Al ratio, whereas no major pressure-induced
structural changes are evident from the Raman spectra. The 2’Al NMR
and Raman data both confirm the mixing of the aluminosilicate
network, especially as evidenced by the change in chemical shift for
the Al'Y resonance. Surprisingly, we find the presence of AlY in the as-
made glasses, especially when these polyhedra are present only in the
most peralkaline glass compositions. Moreover, there is a larger
pressure-induced generation of AlY, and in one case Al!, in aluminosil-
icate glasses with NBOs. Their presence not only shows a more compli-
cated relationship between Al coordination and NBO content, but also
plays a substantial role in the compressibility of these glasses.
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ARTICLE INFO ABSTRACT

Keywords: Understanding the composition dependence of the atomic structure of multicomponent aluminosilicate glasses is
Aluminosilicate glasses a challenging problem. Aluminum has a crucial influence on the structure-property relations in these systems,
Structure

but there are still questions regarding its local structural environment. Here, we present results detailing the
network structure of twenty quaternary MgO/Ca0O-Na»0-Al,03-SiO- glasses upon Al,Os-for-SiO, and MgO-for-
CaO substitutions using room temperature and in situ high-temperature Raman spectroscopy. The Raman spectra
reveal that the Mg-containing glasses violate the Al-avoidance at lower Al,Os; concentration than the Ca-
containing glasses. Furthermore, the alkaline earth ions acting as charge-compensators for tetrahedral aluminum
are found to have a similar effect on the network structure (Q" speciation and Al/Si mixing), while they affect the
network differently when they are in a modifying role. Increasing cation field strength allows for stabilization of

Raman spectroscopy

networks with a larger distribution of bond angles.

1. Introduction

Oxide glasses are synthesized by making use of at least one network-
former (such as SiO,, GeO,, B,O3, or P,Os), which forms a continuous
three-dimensional network, that is typically mixed with one or more
network-modifying oxides (such as alkali or alkaline earth oxides).
Understanding of the atomic structure of oxide glasses has advanced
substantially in recent decades, primarily due to significant improve-
ments in experimental methods and theoretical calculations [1-4].
Also, qualitative structure-property correlations in various glass sys-
tems have been demonstrated [1,5-16]. However, quantitative under-
standing of such correlations is still lacking for most multi-component
glass-forming systems.

Silica (SiO,) and alumina (Al,O3) are the two most important
network-forming oxides for industrial glasses and also the two most
abundant in natural magmatic liquids. Under ambient pressure condi-
tions, Si** is in tetrahedral coordination in aluminosilicate glasses,
while AI** can adopt various coordination states and thus possess
different structural roles [1]. Early studies demonstrated the more
complicated impact of Al,O3 on viscosity compared to that of SiO,
[17,18]. A dual structural role of aluminum was suggested to explain
this observation, i.e., AI>" can act either as a network-former in
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tetrahedral coordination or in a charge compensating role in five- or
six-fold coordination [19]. It is now well established that AI®* is
stabilized in tetrahedral coordination (AI'Y) when associated with
charge balancing cations (such as Na* and Ca%™) [1,20]. In the ideal
case, addition of Al,O3 to an alkali silicate or alkaline earth silicate
glass thus leads to the removal of network-modifying cations from their
original role in the network until no more non-bridging oxygen (NBO)
atoms remain [21]. When the concentration of Al,O5; exceeds that of the
network-modifying oxides, AI>* can no longer be charge balanced in
tetrahedral configuration and some excess AI** is forced into higher
coordination number as a means of charge-balancing additional Al
tetrahedra [22-24]. Most such peraluminous glass systems exhibit a
preference for the formation of five-fold over that of six-fold coordi-
nated AI** [22,25,26]. We note that an alternative hypothesis is that
AlI"Y can be incorporated, even in peraluminous compositions, without
the need for a charge-balancing cation through association with a three-
coordinated oxygen [27]. A three-coordinated oxygen is shared by
three tetrahedral network cations as found in crystalline CaAl,O,. Such
oxygen triclusters have been found in molecular dynamics simulations
[28], with additional evidence from viscosity data in the vicinity of the
charge-balanced join [29] and nuclear magnetic resonance (NMR)
studies on a calcium aluminate glass [30].
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The ability of a modifier to charge-compensate Al** is affected by
its size and valence. While the structure of aluminosilicate glasses
modified solely by sodium oxide is essentially equivalent to the ideal
case with no AlY or AIY' present in peralkaline compositions, the
structure of glasses modified by alkaline earth cations, such as Mg>*
and Ca®*, is more complex since two charges are confined in the same
position. The smaller ionic radius of Mg>* in comparison with Ca®*
also causes it to have a different local environment, which affects the
aluminosilicate network [31,32]. While the coordination number of
Ca?™ is believed to be around six to seven [33,34], the local environ-
ment of Mg?* is significantly different. Previous work has reached
different conclusions and reported the presence of four-, five-, and six-
fold coordinated Mg?* [35-43]. The role of Mg®* appears to be
between a traditional network modifier and network former, but the
detailed structural and topological role of Mg?™ remains relatively
poorly understood, and its impact on the physical properties is there-
fore still unclear [44]. The modifier type also affects the mixing of Si**
and AI®* tetrahedra. Al—O—Al structural units have been found to be
energetically unfavorable, which is termed Al-avoidance [45]. How-
ever, the fraction of AI-O—Al appears to increase with increasing Mg/
Ca and Al/Si ratios [46,47]. Moreover, while much work has been done
on the ternary alkali aluminosilicate and alkaline earth aluminosilicate
systems [1], significantly less attention has been devoted to the more
complicated quaternary alkali-alkaline earth aluminosilicate systems
[46,48-50]. In these systems, the alkali and alkaline earth cations
compete with each other in their interactions with the network forming
units. A better understanding of the structural and topological roles of
network modifiers and formers is important to provide the link between
microscopic structure and the macroscopic properties.

In this study, we investigate the change in network structure upon
Al,03-for-SiO, and MgO-for-CaO substitutions in sodium aluminosili-
cate glasses (Fig. 1) using room temperature and in situ high-tempera-
ture Raman spectroscopy measurements to detect structural changes at
ambient conditions and as a function of temperature. This investigation
thus seeks to improve the understanding of the role of AI** in the
silicate network in the presence of both alkali and alkaline earth cations
and on the nature of the influence of these cations.

2. Experimental methods
2.1. Sample preparation

We prepared two sets of sodium aluminosilicate glasses with either
calcium or magnesium (in mol%): (76 — x)SiO, — xAl,03 — 16Na0 —

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28
ALO, (mol fraction)

Fig. 1. Ternary molar diagram (SiO,-Al;03-[Na,O + CaO + MgO]) showing the inves-
tigated glass compositions in this study.
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Table 1

Analyzed chemical compositions (in mol%) of the twenty investigated aluminosilicate
glasses as determined using x-ray fluorescence. The results are accurate within + 0.1 mol
%.

Glass Chemical composition (mol%)

R x SiO, Al,03 Na,O MgO CaO SnO,
Mg 0 75.8 0.1 15.6 8.1 0.2 0.2
Mg 2.7 73.7 2.7 15.7 7.6 0.1 0.2
Mg 5.3 70.9 5.3 15.7 7.9 0.1 0.2
Mg 8 68.1 8.0 15.7 8.0 0.1 0.2
Mg 10.7 65.3 10.7 15.7 8.0 0.1 0.2
Mg 13.3 62.8 13.3 15.8 7.9 0.1 0.2
Mg 16 59.9 16.0 15.8 8.1 0.1 0.2
Mg 18.7 56.6 18.6 15.6 8.9 0.1 0.2
Mg 21.3 54.6 21.3 15.8 8.0 0.1 0.2
Mg 24 52.0 24.0 15.8 8.0 0.1 0.2
Ca 0 75.9 0.0 15.7 0.1 8.1 0.2
Ca 2.7 73.2 2.7 15.8 0.1 8.1 0.2
Ca 5.3 70.7 5.3 15.8 0.1 7.9 0.2
Ca 8 68.1 8.0 15.7 0.1 7.9 0.2
Ca 10.7 65.2 10.7 15.8 0.1 8.0 0.2
Ca 13.3 62.6 13.3 15.8 0.1 8.1 0.2
Ca 16 59.8 16.0 15.8 0.1 8.1 0.2
Ca 18.7 57.2 18.7 15.7 0.1 8.2 0.2
Ca 21.3 54.2 21.3 15.7 0.1 8.4 0.2
Ca 24 51.8 24 15.8 0.1 8.1 0.2

8RO with x = 0, 2.7, 5.3, 8, 10.7, 13.3, 16, 18.7, 21.3, and 24 for
R = Ca and Mg [51,52]. We included 0.15 mol% SnO, as fining agent
in all compositions. The batch materials (SiO,, Al,03, Na,CO3, CaCO3,
MgO, and SnO,) were first thoroughly mixed for 60 min using a ball
mill. The mixed batch materials were then melted in a covered Pt
crucible for 5h in air at a temperature between 1450 and 1600 °C
depending on composition. In order to ensure chemical homogeneity,
the melts were first quenched in water, and then the resulting glass
pieces were crushed and remelted for 6 h at 1650 °C and finally poured
onto a stainless steel plate in air. The homogeneity of the samples was
subsequently confirmed through inspection under cross polarized light,
showing no evidence of phase separation. The glasses were annealed for
2 h at their respective annealing points. The chemical compositions of
the final glasses were determined using x-ray fluorescence and are
reported in Table 1. The analyzed compositions were within 0.5 mol%
of the nominal ones. All figures and calculations in this paper are made
using the analyzed compositions, which are accurate within = 0.1 mol
%.

2.2. Raman spectroscopy

Raman spectra were collected both at room temperature and in situ
at higher temperatures. To do so, glass samples were optically polished
to a thickness of 50-80 um with two parallel top and bottom surfaces.
Grinding and polishing were done using 600 grit SiC sand paper and
cerium oxide slurry. The evolution of the glass structure as a function of
temperature was monitored by heating up the polished thin samples in
a Linkham TS1500 heating stage from room temperature to approxi-
mately 100 °C above the glass transition temperature (Tg) of each
composition. Ty has been determined in a parallel study based on
viscosity measurements [53].

Raman spectra were collected through the top fused quartz window
of the Linkham TS1500 in air [54]. A LabRAM HR800 Raman
microscope (Horiba Jobin Yvon) was used to carry out the in situ
high-temperature light scattering experiments by using a 532 nm Verdi
V2 DPSS green laser as the probing light source. In all experiments, a
heating rate of 50 °C/min was used. After each temperature was
reached, Raman spectra were collected after the temperature inside
the heating stage had stabilized for 5 min. Following Refs. [55,56], we
have removed the spectral background by fitting a second order
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T TN

Intensity (arb. units)

400 700 1000
Raman shift (cm")

Fig. 2. Room temperature Raman spectra for the Ca-containing glasses. The spectra are
shifted vertically for clarity. The numbers refer to the molar Al,O3 concentration.

100 1300

polynomial to the spectral region between 1250 and 1550 cm ~ ! (where
no Raman bands are present), extrapolating it to lower frequencies and
subtracting it from each spectrum. We applied this empirical back-
ground removal protocol, since it results in the highest reproducibility
for different spectra of the same sample [55]. A temperature-frequency
correction was also applied for each spectrum after the background
removal by using the approach described in Ref. [57].

3. Results
3.1. Room temperature Raman spectroscopy

Figs. 2 and 3 show room temperature Raman spectra of the Ca- and
Mg-containing glasses, respectively. The Raman spectra exhibit relative

N TN

)
-
g
S
=
[72)

o 8
=

- 53

2.7

0

100 400 700 1o'qo 1300

Raman shift (cm™)

Fig. 3. Room temperature Raman spectra for the Mg-containing glasses. The spectra are
shifted vertically for clarity. The numbers refer to the molar Al,O5 concentration.
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strong bands around ~500 cm ™' and ~1100 cm ™, in agreement with
literature data of silicate glasses containing soda, calcia, magnesia, and
alumina [58-62]. For these compositions, Raman spectra are tradition-
ally divided into three regions: the low- (~400-700 cm ™ 1), intermedi-
ate- (~700-900 cm™') and high-frequency (~900-1200cm™') re-
gions, each region containing different structural information. The
low-frequency regions contains information on ring sizes and their
tetrahedral cations, the intermediate region is highly convoluted (i.e.,
contains several overlapping bands) and rarely used for anything but an
evaluation of the change in average bond strength of the network, while
the high-frequency region contains information about the concentration
of NBO and on Al/Si mixing.

For both the R = Mg, Ca ternary silicate glasses without Al,O3
(x = 0) the Raman spectra exhibit a strong band around 545 cm ™! and
a shoulder at ~580 cm ™7, typical of sodium-containing silicates. The
545 cm ™! band corresponds to a band in similar crystalline analogs
[59] and has been assigned to the breathing vibrations of oxygens along
T—O-T involving Q® species [58,60], that is network tetrahedra with
one NBO. The shoulder at 580 cm ™! is normally designated to three-
membered rings in silicate glasses [61]. In addition to the strong band
and its shoulder, the Raman spectra of both the Ca- and Mg-containing
glasses have a weak broad band at 650 cm ™! and the Mg-containing
glasses a band at ~450 cm ™. The band at ~650 cm ™! originates from
Si—0—Si intertetrahedral linkages and can be found in both calcium
silicates and magnesium silicates [63], while the ~450 c¢m ! band has
been reported to be an evidence of regions with very high SiO, content,
possibly due to phase separation [59]. As seen from the Raman
spectrum of a sodium silicate glass with a similar total modifier content
as the Ca- and Mg-containing glasses in this study [62], the ~650 cm !
band is not present in the alkaline earth-free glass (Fig. 4). Fig. 4 also
indicates the presence of a larger extent of disorder in the alkaline
earth-containing glasses, e.g., through larger distributions of bond
angles and lengths [59].

With increasing Al,O5 concentration, the intense 545 cm ™' band
separates into two bands near 500 and 560 cm ~!. The 500 cm ™! peak
becomes narrower with increasing [Al,03]/[SiO-] ratio. These bands
are associated with motions of bridging oxygen in T—O—T linkages with
T = Si, Al. For the high-Al,05 glasses, the band at 580 cm ™" shifts to
560 cm ! due to the presence of AlI—O—Al bridges [21,64]. The shift
occurs at lower Al-content for the Mg-containing glasses relative to the
Ca-containing glasses as the greater stabilizing effect of Mg®* allows for
violation of the Al-avoidance principle [46,47].

With the substitution of Al,O3 for SiO,, the relative intensity of the
bands in the low-frequency region changes. The relative intensity
increases in the favor of the 500 cm~! band as [Al,05] increases in
the range [Al,O3] < [NayO], while the relative intensity decreases

—— Ca [this work]
—— Mg [this work]
——Na[62]

Intensity (arb. units)

600 800 1000 1200

Raman shift (cm™)

Fig. 4. Room temperature Raman spectra of the Al-free glasses (x = 0) with nominal
compositions 8Ca0-16Na,0-76Si0, (Ca) and 8MgO-16Na,0-76Si0, (Mg). The spectrum
for an alkaline earth-free sodium silicate glass of composition 25Na,0-75Si0, (Na) from
Ref. [62] is also included for comparison. We note that the baseline-correction procedure
is different for the spectra of the two glasses in this study and that from Ref. [62].

200 400
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10

Fig. 5. Composition dependence of the relative intensity of the two main Raman bands of
the low-frequency region at ~500 and ~580 cm ™%, respectively.

when [Al,03] > [NayO] as the role of the alkaline earth changes from
network-modifying to charge-compensation (Fig. 5). In the
[Al,03] = [Na,O] range, the relative intensity of the peaks is different
for the two glass series, indicating that the alkaline earth modifiers
affect the structure differently due to differences in field strength. In the
[Al,03] > [Na,O] range, the relative intensity between the two bands
converges for the two glass series, indicating a minimized effect of the
alkaline earth cation on the network structure as they are used for
charge-balancing. In the [Al;03] < [NayO] range, the band around
650 cm ™! decreases in intensity as the Al,O content is increased. This
band is related to Si—O—Si angles [60,63] and the change in intensity
might reflect changes in bond angles. A distinct peak near 790 cm ™! is
also observed in the Al-free glasses (x = 0). As the SiO, concentration
decreases, the peak broadens, its intensity decreases, and it shifts to
lower frequencies. The peak nearly disappears in the Al,O5-rich glasses.
It has been assigned to Si—O stretching involving oxygen motions [57]
or to the motion of the Si atoms in their oxygen cage [65].

The high-frequency region (900 to 1200 cm ™~ ') is dominated by a
broad band centered at 1100 cm ™' and a less intense band at 950 cm ~*
for the glasses with x = 0. The position of the main band decreases as
Al,05 is substituted for SiO,. This convoluted band is compiled from
asymmetric and symmetric stretching vibrations of both completely
polymerized tetrahedral network units (QY and tetrahedra with one
NBO (Q®) [66]. These units can be described as Si(OAl),, where x is the
number of Al tetrahedra connected to a SiO4 tetrahedron [64] or to
(Si,Al)-NBO and (Si,Al)-BO stretch bands (BO denotes bridging oxy-
gens) [67]. With increasing Al,O3 concentration, the peak becomes
broader and more asymmetric, shifts to lower frequencies, and the
intensity decreases. The 950 cm ™! band is Si—O ~ stretching of NBOs in
Q? units [58,59,65,68]. This band is only present in low-Al,O3
composition due to the dual effect of Al,Os3: the removal of NBOs
results in a decrease in intensity, while the incorporation of AI** into
the network decreases the average bond strength, resulting in a
decrease in the Raman shift of the 1100 cm ™' band, and causing the
two bands to merge. Due to the complex structure of these glasses with
two different modifiers that allow many different structural conforma-
tions, we will not attempt to deconvolute the high-frequency region.

The composition dependence of the peak position of the 1100 cm ™
band is shown in Fig. 6(a), whereas the composition dependence of the
width of the peak is shown in Fig. 6(b). We note that the largest changes
in peak position and width with composition occur in the range where
[Al,03] < [Na,Ol. In addition, the peak position is following the same
trend for the Ca- and Mg-containing glasses for [Al,03] < [NayO].
However, for [Al;O03] > [NayO], the band for the Mg-containing
glasses is found at significantly higher Raman shift than the band for
the Ca-containing glasses.

The peak width can be used as a measure of the relative order of the
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Fig. 6. (a) Position and (b) full width at half maximum (FWHM) of the room temperature
Raman peak around 1000 to 1200 cm ™" for both Ca- and Mg-containing glasses.

Si—O0 network [59], as a larger distribution of bond angles results in a
wider Raman band. For [Al,03] < [Na,Ol], the larger full width at half
maximum (FWHM) of the Mg-glasses as compared to the Ca-glasses in
Fig. 6(b) indicates that the higher field strength of the Mg®* modifier
increases the structural disorder, consistent with observations in Ref.
[59]. Finally, it should also be mentioned that the position and shape of
this high-frequency peak is much more sensitive to the [Al,03]/[SiO5]
ratio than the peaks in the low-frequency region.

A difference in separation between the 950 and 1100 cm ~ ! bands in
the spectra of the Ca- and Mg-containing glasses reveals differences in
the modifying nature of the alkaline earths. For example, for the Ca-
containing Al-free glass (x = 0) there is a clear separation between the
bands, while the 950 cm ™" band appears as a shoulder for the Mg-
containing glass. The broader 950 cm™' band of the Mg-containing
glass indicates that Mg>* is better at stabilizing the network than Ca®*,
resulting in a structure with a larger distribution of bond lengths and
angle fluctuations [4].

The intensity of Raman bands cannot be used for a quantitative
analysis, as it is not only dependent on the concentration of the
structural units, but also on the surrounding chemical environment.
However, as the two series are isochemical in terms of modifier/
network former ratio, we compare the effect of the two alkaline earth
modifiers on the Raman spectra. Based on the peak widths and
separation of the bands in the high-frequency region, we infer that
the extent of disorder is different in the Ca- and Mg-containing glasses.
Fig. 7 shows the composition dependence of relative intensity between
the strongest signal in the low-frequency region (500, 545, or 580 cm ~*
band, depending on composition) and the strongest signal (1100 cm ™~
band) in the high-frequency region. A difference between the Ca- and
Mg-glasses is observed when all alkaline earth cations are expected to
act as network modifier when [Al,O3] < [Na,O], whereas the relative
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depending on composition, respectively).

intensity converges when the alkaline earth cations are mostly used for
charge-compensation when [Al,O3] > [Na,O]. This indicates that the
impact of alkaline earths ions on the Q" speciation and Al/Si mixing
when acting as charge-compensator is similar, whereas they affect the
network differently when acting as modifier.

3.2. In situ high temperature Raman spectroscopy

We have obtained in situ high temperature Raman spectra for eight
selected glasses: x = 0, 8, 16, and 24 for R = Mg, Ca. Fig. 8 shows an
example of the Raman spectra of the Ca-containing glass with x = 16
measured from room temperature to approximately 100 °C above its
glass transition temperature. Qualitatively the changes in the Raman
spectra with temperature are identical for all eight glasses. We note that
the compositional effect on the Raman spectra is much larger than the
temperature effect in the investigated temperature range. However, as
shown in the example in Fig. 8, the relative peak intensities depend on
the temperature. Particularly, we find that the maximum intensity of
the band around 1100 cm ™! increases with increasing temperature. The
Raman shift of this band also decreases with increasing temperature.

To quantify the effect of temperature on the Raman spectra, we
have plotted the maximum intensity and Raman shift of the peak
around 1100 cm ™ as a function of temperature. An example of this for
the Ca-containing glass with x = 16 is shown in Fig. 9(a). The intensity
increases linearly with temperature, while the Raman shift decreases
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Fig. 8. Example of in situ high temperature Raman spectra of the Ca-containing glass with
x = 16 measured from room temperature to approximately 100 °C above the glass
transition temperature.
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Fig. 9. (a) Temperature dependence of the maximum intensity (black squares) and
Raman shift (green circles) of the peak around 1000-1100 cm ™! for the Ca-containing
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temperature derivative of intensity (AI/AT) is the slope. (b) Composition dependence of
AI/AT for the eight selected glasses. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

approximately linearly with temperature. We calculate the temperature
derivative of intensity (AI/AT) from room temperature to Ty + 100 °C
for each of the eight glasses. The composition dependence of AI/AT is
shown in Fig. 9(b). AI/AT decreases with increasing [Al,03]/[SiO-]
ratio for both the Ca- and Mg-containing glasses. Hence, as the network
becomes more connected with addition of alumina, the temperature
sensitivity of the Raman band decreases. However, for
[Al;03] > [NayOl, there is no further change in AI/AT with composi-
tion for the Mg-containing glasses. There is no systematic composition
dependence of the change in Raman shift with temperature.

4. Discussion

The room temperature Raman spectroscopy data reflect the chan-
ging network structure as a function of both [Al,03]/[SiO-] ratio and
Ca®™ vs. Mg®™. The shift of the broad band around 1100 cm ™! to lower
frequencies (Fig. 6(a)) has been ascribed to the reduction in the force
constant [5,21,69,70], Al-Si coupling [5,67], and/or superposition of
Si(OAL), units [64]; all of which reflect substitution of AlI** for Si*™ in
the glassy network. The Ca- and Mg-containing glasses exhibit essen-
tially the same peak position of the broad high-frequency band for
[Al,03] < [Na,O]. In agreement with previous observations
[21,25,67], this implies that the size of alkaline earth cation plays only
a small role on the structure of the aluminosilicate network. Hence, the
[Al,03]/[SiO-] ratio has much greater influence on the silicon and
aluminum speciation in this regime than the substitution of Mg>* by
Ca®™, which is also in agreement with the finding of ideal mixing in
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some Ca0-Mg0-Al,03-SiO, systems based on viscosity measurements
[71]. However, for [Al;05] > [Na,O], Fig. 6(a) shows a pronounced
difference in the Raman peak position when Ca is substituted by Mg.
Hence, for [Al,03] < [NayOl], Na* ions are presumably preferred for
the charge-stabilization of Al tetrahedra and there is thus no large
difference in the aluminosilicate network structure between Ca®* and
Mg“. For [Al,03] > [Na,O], the alkaline earth cation is now partially
responsible for the charge-stabilization of Al', which results in
significant differences in Q" distribution. This is observed as a
difference in the shape of the 1100 cm™! band. The spectra of the
Mg-containing glasses are slightly more intense on the high-frequency
side of the peak as seen by the difference in peak position (Fig. 6).

We have found subtle effects of temperature on the peak intensity
and Raman shift of the Raman band near ~1100 cm ™. In the glassy
state at low temperatures, the structural changes are purely vibrational
(anharmonic) in nature on the laboratory timescale. However, at
temperatures above the glass transition, structural modifications occur
due to increased thermal population of configurational transitions and
the supercooled liquid begins to explore additional structural config-
urations on the laboratory timescale. Even though the effect of
temperature on these glasses is small, we find that the polymerized
tetrahedral network units (Raman band near 1100 cm ™ ') become less
dependent on temperature at higher [Al,03]/[SiO-] ratios (Fig. 9(b)).
This seems to be in agreement with the increased network connectivity
as Al,O3 is substituted for SiO5 and the number of NBOs per tetrahedron
decreases. The band near 1100 cm ™! also shifts slightly to the low
frequency side with temperature, beginning well below the glass
transition temperature, which is attributed to bond elongation with
temperature due to anharmonicity. However, the low frequency bands
due to inter-tetrahedral bending motions do not significantly change
peak position or intensity as a function of temperature, indicating that
there is little change in the T-O—T angle, i.e., the bond angle bending
vibration is relatively harmonic. This behavior is unlike that of pure
SiO,, where the Si—O—Si bending vibrations are highly anharmonic
[57]. It has been suggested that this is because the bridging oxygen
atoms in modified aluminosilicate networks are coordinated by two T
(Si,Al) atoms and one or more network-modifier cations [72], which
presumably makes the T—O—T angle more constrained in the systems
studied here compared with SiO,.

5. Conclusions

We have investigated the local structure of sodium aluminosilicate
glasses with either magnesium or calcium using room temperature and
in situ high temperature Raman spectroscopy. We confirm that Na™ is
preferentially used for charge-stabilizing Al in tetrahedral configura-
tion. We also show that Mg?* is superior to Ca®™ in stabilizing the glass
structure, evident as violation of the Al-avoidance principle at lower
[Al,03] in Mg-containing than in Ca-containing glasses. The Raman
spectra also showed differences in Q" speciation throughout the
compositional series. The alkaline earth ions acting as charge-compen-
sators for tetrahedral aluminum are found to have a similar effect on
the network structure (Q" speciation and Al/Si mixing), while they
affect the network differently when they are in a modifying role. Our
results therefore confirm previous observations for the more simple
alkali aluminosilicate and alkaline earth aluminosilicate systems. The
improved understanding of the network structure of the quaternary
alkali-alkaline earth aluminosilicate glasses is important for under-
standing physical and thermodynamic properties of glasses and melts.
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1. Introduction

Understanding the composition-structure-property relations of alu-
minosilicate glasses and melts is important for geological as well as in-
dustrial applications. Knowing these relations is important for
understanding the behavior of magma dynamics and properties, as
95% of magma composition is covered by the aluminosilicate system
[1]. It is also important for the glass industry, since aluminosilicate
glasses are used for various commercial applications, e.g., insulation
stone wool [2], airplane windshields [3], alkali-free flat panel displays
[4], and scratch resistant cover glasses [5,6]. Calcium aluminosilicate
glasses are particular interesting to study as they exhibit good glass-
forming ability and form the basis for many commercial glasses [7].

The structure of calcium aluminosilicate glasses depends on the ratio
among the three components as reported in numerous studies [2,8-12].
The prevailing structural models propose that A>T is charge-
compensated by Ca%™ in four-fold confirmation (AI'Y) when the ratio
[Al;03]/[Ca0] < 1 (i.e., peralkaline compositions), with the remaining
Ca®™ ions creating non-bridging oxygens (NBOs). Thus, all AP+ atoms
are present as Al'Y and the glass is NBO-free when the [Al,05]/[Ca0]

* Corresponding author.
E-mail address: mos@bio.aau.dk (M.M. Smedskjaer).

http://dx.doi.org/10.1016/j,jnoncrysol.2017.01.033
0022-3093/© 2017 Elsevier B.V. All rights reserved.

ratio equals 1. However, for calcium aluminosilicates there is evidence
from molecular dynamics simulations [13] and nuclear magnetic reso-
nance spectroscopy experiments that up to 6% of the AI> ™ atoms exist
in five-fold coordination in tectosilicate (i.e., [Al,O3] = [CaO]) composi-
tions [14], suggesting that the model is too simple to describe the
composition-structure relations in alkaline earth aluminosilicate
glasses. For peraluminous compositions with the ratio [Al,O3]/
[Ca0] 2 1, the ‘excess’ AI> will be forced into five- or six-fold coordina-
tion to charge-balance Al tetrahedra [9,15,16]. Alternatively oxygen
triclusters (three-fold coordinated oxygen) can be formed as proposed
in 1964 by Lacy [17].

Viscosity is a property that controls the deformation and flow behav-
ior of glass-forming liquids and, as such, is of primary importance for
magmatic liquids. It increases by 12 orders of magnitude upon cooling
from the 1 Pa s homogenized liquid (e.g., an industrial glass melt) to
the solid glass at the glass transition temperature (Tg). The viscosity
vs. temperature relation is composition dependent, and the liquid fragil-
ity index m describes how rapidly the dynamics change around Tg.
Moreover, understanding the glass transition and relaxation behavior
is of both fundamental and industrial interest. Due to the non-
equilibrium nature of the glassy state, the glass density depends on
the thermal history; this has critical consequences, e.g., for substrate
glasses for high-resolution displays that suffer from dimensional
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changes during high-temperature processing [4]. Since the volume re-
laxation is typically linked with the enthalpy relaxation processes dur-
ing the glass transition [18], an improved understanding of the
composition and structure dependence of enthalpy relaxation would
help the design of new glass compositions where relaxation effects
can be minimized.

As the supercooled liquid is cooled through the glass transition re-
gion, there is a loss of the configurational entropy, and hence, configura-
tional heat capacity (Cpconr) as the structural degrees of freedom are
lost. While the glassy state primarily contains vibrational degrees of
freedom, G, of the liquid state is the sum of vibrational (Cp i) and con-
figurational contributions [19]. For relatively strong glass systems, such
as the calcium aluminosilicates herein with m < 60, G i, changes only
slightly through the glass-liquid transition region, i.e., the glass heat ca-
pacity (Cpg) is nearly equal to Gy i, Of the liquid heat capacity (Cpy) at Tg.
We can thus make the approximation that Cp, conr = Cpi — Cpg = AC,,
where AG; is the isobaric heat capacity jump from the glass to the liquid
state through glass transition, i.e., the difference between C,; and Cp,.

During the last two decades, several attempts [19-27] have been
made to develop predictive models of the enthalpy relaxation from
the liquid fragility index, using various thermodynamic properties
such as the enthalpy of fusion or the configurational entropy. Recently,
a model to account for C, conr in borosilicate glasses was proposed using
a combined topological and thermodynamic approach [28]. This was
done by defining Cp conf in terms of configurational enthalpy and entro-
py changes and combining the definition of fragility with the Adam-
Gibbs model for equilibrium viscosity. This enables a relation between
kinetics (m) and thermodynamics (Cp,) (see Ref. [28] for full derivation),

ACp X, Tg(x)] —Abm) (m(x) _]>» (1)

Tgx) \ mo

where A(xg) is a proportionality constant my is the fragility of a strong
liquid (15-17), and x is a composition variable. Although the model
was found to accurately predict C, conf in borosilicate glasses, it has not
yet been tested for other glass-forming systems.

Previously, the composition dependence of liquid fragility in various
aluminosilicate glass-forming liquids has been reported [29-31], but
studies of both fragility and C;, conf Of calcium aluminosilicate glasses
are scarce, limited primarily to the works of Solvang et al. [2,8] and
Webb [32]. Their studies show an approximately linear correlation be-
tween fragility and Cpconr for sodium aluminosilicate, calcium

= Tectosilicate
4  Constant CaO

0.0

. IF’...

Fig. 1. Analyzed composition of the calcium aluminosilicate glasses under investigation.
The tectosilicate series (blue squares) covers the meta-aluminosilicate join, while the
constant CaO series (red triangles) covers both peralkaline and peraluminous
compositions at a fixed CaO content.

aluminosilicate, and sodium calcium aluminosilicate glasses. Although
Solvang et al. reported data for two glass series with constant NBO/T
ratio, the series cover relatively small compositional changes. Webb re-
ported data for only one series of calcium aluminosilicate glasses with
changing Al,03/Ca0 ratio at constant SiO, content. Therefore, additional
studies are needed to find the general trend about the connection be-
tween liquid fragility and Cp, conr in calcium aluminosilicate glasses.

In this work, we focus on two series of calcium aluminosilicate
glasses covering a large compositional range (Fig. 1). The first series is
at the tectosilicate join with varying SiO, content, i.e., (100-2x)SiO,-
xAl;03-xCa0 glasses with x between 0 and 35. The second series has
constant CaO content but varying Al,03/SiO; ratio, i.e., (80-y)SiO,-
YAl,03-20Ca0 glasses with y between 10 and 30. Cp cont is measured
using differential scanning calorimetry (DSC), while Ty and m are deter-
mined through both DSC and viscosity measurements for selected sys-
tems. These results are interpreted in terms of the Cp conr model in
Eq. (1) and further discussed on the basis of the atomic packing density
and network structure evolution as characterized through density and
Raman spectroscopy measurements, respectively.

2. Experimental
2.1. Samples preparation

We have prepared a total of twenty-three calcium aluminosilicate
glasses in the (100-2x)Si0,-xAl,03-xCa0 and (80-y)SiO,-yAl,05-
20Ca0 systems, denoted the tectosilicate- and the constant CaO-series,
respectively (Fig. 1). The tectosilicate-series covers the intermediate-
and high-silica range of meta-aluminosilicate glasses and all glasses in
the series will thus be nominally fully polymerized. In the constant
CaO-series, the modifier content is kept constant, while Al,O3 is
substituted for SiO,, which allows us to study the changes in
structure-properties from peralkaline to peraluminous compositions.

To obtain homogenous batches, the raw materials (SiO,, Al,03, and
CaCO3) were mixed for 60 min using a ball mill before being melted in
a covered Pt crucible for at least 6 h in air at 1650 °C. To ensure chemical
homogeneity, the melts were first quenched and then remelted at
1650 °C for at least 6 h before being quenched on a metal plate. The
pure silica glass of the tectosilicate series (x = 0) was obtained com-
mercially (Corning Code 7980). To ensure uniform thermal history,
the glasses were annealed for 30 min at their respective glass transition
temperatures, which were determined using differential scanning calo-
rimetry (DSC 449F1, Netzsch) at an upscanning rate of 10 K/min (see
details below).

The chemical compositions of the glasses were determined using in-
ductively coupled plasma mass spectroscopy and X-ray fluorescence
and are given in Tables 1 and 2 for tectosilicate and constant CaO series,
respectively. Nominally, all glasses in the tectosilicate series should have
[Al,03]/[Ca0] ratio = 1, but the actual [Al,03]/[Ca0] ratio differs for
some glasses, varying between 0.83 and 1.12. The largest discrepancies
between nominal and actual compositions are found for x = 5, 7, 28,
and 30, which have [Al;05]/[Ca0] ratios of 0.83, 0.90, 1.12, and 1.10, re-
spectively. However, this will not affect the investigation of the correla-
tion between configurational heat capacity and liquid fragility as the
fitting of data to Eq. (1) is based on measured values of fragility and
glass transition temperatures.

2.2. Characterization

The densities (p) of the glasses were determined using the Archime-
des buoyancy principle with ethanol as the immersion liquid, weighing
each sample in air and ethanol ten times. From the measurements of
density and chemical composition, the molar volume (V) and atomic
packing factor (APF) were calculated using Eqs. (2) and (3),
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Table 1

Analyzed chemical compositions (in mol%), calculated Al,03/Ca0 ratio, measured glass transition temperature (Tg), density (p), liquid fragility index determined from viscosity data (my;s)
and determined by DSC and corrected by Eq. (7) (m), and configurational heat capacity (G, conf) Of the tectosilicate glass series, i.e., nominally (100-2x)Si0,-xAl,03-xCa0. When the total
compositions do not add to 100%, the minor impurity oxides are MgO, Fe,05, and TiO, (total < 0.7 mol%).

X Chemical composition (mol%) [Al,03]/[Ca0] Ty P Myis m Cp.conf
sio, ALO, a0 (=) (K) (gem™?) (=) (=) (Jmol~'K™)

0 100.0 0.0 0.0 - 1318 2.200 - - -

5 89.9 4.6 5.5 0.83 1189 2.299 - - 12.7
7 86.0 6.6 74 0.90 1173 2.345 - - 124

9 81.5 9.2 9.3 1.00 1158 2.401 - 22 13.1
11 78.2 10.6 10.9 0.97 1151 2418 - 20 135
13 72.6 13.5 14.0 0.97 1140 2.523 - 26 17.1
15 69.0 15.9 14.8 1.07 1137 2.538 38 34 18.2
20 60.6 20.1 193 1.04 1137 2.628 - 32 20.6
22 54.9 22.6 22.0 1.03 1129 2.666 49 38 24.2
24 48.5 259 25.6 1.01 1132 2.734 - 37 25.0
26 46.4 26.7 26.3 1.02 1127 2.722 54 36 26.9
28 45.1 29.0 25.9 1.12 1128 2.764 - 45 29.3
30 39.8 31.6 28.7 1.10 1126 2.788 - 56 29.7
35 30.0 35.0 34.3 1.02 1119 2.812 57 55 33.5

@ Value is an estimate only due to the wide glass transition of pure SiO, glass.

respectively.
1
Vin == 2_ixM; (2)
p
APF = L ZixiVi (3)
Vi

Here x;, M;, and V; are the mole fraction, molar mass, and ionic vol-
ume of oxide i.

Raman spectroscopy was used to study the changes in structure as a
function of chemical composition. The Raman scattering spectra was
obtained in backscattering geometry using a Renishaw Invia Raman
microspectroscope on freshly polished samples. The excitation source
was a diode laser with a wavelength of 532 nm. The Raman spectra
were baseline-corrected using an asymmetric least square algorithm
[33] and deconvoluted in the Fityk software using Gaussian line shapes.

To obtain viscosity and thus liquid fragility data, several methods
were used, which include beam bending viscometry, ball penetration
viscometry, parallel plate viscometry, and rotational viscometry. Beam
bending (BBV) and ball penetration viscometry (BPV) were used in
the temperature range just above the glass transition (= 10'! Pa's
for BBV and 17 = 10'°- 10'? Pa s for BPV), parallel plate viscosity
(PPV) was used to determine the softening point ( = 10%° Pas), and
rotational viscometry was used in the high-temperature range (1) =
102~ 10° Pa s). For BBV, BPV, and PPV measurements, sample bars
with dimension of approximately 5.5 x 2.5 x 2.5 mm?, cuboid samples
with dimension of 10 x 10 x 5 mm?, and cylindrical samples with a
6 mm diameter and 5 mm thickness were used, respectively. The sam-
ples were flat, parallel, and polished to an optical finish. The standard
deviations are 1 K and 2 K for the annealing and softening temperatures,
respectively. Crushed samples of ~600 g were used for the rotational
viscometry measurements, with an estimated error in log 1) of 4-0.02
(n in Pa s). The fragility of the glass-forming liquid can then be deter-
mined by fitting the viscosity vs. temperature data to the MYEGA viscos-
ity model [34],

T, m T,
logn = logn., + (12— log'r)m)Tg EXPKW_1> (Tg—lﬂ,(@

where 7)., is the high-temperature limit of the liquid viscosity, T is the
absolute temperature, T, is the glass transition temperature, and m is
the liquid fragility index as defined by Angell [35].

Since the sample sizes were too small for some compositions to
measure viscosity data, the fragility was also indirectly determined

using DSC. This is based on the premise that the activation energy for
viscous flow (and thus m) is governed by the heating/cooling rate de-
pendence of the fictive temperature. Regular DSC upscans were thus
performed in Pt crucibles and argon as the purge gas (50 mL/h) at differ-
ent heating rates subsequent to cooling the glass from well above the
glass transition at the same rate. Heating/cooling rates of 10, 15, 20,
25, and 30 K/min and 2, 5, 10, 20, and 30 K/min were used for the
tectosilicate and constant CaO series, respectively. The sample mass
was either ~50 or ~80 mg depending on the sample preparation meth-
od (cutting and drilling, respectively). The liquid fragility index (m) was
then determined as described in Ref. [36]:

Eq

M= RT, In10’

)

where R is the ideal gas constant and E; is the activation energy for equi-
librium viscous flow in the glass transition region, which can be calcu-
lated from the dependence of the reciprocal DSC upscan rate (q) on
the fictive temperature (Tf):

q Eg
In | 5 | = — <= + constant 6

Determination of m using Eq. (5) introduces a systematic error in the
m data, as Eq. (6) assumes an Arrhenian behavior in a Ty interval in the
glass transition range, while the scaling across the temperature range
is non-Arrhenian. A correction for the systematic error between the fra-
gilities determined from viscosity (imy;s) and DSC (mpsc) was recently
presented by Zheng et al. [37]:

Myis = ].289(mD5c—m0) “+ Mo (7)

To avoid the systematic error in this work, we use the relation in
Eq. (7) to correct the m values determined using DSC from
Egs. (5) and (6).

AC, was determined using DSC with a heating rate of 10 K/min sub-
sequent to cooling at the same rate. The measurement was performed
with argon as the purge gas (50 mL/h) in a Pt crucible and the same
samples as used for the determination of T,. The heat capacity curve
for each glass was calculated relative to the C, curve of a sapphire refer-
ence material of comparable mass. By determining AC,, from the second
upscan, we ensure that the measured heat flow reflects the enthalpy re-
sponse of a sample with a well-defined thermal history. AC, was then
determined as illustrated in Fig. 2.
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Table 2

Analyzed chemical compositions (in mol%), calculated Al,03/CaO ratio, measured glass transition temperature (Tg), density (p), liquid fragility index determined from viscosity data (ms)
and determined by DSC and corrected by Eq. (7) (m), and configurational heat capacity (C, conf) Of the constant CaO glass series, i.e., nominally (80-y)SiO,-yAl,05-20Ca0. When the total
compositions do not add to 100%, the impurity oxides are MgO, Fe,03, and TiO (total < 0.4 mol%).

y Chemical composition (mol%) [Al,03]-[Ca0] Ty P Myis m Cp.conf
sio, ALO, a0 (mol%) (K) (gem™?) (=) (=) (Jmol ="K ")
10 69.6 9.9 20.0 —10.1 1072 2.550 41 46 15.8
12.5 66.9 12.3 203 —8.0 1092 2.562 44 49 18.6
15 64.4 15.0 20.2 —5.2 1103 2.587 46 51 18.2
175 62.8 173 19.5 —22 1121 2.593 45 52 21.2
20 60.3 19.7 19.6 0.1 1129 2,617 46 54 20.1
225 58.5 221 19.0 3.1 1135 2,635 51 60 22.7
25 55.3 246 19.6 5.0 1134 2.660 48 59 259
275 52.7 26.8 20.1 6.7 1135 2.673 48 55 27.0
30 50.7 29.1 19.8 9.3 1135 2.695 - 52 27.2

3. Results and discussion
3.1. Raman spectroscopy

The Raman spectra of aluminosilicate glasses can be divided into
three regions: the low frequency-region (250-650 cm™!'), the
intermediate-frequency region (650-850 cm~'), and the high-
frequency region (850-1200 cm™!). The low frequency-region gives in-
formation on ring sizes and interconnectivity of the network, the
intermediate-frequency region gives information on T-O motions
where T is a network-forming cation, and the high-frequency region
gives information on the polymerization of the network and on the Al/
Si mixing [38]. The Raman spectra of all the glasses in this study are
shown in Fig. 3. Raman spectra of some of the glasses in the tectosilicate
series (Fig. 3a) have previously been reported and agree well [9,12,39],
but here we consider more glasses covering the entire compositional
range from 30 to 100 mol% SiO,. Raman data for glasses in the constant
CaO series (Fig. 3b) have not previously been reported to the best of our
knowledge.

3.1.1. Tectosilicate series

The glasses in the tectosilicate series exhibit pronounced differences
in their Raman spectra as a function of the silica content (Fig. 3a),
starting from the pure SiO, glass, which exhibits the characteristic fea-
tures of vitreous silica with peaks at 442, 492, 604, 800, 1060, and
1200 cm ™! [40-44]. With simultaneously increasing Al,05 and CaO
content, these bands gradually change their intensity and position.
The characteristic peaks for SiO, glass located at 442, 492, and
604 cm™ ! are attributed to mixed stretching-bending vibrational

100

C (Jmol" K"

1(}1}0
Temperature (K)

800 900

Fig. 2. [llustration of method used for the determination of the configuration heat capacity
(Cp.conf) based on DSC measurements. G is determined as the heat capacity in the liquid
state, while Cy is the heat capacity at T,. The present C, data are for the glass in the
constant CaO series with y = 10.

modes of Si-0-Si in large-membered (>5), four-membered, and three-
membered rings, respectively [40]. The peak at 442 cm™ ! has a tail to
lower frequencies, probably related to the largest ring sizes [45]. The
signals situated at 492 and 604 cm™!, also known as the D; and D,
bands, respectively, are typical features of pure SiO, glass as they origi-
nate from Si—O—Si vibrations. Addition of Al,0; + CaO decreases the
frequency distance between the two low-wavenumber bands (442
and 492 cm™ '), and they merge into a single peak around 481 cm ™!
for a SiO, content of 78 mol%. As the Al,O; + CaO content is further in-
creased, the intensity of this peak (now at ~500 cm™ ') decreases as a
results of the decrease of Si-O-Si units in the overall structural network,
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Fig. 3. Raman spectra of the two calcium aluminosilicate glasses series. The individual
spectra have been baseline-corrected and adjusted to have the same total area for all
bands. Arrows denote directions of increasing x or y. (a) Tectosilicate series with (100-
2 x)Si0,-xAl,03-xCa0. (b) Constant CaO series with (80-y)SiO,-yAl,03-20Ca0. The
spectra are offset for clarity.



28 TK. Bechgaard et al. / Journal of Non-Crystalline Solids 461 (2017) 24-34

while that of the ~600 cm ™' peak increases and the two signals merge
into a single peak for the low-Si glasses (<50% SiO,).

In the intermediate-frequency region, a broad peak can be found
around 800 cm™ ! for the pure SiO, glass, which is traditionally ascribed
to bending modes of Si—O—Si [40-42,44] or cage motion of Si—O
stretching vibrations [9,12,15,38]. With decreasing SiO, content, this
peak becomes narrower and less intense as the Si-O-Si units are re-
placed by Si-O-Al units. At lower SiO, content (~60 mol%) and with
the consequent decrease in average bond strength [46-48], the peak
shifts to lower wavenumbers, finally disappears at very low SiO, con-
tent (<40 mol%). The shift to lower wavenumbers might be related to
the presence of AlO4 tetrahedra [38].

In the high-frequency region, all glasses except pure SiO, exhibit a
broad peak at ~1000 cm™ !, while the pure SiO, glass exhibits bands at
1060 and 1200 cm ™!, which are ascribed to the stretching modes of
Si—O in a fully polymerized silicate network [40-44]. For the x = 5
glass with a small amount of Al,05 + CaO (90 mol% SiO,), these two
bands merge into one clearly convoluted peak centered at
~1060 cm™ . This peak consists of several bands originating from
stretching modes of Si—O—Si and Si—O—Al units. Due to the alumi-
num avoidance principle, few or no Al-O-Al units are expected in the
low-Al glasses [49]. As the SiO, content is further decreased, the peak
narrows, becomes more intense, and shifts to lower wavenumbers.
The signals in the high-frequency region can be assigned to different
stretching vibrations of fully-polymerized tetrahedral network [9]
units containing Si** and A> . Naturally, due to the high AL,O5 content
in the most Al-rich glasses, Al-O-Al units must be present violating the
aluminum avoidance. The most intense peak shifts continuously to
lower wavenumbers from 1070 cm ™! for x = 5 to 956 cm™ ! for x =
35 (Fig. 4). The shift to lower wavenumbers is caused by a decrease in
force constant [39,46], as AI> " is substituted for Si* ™ in the tetrahedral
network, resulting in an increase in the fraction of Si(OAl), units and a
decrease in the fraction of Si(OSi)x units [50]. The peaks in the high-
frequency region for the tectosilicate series are deconvoluted in
Section 3.1.3 below.

3.1.2. Constant CaO series

In the low-frequency region, several Raman peaks appear around
400-600 cm ™! (Fig. 3b), suggesting a polymerized structure [12]. For
all the glasses in the constant CaO series, the most intense peak in the
low-frequency region appears at ~500 cm™ !, which we attribute to
Si—O0—Si(Al) vibrations. This is consistent with literature, where
Si—O0—Si(Al) vibrations for various aluminosilicates are reported to
be found around 480-500 cm™ ' [9,51] with the specific position of
the peak depending on the glass composition, namely the type of mod-
ifier. At ~450 cm™ !, a shoulder peak attributed to Si—O—Si bonds can
be found in all glasses [38]. As Al,O5 is substituted for SiO, in the
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Fig. 4. Raman peak positions for the three bands used in the deconvolution of the high-
frequency region as a function of SiO, content in the tectosilicate glass series.

constant CaO series, this peak is expected to be most pronounced for
glasses with high SiO, content and gradually decrease as the
Al,O3 + CaO content increases, and this is also the case shown in
Fig. 3b. Another shoulder can be found at ~583 cm™ ' for the peralkaline
glasses. The shoulder shifts to ~590 cm™ ! for the charge-balanced and
peraluminous glasses (y > 20). The increase in intensity of this band
with increasing Al,O3 content is in agreement with literature and it
has been suggested to originate from the presence of rings containing
five-fold coordinated AI> ™ [9]. This is indeed possible as small amounts
of AlY are present in peralkaline compositions, and the increase in peak
intensity in the peraluminous region could be explained by the lack of
charge-balancing Ca>* modifier ions in this composition regime, forc-
ing A> ™ to enter five-fold coordination.

In the intermediate-frequency region, a broad low-intensity band is
found with maximum at 800 cm ™! for the most peralkaline glasses,
shifting to lower frequencies as the Al,O3 content increases, and finally
at 780 cm ™~ ! for the most peraluminous glasses. The peak is ascribed to
cage motions of both Si—0O and Al—O stretching vibrations [9,12,15,38].
As expected, substitution of Al,O3 for SiO, leads to decrease in peak in-
tensity, peak broadening, and a shift to lower frequencies due to a de-
crease in the average bond strength [9]. The band around 700 cm™' is
reported to be due to AlO, tetrahedra and should increase in intensity
as the Al,03 content increases [38], and this is indeed the case
(Fig. 3b). However, the 700-800 cm ! region is also reported to cover
bands due to AI>* in both four-, five-, or six-fold coordination [12]
and the intensity of the 700 cm™ ! band is reported to increase in the
peraluminous region, which could be associated with the presence of
five- or six-fold coordinated Al species [9]. This is consistent with our re-
sults in Fig. 3b and prevailing theories for the structure of peraluminous
calcium aluminosilicate glasses [2,8-12].
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In the high-frequency region, all glasses in the constant CaO series
exhibit a convoluted peak centered around 1000 cm™'. The origin of
the peak is Si—O and Al—O stretching [9,12,15,38] in TO4 (T = Si,Al)
units. The peak position shifts to lower frequencies with increasing
Al,O3 content. This is expected as Al—O stretches should occur at 20—
30% lower frequencies than Si—O stretches due to the lower force con-
stant [12].

Unfortunately, unlike the spectra in the tectosilicate series, a
deconvolution of the high-frequency region is not possible. The combi-
nation of different structural units in peralkaline and peraluminous
compositions and the complicated charge-balancing nature of alkaline
earth oxides (e.g., the presence of AlY in peralkaline compositions)
lead to a high number of distinct structural units throughout the glass
series. The high number of distinct structural units makes it complicated
to deconvolute the spectra.

3.1.3. Spectral deconvolution of tectosilicate series

Deconvolution of Raman spectra in the high-frequency region on
similar glass compositions can be found in literature [9,12,39]. For ex-
ample, a tectosilicate calcium aluminosilicate composition is reported
to consist of three peaks at 1050, 1150, and 1200 cm™ !, while a peak
should appear at 1100 cm ™! for peraluminous compositions [9]. Else-
where, the deconvolution is reported to consist of five bands at 925,
1000, 1070, 1140, 1200 cm ™! for compositions similar to the ones in
this study [12,39].

The deconvolution of our Raman spectra in Fig. 3a leads to bands at
970, 1070, and 1190 cm ™! for the pure SiO, glass (Fig. 4). As the SiO,
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content decreases throughout the tectosilicate series, the bands all
shift to lower wavenumbers. For example, the glass with the lowest
Si0, content (x = 35) exhibits bands at 930, 955, and 1050 cm ™!, re-
sembling those reported by Neuville et al. [9]. We note that this is, how-
ever, not in agreement with the early work performed by Seifert et al.,
who reported no compositional effect on the frequency of the bands
used for the deconvolution [39]. An example of the deconvolution can
be found in Fig. S1 in the Supplementary material for the glass with
x = 30.

A sudden shift in the position of the high-frequency bands can be ob-
served around 80-85 mol% SiO, (x = 7-9), as shown in Fig. 4. This sug-
gests that large structural changes occur, which could be related to an
abrupt decrease in the number of pure silica rings. Therefore, we em-
phasize that the three proposed bands do not necessarily represent
the same distinct structural units for all glass compositions. For exam-
ple, the highest frequency band does not represent the same structural
unit in glasses with x = 0 and 35, as the introduction of Al,05 and CaO
allows for forming new and different structural units. However, the
deconvolution clearly demonstrates the gradual decrease of the average
bond strength as more Al,0s is introduced into the network.

3.2. Atomic packing density

Density exhibits approximate linear composition dependence in
both the tectosilicate (Fig. 5a) and constant CaO series (Fig. 5b). In the
tectosilicate series, density increases from 2.204 g/cm? for the pure silica
glass (x = 0) to 2.812 g/cm?’ for the glass with the highest Al,O5 content
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respective heat capacity at the glass transition (Cpg).
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compositions are much smaller for the constant CaO series, exhibiting
densities of 2.550 and 2.695 g/cm? for the glasses with lowest and
highest Al,05 content, respectively. Since the molar mass of the glasses
changes substantially throughout the two series, we calculate the molar
volume (V,,) and the atomic packing factor (APF) to describe changes in
the packing density of the glasses (Fig. 6). Molar volume describes the
volume occupied by one mole of oxides in the glass. The glasses in the
tectosilicate series exhibit a minimum in molar volume around 50-
60% SiO,, suggesting a high packing density in this compositional
range (Fig. 6a). The constant CaO series exhibits increasing molar vol-
ume with increasing Al,03 + CaO content and thereby a closer packing
at low Al,03 + CaO content (Fig. 6b).

APF describes the ratio between the volume occupied by the ele-
ments in the glass and the total volume of the glass including free vol-
ume. When calculating APF, the elements are assumed to be spherical
and the size of the spheres dependent on the coordination number of
each species. The coordination numbers are assumed to be 2 for O, 4
for Si, and 6 for Ca [10]. For Al, we estimate the fractions of Al'Y and
AlY based on the analyzed compositions (Tables 1 and 2) and the 27Al
NMR data reported by Neuville et al. [15]. The effective ionic radii
have been taken from [52]. For the tectosilicate series, we find APF to
be low in glasses with high SiO,-content and to increase monotonically
with increasing Al,O3 + CaO content (Fig. 6a), in agreement with liter-
ature [53]. This suggests a closer packing as calcium ions occupy the cav-
ities between the network-forming cations. For the constant CaO series,
APF increases continuously with increasing Al,O3 content (Fig. 6b), as
an increasing concentration of calcium is fixed in the proximity of
AP, In the peraluminous regime, A>™ is introduced in five- or six-
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Fig. 8. Glass transition temperature (T;) determined by differential scanning calorimetry
plotted as a function of (a) SiO, content for the tectosilicate series and (b) [Al,03]-[CaO]
for the constant CaO series. The error associated with T, is 4-2 K. In (a), the inset shows
a zoom of the data without pure SiO, glass.

fold coordination, causing no apparent change in the trend of APF
with Al,O3 content.

3.3. Glass transition temperature

For the determination of the glass transition temperature (Tg), we
measured the temperature dependence of isobaric heat capacity for
both glass series (Fig. 7). As shown in Fig. 8, T, as determined using
DSC is highly dependent on the glass composition. For the tectosilicate
series (Fig. 8a), Ty decreases dramatically when Al,O3 + CaO is intro-
duced into the network, consistent with literature data [54]. Since all
the meta-aluminosilicate glasses are nominally NBO-free, the change
in T, with composition reveals the difference in bond strength as
Si—O bonds are strong compared to Al—O bonds [12]. The decrease
in T with increasing x is particularly pronounced in the high-silica
range (down to ~80% SiO,). In the intermediate-silica range, T, changes
more modestly and only by ~20 K from 72 to 30 mol% SiO, (inset of
Fig. 8a).

The composition dependence of Ty in the constant CaO series is relat-
ed to the concentration of NBOs in the network structure (Fig. 8b). In the
peralkaline regime, T, increases approximately linearly with increasing
Al, 05 content as the role of Ca>™ changes from modifying the glassy
network to charge-compensating AI>* in four-fold coordination,
i.e,, the network connectivity increase. In the peraluminous region, T,
is approximately constant, suggesting a constant network connectivity
in this compositional regime.
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3.4. Viscosity and liquid fragility

To determine the liquid fragility index (m) based on measurements
of viscosity, glass samples of at least several grams are typically needed.
As such large samples masses are not available for all glasses in this
study, we have determined fragility from direct viscosity measurements
whenever possible (Eq. (4)) and in addition determined the m values
for all glasses using the DSC method (Egs. (5) and (6)) and corrected
the data using Eq. (7). This also allows us to compare the trend in the
corrected DSC-determined fragility value, with the precise m values de-
termined from direct viscosity measurements. Viscosity measurements
were performed using BPV for four glasses in both the tectosilicate and
constant CaO series and using a combination of BBV, PPV, and rotational
viscometry for four glasses in the constant CaO series. The combination
of experiments performed for each glass was based on available sample
mass.

First we consider viscosity data determined in the vicinity of the
glass transition using the BPV technique for four compositions in both
the tectosilicate (Fig. 9a) and constant CaO series (Fig. 9b). For both se-
ries, we find the same trend in T (i.e., isokom temperature at 1) =
10'2 Pa s) with composition as that observed in Fig. 8, where T, was de-
termined using DSC (see insets in Fig. 9), agreeing with the trend re-
ported in [55]. For the tectosilicate series, the viscosity decreases
slightly with decreasing SiO, content in the intermediate Si-range. For
the constant CaO series, increasing the Al,03 content in the peralkaline
regime leads to increased network connectivity, giving rise to large dif-
ferences in viscosity among the peralkaline glasses. In the peraluminous
region, no further increase in connectivity occurs with increasing Al,03
content and the viscosity vs. temperature curve is therefore essentially
unaffected by composition even for the high-Al,05 glasses. For four
other glasses in the constant CaO series, we present viscosity data cov-
ering a large temperature range above the glass transition (Fig. 10).
The same trend as in Fig. 9b is observed.

Based on the viscosity data presented in Figs. 9 and 10 and the vari-
ation of fictive temperature with heating/cooling rate from DSC (Figs. S2
and S3 in Supplementary material), the liquid fragility index m is calcu-
lated and subsequently corrected using Eq. (7) as shown in Fig. 11a for
tectosilicate series and in Fig. 11b for constant CaO series. Only low-
temperature viscosity data (ball penetration viscometry) has been
used for determining m in the tectosilicate series, while a combination
of low-temperature and high-temperature viscosity data (beam bend-
ing, parallel plate, and rotational viscometry) have been used for the
constant CaO series. We note that the compositional trend in fragility
is identical for values determined using viscosity or DSC data. The
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Fig. 10. Logarithmic viscosity (1) as a function of glass transition temperature (T;) scaled
inverse temperature (Tg/T) for glasses in the constant CaO series, illustrating differences
in liquid fragility with composition. The lines represent fits to the MYEGA equation
(Eq. (4)). Data have been determined using BBV, PPV, and rotational viscometry. Inset
shows T, determined from DSC vs. T, from the MYEGA fit for the four glasses.

difference in absolute m values is presumably due to the difference in
difficulty of determining the fictive temperature using DSC for the dif-
ferent glass compositions. This is in case for the tectosilicate series in
particular, as the glasses exhibit relatively small enthalpy overshoot
during the glass transition, making it difficult to accurately determine
Ty, especially at low heating rates. Moreover, the Ty values are at much
higher temperatures for this series, leading to decreased sensitivity of
the DSC instrument.

The tectosilicate series exhibits increasing fragility with decreasing
SiO, content (Fig. 11a) in agreement with the reported effect of Al,03
and CaO on liquid fragility in similar aluminosilicate glass-forming liq-
uids [2,30]. As liquid fragility is a measure of the activation energy for
viscous flow at the glass transition and is strongly affected by bond
strength and bond order, silica-rich liquids are “strong” because their
SiO, networks have high bond strengths and exhibit a high degree of
short-range order, which only weakens slightly upon increasing tem-
perature. The increasing concentrations of Al,03 and CaO lead to de-
creasing bond strengths and a decrease in the short-range order, as
the presence of CaO results in NBOs [29]. This decrease in network con-
nectivity results in a more flexible and more temperature sensitive net-
work, and hence, an increase in fragility. We note that it has not been
possible to determine fragility using the DSC-method for the glasses in
the tectosilicate series with high SiO, content (x = 0, 5, and 7) due to
the small overshoots in heat capacity and wide glass transition region
for these glasses.
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In the constant CaO series, the liquid fragility index increases contin-
uously with increasing Al,O5 content throughout the peralkaline region
(Fig. 11b). A maximum value of m is observed slightly into the
peraluminous region, whereupon m decreases with further increase of
Al,O3 content. This compositional dependence of the fragility is con-
trolled by the network topology. The increase in fragility in the
peralkaline region is explained by the increasing Al/Si ratio, resulting
in decreasing overall bond strength and increasing disorder [2]. In the
peraluminous region, an increase in fragility is expected as an increase
in AlY is also expected, generally leading to longer and weaker bonds
[56,57] and also greater number of angular constraint that tend to de-
crease liquid fragility [58]. This suggests that the angular constraints
have a large influence on the fragility of these glasses.

The decrease in liquid fragility in the most peraluminous composi-
tions suggests an increase in the order of the melt, possibly due to the
creation of a new structural unit and as such the decrease in fragility
in the highly peraluminous compositions could be interpreted as evi-
dence for oxygen tricluster formation. We observe the maximum in fra-
gility when [Ca0]/([CaO] + [Al,03]) is around 0.47. This value coincides
with the maximum in viscosity at constant temperature across the
metaluminous join reported by Toplis and Dingwell [59]. They reported
a maximum in viscosity when [CaO] / [CaO] + [AL,03] is equal to 0.45-
0.48, depending on SiO, content and argue that the origin of the maxi-
mum and the subsequent decrease in viscosity at more peraluminous
composition is oxygen triclusters.
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3.5. Configurational heat capacity

The configurational heat capacity (Cp cont) for all glasses was deter-
mined using DSC as illustrated in Fig. 2. The calorimetric glass transi-
tions and the reduced heat capacities (C,/Cp¢) for the two glass series
are shown in Fig. The determined values of G, conr are given in Tables 1
and 2 and shown in Fig. 12. For the tectosilicate series, Cp, conf increases
approximately linearly with increasing Al,03 + CaO content
(Fig. 12a). For the constant CaO series, G, conf increases linearly with in-
creasing [Al,0s] in the peralkaline regime, then exhibits a slightly more
pronounced increase in the first peraluminous glasses, and becomes ap-
proximately constant for the most peraluminous glasses. The constant
configurational heat capacity is not consistent with the study by Webb
of calcium aluminosilicate glasses with ~67 mol% SiO, and varying Al/
Ca ratio, who reported a maximum in C, conr at the tectosilicate join
and decreasing Cp conf for the peraluminous glasses [32].

Next we attempt to predict the composition dependence of Cp, conf
using Eq. (1). According to the model of Eq. (1), Cp conf is proportional
to m and inversely proportional to T,. Therefore, we would expect a
good agreement between data and model for the tectosilicate series,
but to a smaller extent for the constant CaO series due to the increase
in Ty with [Al,05] in the peralkaline regime (Fig. 8b) and maximum in
min the peraluminous regime (Fig. 11b). Indeed, for the tectosilicate se-
ries, the model predicts the data well with just one fitting parameter (A
in Eq. (1)) for the relatively fragile glass formers, whereas the largest
discrepancies between data and model are found for the strongest
glass formers (Fig. 12a). This might be a result of the challenges in
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Fig. 13. (a) Modeled vs. measured values of the configurational heat capacity (Cp conf) and
(b) Cp.conr as a function of liquid fragility index (m) for various aluminosilicate glass. The
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aluminosilicate (NCAS) glasses are taken from Ref. [32].
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accurately determining m values for strong glass formers by DSC, or be-
cause the model is only applicable to less strong glass formers. For the
constant CaO series, the model predicts the data well in the peralkaline
regime, but discrepancies arise in the peraluminous regime due to the
maximum in fragility and/or the constant T in the peraluminous region.
Considering the Raman spectra of the constant CaO series (Fig. 3b), no
major changes in short range order is evident from the high-frequency
region. However, a new band or a shift in intensity is evident in the
intermediate-frequency region. This band might be ascribed to species
with longer and weaker bonds, such as a substantial amount of newly
formed five-fold coordinated aluminum [9]. Assuming that C, conf iS re-
lated to the short-range order bonding, the changes in structure ob-
served by Raman spectroscopy might explain the constant Cp cont but
varying m in the peraluminous region.

The prediction of Cp, conf from m and T using Eq. (1) has been done
using A as a scaling factor, with A connecting the configurational entro-
py during the glass transition with Tg. The fitted values of A are 16.0 and
11.8 kJ/mol for the tectosilicate series and the constant CaO series, re-
spectively. For comparison, Smedskjaer et al. found A to be 19 kJ/mol
for a series of borosilicate glasses [28]. Moreover, using the data from
Webb [32] for aluminosilicates, we have determined A to be 12.7, 13.3,
and 16.5 kJ/mol for sodium aluminosilicate, calcium aluminosilicate,
and sodium calcium aluminosilicate glasses, respectively. The relatively
large difference in A values between the constant CaO and borosilicate
glass series and the smaller differences between the different alumino-
silicate glass series suggest that the chemical composition affects A. Fur-
thermore, the relatively good prediction of Cp conr based on Eq. (1)
suggests that the model can be used to predict C, conr for different
glass systems (Fig. 13a). In general, G, conrand liquid fragility are propor-
tional across different aluminosilicate glass compositions, as illustrated
in Fig. 13b.

However, since Eq. (1) cannot account for the full composition de-
pendence of Cp, cons, Other factors could be considered. Recently, it has
been proposed that the magnitude of C,conr is linked to the
intermediate-range order (IRO) in borosilicate glasses, with Cp conf in-
creasing with the relative area of the IRO Raman bands [60]. For
borate-containing glasses, IRO bands are quite distinct with various bo-
rate superstructural units, such as boroxol-rings. On the other hand, for
aluminosilicate glasses, the IRO Raman bands are not clearly defined. In
general, structural information about IRO in aluminosilicate glasses can
be found in the low-frequency region (~200-700 cm™!), which,
e.g., describes ring sizes and ring composition, such as the D, and D,
bands for pure SiO, rings. For simplicity we use the entire low-
frequency region to compare the relative areas of IRO Raman bands
throughout both compositional series.
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Fig. 14. Dependence of configurational heat capacity (Cp conf) On the relative area of the
intermediate range order (IRO) Raman bands for the tectosilicate and constant CaO
series. The bands assigned to different ring structures in the low-frequency region have
been used as an estimate of the extent of IRO.

We note that for the constant CaO series, there is a non-negligible
overlap of Raman bands from the low- and intermediate-frequency re-
gions. The Raman spectra in the tectosilicate series shows that Cp conrde-
creases with an increase in the relative IRO band area, while the
constant CaO series exhibits a less systematic trend, perhaps related to
the difficulties in deconvoluting the IRO band area (Fig. 14). As such,
for the tectosilicate series, it appears that a high intensity of IRO bands
reflects a high degree of order, which is related to a small Cp, conr as the
structural changes occurring during the glass transition are relatively
small. This relationship between order and IRO is a result of the
Raman intensities of peaks related to short range order, as glasses
with uniform bond strengths and low concentrations of NBOs exhibit
low intensities (e.g., x = 0 in Fig. 3a). The difference in the relationship
between Cp conr and IRO band area for the studied aluminosilicate and
borosilicate glasses [60] indicates that the origin of the magnitude of
Cp.conf is highly dependent on chemical composition and not simply ex-
tent of IRO.

4. Conclusion

We have investigated the composition dependence of liquid fragility
and configurational heat capacity for two series of calcium aluminosili-
cate glass-forming liquids with varying (Al + Ca)/Si ratio and varying
Al/Si ratio at constant CaO content, respectively. For the tectosilicate se-
ries we find decreasing glass transition temperature (Tg), increasing lig-
uid fragility, and increasing configurational heat capacity with
increasing Al,03 + CaO content. The constant CaO series exhibits in-
creasing Ty with increasing Al,O3 content in the peralkaline region,
while it becomes constant in the peraluminous region. Measurements
of fragility based on both viscometry and calorimetry show a maximum
in fragility slightly into the peraluminous region, possibly due to the for-
mation of oxygen triclusters. The configurational heat capacity increases
approximately linearly with increasing Al,05 content in this series. We
find that the majority of the variation of configurational heat capacity
with composition can be predicted based a previously proposed topo-
logical/thermodynamic approach, but model-data discrepancies are
found for the “strongest” glass formers when configurational heat ca-
pacity is not proportional to liquid fragility. Raman spectroscopy mea-
surements confirm the expected structural changes in the two glass
series, including the gradual disappearance of pure SiO, units as
Al,05 + Ca0 is added in the tectosilicate series, changes in type and
size of ring structures, and mixing of Al and Si containing units through-
out the aluminosilicate network.
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ARTICLE INFO ABSTRACT

Differential scanning calorimetry (DSC) has proven to be a highly versatile technique for understanding the glass
transition, relaxation, and crystallization behavior of inorganic glasses. However, the approach is challenging
when probing glass samples that exhibit overlapping transitions or low sensitivity. To overcome these problems,
temperature-modulated DSC (TM-DSC) can be utilized, in which a sinusoidal heating rate is superimposed on the
linear heating rate known from standard linear DSC. Until recently, it has only been possible to perform TM-DSC
measurements on commercial instruments at temperatures below 973K, which is insufficient for many oxide
glasses of industrial interest, particularly silicate glasses. However, recent commercially available software now
enables TM-DSC measurements to be performed at temperatures far exceeding 973 K. To investigate the suit-
ability of using TM-DSC to study glass transition and relaxation behavior in high-temperature silicate systems,
we have performed systematic TM-DSC measurements on three different oxide glass systems with varying glass
transition temperature and liquid fragility. We find that relatively large underlying heating rates (2-5 K/min)
and modulation amplitudes (4-5 K) are needed in order to obtain data with high signal-to-noise ratios. For these
combinations of experimental parameters, we also observe a linear response as found using Lissajous curves.
Overall, this study suggests that TM-DSC is a promising technique for investigating the dynamics of high-tem-
perature oxide glass systems with a wide range of liquid fragilities.

Keywords:
Temperature-modulation
Differential scanning calorimetry
Aluminosilicate glass

Glass transition

1. Introduction liquids [16-19].

Traditionally, DSC has been used to measure heat flow (or heat

Since its invention in 1962 [1], differential scanning calorimetry
(DSC) has become an important instrument in the thermal analysis of
materials. The technique can be used to identify characteristic tem-
peratures, quantify the heat of thermal events (e.g., phase transitions),
and obtain the temperature dependence of the heat capacity [2]. De-
pending on the calorimeter design, the method can be used to de-
termine heat capacity in the temperature range from 93 to 2673 K, thus
covering a diverse range of materials from organic polymers to in-
organic crystals and glasses. Due to its versatility, DSC has become a
widely used technique for material characterization in research labs
and inspection of raw materials or quality control of finished products
in industrial facilities [2]. DSC studies have been widely used in the
field of glass science to study immiscibility of glass-forming liquids [3],
the dependence of the fictive temperature on the thermal history of
glass [4-8], glass transition behavior and enthalpy relaxation in hy-
perquenched glasses [9-11], crystallization behavior and glass stability
[12-15], and determination of the fragility index m of glass-forming

* Corresponding author.
E-mail address: mos@bio.aau.dk (M.M. Smedskjaer).

https://doi.org/10.1016/j.jnoncrysol.2018.01.022

capacity) as a function of a linear heating profile. As such, the pro-
grammed temperature profile (T) can be described as:

T=T+ft @

where T is the initial temperature at time t = 0 and f is the heating
rate. Despite its commercial success, linear DSC suffers from some
shortcomings in relation to analyzing certain materials with over-
lapping transitions. For example, these can be found in composite
materials of organic polymers with overlapping glass transitions, but
also in single phase materials with imperfect crystals where simulta-
neous melting and recrystallization occur and in metallic glasses with
overlapping glass transition and crystallization processes [20-25].
Linear DSC does not offer the ability to separate such overlapping
transitions. Moreover, low sensitivity is a challenge, e.g., when studying
glasses with high SiO, content that exhibit small changes in heat ca-
pacity during the glass transition. In linear calorimeters, the sensitivity
can only be improved by increasing sample size and/or heating rate,
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both resulting in decreased resolution due to the larger thermal gra-
dient across the sample and the reduced observation time [26].

To overcome these disadvantages, the temperature-modulated dif-
ferential scanning calorimeter (TM-DSC) was introduced in 1992 by
Reading and co-workers [27-30]. TM-DSC allows for separation of
overlapping signals and improved sensitivity at the expense of in-
creased measurement duration [31]. In this approach, a sinusoidal
heating rate is superimposed on the linear heating rate, essentially al-
lowing the instrument to use two heating rates. The temperature profile
is thus given by

T =Ty + Bt + Asin(wt) 2)

where A is the amplitude of the modulation and w is the angular fre-
quency of the modulation (0 = 25/P, where P is the period). In
modulated DSC, f3 is the underlying heating rate as the instantaneous
heating rate (dT/dt) is now determined by

dT

i B + wA cos(wt) 3)

The output from a normal linear DSC scan is simply the heat flow
signal, while three additional signals, the reversing heat flow, the non-
reversing heat flow, and the phase lag, can be obtained by the Fourier
transformation of the sinusoidal signals [32,33]. The reversing heat
flow describes the temperature dependence of the heat capacity of the
sample, while the non-reversing heat flow is related to kinetic events
such as relaxation and crystallization. The phase lag describes the time
delay between the heat flow signal and the heating rate as a result of
thermal inertia of the sample and the instrument. The phase lag is
continuous when no transitions occur, but exhibits a peak when the
configurational heat capacity of the sample changes. For example, such
a phase peak occurs during the glass transition due to the change in
configurational entropy [31].

TM-DSC requires three input parameters: average heating rate, os-
cillation frequency, and the amplitude of the oscillation, complicating
the experimental design. Selecting the input parameters can be chal-
lenging as the optimal parameters depend on the characteristics of the
sample and the investigated phase transition, and changing one para-
meter affects the most appropriate values of the others. For example, an
increase in amplitude requires a decrease in the angular frequency as
more time is needed for the heat to flow.

In the glass science community, TM-DSC is currently used to analyze
organic, chalcogenide, metallic, and oxide glasses. The applications
include easy determination of the glass transition temperature
[25,34,35], identifying rigidity transitions [36-39], studying the re-
laxation behavior during the glass transition [40-46], and determining
the liquid fragility index [44-46]. Common to these studies is that the
glass transition temperature of the studied samples has been below
973 K. This has been the maximum temperature limit of commercial
TM-DSCs, but recently, the TM-DSC technique has become commer-
cially available at temperatures above 973 K. These instruments have a
different furnace design than low-temperature (< 973 K) instruments,
enabling thermal analysis of, e.g., silicate glasses that exhibit wider
glass transitions than any glass measured successfully using a low-
temperature TM-DSC [47,48].

The higher operating temperature and wider transitions should re-
quire a different set of experimental parameters and result in prolonged
measurement time. Therefore, there is an interest in investigating the
response of high-temperature silicate glasses to a modulated tempera-
ture profile. In this study, we perform systematic TM-DSC experiments
on three different glasses to demonstrate how outputs signals are af-
fected as a function of measurement conditions. We choose two calcium
aluminosilicate glasses with similar, and relatively high, glass transition
temperatures (T of 1134 and 1173 K for peraluminous and tectosilicate
compositions, respectively), but different liquid fragility indices (m of
48 and 22, respectively). We compare these results with those of a
fragile (m = 82) [49] sodium borate glass-forming liquid with lower
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glass transition temperature (T, = 748 K). Specifically, we perform 80
different heating scans on the peraluminous calcium aluminosilicate
composition and 36 scans on both the tectosilicate calcium aluminosi-
licate and sodium borate compositions. The experimental conditions
have been chosen to show the change in response to changes in the 3, A,
and P parameters.

2. Experimental section

Three glass compositions were prepared by the melt quench
method: two calcium aluminosilicates with nominal compositions (mol
%) of 555105-25A1,03-20Ca0 (CAS1) and 86Si0,-7A1,05-7Ca0 (CAS2)
and one sodium borate glass with nominal composition 67B,03-33Na,0
(NaB). Both the CAS1 and CAS2 glasses exhibit relatively high glass
transition temperatures of 1134 and 1173 K, respectively [50], as de-
termined using a 10 K/min heating rate on a standard DSC. The per-
aluminous CAS1 composition exhibits relatively high fragility index
(m = 48), while the tectosilicate CAS2 composition is relatively strong
(m < 22) [50]. NaB exhibits a much lower glass transition temperature
of 748 K, but higher fragility index of 82.1 [49].

To obtain homogenous glasses, the raw materials (analytical grade
SiO,, Al;03, CaCO3, H3BO3, and Na,O powders with purity > 99.8%)
were mixed for 60 min in a ball mill before being melted in air for at
least 6h at 1923K for CAS glasses and 1373 K for NaB and then
quenched. The calcium aluminosilicate glasses were re-melted over-
night at 1923 K in air and quenched on a metal plate. All glasses were
annealed at their respective Ty for 30 min.

The calorimetric measurements were performed on a Netzsch STA
449F1 Jupiter® calorimeter with the TM-DSC module software exten-
sion in Pt-Rh crucibles using argon as the purge gas (flow rate = 50 mL/
min). The samples were disc-shaped with a diameter of ~6 mm and
thickness of ~0.4 mm, resulting in a mass of ~30mg. To ensure an
optimal heat transfer between sample carrier and samples, the samples
were polished to an optical finish on the surface facing the crucible
bottom. To evaluate the effect of the three modulation parameters on
the calorimetric data, the glasses were scanned using a combination of
parameters resulting in a total of 80 scans for CAS1 and 36 for both
CAS2 and NaB. For CAS1, the experimental conditions included § = 2,
3,4, and 5K/min, A =1, 2, 3, 4, and 5K, and P = 90, 120, 150, and
180s. CAS2 was scanned with = 3, 5, and 7 K/min, A = 3, 5, and 7K,
and P = 90, 120, 150, and 180 s, while NaB was scanned with § = 2, 3,
and 4K/min, A = 1, 3, and 5K, and P = 90, 120, 150, and 180s.

The modulated scans were performed between 1023 and 1238K,
1053 and 1318K, and 703 and 793K for CAS1, CAS2 and NaB, re-
spectively. This was done to cover a wide enough temperature range
from the glass to the supercooled liquid. The low temperature limit in
the glass corresponds to an average relaxation time, which is much
longer than the period of the oscillation. The high temperature limit in
the liquid corresponds to an average relaxation time, which is much
shorter than the period of oscillation, assuring that no crystallization
occurs during the measurement. All upscans were performed sub-
sequent to a linear cooling segment (downscan) with the same § as the
subsequent upscan. For example, the temperature profile could be
cooling from 1238 to 1023 K with f = —2 K/min, followed by heating
from 1023 to 1238 K with = 2K/min, A = 5K, and P = 150s. To
ensure identical heat transfer, all scans on each glass were performed
without opening the furnace tower and thus touching the sample car-
rier. The phase angle and reversing and non-reversing heat flows were
obtained from TM-DSC signals and presented herein without any post
corrections. To test the reproducibility of the TM-DSC data, we per-
formed repeated scans for selected experimental conditions on the same
sample. The difference in peak position values was always
within = 1 K.
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3. Results and discussion
3.1. Phase lag curves

Phase lag between the modulated heating rate and the modulated
heat flow is linearly scaled with the imaginary part of the complex heat
capacity [51]. Distribution of relaxation times is correlated to the shape
of the imaginary part of the complex heat capacity. Therefore, in a
single phase glass with a normal distribution of relaxation times, a
Gaussian shaped phase lag curve is expected [46,51]. Fig. 1 shows the
phase lag for CAS1 for all 20 scans with P = 150 s but varying 8 and A.
The phase lag values in Fig. 1 have been offset by 0.01 rad for each
condition for visual clarity. A comparison of the underlying heating
rates reveals that for = 5K/min, the obtained phase peaks appear
asymmetric, noisy, and sharp (Fig. 1a). By decreasing the underlying
heating rate to 8 = 4 K/min, phase peaks become less noisy, more
symmetric, and less sharp (Fig. 1b), with further reduction of the
heating rate to 3 (Fig. 1c) or 2 K/min (Fig. 1d) resulting in smooth and
almost symmetric phase peaks (Fig. 1c and d). Although a high un-
derlying heating rate is desirable to reduce measurement duration,
Fig. 1 shows that too high f3 values results in sharp and distorted phase
angles due to the shorter observation time when scanning through the
glass transition. Small and smooth heat flow oscillations are required in
order to obtain the phase angle from the sinusoidal heat flow data. To
achieve this, several modulations must be cycled during the glass
transition. Obviously the number of modulation cycles through the
glass transition depends on both  and P. For P = 150s, the number of
cycles through the glass transition in Fig. 1 is ~4 and ~4.5 for § = 5
and 4 K/min, respectively. By decreasing the underlying heating rate,
the number of cycles increases to ~7 and ~12 for f = 3 and 2 K/min,
respectively. By assessing the shape of the phase lag data, our results
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suggest that high-temperature TM-DSC on this particular silicate glasses
should be performed at relatively low heating rate, such as 2 or 3K/
min.

To check the universal validity of such heating rates, we have also
collected data for a “stronger” (CAS2) and a more “fragile” (NaB) glass-
forming liquid, as presented in Figs. 2 and 3, respectively. For CAS2,
scanning with = 3 K/min yield noisy data, while scans performed at
higher underlying heating rates (8 =5 and 7 K/min) appear sig-
nificantly smoother (Fig. 2). This is especially evident for scans per-
formed with low amplitudes. The relatively high data quality for scans
performed at high f3 values is a result of the wider glass transitions in
this glass, allowing more modulations to be cycled during the transition
despite the increased underlying heating rate. Fig. 3 show the phase lag
curves for NaB composition measured under the same conditions that
worked well for CAS1. In general, the data quality and the phase peaks
appear noisy and non-smooth with bumps. The low data quality is a
result of few modulation cycles during the transition and low signal-to-
noise ratio, suggesting that  values of 0.5-1.5 K might be better suited
for this glass.

For CAS1, Fig. 1(a—d) also includes scans with five different am-
plitudes for each underlying heating rate. Independent of , we find that
an amplitude of A = 1K results in non-smooth phase peaks, especially
evident for scans with f = 5 and 4 K/min (Fig. 1a and b, respectively).
The obtained phase peaks become smoother with increasing modula-
tion amplitude. A should be high to achieve large changes in in-
stantaneous heating rate (dT/dt), providing increased sensitivity and
signal-to-noise ratio of transitions with temperature-dependent heat
capacity (such as the glass transition). However, too high amplitudes
can simultaneously result in a loss of resolution due to the increase in
instantaneous heating rate. In addition, frequency dependent heat ca-
pacity describes the response of the glass to small perturbations [52]
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and oscillations with bigger amplitudes cannot satisfy the conditions for
small perturbations. The appropriate amplitude value depends on the
sample characteristics and the selected period. For CAS2, an amplitude
of 3K results in noisy phase peaks at all the probed combinations of
experimental conditions (Fig. 2). This indicates that a higher amplitude
is needed for this particular glass, probably due to its low fragility
index. Difficulties associated with achieving sufficiently high signal-to-
noise ratio for strong glass-forming liquids scanned at low heating rates
is also known from standard DSC experiments. By increasing A to 5 or
7 K in this work, the signal-to-noise ratio improves, but for f = 3K/
min, the noise is still substantial for scans obtained at short periods. In
general, the data obtained with A = 7 K result in more pointed and less
Gaussian-shaped phase peak signals than their A = 5K counterparts,
indicating a loss of resolution. Accordingly, for these high temperature
measurements, amplitudes of ~5K appear to be a good choice for the
starting conditions as the resolution decreases at very high amplitudes.
We also scanned the fragile NaB at different amplitudes (Fig. 3). The
data quality is generally low due to poor combinations of experimental
conditions, especially for high f values. However, an amplitude of 5K
still yields the best data quality at low temperatures.

The magnitude of the phase lag also depends on the measurement
parameters. As seen in Fig. 4a for CAS1 (and in Fig. S1 in the Supporting
Information for CAS2 and NaB), not only the heating rate, but also the
combination of parameters and sample properties, determines the
magnitude of the instrumental phase lag. By correcting for the instru-
mental phase lag, the phase lag associated with the glass transition
becomes identical [53] (see Fig. S2 in the Supporting Information).

For low-temperature systems, an adequate signal-to-noise ratio can
be obtained using amplitudes in the range of 0.5 to 2K [31], but our

results show that phase peaks appear to be significantly smoother when
A is increased above 2K for the high-temperature oxide glasses. That is,
all the phase lag data in Figs. 1-3 suggest that larger amplitudes in-
crease the signal-to-noise ratio. This may be related to the differences in
temperature control between low- and high-temperature instruments.
For the high-temperature scans presented here, the instrumental noise
in the heat flow signal is rather large, which might necessitate higher
amplitudes. For low-temperature TM-DSC measurements, modulation
amplitudes above 2K tend to decrease the resolution, but we do not
observe any change in phase shape for CAS1 or CAS2 when increasing A
above 3K and thus no change in resolution with increasing modulation
amplitude (Figs. 1 and 2). Due to the low data quality for NaB in Fig. 3,
the effect of A on the resolution cannot be quantified for this glass. In
summary, larger amplitudes (4 to 5K) appear to improve the data
quality, unless the temperature is too low for the furnace cooling to
follow the specified rate. This problem can occur because commercial
high temperature DSCs are typically not equipped with active cooling.
We have observed this phenomenon when performing experiments with
inappropriate experimental conditions at lower temperatures around
700K, as shown in Fig. S3 in the Supporting Information.

Fig. 4b shows the frequency dependence (P = 180, 150, 120, and
90 s) of the phase lag for § = 2K/min and A = 5K for CAS1. The ob-
served frequency dependence described below is the same for other
experimental conditions, as well as for the other compositions CAS2
and NaB (see Fig. S4 in the Supporting Information). The shape of the
phase lag obtained at different frequencies is identical and therefore
independent of the selected period within the parameter ranges chosen
in this study. The magnitude of the transition-induced phase lag,
however, decreases with increasing frequency, while the instrumental
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phase lag increases with increasing frequency. The results show that
smooth phase peaks can be achieved for periods between 90 and 180,
and possibly for values outside of this range. The range of appropriate
period values depend on the other selected parameters and need to be
studied in detail. We also observe that increasing the modulation fre-
quency causes a shift of the phase lag peak to higher temperatures, as
expected from heat capacity spectroscopy studies [52], where the
characteristic relaxation times are shorter [52,54] (Fig. 4c).

3.2. Heat flow curves

Fig. 5 shows the reversing heat flow for 20 scans on CAS1 obtained
for P = 150 s with varying heating rate (8 = 2, 3, 4, and 5K/min) and
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amplitude (A = 1, 2, 3, 4, and 5 K). The magnitude of the reversing heat
flow only depends on the heating rate (Figs. 5 and 6a), while the shape
is slightly dependent on the combination of 3, P, and A parameters, as
seen in Fig. 5 (compare, e.g., A = 1K to the others). This is probably
due to a poor combination of modulation parameters. In Fig. 1a, the
experimental conditions resulted in a noisy phase peak. Here, it is
manifested as a deviation from the expected sigmoidal S-shaped change
in the reversing heat flow. An increase of the frequency results in a shift
of the step change in the reversing heat flow to slightly lower tem-
peratures (Fig. 6b). As evident from the very similar reversing heat flow
curves (Figs. 5 and 6), the reversing heat flow is almost independent of
the selected parameters. The same behavior is found for CAS2 and NaB
(see Fig. S5 in the Supporting Information). These data are in
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agreement with theoretical studies in literature, where reversing heat
flow curves have been found to be superimposed on each other when
obtained at different underlying heating rates [54]. As such, if the re-
versing heat flow is the only signal of interest for a given study, there is
no need for any optimization of the modulation parameters.

The shape and magnitude of the non-reversing heat flow is in-
dependent of the amplitude when 3 and P are kept constant (Fig. 7 for
CAS1 and Fig. S6 in the Supporting Information for CAS2 and NaB). On
the other hand, the heating rate has a pronounced effect on both
magnitude and shape of the non-reversing heat flow signal, with a shift
to lower temperatures with increasing heating rate (Fig. 8a) as the heat
flow is dependent on the time derivative. However, a linear baseline
subtraction makes the shape of the curves approximately identical,
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while the differences in magnitude are maintained (see Fig. S7 in the
Supporting Information). The frequency does not affect the magnitude
or position of the peak temperature (Fig. 8b). When analyzing non-re-
versing heat flow data, the area of the peak is often used as a measure of
the energy released by kinetic processes such as relaxation [36-39]. If
the absolute values of the heat flow are not of interest in a given study,
the experimental parameters do not need to be optimized in order to get
accurate data.

3.3. Lissajous curves

In TM-DSC experiments a linear response between heating rate and
heat flow is essential, especially when studying glass relaxation
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Fig. 11. Lissajous curve for NaB for the four extreme combinations of parameters for constant modulation period (P = 1505s): (a) § = 2K/minand A = 1K; (b) § = 2K/minand A = 5K;
(c) B =5K/min and A = 1K; (d) = 5K/min and A = 5K. The data have been smoothed slightly using a Savitzky-Golay algorithm [61].

processes as large enthalpy releases may occur [55-58]. The linearity
can be evaluated using Lissajous curves by plotting heat flow as a
function of heating rate [59,60]. For ideal heat transfer, all data should
fall in a retraceable linear pattern, but due to thermal inertia effects
related to the sample thickness, the Lissajous curves adopt an elliptical
shape when the response is linear. Since the linear response depends on
the specific combination of experimental parameters the measurement
conditions need to be optimized to improve the linearity. By decreasing
the underlying heating rate and the amplitude, the maximum in-
stantaneous heating rates decrease, resulting in introduction of smaller
perturbations and allowing the system to equilibrate faster. The same
effect can also be observed by decreasing the modulation frequency.
Lissajous curves of selected combinations of experimental condi-
tions (highest and lowest values of heating rate and modulation am-
plitude) for CAS1, CAS2, and NaB are shown in Figs. 9, 10, and 11,
respectively. The Lissajous curves have been smoothed slightly using a
Savitzky-Golay filter [61] for visual clarity without any change in the
overall shape. For the CAS1 glass, we find that the Lissajous curves
reflect a linear response when they are obtained from scans with low
heating rates (Fig. 9a and b) or with simultaneous high underlying
heating rate and high modulation amplitude (Fig. 9d). When the un-
derlying heating rate is high and the temperature perturbations are
small due to low amplitude, the Lissajous curves do not exhibit linear
response (Fig. 9c). Linearity is a result of a sufficient number of mod-
ulation cycles during the glass transition, explaining why the lowest
underlying heating rates result in linear responses. This can, however,
not explain why the high amplitudes also result in a linear response,
while this is not the case for the low amplitudes when the underlying
heating rate is high. Instead the low signal-to-noise ratio due to the
small heat flow perturbations for the low-A, high- experiment might
be responsible for the non-linear response, suggesting that the
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instrument is not able to control the heat flow perturbations accurately
enough to obtain a linear response at low amplitudes. The same re-
sponse is seen for CAS2 (Fig. 10), although the underlying heating rate
are higher for this glass (8 between 3 and 7 K/min). These higher un-
derlying heating rates can be used for CAS2, since this glass has a wider
glass transition owing to its higher silica content compared to CAS1.
The shapes of the Lissajous curves for NaB (Fig. 11) suggest a linear
response for the four shown combinations of experimental conditions,
but due to the high heating rates, only a few modulations are cycled
through the glass transition. When comparing the curves for the two
highest § values (Fig. 11c and d), the positive effect of high amplitude
becomes obvious. Even though both Lissajous curves have been
smoothed, the signal-to-noise ratio is significantly better in Fig. 11d.

4. Conclusions

We have reported phase angles and both reversing and non-rever-
sing heat flows obtained by temperature modulated differential scan-
ning calorimetry (TM-DSC) for two calcium aluminosilicate glasses and
one sodium borate glass. The underlying heating rates have been varied
between 2 and 7 K/min, modulation amplitudes varied between 1 and
7 K, and modulation periods varied between 90 and 180s. We have
shown that the best signal-to-noise ratio is achieved for relatively low
underlying heating rates (2-3 K) for high-T, fragile oxide compositions,
while stronger liquids can be scanned with larger 3 values of 5K and
possibly 7 K without any loss in data quality. For the highly fragile low-
temperature sodium borate composition, an underlying heating rate of
2K/min is too high, resulting in noisy data. For all of the probed
heating rates, A values of 1-3K yield phases with a low signal-to-noise
ratio, while higher amplitudes result in better data quality. As such,
optimization of the experimental conditions involves an interplay
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between the liquid's fragility and underlying heating rate, while the
best value for the amplitude appears to be less dependent on the glass
properties. Furthermore, we have confirmed that the instrument ex-
hibits a linear response between input and output for the tested com-
binations of experimental parameters. In conclusion, this study there-
fore suggests that TM-DSC is a promising technique for investigating the
dynamic behavior of high-temperature oxide glass systems.
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Abstract: Glass-forming liquids exhibit a pronounced diversity in the viscosity-temperature relation.
This has been characterized by the liquid fragility index to quantify the extent of the non-Arrhenian
flow. Precise and accurate determination of liquid fragility is important for understanding a range of
phenomena and controlling industrial glass melting processes. In this study, we use the temperature-
modulated differential scanning calorimetry (TM-DSC) to determine liquid fragility of a wide range
of oxide compositions, including tellurites, borates, and silicates. We compare our fragility data to
those determined using viscometry and the Moynihan DSC approach. We find that TM-DSC is a
useful method for determination of fragility, as it exhibits higher sensitivity and provides an easier
and more reliable determination of characteristic temperatures compared to the Moynihan approach.
Moreover, TM-DSC is faster and requires smaller sample volume compared to the viscometric
approach. However, we also observe that TM-DSC tends to either overestimate or underestimate the

fragility of very strong and highly fragile compositions, respectively.

Keywords: Oxide glasses, liquid fragility, temperature-modulated DSC



1. Introduction

Accurate knowledge of the viscosity-temperature relationship of glass-forming liquids is of great
practical importance for all stages of industrial glass production [1-3], as even small perturbations in
temperature can result in significant changes in viscosity. Angell introduced the concept of liquid
fragility to quantitatively describe the temperature dependence of liquid and supercooled liquid
viscosity [4-7]. Fragility classifies the dynamics of glass-forming liquids in terms of their departure
from the Arrhenius temperature dependence of either viscosity or relaxation time [7]. The liquids
exhibiting an Arrhenian temperature dependence of viscosity are said to be “strongest”, but such
ideally strong liquids do not exist in reality. However, the liquids exhibiting the ‘nearly’ Arrhenian
dynamic behavior can be regarded as strong liquids, e.g., silica and germania. In contrast, the liquids
showing the non-Arrhenian behavior are termed “fragile” ones. The liquid fragility index m is a
liquid-state property that varies with composition (x). It is defined as the slope of the base-10
logarithm of viscosity (logio #) versus Tg-scaled inverse temperature (T) curve at Ty, where T is the

glass transition temperature (corresponding to the viscosity of 10" Pa s) of the liquid:

dlog 191(T,x)
= : 1
m(x) d(Ty(x)/T) T=T,(x) )

The direct determination of fragility is thus from measurements of viscosity as a function of
temperature, either in the vicinity of the glass transition utilizing Eq. (1) or by fitting high-temperature
viscosity data to, e.g., the MYEGA equation of equilibrium viscosity [8]. However, measurements of
viscosity are inherently time-consuming and can be challenging for glass-forming liquids prone to
crystallization [9]. In addition, several of the widely-used viscometric methods require samples of
specific shapes and volumes, which may be difficult to produce from poor glass-formers. Therefore,
indirect methods for determining m using differential scanning calorimetry (DSC) have been
established, as these methods only require small sample mass (typically 20-50 mg). Such methods
rely on determining the activation energy for structural relaxation by scanning the sample at different
heating/cooling rates. The rate dependence of fictive temperature (Ty) is thus used to estimate the
activation energy for enthalpy relaxation, which is equivalent to that for shear viscosity, as reported

by Moynihan and coworkers [10-13], Kissinger [14], Yue [15], and Wang and coworkers [16,17].



The Moynihan approach has been widely used [9-13], but for relatively strong glass-forming
liquids, it is hard to determine T since the intercept between the extrapolated straight line of the glass
isobaric heat capacity (C,) curve and the inflection point of the overshoot C, curve cannot be precisely
assigned due to the small C, jump (Fig. 1). Furthermore, for oxide glasses with high T, values (e.g.,
above ~700 °C), the T; values are determined in a temperature regime, where the sensitivity of most
heat-flux DSC instruments is ~60% lower than that at room temperature, resulting in a low signal-to-
noise ratio. To overcome these challenges for strong glass-forming liquids with high Ty in the
Moynihan approach, we here consider the use of temperature-modulated differential scanning
calorimetry (TM-DSC) as an alternative approach for determination of m, since TM-DSC allows for

increased sensitivity [18].

2. Theory

The TM-DSC experiment is similar to that of the standard DSC, but with a sinusoidal modulation
superimposed onto the linear heating segments. Accordingly, the temperature profile in a TM-DSC
experiment is given by

T =T, + Bt + Asin(wt), 2
where T, is the initial temperature at time t = 0, f is the heating rate, A is the amplitude of the
modulation, and w is the angular frequency of the modulating tone (o = 2n/P, where P is the period).
A deconvolution of the raw data allows for separation of the calorimetric contributions from the
enthalpy relaxation and the heat capacity of the glass itself, identified by the imaginary heat capacity
and real heat capacity, respectively [18].

TM-DSC has previously been used to determine the fragility of both chalcogenide and oxide
glass-forming systems [19-21]. However, due to instrumental limitations, this has been limited to
glasses with low T, (below ~550 °C), and thus has not been suitable for many high-Tg silicate glasses
of industrial importance. In those previous TM-DSC studies, two different approaches have been
used. The first one utilizes the frequency dependence of the imaginary part of complex heat capacity

data to estimate the activation energy for the structural relaxation, similarly to the Moynihan method



[19]. The other approach approximates the average relaxation time (r) at a given temperature in order
to construct an Angell plot by plotting log t against T,/T. Both procedures make use of the frequency
dependence of the peak temperature (T,”) in the imaginary heat capacity. However, as the imaginary
heat capacity (C,') curve scales relative to the phase lag (¢) according to Eq. (3) [18], T,"” can also be
determined directly from the phase lag:

Cp = |C;(w)| sing . 3)

Here,

Cp (w)| is the modulus of the complex-specific heat, a non-constant scalar. At temperatures far
below and above the glass transition region, the phase lag is zero. At low temperature, the heat
transfer occurs through atomic vibrations, while the high-temperature regime is dominated by
molecular translations; both have a response much faster than the oscillation frequency. During the
glass transition, the relaxation time of the structural rearrangements is on the same order as that of the
temperature oscillations, resulting in a time lag between input and output [22]. This time lag can be
used to probe the kinetics of the structural processes throughout the glass transition. By increasing the
oscillation frequency (i.e., by lowering P), the response can be shifted to higher temperatures. This
frequency dependence can be used to determine the activation energy for structural relaxation from
the linear relationship between log(w) and T,4”, similarly to the Moynihan approach. The activation
energy for structural relaxation obtained by this method can be used to calculate the fragility index as
in the other methods based on activation energy [19].

The relaxation time procedure is based on considering the glass transition to be a relaxation
phenomenon [23], making it possible to determine the fragility of a liquid from the temperature
dependence of the structural relaxation time. For molecular glass-formers, the fragility has been
determined from the frequency dependence of the dielectric relaxation time [7]. However, as the
relaxation of molecular glasses relates to polar atomic motions [24], the dielectric method cannot be
applied to non-molecular liquids [25], such as modified silicates with mixed covalent-ionic bonding.
Instead, a technique for measuring the structural relaxation time of silicate glasses based on specific
heat capacity spectroscopy measurements was proposed in 1985 [26,27], by using the thermal

relaxation caused by the isothermal temperature oscillations to measure the structural relaxation time.



Using the frequency dependence of the peak temperature (T,") in the imaginary heat capacity, TM-
DSC has successfully been applied to determine m of several borate-based glass-forming liquids (T4 =

450°C) [20,21,24,28] by converting frequency into relaxation time and using the following equation,

dlog 107(TX)
_ dlogot(Ty) . 4
m(X) = 3o Gorm) T=Ty(x) ()

In this work, we use the Moynihan DSC approach and the two approaches using TM-DSC to
determine the fragility index of glass-forming liquids with a wide range of fragilities (m from 25 to
97), covering both tellurite, borate, and silicate glass chemistries [29,30]. Furthermore, we compare
the determined m values with those from viscometric methods, reported in literature. The discrepancy

in m among the different procedures is discussed.

3. Experimental procedure

The chemical compositions of the glasses used in this study, covering silicate, borate, and tellurite
glasses, are found in Table 1. All glasses were prepared by the melt-quench method. Generally, the
raw materials were mixed for 60 min in a ball mill and then melted in a covered crucible in air at 800-
1650 °C for at least 6 h before being quenched on a metal plate. The detailed preparation procedure
for some of the compositions is reported elsewhere [29,31].

The Netzsch STA 449F1 Jupiter® instrument with the TM-DSC module software extension was
used for all the DSC and TM-DSC measurements. Silicate and borate glasses were scanned in Pt-Rh
crucibles, while tellurite glasses were scanned in gold crucibles, both using argon as the purge gas (50
mL/min). The mass of the samples was ~20-35 mg. The samples were disc-shaped with diameter of
~4-6 mm and thickness of ~0.4 mm.

The samples were subjected to different heating rates after cooling from well above the glass
transition at the same rate. For fragility determination using the Moynihan DSC approach, heating
rates between 2 and 30 K/min were used. For the borate composition, the full range of heating rates
from 2 to 30 K/min were used. For the silicate glasses, we only used heating rates in the range 10-30
K/min due to issues with instrumental sensitivity, while for tellurite compositions with m>79, the

heating rates were limited to 6-14 K/min to minimize the error caused by the Arrhenius approximation



of the calculation of the fragility That is, the Moynihan approach for determining the activation
energy assumes a linear dependence of 1/T; on log(qc), which is inherently violated by fragile glass-
formers. The error caused by the Arrhenius approximation can be decreased by narrowing the heating
rate range. The T; values were here determined as the intercept between the extrapolated glass heat
flow and the extrapolated line from the inflection point of the overshoot in heat flow at T,. The liquid
fragility is then determined from the slope of the log(1/q.) vs. T, /T¢ plot for each composition.

In order to determine m by the two TM-DSC procedures, the frequency dependence of the glass
transition is needed. To determine this, the samples were heated to a temperature of ~40-200 K above
Ty, cooled to ~40-200 K below T, with the same rate as the following upscan, and heated with
appropriate values for g (0.5, 2, or 5 K/min), A (3 or 5 K), and P (90 to 200 s). An example of a
temperature program for an experiment is therefore as follows: (a) heating from room temperature to
T4+150 K with g = 30 K/min, (b) cooling to T4-100 K with g = -2 K/min, and (c) heating to T4+150 K
with = 2 K/min, A =5 K, and P = 150 s. The raw data file from the Netzsch DSC instrument
contains the phase lag ¢, heat flow amplitude Anr, and heating rate amplitude Augr. From these raw
data, the reversing heat flow Ry can be calculated as the ratio of Ay and Agr.

The reversing heat flow is reported directly herein without corrections, while the phase lag has
been corrected using the Heat Transfer Correction procedure in the Netzsch Proteus Software, which
is a linear two-point correction using one point on either side of the glass transition. To prevent noise
from affecting the determination of T,”, we fitted a Gaussian function to the top part of the phase
signal peak in order to determine the peak temperature. The phase signal does not have a true
Gaussian shape, but by limiting the Gaussian fitting to the top part of the peak, the shape is
approximately Gaussian. For TM-DSC a linear response between input and output data is important.
For the chosen experimental conditions, the samples exhibited a linear response between heat flow vs.

heat rate data, evaluated using the procedure reported in Ref. [32].



4. Results and discussion
In the following, we present the m values determined by the three procedures described above: i)
Moynihan DSC approach, ii) activation energy TM-DSC approach, and iii) relaxation time TM-DSC

approach.

(A) Moynihan DSC approach

Fig. 2 shows the logarithmic inverse cooling rate (log(1/q.) as a function of the normalized fictive
temperature (T,/Tr) as used in the Moynihan approach for standard DSC. The utilized heating rates
(qc) are not identical for all samples. For example, for high-SiO, compositions with low m and high T,
(i.e., lower instrument sensitivity at higher temperatures), the useable cooling/heating rates are limited
to relative high values, while the g, values for more fragile compositions are limited to a heating rate
range from 6-14 K/min. The heating rate dependence of the fictive temperatures can then be used to
approximate the fragility of the glass-forming liquids from the slope of the linear fits in Fig. 2. In
general, with this approach, we can accurately determine m values when comparing to viscometric
data (Figure 8a). However, the vanadium tellurite glasses exhibit discrepancies from the viscometric

values reported elsewhere [31].

(B) TM-DSC approaches
Next, we use the two TM-DSC approaches to determine m values. Both the activation energy and the
relaxation time TM-DSC procedures require quantification of the modulation frequency dependence
on the phase lag peak, as obtained from deconvolution of the raw data. Figure 3 shows the reversing
heat flow and the uncorrected and corrected phase lag in the glass transition range for the 39.8SiO,-
31.6 Al,05-28.7Ca0 (mol %) glass composition. The reversing heat flow signal exhibits a step change
around 1150 K due to the gained configurational degrees of freedom associated with the transition
from the solid glass to the supercooled liquid state.

Simultaneously we observe an asymmetric Gaussian peak in the phase lag signal, associated with

the change in the heat transfer during the transition from solid glass to supercooled liquid. From the



phase lag peak, a frequency dependent glass transition temperature (T4") can be determined, where »
is the angular frequency (w = 2n/P rad/s). The plot of Ty” vs. Ty is shown in Fig. 4 for all the glasses
from Table 1, where T4 is determined as the onset of the glass transition in a linear DSC heating scan
at 10 K/min. The compositional trend in the two measures of glass transition temperature is identical.
For example, both T,” and Ty exhibit high values for glasses with high SiO, content and lower values
for glasses with low SiO, content and the borate tellurite glasses. However, the absolute values of T,"
and Ty differ due to both different experimental conditions and differences in the procedure for
determining the glass transition temperature (e.g., onset vs. peak temperature). Considering the lower
heating rate in the TM-DSC compared to DSC experiments, T,” should be lower than T,. However,
since T4” is determined roughly as the midpoint of the glass transition and T, is determined as its
onset, T,” is consistently higher than T,. As the width of the glass transition is higher for high-SiO,
glasses compared to the other investigated compositions in this study, the difference between T, and
Tq increases as the SiO, content increases, in agreement with a previous report [32].

To determine m by the TM-DSC activation energy procedure, we need to consider the frequency
dependence of the phase lag peak. Fig. 5 shows the phase lag measured at four different frequencies
for the 39.8Si0,-31.6Al,0,-28.7Ca0 glass. We observe that T,” shifts to higher temperature with
decreasing modulation frequency as the characteristic relaxation time becomes shorter [26,33].
Analogous to the Moynihan DSC approach, the activation energy for structural relaxation can be
determined from the relationship between the characteristic temperature and the corresponding
frequency (Fig. 6), with the magnitude of the slope being proportional to that of the fragility index.

In addition to the frequency dependence of the phase lag, the frequency dependent relaxation
time procedure requires quantification of the temperate-dependent average relaxation time for the
corresponding frequency. When the temperature changes during a modulated scan, the relaxation time
changes accordingly. According to Kojima and coworkers, the average relaxation time t occurs at T,",
with t = P/2x [20,21]. To construct the Angell plot, T,” must be normalized by T,, confirmed as the
temperature at equilibrium viscosity 5 = 10" Pa s [34]. From literature studies it is known that at T,,

the shear relaxation time 7 is equal to ~100 s [5,35,36]. Using the relation between t and P, we find



that T, = T, when the modulation period is ~628 s. However, it would be inconvenient to perform
measurements with such high P value. For g = 2 K/min, the number of periods during the glass
transition range would be too few to enable a valid deconvolution of the raw data [18]. A sufficient
number of periods would require an underlying heating rate below 1 K/min, resulting in unacceptably
long experimental duration. Therefore, an alternative route to obtain Ty” = T, is needed. A linear
relationship between T,” and z at each modulation frequency has been reported [26]. By extrapolation
we can determine the glass transition temperature (T, ~ '®) where z = 100 s. By plotting T,”
normalized by the determined Ty~ '® value as a function of the calculated 7 values at each modulation
frequency, we obtain an Angell plot (Fig. 7). Using the definition of fragility (Eg. (3)), we can
calculate m for each glass-forming liquid.

Finally, we note that the relaxation time is not equal to 100 s at T, (where n=10" Pa s) for some
glass systems, given their difference in shear modulus (G) following the Maxwell relation 7 = #/G.
However, the effect of an error in the relaxation time estimation on m is small. For example, if the
data was instead extrapolated to the glass transition temperature with z = 40 s, the change in m is
within +1-3%. For simplicity, we have therefore used a relaxation time at Ty of 100 s in the fragility

determination.

(C) Comparison of fragility methods

All of the fragility values determined by the three methods are shown in Fig. 8. For a few
compositions, the calorimetric fragility values differ significantly from those determined using
viscometry. As shown in Fig. 8a for the fragilities determined using Moynihan’s DSC approach, the m
values for the vanadium tellurite compositions ranges from 39 to 82, with all the viscometric m values
are around 80. We consider this erroneous estimation to be due to the small difference between fictive
temperatures at different heating rates, which in turn is of the same magnitude as the error in
temperature when using a DSC. In Figs. 8b and 8c, where the data originate from the same set of
frequency-dependent TM-DSC data, the fragilities of the vanadium tellurite compositions are closer to
those determined by the viscometric method. However, for the TM-DSC methods, we observe largely
underestimated fragility values for the barium titanosilicate and for a borate composition. These

9



unsystematic errors constitute a significant limitation for using TM-DSC to determine fragility, but it
should be noted that the same problem is found using the standard linear DSC method (Fig. 8a). In the
following discussion, the largely underestimated (outlier) fragility values (red data points in Figs. 8a-
c) are thus neglected. Furthermore, we neglect the data of all the tellurite glasses from Fig. 8a, due to
the large variation in the calorimetric m values, which is unrealistic considering the similar fragility of
those glasses reported in literature [31].

For all three procedures of liquid fragility determination, we observe an approximately linear
relationship between viscometric fragility and calorimetric fragility. However, the calorimetric
fragilities are generally underestimated when probed by DSC, as all three DSC and TM-DSC
procedures assume Arrhenius dynamics around T, [9]. Since such Arrhenian behavior is only obeyed
by the strong glass-forming liquids (such as SiO,), an inherent error exists in the different procedures
for determining fragility, resulting in the underestimation of m. To circumvent this systematic
problem, Zheng et al. [9] have recently suggested to correct calorimetric fragility values (mpsc) to
corresponding viscometric fragility (m,;s) values using an empirical relation,

Myis = 1.289(mpgc —mo) + my, 5)
where mq is the fragility of a glass-forming liquid exhibiting Arrhenius behavior equal to 14.97 [9].
By using this approach to correct the present data, we obtain the fragility values shown in Fig. 9.
Interestingly, for our data, we obtain the fitting coefficients (1.289 from the previous study [9]) of
1.30+0.06 and 1.30+0.07 by using the Moynihan DSC procedure and the activation energy TM-DSC
procedure, respectively. We note that both the present study and Ref. [9] include the same vanadium
tellurite glasses, but otherwise different compositions. This agreement supports the validity of the
correction method proposed in Ref. [9], while it also indicates that we are probing the same type of
relaxation using both DSC and TM-DSC measurements. For the relaxation time TM-DSC procedure,
which requires the determination of relaxation time, the fitting coefficient is found to be 1.20+0.05,
slightly smaller than for the two other procedures. After the correction procedure, the fragility values
of both TM-DSC procedures result in the same m values.

TM-DSC has two main advantages over linear DSC when determining fragility. First, the
superior sensitivity and signal-to-noise ratio at high temperatures of TM-DSC allows for
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determination of fragility values of relatively strong glass-forming liquids that typically have higher
Ty Second, in the Moynihan DSC approach, the ease of determining the characteristic onset
temperature (i.e., fictive temperature) depends on the width, magnitude, and sharpness of the glass
transition and thus fragility. That is, it is typically easier to determine T of fragile liquids compared to
strong liquids since it is difficult to get a precise tangent line from C, of the glassy state. On the other
hand, the TM-DSC approaches rely on the Gaussian fit to the phase lag curve, allowing a more
reliable determination of the characteristic temperature, as the fit to the data uses all available data
points compared to only two data points on either side of the glass transition for the Moynihan DSC
approach. This difference results in a lower standard error in the fragility values determined by TM-
DSC. This can be seen from the size of the error bars in Fig. 10 for a series of fully charge-
compensated calcium aluminosilicates.

Using Moynihan’s DSC approach to determine fragility of the tectosilicate compositions in Fig.
10, we were unable to determine m of the glass-forming liquids with SiO, content of more than 82
mol%, such as the glass-forming liquid named Si86 in Fig. 1. However, TM-DSC has been found to
enable fragility determination of liquids with SiO, content at least up to 90 mol% (Fig. 10), and
potentially allow for determination of the fragility of fused SiO,. Finally, we note that TM-DSC
succeeds in reproducing the composition-dependent trend in fragility for the tectosilicates, but the
magnitude of the m values tends to be underestimated for high-m compositions and overestimated for
low-m compositions (Fig. 10). It should be mentioned that the viscometric fragility data of the liquids
with high SiO, content were not available and thus are not included in the correction procedure of the
TM-DSC data [9]. As Eq. (5) increases the fragility value of all liquids with non-Arrhenius behavior
(i.e., with m > 14.97), the correction function cannot adequately correct the low-m data in this glass
series. This suggests that a more advanced correction procedure might be needed for strong glass-

forming liquids.

6. Conclusions
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We have demonstrated that TM-DSC can be used to determine the liquid fragility index of glass
compositions with a large range of glass transition temperatures. The TM-DSC fragility data have
been compared to both viscometric data and the well-known DSC data obtained by the Moynihan
approach. TM-DSC provides the fragility data with similar accuracy to that obtained by the other two
approaches, but with improved precision. Furthermore, TM-DSC enables determination of fragility of
relatively strong glass-forming liquids, as the superimposed sinusoidal heating rate increases the
sensitivity of the instrument, in contrast to linear DSC. The main disadvantage of the TM-DSC
method is the apparent overestimation of the fragility of rather strong liquids and underestimation of

the fragility of rather fragile liquids.
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Tables and Figures
Table 1. Analyzed chemical compositions (in mol%), measured glass transition temperature (Ty),
extrapolated glass transition temperature with =100 s (T4~ 199 “liquid fragility index determined by
viscometry (my;s) (literature data [29,30]), and liquid fragility index determined by TM-DSC (Mty.psc)
corrected using Eq. (5),. When the total compositions do not add to 100%, the minor impurity oxides

are MgO, Fe,03;, and TiO, (total <0.7 mol%).

pivrervid T [ T™K | me©) | Mowose ()
89.9Si0,-4.6Al,05-5.5Ca0 1189 1226 - 27
86.0Si0,-6.6 Al,O5-7.4Ca0 1173 1192 - 29
81.5Si0,-9.2 Al,05-9.3Ca0 1156 1177 - 25
78.25i0,-10.6 Al,0;-10.9Ca0 1151 1165 - 25
72.65i0,-13.5 Al,0;-14.0Ca0 1149 1150 - 27
69.0Si0,-15.9 Al,05-14.8Ca0 1143 1149 38 31
60.6Si0,-20.1 Al,05-19.3Ca0 1140 1144 - 30
54.95i0,-22.6 Al,05-22.0Ca0 1136 1136 49 31
48.55i0,-25.9 Al,05-25.6Ca0 1136 1137 - 37
46.4Si0,-26.7 Al,05-26.3Ca0 1135 1132 54 36
45.1Si0,-29.0 Al,05-25.9Ca0 1132 1132 - 40
39.8Si0,-31.6 Al,05-28.7Ca0 1132 1131 - 42
30.0Si0,-35.0A1,0;-34.3Ca0 1124 1125 57 48
55.35i0,-24.6A1,0;-19.6Ca0 1137 1146 48 40
60.3Si0,-19.7A1,05-19.6Ca0 1131 1140 46 40
64.4Si0,-15.0A1,05-20.2Ca0 1110 1116 46 40
69.65i0,-9.9A1,05-20.0Ca0 1076 1086 41 39
33Li,0-67B,0;° 769 760 8gP 30
33Na,0-67B,0;° 747 748 82° 98
33Ba0-67B,0;° 866 865 97P 99
40Ba0-20Ti0,-40Si0,? 984 978 71 35
9.7V,0:-90.3TeO, 559 557 81 80
19.9V,0:-80.1TeO, 544 543 80 65
29.2V,0:-70.8TeO, 530 529 80 82
39.6V,05-60.4TeO, 518 517 79 93
50.2V,05-49.8TeO, 507 506 85 94

 Nominal chemical composition.

b Literature values and thus not determined for the specific sample.
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Figure 1. (a) Heat flow as a function of temperature obtained at different heating rates for the
86.0Si0,-6.6 Al,05-7.4Ca0 (mol%) glass using linear DSC. These data can be used for determination
of the activation energy for structural relaxation and thus fragility using the Moynihan approach [10-
14,16,17]. Note that it can be challenging to determine the onset temperature (i.e., fictive temperature)
due to i) the low sensitivity of the calorimeter at these relatively high temperatures, and ii) the
relatively wide glass transition region due to the strong nature of the glass-forming liquid. (b)
Example of tangent fitting to the isobaric heat capacity curve, shown for scan with cooling/heating
rates of 10 K/min. Small variations in the tangent slopes can result in shifts of the fictive temperature
estimation by more than 10 K.
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Figure 2. Dependence of the reciprocal rate of logarithmic cooling rate (log (1/qc)) on the reduced
fictive temperature (T,/Ts) for three selected compositions. The fragility can be estimated from the
slope of the linear fit. The fragility values given in the legend are from viscometry, with that of the

81.5Si0,-9.2 Al,05-9.3Ca0 glass composition unavailable.
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Figure 3. Temperature dependence of the reversing heat flow and phase lag before, during, and after
the glass transition for 39.8Si0,-31.6 Al,05-28.7Ca0 (mol %) glass with =2 K/min, A=5K, and P
= 180 s. Both the uncorrected and corrected phase lags are shown. The correction used is the Heat
Transfer Correction in the Netzsch Proteus software. The determination of T,” from a Gaussian fit to

the phase lag is also shown.
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Figure 4. Dependence of the frequency-dependent glass transition temperature (T,”, as determined by
phase lag TM-DSC data) on the DSC glass transition temperature (Typsc, as determined by linear
DSC using a scanning rate of 10 K/min). Due to the different procedures for determination of the
characteristic temperatures, the deviation between the two set of glass transition values increases for
strong glass-forming liquids with high T, Inset shows the high temperature range with the largest
deviation between Ty” and T,. The values of T,” have been determined from scans with parameters /5 =

2 K/min, A=5K, and P=180s.
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Figure 5. Phase lag as a function of temperature obtained at different frequencies. The phase lag
curve and therefore glass transition temperature (T,”) shifts to higher temperature as the period
decreases, i.e., frequency increases. The data are here shown for the 39.8Si0,-31.6Al,0;-28.7Ca0O

(mol %) glass scanned with parameters =2 K/min, A=5 K, and P = 180, 150, 120 and 90 s.
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Figure 6. Logarithmic frequency as a function of the inverse phase peak temperature, illustrating the
activation energy approach to determine liquid fragility by TM-DSC. The phase lag and therefore the
glass transition temperature (T4”) shifts to higher temperature as the frequency increases. The data are
here shown for 39.8Si0,-31.6 Al,05-28.7Ca0 (mol %) glass scanned with parameters f = 2 K/min, A
= 5K, and P = 180, 150, 120 and 90 s. The fragility values given in the legend are from viscometry,

with that of the 81.5Si0,-9.2 Al,05-9.3Ca0 (mol %) glass composition unavailable.
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Figure 7. Angell plot of three selected compositions showing the relaxation time slightly above the
glass transition temperature. The relaxation times have been determined using z = 1/® = P/2x rad/s.
The straight lines represent linear fits to the data. The fragility values given in the legend are from

viscometry, with that of the 81.5Si0,-9.2 Al,03-9.3Ca0O (mol %) glass composition unavailable.
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Figure 8. Fragility values determined by (a) Moynihan’s DSC approach (mpsc), (b) activation energy
TM-DSC procedure (Mrm-psc, activation energy), aNd (C) relxation time TM-DSC procedure (Mmw-psc, relaxation
ime) @S a function of the fragility determined using viscometry (myisco). The m values are reported
directly from the activation energy or relaxation time plot without any further correction. For each
data set, some compositions (shown in red) exhibit m values far from the viscometric values. In (a),
these glasses are tellurites with low T, while for (b) and (c), it is barium titanosilicate and lithium

borate glasses. Viscometric fragilities are taken from Refs. [29,30].
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Figure 9. Corrected fragility values (m) determined by the Moynihan’s DSC approach and two TM-
DSC procedures as a function of the fragility determined using viscometry (mysco). The correction has
been made using the procedure presented by Zheng et al. [9]. The fitting coefficients are 1.30+0.06,
1.30+0.07, and 1.20+0.05 for Moynihan DSC approach, activation energy TM-DSC procedure,
relaxation time TM-DSC procedure, respectively. These values are close to those presented in Ref.
[9]. We note that the m values determined by the two TM-DSC approaches become identical after the
correction, with a tendency to underestimate m of strong glass-forming liquids and overestimate m for

more fragile compositions.
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Figure 10. Fragility values (m) of tectosilicate calcium aluminosilicate glass series obtained by
viscometric and calorimetric methods as a function of the SiO, content (see Table 1). The calorimetric
fragilities have been corrected. The fragilities determined by the two TM-DSC methods are
superimposed. The absolute values of the fragility probed by both DSC and TM-DSC approaches are
both underestimated compared to the viscometric data. Note that m values obtained by TM-DSC

exhibit smaller standard errors than those obtained by DSC. Viscometric data are taken from Ref.

[29].
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ARTICLE INFO ABSTRACT

Keywords: The inherent brittleness and poor crack resistance of oxide glasses have always been among their main lim-
Oxide glass itations for many advanced applications. As the formation of cracks leads to amplification of applied tensile
Indentation

stresses and ultimately catastrophic failure, there is an interest in understanding the compositional and struc-
tural dependence of crack initiation and growth. The resistance to cracking can conventionally be measured
using instrumented indentation that mimics the real-life damage for certain applications. Wada introduced a
method to evaluate the crack resistance by counting the number of initiated cracks as a function of the applied
load. Experiments have shown that the environmental humidity and the time period between indentation and
crack counting both affect the crack resistance value, but unfortunately these parameters are not always reported
in literature studies. Here we perform a systematic study of the time and humidity dependence of crack initiation
in calcium aluminosilicate glasses. Depending on the experimental conditions (time and humidity), the crack
resistance of an aluminosilicate glass can vary by more than a factor of two. Furthermore, the observed radial/
median cracks can initiate several hours after indentation. These results therefore indicate the need for a
standardized procedure for determination of crack resistance to allow comparison of data from different research
groups. We suggest including a sufficiently long waiting period (such as 24 h) between indentation and crack

Crack initiation
Crack resistance
Environmental effect

counting, as the majority of the crack initiation will then have occurred.

1. Introduction

Although they are among the manmade materials with the highest
intrinsic strength [1], a major drawback of oxide glasses for many ap-
plications is their inherent brittleness [1-4]. The practical strength of
glass is compromised by the presence of surface flaws, which act as
stress intensifiers ultimately leading to brittle fracture since oxide
glasses do not have a stable shearing mechanism to dissipate the
stresses [5]. Glass scientists have attempted to decrease the risk of
catastrophic failures through both compositional design and various
post-treatments (e.g., thermal tempering, lamination, partial crystal-
lization, and ion exchange) [6].

Sharp point contact is a primary failure mode for cover glasses in
personal electronic devices. Since Vickers indentation can be used to
replicate these failure conditions and due to its reproducibility and ease
of sample preparation/measurement, it is a suitable method for eva-
luation of the cracking behavior of glasses for many industrial appli-
cations [7]. In Vickers indentation, a diamond pyramid with a defined
pyramidal shape with the opposite faces having an angle of 136° is

* Corresponding author.
E-mail address: mos@bio.aau.dk (M.M. Smedskjaer).

https://doi.org/10.1016/j.jnoncrysol.2018.04.009

Received 5 February 2018; Received in revised form 20 March 2018; Accepted 2 April 2018

Available online 06 April 2018
0022-3093/ © 2018 Elsevier B.V. All rights reserved.

loaded onto the surface of a flat, polished sample. By measuring the size
of the resulting indentation relative to the applied force on the sample,
hardness can be obtained. The test can also be used to study the crack
initiation and growth behavior of glass. Traditionally, the cracking
behavior is quantified through the relationship between indentation
load and crack initiation probability. The resistance to crack initiation
is typically quantified using the approach of Wada et al. [8], in which
crack resistance (CR) is taken as the indentation load which on average
generates two radial/median cracks from the indent corners. CR can
thus be viewed as a measure of the resistance to surface damage, but its
determination is not straightforward. For example, indentation cracks
are difficult to detect when they are located beneath the surface,
aligned with the indentation edge, or too small to be observed using
optical microscopy [9].

In addition to the indentation load, the chemical composition and
any post-treatment of the glass [8,10] also affect the generation of
cracks. Moreover, the experimental conditions, including indentation
time [11,12], indenter tip geometry (including wear of the indenter tip)
[13], and surrounding environment have a profound effect on the
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cracking behavior of glasses. For example, the “less-brittle” soda-lime-
silica glass of Sehgal and Ito features a crack resistance of 3.5 kgf when
measured in pure nitrogen atmosphere [14], but only 1.0kgf when
measured in air [15]. The origin of the relation between crack initiation
and atmospheric humidity is not fully elucidated in literature, but the
possible mechanisms responsible for water-assisted crack initiation
could be related to a reaction between gaseous water and strained Si—O
bonds in the indent [16,17]:

=Si-0O-S= + H,0 — 2=SiOH

This is the idealized reaction for pure silica glass, but a similar
hydrolysis reaction has been reported for AlI-O bonds [16]. An in-
troduction of modifiers such as alkali or alkaline-earth cations yields
dangling bonds in the glass structure, which can facilitate a more rapid
hydrolysis reaction. Moreover, the hydrolysis reaction rate is reported
to increase when the glass is under compressive stress [18], probably
due to the energetically unfavorable strained bonds. An alternative
explanation relates to the entrance of water into the glass during in-
dentation, resulting in a weakening of the glass structure [19-21],
which has been reported, e.g., as reduced elastic moduli [18]. Water
does not significantly enter most silicate glasses at room temperature
due to a low diffusion rate; hence the proposal of a stress-assisted entry
[19]. Water entry has been reported to be the cause of low crack re-
sistance [17].

The influence of water vapor on other glass mechanical properties
has been thoroughly described, including the influence of water vapor
on crack propagation [3,22,23] and glass fatigue [2,4,24]. The influ-
ence of liquid water on crack initiation has also been reported [20],
although most literature studies have investigated the effect of water on
pre-existing cracks. Striepe et al. [24] showed that water vapor in-
creases the crack initiation probability, with the largest change for
dense glasses with lower fictive temperature. Despite the reported de-
pendence of crack initiation on humidity, there is no standard testing
procedure for determining CR in the literature. From a set of 32 papers
on indentation crack resistance of oxide glasses [15,24,26-55], ap-
proximately half of the studies reported the atmospheric conditions or
immersion medium, while the rest contained either no information
about the humidity or merely stated that the experiment was conducted
under “ambient conditions” (Fig. 1). However, this information is in-
sufficient, since ambient conditions can cover relative humidity (RH)

204

154

10+
57 I I
HEEE=sENR

No info Ambient Reported RH% N, Liquid medium No info Specified

Atmosphere Time

Number of papers

Fig. 1. Summary of the experimental conditions reported in literature studies
used when determining crack resistance, including the atmospheric conditions
and the time between indentation and counting of the number of cracks.
Although not always adequately described, the atmospheric conditions are
more often reported than the time between indentation and crack counting. The
data have been obtained from Refs. [15, 24, 26-55]. The data were found
among the papers referring to Wada's original work, using combinations of the
keywords “crack”, “crack resistance”, and “crack initiation” for oxide glasses.
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values down to ~30% in the winter and up to ~80% in the summer in
our laboratory in northern Europe. Furthermore, Lawn et al. [25] in-
vestigated crack initiation for soda-lime silicate glasses as a function of
contact time and atmospheric environment, observing delayed cracking
up to 600s after unloading of the indenter. That is, the time period
between indent imprinting and crack counting also influences the de-
termined crack resistance, as cracks can initiate over time, presumably
due the kinetics of stress-corrosion hydrolysis.

In the aforementioned set of 32 papers, approximately one third
specify the period between indent imprinting and crack counting
(Fig. 1), with no explicit reasoning given for the choice and inclusion of
short waiting periods (< 30s) to allow fast data collection or long
waiting periods (24 h). To our knowledge, only the paper by Scannell
et al. [36] has recently investigated the time dependence of crack in-
itiation, as they reported that crack initiation ceased two hours after
indentation for soda-titania-silicate glasses [36]. The dwell time during
indentation, which is the time the indenter is held at maximum load, is
15s in two-thirds of these 32 papers. Dwell time has been shown to
affect glass hardness [11,12,20], but to the best of our knowledge, the
relationship between crack initiation and dwell time has not been re-
ported in the literature. No reason is given for the choice of dwell time
in any of the 32 papers. We note that the recommended dwell time for
Vickers hardness measurements is 10-15s according to ASTM E384
[56], which could be the reason for the common use of 15 s dwell time
in crack resistance measurements.

In this work, we investigate the combined humidity and time de-
pendence of crack initiation to improve the understanding of stress-
release and cracking behavior of oxide glasses and develop an experi-
mental testing protocol for determining the crack resistance. We eval-
uate the time dependence by continuously monitoring the crack in-
itiation for at least 6h following indentation, enabling accurate
determination of the time of crack initiation. As in most laboratories,
the indenter instrument is not placed under a controlled atmosphere,
and we therefore evaluate the humidity dependence of indentation
cracking by performing the experiments during winter (relative hu-
midity of 39 = 8%) and summer (relative humidity of 70 = 9%). The
experiments are performed on two calcium aluminosilicate glasses (one
tectosilicate and one peralkaline composition).

2. Experimental section

The synthesis of the tectosilicate 60.35i05-19.7A1,03-19.6Ca0 and
peralkaline 66.9Si0,-12.3A1,05-20.3Ca0 (measured compositions, in
mol%) glasses was done using the melt-quench procedure, as described
in detail elsewhere [57]. The quenched glasses were cut and ground to
an optical finish before being annealing for 30 min at their respective
glass transition temperature T, of 1092 and 1129K, as previously re-
ported in Ref. [57]. The glasses were named according to their nominal
Al,O3 content, i.e., A120 and Al12. Using an ultrasonic thickness gauge,
Young's modulus and Poisson's ratio were determined to be
91 + 1GPa and 0.25 *= 0.01, respectively, for Al20 and 83 + 2 GPa
and 0.25 = 0.01, respectively, for Al12.

The crack initiation probability was measured using a Vickers mi-
croindenter (Duramin 5, Struers A/S) in air at 22-24 °C. Only radial/
median cracking from the corners of the indents was observed in these
glasses. The indents were performed at loads of 0.49, 0.98, 1.96, 2.94,
4.91, and 9.81 N using a dwell time of 15s. Images of the indents were
collected using optical microscopy every 10 s for the first 2-3 h after the
initial indentation and every 5min for up to 6-8h after indentation
(Fig. 2). We set t = 0 at the end of the 15s dwell time, when the in-
denter pyramid starts to unload. The first observation is made at
t = 15s5, as this is the time needed for turning from indenter to camera
mode on our instrument. The setup allows us to accurately determine
the time at which indentation cracking occurs, as exemplified in Fig. 3.
In this case, no cracks were visible immediately following unloading of
the indenter, but after 343 s the first crack appears, followed by three
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Fig. 2. Schematic of the experimental procedure for determination of the time (t) dependence of crack initiation. At time t, = 0, the indenter is unloaded after a 15s
dwell time, leaving the imprint exposed to the atmosphere. For t > 0, images of the imprint are continuously collected, allowing accurate determination of the time
of each crack initiation. The data have been collected continuously for 6 h. After the experiment is finished, the data are averaged for a minimum of 20 indentations

on the same glass and plotted as crack initiation probability vs. time.

additional cracks in the following 40 s. The relative humidity (RH) was
recorded at the beginning of each experiment and the data were sorted
into two groups: low (LRH) and high relative humidity (HRH) of
39 + 8% and 70 * 9%, respectively. The variation in RH during the
experiments was recorded for a few cases. Generally, RH increases <
5% during the day of measurement, i.e., significantly less than the
difference between the low and high RH groups.

3. Results and discussion

Crack initiation probability (CIP) was first determined immediately
following the micro-indentation (~35s) and then 24 h after the in-
dentation for the two glasses. These data are shown in Fig. 4 by plotting
the load dependence of CIP. CIP exhibits a pronounced dependence on
the Al,O3 content in the glasses, with a higher Al,O3 content leading to
a higher resistance to crack initiation, consistent with data reported in
literature [44]. That is, the higher concentration of NBOs in the Al12
glass results in a network more prone to deform through shear flow
than densification, decreasing the crack resistance. By comparing

(a)
y'.
‘ 1

10 pm 10 pm

otherwise identical experiments obtained in environments with dif-
ferent humidity, we observe that CIP is sensitive to the atmospheric
water vapor (Fig. 4), as CIP increases with increasing humidity for both
Al12 and Al20. This increase is ascribed to a glass-water reaction water
entering the glass [19,20]. The humidity-induced increase in CIP is
dependent on a combination of the indentation load and number of
cracks initiated at that load. For very low (< 1N) and very high loads
(> 5N), the residual stress is either too low for crack initiation, or so
high that most indent corners feature cracking, respectively. For the
intermediate indentation loads most affected by humidity, CIP is > 20
percentage points higher under high-humidity conditions than under
low-humidity conditions. Increased time between indentation and crack
counting also increases CIP (Fig. 4). This phenomenon is in agreement
with the delayed fracture reported by Lawn et al. [25]. We also observe
that when residual stress triggers the initiation of one crack, more
cracks initiate around the same indent subsequently as if the stress
release results in a chain-initiation of cracks. An example of this is
shown in Fig. 3, in which no cracks initiate within the first 343 s, where
after four cracks appear within 50s.

(b) © | (d) i

10 pm 10 pm

Fig. 3. Images of an indent at four different times after indentation, showing the time dependence of crack initiation for the Al20 glass using a load of 1.96 N with
RH = 37.2%. The images show an indent (a) right after imprinting and after 343 s (identical), (b) after 353s, (c) after 363 s, and (d) after 393s.
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Fig. 4. Effect of varying the indentation load on the crack initiation probability
for (a) Al12 and (b) Al20 for low relative humidity (LRH) (full line) and high
relative humidity (HRH) (dashed line) conditions counted after 35 s (blue line)
and 24 h (red line). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 1

Crack resistance (CR) determined under low (LRH) and high relative humidity
(HRH) conditions for Al12.5 and Al20 glasses. The cracks have been counted
after both 35s and 24 h. The error in CR is within + 0.2N.

CR of Al12 (N) CR of Al20 (N)

35s 24h 35s 24h
LRH 25 1.4 3.4 2.6
HRH 1.7 1.0 2.6 2.1

The crack resistance (CR) is often used to compare the resistance of
glasses against radial/median crack formation in different glass com-
positions or after different post-treatments. Indeed, the two different
compositions in this study exhibit different CR values, with Al20 being
more resistant to crack initiation (Table 1). This compositional differ-
ence between Al12 and Al20 is the same as described above for the CIP
data, as CR is determined from the CIP vs. load plot. However, the
absolute value of CR is dependent on other factors besides chemical
composition. For Al12, CR is 2.2 N in a low-humidity environment if the
cracks are counted after 35s, and decreases to 1.6 N under the more
humid experimental conditions. The equivalent CR values for Al20 are
3.4N and 2.6 N, respectively. By performing crack counting after 24 h,
the difference between low and high humidity conditions is reduced,
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Fig. 5. Crack initiation probability over an extended time period at various
loads and humidities for (a) Al12 and (b) Al20 glasses. The applied loads are
0.49 (black), 0.98 (red), 1.96 (blue), 2.94 (green), and 4.91 N (purple). The
solid lines represent data obtained under low humidity conditions, while the
dashed lines are obtained at high humidity conditions. The development in
crack initiation probability between 22,200 and 76,500 s has been extrapolated.
The vertical dashed lines represent the end of the continuous data collection.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

with CR values of 1.4 and 1.0 N, respectively, for Al12 and 2.6 and
2.1 N, respectively, for Al20. The time of crack counting influences the
determined CR values, as the longer initiation period allows for the
formation of more cracks, leading to substantially lower CR values. This
time dependence of CR highlights the importance of using the same
period between indentation and counting when comparing CR of dif-
ferent glasses.

To further study the time dependence of crack initiation, we have
counted the number of cracks every 10s for several hours. The time
dependence of CIP is then plotted in Fig. 5a for Al12 and Fig. 5b for
Al20 at different indentation loads and under both low and high re-
lative humidity. We observe that crack initiation can occur for both
glass compositions and both environments if the load is sufficiently
high. For both samples and environments, the rate of crack initiation
decreases with time. That is, the crack initiation rate (i.e., slope of CIP
vs. time) is relatively high within the first ~300 s after the indentation,
but a substantial number of cracks continue to initiate up to 3 h after
indentation. While most of the long-term cracking has ceased after 2 h,
in agreement with the findings of Scannell et al. [36], we observe that
cracks continue to initiate for many hours, although the crack initiation
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rate decreases with time. For a few experiments, we counted the cracks
continuously for a 24 h period and observed crack initiation after >
19h. The decreasing crack initiation rate with time is related to the
stress release following initiation of cracks, leading to decreasing re-
sidual stress around indents with time.

As is evident from Fig. 4, the relative humidity affects the measured
value of CIP immediately following indentation. We also observe that
indentations performed under high humidity conditions lead to higher
CIP values within the first 15s compared to those under low humidity
conditions (Fig. 5), which is due to the stress corrosion reactions [18].
However, for the high humidity experiments, the initiation of new
cracks at the longest times is relatively small, presumably because the
high initial CIP value leave fewer uncracked indent corners, from which
cracks can initiate subsequently. For the low humidity experiments, the
rate of crack initiation within the first few minutes is lower than at
higher humidity, but the rate at longer times is larger. As such, the
difference in CIP between the two humidity conditions decreases with
increasing time, although a significant difference remains after 24 h
(Fig. 5). To study this further, we revisited some of the indents made at
different loads 1.5year after the original indentations. The samples
were stored in a plastic bag in our lab and exposed to varying humidity.
An increase in crack initiation probability from 44% after 24 h to 47%
after 1.5years is observed, suggesting that the majority of crack in-
itiation occurs within the first 24 h.

To further analyze the time-dependence of crack initiation, we next
attempt to identify an equation to describe these kinetics. For example,
a diffusion-controlled reaction should exhibit a square-root dependence
on time. We thus attempted to fit the experimental in Fig. 5 using a
variety of functional forms, including stretched exponential functions,
power functions, etc. This also included treating the problem in terms of
reactions kinetics with a reactant (e.g., environmental humidity) and
product (probability of crack initiation) with varying “concentrations”.
The underlying physics governing the kinetics mechanism are probably
highly complicated, involving the interplay between glass composition,
load, humidity, time, etc. However, as an initial attempt to understand
the time-dependence of crack initiation, we found the best fit (also
considering that the number of adjustable parameters should be a small
as possible) to be a power function of type

y = Attn, (€8]

where y is the percentage of uncracked indent corners, t is time, and A
and n are interrelated composition, humidity, and load dependent
constants. A depends on the total concentration of initiated cracks,
while n controls the time-dependent curvature of the crack-time de-
pendence. We note that the model does not have the right limiting
behavior at initial time as the crack initiation probability approaches
infinity for t — 0. However, the function reproduces both the steepness
at short times as well as the time-dependence of cracking for a wide
load range and for both compositions and humidity levels (Fig. 6a).
Based on these quantitative descriptions of the time-dependence of
crack initiation, we find that the A parameter systematically decreases
with increasing load and humidity (Fig. 6b). A is also smaller for glass
Al12 compared to Al20. These trends in A are in agreement with the
qualitative assessment of the crack initiation data (Fig. 5). The n
parameter describing the steepness of the curve is also load dependent,
but its dependence on composition and humidity is not systematic
(Fig. 6¢). This may be because n and A are interrelated and a complex,
convoluted function of load, humidity, and composition, or because the
model does not accurately capture the discrete evolution of the data.
Accordingly, the errors associated with the fitting parameters are re-
latively large. More work is thus needed to improve the fundamental
understanding of crack initiation and its composition dependence.
The observed influence of both humidity and time of crack counting
on crack initiation emphasizes the need for standardized protocols for
determination of crack resistance. We therefore recommend that all
measurements of crack resistance are performed under similar humidity
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Fig. 6. (a) Time dependence of the number of uncracked indent corners for
Al12 glass in low relative humidity conditions. The applied loads are 0.49
(black), 0.98 (red), 1.96 (blue), 2.94 (green), and 4.91 N (purple). The open
symbols represent data acquired by the procedure shown in Fig. 2, while the
dashed lines are the model fits to Eq. (1). The data used for fitting have been
restricted to 49 data points within the first 10,000s. The fits for other experi-
mental conditions (relative humidity and glass composition) are similar. (b,c)
Load dependence of the (b) A and (c) n fitting parameters in Eq. (1) used for the
modeling the time dependence of the crack initiation data. We have omitted the
A and n values for loads that do not create any cracks as their time-dependence
cannot be captured by the model. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

conditions for internal comparison and that the average relative hu-
midity is reported. Ideally, the measurements are performed in a closed
environment with a controlled humidity such as a glovebox. Using a
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glovebox with nitrogen atmosphere would simplify the data compar-
ison, but it would not simulate real-world cracking conditions where
humidity is present. Our results also suggest that cracks should not be
counted within the first 5 min, as small variations in the time between t,
and the time of crack counting will result in an erroneous determination
of crack initiation probability and crack resistance. It appears that 3 h is
a more appropriate minimum waiting time between indentation and
crack counting, but for practical purposes, a waiting period of 24h
might be the best option. In addition to time and humidity, the che-
mical composition of the glass also needs to be considered, as the re-
activity between atmospheric water and glass greatly depends on the
type of network former. Borate glasses tend to be rather hygroscopic,
while the reactivity between aluminosilicate glasses and water is lower.
The role of the chemical composition on the rate of crack initiation
should be addressed when designing comparable experiments of glasses
of different compositions. The present results indicate that to compare
different chemical compositions accurately, cracks should be counted
after a sufficiently long waiting period to allow the majority of crack
initiation to have occurred, e.g., 24 h.

Finally, we note that the reported time-dependence of crack initia-
tion may also be of importance for determination of frangibility. In a
frangibility experiment, delayed failure is needed to isolate cracking
due to the release of internally stored energy from impact induced
cracking [58]. Typically, the specimen is observed for 60s, but the
present results show that cracks can initiate at much longer timescales.
A revision of the experimental procedure for frangibility testing could
thus also be needed.

4. Conclusions

The damage resistance of oxide glasses is often evaluated by mea-
suring the crack resistance using Vickers micro indentation. Although
the cracking behavior and the number of initiated crack is highly de-
pendent on atmospheric water vapor and of the time between im-
printing and crack counting, these experimental conditions are not al-
ways reported in literature studies. We have shown that the crack
resistance decreases dramatically for two calcium aluminosilicate
glasses when the experiments are performed under high-humidity ra-
ther than low-humidity conditions and when cracks are counted after
24 h compared to 35 s. Furthermore, we report quantitative data on the
crack initiation rate obtained by continuous collection of images of
indents for 6 h and find that most of the radial/median crack initiation
ceases after 3 h, but with examples of crack initiation after > 19 h.
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The stress-induced birefringence (photoelastic response) in oxide glasses has important consequences
for several applications, including glass for flat panel displays, chemically strengthened cover glass, and
advanced optical glasses. While the effect of composition on the photoelastic response is relatively well
documented, the effect of pressure has not been systematically studied. In this work, we evaluate the
effect of hot isostatic compression on the photoelastic response of ten oxide glasses within two
commonly used industrial glass families: aluminosilicates and boroaluminosilicates. Hot isostatic
compression generally results in decreasing modifier-oxygen bond lengths and increasing network-
former coordination numbers. These structural changes should lead to an increase in the stress optic
coefficient (C) according to the model of Zwanziger et al., which can successfully predict the composition
and structure dependence of C. However, in compressed glasses, we observe the opposite trend, viz., a
decrease in the stress optic coefficient as a result of pressurization. We discuss this result based on
measured changes in refractive index and elastic moduli within the context of atomic and lattice effects,
building on the pioneering work of Mueller. We propose that the pressure-induced decrease in C is a

result of changes in the shear modulus due to underlying topological changes in the glass network.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Glasses are inherently isotropic due to their lack of long-range
order. However, under a deviatoric stress the glass can exhibit an
anisotropic response, including optical birefringence. The magni-
tude of this stress-induced birefringence can be quantified by the
stress optic coefficient (C), which is the proportionality constant
between birefringence and applied stress:

0 = Cal, (1)

where ¢ is the difference in the optical path length for light polar-
ization along the stress axis and the orthogonal direction, ¢ is the
applied uniaxial stress, and [ is the sample thickness. When the
uniaxial stress is applied to the glass, it changes its dielectric
response in both the stress direction and in the orthogonal direc-
tion. The resulting birefringence is proportional to this difference.

For advanced optical applications, small amounts of

* Corresponding author.
E-mail address: mos@bio.aau.dk (M.M. Smedskjaer).

http://dx.doi.org/10.1016/j.optmat.2017.03.060
0925-3467/© 2017 Elsevier B.V. All rights reserved.

birefringence can be a serious problem [1—4]. Typically standard
network formers (e.g., SiO,, B203, and P20s) lead to a large positive
birefringence (thus large positive C value), while traditional
network modifiers (e.g., Na;O and CaO) act to decrease the bire-
fringence only slightly, leading to positive birefringence for stan-
dard oxide glass compositions. To obtain zero-stress optic glasses,
the positive birefringence originating from the typical glass formers
has traditionally been counterbalanced by the addition of PbO,
which affects the birefringence negatively [5—7]. However, recent
health and environmental regulations that aim at reducing the
usage of lead due to its toxicity have necessitated research in the
compositional and structural origins of the photoelastic response
[2,8,9]. This research has led to the development of new lead-free
glass compositions, exhibiting zero-stress optic response when
strained anisotropically [2,7,9—13].

In the 1930s, Mueller proposed that the stress optic response of
a material arises from lattice distortions and atomic polarizability
[14,15]. Building on Mueller's concepts, Zwanziger and co-workers
[2] proposed an empirical model to predict the birefringence in
oxide glasses from the ratio between the cation-anion bond length
(d) and the cation coordination number (N:) of the glass
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components. Based on the available literature data, they discovered
that a d/N¢ ratio of approximately 0.5 A leads to a zero-stress glass,
while negative and positive birefringence occurs when the ratio is
above and below 0.5 A, respectively. Mathematically, the empirical
condition for C =0 is

in (Nic) ~0.5A, 2)

where the sum is over all the components i in the glass, and x; is
their respective mole fraction.

In their initial work, Zwanziger and co-workers used bond
lengths and coordination numbers from crystallographic data,
resulting in good qualitative agreement between model and data
[2]. Later studies have supported their original findings by using
more accurate bond lengths and coordination numbers in the
actual glasses based on simulations [16,17] and experimental
structural probes such as Mossbauer spectroscopy [17], nuclear
magnetic resonance spectroscopy [7,8,17], Raman spectroscopy
[9,18], extended X-ray absorption fine structure [18], and X-ray
diffraction [7]. These findings support the original approach for
estimating the stress optic response of oxide glasses, but they also
show that detailed structural information is required to enable
accurate predictions of the composition dependence of C.

The importance of d and N. in controlling the stress optic
response originates from their effect on the elastic response of a
glass subjected to anisotropic stress. The bond length correlates
positively with bond metallicity [19]. A more metallic bond is less
directional and is thus free to be distorted in both the direction of
the anisotropic stress and in the orthogonal direction. The coordi-
nation number also affects the deformation mechanism. Structural
units with high coordination numbers tend to be distorted iso-
tropically, whereas structural units with low coordination numbers
are more susceptible to anisotropic distortion. Accordingly, glasses
with tailored stress response can be produced by balancing the
distortion mechanisms through glass composition design.

To further clarify the structural and topological origins of the
photoelastic response of oxide glasses, here we investigate the ef-
fect of hot compression at 1 GPa on C in two families of industrial
oxide glasses, covering a range of aluminosilicate and bor-
oaluminosilicate compositions. Compression is performed at high
pressure-high temperature conditions (typically near the ambient
Tg), enabling permanent and isostatic densification at modest
pressure (~1 GPa) of bulk samples (cm?). Due to the high viscosity
of the glass at ambient conditions, the glass structure is captured
permanently in the densified state as a result of the pressure-
quench [20]. This, in turn, enables ex situ measurements of

Table 1

pressure-induced changes in mechanical and optical properties
[21]. Although the dependence of the photoelastic effect on density
and pressure has previously been discussed to some extent [22,23],
this study will clarify the role of permanent network densification
and pressure-induced structural transformations on photo-
elasticity. This is because the hot compression method is known to
induce permanent changes in oxide glass structures, including
modifier-oxygen bond lengths and cation coordination numbers
[24]. As such, this approach enables us to test the underlying as-
sumptions of the Zwanziger model (Eq. (2)), i.e., whether the effects
of bond length and coordination number on C are indeed causal
relations. Furthermore, we compare the pressure-induced changes
in C with the changes in elastic moduli, since a recent study showed
that the resistance of a material to elastic shear deformation is
related to birefringence [25]. For this work, we choose ten different
glass compositions with significantly different initial C values (from
1.86 to 6.22 nm MPa~! cm™!, see Table 1) in the borosilicate and
aluminosilicate families, as these glasses are known to exhibit
different but well-understood structural responses to hot isostatic
compression [21,26—29]. For example, hot compression at 1 GPa
can result in pronounced structural changes in borosilicate glasses
(e.g., B — BY) [28], while the structural changes in aluminosili-
cate glasses (e.g., AV — AlY) are more modest at this pressure
range [26].

2. Experimental section

The total of 10 different silicate glasses (Table 1) were prepared
by mixing the appropriate amounts of raw materials, then melting
the mixtures overnight in a covered Pt crucible in air at 1650 °C, and
finally quenching the melts on metal plates. The glass transition
temperatures (Tg) of the glasses were determined by beam bending
viscometry, and the glasses were annealed for 30 min at their
respective Tg. After thermal annealing, all glasses were subjected to
hot isostatic compression (see Ref. [21] for details) at 1 GPa for
30 min at the ambient pressure Tg value, which was well above the
structural relaxation time at this temperature. The samples were
compressed in a nitrogen gas pressure chamber, which contains a
multizone cylindrical furnace. Following the 30-min compression
at Tg, the system was first cooled and then decompressed at around
60 K min~! and 30 MPa min~, respectively.

The Archimedes buoyancy principle was used for determination
of glass density p of both annealed and compressed samples.
Ethanol was used as the immersion liquid and each sample was
weighed ten times in both air and ethanol. From the density data,
we calculated the plastic compressibility (§) and the molar volume
(Vm) as

Sample code and oxide components, glass transition temperature (Ty), plastic compressibility (8), density (p), stress optic coefficient (C), refractive index (n), shear modulus (G),
and Young's modulus (E) of the glasses in this study. The errors associated with the measured values are +0.003 GPa for 8, +0.002 g cm > for p, <1% for C, +0.0001 for n, and <1%

for G and E.
Glass ID  Oxide components Ty 6 p C n G E
(K) (GPa™!) (gcm™3) (nmMPa'em™!)  (-) (GPa) (GPa)

ambient 1GPa ambient 1GPa ambient 1GPa ambient 1GPa ambient 1 GPa
SAP1 SiO,, Al,O3, P,0s, Nay0, ZnO 935 0.023 2.519 2578 322 3.07 1.505 1.517 274 29.6 66.8 72.8
SAP2 SiOy, Al,0O3, P20s, Na;0, ZnO 858 0.020 2.571 2.623 317 3.03 1.514 1.526 282 29.6 68.9 72.8
SAB1 SiOy, Al;03, B;03, Ca0 827 0.064 2.190 2340 4388 3.90 1.480 1.512 209 26.0 51.6 64.4
SAB2 Si0,, Al,0O3, B,03, Ca0 891 0.066 2.223 2381 466 3.73 1.490 1.522 221 27.6 54.6 68.2
SAB3 SiO,, Al,03, B,03, Ca0 921 0.070 2.218 2386  4.45 3.78 1.490 1.520 225 27.2 54.7 65.8
SABP1 SiOy, Al;03, B203, P20s5 903 0.057 2.203 2337 443 3.82 1.473 1.500 23.0 27.6 55.4 66.7
SAB4 Si0,, Al,03, By03 746 0.070 2.119 2280 528 414 1.477 1.511 19.1 24.9 47.4 61.4
SABP2 SiO,, Al,03, B,03, P,0s 703 0.066 2.073 2219 622 490 1.462 1494 153 19.7 371 47.8
SA1 SiO,, Al,03, MgO, CaO 1088  0.008 2.918 2.941 1.86 1.81 1.664 1.670 421 42.7 107.1 109.1
SA2 SiO,, Al,03, MgO, CaO 1097 0.012 2.907 2.941 1.86 1.80 1.653 1.659 412 420 1054 107.5
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where Vj is the sample volume before compression, AV/AP is the
change in volume as a response to the change in pressure, and x;
and M; are the mole fraction and molar mass of oxide i, respectively.
The plastic compressibility quantifies the permanent relative
change in volume as a response to pressure. Consequently, the
elastic component of the compression is not considered, as the
density measurements are performed ex situ following cooling and
decompression.

Shear modulus (G) and Young's modulus (E) were determined
using resonant ultrasound spectroscopy for all glasses. Glass sam-
ples of about 10 x 8 x 6 mm’ with polished surfaces were used to
gather resonance spectra from 100 to 300 kHz. For each sample, the
first five resonant peaks in the frequency domain resulting from
excited resonant eigenmodes were used to calculate the elastic
moduli. The errors of the reported elastic moduli do not exceed
+1%. Refractive index n of the pre- and post-compressed glasses
was measured at the sodium bp-line (589.3 nm) using prism
coupling refractometry on optically polished samples.

The stress optic coefficient for each glass was determined by a
diametral compression method. Two cylindrical samples (diam-
eter: 12.7 mm; height: 7 mm) with parallel faces and an optical
finish were prepared for each glass composition. Each sample was
then loaded under diametral compression to ~55 kg force and an
interference figure was viewed through crossed polarizers using a
polarized light microscope at 546 nm (using a green filter with
10 nm bandwidth). The interference figure, or Maltese cross, was
visually centered, and retardation measurements were made using
a calcite magnesium prism containing Berek compensator. The
stress optic coefficient was subsequently calculated using Eq. (1).
The average of two samples was recorded as the measured value of
C for each composition. The difference in measured C values be-
tween the two samples was always less than 0.5%.

3. Results

Table 1 compiles the measured glass transition temperature (Tg),
density (p), plastic compressibility (), stress optic coefficient (C),
refractive index (n), shear modulus (G), and Young's modulus (E)
data for all pre- and post-compressed samples.

The ten glasses densify to different extents upon 1 GPa
compression at Tg, thus resulting in different plastic compressibility
values ranging from 0.008 to 0.070 GPa~ . Initial density and molar
volume values are plotted as a function of plastic compressibility in
Fig. 1. Plastic compressibility (i.e., magnitude of the volume densi-
fication) scales approximately linearly with the initial density and
the initial molar volume. That is, glasses with a high initial density
and a low initial molar volume show larger resistance to compac-
tion when compressed isostatically at high temperatures, while
glasses with low densities and high molar volumes generally show
less resistance towards compaction.

Upon hot compression, all the glasses permanently densify and
thus exhibit increased values of elastic moduli and refractive index,
while the stress optic coefficient is always found to decrease as a
result of compression (Table 1). The extents of these changes in
mechanical and optical properties depend on the glass composi-
tion. Fig. 2 shows the dependence of the initial C values of the
annealed (pre-compressed) glasses and the pressure-induced
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Fig. 1. Dependence of density (black squares) and molar volume (blue circles) of the
annealed (not-compressed) glasses on the plastic compressibility (Eq. (3)). The errors
in density and molar volume are smaller than the size of the symbols. Dashed lines are
guides for the eye. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

j=cC 2 L0.25
61 o amE, 4 '
-~ A
P | AGIG, A oo £ F0.20 +
£ 5 S >
o n oo
“© " lots
o 44 ° ’
= <
E - 010 &
= 3 A w
© g
de 0.05 4
21 g%
, : , 0.00
0.00 0.02 0.04 0.06 0.08

Plastic compressibility (GPa™)

Fig. 2. Stress optic coefficient (C) of the annealed (not-compressed) glasses (black
squares) and the pressure-induced relative changes in Young's (AE/Ey) (blue circles)
and shear moduli (AG/Gy) (red triangles) as a function of the plastic compressibility
(Eq. (3)). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

relative changes in Young's (AE/Ep) and shear moduli (AG/Gp) on
the plastic compressibility. The observed positive correlation
among these properties indicates that the ability of an oxide glass
to deform and its photoelastic response may be intimately con-
nected. Fig. 3 shows an approximately linear relationship between
the pressure-induced change in stress optic coefficient (AC/Cp) and
those of Young's (AE/Ep) and shear moduli (AG/Gp), pointing to
potentially common structural and topological origins of the elastic
and photoelastic properties.

4. Discussion
4.1. Apparent mismatch between data and Zwanziger model

The Zwanziger et al. model of Eq. (2) can be used to predict the
composition dependence of the stress optic coefficient (C)
[2,7—13,16—18]. If the average cation-oxygen bond length decreases
and/or the average coordination number increases, it results in a
more positive value of C. Based on previous work in the literature,
hot isostatic compression of oxide glasses generally results in
decreasing modifier-oxygen bond lengths and increasing network-
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former coordination numbers. That is, in pressure/temperature
conditions similar to the ones applied in this study, increases in
boron [27—-29] and aluminum [24,26,30,31] coordination numbers
have been reported. The extent of the conversions of B to B and
of A"V to AlY or AIY! have been found to depend on the non-bridging
oxygen (NBO) content through the equilibria B™ + NBO = BV
[24,32] and AI'Y + NBO = AlY [26,30]. For the network modifiers,
no pressure-induced changes in coordination numbers are ex-
pected. For example, hot compression has been found not to affect
the Na coordination using >Na nuclear magnetic resonance spec-
troscopy [29].

The cation-anion bond lengths are expected to change during
hot compression. Decreasing bond lengths have been reported for
both alkali (Na—O bonds [24,27,29,33]) and alkaline earth [31] ox-
ides, while the reported pressure-induced increases in coordina-
tion numbers of the network-forming cations [24,26,30,32] should
increase the bond length of the newly formed higher-coordinated
species to accommodate them in the coordination sphere. For
example, increases in Si—O and Al—O bond lengths have been re-
ported for glasses quenched at 6—10 GPa [30], but considering the
large pressure-induced decrease in volumes (defined as the plastic
compressibility, see Table 1), we expect an overall decrease in the
average bond length in all glasses under investigation.

Based on the pressure-induced structural changes discussed
above, we would expect an increase in C when the glasses are
compressed according to Eq. (2). That is, the decrease in the mod-
ifier cation-oxygen bond length and the increase in network-
former coordination number should result in a decrease in the
sum of the ratio between average bond length and average coor-
dination number, which in turn should lead to an increase in C.
However, we observe the opposite trend, viz., a pronounced
decrease in C for all ten glass compositions as a result of
compression (Table 1). This suggests that other factors besides
d and N, are important when considering the pressure dependence
of C. Since the applied pressure is relatively small, it is possible that
the changes in d and N, are also relatively small. However, even if
this is the case, our conclusion that C is governed by other factors
beyond d and N, remains the same due to the large pressure-
induced change in C (up to 22%). Indeed, the data in Figs. 2 and 3
suggest that the pressure-induced decrease in C is related to the
overall network densification rather than specific structural
changes. We should thus also note that the results in this study
suggest that it is possible to tailor the value of C of bulk glasses not

only through composition design, but also through compression.
This could enable the design of glasses with pressure-tailored
photoelastic response from a wider compositional range, possibly
also including new zero-stress oxide glasses through proper
composition design and pressure treatment.

4.2. Understanding photoelasticity from lattice and atomic effects

To understand the apparent mismatch between our data and Eq.
(2), we consider the work of Mueller [14,15] and Matusita et al.
[34,35]. In this seminal work on photoelasticity, Mueller conjec-
tured that birefringence in glasses and crystals is a result of two
factors, which he termed the lattice effect and the atomic effect.
Both effects contribute to the photoelastic response of a material
and depend on its structure and composition. The lattice effect
describes the change in atomic positions as a response to stress and
can most easily be explained using a crystal lattice due to the
simpler ordered structure. In the direction of the stress, the lattice
planes will move closer together, whereas the lattice planes normal
to the stress direction will maintain the same separation distance in
an ideal crystal. The atomic effect describes the distortion of the
electronic structure around every atom in the material as a
response to stress; this is controlled by the polarizability. The sum
of the atomic and lattice effects describes the strain-optical prop-
erties of a material through the Pockels strain optical coefficients.

The atomic effect is the cause of positive birefringence, whereas
the lattice effect is the cause of negative birefringence [14]. As such,
understanding these effects is of great importance for composi-
tional studies of photoelastic properties since the lattice effect is
highly influenced by composition, whereas the atomic effect is
fairly independent of composition for oxide glasses, as it mostly
depends on the type of anion present in the material [34,35]. Based
on experimental data, the atomic and lattice effects can be
extracted from the relation [34—36],

47 n2+2
P12 — P11 =

ZN (a” a12>

where p1; and p1 are the Pockels strain-optical coefficients, n is the

refractive index, N; is the concentration of the j-ion, and af; and a,
are the elements of the nonlinear polarizability. The first term on
the right-hand side of Eq. (5) represents the atomic effect, while the
second term represents the lattice effect. Using the calculated pq; —
p11 values (see further explanation below and Table 2) and the
experimentally determined refractive indices (Table 1), we are able
to determine the effect of hot compression on the lattice and atomic
effects (Fig. 4). The atomic effect is essentially unaffected by
compression, while a minor pressure-induced change is observed
for the lattice effect, probably due to the atoms in the compressed

Table 2

Strain-optical coefficients (p12 — p11) determined using Eq. (6) and data in Table 1.
Glass ID (P12 — p11)

ambient 1 GPa

SAP1 0.1035 0.1044
SAP2 0.1029 0.1009
SAB1 0.1257 0.1175
SAB2 0.1241 0.1169
SAB3 0.1211 0.1172
SABP1 0.1278 0.1252
SAB4 0.1253 0.1193
SABP2 0.1219 0.1158
SA1 0.0678 0.0663
SA2 0.0667 0.0662




TK. Bechgaard et al. / Optical Materials 67 (2017) 155—161 159

0.254
ve 3% A A

— 0.204
< < Atomic effect (annealed)
B 0.154 v Atomic effect (compressed)
@
% 0.10-
Q
g 0.054
o
© 0.004
8 -0.054 O Lattice effect (annealed)
) A Lattice effect (compressed)
% -0.10+
| "y 2 g8 @

-0.15 s

0.00 0.02 0.04 0.06 0.08

Plastic compressibility (-)

Fig. 4. Contributions to the strain-optic coefficient from the lattice and atomic effects
for as-prepared and compressed glasses as a function of the plastic compressibility. The
two effects are calculated from Eq. (5) using the experimentally determined stress
optic coefficient and refractive index values from Table 1.

glasses being in closer proximity to each other. However, the overall
effect of permanent densification on the strain-optical properties of
the glasses is negligible.

When predicting C from structural data using the Zwanziger
model, the aim is to obtain zero-stress glasses by balancing bond
lengths and average coordination number. It can be shown from
literature data for a lead borate glass that the condition d/N. ~0.5 A
is fulfilled when (p12 — p11) = 0 [7,35], i.e., when the atomic and
lattice effects have been balanced to achieve a glass without a
photoelastic response (Fig. 5), in agreement with recent work on
the elasto-optic coefficients of borate, phosphate, and silicate
glasses [37]. Actually (p12 — p11) is found to be equal to O slightly
above 0.5 (=0.52), as predicted from the positive stress optic
response of TeO, with d/Nc = 0.5 A [2]. As the permanent densifi-
cation does not result in significant changes in (p12 — p11), the
pressure-induced decrease in C must be caused by changes in other
factors that affect the photoelastic response.

4.3. Relation with elastic moduli and refractive index

The measured values of plastic compressibility and elastic
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Fig. 5. Relationship between d/N. from the Zwanziger et al. model (Eq. (2)) and the
Pockels strain optical coefficient (p12 — p11). Data are taken for lead borate glasses from
Refs. [7] and [35]. Here (p12 — p11) is equal to 0 when d/N. = 0.52 A, which is in
agreement with the prediction of zero-stress glasses having a d/N. slightly higher than
0.5 [2].

moduli of the glasses are closely related to their chemical compo-
sitions. In general, glasses consisting solely of network formers,
such as pure SiO; glass, will have a high molar volume due to the
large free volume in the structure, whereas glasses containing large
amounts of modifiers will have a low molar volume as they obtain a
more close-packed structure as the modifiers occupy interstitial
sites between the network formers, decreasing the free volume.
This relationship among composition, free volume, and molar
volume affects the properties of the glasses. We observe that the
annealed (pre-compressed) glasses with large molar volumes
exhibit low E and G values (Table 1), as their open structures exhibit
a large elastic response compared to glasses with low molar vol-
umes. The latter glasses exhibit larger values of E and G due to their
compact structures, which are more resistant to elastic
deformations.

Since the pressure dependence of C is not a result of changing
strain-optical coefficients, we next discuss whether the photoe-
lastic response and the response to hot compression have similar
origins, even though the former is an elastic response and the latter
is a plastic response. Both experiments involve a strain of the glass
structure, with the magnitude of the strain depending on the
flexibility of the glass. For glasses with large elastic moduli, both
plastic compressibility (i.e., permanent densification as a result of
hot compression) and the photoelastic response are found to be
small, while these values are larger for glasses with lower elastic
moduli (Table 1). This can also be seen by the larger pressure-
induced changes in the elastic moduli for the high-molar volume
glasses. Moreover, the magnitude of C can be related to the plastic
compressibility and the elastic moduli of the glasses (Fig. 2). The
glasses with larger elastic moduli and low plastic compressibility
exhibit larger resistance to deformation, resulting in a small
deformation under stress and thereby a low C value and vice versa
for glasses with low elastic moduli and high plastic compressibility.
In compressed glasses, the free volume has decreased, resulting in a
smaller response to stress, in turn yielding a decrease in C for all
compositions upon hot compression.

C is directly connected to shear modulus (G) through the rela-
tion [38],

n3
C:E(P12—P11)~ (6)

As such, a complicated relationship between C and G could be
explained by large changes in (p;2 — pi;) among different compo-
sitions and thus by structural features, especially influenced by
modifiers and non-bridging oxygens [34]. However, for the glasses
in the current study, we observe a simple linear relationship be-
tween C and G (Fig. 6), i.e., the relatively small pressure-induced
changes in n (Table 1) and (p;2 — p1;) (Table 2) result in an
approximate proportionality between C and G. Considering only
the glasses with a G value below 30 GPa, we find that C and G are
linearly related (R? = 0.997). However, the two glasses with larger G
values do no follow this linear trend. This could be ascribed to the
high modifier content (>50 mol%) in these glasses, which increases
the lattice effect as evident from Fig. 4, thereby illustrating the
crucial importance of composition in the design of zero-stress glass
compositions.

The small pressure-induced changes in n (<2.2%) is in agree-
ment with literature data of other hot compressed oxide glasses
[29]. Compared to the small pressure-induced change in (p12 — p11)
observed here (<4.6%), Matusita et al. [34,35] observed larger
changes in (p;2 — p11) due to compositional and structural changes
(up to 43%), e.g., when substituting a modifier for glass former. As
such, changing the chemical composition of the glasses introduces
a large change in the electron clouds in the glasses, thus modifying
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Fig. 6. Dependence of the stress optic coefficient (C) on the shear modulus (G) for
annealed (not-compressed) and compressed glasses. The dashed line (R> = 0.997)
represent the linear dependence of C on G when the pressure-induced change in
Pockels strain-optical coefficients is negligible, which is not the cause for glasses with
high modifier content (SA1 and SA2 in Table 1).

the value of (p12 — p11). In the present study, the change in (p;2 —
p11) originates from distortions of electron clouds induced by
compression, which are rather small compared to the composi-
tional effects (Fig. 4 and Table 2). Therefore, the only major property
change on the right-hand side of Eq. (5) is in the shear modulus.

Based on the above, we infer that the pressure-induced decrease
in C is primarily governed by the increase in shear modulus ac-
cording to Eq. (6), which in turn is proportional to the plastic
compressibility (Fig. 1). This suggests that the extent of the
pressure-induced decrease in C is governed by—and can be pre-
dicted by—the extent of volume densification of the glass.
Furthermore, from the considerations of the effect of densification
on (p12 — p11), we are able to compare the prediction of C from
Zwanziger's model based on d/N. to the pressure-induced change
in the strain-optical coefficient of the glasses in this study. Based on
the purely structural considerations in Section 4.1, we should
expect the C value of glasses to generally increase when d/N. de-
creases as a result of hot compression. Consequently the magnitude
of (p12 — p11) is expected to increase due to densification. However,
our calculations show that (p12 — p11) can either decrease or in-
crease depending on the glass composition. This could be due to a
change in bond metallicity as the density increases, which changes
the bond polarizability. Alternatively, densification might not lead
to the expected decreasing bond length but rather to a total in-
crease in average bond length to accommodate the high-
coordinated species generated by hot compression. Regardless of
which is the correct explanation, the Zwanziger et al. model fails to
account for the impact of pressure on C as the elastic properties of
the glass has a large influence on the magnitude of C.

4.4. Comparing pressure- and compressive stress-induced changes
inC

For many modern applications, post-treatment of glasses is
needed to achieve enhanced properties. For example, improved
damage resistance can be achieved by chemical strengthening via
ion exchange, where, e.g., a sodium-containing glass is submerged
into a molten potassium salt, allowing exchange of the sodium ions
in glass surface with the potassium ions in the liquid salt [39,40].
Due to the size difference, this results in the generation of a
compressive stress (CS) at the glass surface, and the magnitude of
CS greatly influences the mechanical performance [41—44]. It is

thus important to be able to determine CS accurately, which is
typically based on optical birefringence measurements, in turn
requiring accurate knowledge of C of the glass. However, during ion
exchange, the properties of the glass change and understanding the
effect of these changes on C is therefore critically important.

Both the atomic effect on photoelasticity and the shear modulus
should change during ion exchange, in turn affecting C. As
described by Matusita et al., changing the chemical composition of
a material will change its strain-optical coefficients [34,35]. How-
ever, considering the rather small (~2.7%) decrease in (p12 — p11)
observed between 33Na,0-67Si0, and 33K,0—67Si0, end-
member glasses [34], the ion exchange in the surface is not ex-
pected to have a significant effect on the strain-optical properties.
However, the shear modulus does increase as the large potassium
ion is substituted into the interstice left by the smaller sodium ion
without any plastic deformation [39]. This results in an increase in
the elastic moduli of the compressed surface layer, affecting the
magnitude of C as described by Eq. (6). The change in C can only be
determined accurately with knowledge of the ion exchange-
induced change in the shear modulus, e.g., through Brillouin
spectroscopy or using molecular dynamics simulations [45]. If the
change in shear modulus is not accounted for, an artificially high
value of surface compressive stress may be obtained.

5. Conclusions

We have determined the density, elastic moduli, and stress optic
coefficient (C) of ten different oxide glasses before and after hot
compression. An unexpected decrease in the stress optic coefficient
has been observed as a result of this compression. This result is the
opposite of what may be inferred using the model of Zwanziger
et al, which links stress-optic coefficient with glass structural
features. Compression normally leads to decreasing modifier-
oxygen bond lengths and increasing network-forming coordina-
tion numbers, which, according to the Zwanziger model, should
lead to increases in the stress optic coefficient. This disagreement
between experimental data and the model prediction can be un-
derstood on the basis of the atomic and lattice effects described by
Mueller and a model for photoelasticity. We find that densification
only has a small influence on the strain-optic properties, which in
turn have small influence on the pressure-induced change in C. The
pressure-induced change in shear modulus, however, has a pro-
nounced influence on how C changes as a response to densification.
That is, we found that the stress optic coefficient is a linear function
of the shear modulus for densified glasses with similar modifier
content due to the atomic affect. When comparing glasses with
large differences in modifier content, the differences in the lattice
effect must also be accounted for.
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