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Abstract

The purpose of this thesis is to examine how binary masking can be used to increase in-
telligibility in situations where hearing impaired listeners have difficulties understanding
what is being said. The major part of the experiments carried out in this thesis can be
categorized as either experiments under ideal conditions or as experiments under more
realistic conditions useful for real-life applications such as hearing aids. In the experi-
ments under ideal conditions, the previously defined ideal binary mask is evaluated using
hearing impaired listeners, and a novel binary mask – the target binary mask – is intro-
duced. The target binary mask shows the same substantial increase in intelligibility as
the ideal binary mask and is proposed as a new reference for binary masking. In the cat-
egory of real-life applications, two new methods are proposed: a method for estimation
of the ideal binary mask using a directional system and a method for correcting errors in
the target binary mask. The last part of the thesis proposes a new method for objective
evaluation of speech intelligibility.

This thesis consists of an introduction followed by a collection of papers. The intro-
duction begins with a description of the problem facing a hearing impaired person in
difficult listening situations, which is followed by a general introduction to hearing im-
pairment and hearing aids. After this outline, the concept of binary masking is introduced
through descriptions of different reference masks (oracle masks), as well as methods for
estimation and application of binary masks and comparison to the well-known Wiener fil-
ter. Finally, the difference between speech intelligibility and speech quality is considered,
and methods for evaluation of speech intelligibility are discussed.

The collection of papers is the main part of the thesis. The first three papers (A–C)
evaluate the intelligibility of speech in noise under ideal conditions using the ideal binary
mask and the target binary mask. The results presented in the first three papers show
the value of the ideal binary mask and the target binary mask for both hearing impaired
listeners and normal hearing listeners. Consequently, methods for estimation and error-
correction of the ideal binary masks and target binary mask are proposed in Paper D and
E. Finally, Paper F proposes a simple method for measuring the intelligibility of binary
masked noisy speech.
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Abstract (in Danish)

I denne afhandling undersøges, hvordan binære masker kan bruges til øge taleforståe-
ligheden i situationer, hvor hørehæmmede har problemer med at forstå, hvad der bliver
sagt. Størstedelen af arbejdet kan kategoriseres som enten lytteforsøg under ideelle
betingelser eller som algoritmeudvikling til brug i f.eks. hørerapparater. I lytteforsø-
gene bliver den ideelle binære mask evalueret med hørehæmmede testpersoner og en ny
binær maske bliver defineret. Denne nye binære maske giver de samme forbedringer på
taleforståelighed, som den ideelle binære maske og kan derfor ses som en ny reference
indenfor binære masker. Under mere realistiske betingelser bliver to nye algoritmer in-
denfor binære masker evalueret. Den ene algoritme kan bruges til at estimere den ideelle
binære maske med to mikrofoner, og den anden kan bruge til at rette fejl i den binære
maske. Den sidste del af afhandlingen omhandler en metode til at beregne taleforståe-
lighed vha. en simpel algoritme og uden brug af testpersoner.

Afhandlingen består af en introduktion og en samling af artikler. Introduktion beskri-
ver de problemer, som en hørehæmmet person oplever i vanskelige lydmiljøer og giver en
generel introduktion til høretab og hørerapparater. Derefter bliver brugen af forskellige
binære masker beskrevet og metoder til at beregne og bruge dem bliver gennemgået. En
sammenligning med det klassiske Wiener-filter er også udført. Til sidst i introduktionen
er forskellen mellem taleforståelighed og lydkvalitet beskrevet og forskellige metoder til
at måle taleforståelighed er gennemgået.

Samlingen af artikler udgør hovedparten af denne afhandling. De første tre artikler
(A-C) måler forståeligheden af tale i støj, når den ideelle binære mask og den nye binære
maske bruges til at separere talen fra støjen. Resultaterne viser, at de binære masker er
brugbare for både normalt hørende og hørehæmmede personer, og det er derfor relevant
at forsøge at beregne dem under mere realistiske situationer (artikel D) og rette fejl i de
binære masker (artikel E). Den sidste artikel beskriver en simpel måde til at beregne den
opnåede taleforståelighed, når de binære masker bruges til at separere tale fra støj.
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Introduction

1 The Cocktail Party Problem

In situations where signals from various sources are mixed, source separation can be
relevant. Examples can be found in astrophysics, geophysics, biology, and medicine, but
the term is mainly used when the sources are sound sources such as human speakers or
musical instruments. In this case, source separation is the problem of separating one or
more sounds from a mixture of multiple sounds, e.g., to separate a single speaker from a
large group of talkers or to separate speech from traffic noise.

Source separation will split the sound mixture into one or more target sounds and
one or more interferer sounds, and in some systems, the separated sources will be further
processed. Examples of this processing are automatic speech recognizers where source
separation can be done prior to the recognition, and communication systems, where sep-
aration enhances the speech and reduces the background noise before transmission.

In difficult listening situations, some kind of source separation could also be active
in the human auditory system: “How do we recognize what one person is saying when
others are speaking at the same time?”. This question was formulated by Edward Colin
Cherry in 1953 [1], but considered as early as 1870 by Hermann von Helmholtz in his
book “On the sensations of tone as a physiological basis for the theory of music” [2].
In this book, Hermann von Helmholtz describes the difficult listening situation in the
festive ball-room with musical instruments, speaking men and women, rustling garments,
gliding feet, clinking glasses, etc. – a mixture of sounds that are “complicated beyond
conception”, and yet, “... the ear is able to distinguish all the separate constituent parts of
the confused whole...” [3]. This capability of the human auditory system, to focus upon
and follow one particular speaker in such a sound environment, has been termed “the
cocktail party phenomenon” [4, 5], and the problem of replicating this capability is called
the ”cocktail party problem”. One possible explanation of the cocktail party phenomenon
is that the human auditory system efficiently identifies and separates the sources prior to
recognition at a higher level. However, there is no clear evidence that this is in fact the
approach used by the human ear and brain.

The cocktail party phenomenon usually goes unnoticed by people with normal hearing
unless the cocktail party takes place in a large room with high reverberation or loud
background music. In this situation, even normal hearing listeners can find it difficult
to perceive the target speech correctly and intelligibility can be affected. This problem
is more pronounced for hearing impaired listeners, who will experience problems in less
difficult situations [6, 7, 8] and might give up following the desired conversation. But
even for hearing impaired listeners, the cocktail party phenomenon – and the loss of this
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2 INTRODUCTION

capability – is usually not noticed, and the hearing impaired listener will often explain the
loss of intelligibility as caused by a difficult environment and not by his or her impaired
hearing [9].

To enable source separation, the sources in the mixture must be assigned as either tar-
get or interferer. This assignment is dependent on the situation and can quickly change,
as seen by the following example: When talking to a person at the cocktail party, the
speech from that person is the target sound and everything else is the undesired, inter-
fering sound. At some point, a new person enters the conversation and his speech is
removed from the group of interfering sources and becomes a target source. The conver-
sation continues with two alternating target sources, but the subject changes into music
preferences, and a new source – the music – has changed from interferer to target.

For the purpose of the work in this thesis, the assignment of sources is simplified:
Target sound is the speech from the speaker having the listener’s attention, and everything
else – including reverberation – is interferer sound. This definition makes the distinction
between source separation, speech enhancement, and noise reduction less clear, but in
this thesis, all three methods are seen as possible solutions to the cocktail party problem:
The decreased intelligibility can be compensated either by separating the target speech
from the interfering sounds, by enhancement of the target speech, or by reducing the
interfering sound.

When source separation, speech enhancement, and noise reduction, are seen as pos-
sible solutions to the cocktail party problem, the available methods are numerous and
diverse. They include the classic methods such as Wiener filtering and spectral subtrac-
tion [10], as well as more recent methods such as independent component analysis [11]
and non-negative matrix factorization [12]. Significant results have been obtained from
applying these methods, but the cocktail party problem cannot be considered solved, and
hearing aid users still have problems understanding speech in noisy conditions [13, 14].

Even though the cocktail party problem is not yet solved, research continues to con-
tribute to a better understanding of the problem and of the human auditory system. A
better understanding of the human auditory system could potentially lead to solutions for
the cocktail party problem, and as pointed out by B. Edwards: “Nowadays the limiting
factor is our basic knowledge pertaining to the functional requirements of what a hearing
aid should actually do” [15]. This statement contains a lot of truth, but the limitations
within a hearing aid must not be disregarded. Low processing delay, low complexity,
small size, and high robustness are requirements that limit the available solutions to a
large degree. Furthermore, the more fundamental problem of how to select the target
speech has to be solved.

This thesis discusses binary masking as a further possible solution to the cocktail party
problem. To say that binary masking fulfils all the above mentioned requirements of a
hearing aid is not reasonable, but the simplicity of the method and the results obtained,
make the method interesting in hearing aids as a possible solution to the cocktail party
problem.

2 Hearing Impairment

Hearing impairment is a broad term referring to different problems related to hearing and
hearing loss. The most common hearing loss is the sensorineural hearing loss [16, 17],
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Figure 1: Reduced dynamic range due to sensorineural hearing loss. The hearing thresh-
old is elevated more than the level of discomfort [21, 9]. In the hearing aid, the reduced
dynamic range is compensated by compressing and amplifying the sound: Sound levels
below the hearing threshold must be amplified, whereas sound levels close to the level of
discomfort must not be amplified.

which is caused by damage in the cochlear, or by problems in the neural connections
between the cochlear and the auditory nerve. The sensorineural hearing loss is different
from, e.g., conductive hearing loss where the transmission of waves in the air to fluids
in the cochlea is degraded, and from central hearing loss caused by problems at a higher
level of the auditory system.

Sensorineural hearing loss is correlated with age [18], why the name age-related hear-
ing loss is often used, but this correlation is not completely understood. Some possible
explanations include loss of inner and outer hair cells in the cochlea, a loss of auditory
neurons, decreased blood flow in the cochlea, and a stiffening of the basilar membrane
[19, 20].

The sensorineural hearing loss is usually characterized by higher hearing thresholds
at higher frequencies (a sloping hearing loss [16]), but the dynamic range, frequency
resolution, and temporal resolutions are also affected [20]:

• The dynamic range is the range between the sound level necessary to detect the
sound, the hearing threshold, and the sound level causing discomfort, as seen in
Figure 1. The sensorineural hearing loss decreases the dynamic range, because the
hearing threshold is elevated more than the threshold of discomfort [9, 21, 20].

• The frequency resolution or frequency selectivity is the ability to distinguish spec-
tral components in complex sounds. One reason for the decreased frequency reso-
lution is the broadening of the auditory filters, meaning that different locations on
the cochlea become more sensitive to a wider range of frequencies. The broadening
of the auditory filters can make the high frequencies difficult to perceive, because
of increased masking by low frequencies [20].
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• The temporal resolution is the ability to detect changes or events as a function
of time. The forward and backward masking are the ability to detect a sound be-
fore or after another sound, and this non-simultaneous masking is increased by the
sensorineural hearing loss [20, 22].

There are large individual differences in the extent to which persons with a sensorineu-
ral hearing loss experience the above mentioned difficulties. Further, the method used
for measuring, e.g. the non-simultaneous masking, greatly influence the conclusions: If
normal hearing listeners and hearing impaired listeners are compared at the same sound
level, the effects from the sensorineural hearing loss are evident, but if the persons are
tested at the same sensation level – the level relative to the hearing threshold – the effects
are less clear [20].

A hearing impaired listener having problems at the cocktail party does not necessarily
experience problems in noise free or less difficult conditions, because speech is robust
and redundant. Robust and redundant means that part of the speech sound can be lost
or modified without negative impact on intelligibility [23, 24, 25]. This redundancy of
speech helps the hearing impaired listener to recognize and understand, even though
some details of the sound are lost. When multiple sources are present, the listener has
the additional task of identifying and separating the target speech. If we assume that both
high frequency resolution and high temporal resolution are required to complete this task,
a possible explanation to the hearing impaired listener’s difficulties at the cocktail party
is the reduced frequency and temporal resolution.

An evident effect of the sensorineural hearing loss is the reduced capability to use
fluctuations in the interferer sound. Normal hearing listeners can make use of fluctuations
in the interfering sound and will obtain a better intelligibility if the sound is modulated [6,
8]. This ability – also known as glimpsing speech [26] – is reduced by the sensorineural
hearing loss [6, 8, 17].

3 Hearing Aids

Of the three complications from the sensorineural hearing loss described in the previous
section, the reduced dynamic range is the most straightforward to address in the hearing
aid by compression of the sound. The reduced frequency and temporal resolution are
somewhat more difficult to compensate and the compression in the hearing aid does
not necessarily compensate the reduced frequency and temporal resolution [13]. The
compression compensates the reduced dynamic range by adjusting the dynamic range of
the incoming sound to better correspond to the dynamic range of the hearing impaired
listener’s damaged cochlear. The compression is a frequency and level dependent gain
making weak sounds audible and loud sounds below the level of discomfort [9, 16].
Making sounds audible is a necessary step to compensate for the hearing loss, but many
hearing aid users will continue to experience problems with understanding speech in
noisy conditions [16, 14].

One further approach towards solving the problem of reduced intelligibility in diffi-
cult situations is spatial filtering, where sound arising from certain directions is amplified
more than others [27, 28]. The spatial filtering is accomplished using a directional system
often based on two closely placed microphones in each hearing aid. This makes it pos-
sible to amplify sounds coming from particular directions and thus attenuate interfering
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sounds. However, this raises the fundamental question of how to decide which source is
the target and which sources are interferers. A simple solution – which is acceptable in
many situations – is to assume that the target source is located in front of the hearing aid
user, though a number of examples can be found where this assumption is not valid, e.g.,
in a car or in a conversation with several people.

The use of directional systems and other signal processing methods are still limited
by the size and placement of the hearing aid, even though the technology in hearing
aids has developed fast over the last decade. Complex algorithms take up more of the
capacity of the integrated circuit and use more power. In the future, these limitations
will hopefully be reduced by the development of new technologies in the hearing aid, but
user requirements for the hearing aid such as robustness, reliability, and high performance
must continue to be fulfilled.

Most hearing aids do not block the ear canal completely, but allow direct sound
through the vent in the hearing aid mould. The result is that the Tympanic membrane in
the ear will receive both direct and amplified sound, and this tightens the requirement
for low delay through the hearing aid. A large time difference between the direct and the
amplified sound can result in negative side effects such as echoes. Thus, the objective is to
keep the time delay below the threshold at which degradations of the sound is perceived
(∼10 ms [29, 30]). This strongly limits the use of computational expensive algorithms
and non-causal methods (batch processing) that require a large number of future samples
to be available.

4 Binary Masking

This thesis focuses on binary masking as a solution to the cocktail party problem. In
binary masking, sound sources are assigned as either target or interferer in the time-
frequency domain. As already defined, the target source is the source having the hearing
aid user’s attention. Everything else is interferer. When different sources are mixed,
the identification of parts belonging to the target and parts belonging to the interferer
can be difficult. Fortunately, the use of time-frequency representations can make this
assignment easier because the change from time domain to time-frequency domain can
help identify which parts of the sound that belong to the target and which parts that
belong the interferer. The time-frequency representation can reveal properties of the
sound sources that are not visible in the time domain or frequency domain, as seen in
Figure 2.

The word binary emphasizes the assignment of time-frequency regions as belonging
to either the target or the interferer source, but it also suggests what to do with the
two sources when they have been identified. In binary masking the target sound is kept
by using the value one in the binary mask, whereas the regions with the interferer are
removed by using the value zero. In Figure 3 and throughout this thesis, the value one is
shown with white, whereas the value zero is shown with black in the binary masks.

The word mask is the name for the pattern of values showing which regions in time
and frequency that will be kept or removed. This mask can be seen as a matrix which is
placed on top of the time-frequency representation of the sound mixture; white areas will
be kept and black areas will be removed as seen in Figure 4.
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Figure 2: Speech signal mixed with a sinusoidal signal with alternating frequency.
The time-frequency representation of the mixture provides more information about the
sinewave than the time domain (top) or the frequency domain (left).

In short, binary masking is a method for applying a binary, frequency-dependent, and
time-varying gain in a number of frequency channels, and the binary mask defines what
to do when. This makes it possible to use the binary mask as an intermediate result, which
can be used to evaluate and examine the performance of the binary masking algorithm.
Binary masking algorithms can be seen as two steps: Estimation of the binary mask and
application of the binary mask to carry out the source separation. In the estimation of
the binary mask, the time-frequency regions are assigned to either the target or interferer
source using, e.g., information about the spatial location of the sources [31] or speech
models [32, 33]. In the application of the binary mask, the time-frequency regions as-
signed to the target source are kept, whereas the regions assigned to the interferer sources
are removed or attenuated.

To evaluate the feasibility of an estimated binary mask, it can be compared to an
available reference mask. This reference mask makes it possible to compare different
estimated binary masks and measure their precision, e.g., by counting the number of
errors in the binary mask compared to the reference mask [34, 35]. Two types of reference
masks – or oracle masks – are described in Section 6, followed by examples of how to
estimate the oracle masks and apply them to the sound. But first, an important property
of speech which is a major motivation for the use of binary masking is discussed in the
following section.
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whereas black regions (zeros) will be removed. The binary masks are calculated with the
ideal binary mask (Equation (4), Section 6.1) and a 64 channel Gammatone filterbank
(Section 7.1).
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Figure 4: Example of binary masking. When the binary mask (B) is applied to the sound
(A), the white regions will be kept and the black regions will be removed. Figure (C)
shows the binary mask placed on top of the time-frequency representation (A). The sound
in Figure (A) is a mixture of two speakers.
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5 Sparsity of Speech

A sparse signal is a signal where the signal energy is found in a small percentage of the
samples, and the majority of samples or coefficients are zero or close to zero. Whether a
signal has a high or low sparsity – or sparseness – depends on the domain in which the
signal is analyzed. In the time domain, when silence intervals between words are ignored,
the sparsity of speech is low because energy from the speech signal is found in a large
percentage of the samples. If the same speech signal is analyzed in the time-frequency
domain, the sparsity is higher, because a small percentage of the units composing the
time-frequency representation contains the majority of the energy from the speech signal.

If speech is sparse and different speech signals do not overlap in time and frequency,
the following relation is true [31]:

S1(k, τ)S2(k, τ) = 0, ∀ k, τ, (1)

where S1(k, τ) and S2(k, τ) are the energy of the two sources s1(t) and s2(t) at frequency
index k and time index τ . A single element in the matrix Sj is notated as Sj(k, τ) and
referred to as a time-frequency unit. The assumption in Equation (1) is known as “W-
disjoint orthogonality” [31], where W is the window function used in the calculation
of the time-frequency representations, e.g., using the short-time Fourier transform or a
Gammatone filterbank (see Section 7).

As noted by the authors in [31], Equation (1) is not satisfied for simultaneous speech
signals, and this lead to their definition of “approximate W-disjoint orthogonality”. In
other words, speech is not sparse in the strict sense described by Equation (1). It implies
a less strict assumption that only one source is dominant in each time-frequency unit and
that the energy in each time-frequency unit mainly belongs to a single source:

Y(k, τ) ≈ max(Sj(k, τ)), ∀ τ, ω, j, (2)

where Y(k, τ) is the time-frequency representation of a mixture of J sources:

Y(k, τ) = S1(k, τ) + S2(k, τ) + . . .+ SJ(k, τ), (3)

if the sources are uncorrelated. The less strict definition of sparsity in Equation (2),
that only one source is dominant in each time-frequency unit, must be accompanied by
a definition of dominance. When considering human speech perception, a source can
be defined as dominant when the neural response in the human auditory system comes
mainly from that source.

The assumption of sparsity provides a simple solution to source separation as long as
different sources have most of their energy in different time-frequency units: Keep the
time-frequency units where the target source dominates and remove the rest. If sources
are disjoint in the time-frequency domain, e.g., two sines at different frequencies, this
solution is very efficient, but all real-life sources overlap in the time-frequency domain to
some extent. However, if the overlap in time and frequency is limited, the sources can
still be separated using binary masking – see [31, 36, 35], and the results in Paper A and
Paper C.

The sparsity of speech – or sounds in general – has been examined in a number of
studies [37, 31, 38], and measures of sparsity are also proposed and discussed in [39]. If
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sparsity correlates with the performance of the separation, a reliable measure of sparsity
would be valuable. However, there is not a general accepted measure of sparsity that has
been used to compare different sounds in different studies. One reason is that sparsity
is dependent on the used time-frequency representation as indicated by the expression
“W-disjointness” [31].

6 Oracle Masks

In this thesis, the term oracle mask is used for binary masks calculated using a priori
knowledge which is not available in most real-life applications. In other words, the oracle
masks are calculated in ideal situations, where all required information is available and
does not need to be estimated. The term oracle mask is used instead of ideal binary mask,
because the latter refers to a particular type of oracle mask described in Section 6.1.

A major objection to the concept of oracle masks is that it is of no use in real-life
applications because of the required a priori knowledge. However, the oracle masks es-
tablish an upper limit of performance, which makes them useful as references and goals
for binary masking algorithms developed for real-life applications such as hearing aids.
To use a binary mask as reference or as goal for real-life estimation, it must be optimal
in some sense or contribute to the solution of the problem at hand. In this thesis, the
problem is the cocktail party problem, and the ideal binary mask and the target binary
mask described in the following sections are possible solutions to this problem because of
their positive impact on intelligibility. The descriptions of the ideal binary mask and the
target binary mask (Section 6.1 and 6.2) are followed by examples of how to estimate
these oracle masks (Section 6.3).

6.1 The Ideal Binary Mask

The ideal binary mask (IBM) is an oracle mask, because it requires both the target and
interferer to be available as separate sounds. In most real-life situations only the mixture
of the two sounds is available. To calculate the ideal binary mask, the energy of the target
sound is compared to the energy of the interferer sound within each time-frequency unit:

MIBM(k, τ) =

{
1, if T(k, τ)

N(k, τ)
> LC

0, otherwise
, (4)

where T(k, τ) is the energy of the target, N(k, τ) is the energy of the interferer, τ the
time index, and k the frequency index. The local SNR criterion (LC) is the threshold for
classifying the time-frequency unit as dominated by the target or interferer sound and this
threshold controls the amount of ones in the ideal binary mask (see Figure 5). If the LC
value in Equation (4) is 0 dB, the ideal binary mask will keep all the time-frequency units
with a local SNR of more than 0 dB. The local SNR is the SNR within time-frequency units,
whereas the global SNR is the overall level difference between two sounds. If sounds from
two speakers are mixed at 0 dB global SNR, the local SNR will vary highly from unit to
unit because of the sparsity of speech.

Experiments applying the ideal binary mask to noisy speech have documented a sub-
stantial improvement in intelligibility. The improvement has been shown for normal hear-
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(B) Interferer sound, speech
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(C) Mixture
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(C) IBM, LC = −10 dB
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(D) IBM, LC = 0 dB
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(E) IBM, LC = 10 dB
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(F) Separated target
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(G) Separated interferer
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Figure 5: Calculation of the ideal binary mask. If the energy of the target sound (A) is
larger than the energy of the interferer sound (B), the ideal binary mask (D) will contain
the value one (white color) and otherwise the value zero (black color). The number of
ones in the ideal binary mask is determined by the LC value as seen in (C–E). By applying
the binary mask (D) to the mixture (C), the target speech is separated as seen in (F).
If the target and interferer are swapped the result (G) is obtained. The time-frequency
representations are calculated using a 64 channel Gammatone filterbank, and the target
and interferer are mixed at 0 dB SNR.
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ing listeners [36, 35], cochlear implant users [34], and for hearing impaired listeners in
Paper A. The experiments were conducted using various conditions and thus show that
the ideal binary mask is able to improve intelligibility for a range of LC values, interferer
types, and SNRs.

The results obtained with the ideal binary mask under the various conditions were
followed by experiments with ideal binary masking at low SNRs in Paper B and C. If the
SNR and the LC value are decreased simultaneously in Equation (4), the ideal binary mask
does not change, but the mixture will contain less target sound. Taking this to an extreme
and applying the ideal binary mask to speech-shaped noise, creates an intelligible sound
as documented in Paper B. This method resembles the method known as vocoding and
shows the importance of the temporal speech envelope for intelligibility [40, 41, 42, 43].

6.2 The Target Binary Mask

The results obtained in Paper B – that high intelligibility can be obtained by applying
the ideal binary mask to speech-shaped noise – lead to the definition of the target binary
mask in Paper C. The speech-shaped noise used in Paper B had the same long-term aver-
age spectrum as the target speech, but instead of using speech-shaped noise, the target
binary mask can be calculated by comparing the target speech directly with the long-term
average spectrum of the target speech:

MTBM(k, τ) =

{
1, if T(k, τ)

r(k)
> LC

0, otherwise
, (5)

where the vector r(k) is the long-term average of the energy in each of the frequency
channels in the target sound T(k, τ). An important difference between the ideal binary
mask (4) and the target binary mask (5) is the presence of the interferer N(k, τ). The
ideal binary mask requires the interferer to be available and will change depending on
the type of interferer, whereas the target binary mask is calculated from the target sound
only and therefore is independent of the interferer sound. The ideal binary mask and
the target binary mask are compared in Figure 6 using three different types of interferer
sound.

The dependency on the target sound only, is not unique to the target binary mask. In
[44], an oracle mask was generated by comparing the energy in each band with a global
criterion. This criterion was equal in all frequency bands and adjusted to keep 99% of
the energy from the target speech. The criterion not being a function of frequency is
a major difference between the mask in [44] and the target binary mask. In Equation
5, the criterion r(k) is a function of frequency, whereas the criterion used in [44] is
independent of frequency. The oracle mask in [44] was evaluated using hearing impaired
listeners showing a similar impact on intelligibility as the ideal binary mask and target
binary mask.

In Paper C, the impact on intelligibility by using the target binary mask and the ideal
binary mask was measured in different conditions: 4 different noise types, 3 different
SNRs, and 8 different mask densities were evaluated. High intelligibility was found when
the ideal binary mask and the target binary mask were applied to noisy speech, and
although intelligibility was reduced as a function of decreasing SNR, high intelligibility
was still obtained at -60 dB SNR similar to the result in the Paper B. The impact on sound
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(B) Speech shaped noise (SSN)
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(C) High−frequency noise (HF)
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(D) Low−frequency noise (LF)
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(E) IBM, SSN = TBM
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(F) IBM, HF noise
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(G) IBM, LF noise
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(H) IBM, SSN ((E) on (A+B))
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(I) IBM, HF noise ((F) on (A+C))
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(J) IBM, LF noise ((G) on (A+D))
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(K) TBM, HF noise ((E) on (A+C))
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(L) TBM, LF noise ((E) on A+D))
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Figure 6: Comparison of the target binary mask (TBM) to the ideal binary mask (IBM)
with three different interferer sounds. The ideal binary masks (E–G) are calculated
by comparing the energy in the target speech (A) with speech-shaped noise (B), high-
frequency noise from a bottling hall (C), and low-frequency noise from a car (D). If the
ideal binary mask is calculated using speech-shaped noise, it becomes the the target bi-
nary mask (E). The 4th row (H–J) shows the ideal binary mask applied to the three
different sound mixtures: (H) is the ideal binary mask applied to the mixture of target
speech and speech-shaped noise. (I) is the ideal binary mask applied to the mixture of
target speech and high-frequency noise. (J) is the ideal binary mask applied to the mix-
ture of target speech and low-frequency noise. The 5th row (K–L) shows the target binary
mask (E) applied to the high-frequency and low-frequency noise: (K) is the target binary
mask applied to the mixture of target speech and the high-frequency noise. (L) is the
target binary mask applied to the mixture of target speech and the low-frequency noise.
The 3rd row (E–G) shows how the ideal binary mask changes as a function of the in-
terferer: The ideal binary mask (F) has more ones at low-frequencies and fewer ones at
high-frequencies. The opposite can be seen for the ideal binary mask calculated using the
low-frequency interferer (G). This difference is also apparent when the ideal binary mask
is applied to the sound: In (I) and (J) some target speech is missing in the time-frequency
regions marked by red boxes when compared to the original signal (A). This loss of sound
will not happen if the target binary mask is used: In (K) and (L) energy is found in the
areas marked with red boxes in (I) and (J). However, it is important to remember that
the high-frequency energy in (K) and low-frequency energy in (L) is a mixture of energy
from the target and interferer source. The time-frequency representations are calculated
using a 64 channel Gammatone filterbank, and the target and interferers are mixed at -6
dB SNR.
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quality from the ideal binary mask or the target binary mask was not measured in Paper B,
but a decrease in sound quality can be expected because of the coarse, binary processing.
However, the quality of the processed sound using either of the masks is highly dependent
on the noise type, SNR, and time-frequency resolution.

Defining the target binary mask establishes a new method for obtaining high intelligi-
bility, and this new oracle mask can be used as reference and as a goal for binary masking.
The target binary mask does not change as a function of the interferer sound which makes
it easier to build a model of the binary mask. This property is used in Paper E, where a
method for error correction of an estimated target binary mask is proposed.

6.3 Estimation of the Binary Mask

The results obtained with the ideal binary mask and the target binary mask in the ideal
situations make these oracle masks useful goals when trying to solve the cocktail party
problem. To obtain similar results in real-life applications, robust and precise methods
for estimating these oracle masks must be found.

In Computational Auditory Scene Analysis (CASA) [45, 46], the binary mask is cal-
culated by analyzing the sound mixture using principles from (human) Auditory Scene
analysis (ASA) [47, 48]. A major motivation for CASA is the remarkable performance
of the human auditory system even in adverse conditions, i.e. the cocktail party phe-
nomenon. A listener is able to follow a single speaker in situations with many competing
speakers and interfering sounds, and if this ability could be replicated by an algorithm,
this would provide an understanding of how the human auditory system might work and
suggest how source separation algorithms could be designed.

In the process of separating the target from the interferer, CASA algorithms often use
the two stages from ASA: segmentation and grouping. In the first stage, the sound is
decomposed into segments using cues as pitch, onsets, offsets, harmonicity, spatial loca-
tion, and temporal continuity [48]. A segment is a sound with some inherent similarity,
which probably comes from a single source. In a mixture of three speakers, segments
are well-defined regions in time and frequency coming from one of the speakers but not
assigned to a specific speaker. Assigning a segment to a particular speaker is the purpose
of the second stage, where the segments are grouped into streams. A stream is a sound
coming from the same source. In the mixture of three speakers, a large number (> 3) of
segments can be found but ideally these segments should be grouped into three streams.
When the target stream has been identified in time and frequency, it can be separated
using the binary mask.

The ideal binary mask was formulated as the goal for CASA [49], but it has also been
used as a reference outside the CASA domain [50, 31, 34, 51]. To estimate the oracle
masks either multi-channel or single-channel algorithms can be used, but because of the
novelty of the target binary mask, only methods for estimating the ideal binary mask has
been proposed in the literature as described in the following paragraphs.

In multi-channel algorithms, the binary mask can be calculated using time, phase,
or level differences from two or more microphone recordings. The microphones are often
configured similarly to what is found in a hearing aid, or as a binaural configuration mod-
eling the sound received in the human ears. The first configuration was used in the DUET
algorithm [31], where the amplitude and phase differences between two microphones
were used to calculate the binary mask. This configuration is also used in the system
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proposed in Paper D, where the LC value in Equation (4) is calculated from the location
of the sources. The binaural configuration was used in [52], where the interaural time
difference (ITD) and interaural intensity difference (IIS) [53] are used to calculate the
binary mask. A comprehensive review of different multi-channel algorithms useful for
hearing aid design can be found in [54].

In single-channel algorithms, only a single recording is available, and the binary mask
must be calculated from this recording. To do this, the pitch and the harmonic structure
can be used for voiced speech [55], and onsets and offsets can be used for unvoiced
speech [56]. Outside the CASA domain, the ideal binary mask has been estimated using
different “classic” single-channel speech enhancement algorithms [57]. In this study,
several gain functions, noise estimation methods, and a voice activity detector were used
to estimate the expected local SNR and the ideal binary mask.

Recently, a study proposing a single-channel speech enhancement algorithm using
binary masking has reported a substantial improvement in intelligibility [50]. This pa-
per proposes a speaker-dependent algorithm based on a Bayesian classifier that classifies
each time-frequency unit as belonging to either the target or the interferer is proposed.
The experiments show a significant increase in intelligibility under three different noise
conditions and two SNR levels.

The above mentioned methods show that is possible to estimate the ideal binary mask
with high precision in certain situations, but also that the binary masks will contain errors
in most real-life situations. This problem has been recognized in several papers, where the
correlation between errors in the ideal binary mask and intelligibility has been examined
[50, 34, 35]. To reduce the number of errors more robust algorithms must be developed
or a different approach should be taken as proposed in Paper E. In this paper, errors in
the target binary mask are corrected using a hidden Markov model, and the results show
that it is possible to build a speaker-independent model of the target binary mask and use
this model to reduce the amount of errors.

7 Application of the Binary Mask

To apply the oracle masks – or estimates hereof – to a mixture of sounds, different trans-
forms can be used [58, 59]. In the papers constituting this thesis, a Gammatone filterbank
is used, why this is described in detail in Section 7.1. Another widely used method for
binary masking is the short-time Fourier transform (see e.g. [60, 61]), which is shortly
described in Section 7.2.

7.1 The Gammatone Filterbank

When the binary mask is applied to the sound using a filterbank, the following three steps
are taken:

1. Split the time domain signal into subbands using an analysis filterbank.

2. Apply the binary mask by multiplying each subband signal with the binary gain as
defined by the binary mask.

3. Transform the modified time-frequency domain signal back to the time domain us-
ing a synthesis filterbank.
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The three steps are carried out using the setup shown in Figure 7. In all the papers
constituting this thesis, the Gammatone filterbank is used to mimic the signal processing
in the human auditory system. This filterbank is build of Gammatone filters with fre-
quency dependent bandwidths and non-linear filter spacing as described in the following
paragraphs and seen in Figure 8.

The Gammatone filters [62, 63] imitates the auditory filter in the human cochlea, and
they are created by multiplying a 4th-order gamma function with a tone (carrier):

g(t) = tn−1 exp(−2πbt) cos(2πfct+ φ), (6)

where n is the order (n = 4), b is the bandwidth of the filter, fc the center-frequency, and
φ the phase. The impulse responses from the Gammatone filters in Figure 9 can be seen
as the impulse response at different locations on the basilar membrane. The bandwidths b
of the Gammatone filters are determined by the equivalent rectangular bandwidth (ERB)
[53]:

ERB(fc) = 24.7 · (4.37 · 10−3 · fc + 1) (7)

b = 1.019 · ERB(fc) (8)

where fc is the center-frequency in Hz, and ERB is the bandwidth in Hz. The equivalent
rectangular bandwidth in Equation (7) is a measure of the bandwidths of the human au-
ditory filters [64, 53]. Two filters have the same ERB, if their peak gain is the same and if
they retain the same amount of energy from a white noise signal. Equation (8) is a cor-
rection to match the bandwidths of the 4th-order Gammatone filter with the bandwidths
of the auditory filters in the human auditory system [62, 65].

Smoothing 
function

k=1

k=2

k=K

Figure 7: Application of the binary mask using a filterbank setup. The mixture of target
and interferer sound is decomposed into K subbands through the analysis filterbank, and
each subband signal is multiplied with a smoothed and possibly upsampled binary gain
defined by the binary mask. The modified subbands signals are bandpass filtered and
combined (summed) in the synthesis filterbank.
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The bandwidths of the auditory filters can also be used as a frequency scale [64, 53],
where frequency is expressed as the number of auditory filters between 0 Hz and the
frequency f :

ERBn = 21.4 · log10(4.37 · 10−3 · f + 1), (9)

This frequency scale (number of ERBs) can be used to calculate the center-frequencies
of the filters in the Gammatone filterbank, by distributing the filters linearly between the
lowest and highest frequency on the ERBn scale.
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Figure 8: Frequency response of a 32 channel Gammatone filterbank with center-
frequencies equally distributed on the ERBn scale (Equation (9)) between 90 and 9000
Hz. The Gammatone filters are normalized to 0 dB peak gain [63]. The impulse responses
of the filters illustrated with red, green, and blue are seen in Figure 9.
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Figure 9: Impulse responses of 4th-order Gammatone filters with center-frequencies fc
and bandwidths b. The filters are normalized to 0 dB peak gain [63], as seen in Figure 8.
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Figure 10: Frequency response of a 32 channel short-time Fourier transform. The analysis
window is a 32 point Hamming window normalized to 0 dB peak gain [63].
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When the sound has been decomposed into subbands through the analysis filterbank,
the binary mask is applied by multiplying each subband signal with the binary gain as
shown in Figure 7. Usually, the binary mask is decimated and not calculated on a sample-
by-sample basis, although examples of the latter can be found [44]. As an example,
the binary masks in Paper E are calculated from time-frequency representations using a
frame size of 20 ms with 50% overlap. This decimation makes it necessary to upsample
the binary mask before multiplying it with the subband signals, unless decimation has also
been used in the analysis filterbank. Furthermore, the binary gain should be smoothed
to avoid modulation artifacts. The modulation artifacts are wideband artifacts (“clicks”)
introduced by abrupt gain changes, see Figure 11. The modulation artifacts are less
pronounced, if the binary gain is low-pass filtered (smoothed) before the multiplication
with the subband signals and will also be reduced by the bandpass filters in the synthesis
filterbank.

Finally, the synthesis filterbank transforms the modified signal from the time-frequency
domain back to the time domain. The synthesis filterbank is created by time-reversal of
the Gammatone filters in the analysis filterbank. This method compensates for phase
shifts introduced by the analysis filterbank and reduces the modulation artifacts from the
binary gains.

7.2 Short-Time Fourier Transform

Another useful method for binary masking is the discrete short-time Fourier transform
(STFT) [66, 67, 68]. The result of the short-time Fourier transform is frequency channels
with equal bandwidths and linearly spaced center-frequencies in Hz as seen in Figure 10.

When the STFT is used for binary masking, the binary mask can be applied by multi-
plying the binary mask with the magnitudes of the STFT. One example of binary masking
using the STFT is [35], where the Fast Fourier transform (FFT) is applied to 20 ms seg-
ments with 50% overlap. The binary mask is multiplied with the FFT magnitudes, and the
inverse FFT is applied to the modified magnitudes using the phases from the unmodified
input signal. Finally, the resulting short time segments from the inverse FFT are combined
using the overlap-add-method (OLA).

7.3 Temporal and Spectral Resolution

A main difference between the Gammatone filterbank and the STFT is the spectral resolu-
tion. Because the Gammatone filterbank resembles the processing in the human auditory
system, it is often used for speech processing and perceptual studies. The STFT can also
be used but has the drawback of requiring more frequency channels to obtain the same
spectral resolution at low frequencies than the Gammatone filterbank.

A setup for experiments focusing on intelligibility could use 64 Gammatone filters in
the filterbank equally spaced between 50 Hz and 10 kHz on the ERBn frequency scale.
A higher number of frequency channels, larger bandwidth of the filterbank, or narrower
frequency channels could potentially increase sound quality, but 64 frequency channels
are enough to achieve high intelligibility [69] (see also Paper B and Paper C). In many
studies, the temporal resolution is 20 ms with 50% overlap [35, 36, 70]. The quasi-
stationarity of speech makes a time resolution of 20 ms a reasonable choice, and the
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Figure 11: Multiplication of a 4 kHz sine and the binary gain with and without smooth-
ing. If the gain (A) is multiplied with a 4 kHz tone (B), a broadband artifact will be
introduced where the gain changes from zero to one or vice versa. A listener will perceive
these artifacts as clicks in the sound. If the gain is smoothed by low-pass filtering with a
400 tap (20 ms) Hanning window (C), the artifacts are less pronounced (D).

widespread use of 20 ms temporal resolution makes it easier to compare results between
different studies.

8 Time-Frequency Masking

Binary masking can be seen as a subset of a larger category of algorithms which applies a
frequency-dependent and time-varying gain to a number of frequency bands, where the
gain is not limited to binary values. This type of algorithms can be referred to as time-
frequency masking algorithms, or short-time spectral attenuation [71]. When the gain
is not limited to binary values, the possibility of attenuation changes the simple, binary
decision into a more complex decision of how much each time-frequency unit should be
attenuated. In many speech enhancement and noise reduction algorithms, this decision
is based on the a priori SNR [72, 73, 74], and the classic algorithms like Wiener filtering,
spectral subtraction, and maximum likelihood, can be formulated as a function of this a
priori SNR [74]. In real-life applications, the a priori SNR must be estimated, but in the
ideal situation the local SNR can be used instead of the a priori SNR. This leads to the
following formulation of the Wiener filter [71]:

MW (k, τ) =
T(k, τ)

T(k, τ) +N(k, τ)
, (10)

where T(k, τ) and N(k, τ) is the energy of the target and interferer sounds, respectively.
This formulation can be used to compare the gain from the Wiener filter and the ideal
binary mask as seen in Figures 12 and 13.

The ideal binary mask produces a mask with values of zero and one, whereas the
Wiener filter produces a mask with gain values ranging from zero to one. However, if the
overlap between the target and interferer sound in the time-frequency domain is limited,
the difference in the applied gain between the ideal binary mask and the Wiener filter
is small as illustrated in Figure 14. If each time-frequency unit contains only target or
interferer energy, the local SNR will be −∞ dB or +∞ dB resulting in a gain of −∞ dB
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Figure 12: Attenuation curves for the ideal binary mask and the Wiener filter (Equa-
tions (4) and (10)). The LC value determines when the gain from the ideal binary mask
changes from 0 to 1 (−∞ dB to 0 dB).

or 0 dB using the ideal binary mask or the Wiener filter. The major difference between
the Wiener filter and the ideal binary mask is seen when the local SNR is around 0 dB. If
the energy of the interferer sound is just above the level of target energy, the ideal binary
mask discards everything, whereas half of it will be kept using the Wiener filter.

It is important to emphasize that a comparable evaluation of the ideal binary mask
and the Wiener filter with regards to intelligibility and sound quality has not been car-
ried out in the literature. The ideal binary mask has been shown to enable increased
intelligibility in the ideal situation, whereas the Wiener filter, when tested under realistic
conditions, shows an increase in quality while in most situations only preserving intelligi-
bility [75, 76]. An evaluation of intelligibility and quality using both methods under ideal
condition would be interesting, and could also clarify, whether the substantial improve-
ment of intelligibility using the ideal binary mask can be explained by the binary gain, the
ideal condition, or both. Looking at the gain curves in Figure 12, it could be interesting
to know if the hard binary gain helps emphasize speech cues for the listener, whereas the
soft Wiener gain produces a better sound quality because of the smoother gain curve.

9 Speech Intelligibility and Quality

When employing source separation, speech enhancement, or noise reduction, using bi-
nary masking or other methods, it is important to realize that there are two different –
and sometimes conflicting – goals: To increase speech quality or to increase speech in-
telligibility. Speech quality is a measure of how clear, natural and free of distortion the
speech is, whereas speech intelligibility is a measure of how much of the speech that has
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Figure 13: Examples of the ideal binary mask (A) and the Wiener gain (B) calculated
from a mixture of male and female speech at 0 dB SNR.

been perceived correctly and recognized. Intelligibility is measured by “recognition” and
not by “how much was understood”, because some listening tests use nonsense words
which cannot be understood, but only recognized correctly [77].

The difference between intelligibility and quality can be illustrated with the following
example: If a recording of a sentence is played to a person and the purpose is to mea-
sure intelligibility, the person could be asked to repeat the sentence, or by other means
reproduce the perceived sentence or words. From the listener’s response, intelligibility
can be measured, e.g., by the percentage of correctly recognized words, or by the level
of noise allowing 50% of the words to be correctly recognized. If, instead, the person is
asked his opinion about the quality of the speech without any further instructions, the
answer might easily be “compared to what?” If no reference is established when quality
is being evaluated, answers like “fine” or “bad” are of very little use unless the listeners
are highly trained or expert listeners. Quality is a subjective measure depending on the
users’ individual reference and experience, whereas intelligibility is an objective measure,
because the result of the intelligibility test is not affected by the listeners’ subjective judge-
ments. However, this objectivity does not imply that intelligibility is an absolute measure,
because the results are dependent on speech material (stimuli), conditions, training, pos-
sibility of repeating the stimuli, etc. If the task is to identify words in noise, the results will
also depend on the used words, compare for example “house”, “bridge”, and “airplane”
to “cat”, “hat”, and “bat”. The last three words would be more difficult to distinguish
because they only differ by the first consonant.

It is important to distinguish between quality and intelligibility to keep a well-defined
objective when developing new speech algorithms. Increasing speech intelligibility does
not automatically increase speech quality or vice versa [10]. It seems to be a difficult task
to obtain both objectives at the same time, and the reason might be that they conflict, e.g.
if intelligibility is increased by enhancement of the speech cues like onsets and offsets,
and quality is increased by a more smooth sound.

The ideal binary mask is able to increase intelligibility under several conditions, but
according to my knowledge a concurrent subjective evaluation of intelligibility and qual-
ity using the ideal binary mask has not yet been carried out. If the ideal binary mask
is applied to the sound mixture using a small number of frequency channels (e.g. 16
frequency channels), the quality will most likely be affected. If the separated speech is
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Figure 14: Distribution of gain values with the ideal binary mask and the Wiener filter.
The gain using the ideal binary mask is either −∞ or 0 dB, whereas the gain using the
Wiener filter is in the range −∞ to 0 dB. However, the highest percentages of gain val-
ues using the Wiener filter are found at 0 dB or below −27 dB. Five minutes of target
sound (male speaker) and interferer sound is used to calculate the local SNR in all time-
frequency units. In (A) and (B) the interferer sound is one female speaker. In (C) and
(D) the interferer sound is one female and one male speaker. In (E) and (F) the interferer
sound is two female and two male speakers. All speakers are normalized to the same en-
ergy, so the global SNR decreases as more speakers are added to the interferer sound. To
calculate the local SNR, a 64 channel Gammatone filterbank (80–8000 Hz) is used with
center-frequencies equally spaced on the ERBn scale. The output from the filterbank is
divided into 20 ms time-segments with 50% overlap.
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compared to the clean target speech, the quality will probably be perceived as lower,
whereas, if compared to the original mixture, quality will probably be perceived as being
higher. Listeners might perceive higher intelligibility as higher quality.

9.1 What makes Speech Intelligible?

Although intelligibility of speech has been a research area for many decades, the question
of “what makes speech intelligible?” has not yet been completely answered. If the ques-
tion is broadened to “what makes speech intelligible at the cocktail party” the answering
becomes even more complex. The purpose of the following section is not to provide a
complete answer, but to identify elements within speech and perception that are fun-
damental to intelligibility or which contribute to the intelligibility of speech. Different
answers to the question “what makes speech intelligible?” can be roughly sorted into the
following three groups:

1. Fundamental speech cues are necessary for intelligibility and to distinguish dif-
ferent phonemes in the language. If the fundamental speech cues are modified or
missing, the lexical meaning can change and intelligibility will be reduced.

• Formants are resonances in the oral cavity generated by constrictions using
the tongue and the lips. Different vowels are distinguished mainly by the two,
lowest formants found between 300 and 2500 Hz [78, 79].

• Onsets and offsets indicate where words begin and end, and they divide the
speech into smaller units.

• Consonants are discriminated by place, manner, and voicing [79, 80, 81].
Because consonants have less energy than vowels, they are less robust in noisy
conditions [82].

2. Supplementary speech cues contribute to the correct perception of speech in noisy
conditions. These cues are not fundamental to intelligibility because high intelligi-
bility can be obtained without these cues being available. However, if the com-
plementary speech cues are missing due to noisy conditions, it is more likely that
intelligibility is affected since the listener will find it more difficult to identify and
separate the target speech.

• Pitch determines the gender of the speaker, and can be used to follow a single
speaker in noisy conditions [83, 84, 85, 86]. However, pitch is not crucial for
intelligibility in noise free conditions, as experiments with sine-wave-speech
[87, 88, 89], vocoding [42, 41], or binary masking (Paper B) show. In some
Asian and African languages, pitch is a fundamental speech cue, because pitch
changes can change the lexical meaning of a word or sentence [79].

• Spatial location is information about the location of the speaker in the envi-
ronment, and the binaural cues interaural time difference (ITD), and interaural
level difference (ILD), are useful to segregate target from interferer [53, 90, 4].

• Harmonicity can be in simultaneous grouping across frequencies to decide
whether a sound segment belongs to the same speaker [55]. If the harmonic
structure at low frequencies is different from the harmonic structure at high
frequencies, the two sound segments do not originate from the same speaker.
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3. High level processes can be used to further process the perceived speech in the hu-
man auditory system and increase intelligibility. Whereas the previous two groups
of contributing factors are characteristics of the perceived sound, the high level
processes are located somewhere in the human auditory system.

• Redundancy and phonetic restoration of speech is important for intelligibility
in noisy conditions. If some parts of the speech is inaudible because of noise,
the remaining parts can be used to perceive what was being said (see e.g.
[23, 25, 91, 24]). The recognition of a word is not dependent on one, unique
realization of the word – many sounds or acoustic patterns can lead to the same
perception. It has been shown that a few unobstructed glimpses in time and
frequency of the target speech can be enough to achieve a high intelligibility
[26], and that the size and amount of these glimpses have a high correlation
with intelligibility [92].

• Context helps to determine the correct words, if the speech was not perceived
correctly. Context works on many levels by limiting the number of possible
words that can be chosen to substitute the wrongly perceived word. Knowl-
edge about, e.g., the spoken language, the speaker, and the subject of the
conversation reduces the context entropy [77].

• Auditory-visual integration is the use of visual information to help recognize
the speech correctly [93, 8]. The visual impact on speech perception is strong,
and conflicting auditory and visual cues has been shown to create a different
perception – the McGurk effect [94]. For hearing impaired listeners, auditory-
visual integration in terms of lip-reading can be a fundamental speech cue.

• Continuity and illusion of continuity is the auditory equivalent of the Gestalt
principle of closure [47]. If a sound is masked by a louder sound, we expect
the masked sound to continue “behind” the louder sound [24], e.g., if a tone
is masked by a noise burst. This illusion or principle helps to restore missing
speech sound that was masked by the interferer.

9.2 Evaluation of Speech Intelligibility

Having defined speech intelligibility and considered the elements contributing to it, it is
of interest to consider how intelligibility can be evaluated and measured. Basically, this
can be done in two ways; either by subjective evaluation using human listeners or by
objective evaluation by means of an algorithm. The advantage of using listeners is the
reliability of the result, but it comes at the price of a more demanding process. On the
other hand, the objective evaluations are quicker to carry out, but less reliable.

Objective Evaluation of Speech Intelligibility

Objective evaluations are based on models of the human perception and calibrated using
results from listening tests, but since the understanding of the human auditory system is
not yet complete, these models are also incomplete and to some extent unreliable. This
is not to say that objective evaluations should be avoided – they can be of great help in
the development of new algorithms and point out problems or wrong directions in this
process – but it is important to interpret the results correctly and know the limitations
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of the model. Some objective evaluations are based on simplified models and calibrated
using a limited amount of data, e.g., the nSec measure in Paper F or the HIT-FA [50]. With
these types of simple, objective evaluations it is very important to consider and discuss
the result and the possible generalization of the method, although this type of criticism
must be applied to all objective evaluations.

A well-known objective measure of intelligibility is the Articulation Index (AI) [95]
which is based on calculation of the SNR in a number of independent frequency bands.
The AI has been further developed into the speech intelligibility index (SII) [96], the
speech transmission index (STI) [97], and a number of variants of these methods [98,
99]. These objective measures have a reliable performance in additive noise, but precision
is reduced when non-linear processing like binary masking is used [100, 101]. Recently,
an objective measure based on cross-correlation between the pre-processed test signal and
the reference signal [100] showed a fine concordance with the results from the listening
test in paper C. The pre-processing was implemented using the auditory model from
[102]. A similar, but simpler approach, is used in the nSec measure described in Paper E.

The above mentioned objective evaluations are used to measure the performance of
a particular algorithm or concept, but may also serve a different purpose: to provide
insight into and understanding of what makes speech intelligible. If the models of speech
perception correlate well with results obtained in subjective listening test, these models
can be used as explanations of how speech intelligibility is obtained [84, 92].

Subjective Evaluation of Speech Intelligibility

A subjective evaluation is more demanding than an objective evaluation, because of the
use of human listeners. Subjective evaluations are carried out by playing a stimuli to the
listener and measure intelligibility from his response. The stimuli can be various sets of
speech material (corpus) from short nonsense words to long sentences. In the subjective
listening tests in the Papers A–C, the Dantale II corpus was used [103]. This corpus
consists of syntactically fixed but semantically unpredictable sentences. This means that
each sentence in the Dantale II corpus has the same structure with name, verb, numeral,
adjective, and object, e.g., “Anders receives six fine cars” or “Linda owns ten old jackets”.
It is not possible to guess any particular word from the preceding or following words.

An important consideration when creating and using a corpus for subjective listening
tests is the context entropy [77]. High context entropy means that listeners have a small
probability of being able to predict a word from previous or following words in a sen-
tence, and high context entropy is preferable since it is not the listeners’ ability to predict
which is to be measured in a subjective listening test. To maximize the context entropy,
nonsense words or syllables can be used. In the Dantale II corpus, context entropy is
maximized by carefully selecting 10 different words in each category (name, verb, etc.).
The limited number of words in each place in the sentence makes the Dantale II corpus a
closed set, and even though the number of different sentences is large, over time listeners
will learn the different words occurring in the sentences as well as the structure of the
sentences. Thus some training effect exists when using the Dantale II corpus, and this
training effect must be taken into consideration when planning the listening test, e.g., by
allowing the test person to listen to a number of test sequences before the measurement
of intelligibility is initialized.
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Figure 15: The speech reception threshold (SRT) shown on the psychometric function.
The speech reception threshold is the SNR at which 50% of the stimuli (e.g. words) are
correctly recognized. Please note, that higher SRT is lower performance [17].

To measure intelligibility, the number of correctly identified words can be counted,
or an adaptive test can be used, in which the condition, e.g., the SNR, changes as a
function of the response from the subject. In Paper B and Paper C, the number of correctly
recognized words in each Dantale II sentence was used to measure the intelligibility. In
Paper A and Paper C, the speech reception threshold (SRT) was used. The SRT is a
measure of the required SNR allowing 50% correct recognition. The SRT is a point on
a psychometric curve showing intelligibility as a function of SNR (see Figure 15). If the
slope of the psychometric curve is a necessary parameter, at least two points on the curve
must be measured as done in Paper C, where the 20% and 80% correct recognition were
used to establish the psychometric curve.

10 Contributions

The papers that form the main body of this thesis fall into two groups. The first group
comprising papers A–C is based on subjective listening tests, and contributes to the knowl-
edge and understanding of speech intelligibility and how this can be improved using
binary masks. In the second group of papers (D and E) the knowledge obtained in pa-
pers A–C is used in real-life applications for estimation and error-correction of the oracle
masks. In Paper F, a method for objective evaluation of intelligibility is proposed based
on the results obtained with the oracle masks.

Paper A: In this paper, the intelligibility of ideal binary masked noisy speech is evaluated
using hearing impaired and normal hearing listeners. The results confirm previous
results [36] and further show that hearing impaired listeners also achieve a large
increase in intelligibility from the ideal binary mask. The increase in intelligibility
for the hearing impaired listeners is higher than for normal hearing listeners in the
two noise conditions tested, and this results in a similar performance of the two
groups when the ideal binary mask is used on noisy speech.
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Paper B: Based on the finding that applying the ideal binary mask to pure noise will
generate highly intelligible speech, this paper investigates how large a number of
channels is required using normal hearing listeners. When the ideal binary mask
is applied to speech-shaped noise, the noise is modulated with a very coarse en-
velope from the target speech. This method generates a new type of artificial, but
intelligible, speech with highly reduced temporal and spectral information similar
to vocoding and sine-wave-speech [40, 41, 42, 43, 87].

Paper C: In this paper, the method from paper B is formalized by the definition of the tar-
get binary mask (Equation (5)). The impact on speech intelligibility from the ideal
binary mask and target binary mask is examined and shows high intelligibility for a
range of mask densities, different noise types, and SNR levels. These results make
the method from paper B even more interesting by showing that high intelligibility
can be obtained by modulating different noise types with either the target binary
mask or the ideal binary mask.

Paper D: The substantial increase in intelligibility obtained by using the ideal binary
mask makes it interesting to try to estimate the ideal binary mask in real-life ap-
plications. This paper introduces a simple method for estimating the ideal binary
mask using a directional system with two microphones in a configuration similar to
what is found in a hearing aid. The results show that the ideal binary mask can be
estimated with high precision in the evaluated conditions, measured by the number
of correct time-frequency units.

Paper E: Realizing that most real-life estimates of the ideal binary mask or the target
binary mask will contain errors, a method for correcting these errors is proposed
and evaluated. The focus in this paper is error-correction of the target binary mask
using hidden Markov models, and it is shown how a model of the target binary
mask can be build and used to reduce errors in the target binary mask.

Paper F: This paper introduces a simple method for objective evaluation of speech in-
telligibility and a model of how intelligibility is obtained. The method is based on
the results in Paper C showing that intelligible speech can be created by modulating
noise sounds with the target binary mask or the ideal binary mask. This knowledge
is used in the intelligibility model which is based upon the correlation in time and
frequency between the target and the processed speech.

11 Conclusion

The diversity of the contributions in this thesis allows only for a very general overall
conclusion, but the obtained results attempt to narrow the gap between binary masking
under ideal conditions and binary masking under more realistic conditions. The results
obtained under ideal conditions show that high intelligibility can be obtained with binary
masking in a variety of mixtures of speech and interferers for both normal hearing lis-
teners and hearing impaired listeners. The results under more realistic conditions show
that it is indeed possible to obtain reasonable estimates of the ideal binary mask and the
target binary mask under more realistic conditions.
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In the first group of papers (A–C), it was confirmed that binary masking could be
useful for the hearing impaired, and the requirements for obtaining high intelligibility
have been relaxed: High intelligibility using binary masking does not require a large
number of frequency channels, target sound does not need to be present in the mixture,
and prior knowledge of the interferer sound is not required. These relaxed requirements
for high intelligibility using binary masking have increased the potential for the use of
binary masking in hearing aids or other devices where intelligibility is a major concern.

On the opposite side of the gap, the papers in the second group (D–E) have focused
on how to obtain the ideal and target binary mask in more realistic conditions and with
limited resources. It was shown that the ideal binary mask can be estimated with high
precision using a directional system with low complexity, and that a speaker-independent
model of the target binary mask can be build and used to correct errors.

Although the gap between results under ideal conditions and more realistic conditions
has been narrowed, it has not been closed. Hearing aids with true user benefits obtained
through binary masking remain to be seen. To get to that point, more knowledge about
the impact on intelligibility and quality from binary masking must be obtained – in par-
ticular for hearing impaired listeners. Binary masking can negatively influence sound
quality, but it is not evident from existing studies how hearing impaired listeners will
perceive and judge the sound quality. It is also important to deepen the understanding of
how intelligibility is affected by the binary mask. As shown, the ideal binary mask and the
target binary mask are able to increase intelligibility by a large amount, but situations can
be found, where the method could fail, e.g., when more difficult recognition tasks such as
consonant identification are considered. To enable the use of binary masking in hearing
aids, algorithms must meet the fundamental requirements of low delay, low complexity,
and high robustness. This is not easy to achieve, but if the human auditory system were
understood to a larger extent, it might be possible to generalize and simplify the used
methods into efficient algorithms.
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Ideal binary time-frequency masking is a signal separation technique that retains mixture energy in
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intelligibility performances of NH and HI listeners in noisy backgrounds. The results from
Experiment 2 suggest that ideal binary masking in the low-frequency range yields larger
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I. INTRODUCTION

Human speech communication typically takes place in
complex acoustic backgrounds with environmental sound
sources, competing voices, and ambient noise. It is remark-
able that human speech understanding remains robust in the
presence of such interference. This perceptual ability is
thought to involve the process of auditory scene analysis
�Bregman, 1990�, by which the auditory system first ana-
lyzes a noisy input into a collection of sensory elements in
time and frequency, also known as segments �Wang and
Brown, 2006�, and then selectively groups segments into au-
ditory streams which correspond to sound sources.

It is well known that listeners with hearing loss have
greater difficulty in speech perception in background noise.
A standard way to quantify speech intelligibility in noise is a
speech-reception threshold �SRT�, which is the mixture sig-
nal to noise ratio �SNR� required to achieve a certain intel-
ligibility score, typically 50%. Hearing-impaired �HI� listen-
ers need 3–6 dB higher SNR than normal-hearing �NH�
listeners in order to perform at the same level in typical noisy
backgrounds �Plomp, 1994; Alcantara et al., 2003�. For

speech-shaped noise �SSN� which is a steady noise with a
long-term spectrum matching that of natural speech, the SRT
increase for HI listeners is from 2.5 to 7 dB �Plomp, 1994�.
For fluctuating noise or competing speech, the increase is
considerably higher �Festen and Plomp, 1990; Hygge et al.,
1992; Eisenberg et al., 1995; Peters et al., 1998�; for a single
competing talker, the increase is as much as 10–15 dB �Car-
hart and Tillman, 1970; Festen and Plomp, 1990; Peters
et al., 1998�. Note that, for typical speech materials, a 1 dB
increase in SRT leads to a 7%–19% reduction in the percent
correct score, and a 2–3 dB elevation creates a significant
handicap for understanding speech in noisy listening condi-
tions �Moore, 2007�.

Although modern hearing aids improve the audibility
and comfort of noisy speech, their ability to improve the
intelligibility of noisy speech is unfortunately very limited
�Dillon, 2001; Alcantara et al., 2003�. Extensive research has
been made to develop noise reduction algorithms in order to
close the SRT gap between HI and NH listeners. Monaural
speech enhancement algorithms, such as Wiener filtering and
spectral subtraction, perform statistical analysis of speech
and noise and then estimate clean speech from noisy speech
�Lim, 1983; Benesty et al., 2005�. Although these algorithms
produce SNR improvements, they have not led to increased
speech intelligibility for human subjects �Levitt, 2001;
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Moore, 2003b; Edwards, 2004�. Attempts have also been
made to directly enhance speech cues, especially formants
which are spectral peaks of speech �Bunnell, 1990; Simpson
et al., 1990�. This processing results in clearer formant struc-
ture; however, listening tests with both NH and HI listeners
show little improvement in speech intelligibility �Baer et al.,
1993; Alcantara et al., 1994; Dillon, 2001�. Unlike monaural
speech enhancement, beamforming �spatial filtering� with a
microphone array has been demonstrated to achieve signifi-
cant speech intelligibility improvements, particularly with
large arrays �Kates and Weiss, 1996; Levitt, 2001; Schum,
2003�. On the other hand, practical considerations of hearing
aid design often limit the size of an array to two micro-
phones, and the effectiveness of beamforming degrades in
the presence of room reverberation �Greenberg and Zurek,
1992; Levitt, 2001; Ricketts and Hornsby, 2003�. Addition-
ally, to benefit from spatial filtering target speech and inter-
fering sounds must originate from different directions.

Recent research in computational auditory scene analy-
sis �CASA� has led to the notion of an ideal binary time-
frequency mask as a performance upper bound to measure
how well CASA algorithms perform �Wang and Brown,
2006�. With a two-dimensional time-frequency �T-F� repre-
sentation or decomposition of the mixture of target and in-
terference, where elements in the representation are called
T-F units, an ideal binary mask �IBM� is defined as a binary
matrix within which 1 denotes that the target energy in the
corresponding T-F unit exceeds the interference energy by a
predefined threshold and 0 denotes otherwise. The threshold
is called the local SNR criterion �LC�, measured in decibels.
More specifically, IBM is defined as

IBM�t, f� = �1 if s�t, f� − n�t, f� � LC

0 otherwise,
�

where s�t , f� denotes the target energy within the unit of time
t and frequency f and n�t , f� the noise energy in the T-F unit,
with both s�t , f� and n�t , f� measured in decibels. The mask
is considered ideal because its construction requires access to
the target and masker signals prior to mixing, and under
certain conditions the IBM with LC=0 dB has the optimal
SNR gain among all the binary masks �Wang, 2005; Li and
Wang, 2009�. As a separation technique, applying the IBM
with LC=0 dB to the mixture input retains the T-F regions
of the mixture where target energy is stronger than interfer-
ence energy while removing the T-F regions where target
energy is weaker than interference energy.

Varying LC results in different IBMs. Recently, Brun-
gart et al. �2006� tested the effects of IBM with different LC
values on speech mixtures with one target utterance and 1–3
competing utterances of the same talker, where the sound
levels of all the utterances are set to be equal. Their experi-
mental results show that, when 0 dB�LC�−12 dB, IBM
produces nearly perfect intelligibility scores, which are dra-
matically higher than in a control condition where speech
mixtures are presented to listeners without processing. They
suggest that the choice of LC=−6 dB, which lies near the
center of the performance plateau, may be better than the
commonly used 0 dB LC for intelligibility improvement.
Furthermore, they attribute the intelligibility improvement to

the removal of informational masking which occurs when
the listener is unable to successfully extract or segregate
acoustically detectable target information from the mixture.
Anzalone et al. �2006� investigated the intelligibility im-
provements of a related version of IBM, defined by a com-
parison between target energy and a threshold rather than a
comparison between target energy and interference energy.
Using mixtures of speech and SSN, they found that IBM
leads to substantial SRT reductions: more than 7 dB for NH
listeners and more than 9 dB for HI listeners. In addition
they reported that, while NH listeners benefit from ideal
masking in both the low-frequency �LF� and high-frequency
�HF� ranges, HI listeners benefit from ideal masking only at
LFs �up to 1.5 kHz�. Li and Loizou �2007� used the IBM to
generate “glimpses,” or T-F regions with stronger target en-
ergy, to study several factors that influence glimpsing of
speech mixed with babble noise. Their results show that it is
important to generate glimpses in the LF to mid-frequency
range �up to 3 kHz� that includes the first and the second
formant of speech, but not necessary to glimpse a whole
utterance; high intelligibility is achieved when the listener
can obtain glimpses in a majority of time frames. More re-
cently, Li and Loizou �2008b� extended the findings of Brun-
gart et al. �2006� to different types of background interfer-
ence, including speech babble and modulated SSN.
Moreover, they evaluated the impact of deviations from the
IBM on intelligibility performance and found that there is a
gradual drop as the amount of mask errors increases. A sub-
sequent study by Li and Loizou �2008a� shows that NH lis-
teners obtain significant intelligibility improvements from
IBM processing with as few as 12 frequency channels, and
IBM processing in the LF to mid-frequency range that in-
cludes the first and the second formant appears sufficient.

In this paper, we evaluate the effects of IBM processing
on speech intelligibility with two kinds of background noise:
SSN and cafeteria noise, using both NH and HI listeners.
While SSN is commonly used in the literature, the cafeteria
noise we use contains a conversation between two speakers
in a cafeteria background and it resembles the kind of noise
typically encountered in everyday life. Our study adopts the
standard IBM definition with a comparison between target
and interference and measures speech intelligibility by SRT
at the 50% level. As suggested by the findings of Brungart et
al. �2006�, we set LC to −6 dB in IBM construction. In-
trigued by the observation of Anzalone et al. �2006� that HI
listeners derive little benefit from IBM in the HF range, we
conduct an experiment to test whether ideal masking in the
HF range is indeed not important for HI subjects. Unlike
Anzalone et al. �2006� who applied a constant gain to com-
pensate for the hearing loss of their HI subjects, we apply
gain prescriptions to fit individual HI listeners.

In what follows, Sec. II details IBM processing. Section
III describes an experiment that tests the effects of ideal
masking on mixtures of speech with SSN or cafeteria noise.
Section IV describes an experiment that compares the effects
of ideal masking in LF, HF, and all-frequency �AF� ranges.
Further discussion is given in Sec. V. Finally, Sec. VI con-
cludes the paper.
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II. IDEAL BINARY MASKING

The concept of IBM in CASA is directly motivated by
the auditory masking phenomenon which, roughly speaking,
refers to the perceptual effect that a louder sound renders a
weaker sound inaudible within a critical band �Moore,
2003a�. So keeping noise in T-F units with stronger target
energy as done in the standard IBM definition with 0 dB LC
should not reduce speech intelligibility, and this is indeed
what was found by Drullman �1995�. On the other hand,
IBM processing removes all the T-F units with stronger in-
terference energy as the target energy in these units is as-
sumed to be masked by the interference. Removing these
masker-dominated units also serves to remove informational
masking, which is a dominant factor for reduced speech in-
telligibility in speech and other modulated maskers �Brun-
gart, 2001�. Hence IBM processing, as a form of ideal time-
frequency segregation, is expected to yield larger speech
intelligibility improvement in a modulated noise condition
than in a steady noise condition �Brungart et al., 2006�.

Like earlier studies �Brungart et al., 2006; Anzalone et
al., 2006�, we use a gammatone filterbank to process a stimu-
lus and then time windowing to produce a cochleagram
which is a two-dimensional T-F presentation �Wang and
Brown, 2006�. Specifically, we use a 64-channel filterbank
that is equally spaced on the equivalent rectangular band-
width �ERB� rate scale with center frequencies distributed
from 2 to 33 ERBs �corresponding to 55–7743 Hz�. The
bandwidth of each filter is 1 ERB. We note that this filter-
bank is similar to the one used in Anzalone et al. �2006�
whereas Brungart et al. �2006� used a 128-channel filterbank
covering the frequency range of 80–5000 Hz. The response
of each filter is divided into 20 ms frames with a frame shift
of 10 ms, hence generating a two-dimensional matrix of T-F
units. The cochleagram of a stimulus is simply the two-
dimensional graph of response energy within all the T-F
units. For a given mixture of target signal and background
noise, the IBM is calculated by comparing whether the local
SNR within a T-F unit is greater than LC. As mentioned in
Sec. I, we fix LC=−6 dB in this study as suggested by Brun-
gart et al. �2006�. Such a choice of negative LC retains cer-
tain T-F units where the target energy is weaker but not
much weaker than the interference energy, in accordance
with Drullman’s observation that weaker speech energy be-
low the noise level still makes some contribution to speech
intelligibility �Drullman, 1995�. Indeed, a pilot test with
0 dB LC indicates that SRT improvements are not as high as
those produced with LC=−6 dB. More generally, in order to
produce large auditory masking, the masker needs to be
stronger than the masked signal �Moore, 2003a�.

Given an IBM, the waveform output of IBM can be
resynthesized from the mixture input by weighting the mix-
ture cochleagram by the IBM and correcting phase shifts
introduced during gammatone filtering �see Wang and
Brown, 2006�. Such an output can then be played to a lis-
tener as a stimulus in our experiments. Figure 1 illustrates
IBM for a mixture of a speech utterance and a cafeteria back-
ground. The SNR of the mixture is 0 dB. Figure 1�a� shows
the cochleagram of the target speech, Fig. 1�b� that of the

background noise, and Fig. 1�c� that of the mixture. Figure
1�d� displays the IBM with LC=−6 dB, and Fig. 1�e� the
cochleagram of the resynthesized result of ideal masking
with the IBM in Fig. 1�d�. The ideally masked mixture in
Fig. 1�d� is clearly more similar to the target speech shown in
Fig. 1�a� than the original mixture shown in Fig. 1�c� is. As a
comparison, Fig. 1�f� shows the IBM with LC=0 dB, and
Fig. 1�g� the cochleagram of the corresponding ideal mask-
ing output. With the increased LC, the IBM has fewer 1’s
and retains less mixture energy.

III. EXPERIMENT 1: EFFECTS OF IDEAL BINARY
MASKING ON SPEECH-RECEPTION THRESHOLD

This experiment was designed to quantify the SRT ef-
fects of IBM for both NH and HI listeners. Sentences from
the Dantale II corpus �Wagener et al., 2003� were used as
target speech, and tests were conducted with two different
backgrounds: SSN and cafeteria noise.

A. Methods

1. Stimuli

The Dantale II corpus �Wagener et al., 2003� comprises
sentences recorded by a female Danish speaker. Each sen-
tence has five words with a fixed grammar �name, verb, nu-
meral, adjective, and object�, for example, “Linda bought
three lovely presents” �English translation�. Each word in a
sentence is randomly chosen from ten equally meaningful
words. As a result, recognizing a subset of words in a sen-
tence does not help with the recognition of the remaining
words. There are a total of 15 test lists, and each list has ten
sentences with no repeating word. There are a few seconds
of silence between sentences within each list to allow a lis-
tener time to report what has been heard. Similar to the
Swedish sentence test �Hagerman, 1982�, the closed set cor-
pus was designed for repeated use, and training effects are
minimal after familiarization with a few lists �Wagener et al.,
2003�. We use the speech-shaped noise included with the
Dantale II corpus, which is produced by superimposing the
speech material in the corpus. The cafeteria noise employed
is a recorded conversation in Danish between a male and
female speaker that took place in a cafeteria background
�Vestergaard, 1998�. To emphasize temporal modulation ef-
fects, the long-term spectrum of this noise was shaped to
match that of the Dantale II speech material �Johannesson,
2006�. Target speech and background noises are all digitized
at 20 kHz sampling frequency.

A speech utterance and a background noise are first pro-
cessed separately by a 64-channel gammatone filterbank �see
Sec. II�, which produces a flat frequency response within the
frequency range of the filterbank. Filter responses are then
windowed into 20 ms rectangular frames with a 50% overlap
between consecutive frames, resulting in a two-dimensional
cochleagram. This 100 Hz frame rate is frequently used in
speech processing �Rabiner and Juang, 1993�. For a given
mixture of a Dantale II list and a background noise, the mix-
ture SNR is calculated during the intervals that contain
speech energy. To account for the forward masking of the
continuously present noise that occurs between two consecu-
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FIG. 1. �Color online� Illustration of IBM �A� Cochleagram of a target speech utterance. �B� Cochleagram of a cafeteria background. �C� Cochleagram of a
0 dB mixture of the speech and the background shown in A and B. �D� IBM with LC=−6 dB, where 1 is indicated by white and 0 by black. �E� Cochleagram
of the segregated mixture by the IBM in D. �F� IBM with LC=0 dB. �G� Cochleagram of the segregated mixture by the IBM in �F�.
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tive sentences �Moore, 2003a�, a period of 100 ms is added
before the onset of a sentence for mixture SNR calculation.
For a mixture input with a specified SNR, IBM is con-
structed from the cochleagrams of the target speech and the
background noise with LC fixed at −6 dB. The IBM is then
used to resynthesize a waveform stimulus from the mixture
cochleagram. Note that, as a result, the masker signals in
between sentences are removed by IBM processing because
during such intervals there is only masker energy.

As control conditions, mixtures of speech and back-
ground noise were also presented to listeners without segre-
gation. To incorporate filtering effects and any distortions
that might be introduced during cochleagram analysis and
synthesis, a mixture in an unsegregated condition is pro-
cessed through an all-1 binary mask or the IBM with the LC
of negative infinity, therefore including all the T-F units in
the resynthesis.

2. Listeners

A total of 12 NH listeners and a total of 12 listeners with
sensorineural hearing loss participated in this experiment. All
subjects were native Danish speakers. The NH listeners had
hearing thresholds at or below 20 dB HL from
125 Hz to 8 kHz, and their ages ranged from 26 to 51 with
the average age of 37. The NH listeners had little prior ex-
perience with auditory experiments, and were not informed
of the purpose or design of the experiment.

The 12 HI listeners had a symmetric, mild-to-moderate,
sloping hearing loss. The audiograms of these listeners are
shown in Fig. 2. They had an age range from 33 to 80 with
the average age of 67. All the HI listeners were experienced
hearing aid wearers. The tests were performed with their
hearing aids taken off, and compensation was applied to each
HI subject individually. Specifically, a gain prescription was
computed from an individual’s audiogram using the NAL-RP
procedure �Dillon, 2001�, and then used to produce amplifi-
cation with appropriate frequency-dependent shaping. The
hearing losses in the left ear and the right ear were compen-

sated for separately. The subjects had participated in Dantale
II listening tasks before, but were not told of the purpose and
design of this experiment.

3. Procedure

There are a total of four test conditions in this experi-
ment: two ideal masking conditions with SSN and cafeteria
noise and two control conditions with unsegregated mix-
tures. Three Dantale II lists with a total of 30 sentences were
randomly selected from the corpus for each test condition.
Subjects were instructed to repeat as many words as they
could after listening to each stimulus that corresponded to
one sentence, and they were not given any feedback as to
whether their responses were correct or not. To familiarize
them with the test procedure, subjects were given a training
session at the beginning of the experiment by listening to and
reporting on three lists of clean sentences. The order of the
four conditions was randomized but balanced among the lis-
teners �Beck and Zacharov, 2006�. A subject test with the
four conditions and a training session together took less than
1 h, and a short break was given roughly halfway through
the test.

The Dantale II test employs an adaptive procedure in
order to find the 50% SRT. The procedure is to present test
sentences at SNR that is continuously adapted according to
the number of correctly reported words in the previous sen-
tence �Hansen and Ludvigsen, 2001�. In a test condition with
30 sentences, the first 10 sentences are used to reach a steady
50% SRT level and the final SRT is determined by averaging
the SNR levels for the last 20 sentences.

Speech and noise were both set to the same initial sound
pressure level �SPL� for NH listeners. For HI listeners, the
initial SPL of speech was set to 5 dB higher than the noise
SPL in Experiment 1, and to the same SPL of noise in Ex-
periment 2. In unsegregated conditions, the noise level was
fixed while the speech level was adjusted during the adaptive
procedure. In ideal masking conditions, as input SNR drops
IBM becomes sparser with fewer 1’s. To ensure that ideally
masked stimuli remain audible at very low SNRs, the speech
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FIG. 2. Audiograms of the 13 HI listeners who participated in the experiments. The dashed line indicates the subject who only participated in Experiment 1,
and the dotted line the subject who only participated in Experiment 2.
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level was fixed while the noise level was adjusted in all IBM
conditions. As a result, with fewer retained T-F units their
sound levels became higher even though the levels of the
speech signals within these units were unchanged, and the
loudness of a processed mixture was thus kept within a small
range. This way of adjusting input SNR ensured that the
stimuli in all four conditions were comfortably audible.

During a test, a subject was seated in a sound attenuating
booth. Test stimuli were generated using the built-in sound
card �SoundMAX� in a control computer �IBM ThinkCenter
S50� and then presented diotically to a listener through head-
phones �Sennheiser HD 280 Pro�. For HI listeners, an exter-
nal amplifier �Behring Powerplay HA4000� was used to in-
crease the sound level so that the stimuli within the test range
were all audible and yet not uncomfortably loud. The ampli-
fication level was adjusted once for each HI listener before
the test began.

4. Statistical analysis and power

During the planning phase of the study, the experiment
was statistically powered to detect a within-subject between-
condition difference of 1.0 dB on mean scores across condi-
tions on the Dantale II test described subsequently for p
�0.05 at 80% power. This required at least ten complete
data sets per condition. Analysis of variance �ANOVA� was
performed on all of the data from NH and HI subjects, with
within-subject factors of type of processing �IBM or unseg-
regated� and of type of noise �SSN or cafeteria noise�, and a
between-subject factor of subject type �NH and HI�. Post hoc
tests were the Bonferroni test and/or the Fisher least-
significant-difference �LSD� test, applied where appropriate.
The Bonferroni test was used as the most conservative test to
indicate differences between means, while the Fisher LSD
test was used as the most conservative test for a null result.
All statistics were performed using STATISTICA version 7
�StatSoft, 2007�.

B. Results and discussion

Figure 3 shows the SRT results of all four test condi-

tions: SSN, CAFE, SSN-IBM, and CAFE-IBM, for both NH
and HI listeners. For NH listeners, the mean SRT for unseg-
regated mixtures with SSN �SSN� is −8.15 dB, for unsegre-
gated mixtures with cafeteria noise �CAFE� is −10.25 dB,
for ideal masking with SSN �SSN-IBM� is −15.56 dB, and
for ideal masking with cafeteria noise �CAFE-IBM� is
−20.70 dB. The ANOVA for NH subjects showed that the
main effects of processing type and noise type were signifi-
cant �F�1,11�=606.1, p�0.001, and F�1,11�=78.1, p
�0.001, respectively�, and there was also a significant inter-
action between processing type and noise type �F�1,11�
=32.3, p�0.001�. The Bonferroni post hoc tests indicated
that all means were significantly different �p�0.005� from
one another. The results show that ideal masking leads to
lower �better� SRT compared to unsegregated mixtures re-
gardless of background noise, that the cafeteria background
yields a lower SRT than the SSN, and that ideal masking has
a greater effect on the cafeteria background. The SRT for the
unsegregated SSN condition is comparable to the reference
level of −8.43 dB for the Dantale II task �Wagener et al.,
2003�. The lower SRT for the cafeteria background is con-
sistent with previous studies showing that NH listeners ex-
hibit higher intelligibility in fluctuating backgrounds �Festen
and Plomp, 1990; Peters et al., 1998�.

For the SSN background, IBM produces an average SRT
improvement of 7.4 dB. This level of improvement is con-
sistent with what was found by Anzalone et al. �2006� using
the HINT test �Nilsson et al., 1994�, but higher than the 5 dB
improvement reported by Brungart et al. �2006� using the
CRM task �Bolia et al., 2000�. The main difference between
our experiment and Brungart et al. �2006� lies in different LC
values: their test uses 0 dB LC whereas LC is set to −6 dB in
our study. As reported in Brungart et al. �2006� the choice of
LC=−6 dB seems better than LC=0 dB in terms of speech
intelligibility �see also Sec. II�.

For the cafeteria background, ideal masking lowers SRT
by 10.5 dB on average, which represents a larger gain than
for the SSN background. Unlike SSN, the cafeteria back-
ground contains significant spectral and temporal modula-
tions which contribute to better intelligibility in the unsegre-
gated condition. We stress that the larger SRT improvement
for this background is achieved on top of the better perfor-
mance of listening to unsegregated mixtures.

For HI listeners, the mean SRTs are −5.61, −3.80,
−14.79, and −19.44 dB for the SSN, CAFE, SSN-IBM, and
SSN-CAFE conditions, respectively. The ANOVA where
both NH and HI subjects were included showed that the
main effects of subject type, processing type, and noise type
were significant �F�1,22�=17.2, p�0.001; F�1,22�
=1959.0, p�0.001; and F�1,22�=100.6, p�0.001, respec-
tively�, and there were also significant interaction effects
between-subject type and processing type, subject type and
noise type, and processing type and noise type �F�1,22�
=49.9, p�0.001; F�1,22�=19.2, p�0.001; and F�1,22�
=163.9, p�0.001 respectively�, as well as a three-way inter-
action between subject type, processing type, and noise type
�F�1,11�=19.7, p�0.001�. The Bonferroni as well as the
Fisher LSD post hoc tests on the three-way interaction indi-
cated that all means were significantly different �p�0.006�
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FIG. 3. SRTs for different conditions of Experiment 1 for NH and HI lis-
teners. A more negative SRT corresponds to better performance. Error bars
indicate 95% confidence intervals of the means.
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except for the SSN-IBM and CAFE-IBM conditions where
the differences between NH and HI listeners were insignifi-
cant �p�0.05�. The post hoc results show that ideal masking
produces lower SRT compared to unsegregated mixtures re-
gardless of noise type, and has a greater effect for the caf-
eteria background. No difference, however, was revealed be-
tween the NH subjects and the HI subjects in the two IBM
conditions by either the more conservative Bonferroni test or
the less conservative Fisher LSD test. The elevated levels of
SRT in the two unsegregated conditions show that HI listen-
ers perform worse in speech recognition in noisy environ-
ments, and the levels of SRT increment, 2.5 dB for the SSN
condition and 6.5 dB for the CAFE condition, are broadly
compatible with previous findings of HI listeners’ increased
difficulty in speech understanding in noise �see Sec. I�. IBM
lowers SRT substantially. The SRT gain resulting from ideal
masking is 9.2 dB for the SSN background, and this level of
improvement is compatible with that reported in Anzalone et
al. �2006�. For the cafeteria background, ideal masking pro-
duces a very large SRT improvement of 15.6 dB.

By comparing NH and HI results in Fig. 3, it is clear that
HI listeners benefit from ideal masking even more than NH
listeners, particularly for the cafeteria background. The re-
sults suggest that, after IBM processing, the intelligibility
performance is comparable for HI and NH listeners in both
SSN and cafeteria backgrounds. It is remarkable that the
speech intelligibility of HI listeners becomes statistically in-
distinguishable from that of NH listeners after ideal masking.

IV. EXPERIMENT 2: EFFECTS OF BAND-LIMITED
IDEAL BINARY MASKING ON SPEECH-RECEPTION
THRESHOLD

The results of Experiment 1 show large SRT improve-
ments resulting from IBM processing. As mentioned in Sec.
I, a main finding reported by Anzalone et al. �2006� is that,
while NH listeners benefit from IBM in both the LF and HF
ranges, HI listeners benefit from ideal masking only in the
LF range. This finding is significant because it suggests that,
to alleviate the hearing loss of HI listeners, one need not
worry about performing T-F masking in the HF range;
speech segregation at HFs tends to be more difficult than at
LFs �Wang and Brown, 2006�. Although their interpretation
based on the upward spread of masking is reasonable, the
fact that they apply constant amplification with no spectral
shaping to compensate for the sloping hearing loss of their
subjects may suggest a simpler interpretation: the lack of the
IBM benefit in the HF range may be partially accounted for
by the potentially less compensated hearing loss at HFs. Ex-
periment 2 was primarily designed to assess the importance
of IBM processing at HFs for HI listeners as compared to
NH listeners. In this experiment, we compensated for the
hearing loss of individual listeners based on their audio-
grams. We compare the intelligibility performance in three
setups: IBM in the LF range only, ideal masking in the HF
range only, and ideal masking in the AF range. Both SSN
and cafeteria backgrounds are used. Consequently, there are
a total of six test conditions in this experiment.

A. Methods

1. Stimuli

As in Experiment 1, Dantale II sentences were used as
target speech, and SSN and cafeteria noise were used as two
different backgrounds. The IBM processing in the AF condi-
tion was the same as in Experiment 1. For the LF condition,
the same IBM processing as in Experiment 1 was used in the
lower 32 frequency channels while an all-1 mask was ap-
plied to the higher 32 frequency channels. This way of pro-
cessing produces no segregation in the HF range. In the HF
condition, the reverse was done: IBM was applied to the
higher 32 channels while an all-1 mask was applied to the
lower 32 channels �hence no segregation in the LF range�.
This equal division of the 64-channel gammatone filterbank
yields a frequency separation boundary approximately at
1.35 kHz. Note that this boundary separating LF and HF
ranges is a little lower than the 1.5 kHz boundary used in
Anzalone et al. �2006�. Our choice was partly motivated by
the consideration that both the speech material and the SSN
in the Dantale II corpus have energy distribution heavily
tilted toward LFs so that IBM processing below 1 kHz likely
removes significantly more noise than IBM processing above
1 kHz. The long-term spectrum of the SSN �Wagener et al.,
2003� is shown in Fig. 4, along with the long-term spectrum
of the cafeteria noise. With the 1.5 kHz boundary, the NH
results from Anzalone et al. �2006� show that the SRT in
their LF condition is a little lower than the SRT in their HF
condition.

2. Listeners

12 NH listeners and 12 HI listeners participated in this
experiment. The pool of NH listeners was the same as that
participated in Experiment 1 except for one. This substitution
lowered the average age from 37 to 36 without altering the
age range. The pool of HI listeners also remained the same as
in Experiment 1 except for one. This substitution �see Fig.

10
2

10
3

10
4

30

40

50

60

70

80

Frequency - Hz

O
ne

th
ird

oc
ta

ve
R

M
S

le
ve

l(
dB

) Café Noise
SSN

FIG. 4. Long-term spectrum of the SSN in Dantale II �redrawn from Wage-
ner et al., 2003�. The spectrum is expressed as root mean square levels in
one-third octave bands. Also shown is the long-term spectrum of the cafete-
ria noise.

2342 J. Acoust. Soc. Am., Vol. 125, No. 4, April 2009 Wang et al.: Speech intelligibility with ideal binary masking

PAPER A 45



2�, plus a listener whose birthday occurred between the two
experiments, changed the average age from 67 to 66 without
changing the age range. Again, subjects were naïve to the
purpose and design of the experiment. NH listeners were
familiar with the Dantale II sentences by virtue of participat-
ing in Experiment 1, and as noted in Sec. III A 2, HI listeners
had experience listening to Dantale II sentences prior to Ex-
periment 1. Due to the limited number of test lists �15� avail-
able in the Dantale II corpus, the same lists used in Experi-
ment 1 were also employed in Experiment 2. It is worth
mentioning that the corpus was designed for repeated usage
�Wagener et al., 2003; see also Sec. III A 1�.

3. Procedure and statistical analysis

The procedure of this experiment is the same as in Ex-
periment 1 except for the following. To vary the input SNR,
the noise level was adjusted while the speech level was fixed
as in the ideal masking conditions of Experiment 1. In the LF
and HF conditions, there is no segregation in half of the
frequency channels. As the input SNR decreases in the nega-
tive range, the sound level of a stimulus in these conditions
is dominated by the background noise in the unsegregated
frequency range and hence becomes increasingly louder. To
ensure that LF and HF stimuli are not too loud for NH lis-
teners who have very low SRTs, the speech level was fixed at
a lower volume than in Experiment 1. Despite this change of
sound level, all test stimuli were still comfortably audible for
NH listeners. Note that this change did not impact HI listen-
ers as the amount of amplification was individually set for
them. ANOVA was performed similarly on all the data from
NH and HI subjects as in Experiment 1, with within-subject
factors of type of processing �LF, HF, or AF� and of type of
noise �SSN or CAFE�, and a between-subject factor of sub-
ject type �NH or HI�.

B. Results and discussion

Figure 5 shows the SRT results of all six test conditions
in Experiment 2: SSN-LF, SSN-HF, SSN-AF, CAFE-LF,
CAFE-HF, and CAFE-AF, for both NH and HI listeners. The
ANOVA for NH subjects showed that the main effects of

processing type and noise type were significant �F�2,22�
=255.5, p�0.001, and F�1,11�=231.2, p�0.001, respec-
tively�, and there was also a significant interaction between
processing type and noise type �F�2,22�=4.4, p�0.05�. The
Bonferroni tests indicated that all NH means were signifi-
cantly different �p�0.006� from one another, except be-
tween the SSN-AF and the CAFE-HF condition. For the
SSN background, the mean SRT is −15.66 dB in the LF con-
dition, −12.65 dB in the HF condition, and −17.10 dB in the
AF condition. The results show that NH listeners perform
better when IBM processing is applied in the LF range than
in the HF range, and the difference in SRT is approximately
3 dB. This SRT difference is larger than the SRT difference
of slightly more than 1 dB reported by Anzalone et al.
�2006�, despite the fact that the boundary separating LFs and
HFs is 1.35 kHz in our processing and 1.5 kHz in their pro-
cessing. Even with the lower frequency boundary we find
that, with the same input SNR, the HF condition leaves more
noise than the LF condition since the noise energy is distrib-
uted mostly in the LF range �see Fig. 4�. The discrepancy is
likely due to different ways of IBM processing used in the
two studies. The AF condition yields the lowest SRT, which
is about 1.6 dB lower than in the LF condition.

For the cafeteria background, the mean SRT is
−20.37 dB in the LF condition, −17.88 dB in the HF condi-
tion, and −23.24 dB in the AF condition. Clearly NH sub-
jects perform better in this background than in SSN, consis-
tent with the results of Experiment 1. Again, NH listeners
benefit more from IBM processing at LFs than at HFs and
the relative benefit is 2.5 dB. The AF condition also gives the
lowest SRT, which is about 2.9 dB lower than in the LF
condition. That NH subjects performed better in the AF con-
dition than in the LF condition for both the SSN and cafete-
ria backgrounds suggest that they do benefit from IBM in the
HF range, even though the benefit is not as high as from the
LF range.

The ANOVA where both HI and NH subjects were in-
cluded showed that the main effects of subject type, process-
ing type, and noise type were significant �F�1,22�=19.1, p
�0.001; F�2,44�=255.4, p�0.001; and F�1,22�=317.2, p
�0.001, respectively�, and there were also significant inter-
action effects between subject type and processing type, sub-
ject type and noise type, and processing type and noise type
�F�2,44�=31.2, p�0.001; F�1,22�=18.3, p�0.001; and
F�2,44�=14.2, p�0.001, respectively�, as well as a three-
way interaction between subject type, processing type, and
noise type �F�2,44�=5.4, p�0.01�. Table I shows the Fisher
LSD post hoc tests. As seen in the table, all conditions were
significantly different �p�0.05� from one another within the
NH subjects �conditions �1�–�6� contrasted against each
other� and within the HI subjects �conditions �7�–�12� con-
trasted against each other�. However, the differences between
NH and HI were insignificant for the conditions of SSN-LF
and SSN-AF.

For HI listeners, the mean SRTs for the SSN background
are −14.85, −8.49, and −15.96 dB for the LF, HF, and AF
conditions, respectively. The SRT advantage of the LF con-
dition over the HF condition is 6.4 dB, whereas the advan-
tage of the AF condition over the LF condition is only
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FIG. 5. SRTs for different conditions of Experiment 2 for NH and HI lis-
teners. Error bars indicate 95% confidence intervals of the means.
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1.1 dB. These data are generally comparable with those in
Anzalone et al. �2006�. The results suggest that HI listeners
derive considerably more benefit from ideal masking at LFs
than at HFs, and the SRT difference is much larger than for
NH listeners �see Fig. 5�. Although part of the larger gap
may be caused by a larger SRT gain �9.2 dB� in HI listeners
than that �7.4 dB� in NH listeners due to IBM processing, the
fact that the relative advantage of the AF condition over the
LF condition for HI listeners is even a little smaller than for
NH listeners �1.1 dB versus 1.6 dB� strongly indicates that
IBM processing in LF is to a greater extent responsible for
the SRT improvement of ideal masking in HI listeners than
in NH listeners. In other words, almost all the benefit of IBM
can be obtained by IBM only in the LF range. This, of
course, is not to say that ideal masking in HF does not im-
prove speech intelligibility compared to no segregation. As
illustrated in Fig. 3, IBM processing at all frequencies results
in a 9.2 dB SRT improvement compared to no segregation,
and the AF condition produces a 7.5 dB relative advantage
over the HF condition. This comparison suggests that ideal
masking at HFs produces some improvement in speech in-
telligibility.

For the cafeteria background, the SRTs in the LF, HF,
and AF conditions are −18.13, −10.05, and −20.96 dB, re-
spectively �see Fig. 5�. The SRT advantage of LF processing
over HF processing is 8.1 dB and that of AF over LF is
2.8 dB. These results show a similar pattern as for the SSN
background, even though the SRT difference of 2.8 dB be-
tween the LF and AF conditions clearly reaches statistical
significance �see Table I�, and HF processing yields a signifi-
cant SRT improvement over no segregation as suggested by
comparing with the data in Experiment 1. The use of the
fluctuating cafeteria background reinforces the conclusion
that ideal masking in LF produces a much stronger benefit
than that in HF, and this effect is greater in HI listeners than
in NH listeners.

The two AF conditions for the SSN and cafeteria back-
grounds are the same as the corresponding ideal masking
conditions in Experiment 1. The NH performances in Experi-
ment 2 are somewhat better than in Experiment 1. A com-
parison between Fig. 5 and Fig. 3 shows that the discrepan-

cies are 1.5 dB for SSN and 2.5 dB for cafeteria noise. The
only difference in stimuli is the sound level; as pointed out in
Sec. IV A 3, the sound level is softer in Experiment 2 than in
Experiment 1. For example, at the input SNR of −10 dB, the
sound level in Experiment 1 is about 63 dB�A� SPL for the
SSN background and 75 dB�A� for the cafeteria background,
while the corresponding levels in Experiment 2 are 51 and
51 dB�A�, respectively. Studies suggest that softer sound can
produce better recognition under certain conditions �Hager-
man, 1982; Studebaker et al., 1999�. To examine whether the
sound volume was a factor in the performance differences,
we performed a follow-up experiment with the same pool of
the NH listeners who participated in Experiment 2. The
follow-up experiment was to simply check subjects’ percent
correct scores at the sound levels used in the two experi-
ments when the input SNR was fixed at one of the SRTs
�alternating between subjects� already obtained in the experi-
ments. The cafeteria background noise was used. The scores
are 50.6% with the louder level of Experiment 1 and 58.6%
with the softer level of Experiment 2. The 8% difference is
statistically significant �t�11�=3.31, p�0.01�, but unlikely
large enough to explain the 2.5 dB SRT difference. Perhaps
more important is a learning effect. Unlike HI listeners who
were experienced with the Dantale II task, NH listeners used
in this investigation had little prior experience with auditory
experiments before participating in Experiment 1. When they
participated in the second experiment, the familiarity with
the Dantale II task acquired during Experiment 1 likely con-
tributed to their better performance. In the predecessor to
Dantale II—the Hageman sentence test—Hagerman and Kin-
nefors �1995� found a training effect of about 0.07 dB per ten
sentences, which may explain the differences between Ex-
periments 1 and 2. This interpretation is consistent with the
observation that the corresponding performance differences
between Experiment 1 and Experiment 2 are smaller for HI
listeners; one-third of the mean performance differences is
accounted for by the replacement of one HI listener from
Experiment 1 to Experiment 2 �see Sec. IV A 2�.

TABLE I. Fisher LSD post hoc significance tests for the three-way interaction of subject type, processing type, and noise type. Significance levels above
p�0.05 are given in boldface.

Subject
type

Processing
type

Test
condition �1� �2� �3� �4� �5� �6� �7� �8� �9� �10� �11�

NH SSN-LF �1� −15.66
SSN-HF �2� −12.65 0.00
SSN-AF �3� −17.10 0.00 0.00
CAFE-LF �4� −20.37 0.00 0.00 0.00
CAFE-HF �5� −17.88 0.00 0.00 0.07 0.00
CAFE-AF �6� −23.24 0.00 0.00 0.00 0.00 0.00

HI SSN-LF �7� −14.85 0.45 0.05 0.04 0.00 0.01 0.00
SSN-HF �8� −8.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SSN-AF �9� −15.96 0.77 0.00 0.29 0.00 0.08 0.00 0.01 0.00
CAFE-LF �10� −18.13 0.03 0.00 0.34 0.04 0.81 0.00 0.00 0.00 0.00
CAFE-HF �11� −10.05 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CAFE-AF �12� −20.96 0.00 0.00 0.00 0.58 0.01 0.04 0.00 0.00 0.00 0.00 0.00
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V. GENERAL DISCUSSION

The robustness of speech recognition in noise by NH
listeners is commonly attributed to the perceptual process of
glimpsing, or “listening in the dips,” which detects and gath-
ers T-F regions of a sound mixture where target speech is
relatively stronger compared to interference �Miller and
Licklider, 1950; Howard-Jones and Rosen, 1993; Assmann
and Summerfield, 2004; Li and Loizou, 2007�. As glimpsing
involves grouping, this account is closely related to the ASA
account that applies to both speech and nonspeech signals
�Bregman, 1990�. Poorer performance of listeners with hear-
ing loss in fluctuating backgrounds is generally explained as
their inability to take advantage of temporal and spectral
dips, perhaps caused by reduced frequency selectivity and
temporal resolution �Moore, 2007�. IBM could be under-
stood as producing glimpses or performing ASA for the lis-
tener. The fact that ideal masking also improves intelligibil-
ity of NH listeners suggests that even listeners without
hearing loss can fail to make full use of the speech informa-
tion available in a noisy input. The less-than-ideal perfor-
mance in noisy environments is probably caused by the fail-
ure in detecting a glimpse—a T-F region with relatively
strong target energy—or grouping detected glimpses. This
failure becomes more acute with hearing loss. Because ideal
masking does an “ideal” job of glimpsing for the auditory
system, it helps to nearly equalize the performances of HI
and NH listeners �see Fig. 3�.

The results of Experiment 1 demonstrate that listeners
with or without hearing loss benefit more from IBM process-
ing in the cafeteria background than in the SSN background.
The cafeteria background has temporal and spectral modula-
tions, and as a result the amount of informational masking
caused by target-masker similarity is expected to be higher
than that in SSN. Indeed, some listeners voluntarily com-
mented after the experiment that the conversation in the
background distracted their attention, making it harder to
concentrate on target utterances. The larger SRT improve-
ment observed for the cafeteria background is thus consistent
with the interpretation that ideal masking removes or largely
attenuates informational masking �Brungart et al., 2006�. In a
situation extremely conducive to informational masking,
namely, the mixtures of speech utterances of the same talker,
Brungart et al. �2006� found that the effect of ideal masking
is tantamount to a 22–25 dB improvement in input SNR.
The 10.5 dB SRT improvement obtained through ideal mask-
ing in the cafeteria background, although greater than that
obtained in the SSN background, is much smaller than that
obtained in mixtures of same-talker utterances. The improve-
ment is also smaller than those obtained in mixtures of
different-talker utterances �Chang, 2004�, although the gap is
not quite as big as in same-talker mixtures. One can therefore
expect even larger SRT improvements when interference is
one or several competing talkers, a kind of background that
produces very large performance gaps between NH and HI
listeners as reviewed in Sec. I.

The results of Experiment 2 are on the whole consistent
with the related findings of Anzalone et al. �2006� even
though we used individual gain prescriptions to compensate

for listeners’ hearing loss. The results are also qualitatively
consistent with the findings of Li and Loizou �2007� illus-
trating that glimpses in the LF to mid-frequency range are
more beneficial for speech intelligibility than those in the HF
range. However, a few differences between our results and
the results of Anzalone et al. �2006� are worth noting. First,
although considerably smaller than LF processing, there is a
benefit from ideal masking in the HF range for HI listeners in
our study whereas their study did not show a significant ben-
efit. A possible reason is the individual gain prescription em-
ployed in our study that makes segregated speech relatively
louder in the HF range than the constant gain applied in their
study. Second, we find a relatively greater LF benefit in NH
listeners than in their study. The main reason, we believe, is
that LF processing removes more background noise than HF
processing for a given input SNR. With negative input SNRs
�see Fig. 5�, the residual noise in the HF condition is in the
LF range while that in the LF condition is in the HF range,
and the background noises used in our experiments have
energy distributed mostly in the LF range, as shown in Fig.
4. This explanation, not considered by Anzalone et al., gives
a partial account for the larger LF benefit for listeners with
hearing loss. The large SRT gap between LF and HF process-
ing for HI listeners �see Fig. 5�, however, cannot be fully
explained this way as the gap is substantially larger—to the
extent that the SRT performance in LF processing is almost
the same as in AF processing. Another likely reason is up-
ward spread of masking �Anzalone et al., 2006� which lis-
teners with sensorineural hearing loss are especially suscep-
tible to �Jerger et al., 1960; Gagne, 1988; Klein et al., 1990�.
Upward spread of masking is a more prominent factor in the
HF condition because of no segregation in the LF range.
Also, with more hearing loss at HFs �see Fig. 2�, HI listeners
are less able to utilize audible HF speech information in rec-
ognition compared to NH listeners �Dubno et al., 1989;
Ching et al., 1998; Hogan and Turner, 1998�. This could also
contribute to a steeper performance decline of HF processing
relative to AF processing for HI listeners than for NH listen-
ers.

Despite different definitions of IBM, the SRT improve-
ments observed in our study and in Anzalone et al. �2006�
are very close for the SSN background. It is all the more
remarkable considering that their IBM is generated on a
sample-by-sample basis while ours is generated on a frame-
by-frame basis, which has a drastically lower temporal reso-
lution, and that, in their experiments, IBM-determined gains
take the values of 1 and 0.2 while the gains take the values of
1 and 0 in our experiments. The use of two-valued gains is a
key similarity between the studies. The most important dif-
ference is, of course, that our definition is based on a com-
parison between target and interference energy and theirs is
between target energy and a fixed threshold. The local SNR
based IBM is arguably easier to estimate computationally, as
many speech segregation algorithms compute binary time-
frequency masks by exploring local SNR explicitly or im-
plicitly �Divenyi, 2005; Wang and Brown, 2006�. Also, there
is little basis in a noisy signal to identify those T-F regions
of significant target energy where interference is much stron-
ger.
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The results from our experiments have major implica-
tions for CASA and speech enhancement research aiming to
improve speech intelligibility in noisy environments. In ad-
dition to affirming the general effectiveness of IBM as a
computational goal, our data provide direct evidence that a
choice of LC at −6 dB for IBM construction, first suggested
by Brungart et al. �2006�, is effective for improving human
speech recognition. A comparison between the data of Brun-
gart et al. �2006� and ours for the SSN background indicates
that the IBM with −6 dB LC yields larger SRT improvement
than commonly used 0 dB LC. Compared to 0 dB LC, the
choice of −6 dB LC retains those T-F units where local SNR
falls between 0 and −6 dB in ideal masking �see Fig. 1�.
From the standpoint of SNR, such inclusion will lower the
overall SNR of the segregated signal. In other words, if the
objective is to improve the SNR of the output signal, the
choice of −6 dB LC is a poorer one compared to that of 0 dB
LC. This discussion casts further doubt on the suitability of
traditional SNR as a performance metric to evaluate sound
separation systems, and at the same time, could shed light on
why monaural speech enhancement algorithms often im-
prove SNR but not speech intelligibility �see Sec. I�. Another
strong implication of our results �see also Anzalone et al.,
2006� is that performing speech separation in the LF range is
a great deal more important than in the HF range, particu-
larly for improving speech intelligibility of HI listeners.

Our results point to a very promising direction for hear-
ing aid design to improve speech intelligibility in noise of
listeners with hearing loss, that is, by designing hearing aids
that function in similar ways to IBM. IBM processing im-
proves SRT by a large margin, and HI listeners derive larger
benefit than NH listeners. Equally important, the profile of
improvement with respect to different kinds of background
noise seems to match that of typical hearing impairment. We
consider it a highly significant result that ideal masking al-
most equalizes the intelligibility performances of HI and NH
listeners �see Fig. 3�. Of course, facing a noisy input IBM
cannot be directly constructed and algorithms must be devel-
oped to estimate IBM. Encouraging effort has been made in
CASA with the explicit goal of IBM estimation �Wang and
Brown, 2006�, and in limited conditions high-quality esti-
mates are obtainable �see, e.g., Roman et al., 2003�. How-
ever, computing binary masks close to the IBM in uncon-
strained acoustic environments remains a major challenge.
On the other hand, the extent of intelligibility gain for HI
listeners produced by IBM processing much more than fills
the SRT gap from NH listeners; Experiment 1 shows a gap of
2.5 dB for the SSN background and a gap of 6.5 dB for the
cafeteria background while the ideal masking improvements
for HI listeners are 9.2 and 13.8 dB for the two backgrounds,
respectively. Hence, perfect IBM estimation is not necessary
to bring the performance of HI listeners to the same level as
that of NH listeners.

VI. CONCLUSION

The present study was designed to evaluate the impact
of IBM on speech intelligibility in noisy backgrounds for
both NH and HI listeners. Two experiments were conducted

and the main results are summarized below.

• For NH listeners, IBM processing resulted in 7.4 dB SRT
reduction for SSN and 10.5 dB reduction for cafeteria
noise.

• For HI listeners, IBM processing resulted in 9.2 dB SRT
reduction for SSN and 15.6 dB reduction for cafeteria
noise.

• After IBM processing, the intelligibility performances for
HI listeners and NH listeners were comparable.

• For NH listeners, IBM processing at LFs produced greater
SRT reduction than at HFs. The differences were 3 dB for
SSN and 2.5 dB for cafeteria noise.

• For HI listeners, IBM processing at LFs produced greater
SRT reduction than at HFs. The differences were 5.5 dB
for SSN and almost 8 dB for cafeteria noise.

ACKNOWLEDGMENTS

We thank the Associate Editor Ken Grant, and two
anonymous reviewers for their helpful comments. The work
was conducted while D.W. was a visiting scholar at Oticon
A/S. The authors are grateful to M. Schlaikjer, L. Bramsløw,
and M. Hartvig, for their assistance in the experiments, and
Y. Li for his assistance in figure preparation. D.W. was sup-
ported in part by an AFOSR grant �F49620-04-01-0027� and
an NSF grant �IIS-0534707�.

Alcantara, J. I., Dooley, G., Blamey, P., and Seligman, P. �1994�. “Prelimi-
nary evaluation of a formant enhancement algorithm on the perception of
speech in noise for normally hearing listeners,” Audiology 33, 15–27.

Alcantara, J. I., Moore, B. C. J., Kuhnel, V., and Launer, S. �2003�. “Evalu-
ation of the noise reduction system in a commercial digital hearing aid,”
Int. J. Audiol. 42, 34–42.

Anzalone, M. C., Calandruccio, L., Doherty, K. A., and Carney, L. H.
�2006�. “Determination of the potential benefit of time-frequency gain
manipulation,” Ear Hear. 27, 480–492.

Assmann, P., and Summerfield, A. Q. �2004�. “The perception of speech
under adverse conditions,” in Speech Processing in the Auditory System,
edited by S. Greenberg, W. A. Ainsworth, A. N. Popper, and R. R. Fay
�Springer, New York� pp. 231–308.

Baer, T., Moore, B. C. J., and Gatehouse, S. �1993�. “Spectral contrast
enhancement of speech in noise for listeners with sensorineural hearing
impairment: Effects on intelligibility, quality, and response times,” J. Re-
habil. Res. Dev. 30, 49–72.

Beck, S., and Zacharov, N. �2006�. Perceptual Audio Evaluation: Theory,
Method and Application �Wiley, Chichester, NY�.

Benesty, J., Makino, S., and Chen, J., eds. �2005�. Speech Enhancement
�Springer, New York�.

Bolia, R. S., Nelson, W. T., Ericson, M. A., and Simpson, B. D. �2000�. “A
speech corpus for multitalker communications research,” J. Acoust. Soc.
Am. 107, 1065–1066.

Bregman, A. S. �1990�. Auditory Scene Analysis �MIT, Cambridge, MA�.
Brungart, D. S. �2001�. “Information and energetic masking effects in the

perception of two simultaneous talkers,” J. Acoust. Soc. Am. 109, 1101–
1109.

Brungart, D., Chang, P. S., Simpson, B. D., and Wang, D. L. �2006�. “Iso-
lating the energetic component of speech-on-speech masking with ideal
time-frequency segregation,” J. Acoust. Soc. Am. 120, 4007–4018.

Bunnell, H. T. �1990�. “On enhancement of spectral contrast in speech for
hearing-impaired listeners,” J. Acoust. Soc. Am. 88, 2546–2556.

Carhart, R. C., and Tillman, T. W. �1970�. “Interaction of competing speech
signals with hearing losses,” Arch. Otolaryngol. 91, 273–279.

Chang, P. �2004�. “Exploration of behavioral, physiological, and computa-
tional approaches to auditory scene analysis,” M.S. thesis, The Ohio State
University Department of Computer Science and Engineering, Columbus,
OH; http://www.cse.ohio-state.edu/pnl/theses.html �Last viewed Septem-
ber 2008�.

2346 J. Acoust. Soc. Am., Vol. 125, No. 4, April 2009 Wang et al.: Speech intelligibility with ideal binary masking

PAPER A 49



Ching, T. Y. C., Dillon, H., and Byrne, D. �1998�. “Speech recognition of
hearing-impaired listeners: Predictions from audibility and the limited role
of high-frequency amplification,” J. Acoust. Soc. Am. 103, 1128–1140.

Dillon, H. �2001�. Hearing Aids �Thieme, New York�.
Divenyi, P., ed. �2005�. Speech Separation by Humans and Machines �Klu-

wer Academic, Norwell, MA�.
Drullman, R. �1995�. “Speech intelligibility in noise: Relative contribution

of speech elements above and below the noise level,” J. Acoust. Soc. Am.
98, 1796–1798.

Dubno, J. R., Dirks, D. D., and Ellison, D. E. �1989�. “Stop-consonant
recognition for normal-hearing listeners and listeners with high-frequency
hearing loss. I: The contribution of selected frequency regions,” J. Acoust.
Soc. Am. 85, 347–354.

Edwards, B. �2004�. “Hearing aids and hearing impairment,” in Speech Pro-
cessing in the Auditory System, edited by S. Greenberg, W. A. Ainsworth,
A. N. Popper, and R. R. Fay �Springer, New York�.

Eisenberg, L. S., Dirks, D. D., and Bell, T. S. �1995�. “Speech recognition in
amplitude-modulated noise of listeners with normal and listeners with im-
paired hearing,” J. Speech Hear. Res. 38, 222–233.

Festen, J. M., and Plomp, R. �1990�. “Effects of fluctuating noise and inter-
fering speech on the speech-reception threshold for impaired and normal
hearing,” J. Acoust. Soc. Am. 88, 1725–1736.

Gagne, J.-P. �1988�. “Excess masking among listeners with a sensorineural
hearing loss,” J. Acoust. Soc. Am. 83, 2311–2321.

Greenberg, J. E., and Zurek, P. M. �1992�. “Evaluation of an adaptive beam-
forming method for hearing aids,” J. Acoust. Soc. Am. 91, 1662–1676.

Hagerman, B. �1982�. “Sentences for testing speech intelligibility in noise,”
Scand. Audiol. 11, 79–87.

Hagerman, B., and Kinnefors, C. �1995�. “Efficient adaptive methods for
measurements of speech reception thresholds in quiet and in noise,”
Scand. Audiol. 24, 71–77.

Hansen, M., and Ludvigsen, C. �2001�. “Dantale II—Danske Hagermann
sætninger �Dantale II—Danish Hagermann sentences�,” Danish Speech
Audiometry Materials �Danske Taleaudiomaterialer�, Værløse, Denmark.

Hogan, C. A., and Turner, C. W. �1998�. “High-frequency audibility: Ben-
efits for hearing-impaired listeners,” J. Acoust. Soc. Am. 104, 432–441.

Howard-Jones, P. A., and Rosen, S. �1993�. “Uncomudulated glimpsing in
‘checkerboard’ noise,” J. Acoust. Soc. Am. 93, 2915–2922.

Hygge, S., Ronnberg, J., Larsby, B., and Arlinger, S. �1992�. “Normal-
hearing and hearing-impaired subjects’ ability to just follow conversation
in competing speech, reversed speech, and noise backgrounds,” J. Speech
Hear. Res. 35, 208–215.

Jerger, J. F., Tillman, T. W., and Peterson, J. L. �1960�. “Masking by octave
bands of noise in normal and impaired ears,” J. Acoust. Soc. Am. 32,
385–390.

Johannesson, R. B. �2006�. “Output SNR measurement method,” Report No.
052-08-04, Oticon Research Centre Eriksholm, Snekkersten, Denmark.

Kates, J. M., and Weiss, M. R. �1996�. “A comparison of hearing-aid array-
processing techniques,” J. Acoust. Soc. Am. 99, 3138–3148.

Klein, A. J., Mills, J. H., and Adkins, W. Y. �1990�. “Upward spread of
masking, hearing loss, and speech recognition in young and elderly listen-
ers,” J. Acoust. Soc. Am. 87, 1266–1271.

Levitt, H. �2001�. “Noise reduction in hearing aids: A review,” J. Rehabil.
Res. Dev. 38, 111–121.

Li, N., and Loizou, P. C. �2007�. “Factors influencing glimpsing of speech in
noise,” J. Acoust. Soc. Am. 122, 1165–1172.

Li, N., and Loizou, P. C. �2008a�. “Effect of spectral resolution on the
intelligibility of ideal binary masked speech,” J. Acoust. Soc. Am. 123,
EL59–EL64.

Li, N., and Loizou, P. C. �2008b�. “Factors influencing intelligibility of ideal
binary-masked speech: Implications for noise reduction,” J. Acoust. Soc.
Am. 123, 1673–1682.

Li, Y., and Wang, D. L. �2009�. “On the optimality of ideal binary time-
frequency masks,” Speech Commun. 51, 230–239.

Lim, J., ed. �1983�. Speech Enhancement �Prentice-Hall, Englewood Cliffs,
NJ�.

Miller, G. A., and Licklider, J. C. R. �1950�. “The intelligibility of inter-
rupted speech,” J. Acoust. Soc. Am. 22, 167–173.

Moore, B. C. J. �2003a�. An Introduction to the Psychology of Hearing, 5th
ed. �Academic, San Diego, CA�.

Moore, B. C. J. �2003b�. “Speech processing for the hearing-impaired: Suc-
cesses, failures, and implications for speech mechanisms,” Speech Com-
mun. 41, 81–91.

Moore, B. C. J. �2007�. Cochlear Hearing Loss, 2nd ed. �Wiley, Chichester,
UK�.

Nilsson, M., Soli, S., and Sullivan, J. A. �1994�. “Development of the hear-
ing in noise test for the measurement of speech reception thresholds in
quiet and in noise,” J. Acoust. Soc. Am. 95, 1085–1099.

Peters, R. W., Moore, B. C. J., and Baer, T. �1998�. “Speech reception
thresholds in noise with and without spectral and temporal dips for
hearing-impaired and normally hearing people,” J. Acoust. Soc. Am. 103,
577–587.

Plomp, R. �1994�. “Noise, amplification, and compression: Considerations
of three main issues in hearing aid design,” Ear Hear. 15, 2–12.

Rabiner, L. R., and Juang, B. H. �1993�. Fundamentals of Speech Recogni-
tion �Prentice-Hall, Englewood Cliffs, NJ�.

Ricketts, T., and Hornsby, B. W. �2003�. “Distance and reverberation effects
on directional benefit,” Ear Hear. 24, 472–484.

Roman, N., Wang, D. L., and Brown, G. J. �2003�. “Speech segregation
based on sound localization,” J. Acoust. Soc. Am. 114, 2236–2252.

Schum, D. J. �2003�. “Noise-reduction circuitry in hearing aids, II: Goals
and current strategies,” Hear. J. 56, 32–41.

Simpson, A. M., Moore, B. C. J., and Glasberg, B. R. �1990�. “Spectral
enhancement to improve the intelligibility of speech in noise for hearing-
impaired listeners,” Acta Oto-Laryngol. 469, 101–107.

StatSoft, Inc. �2007�. STATISTICA �data analysis software system�, version 7,
http://www.statsoft.com �Last viewed February 2008�.

Studebaker, G. A., Sherbecoe, R. L., McDaniel, D. M., and Gwaltney, C. A.
�1999�. “Monosyllabic word recognition at higher-than-normal speech and
noise levels,” J. Acoust. Soc. Am. 105, 2431–2444.

Vestergaard, M. �1998�. “The Eriksholm CD 01: Speech signals in various
acoustical environments,” Report No. 050-08-01, Oticon Research Centre
Eriksholm, Snekkersten, Denmark.

Wagener, K., Josvassen, J. L., and Ardenkjær, R. �2003�. “Design, optimi-
zation and evaluation of a Danish sentence test in noise,” Int. J. Audiol.
42, 10–17.

Wang, D. L. �2005�. “On ideal binary mask as the computational goal of
auditory scene analysis,” in Speech Separation by Humans and Machines,
edited by P. Divenyi �Kluwer Academic, Norwell, MA�, pp. 181–197.

Wang, D. L., and Brown, G. J., eds. �2006�. Computational Auditory Scene
Analysis: Principles, Algorithms, and Applications �Wiley, Hoboken, NJ/
IEEE, New York�.

J. Acoust. Soc. Am., Vol. 125, No. 4, April 2009 Wang et al.: Speech intelligibility with ideal binary masking 2347

50



Paper B

Speech Perception of Noise with Binary Gains

DeLiang Wang, Ulrik Kjems, Michael S. Pedersen,
Jesper B. Boldt, and Thomas Lunner

Journal of the Acoustical Society of America
Vol. 124, no. 4, pp. 2303–2307, October 2008.



c©2008 Acoustical Society of America



Speech perception of noise with binary gains
DeLiang Wanga�

Department of Computer Science & Engineering, and Center for Cognitive Science,
The Ohio State University, Columbus, Ohio 43210

Ulrik Kjems, Michael S. Pedersen, and Jesper B. Boldt
Oticon A/S, Kongebakken 9, DK-2765 Smørum, Denmark

Thomas Lunner
Oticon Research Centre Eriksholm, Kongevejen 243, DK-3070 Snekkersten, Denmark
and Department of Clinical and Experimental Medicine, and Technical Audiology, Linköping University,
S-58183 Linköping, Sweden

�Received 9 December 2007; revised 7 July 2008; accepted 8 July 2008�

For a given mixture of speech and noise, an ideal binary time-frequency mask is constructed by
comparing speech energy and noise energy within local time-frequency units. It is observed that
listeners achieve nearly perfect speech recognition from gated noise with binary gains prescribed by
the ideal binary mask. Only 16 filter channels and a frame rate of 100 Hz are sufficient for high
intelligibility. The results show that, despite a dramatic reduction of speech information, a pattern of
binary gains provides an adequate basis for speech perception.
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I. INTRODUCTION

Human speech recognition shows remarkable robustness
in a variety of listening conditions, including competing talk-
ers, environmental sounds, and background noise. Under-
standing how speech is recognized under these conditions is
important not only for auditory perception but also for auto-
matic speech recognition, where robustness to acoustic inter-
ference remains elusive �Lippmann, 1997; Allen, 2005�. Re-
lated research in computational auditory scene analysis
�CASA� and blind source separation makes use of a binary
time–frequency �T–F� masking technique �Roman et al.,
2003; Hu and Wang, 2004; Yilmaz and Rickard, 2004�.
Time–frequency masking operates on a T–F representation
or decomposition of the input into a two-dimensional matrix
of T–F units. Such a representation can be readily generated
by passing the input signal through a filterbank and then time
windowing the response of each filter. Then binary masking
as a means of separation amounts to identifying a binary
mask where 1 indicates that the acoustic energy in the cor-
responding T–F unit is retained and 0 indicates that the en-
ergy is removed. In other words, binary masking applies a
pattern of binary gains to the mixture signal. It should be
noted that the term “masking” here means weighting the
mixture, which is different from the same term used in psy-
choacoustics where it means blocking the target sound by
acoustic interference.

Among T–F masks, the so-called ideal binary mask
�IBM� has been suggested to be a goal of CASA �Wang,
2005�. The IBM is a matrix where 1 indicates that the signal-
to-noise ratio �SNR� within the corresponding T–F unit ex-

ceeds a threshold LC �local SNR criterion� and 0 otherwise.
The mask is “ideal” because its construction requires that
speech and noise be available before they are mixed, and the
mask possesses certain optimality in terms of overall SNR
gain when LC is set to 0 dB �Li and Wang, 2008�.

Recent studies in speech perception show that applying
IBM to noisy speech leads to large speech intelligibility im-
provements �Brungart et al., 2006; Anzalone et al., 2006; Li
and Loizou, 2008�. In particular, Brungart et al. �2006� and
Li and Loizou �2008� have shown that, with fixed levels of
input SNR �between −10 and 0 dB�, a range of LC values
produces nearly 100% correct scores. The large intelligibility
gain has been attributed to ideal segregation �or detection�
that directs the listener’s attention to the T–F regions of
noisy speech where the target speech is relatively strong.
This explanation emphasizes the importance of the target sig-
nal contained in the T–F units labeled 1 for intelligibility.
How important is the binary pattern of an ideal mask itself?
This investigation was designed to isolate the intelligibility
contribution of an IBM by removing the target speech signal
from all T–F units.

Specifically, with linear filters, including gammatone fil-
ters �Patterson et al., 1988; Wang and Brown, 2006�, increas-
ing or decreasing the SNR of a mixture while changing LC
by the same amount does not alter the IBM. On the other
hand, although co-reducing input SNR and LC does not
change the IBM, the masked mixture becomes progressively
noisier or contains less target signal. Taking this manipula-
tion to the limit, i.e., setting both mixture SNR and LC to −�
dB, leads to an output that contains only noise with no target
speech at all. This particular output corresponds to turning on
or off the filtered noise according to a pattern prescribed by
the IBM. Our study evaluates speech intelligibility of noise
gated by the IBM obtained in this way.

a�Author to whom correspondence should be addressed. Electronic mail:
dwang@cse.ohio-state.edu
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II. METHOD

A. Stimuli

Our tests use sentences from the Dantale II data set as
target speech and a speech-shaped noise as interference
�Wagener et al., 2003�. The speech material in the Dantale II
corpus consists of sentences recorded by a female Danish
speaker. Each sentence has five words with a fixed grammar
�name, verb, numeral, adjective and object�, e.g., “Michael
had five new plants” �English translation�. Each position in a
sentence takes a randomly chosen word from ten equally
meaningful words. The speech-shaped noise included in the
Dantale II corpus is produced by adding repeated utterances
of each of the 250 test sentences in the corpus �see Wagener
et al., 2003�. Both speech and noise materials were digitized
at 20 kHz sampling frequency.

A speech utterance and the noise are first processed by a
gammatone filterbank with varying numbers of filter chan-
nels. With 32 filters equally spaced on the equivalent rectan-
gular bandwidth �ERB� rate scale with center frequencies
distributed in the range of 2–33 ERBs �or 55–7743 Hz�, the
frequency response of the filterbank is nearly flat. In addition
to a 32-channel gammatone filterbank, we also tested 16-, 8-,
and 4-channel filterbanks. Each of the filterbanks spans the
same frequency range with filters equally spaced on the
ERB-rate scale, and in all cases each filter has the bandwidth
of 1 ERB. With reduced channels, the frequency response of
a filterbank is no longer flat and information in certain fre-
quency bands is lost in comparison to the 32-channel filter-
bank case. A filter response is then windowed into time
frames using 20 ms rectangular windows and a frame shift of
10 ms. This 100 Hz frame rate is commonly used in speech
processing �Rabiner and Juang, 1993�. The resulting T–F
representation has been called a cochleagram �Wang and
Brown, 2006�. The IBM is constructed from the cochlea-
grams of the target speech and the speech-shaped noise with
both the mixture SNR �calculated during the period of a
sentence� and LC set to 0 dB. The IBM is then applied to the
noise cochleagram alone in a synthesis step to generate a
waveform stimulus �see Wang and Brown �2006� for details
of cochleagram analysis and synthesis�. Figure 1 illustrates
the signal processing scheme using a Dantale II sentence.
Take, for example, the 8-channel filterbank case. Figure 1�G�
shows the IBM for this case, which is produced by compar-
ing the 8-channel cochleagram of the Dantale II sentence and
the 8-channel cochleagram of the speech-shaped noise. Ap-
plying the binary mask in Fig. 1�G� to gate the noise results
in a waveform signal, which is represented in the cochlea-
gram format in Fig. 1�H�. Note that Fig. 1 represents the
waveform signals from different channel numbers using the
same 32-channel cochleagram representation in order to fa-
cilitate comparison. In other words, all the cochleagrams in
Fig. 1 serve the purpose of signal representation and do not
indicate the size of the filterbank used in IBM construction.

B. Subjects

Twelve normal-hearing, native Danish-speaking listen-
ers participated in the experiment. All listeners had normal

hearing, i.e., their hearing thresholds did not exceed 20 dB
HL, and their ages ranged from 26 to 51 with the average age
of 36.

C. Procedure

In each condition of the experiment, two lists, each with
ten sentences, were randomly selected from the Dantale II
corpus for IBM construction. Speech-shaped noise gated by
the IBM was then presented to a listener. The subjects were
instructed to repeat as many words as they could after listen-
ing to each stimulus corresponding to one sentence, and no
feedback was provided to them regarding whether their re-
sponses were correct or not. A stimulus was presented only
once. Subjects were given a training session by listening to
two lists of clean �or unprocessed� sentences, which were not
included in the subsequent test. Each subject test had four
conditions corresponding to the filterbanks with 4, 8, 16, and
32 channels. The four test conditions plus training took less
than 30 min. The presentation order of the four conditions
was randomized and balanced among the 12 listeners.

Speech and noise were both set to the sound pressure
level of 70 dB initially. To account for level differences
caused by the use of different-sized filterbanks, stimuli were
scaled by factors of two, four, and eight, for the 16-channel,
the 8-channel, and the 4-channel filterbank, respectively.
This level calibration resulted in stimuli with approximately
the same loudness. On each trial, a stimulus was generated
by the built-in sound card �SoundMAX� in a control com-
puter �IBM ThinkCenter S50� and then presented diotically
to a listener through headphones �Sennheiser HD 280 Pro� in
a sound treated hearing test room.

III. RESULTS

Figure 2 shows the word recognition performance for all
four conditions. The mean speech intelligibility scores for
the four conditions are: 7.75%, 54.25%, 92.92%, and
97.08%, with increasing number of filter channels. The re-
sults show that nearly perfect speech recognition is obtained
with 32 channels, and a high recognition rate is obtained
with 16 channels. The subjects recognized more than half of
the words when the number of channels was set to 8, but
were unable to perform the recognition task when the num-
ber of channels was 4. A repeated measures analysis of vari-
ance �ANOVA� was conducted and the effect of number of
channels was significant, F�3,33�=179.05, p�0.00001. The
Tukey honest significant difference �HSD� procedure re-
vealed that all pairwise differences among the means were
significant, p�0.001, except for the difference between 16
and 32 channels, which was not significant. Both ANOVA
and post hoc Tukey HSD tests were conducted on the ratio-
nalized arcsine-transformed percentage scores �Studebaker,
1985�.

The performance variability across different listeners
was small for the 32-channel and the 16-channel cases, sug-
gesting that the acoustic information was sufficient for them
to perform the recognition task. On the other hand, the indi-
vidual variability for the 8-channel case was significantly
larger than the 16-channel case, F�1,11�=5.50, p�0.01, sug-
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FIG. 1. �Color online� Illustration of gated noise by binary gains. �A� 32-channel cochleagram of a Dantale II sentence. �B� 32-channel cochleagram of
speech-shaped noise. �C� IBM with 32 channels, where 1 is indicated by white and 0 by black. �D� 32-channel cochleagram of gated noise by the IBM in �C�.
�E� IBM with 16 channels. �F� 32-channel cochleagram of gated noise by the IBM in �E�. �G� IBM with 8 channels. �H� 32-channel cochleagram of gated
noise by the IBM in �G�. �I� IBM with 4 channels. �J� 32-channel cochleagram of gated noise by the IBM in �I�.
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gesting that factors such as the ability and tendency to guess,
concentration, and prior experience with corrupted speech,
come into play.

The results in Fig. 2 clearly demonstrate that very high
recognition can be obtained by turning on and off 16 bands
of noise at a rate of 100 Hz following a specific pattern. The
speech signal plays the sole role of determining the IBM.
Such a stimulus contains little speech-specific information.
The spectral shape of speech is drastically reduced to a bi-
nary variation, and so is the temporal envelope. The har-
monic structure of voiced speech is absent, and the temporal
fine structure �the carrier signal underlying the temporal en-
velope� of the stimulus reflects that of noise, not speech.
Despite this dramatic reduction of speech information, listen-
ers are capable of speech perception.

So what cues enable listeners to perceive speech from
IBM-gated noise? The binary pattern encodes a general out-
line of spectrotemporal energy variations of speech relative
to noise. Binary-gated noise crudely reflects the formant
structure of speech; as shown in Fig. 1, IBM-gated noise
appears to “carve out” regions of noise energy that roughly
match the spectrotemporal peaks of speech. Our results indi-
cate that such a pattern of energy variations is sufficient for
recognition purposes.

IV. DISCUSSION AND CONCLUSION

Our study bears resemblance to the well-known study by
Shannon et al. �1995� demonstrating that only a few bands of
noise modulated by the corresponding speech envelopes suf-
fice for speech intelligibility �for a much earlier study using
more bands see Dudley �1939��. There are, however, several
differences between our binary-gated noise and the vocoded
noise of Shannon et al. Perhaps the most important and ob-
vious difference is that, within a frequency channel, noise
modulation uses a binary envelope in our study and a full
envelope in vocoded noise. Second, the IBM is derived by a
comparison between target speech and speech-shaped noise,
while temporal envelopes in vocoded noise are obtained
from target speech alone. We note that many speech separa-

tion algorithms compute a binary mask by implicitly or ex-
plicitly exploiting local SNR �Divenyi, 2005; Wang and
Brown, 2006�, making the ideal mask amenable to computa-
tional estimation. Third, the bandwidths of noise bands in
Shannon et al. change as the number of the bands varies in
order to cover the entire frequency range of interest; in IBM-
gated noise, the bandwidth of each frequency channel is
fixed to 1 ERB regardless of the number of filtbank channels.
It is also worth mentioning that recognizing vocoded noise
takes hours of training, while no training on binary-gated
noise was given in our experiment.

Like vocoded noise, the type of noise used in binary
gating likely has an effect on speech intelligibility. The
speech-shaped noise used in this study is a steady noise with
a long-term spectrum matching that of the utterances in the
Dantale II corpus, and may be particularly effective for IBM
gating, although our informal listening indicates that other
types of steady noise, such as pink noise, can also produce
intelligible speech. Our experiment was conducted using
Danish utterances. Byrne et al. �1994� reported that the long-
term average speech spectra of a group of languages, includ-
ing Danish and English, are quite similar, suggesting that,
though there are likely some language effects, the main ob-
servations of our experiment may hold for English and other
languages. Also, the IBM used in this study is constructed
when input SNR and LC are set to be equal �−� dB�. Fixing
one of them while varying the other produces different
IBMs. For example, when input SNR is set to 0 dB, increas-
ing LC results in ideal masks with fewer and fewer 1’s,
whereas decreasing LC leads to more and more 1’s. Is equat-
ing input SNR and LC most effective for intelligibility of
IBM-gated noise? Further investigation is required to address
the issues regarding noise type, language, and input SNR and
LC levels.

That a pattern of binary gains is apparently sufficient for
human speech recognition, like previous work on vocoded
noise, raises intriguing questions on the nature of human
speech recognition. What speech information is truly indis-
pensable for intelligibility? Could the IBM itself be what is
being recognized? Almost perfect speech recognition from
such drastically reduced speech information has broad impli-
cations for CASA, automatic speech recognition, hearing
prosthesis, and coding and compression in speech communi-
cation.
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Intelligibility of ideal binary masked noisy speech was measured on a group of normal hearing
individuals across mixture signal to noise ratio �SNR� levels, masker types, and local criteria for
forming the binary mask. The binary mask is computed from time-frequency decompositions of
target and masker signals using two different schemes: an ideal binary mask computed by
thresholding the local SNR within time-frequency units and a target binary mask computed by
comparing the local target energy against the long-term average speech spectrum. By depicting
intelligibility scores as a function of the difference between mixture SNR and local SNR threshold,
alignment of the performance curves is obtained for a large range of mixture SNR levels. Large
intelligibility benefits are obtained for both sparse and dense binary masks. When an ideal mask is
dense with many ones, the effect of changing mixture SNR level while fixing the mask is significant,
whereas for more sparse masks the effect is small or insignificant.
© 2009 Acoustical Society of America. �DOI: 10.1121/1.3179673�
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I. INTRODUCTION

The human ability to understand speech in a variety of
adverse conditions is remarkable, and the underlying pro-
cesses are not well understood. According to Bregman’s au-
ditory scene analysis account, the auditory system processes
the acoustic input in two stages: an analysis and segmenta-
tion stage where the sound is decomposed into distinct time-
frequency �T-F� segments followed by a grouping stage
�Bregman, 1990; Wang and Brown, 2006�. The grouping
stage is divided into primitive grouping and schema driven
grouping that represent bottom-up and top-down processes,
respectively. Hence, in order to recognize speech in back-
ground noise, the auditory system would employ a combina-
tion of bottom-up processing of available cues, and top-down
application of schemas, which represent learned patterns.

In this paper these processes are studied using the tech-
nique of ideal T-F segregation �ITFS�, which was proposed
by Brungart et al. �2006� to induce idealized grouping when
listening to a mixture of target speech and noise. ITFS is
based on the use of ideal binary mask �IBM�, which was
originally proposed as a benchmark for measuring the segre-
gation performance of computational auditory scene analysis
systems �Wang, 2005�. The ITFS technique applies an IBM
to the mixture, and several recent studies have utilized the

technique for revealing important factors for speech intelli-
gibility in noise �Brungart et al., 2006; Anzalone et al., 2006;
Li and Loizou, 2008; Wang et al., 2009�.

A binary mask is defined in the T-F domain as a matrix
of binary numbers. We refer to the basic elements of the T-F
representation of a signal as T-F units. A frequency decom-
position similar to the human ear can be achieved using a
bank of gammatone filters �Patterson et al., 1988�, and signal
energies are computed in time frames �Wang and Brown,
2006�. The IBM is defined by comparing the signal-to-noise
ratio within each T-F unit against a local criterion �LC� or
threshold measured in units of decibels. Only the T-F units
with local signal to noise ratio �SNR� exceeding LC are as-
signed 1 in the binary mask. Let T�t , f� and M�t , f� denote
target and masker signal power measured in decibels, at time
t and frequency f , respectively, the IBM is defined as

IBM�t, f� = �1 if T�t, f� − M�t, f� � LC,

0 otherwise.
� �1�

An IBM segregated signal can be synthesized from the
mixture by deriving a gain from the binary mask, and apply-
ing it to the mixture before recombination in a synthesis filter
bank. However, not all studies follow the same procedure—
sometimes the short-time Fourier transform is used �for in-
stance Li and Loizou, 2008� which typically yields lower
frequency resolution at low frequencies, but much higher
resolution at high frequencies.

In Brungart et al., 2006, the IBM was used as a means to
retain the effect of energetic masking, thereby separating the

a�Author to whom correspondence should be addressed. Electronic mail:
uk@oticon.dk
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energetic masking and informational masking effects. They
argued that since the IBM removes those T-F units domi-
nated by the masker, ITFS can be said to retain the effect of
energetic masking, while removing informational masking
caused by the excluded units with relatively significant
masker energy. Informational masking refers to the inability
to correctly segregate audible target information from the
mixture. Their study showed a plateau of nearly perfect in-
telligibility of ITFS processed mixtures when varying the
value of LC from −12 to 0 dB. Meanwhile, the IBM with
0 dB LC is considered to be the theoretically optimal mask
out of all possible binary masks in terms of SNR gain �Li
and Wang, 2009�. Brungart et al. �2006� noted that lowering
the mixture SNR by 1 dB while fixing LC causes the exact
same T-F units to be left out as increasing the LC by 1 dB
while fixing the mixture SNR; in other words, the IBM re-
mains the same in these two scenarios. They demonstrated
remarkably similar performance curves by altering the test
conditions in the two ways described, which they interpret as
rough equivalence in the effect of energetic masking.

Anzalone et al. �2006� showed large intelligibility ben-
efits of IBM segregation and reported positive results on
hearing impaired subjects, although their IBM definition is
different from the previously outlined ITFS procedure. They
computed the IBM by comparing the target signal to a fixed
threshold adjusted to retain a certain percentage of the total
target energy. Furthermore they attenuated the T-F units des-
ignated as non-target by 14 dB, in contrast to the total elimi-
nation described above. Their results showed more than 7 dB
improvement in speech reception threshold �SRT� for normal
hearing and more than 9 dB improvement for hearing im-
paired subjects.

In a study comparing impaired and normal-hearing sub-
jects, Wang et al. �2009� demonstrated large improvements
in SRT for both normal-hearing and hearing impaired groups
due to ITFS processing of speech mixtures. Their study of
the normal-hearing group shows an 11 dB improvement in
SRT with a cafeteria noise masker containing conversational
speech and an improvement of 7 dB for speech-shaped noise
�SSN�. For the hearing impaired group, the SRT improve-
ment was 16 dB in cafeteria noise and 9 dB in SSN. As a
surprising result, the SRTs obtained from the normal-hearing
and hearing impaired groups on the ITFS processed mixtures
were comparable.

Li and Loizou �2008� used short time Fourier transforms
to apply ideal binary masking to mixtures with a two-talker
masker, as well as modulated and unmodulated SSN
maskers. They found large intelligibility benefits similar to
Brungart et al. �2006� when varying the LC parameter, al-
though they reported wider plateaus of LC values with al-
most perfect intelligibility �−20 to +5 dB compared to
−12 to 0 dB in Brungart et al., 2006�, which they attributed
to differences in speech material and filterbank setup. They
further suggested that it may be the pattern of the binary
mask itself that matters for intelligibility, rather than the local
SNR of each T-F unit.

Wang et al. �2008� demonstrated that applying a binary
pattern of gains obtained from an IBM with a SSN masker to
the masker signal alone produces high intelligibility scores, a

type of process related to noise vocoding �Dudley, 1939;
Shannon et al., 1995�. Using different numbers of filterbank
bands, they showed that intelligibility is lost when the num-
ber of channels is 8 or smaller, a result which differs from
that reported by Shannon et al. �1995� who used continuous,
rather than binary, values for envelope manipulation. There,
high intelligibility was reported using noise vocoded in just
four channels.

A. Motivation

The large benefits in intelligibility outlined previously
could make the IBM a candidate for applications such as
hearing aids, provided that the IBM can be approximated
sufficiently well. In this paper we will not consider how such
estimation might be done. However, to devise such applica-
tions it is important to understand the mechanisms by which
the IBM enhances intelligibility. In the above described lit-
erature, much attention has been given to explaining intelli-
gibility of IBM segregated mixtures by considering audibil-
ity of the target signal. By focusing on absolute regions of
LC �Brungart et al., 2006�, emphasis is put on the interpre-
tation that the IBM reduces informational masking by direct-
ing listeners’ attention to the T-F units containing target in-
formation �Li and Loizou, 2008�. This view is basically
related to models of intelligibility based on target audibility
in additive noise, such as the speech intelligibility index
�ANSI, 1997�, where intelligibility is described as a function
of the proportion of target signal that is audible in different
frequency bands. Cooke �2006� and Srinivasan and Wang
�2008� proposed related computational models that operate
on mixture input directly and produce recognition results
from automatic speech recognition that are compatible with
human intelligibility performance.

However, some of the previous published results seem
inconsistent with this view. In particular, the observation of
Wang et al. �2008� that IBM-processed noise is intelligible
suggests that the resulting temporal envelope of the pro-
cessed mixture is important. The speech transmission index
�Houtgast and Steeneken, 1971� considers how distortions to
the envelope affect speech intelligibility. Recent extensions
have been made to improve the model predictions of nonlin-
early processed speech �Goldsworthy and Greenberg, 2004�.
While the speech intelligibility index model cannot explain
the noise gating results of Wang et al. �2008�, a model based
on speech transmission index described by Goldsworthy and
Greenberg �2004� may perform better. This means that the
target modulation carried by the IBM may play a key role in
intelligibility of processed mixtures.

Based on the observation that the IBM is insensitive to
the covariation of LC and mixture SNR, we propose to focus
on the difference between the LC and the mixture SNR levels
when comparing performance across mixture SNR levels.
We therefore introduce a relative criterion �RC�, defined as
RC=LC−SNR in units of decibels.

By focusing on RC and varying the mixture SNR, it is
possible to vary the effects of the target component of the
IBM processed mixture relative to that of the masker. For
example, by taking the mixture SNR to a large negative
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value, we can measure intelligibility of IBM-gated noise
similar to Wang et al. �2008�. On the other hand, by taking
the mixture SNR to a level near the SRT we may measure
how processing with the exact same binary mask affects in-
telligibility near the SRT.

B. Aims of the experiments

The change in focus from LC to RC brings up several
research questions, which we will address in this paper. One
aim is to investigate how the range of RC for optimal intel-
ligibility depends on mixture SNR. Are there regions of RC
where mixture SNR level has little or no effect on intelligi-
bility? This question is directly addressed by the experiments
in this paper. If under some circumstances mixture SNR
level plays a minor role, the masker signal type may play a
major role. So the second aim is to investigate the effects of
masker type. We know that the plateau of optimal LC values
is narrower for same-talker speech maskers �Brungart et al.,
2006� compared to a SSN masker. So far, intelligibility of
IBM-processed noise has only been reported for stationary
noise �Wang et al., 2008�.

Third, we wanted to compare the effects of alternative
ideal mask definitions. The mask used by Anzalone et al.
�2006� was computed based on the target signal alone; yet
large intelligibility improvements were obtained. They define
the target binary mask �TBM� as the one obtained by com-
paring, in each T-F unit, the target energy to that of a SSN
reference signal matching the long-term spectrum of the tar-
get speaker. This comparison still uses the LC parameter as a
SNR threshold. The binary mask that results from this pro-
cess can then be applied to a mixture of the target and a
different masker. Figure 1 illustrates an example TBM and
IBM computed from a target sentence in cafeteria noise, and
shows the differences between the resulting masks. The top
row shows the time domain waveforms of the clean and
noisy target sentences. The middle row shows cochleagrams
of the clean and noisy target sentence using a filterbank of 1
ERB �equivalent rectangular bandwidth� wide gammatone
filters with center frequencies from 55 Hz to 7.7 kHz. The
bottom row shows the TBM �left� and IBM �right�. The two
masks are noticeably different. The TBM pattern resembles
the target sentence and is unaffected by the specific masker.
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FIG. 1. �Color online� Illustration of IBM and TBM. Upper row shows waveform signal for a clean target sentence �left� and the sentence corrupted with
cafeteria noise �right�. Middle row shows the cochleagram representation of the two signals. Bottom left and right show the TBM and IBM, respectively, with
white indicating the value of 1.
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On the other hand, the IBM pattern depends on the masker
signal as well.

The TBM has several useful properties. The mask is, by
this definition, identical to the IBM when SSN is the masker,
so the TBM can be used as a measure of how general the
IBM generated with the SSN masker is. Furthermore, relat-
ing to schema-based auditory scene analysis, the TBM could
be interpreted as a simplified template of a learned pattern,
indicating where in time and frequency to expect target en-
ergy. We therefore expect that the TBM leads to comparable
benefits in intelligibility compared to the IBM. In some
speech enhancement applications, it may be easier to esti-
mate a TBM rather than an IBM, and it is therefore useful to
know the extent to which the TBM results in intelligibility
improvements.

The remainder of this paper is organized as follows. A
listening experiment is described in Sec. II, and the results
are reported and discussed in Sec. III. Section IV concludes
the paper.

II. EXPERIMENTAL SETUP

A listening experiment was conducted to measure
speech intelligibility of ITFS processed mixtures. The aim
was to measure the influence of mixture SNR level, RC
value, masker type, and to compare mask construction
schemes: IBM and TBM.

A. Stimuli

The target phrases were from the Dantale II corpus
�Wagener et al., 2003� which is the Danish version of the
Swedish Hagerman sentence �Hagerman, 1982� test and the
German Oldenburg sentence test �Kollmeier and Wes-
selkamp, 1997�. The corpus consists of 150 sentences de-
signed to have low redundancy. The phrases were all spoken
by the same female Danish speaker. The sentences were five
words long following the same grammatical structure: name-
verb-numeral-adjective-noun. An English translated example
is “Michael had five new plants.” Each word was randomly
selected out of ten possibilities in each position of a sen-
tence, taking coarticulation into account �Wagener et al.,
2003�. Since long-term spectral characteristics are quite simi-
lar among different languages �Byrne et al., 1994�, the main
observations of the present experiment could hold for Eng-
lish and other languages, though there are likely some lan-
guage effects.

The target sentences were presented in nine second in-
tervals, allowing the subjects time to repeat the words they
recognize as well as guess. An operator recorded the number
of correctly recognized words for each sentence.

Four masker signals were used: SSN, cafeteria noise, car
interior noise, and noise from a bottling hall. We use the SSN
included with the Dantale II corpus, which is produced by
superimposing the speech material in the corpus. The cafete-
ria masker was a recording of an uninterrupted conversation
between a male and a female Danish speaker in a cafeteria
background �Vestergaard, 1998�. The signal was equalized to
match the long-term spectrum of the target sentences. This
was done to isolate the effects of masker modulation and

long-term average spectrum. The car interior noise was a
recording during highway driving and was chosen to repre-
sent a quasi-stationary noise with strong low-frequency con-
tent. The fourth noise used was a recording of bottles rattling
on a conveyor belt in a bottling hall �Vestergaard, 1998�, and
was chosen to represent a signal with strong high-frequency
content. All stimuli were diotically presented through head-
phones.

For each masker type, three mixture SNR levels were
selected along with eight values of RC. Given that the IBM
and the TBM are identical with the SSN masker, there were
seven combinations of masker type and mask type, as shown
in Table I.

Mixture SNR levels were set to match measured 20%
and 50% SRTs for each masker type. The third SNR level
was fixed at −60 dB to create IBM-gated noise similar to
Wang et al. �2008�.

B. Sessions

The experiment was divided into two sessions. In Ses-
sion I, the slope and SRT of each subject’s psychometric
curve of the unprocessed mixtures and each of the four
maskers were measured using the adaptive Dantale II proce-
dure, and the mixture SNR levels for 20% and 80% correct
word identification were derived �Brand and Kollmeier,
2002; Wagener et al., 2003�. In Session II, intelligibility was
measured on a grid of three different mixture SNR levels and
eight different RC values �including an “unprocessed” con-
dition, see later� for each of the seven conditions in Table I.
This generated a total of 3 SNR levels, 8 RC values, and 7
conditions of Table I, resulting in 3�8�7=168 points,
where intelligibility was measured. Each combination was
tested on each subject using two sentences. Hence, each sub-
ject listened to a total of 2�168=336 sentences, which re-
quired reuse of sentences. To prevent memorization, order of
the sentences was balanced as much as possible within and
across subjects, and appeared random to the subjects.

From Session I measurements, logistic functions

P�SNR� = �1 + exp�4s50�L50 − SNR���−1 �2�

were fitted by means of the maximum likelihood method,
assuming a binomial distribution of individual sentence
scores �Brand and Kollmeier, 2002� yielding the 50% SRT
�L50� and slope �s50� parameters for each subject and each
masker type. The two initial sentences of each adaptation
were discarded, and to reduce the effects of outliers, the data
from the three best and three worst performing subjects were
left out before averaging in order to derive the 20% and 50%
SRT values. Pilot experiments revealed an effect of a princi-

TABLE I. Seven combinations of masker type and mask type. Note that
TBM and IBM with SSN masker are identical.

Speech
shaped
noise

Cafeteria
noise

Car
interior

Bottling
noise

IBM 1 2 3 4
TBM 5 6 7
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pal difference between the continuous masker used in Ses-
sion I, and the binary gated masker used with the ITFS sig-
nals in Session II. The effect caused a slightly decreased
performance in the latter case. This effect has previously
been described by Wagener �2003, Chap. 5� where a com-
parison of continuous versus gated noise indicated a 1.4 dB
increase in SRT �L50� and a decrease in slope �s50� from
21% /dB to 18% /dB. Accordingly, we adjusted the mea-
sured SRT from Session I by adding 1.4 dB and slope by
multiplying 18 /21, resulting in the values listed in the first
two columns of Table II. The third column shows 20% SRT
derived from the adjusted parameters. The measured SRTs
and slopes for speech-shaped and cafeteria noise all agree
with previous results on the same material �Wagener, 2003;
Wang et al., 2009�.

In order to determine the range of RC values to use,
offline simulations were carried out to identify the RC values
that yielded mask densities of 1.5% and 80% measured as
percent ones in the mask within speech intervals �see Sec.
II D for signal processing details�. For each masker type
seven RC values were then identified by equidistant sam-
pling �in decibels� between these two points. For the three
TBM conditions, the set of RC values equaled the set for
IBM/SSN �condition 1 in Table I� since the binary masks are
identical by definition. An eighth additional unprocessed
condition was added, where the mask was set to 1 in all
frequency bands within the speech intervals, and 0 outside
these intervals, creating essentially a gated masker.

Speech intervals were derived from the target sentences
alone and were used for all mixture SNR computations by
averaging target and masker energy within speech intervals
only. A speech interval was defined by low-pass filtering the
absolute target sample values using a first-order IIR low-pass
filter with the time constant of 1 ms �for 20 kHz sample rate
the transfer function was H�z�=� / �1− �1−��z−1�, �
=0.04877�, thresholding the result at 60 dB below the maxi-
mum value, and further designating all non-speech intervals
less than 2 s as speech to include inter-word intervals in all
sentences. All detected speech onsets were shifted 100 ms
backward to account for forward masking effects �Wang
et al., 2009�.

C. Subjects

A total of 15 normal-hearing, native Danish speaking
subjects participated in the experiment. The subjects volun-

teered for the experiment and were not paid for their partici-
pation. Their age ranged from 25 to 52 with a mean age of
35. The audiograms of all subjects indicated normal hearing
with hearing thresholds below 20 dB HL in the measured
range of 250 Hz–8 kHz.

D. Signal processing

All target and masker signals were resampled from
44.1 to 20 kHz sampling rate. Gain factors for target and
masker were computed in order to achieve a given mixture
SNR and fixed mixture power. This was done by computing
the signal energies of target and masker within the speech
intervals previously defined. The target and masker signals
were processed separately by means of a gammatone filter-
bank, consisting of 64 channels of 2048-tap FIR filters; each
channel has the bandwidth of 1 ERB and channel center
frequencies range from 2 to 33 ERBs �corresponding to
55–7743 Hz� linearly distributed on the ERB-rate scale
�Patterson et al., 1988; see also Wang and Brown, 2006�. The
filterbank response was divided into 20 ms frames with
10 ms overlap, and the total signal energy was computed
within each T-F unit.

For IBM processing, a binary mask was formed by com-
paring the local SNR within a T-F unit against LC, assigning
1 if the local SNR was greater than LC and 0 otherwise. For
TBM processing, the reference masker �i.e. the SSN masker�
was processed through the filterbank, with a gain set to
achieve a 0 dB mixture SNR. The TBM was formed by com-
paring the local SNR within a T-F unit using the reference
masker against the RC threshold, assigning 1 if the local
SNR was greater than RC.

The binary mask signal was then upsampled to the full
20 kHz sampling rate by means of a sample-hold scheme
followed by low-pass FIR filtering using a 10 ms Hanning
filter. In each band, the target-masker mixture was delayed
20 ms in time, accounting for the total delay from the T-F
unit energy summation, sample-hold, and low-pass filtering,
before the upsampled mask was multiplied with the mixture.
Finally, the ITFS processed waveform was synthesized using
time reversed gammatone filters.

The target and masker stimuli for Session I were pro-
cessed through the filterbank analysis and synthesis proce-

TABLE II. SRT at 50% correct L50 and slope s50 parameters of the logistic function, Eq. �2�, estimated from
Session I measurements, using maximum likelihood with correction for gated noise �see text, Sec. II B�. The
next column shows the derived 20% SRT for average subject performance. The last two columns show the
upper and lower RC values for the four masker types. Offline simulations were used to determine the RC values
for obtaining IBM sparseness of 1.5% and 80% ones in the mask. The three TBM conditions 5–7 of Table I all
used RC values corresponding to IBM/SSN with mixture SNR corresponding to masker type.

Masker type

50% SRT mixture
SNR �L50�

�dB�

Slope at SRT
�s50�

�%/dB�

20% SRT
mixture SNR

�dB�

RC for 1.5%
ones in mask

�dB�

RC for 80%
ones in mask

�dB�

Speech shaped noise −7.3 15.1 −9.8 12.7 −30.3
Cafeteria −8.8 7.5 −13.8 24.6 −27.4
Car interior −20.3 12.7 −23.0 27.5 −25.2
Bottling noise −12.2 5.7 −18.4 23.1 −34.9
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dure �no binary mask was applied�, reducing the signal band-
width to 55 Hz–7.74 kHz in order to match processed
signals in Session II.

E. Procedure

1. Session I: SRT and slope measurements

The first session consisted of an adaptive Dantale proce-
dure for each of the four masker types. Prior to this the
subjects were given a short training session consisting of 30
randomly chosen sentences using speech-shaped and cafete-
ria noise maskers. These maskers were chosen to let listeners
familiarize themselves with the task under stationary and
non-stationary noise conditions.

In the adaptive Dantale procedure, the mixture SNR was
varied after each sentence according to the number of cor-
rectly identified words, and the 20% and 80% SRTs were
tracked in an interleaved manner �Brand and Kollmeier,
2002�. The 20% and 80% points were chosen since they
were proposed by Brand and Kollmeier �2002� to be optimal
for the simultaneous measurement of the logistic function
parameters L50 and s50 of Eq. �2�. A total of 30 sentences
were presented for each masker type in the adaptive proce-
dure. To account for learning effects, the order of masker
types was balanced across subjects �Beck and Zacharov,
2006�.

2. Session II: ITFS mixtures

In the second session, each subject listened to 336 of-
fline computed ITFS sentences. The stimuli alone lasted ap-
proximately 51 min so the subjects were allowed two breaks
in the middle.

Prior to the main experiment, subjects were exposed to
60 sentences of training using all four noise types. First, for
each masker type ten sentences corresponded to the unproc-
essed condition with increasingly lower mixture SNRs. The
remaining 20 training sentences corresponded to various
ITFS conditions, randomly selected but increasing difficulty.
We found from pilot experiments that an extended training
procedure was required to reduce learning effects and subject
variability.

Learning and other temporal effects were accounted for
by using a balanced design: for each subject the ordering of
the seven conditions was changed and for each condition the
ordering of SNR levels and RC values were balanced as
much as possible.

Subjects were seated in a sound treated room where
sounds were presented using Sennheiser HD280 Pro head-
phones connected to a SoundBlaster SB0300 sound card, us-
ing a PC running MATLAB.

3. Level of presentation

All mixtures were normalized to have same broadband
long-term signal power before ITFS processing, both across
mixture SNR and across noise types. The SSN condition was
used to calibrate the presentation level to 65 dB�A� sound
pressure level, and the volume control settings were then
held fixed. The calibration was done using a sound level
meter coupled to an earpiece of the headphones. The result-

ing presentation levels were measured to 62 dB�A� for caf-
eteria noise, 60 dB�A� for car interior noise, and 68 dB�A�
for bottling hall noise.

III. RESULTS AND DISCUSSION

Figure 2 shows the percentage of correctly identified
words as a function of LC for IBM segregated mixtures with
the SSN masker in the three mixture SNR settings, averaged
over all subjects. The unprocessed conditions do not corre-
spond to a particular LC value, and are inserted as the left-
most points of the respective curves �marked as “UN”� and
connected with dotted lines to the curves.

The unprocessed data points resulted in higher perfor-
mance than expected; across conditions the average scores
are 25.7% and 59.5% out of 600 answers, which are larger
than the 20% and 50% expected scores. This could be ex-
plained by the training that was encountered during Session I
and during the training session introduced between Session I
and Session II, as described in Sec. II E 2.

Each of the three curves shows a plateau or peak of very
high intelligibility; for the 50% SRT �SNR of −7.3 dB�, the
interpolated average performance was above 95% in the in-
terval −25 dB�LC�−2 dB, a 23 dB wide region. For 20%
SRT �SNR of −9.8 dB� the interval was −22 dB�LC�
−6 dB and 16 dB wide, while for the −60 dB case the inter-
val was −69 dB�LC�−59 dB and 10 dB wide. The results
for 20% and 50% SRT have similar profiles as those reported
by Brungart et al. �2006� and Li and Loizou �2008�. In Brun-
gart et al., 2006, the range is −12 dB�LC�0 dB using a
multi-talker task and similar ITFS processing. The plateaus
in the present study are wider than those of Brungart et al.
�2006�, due to higher scores at lower LC values, while pla-
teau upper bounds are similar. Li and Loizou �2008� reported
plateaus from −20 to +5 dB at −5 dB SNR and −20 to 0 dB
at −10 dB SNR using a sentence test with a SSN masker and
a T-F representation with linear frequency. The observed dif-
ferences are probably due to differences in sentence material
and mixture SNR.
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FIG. 2. Percentage of correctly identified words for IBM-processed mix-
tures with SSN masker as function of LC used for generating the IBM.
Three mixture SNR levels are shown. The unprocessed conditions do not
correspond to a particular LC value, but are inserted to the left of the re-
spective curves, marked as “UN” and connected with dotted lines. Chance
performance level is 10%.
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The −60 dB SNR curve, however, is different. First of
all, since the mask here was applied to essentially pure noise,
this is consistent with the results of Wang et al. �2008� who
demonstrated that listeners achieve nearly perfect recogni-
tion from IBM-gated noise where the mask is obtained from
speech and SSN. This process of producing intelligible
speech from noise may be viewed as a form of noise gating.
Our results extend their findings by showing that the vocod-
ing ability of the IBM applies to a range of LC values. This
range is not much smaller than those of the performance
plateaus at much higher mixture SNR levels, a finding that
has not previously been reported.

Secondly, the shape of the −60 dB curve is similar to but
narrower than the curves at higher SNR levels, but its posi-
tion on the LC axis is very much shifted. As pointed out by
Brungart et al., �2006�, the IBM is insensitive to covariations
of LC and mixture SNR. This means that the mask pattern is
a function of the difference LC-SNR, which was termed RC
in Sec. I A.

A. Performance versus RC

Depicting the performance curves versus RC rather than
LC brings the curves together, as shown in Fig. 3. Most
notably the decline in performance at high RC values seems
to be aligned well. Recall that the IBMs for the three SNR
levels are equal for a fixed RC regardless of mixture SNR.

A two-way analysis of variance �ANOVA� with repeated
measures was performed on the rationalized arcsine trans-
formed subject mean percentage scores �Studebaker, 1985�.
The ANOVA revealed significant effect of mixture SNR, RC,
and of interaction terms, as indicated in Table III. To further
investigate the interaction effect, a post hoc Tukey HSD test
was performed comparing all pairwise differences across
SNR. In Fig. 3, asterisks are used to indicate significant pair-
wise differences, where the significance level is indicated by
their number: * indicates p�0.05, ** indicates p�0.01,
and *** indicates p�0.001. In this case, all pairwise com-
parisons that were significant were at the level of p�0.001.
The significance of the difference between the upper and
lower SNR performance is indicated to the left of the corre-
sponding data point of the middle SNR curve �diamond�.

In Fig. 4, plots similar to Fig. 3 are shown for the re-
maining conditions tested. The two rows of the plots show
IBM and TBM processing, respectively. The three columns
correspond to the three remaining masker types: cafeteria,
car interior, and bottle noise. As shown in Table III, a two-
way ANOVA in all conditions revealed significant effects of
mixture SNR, RC, and of interaction terms.

The results in Fig. 4 show patterns similar to that of Fig.
3. Tukey HSD tests revealed significant differences across
mixture SNR for low RC values just as was the case for the
IBM/SSN condition.

1. Interpretation using regions in RC

In a manner similar to Brungart et al. �2006� we divide
the performance curves into three distinct regions. The main
difference in our analysis is that our regions are defined in
terms of RC instead of LC. The purpose is to interpret the
intelligibility improvement in terms of RC �Fig. 3�, instead
of LC �Fig. 2�. While the aim of the analysis by Brungart
et al. �2006� was to separate effects of informational and
energetic masking, our analysis highlights the importance of
the binary mask pattern.
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FIG. 3. Percentage of correctly identified words for IBM-processed mix-
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TABLE III. Two way ANOVA test results using rationalized arcsine transformed mean subject scores �Stude-
baker, 1985� revealed significance of effects of mixture SNR, RC, and interaction terms for the measurement
data shown in Figs. 3 and 4.

Effect of mixture SNR Effect of RC Effect of interaction

Test statistic F�2,28� F�7,98� F�14,196�
IBM/SSN �Fig. 3� 136.1, p�0.000 01 153.1, p�0.000 01 13.8, p�0.000 01
IBM/cafeteria 340.5, p�0.000 01 149.7, p�0.000 01 17.4, p�0.000 01
IBM/car noise 172.4, p�0.000 01 295.5, p�0.000 01 12.0, p�0.000 01
IBM/bottling noise 173.0, p�0.000 01 126.0, p�0.000 01 12.2, p�0.000 01
TBM/cafeteria 253.1, p�0.000 01 95.1, p�0.000 01 11.8, p�0.000 01
TBM/car noise 133.1, p�0.000 01 156.8, p�0.000 01 12.3, p�0.000 01
TBM/bottling noise 234.3, p�0.000 01 146.7, p�0.000 01 15.2, p�0.000 01
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Region I corresponds to large RC values, where intelli-
gibility decreases with increasing RC due to increasing
sparseness of the ideal mask. In our results from the IBM/
SSN condition, performance decreased for RC�−2 dB.

Region II corresponds to an intermediate range of RC
values, with nearly perfect performance. For the IBM/SSN
condition this occurred as a plateau at RC values between
−8.8 and −1.6 dB, where intelligibility was above 95%.

Region III ranges below approximately RC=−10 dB in
the IBM/SSN case. In this region performance decreases as
RC decreases and the number of T-F units included in the
IBM increases, until the performance of the unprocessed
mixture is reached.

A general pattern in our data is that the influence of
mixture SNR on the recognition performance decreases with
increasing RC: In Regions I and II the effect was small or
insignificant, while in Region III there was significant influ-
ence.

The fact that the performance in Region I �high RC val-
ues� showed only a negligible or small effect of mixture SNR
level suggests that the target component of the processed
mixture plays a relatively small role. Our results seem to
indicate that some of the traditional cues for speech percep-
tion, such as F0, periodicity, and other temporal fine structure
cues, are less important in Region II than in Region III and

of even smaller importance in Region I. Otherwise one
would have expected a difference in performance across
mixture SNRs. So the application of the IBM seems, on the
one hand, to improve the intelligibility relative to the unproc-
essed condition and, on the other hand, to reduce or elimi-
nate the listener’s ability to make use of speech cues other
than what is carried in the binary mask. This result is of
particular interest for the design of hearing aids, since reports
suggest that the ability of hearing impaired subjects to make
use of temporal fine structure cues is limited compared to
normal listeners �Lorenzi et al. 2006; Hopkins et al. 2008�,
making the trade-off more favorable for the hearing im-
paired.

In Region III, there was an overall significant effect of
mixture SNR �indicated with asterisks in Figs. 3 and 4�. We
further note that across all seven mask scheme/masker con-
ditions, the increase in performance at the mixture SNR cor-
responding to 20% SRT from Region III to Region II is
accompanied by an increasing vocoding ability at −60 dB
mixture SNR.

2. Influence of masker type

The results in Fig. 4 show that the RC values beneficial
to intelligibility varied across the seven mask scheme/masker
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conditions. While the plateau became narrower at lower mix-
ture SNR levels, its position shifts across the seven condi-
tions tested. As already described, mixture SNR, which fac-
tors in the definition of RC, is not a good indicator of
intelligibility across masker types. For instance, in the IBM/
bottle noise curve at the mixture SNR corresponding to 50%
SRT, the performance plateau—the region of RC values
where intelligibility is within 95% of the maximum score—
ranged from −22 to −3 dB �measured on interpolated mean
data�, while in the IBM/car noise curve the corresponding
plateau occurs in the RC range of −4 to 19 dB.

Table IV shows the average plateau width for the three
mixture SNR levels for each of the seven mask scheme/
masker conditions. The IBM/SSN condition produced the
broadest plateau, 23.6 dB on average, and the TBM/cafeteria
the narrowest plateau of 16.9 dB. Comparing mask schemes
within masker signals, the IBM showed slightly wider aver-
age plateaus for all masker types. The table also gives the
peak intelligibility scores of various noise gating curves.

B. Discussion of binary noise gating results

The noise gating performance curves �SNR −60 dB�
form a performance lower bound for each masker type: in no
case was the noise gating performance significantly greater
than that for any other mixture SNR level. The measured
peak value of the noise gating performance curves varied
across masker type and mask computation scheme as indi-
cated in Table IV. The effect of masker type was greater than
the effect of mask computation scheme �from 85.3% for
IBM/cafeteria to 99.3% for IBM/car noise�.

The cafeteria noise was a relatively poor signal for voc-
oding, yielding maximum scores of 85% correct using IBM
and 88% using TBMs, a result which may be explained by
the sparse energy distribution in retained T-F units: The pres-
ence of 1 in the binary mask may coincide with a dip in the
noise signal. In our data, the performance in the TBM/
cafeteria condition with the −60 dB SNR was significantly
lower at RC=15 dB than those with higher SNR levels. The
modulation dips of the cafeteria masker made the distribu-
tion of T-F energy in the processed signal relatively sparse, a
likely reason for reduced intelligibility performance.

Figure 5 shows the density of the binary mask measured
as percentage ones in the mask averaged over all speech
intervals �see Sec. II B� as function of channel center fre-
quency for different masker types. The bold lines correspond
to the RC value with the highest noise gating intelligibility
�at mixture SNR of −60 dB�. The figure shows that when the
target and masker signal spectra are matched �speech-shaped

and cafeteria noise� the result is a more uniform mask den-
sity compared to when the signals are not matched �bottle
noise and car noise�.

It should be noted that, for stationary maskers, the TBM
is similar to the IBM with a LC parameter made frequency
dependent in such a way that the resulting distribution of
mask sparseness resembles that of the TBM �i.e. IBM with
SSN masker�. Since the TBM in the bottle noise case brings
some intelligibility benefits over the IBM, it is possible that
speech separation algorithms that estimate the IBM would
also benefit from making the LC parameter frequency depen-
dent, to ensure that enough ones are present in frequency
bands relevant for speech.

C. Results from TBM

In Fig. 6, the results of applying the TBM to mixtures of
the four masker types are compared. From left to right the
mixture SNR level corresponds to 50% SRT, 20% SRT, and
−60 dB. The curves corresponding to the four different
maskers appear to align well. This is further reflected in
Table V, showing the results from a two-way ANOVA with
repeated measures performed on the rationalized arcsine
mean subject scores, for each of the three mixture SNR lev-
els. Compared to the previous analysis, the effects are not as
strong; in fact, the noise type influence was not above the
standard 5% significance level for the 20% SRT data and the
interaction term for the 50% SRT data was also not signifi-
cant. Tukey HSD tests revealed significance in the pairwise
differences across masker type only for cafeteria noise in
−60 dB SNR against all three other noise types, and only for
RC values of −23.1, −15.9, and −8.7 dB as indicated with
asterisks in Fig. 6.

D. Performance versus mask density

Given the importance of mask density for resulting in-
telligibility, the performance scores versus resulting overall
mask density are plotted in Fig. 7. The mask density was
measured as resulting percentage of ones in all frequency
bands within speech intervals. The unprocessed condition is
indicated as having 100% ones in the mask. The IBM results
are connected with solid lines, and the TBM results are con-
nected with dashed lines. Note that a nonlinear abscissa is
used to better illustrate the performance differences at low
percentages.

All curves show maximum performance between 15%
and 60% ones in the masks. The curves all show a sharp
decline toward zero at low percentages, a plateau in the
middle which is wider for higher mixture SNRs and a
gradual drop to the level of unprocessed mixtures, from 40%

TABLE IV. Measured peak intelligibility score �in percentage� for noise gating data �at a mixture SNR of
−60 dB� together with average width �in RC� of performance plateau where the interpolated performance was
within 95% of the peak value, for the four masker types and two mask computation schemes.

Speech shaped noise Cafeteria Car interior Bottling noise

IBM 98.7% 23.6 dB 85.3% 20.7 dB 99.3% 23.0 dB 90.0% 19.0 dB
TBM 88.0% 16.9 dB 98.7% 21.5 dB 95.3% 18.4 dB
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to 100% ones in mask. The TBM and IBM curves are gen-
erally similar, with slightly larger scores for the target binary
mask except for the cafeteria masker at high percentage of
ones. Below 5%–10% ones, the TBM scores were higher
than for the IBM for all masker types. For the exceptional
case of the cafeteria noise, the IBM strategy based on mix-
ture SNR was apparently better than the TBM scheme ac-

cording to the target energy. Overall, it is rather remarkable
how well the TBM and IBM results are aligned, considering
their differences with respect to RC in Fig. 4.

IV. CONCLUSION

By measuring intelligibility of ideal binary-masked
noisy speech, we have shown that intelligibility performance
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curves became aligned across a large range of mixture SNR
levels when using the RC defined as the difference of LC and
SNR. This alignment was demonstrated for four masker
types, using the IBM as well as the proposed TBM. By fixing
RC and varying the mixture SNR level, we identified three
regions in RC, differentiated by intelligibility and influence
of the mixture SNR level. In Regions I and II, weak or in-
significant influence was found, whereas in Region III the
influence was large and significant. The size and location of
the regions varied with masker type.

By applying IBM processing to mixtures of low nega-
tive SNR levels, we have extended the findings of Wang et
al. �2008� showing that the processing acts as binary noise
gating and produces intelligible speech at a range of sparse-
ness configurations parametrized by RC. We further showed
that the proposed TBM based on the target signal alone was
comparable to the IBM in terms of intelligibility improve-
ments. For a given level of mask sparseness, the mean mea-
sured TBM intelligibility scores were even slightly higher
than those of the IBM in some conditions.

TABLE V. Two way ANOVA test was performed on rationalized arcsine transformed mean subject scores
revealing significance of effects of noise type, RC, and interaction terms for the measurement data shown in
Fig. 6.

Effect of noise type Effect of RC Effect of interaction

Test statistic F�3,42� F�7,98� F�21,294�
50% SRT data 3.80, p�0.017 92.3, p�0.000 01 1.54, p�0.063
20% SRT data 2.78, p�0.053 147.4, p�0.000 01 2.25, p�0.001 7
−60 dB SNR data 87.9, p�0.000 01 297.1, p�0.000 01 6.19, p�0.000 01
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ABSTRACT

The ideal binary mask is often seen as a goal for time-frequency
masking algorithms trying to increase speech intelligibility, but the
required availability of the unmixed signals makes it difficult to cal-
culate the ideal binary mask in any real-life applications. In this
paper we derive the theory and the requirements to enable calcula-
tions of the ideal binary mask using a directional system without the
availability of the unmixed signals. The proposed method has a low
complexity and is verified using computer simulation in both ideal
and non-ideal setups showing promising results.

Index Terms— Time-Frequency Masking, Directional systems,
Ideal Binary Mask, Speech Intelligibility, Sound separation

1. INTRODUCTION

Time-frequency masking is a widely used technique for speech and
signal processing used in automatic speech recognition [1], com-
putational auditory scene analysis [2], noise reduction [3, 4], and
source separation [5, 6, 7, 8]. The technique is based on time-
frequency (T-F) representation of signals and makes it possible to
utilize the temporal and spectral properties of speech and the as-
sumption of sparseness of speech. An important quality of T-F
masking is the availability of a reference mask, which defines the
maximum obtainable speech intelligibility for a given mixture. This
ideal binary mask (IBM) [9] has recently been demonstrated to
have large potential for improving speech intelligibility in difficult
listening conditions [10, 4, 3]. To calculate the IBM, the unmixed
signals must be available, which is a a requirement rarely met in
any real-life application. However, the significant increase in speech
intelligibility by the IBM makes it a valuable goal for T-F algorithms
trying to increase speech intelligibility. The T-F representation is
obtained using e.g. the short-time Fourier transform or a Gamma-
tone filterbank [11], and the IBM is calculated by comparing the
power of the target signal to the power of the masker (interfering)
signal for each unit in the T-F representations:

IBM(τ, k) =

{
1, if

T(τ, k)
M(τ, k)

> LC

0, otherwise
, (1)

where T(τ, k) is the power of the target signal, M(τ, k) is the power
of the masker signal, LC is a local SNR criterion, τ the time index,
and k the frequency index. The LC value is the threshold for classi-
fying the T-F unit as target or masker and determines the amount of
target and masker signal in the processed signal, if the binary mask

is applied to the mixture. In computational auditory scene analysis
(CASA), an LC value of 0 dB is commonly used, but recent studies
have shown that a certain range of LC values different from zero pro-
vides the same major improvement in speech intelligibility [10, 3].

In this paper we show that it is indeed possible to calculate the
IBM without the availability of the unmixed signals. This is made
possible with the proposed method and the required theory and con-
straints are derived. The proposed method has a very low complexity
and is based on a first-order differential array. To verify the method
and document the theory, computer simulations are performed: First,
in the ideal situation where all constraints are met, and subsequently
in situations where one or more constraints are not met. These simu-
lations verify the precision of the method in the ideal situations, and
the robustness of the method in non-ideal situations.

2. IBM ESTIMATION

The proposed method is based on two first-order differential arrays
(cardioids) pointing in opposite directions. One target source and
one masker source are present and separated in space as shown in
Figure 1. We assume that the directional patterns and the azimuths
of the two sources are known. If the spacing between the two micro-
phones in the first-order differential array is much smaller than the
acoustic wavelength, the output can be approximated by [12]:

CT (f) ≈ G(f) (a0T (f) + a1M(f)) (2)

CM (f) ≈ G(f) (b0T (f) + b1M(f)) , (3)

where f is the frequency, G(f) is a high-pass system, T (f) is the
target signal, M(f) is the masker signal, and a0, a1, b0, b1 are di-
rectional gains for the target and masker signal as shown in Figure
1. To obtain the T-F representations of CT (f) and CM (f) the two
signals are further processed as shown in Figure 2: Filtering through
a K-point filterbank, squaring the absolute value, low-pass filtering,
and downsampling by a factor P . Assuming that T (f) and M(f)
are uncorrelated, the four steps result in the two directional power
signals:

DT (τ, k) = |G(k)|2
(
a2
0T(τ, k) + a2

1M(τ, k)
)

(4)

DM (τ, k) = |G(k)|2
(
b20T(τ, k) + b21M(τ, k)

)
, (5)

where T(τ, k) and M(τ, k) are the powers of the target and masker
signals, respectively. To estimate the IBM using the two directional
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Fig. 1. The directional patterns of the two first-order differential ar-

rays. CT points towards the target signal T , and CM points towards

the masker signal M . The directional gains a0, a1, b0, and b1 are

functions of the azimuths of the two sources T and M .

power signals (4, 5), we change (1) to

ÎBM(τ, k) =

{
1, if

DT (τ, k)
DM (τ, k)

> LC′

0, otherwise
, (6)

where LC′ is the applied local SNR criterion derived in the next

section, and ÎBM is the estimate of the IBM.

2.1. The relation between LC and LC′

To estimate the IBM with the directional system using (6), the LC′

value must be derived from the LC value used in the definition of the
IBM (1). Leaving out the time and frequency indices in the direc-
tional signals from (4, 5) we get, using (6):

a2
0T+ a2

1M

b20T+ b21M
> LC

′ ⇔ T

M
>

b21LC′ − a2
1

a2
0 − b20LC′ . (7)

To allow this rearrangement, we introduce the constraints

a2
0 − b20LC

′ > 0 and b21LC
′ − a2

1 > 0, (8)

which guarantee that T/M > 0 and prevent the target and masker
from being interchanged. A prerequisite for estimating the IBM is
that CT captures more target signal than masker signal, and CM

captures more masker signal than target signal. Otherwise, the bi-
nary mask will be inverted. Using the definition of the IBM from (1)
in combination with (7) we obtain

LC =
b21LC′ − a2

1

a2
0 − b20LC′ ⇔ (9)

LC
′ =

a2
0LC + a2

1

b20LC + b21
. (10)

Since we can express LC′ in terms of LC, we can actually estimate
the IBM without having the unmixed sounds available, if the direc-
tional gains are known.

2.2. The asymptotes of LC′

If the directional gains are known, the LC′ value can be calculated
from the wanted LC value using (10). If the directional gains are
unknown, a fixed LC′ must be used in (6), and the LC value will
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Fig. 2. Blockdiagram for estimation of the ideal binary mask. The

acoustic delays model the delay from sources to the microphones in

the first-order differential array. Hk(z) is the k’th analysis filter in

the filterbank, W(z) is a low-pass filter, and ↓P is a decimation. The

block labeled > is the implementation of Equation (6).

change depending on the location of the sources (9). Combining the
two constraints from (8) we get that

a2
1

b21
< LC

′ <
a2
0

b20
, (11)

which are the two asymptotes of LC′ as shown in Figure 3. The
asymptotes are determined by the amount of target and masker sig-
nal captured by CT compared to CM . If no target signal is found in
CM , the high asymptote will be at +∞ dB, and if no masker signal
is found in CT , the low asymptote will be at −∞ dB. In the interval
bounded by the two asymptotes we find a region where the relation
between LC and LC′ becomes approximately linear. In this region,
changes of LC′ produce an equal change of LC. However, changes
of LC′ near the asymptotes produce very large changes of LC. We
refer to this relation as the sensitivity of the method. If the sensitivity
is high, errors on DT , DM , or the directional gains, can have a sig-
nificant impact on the LC value. The minimum sensitivity is found
in the approximately linear regions which should be as large as pos-
sible. The asymptotes makes the LC′ be defined for all LC values,
whereas the opposite is not true. If the LC′ value used in (6) is below
the low asymptote, the mask becomes an all-one mask. If the LC′ is
above the high asymptote the mask becomes an all-zero mask.

3. SIMULATIONS

To verify that it is possible to estimate the IBM with the proposed
method, a computer simulation was performed showing the precision
of the estimate. Furthermore, simulations were done in non-ideal
situations to illustrate the robustness of the method. The precision

were measured by the number of correct T-F units in the ÎBM with
respect to the IBM. Two instances of the system shown in Figure 2

were used: The first instance was used to calculate the ÎBM and was
configured as follows: The acoustic delays were calculated from the
azimuth of the two sources using a free-field model [13] with no re-
verberation. Two microphones were placed with a distance of 1 cm
on the line through 0◦ and 180◦, and the distance from the micro-
phones to the sources was 1 m. Two cardioid signals were derived
from the microphone signals, and each of the cardioid signals was
processed by a 128 band Gammatone filterbank [11] with center fre-
quencies linearly distributed on the ERB frequency scale from 100
Hz to 8000 Hz, each filter having a bandwidth of 1 ERB. The LP
filter W (z) was a 20 ms rectangular window followed by a 100 fold
decimation corresponding to a 10 ms shift at the used sampling fre-
quency of 20 kHz. The second instance of the system from Figure
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2 was used to calculate the IBM. This instance was equal to the pre-
vious without the cardioids. Instead, the target and masker sound
were recorded separately by a single microphone located between
the microphones used in the previous instance.

In the first simulation, the free-field model was used to calculate
the acoustic delays, while the masker source was moved from 180−
0◦, and the target source was fixed at 30◦. The two sources were
male and female speech with 0 dB SNR and a duration of 11 seconds.
A fixed LC′ value of 0 dB was compared to an adaptive LC′ value
calculated using (10) and an LC value of 0 dB.

3.1. Simulation 1

The results from the first simulation are shown in Figure 4. The
solid line is the percentage of correct T-F units using an adaptive LC′

value, and the dashed line is LC′ fixed at 0 dB. In both situations we
see a high percentage of correct T-F units when the masker azimuth
is in the range 180◦ − 150◦, and the small number of wrong T-F
units (< 2%) can be explained by the cardioid filters only used to

calculate the ÎBM.

As the masker source is moved towards the target source, the
percentage of correct T-F units decreases faster for the fixed LC′

than the adaptive LC′. At 90◦ the fixed LC′ has decreased to almost
50% whereas the adaptive LC′ remains above 95%. This decrease is

explained by the ÎBM becoming an all-one mask which in this case
has around 50% correct T-F units. When the masker azimuth is 90◦

an equal amount of masker signal is captured by CT and CM , and
the low asymptote in Figure 3 will be at 0 dB. In this situation the 0
dB fixed LC′ value is equal to an LC value of −∞ dB. Moving the
masker source further, we see a rapid decrease in correct T-F units for
the adaptive LC′, when the masker source passes the target source at
30◦. The decrease from above 90% to below 10% correct T-F units
is explained by the interchange of target and masker because (11)
is not satisfied anymore. If CT captures more masker than target

sound or CM captures more target than masker sound, the ÎBM is
the inverse of the IBM with a very low number of correct T-F units.

The small decrease in correct T-F units for the adaptive LC′

value between 180◦ to 45◦ can be explained by increased sensi-
tivity of the system. As the masker and target get closer, the two
asymptotes from Figure 3 get closer which leads to amplification of
the errors introduced by the cardioid filters used for calculating the

ÎBM.
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Fig. 4. The percentage of correct T-F units in the ÎBM with respect

to the IBM. The target was fixed at 30◦ while the masker was moved

from 180◦ to 0◦. The adaptive LC′ value was calculated from the

directional gains using an LC value of 0 dB, whereas the fixed LC′

was kept at 0 dB.

3.2. Simulation 2

To further examine the precision and robustness of the proposed
method in a non-ideal setup a second simulation was carried out. The
setup was identical to simulation 1, except the number of sources
and the acoustical delays. One target and three masker sources were
present: A male target speaker at 0◦, a female masker speaker mov-
ing from 180◦ to 0◦, a female masker speaker at 135◦, and a male
masker speaker at 180◦. The speakers were located 2 m from the
microphones and the sounds have a duration of 15 seconds. The
acoustical delays were the free-field model from simulation 1 and
impulse responses from a behind-the-ear (BTE) hearing aid shell on
a Head and Torso Simulator (HATS) in three different acoustical en-
vironments: Anechoic, low reverberation time (RT60=400 ms), and
high reverberation time (RT60=1000 ms). The reverberation time is
defined as the time before the room impulse response is decreased
by 60 dB.

As in the previous simulation, it is evident from Figure 5 that the
percentage of correct T-F units decreases when the moving masker
passes 90◦. In Figure 4 the fixed LC drops to 50% whereas in Figure
5 the free-field simulation drops to around 72% correct unit. This
difference is explained by the two masker sources at 135◦ and 180◦

in simulation 2, which prevent the mask from becoming an all-one
mask. Compared to simulation 1, where the all-one mask has 50%
correct T-F units, the all-one mask in simulation 2 has 34% correct
T-F units. Using impulse responses from a hearing aid on a HATS in
an anechoic room, the percentage of correct T-F units between 95◦

and 40◦ is increased compared to the free-field simulation. This in-
crease is explained by the cardioids being non-ideal and attenuating
the moving masker more at these angles. As soon as reverberation

is present, the precision of the ÎBM decreases. Using impulse re-
sponses from the low reverberant room we get around 83% correct
units when the moving masker is located at 180◦. If the wrong T-F
units at this point are divided into wrong ones and wrong zeros with
respect to the IBM we find 14% wrong zeros and 19% wrong ones.

In other words, the ÎBM will remove 14% of the target signal and
will retain 19% of the masker signals compared to the IBM if applied
to the mixture signal.

4. DISCUSSION

In this paper an important connection between the ideal binary mask
and a realizable computation of the binary mask has been estab-
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Fig. 5. The percentage of correct T-F units in the ÎBM with respect

to the IBM. Free-field and impulse responses from a hearing aid shell

(BTE) on a HATS in three different acoustical environments were

used, and four sources were present: Target at 0◦, a moving masker

from 180◦ to 0◦, and two fixed maskers at 135◦ and 180◦. The LC′

value was 0 dB in all simulations.

lished. To calculate the IBM, the target and masker signals must
be available prior to being mixed. This requirement can be relaxed
by using a directional system to estimate the IBM, and from (6),

we see that the ÎBM can be equal to the IBM if only two sources
are present, and their directional gains are known. The directional
gains are used to calculate the LC′ value from the LC value and re-
quires that the directional patterns of the cardioids and the target and
masker azimuth are known.

From the first simulation, we find that the proposed method
makes it possible to obtain an estimate of the IBM with a very high
precission. When the two sources are spatially well separated, the
setup with fixed LC′ and adaptive LC′ both provide a high number
of correct T-F units. But as the two sources become closer, the setup
with the adaptive LC′ shows a significant advantage compared to the
fixed LC. The simulation illustrates what happens when the masker
source is captured equally by the target and masker cardioid. The bi-
nary mask becomes an all-one mask with 50% correct T-F units. The
same situation occurs when the target source is captured equally by
the two cardioids, and the result is an all-zero mask. The method of
varying the LC′ value has an advantage over fixating the LC′ value,
and the target and masker source can become closer before the esti-
mate is degraded significantly.

In the second simulation, we examine the robustness of the pro-
posed method, when conditions are changed from the ideal ones.
Introducing more sources and impulse responses from a BTE shell
on a HATS in an anechoic room does not undermine the method and
a significant increase in speech intelligibility can still be expected
from the proposed method. However, a significant decrease in the
percentage of correct T-F units is seen when reverberation is intro-
duced, which are agreeable with the results reported using the DUET
algorithm in echoic environments [7]. The errors introduced in the
estimated binary mask can be divided into two types of errors, and
in [3] the wrong ones and wrong zeros are referred to as type I and
type II errors, respectively. In their paper, the impact on speech in-
telligibility of the two types of errors are measured showing that type
II errors have a larger impact on speech intelligibility compared to
type I errors. This interesting result should be taken into consider-
ation when further developing the proposed method, but the results
from [3] can not be used directly to predict speech intelligibility of
the method proposed in the present paper. One reason is the dif-
ference in setup: We use a Gammatone filterbank whereas a linear
filterbank is used in [3]. Another reason is the distribution of errors:

It is expected that type II errors scattered uniformly as in [3] will
have less impact on speech intelligibility compared to e.g. type II
errors placed at onsets in the target sound.

5. CONCLUSION

In this paper we have proposed a method that makes it possible to
estimate the ideal binary mask without having the unmixed signals
available. If certain constraints are met, the precision of the esti-
mated binary mask is very high, and even if the constraints are not
met the proposed method shows promising results having the low
complexity of the method in mind. These results establish an im-
portant connection between the ideal binary mask and a realizable
system for T-F masking, and the precision and robustness of the pro-
posed method in non-ideal conditions makes it very promising for
further research and development.
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In the following five figures, the results from paper D are elaborated by showing the
hit and false alarm rates. The hit rate (1 - type II errors) is the percentage of correct ones
with respect to the IBM. The false alarm rate (type I errors) is the percentage of zeros
that have falsely been estimated as being one.
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Figure 1: The results from Figure 4 split into hits and false alarms.
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Figure 2: The Free-field result from Figure 5 split into hits and false alarms.
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Figure 3: The BTE on HATS, anechoic from Figure 5 split into hits and false alarms.
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Figure 4: The BTE on HATS, low reverberation from Figure 5 split into hits and false alarms.
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Figure 5: The BTE on HATS, high reverberation from Figure 5 split into hits and false alarms.
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ABSTRACT

Binary masking is a simple and efficient method for source separa-
tion, and a high increase in intelligibility can be obtained by apply-
ing the target binary mask to noisy speech. The target binary mask
can only be calculated under ideal conditions and will contain er-
rors when estimated in real-life applications. This paper proposes a
method for correcting these errors. The error-correction is based on
a hidden Markov model and uses the Viterbi algorithm to calculate
the most probable error-free target binary mask from a target binary
mask containing errors. The results demonstrate that it is possible to
correct errors in the target binary mask and reduce the noise energy.
However, speech energy is also reduced by the error-correction, but
the impact on speech intelligibility and speech quality are not estab-
lished or evaluated in the present study.

Index Terms— Binary masking, target binary mask, hidden
Markov model, speech intelligibility, error-correction.

1. INTRODUCTION

Time-frequency masking has been widely used for source separation
[1] and in experiments on intelligibility of noisy speech [2]. Ba-
sically, time-frequency masking is a general method of applying a
time-varying and frequency-dependent gain to a signal. This gain is
called the mask, and when the mask only contains the values zero
and one, the method is referred to as binary masking. Using bi-
nary masking to separate speech from noise, in e.g. hearing aids and
cochlear implants, is interesting because binary masking is a simple
method and has a substantial impact on intelligibility. In [2, 3] the
ideal binary mask increased intelligibility for normal hearing listen-
ers and in [4] for hearing impaired listeners. The ideal binary mask
was further studied in [5] together with the target binary mask, and
when used to separate speech from noise both binary masks caused
a large increase in intelligibility .

The target binary mask (TBM) is calculated by comparing the
energy of the target speech with the long-term average energy of
speech from the same speaker. If the energy of the target speech
T(k, τ) exceeds this long-term average energy r(k) by a certain
amount, the value one will be assigned to the TBM at that partic-
ular time τ and frequency k. If not, the value zero is assigned:

TBM(k, τ) =

{
1, if

T(k, τ)
r(k)

> LC

0, otherwise
, (1)

where LC is the local SNR criterion. The LC value controls the
amount of ones in the TBM. High intelligibility was obtained in [5]
within the range of 20% - 60% ones in the TBM.

>TFR
Target speech

Noise

k τ
k

k τ

Fig. 1. Setup for estimating the target binary mask. The TFR block
calculates the time-frequency representation of the mixture of tar-
get speech and noise. The time-frequency representation T(k, τ) is
compared to r(k) · LC to get the target binary mask TBM(k, τ).

The positive impact on intelligibility, makes the TBM interest-
ing in situations where intelligibility is reduced, e.g., for hearing
aid users in difficult listening environments. The classic approaches
to this problem have been evaluated in [6]. In this study, different
speech enhancement algorithms are evaluated on normal hearing lis-
teners. However, only a single algorithm in a single noise condition
is able to increase intelligibility significantly.

It is possible to increase intelligibility with the TBM, but the
method has the obvious drawback of requiring the target speech to
be available. In most real-life situations, the target speech is not
available, and the TBM must be estimated from the available sound.
This estimate will contain errors, and the hypothesis of this paper is
that these errors can be corrected. To our knowledge, no methods
for estimating or correcting errors in the TBM have been proposed
in the literature – a major reason for this being the novelty of the
TBM. In this study, we focus on the error-correction of the TBM,
well aware that the estimation of the TBM is not a trivial problem.

The error-correction employs a model of the error-free TBM.
This model is a hidden Markov model (HMM) build from the TBM
calculated using speech from multiple speakers to test the generality
of the model. If the TBM from different speakers do not share some
common characteristics, it is difficult to build a model of the TBM
and use it for error-correction. To make the error-correction indepen-
dent of the speaker, the long-term average energy r(k) in Equation
(1) will not be adjusted to the individual speaker, but calculated as
the long-term average energy of the speech used in the experiments.

The setup shown in Figure 1 is used to evaluate the proposed
method. In this setup, the TBM will be error-free, if no noise sound
is present and r(k) is known. When noise is added to the target
speech, two types of errors will be found in the noisy TBM: False
ones, if the noise sound causes the energy in the individual time-
frequency units to exceed the threshold r(k) · LC. False zeros, if the
speech and noise cancel each other in certain time-frequency units.
At high signal-to-noise ratios (SNR), no errors will be found in the
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Fig. 2. Structure of the hidden Markov model used in this study.
At time t, the state qt generates an observation ot and changes state
with probability Aqt,qt+1 . The probability of being in state qt and
observing a one at frequency k is defined by bqt(k) as shown with
gray color.

TBM, but as the SNR decreases the amount of errors increases. The
majority of these errors will be false ones, and ultimately, if the SNR
is further reduced, the binary mask will become an all-one mask. In
this situation the error-correction is of no use, even though the total
number of errors could be reduced by forcing some time-frequency
to zero in the target binary mask. Error-correction is expected to be
possible when the TBM contains a comparable amount of correct
and false ones.

2. BINARY MASK MODEL

The error-correction is based on a hidden Markov model [7] of the
TBM. The HMM is a widely used statistical model for pattern recog-
nition and speech processing, and it is particularly well suited to
model time-series with time-varying statistical properties. In the
HMM, the hidden layer contains multiple states, which, at each time
increment, can change and generate an observation. From a se-
quence of observations, the most probable sequence of states can
be calculated using the Viterbi algorithm [7].

In the HMM used in this study, the observations are the noisy
TBM, the states are the error-free TBM, and the error-correction is
the step of calculating the most probable error-free TBM from the
noisy TBM using the Viterbi algorithm. The observations and states
in the HMM are binary vectors of size K, as seen in Figure 2. K
is the number of frequency channels. Each state in the HMM repre-
sents the TBM at a single time τ , and this approach assumes that the
TBM can be build from a small number of states. However, when a
limited number of states is used to build the TBM errors will be in-
troduced, as seen in Figure 3. We refer to the process of building the
TBM with a limited number of states as quantization of the TBM.

In the HMM, the probability of changing state is determined by
the state-transition probability matrix A, where the elements ai,j are
the probability of changing from state i to state j [7]. In each state
j, the observation probability bj(k) determines the probability of a
one at frequency k. If the TBM could be build from N states with-
out quantization error, the observation probabilities bj(k) would be
binary and identical to the states. However, when the TBM is build
from, e.g. 512 states, quantization error will be introduced because
the TBM contains more than 512 different states. This means that the
observation probabilities will have values between zero and ones: If
d binary vectors from the training data are quantized to the same
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Fig. 3. Error-correction of the noisy target binary mask. (A) is the
target binary mask from 1.8 s of speech. (B) is (A) quantized using
256 states. (C) is the speech from (A) mixed with speech shaped
noise at 0 dB SNR. (D) is (C) after error-correction using a 256 state
hidden Markov model.

state j, and c out of the d states have a one at frequency k, we find
that bTj (k) = c/d.

The probability of a false one in the TBM generated by the noise
sound is given by bN(k). This probability is independent on the state
in the HMM but dependent on the type and level of the noise sound.
If we assume that the target speech and noise sound are independent
and do not overlap in time and frequency, the observation probability
in state j at frequency k is given by

bj(k) = bTj (k) + bN(k)− bTj (k)b
N(k), (2)

where bTj (k) is the probability of a one generated by the target

speech. In the experiments, bN(k) will be estimated from a short
segment of the noise sound in the beginning of each experiment.

3. TRAINING

To train the HMM and evaluate the error-correction, the EUROM
corpus was used [8]. The training data was generated by calculating
the TBM from 36 minutes of speech spoken by 4 male and 4 female
speakers normalized to equal energy. This speech was processed
using a 32 band Gammatone filterbank [9] with centerfrequencies
between 80 Hz to 8000 Hz equally spaced on the ERB scale (equiv-
alent rectangular bandwidth). To obtain T(k, τ), each subband sig-
nal from the Gammatone filterbank was divided into 20 ms frames
with 10 ms overlap, and the energy was calculated from each frame
in each subband. The long-term average energy r(k) was calculated
as the average of each frequency channel in T(k, τ).

The 36 minutes of speech produced a TBM with 216000
columns and 32 rows from which N states were found while min-
imizing the quantization error as measured by the total amount of
false ones and false zeros. This quantization was done using the
K-mode algorithm which is similar to the well-known K-means
algorithm but useable for clustering binary data [10]. From the
quantized TBM, the state-transition probability matrix Ai,j was cal-
culated by counting the number of state changes from state i to state
j and divide by the total number of visits in state i. To find bTj (k),
the columns in the TBM quantized to the same state were identified,
and the probability of a one at each frequency was calculated. To
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Fig. 4. Errors in the error-corrected target binary mask as a func-
tion of number of states in the hidden Markov model. (V) is error-
correction using the Viterbi algorithm, (C) is error-correction using a
causal Viterbi algorithm, and (Q) is simple quantization of the noisy
target binary mask. The percentages of errors before error-correction
were 0.2% false zeros, 15.9% false ones, and 16.1% in total.

find bN(k), the probabilities of a one in each of the frequency chan-
nels was obtained from the TBM as described in Section 2 using 5
seconds of noise.

4. EVALUATION

To evaluate the proposed method, two simulations were carried out.
The first simulation examines the relation between the number of
states and the performance of the error-correction as measured by
the percentage of errors. The second simulation examines the loss
of target energy and the remaining noise energy before and after the
error-correction under different conditions. In both simulations, 10
sentences from a male and a female speaker were used. These two
speakers were not part of the training data.

In the first simulation, the sentences were mixed with speech
shaped noise at 0 dB SNR using the setup in Figure 1. The HMM
was trained as described in Section 3 with a varying number of states
between 1 and 1024. Figure 4 shows the percentage of errors after
the error-correction. For comparison, the percentage of errors in the
quantized noisy TBM and error-correction using a causal Viterbi al-
gorithm are also shown.

All percentages are calculated relative to the total number of
time-frequency units in the binary mask. The percentages of er-
rors in the TBM before error-correction were 0.2% false zeros and
15.9% false ones giving 16.1% in total. As more states are used in
the HMM, the amount of false ones increases, whereas the amount
of false zeros decreases, as seen Figure 4. Using a single state in the
HMM, this single state will be the all-zero column vector, making
it impossible to have false ones in the error-corrected TBM. When
the number of states is between 1 and 32, these states will contain
few ones which limits the amount of false ones. Using 1024 states,
the percentage of errors is 8.1% - a reduction of 8 percentage points
compared to the noisy TBM. However, the reduction of false ones
has the drawback of increasing the amount of false zeros relative to
the noisy TBM.

The Viterbi algorithm uses previous, current and future obser-
vations from the noisy TBM to calculate the most probable state
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Fig. 5. The noise residue PNR and the loss of target energy PEL be-
fore and after the error-correction. The hidden Markov model used
for error-correction has 256 states. PNR and PEL is calculated rela-
tive to the error-free target binary mask.

sequence. In low-delay applications this dependency on the future
is critical and for comparison a causal Viterbi algorithm was im-
plemented. This algorithm finds the most probable sequence based
upon the previous and current observations only, and, as seen in Fig-
ure 4, this modification does not significantly reduce performance.

In the second simulation, an HMM with 256 states was trained
as described in Section 3 and used to evaluate the performance be-
tween -10 dB and 15 dB SNR. The sentences were mixed with four
different noise types: speech shaped noise, a high-frequency sound
from a bottling hall, a low-frequency sound from the interior of a car,
and babble noise. Performance was measured using the percentage
of energy loss and the percentage of noise residue [11]:

PEL =

∑
n

e21(n)

∑
n

I2(n)
(3) PNR =

∑
n

e22(n)

∑
n

O2(n)
, (4)

where I(n) is the resynthesized sound using the TBM, O(n) is
the resynthesized output before or after the error-correction, e1(n)
is the sound found in I(n) but not in O(n), and e2(n) is the sound
found in O(n) but not in I(n). As seen in Figure 5, a similar per-
formance for the different noise types is seen when changing SNR.
At low SNR, the percentage of noise energy P before

NR is high for
the noisy TBM before error-correction. As the SNR increases, the
amount of false ones in the TBM decreases resulting in a lower per-
centage of noise energy. Ultimately, when SNR is further increased,
the P before

NR is reduced to 0% because no false ones are found in the

noisy TBM. The noise energy after error-correction P after
NR shows a

reduction at SNRs below 10 dB but a very small increase at SNRs
around 15 dB. This increase shows that error-correction of an error-
free TBM can introduce false ones due to the limited number of
states in the HMM. The percentage of energy loss P before

EL shows
that loss of target energy using the noisy TBM is close to 0%, be-
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cause very few false zeros are found in the noisy TBM before error-
correction. When error-correction is introduced, the loss of target
energy increases as shown by P after

EL : At low SNRs the loss of tar-
get energy is significant, but as the SNR increases this loss is reduced
and levels off at around 8%. The lower limit of P after

EL at 8% is ex-
plained by the limited number of states in the HMM. If few errors are
found in the TBM, the error-correction will increase both false ones
and false zeros. For all four noise types, except the babble noise, the
best performance is found around 0 − 5 dB SNR, when the error-
correction reduces the noise energy more than the target energy. Lis-
tening to the processed sound before and after error-correction con-
firms this finding.

5. DISCUSSION

The results confirm that a model of the TBM can be build and used to
correct errors in the noisy TBM, but the reduction of false ones has
the drawback of increasing the amount of false zeros. Even though
the relation between errors and intelligibility has been examined in
[12], it is difficult to use these results to determine the intelligibility
of the TBM before and after the error-correction. In [12], the errors
are uniformly distributed in time and frequency and the frequency
resolution is different. The authors in [12] find that false ones reduce
intelligibility more than false zeros. However, the location of errors
and the noise type must have a significant impact on intelligibility,
e.g. if the false zeros are found at onsets in the target speech.

If the relation between errors in the TBM and intelligibility
was well-established, this would change the training and use of the
HMM. If false ones reduce intelligibility more than false zeros, the
model could be modified to allow more false zeros than false ones.
Such a weighting would make it possible to adjust the level of lost
target energy and remaining noise energy. Furthermore, the impact
from errors on intelligibility is probably frequency dependent and
thus it might be useful to reduce errors at some frequencies at the
prize of more errors at other frequencies.

An interesting question to consider, is if the performance of the
error-correction will continue to improve with an increasing number
of states. Using more states will reduce the errors, but errors will be
difficult to avoid. Errors in the TBM can make a wrong sequence of
states more probable than the correct sequence. This limitation is a
drawback of working in the binary domain, because the amount of
information about the target speech and the noise sound is greatly
reduced compared to the time-frequency domain.

Another limitation of the proposed method is the speaker depen-
dency of the TBM. The TBM changes with different speakers, so
the model used in the error-correction has to model different speech
sounds as well as different speakers. This makes the model more
general, but also less precise for the individual speakers. If r(k) was
adjusted to each speaker, the TBM from different speakers would
probably be more similar and less complex to model. This could
reduce the number of required states in the hidden Markov model
without affecting performance. The Viterbi algorithm has a com-
plexity of O(N2T ), where T is the number of observations [13],
why decreasing the number of states will make the method more
usable in hearing aids.

More complex models, e.g., factorial HMMs, could also be used
to make the error-correction more efficient. However, the complex-
ity of the model should be considered with respect to the complexity
of the domain. The binary domain is a simplified domain compared
to the time-frequency domain, and applying a very complex model in
a simple domain might not be optimal. Instead, models in the time-
frequency domain should be used. This also applies to the present

study, because the large number of states can be a problem in appli-
cations like hearing aids even though the complexity of the model
itself is low.

6. CONCLUSION

In this study, a method for error-correction of the TBM has been pre-
sented. The method is based on a HMM and trained on the TBM cal-
culated under ideal conditions. The results of this study demonstrate
that errors can be reduced, although the reduction of false ones has
the drawback of increasing the amount of false zeros. The possibility
of correcting errors in the TBM makes algorithms for estimating the
TBM in real-life applications like hearing aids and cochlear implants
more interesting and useful. The method used in this study can be
further improved, e.g. using a speaker dependent r(k) or by weight-
ing of different frequencies, but the model could also be useful for
similar problems involving erroneous binary patterns.
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ABSTRACT

Applying a binary mask to a pure noise signal can result in speech
that is highly intelligible, despite the absence of any of the target
speech signal. Therefore, to estimate the intelligibility benefit of
highly nonlinear speech enhancement techniques, we contend that
SNR is not useful; instead we propose a measure based on the simi-
larity between the time-varying spectral envelopes of target speech
and system output, as measured by correlation. As with previous
correlation-based intelligibility measures, our system can broadly
match subjective intelligibility for a range of enhanced signals. Our
system, however, is notably simpler and we explain the practical
motivation behind each stage. This measure, freely available as a
small Matlab implementation, can provide a more meaningful eval-
uation measure for nonlinear speech enhancement systems, as well
as providing a transparent objective function for the optimization of
such systems.

1. INTRODUCTION

Speech enhancement concerns taking a target speech signal that has
been corrupted, by the addition of interfering sources and trans-
mission through an acoustic channel, and mitigating the impact of
these corruptions. Enhancement can have two, distinct goals: im-
proving quality, which relates to how “clear” or “natural” the en-
hanced speech sounds, and improving intelligibility, which focuses
on the more practical problem of whether a listener can understand
the message in the original target speech. Although we might expect
that quality and intelligibility are strongly correlated, there are am-
ple situations in which speech of relatively low quality can nonethe-
less achieve high intelligibility [17, 22], and where improving qual-
ity does not necessarily improve intelligibility [10].

In this paper we ignore quality (and related effects such as lis-
tener fatigue) and concentrate on intelligibility. We focus specif-
ically on time-frequency masking algorithms, which have been
widely used in automatic speech recognition [6], computational
auditory scene analysis [21], noise reduction [15, 2], and source
separation [23, 16]. In this type of algorithm, a time-varying and
frequency-dependent gain is applied across a number of frequency
channels. In some variants, the gains are quantized to zero or one,
giving a binary masking algorithm where the pattern of gains is re-
ferred to as the binary mask. One type of binary mask – the ideal
binary mask (IBM) – has shown to be able to increase speech intel-
ligibility significantly [3, 2, 14]. This mask is ‘ideal’ in that it relies
on perfect knowledge of both clean target and interference prior to
mixing, and is constructed to pass only those time-frequency cells
in which the target energy exceeds the interference. An intrigu-
ing property of the IBM is that applying such a mask to a sound
consisting only of noise results in high intelligibility for the speech
upon which the mask was based [22, 13], even though the perceived
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ence, Technology and Innovation, and by the NSF under grant no. IIS-

0535168. Any opinions, findings and conclusions or recommendations ex-
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quality of the reconstructed speech is very poor: depending on the
resolution of the time-frequency distribution, it will have no pitch or
other fine structure, and fine nuances of energy modulation are lost.
Similar characteristics are found to those of noise-excited channel-
vocoded speech [17]. An attempt to measure the signal to noise ratio
(SNR) in such signals would find no trace of the original target in
the final output, so SNR-based measures will not be a useful basis
for accounting for this intelligibility. What is preserved, however,
is the broad envelope in time and frequency. This suggests that an
intelligibility estimate could be developed based on the similarity of
this envelope between target speech and system output.

In this paper, we use correlation as a measure of similarity
between time-frequency envelopes of target and enhanced speech.
Given this basic principle, we make a number of design choices and
system enhancements with a view to matching the general prop-
erties of observed subjective intelligibility of nonlinearly-enhanced
signals. At each stage, we strive for the simplest and most transpar-
ent processing that can effectively match the subjective results. Our
outcome is a simple correlation-based measure that can predict in-
telligibility with approximately the same fidelity as more complex
models based on far more detailed models of auditory processing
[4]. We feel this simplicity and transparency is a considerable ad-
vantage as a guide for developing enhancement systems.

2. NORMALIZED SUBBAND ENVELOPE
CORRELATION

To estimate intelligibility, the correlation between the time-
frequency representations of the target (reference) and the output
of the time-frequency masking algorithm is calculated:

∑
τ

∑
k

T(τ,k) ·Y(τ,k), (1)

where τ the time index, k the frequency index, T(τ,k) is the energy
envelope of the target signal, and Y(τ,k) is the energy envelope of
the output. This correlation will not have an upper bound, and in
low energy regions of T(τ,k) the inclusion of potential unwanted
energy in Y(τ,k) will have a very small impact on the correlation.
To improve this behavior, we normalize with the Frobenius norm
of T(τ,k) and Y(τ,k) and refer to this measure as the normalized
subband envelope correlation (nSec):

nSec= ∑
τ

∑
k

T(τ,k) ·Y(τ,k)

||T(τ,k)||||Y(τ,k)|| (2)

The nSec is bounded between zero and one. The lower bound is
reached if no energy is found in the same regions of T(τ,k) and
Y(τ,k). The upper bound is reached if the two signals are identical
or only differ by a scale factor. Geometrically interpreted, nSec is
the angle between T(τ,k) and Y(τ,k) if calculated using a single
time or frequency index.

3. EXPERIMENTAL DATA

To verify that nSec is a useful measure of speech intelligibility, we
use the results from Kjems et al. [13], where speech intelligibility of
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Figure 1: Estimated intelligibility by nSec compared to subjective listening tests in four different noise conditions and three SNR levels.
nSec is shown with solid lines/filled symbols, and subjective listening tests are shown with dotted lines/hollow symbols. The results are
plotted as a function of the RC value which determines the sparseness of the binary mask - higher RC values imply fewer ones in the binary
mask. The all-one mask (aom) is the unprocessed condition and does does not correspond to a specific RC value.

IBM-masked noisy speech is measured using normal hearing sub-
jects, three SNR levels, four noise types, and different local SNR
criterions (LC). LC is the threshold used to construct the IBM; a
larger LC results in an IBM with proportionally fewer nonzero val-
ues:

IBM(τ,k) =

{
1, if

T(τ,k)
N(τ,k)

> LC

0, otherwise
, (3)

where N(τ,k) is the energy envelope of the noise signal.

Two of the three SNR levels used in the experiments by Kjems
et al. were set to 20% and 50% intelligibility of the speech and
noise mixtures with no binary masking. The third SNR level was
fixed at -60 dB to examine the effect of applying the IBM to pure
noise. Four different noise conditions were used: speech shaped
noise (SSN), cafeteria noise, car interior noise with mainly low-
frequency energy, and noise from a bottling hall with mainly high-
frequency energy. The LC values resulted in IBMs consisting of
between 1.5% and 80% of nonzero cells, and an all-one mask (aom)
was used to measure the intelligibility of the unprocessed mixture
with no binary masking. A 64 channel Gammatone filterbank with
centerfrequencies from 55 Hz to 7742 Hz equally spaced on the
ERB (equivalent rectangular bandwidth) scale was used, and the
output was divided into 20 ms frames with 10 ms overlap. The
results are shown with dotted lines and hollow symbols in Figure 1
(and are repeated in subsequent figures). To align the results, they
are plotted as a function of the RC value defined as RC=LC−SNR
in units of dB. Using this x-coordinate, the binary masks will be
identical at the same RC value and independent of the SNR levels.

To compare the nSec with the results by Kjems et al., we use
10 sentences from their experiment which have been mixed with
noise and processed with the IBM. Silence between the sentences
are removed from the waveforms, and T(τ,k) and Y(τ,k) are cal-
culated using a 16 channel Gammatone filterbank with center fre-
quencies from 80 Hz to 8000 Hz equally spaced on the ERB scale.
The energy from each frequency channel in the filterbank is divided
into segments of 80 ms with 40 ms overlap. All processing is done
at 20 kHz. The calculated time-frequency representations T(τ,k)
and Y(τ,k) are inserted in Equation 2, and the nSec scaled by a
factor of 100 is shown with solid lines and filled symbols in Fig-
ure 1.

4. MODIFICATIONS TO THE nSec

Looking at Figure 1, it can be seen that even though the nSec is
not aligned with the subjective listening tests, the overall shape and
behavior is encouraging: Increasing SNR gives a better or simi-
lar nSec, and a distinct peak in correlation as a function of RC
value is seen at all curves expect for the -60 dB SNR cafeteria noise
(Fig.1.B). If this curve had been continued to higher RC values, it
would have made a peak at some point, because higher RC val-
ues makes the binary mask more sparse with fewer ones, and, ul-
timately, Y(τ,k) will be zero. At the other extreme, at low RC
values, the nSec levels off which is most evident from Figure 1.A
and 1.D. The reason is that at some RC value, the time-frequency
units added to Y(τ,k) by lowering the RC value will not change
the numerator of Equation 2 because no energy is found at these
time-frequency units in T(τ,k). At the same time, the denominator
will continue to increase as the RC value decreases, due only to the
added energy in ||Y(τ,k)||; ||T(τ,k)|| is a fixed value independent
of SNR and RC value.

Comparing the three SNR levels, it can be seen that the peak of
the nSec shifts towards lower RC values for higher SNRs – a rea-
sonable property, if we recognize that the IBM for a certain target
and noise sound is a function of the RC value only, and that increas-
ing SNR level implies that the RC value can be lowered without
increasing the number of noise-dominated time-frequency units in
the binary masked mixture. At increasing SNR levels, the RC value
is lowered by increasing the LC value with less than the increase in
SNR level.

The nSec for the speech shaped noise (Fig.1.D) with an all-
one mask is considerable higher at all three SNR levels compared
to other noise types. The nSec of the -60 dB SNR mixture with an
all-one mask is approximately 0.4, despite the fact that practically
no target sound is found in the mixture. Two random signals will
always give a positive correlation as long as they contain energy in
some of the same time-frequency regions, and the speech shaped
noise do, since it was made by superimposing 30 sequences of the
speech from the corpus with random silence durations and starting
times [20]

The last observation we make of the unmodified nSec is that
the location of the peaks are at higher RC values compared to the
subjective listening tests. This property is caused by the fact that
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Figure 2: The modified nSec with frequency normalization, compression, and DC removal compared to the subjective listening tests.

nSec is decreased when Y(τ,k) contains energy in the low energy
regions of T(τ,k); to get a high nSec, the binary mask should only
present the high energy regions of T(τ,k).

To improve the alignment between the subjective listening tests
and the nSec, the following modifications are introduced:

4.1 Frequency Normalization

In speech signals, high frequencies have less energy than low fre-
quencies, but this difference does not reflect the frequencies’ im-
portance to intelligibility. Using the nSec without any frequency
normalization will make the low frequencies dominate the result.
Furthermore, the auditory system can to some degree adapt to the
listening situation and a minor fixed coloration of the speech spec-
trum is not expected to affect intelligibility. To compensate for
the difference in energy and any fixed colorations, we normalize
the frequency channels to equal energy. This normalization has
the drawback that at increasing RC values, when the binary mask
becomes more sparse, some frequency channels will contain few
non-zero elements, which would become very large because of the
normalization. To avoid these high level time-frequency units, am-
plitude compression should follow the normalization (although in
frequency channels with no non-zero elements, no normalization
should be applied).

4.2 Compression

To decrease the relative importance of high level time-frequency
units mainly produced by the frequency normalization, compression
can be applied to T(τ,k) and Y(τ,k). Compression will move the
peaks of the nSec curves towards lower RC values, but also reduces
the difference between the three SNR levels. To align the nSec
peaks with the subjective listening tests, T(τ,k) and Y(τ,k) are
raised to the power of 0.15.

4.3 DC removal

As previously stated, the nSec will be positive even if two ran-
dom signals are used because their energy is always positive. To
reduce this offset in the time-frequency representations, each fre-
quency channel should be high-pass filtered. This high-pass filter-
ing will push the values down to zero in the case where we have
flat, but nonzero, energy and emphasize changes in energy instead
of absolute levels. The used high-pass filter has a single zero at 1
and a single pole at 0.95.

5. RESULT

As seen in Figure 2, the modifications improve the correspondence
between the subjective listening test and the nSec. The differences
are most pronounced at low and high RC values where the slope
of the modified nSec is too shallow, and in the unprocessed con-
dition (aom) the results are too low and too closely placed in the
bottling hall and cafeteria noise condition. Ideally, the three SNR
levels should give a intelligibility of 50%, 20% and 0%, but the
compression, which was introduced to shift the peaks of the nSec
towards lower RC values, also compresses the results at low RC val-
ues, making them more equal. At high RC values the shallow slope
of the modified nSec is also a outcome from using compression.
Compression increases the impact of low-amplitude time-frequency
units and a more sparse mask is needed to reduce the nSec.

To allow some nonlinearity in the relationship between the
nSec and speech intelligibility, a logistic function can be applied:

p(c) =
1

1+ e(o−c)/s
, (4)

where o is the offset, and s is the slope of the logistic function [4].
To find the offset and the slope we use the unconstrained nonlin-
ear minimization function fminsarch in Matlab to minimize the
squared error between nSec and the results from the subjective lis-
tening test using speech shaped noise. The found offset and slope of
o = 0.62 and s = 0.09 are used to transform the nSec results from
Figure 2 into the results seen in Figure 3. The overall performance
is improved: a better correspondence between the subjective listen-
ing tests and the nSec is seen, but this is achieved at the expense of
the match in the situation with no binary masking (aom).

6. DISCUSSION

Our proposed method uses a different approach compared to intel-
ligibility measures as AI, SII, and STI [1, 8, 19] by using the corre-
lation as the fundamental function for measuring intelligibility. In
the AI, SII, and STI, the intelligibility is measured as a sum and
weighting of SNR in a number of frequency channel. A more simi-
lar approach to ours is used in [11] for measuring speech quality and
in [4] to measure intelligibility. In both works, the cross-correlation
coefficient is used to measure the similarity between internal repre-
sentations of the target and test signal. The internal representations
are the expected patterns of neural activity from the auditory periph-
ery calculated using the model by Dau et. al. [7]. In [4] the modu-
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Figure 3: The modified nSec transformed with a logistic function (Eq. 4) and compared to the subjective listening tests.

lation filterbank is replaced by a modulation low-pass filter, and the
cross-correlation coefficient is calculated using short time frames
of 20 ms with 50% overlap. The cross-correlation coefficients are
grouped into low, medium, and high level correlation frames as in
[12], but only the average of the high level correlation frames is
used in the model output which is mapped to intelligibility using a
logistic function equal to Equation 4.

The model by Christiansen et al. shows significant improve-
ments compared to the speech-based coherence SII method [12] and
the speech-based STI method [9], when using the same subjective
results as in this study. The predicted intelligibility, using the same
10 sentences as for the nSec, is shown in Figure 4, and a substan-
tial reason for the promising results is, as explained by the authors,
the use of 20 ms frames, which is an interesting difference from the
nSec. The main deviation between the model and the subjective
results is found using the bottling hall noise (Fig.4.A), which is ex-
plained by Christiansen et al. to be caused by a too high influence
from the low frequencies on the final result.

It is of interest to compare our approach and results with the
model by Christiansen et al., but concluding which one is better is
not appropriate from the results shown in Figure 3 and 4. Mainly
because the logistic function used in Figure 3 was fitted directly
to the subjective results using the speech shaped noise condition,
whereas the logistic function used by Christiansen et al. was fitted
to the psychometric curves from subjective listening tests of unpro-
cessed mixtures at different SNR levels. The consequence of this
difference is evident using the all-one mask, where the results from
the nSec are too close and too low, which is not the case for the
model by Christiansen et al. An interesting difference between the
two methods is the bottling hall noise, where the nSec, although
very similar at the three SNR levels, has a better alignment of the
peaks, which is caused by the frequency normalization as explained
in section 4.1.

We might question whether the proposed modifications of the
nSec are the correct ones to use, and if they appear in the correct
order. The modifications could be compared to processing steps
in the auditory system, but in this case we have selected and or-
dered them purely to adjust the nSec to the subjective results and
not to simulate specific aspects of the auditory system. Similarly,
the use of the correlation as underlying basis was supported by the
preliminary results seen in Figure 1, and not by assumptions about
correlation being used at some level in human perception. Intro-
ducing additional steps – simple or complicated – could potentially
improve the precision of the method, but would also introduce ad-

ditional processing and parameters that would make the system less
transparent for the user.

Another approach to measure intelligibility is the use of auto-
matic speech recognition systems, where the number of correctly
identified words or phonemes are used as a measure of speech in-
telligibility. This method has shown promising results [18, 5], but it
is vulnerable to peculiarities of speech recognition systems that can
make them differ widely from the perception of listeners. Trivial
mismatch between the processed signals and the training data used
by the recognizer can result in misleading low results.

A straightforward approach to evaluate time-frequency mask-
ing algorithms is to count the number of errors in the binary mask.
Although we believe that the binary mask itself can explain a large
amount of the intelligibility, this approach has various drawbacks
e.g. the type of errors can have widely differing impact [15], the
location of errors is important, and it is not certain which type of bi-
nary mask should be used as reference. Furthermore, this approach
will not show the difference between applying the same binary mask
to mixtures at different SNR levels.

The nSec has shown a fine agreement with subjective listening
test of the IBM applied to different mixtures and SNR levels, but
this is only one of many methods of time-frequency masking. In
the present work, we have not examined how the nSec will behave
using e.g. non-binary masks – the general case of applying a time-
varying gain in a number of frequency bands – but we are hopeful
that it will continue to agree with human performance. We note that
the nSec can fail if the target and system output become misaligned
e.g. if the processed mixture is delayed compared to the target,
however this could be accommodated by searching over a timing
skew parameter (full cross-correlation).

7. CONCLUSION

By focusing on the correlation between the broad spectral enve-
lope of target and system output, while completely ignoring the
fine structure, we arrive at an intelligibility measure able to match a
range of subjective results that would be very difficult to explain by
SNR measures. We therefore suggest that future work on nonlinear
speech enhancement, if it is concerned with intelligibility, should
use measures based on correlation in place of SNR. To this end,
we have released a simple drop-in implementation of our measure,

written in Matlab1.

1See http://labrosa.ee.columbia.edu/projects/intelligibility/
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Figure 4: The predicted intelligibility using the model by Christiansen et al. [4] compared to the subjective listening test.

Although there are other, existing intelligibility measures that
are able to match subjective data as closely as ours, our measure is
constructed to be as simple as possible, with a consequent benefits
in terms of transparency and diagnosis: when a system performs
poorly under this measure, it is relatively easy to look at the pro-
cessed envelopes going into the final correlation to see in which
regions they are most different, thereby suggesting where to look
for improvements. We hope that measures of this kind can help to
focus and promote progress in speech intelligibility enhancement
systems.

REFERENCES

[1] ANSI S3.5-1997. American national standard: Methods for
the calculation of the speech intelligibility index, 1997.

[2] M. Anzalone, L. Calandruccio, K. Doherty, and L. Carney.
Determination of the potential benefit of time-frequency gain
manipulation. Ear and Hearing, 27(5):480–492, 2006.

[3] D. S. Brungart, P. S. Chang, B. D. Simpson, and D. Wang.
Isolating the energetic component of speech-on-speech mask-
ing with ideal time-frequency segregation. 120(6):4007–4018,
2006.

[4] C. Christiansen, T. Dau, and M. S. Pedersen. Prediction
of speech intelligibility based on an auditory preprocessing
model. submitted to Speech Communication, —-.

[5] M. Cooke. A glimpsing model of speech perception in noise.
119(3):1562–1573, 2006.

[6] M. Cooke, P. Green, L. Josifovski, and A. Vizinho. Robust au-
tomatic speech recognition with missing and unreliable acous-
tic data. Speech Comm., 34(3):267–285, 2001.

[7] T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory
processing of amplitude modulation. I. Modulation detection
and masking with narrowband carriers. 102:2892–2905, 1997.

[8] N. R. French and J. C. Steinberg. Factors governing the intel-
ligibility of speech sounds. 19(1):90–119, 1947.

[9] I. Holube and B. Kollmeier. Speech intelligibility prediction
in hearing-impaired listeners based on a psychoacoustically
motivated perception model. 100(3):1703–1716, 1996.

[10] Y. Hu and P. C. Loizou. A comparative intelligibility study of
speech enhancement algorithms. pages IV–561–564, Hawaii,
2007.

[11] R. Huber and B. Kollmeier. PEMO-Q - a new method for
objective audio quality assessment using a model of auditory
perception. 14(6):1902–1911, 2006.

[12] J. M. Kates and K. H. Arehart. Coherence and the speech
intelligibility index. 117(4 I):2224–2237, 2005.

[13] U. Kjems, J. B. Boldt, M. S. Pedersen, T. Lunner, and
D. Wang. Role of mask pattern in intelligibility of ideal
binary-masked noisy speech. 126(3):1415–1426, 2009.

[14] N. Li and P. C. Loizou. Effect of spectral resolution on the
intelligibility of ideal binary masked speech. 123(4):EL59–
EL64, 2008.

[15] N. Li and P. C. Loizou. Factors influencing intelligibility of
ideal binary-masked speech: Implications for noise reduction.
123(3):1673–1682, 2008.

[16] M. S. Pedersen, D. Wang, J. Larsen, and U. Kjems. Two-
microphone separation of speech mixtures. 19(3):475–492,
2008.

[17] R. Shannon, F.-G. Zeng, V. Kamath, J. Wygonski, and M. Eke-
lid. Speech recognition with primarily temporal cues. Science,
270(5234):303–4, 1995.

[18] S. Srinivasan and D. Wang. A model for multitalker speech
perception. 124(5):3213–3224, 2008.

[19] H. J. M. Steeneken and T. Houtgast. A physical method for
measuring speech-transmission quality. 67(1):318–326, 1980.

[20] K. Wagener, J. L. Josvassen, and R. Ardenkjaer. Design, op-
timization and evaluation of a danish sentence test in noise.
International Journal of Audiology, 42(1):10–17, 2003.

[21] D. Wang and G. J. Brown, editors. Computational Auditory
Scene Analysis. Wiley & IEEE Press, Hoboken, New Jersey,
2006.

[22] D. Wang, U. Kjems, M. S. Pedersen, J. B. Boldt, T. Lunner,
and T. Lunner. Speech perception of noise with binary gains.
124(4):2303–2307, 2008.

[23] O. Yilmaz and S. Rickard. Blind separation of speech mixtures
via time-frequency masking. 52(7):1830–1847, 2004.

PAPER F 93




