

Aalborg Universitet

An Empirical Analysis of Cyber Deception Systems

Srinivasa, Shreyas

DOI (link to publication from Publisher):
10.54337/aau539415752

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Srinivasa, S. (2023). An Empirical Analysis of Cyber Deception Systems. Aalborg Universitetsforlag.
https://doi.org/10.54337/aau539415752

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 23, 2025

https://doi.org/10.54337/aau539415752
https://vbn.aau.dk/en/publications/d99d9c83-e95f-4cdf-a907-13466c9a9fc8
https://doi.org/10.54337/aau539415752

Sh
r

eya
S Sr

in
iva

Sa
a

n
 em

pir
ic

a
l a

n
a

lySiS o
f c

yb
er

 D
ec

eptio
n

 SyStem
S

an empirical analySiS of
cyber Deception SyStemS

by
ShreyaS SrinivaSa

Dissertation submitteD 2023

An Empirical Analysis of
Cyber Deception systems

Ph.D. Dissertation
Shreyas Srinivasa

Dissertation submitted March 03, 2023

Dissertation submitted: March 03, 2023

PhD supervisor: Prof. Jens Myrup Pedersen
 Aalborg University

Assistant PhD supervisor: Assoc. Prof. Emmanouil Vasilomanolakis
 Technical University of Denmark (DTU)

PhD committee: Associate Professor Tatiana Kozlova Madsen (chair)
 Aalborg University, Denmark

 Professor Pere Barlet-Ros
 UPC BarcelonaTech, Spain

 Associate Professor Hans Peter Reiser
 Reykjavik University, Iceland

PhD Series: Technical Faculty of IT and Design, Aalborg University

Department: Department of Electronic Systems

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-732-1

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Shreyas Srinivasa

Printed in Denmark by Stibo Complete, 2023

Abstract

The exponential growth in digitalization and the demand for context-aware processing
have led to a rise in Internet-connected services, thereby increasing the risk of cyber
attacks. Recent observations on the prevailing strategy of cyberattacks suggest the
significance and high impact. The strategies employed by threat actors have matured to
be more discrete, audacious, and impactful, targeting any form of digital entities ranging
from human wearable devices to low earth orbit satellites. With such advancements,
detecting such malicious entities is becoming increasingly challenging.

Defensive security is a discipline that deals with detecting, protecting, and prevent-
ing malicious processes with security systems (e.g., viruses, worms, spyware, trojan,
and adware). Enterprise infrastructure uses defensive security elements such as In-
trusion Detection Systems and firewalls to identify or limit suspicious traffic into the
network. However, these systems do not provide an overview of the adversary techniques
and methods that can be used to model attacker behavior or to determine the threat
landscape. Moreover, these layer-3 systems are either highly dependent on signature-
based detection methodology, which requires a constant update of its database, or on
anomaly-based detection, thereby limiting the detection of novel actors.

Defensive security solutions or tools are used to detect, track and prevent security
incidents. The data gathered from these tools and solutions are further analyzed to
determine any targeted attacks or threats against the organization. This curated dataset
can be helpful not only to the organization that collects and processes it and several other
teams from other organizations to prepare their defenses. Cyber Threat Intelligence
is the process of identifying potential cyber threats by analyzing data from multiple
sources and understanding the tactics, techniques, and procedures used by the adversary.
Deception-based systems like honeypots are excellent data sources for threat intelligence
data. Honeypots can gather new attack vectors and offer fewer false positives. However,
deception-based systems must be carefully designed, implemented, and deployed to
increase their purpose.

Malware like Mirai has exploited vulnerable and misconfigured systems in its ma-
licious campaigns. Adversaries like Mirai used reconnaissance techniques to look for
vulnerable systems that could be compromised and leveraged for performing attacks or

iii

penetrating the network. Identifying and securing such systems is critical to limiting
exploitation. Although it is known that adversaries use Internet-scanning techniques to
find vulnerable services, they can be used as a defensive approach to proactively identify
and secure them. Internet security measurements perform Internet-wide scans to iden-
tify misconfigured systems exposed to the Internet. The measurements further provide
insights into the vulnerable landscape and the adoption of secure configurations.

In this thesis, I evaluate deception-based defensive security solutions by performing
an empirical analysis that explores the current state, challenges, and possible solutions
for their applicability. The thesis mainly focuses on Honeypots, deception-based, defen-
sive security systems that simulate a target system and are designed as a trap mechanism
to lure attackers. The attack data captured is analyzed to study the attacker’s methods
and behavior or to assess the threat landscape. In addition to attack data from honey-
pots, Internet security measurements are performed to enrich our data and establish a
causal relationship between compromised systems being leveraged for launching attacks
on the Internet.

The main scientific contributions of the thesis include performing an empirical anal-
ysis of the state-of-the-art deception systems to identify their limitations and extend the
findings by proposing techniques that undermine their feasibility. Following the results
from the analysis, we propose methods to address these limitations and conduct studies
that evaluate our proposed techniques by deriving key results and curated datasets.

Ultimately, we set out to explore how deception-based systems can be used to in-
crease our defenses against malicious entities, who are often underestimated. During
my research, I understood better what security researchers endure to detect malicious
actors and the importance of collecting and processing data to identify potential threats.
It is a cat-and-mouse game when it comes to cybersecurity. In this work, I deliberately
switch sides to improve defensive strategies.

Resumé

Den eksponentielle vækst i digitaliseringen og efterspørgslen efter kontekstafhængig in-
formationsbehandling har ført til en stigning i antallet af internet-tilsluttede enheder
og tjenester, hvilket øger risikoen for cyberangreb. De seneste trends indenfor cyberan-
greb viser at angreb kan få store konsekvenser for både virksomheder og samfund, og
at aktørerne bag truslerne anvender stadigt mere modne og avancerede strategier: De
er diskrete, dristige og virkningsfulde, rettet mod enhver form for digitale enheder lige
fra små bærbare enheder på mennesker, til satellitter i lavt kredsløb om jorden. Med
sådanne fremskridt bliver det stadig mere udfordrende at opdage sådanne ondsindede
enheder. Forskellige typer af angreb er i konstant udvikling for at udforske og ud-
nytte sårbare digitale tjenester med det formål at bryde deres fortrolighed, integritet og
tilgængelighed.

Defensiv sikkerhed er en disciplin, der beskæftiger sig med detektion, beskyttelse
og forebyggelse af ondsindede processer (f.eks. vira, orme, spyware, trojan, adware).
Virksomheders infrastruktur bruger typisk defensive sikkerhedselementer såsom intru-
sion detection systems og firewalls til at identificere eller begrænse mistænkelig trafik
ind i netværket. Disse systemer giver dog ikke et overblik over modstandernes teknikker
og metoder, der kan bruges til at modellere angriberens adfærd eller til at bestemme
trusselslandskabet. Desuden er disse lag-3-systemer enten stærkt afhængige af signatur-
baseret detektionsmetodologi, som kræver en konstant opdatering af datbaser, eller af
anomali-baseret detektion, hvilket begrænser detektionen af nye aktører og angrebs-
former.

Defensive sikkerhedsløsninger eller værktøjer bruges til at opdage, spore og forhin-
dre sikkerhedshændelser. Dataene indsamlet fra disse værktøjer og løsninger analyseres
yderligere for at bestemme eventuelle målrettede angreb eller trusler mod organisatio-
nen. Dette kuraterede datasæt er ikke kun nyttigt for den organisation, der indsamler og
behandler det, men også for andre organisationer i forhold til at forberede deres forsvar.
Cyberthreat Intelligence er processen med at identificere potentielle cybertrusler ved
at analysere data fra flere kilder og forstå de taktikker, teknikker og procedurer, der
bruges af modstanderen. Deception-baserede systemer som honeypots er fremragende
datakilder til threat intelligence. Honeypots kan samle nye angrebsvektorer og resul-

v

tere i færre falsk positive detektioner. Imidlertid skal deception-baserede systemer være
omhyggeligt designet og implementeret for at udfylde deres formål.

Malware som Mirai har udnyttet sårbare og forkert konfigurerede systemer i sine
ondsindede kampagner, og der er blandt andet brugt rekognosceringsteknikker til at
lede efter sårbare systemer, der kunne kompromitteres og udnyttes til at udføre angreb
eller trænge ind i netværket. At identificere og sikre sådanne systemer er afgørende
for at begrænse angribernes muligheder for at udnytte dem. Selvom det er kendt, at
modstandere bruger internet-scanningsteknikker til at finde sårbare tjenester, kan de
også bruges som en defensiv tilgang til proaktivt at identificere og sikre dem. Internet-
sikkerhedsmålinger udfører globale scanninger for at identificere forkert konfigurerede
systemer, der er eksponeret mod internettet. Målingerne giver yderligere indsigt i såvel
angrebsflader som udbredelse af sikre konfigurationer.

I denne afhandling evaluerer jeg deception-baserede defensive sikkerhedsløsninger
ved at udføre en empirisk analyse, der kortlægger den nuværende sitauation samt ud-
fordringer og mulige løsninger for deres anvendelighed. Afhandlingen fokuserer hoved-
sageligt på Honeypots, hvilket er deception-baserede defensive sikkerhedssystemer, der
simulerer rigtige systemer, der kan være mål for angreb. Honeypots er designet som
fælder der lokker angribere til. De registrerede angrebsdata analyseres for at studere
angriberens metoder og adfærd, og/eller for at vurdere trusselslandskabet. Ud over
angrebsdata fra honeypots udføres internetsikkerhedsmålinger for at berige vores data
og etablere en årsagssammenhæng mellem kompromitterede systemer, der udnyttes til
at iværksætte angreb på internettet.

Afhandlingens vigtigste videnskabelige bidrag omfatter en empirisk analyse af avancerede
deception-baserede systemer, for derigennem at identificere deres begrænsninger. Dernæst
undersøges nye teknikker, der kan bruges til at svække honeypots og deres anvendelse.
Med udgangspunkt i disse undersøgelser og analyser foreslår vi metoder til at adressere
disse begrænsninger og udføre undersøgelser, der evaluerer vores foreslåede teknikker.
Udover resultaterne præsenteres også nye datasæt, der er brugbare for det videnska-
belige community.

Ultimativt ville vi gerne undersøge, hvordan deception-baserede systemer kan bruges
til at øge vores forsvar mod ondsindede aktører, som ofte undervurderes. I løbet af min
forskning forstod jeg bedre, hvordan ondsidede aktører i cyberspace opererer, og hvordan
de kan opdages, herunder vigtigheden af at indsamle og behandle data for at identificere
potentielle trusler. Det er et cat-and-mouse-game, når det kommer til cybersikkerhed.
I dette arbejde skifter jeg bevidst side for bedre at forstå de ondsidede aktører, og
derigennem forbedre defensive strategier.

Acknowledgments

This thesis is funded by the “European Interreg North Sea Region, COM3 Project”.
We acknowledge the support from the project towards this thesis and the initiative for
cybersecurity awareness in SMEs.

I want to thank the CMI (Communication, Media and Information Technologies)
Section, Department of Electronic Systems, Aalborg University, for supporting and
facilitating this thesis.

I express my sincere gratitude to my supervisor Dr. Jens Myrup Pedersen (AAU)
and co-supervisor Dr. Emmanouil Vasilomanolakis (DTU) for the guidance and support
throughout my thesis.

I want to thank Dr. Alice Hutchings and Dr. Richard Clayton from the University
of Cambridge, Cambridge Cybercrime Centre, for hosting me as a part of the research
stay and providing valuable guidance. The stay in Cambridge was enlightening and
monumental in my thesis. The interaction and discussion with extraordinary researchers
have significantly influenced my research.

I thank Otto Mønsteds Fond and Reinholdt W. Jorck og Hustrus Fond for sponsoring
my research stay in Cambridge and funding my expenses for academic conferences. The
sponsorships have greatly supported academic researchers, and we strongly acknowledge
their support.

I express my gratitude to my beloved parents, sister, wife, daughter, friends, and
colleagues for their immense support during this thesis.

vii

viii Acknowledgments

Dedication

First and foremost, I want to emphasize that this section does not justify the support
I received throughout my thesis from my family, friends, supervisors, and colleagues.
I want to express my sincere gratitude to all of you. Please consider this page as a
humble token of my gratitude for all the support you have provided. I also take this
opportunity to apologize for my ignorance during my thesis period towards certain
things and situations, stating that it was not deliberate. The last three years have been
challenging; we have all endured it with great strength and patience.

The decision to pursue this thesis would not be possible without the guidance of my
parents (Mrs. Shantha and Mr. Srinivasa Sastry), sister (Mrs. Sahana Srinivas Page),
and support from my lovely wife, Pooja Dixit. My parents, sister, wife, and I come
from humble backgrounds and could have never imagined what we are today without
the education and support received from our community. I thank my community for
all encouragement over the years. My wife, who has always been my best buddy, has
constantly motivated and encouraged me during this thesis. Together, we have faced
several challenges during the last three years; without her support, it would be impos-
sible to face them. She has helped me transform and channel my thoughts and, most
importantly, has been patient. With the course of this thesis, we became proud parents
and welcomed our daughter Ameya Sastry. Ameya is a bundle of joy that fills me with
energy and positivity. She kept me motivated with her gentle pats on my back when I
whispered to her about issues. Like her mother, she patiently listened to all my irrele-
vant blabber and merrily accompanied me to conferences. Being a parent changed my
perspective, and I thoroughly enjoy every moment.

I want to thank my dearest friends, who are my lifelines. They make us feel at
home, away from home. I received immense support, and I am incredibly grateful to
have them in my life. The list of friends is long, and mentioning only a few here would
be irrational. I was fortunate enough to make good friends everywhere I lived for a
considerable period of my life. I thank them for their continued support and sincerely
appreciate your inclusiveness in these challenging times.

ix

x Dedication

My journey at Aalborg University would never be possible without the advice from
my co-supervisor Assoc. Prof. Dr. Emmanouil Vasilomanolakis (Manolis). It was from
him first that I heard about a suitable opportunity. I want to express my gratitude
to my supervisor Prof. Dr. Jens Myrup Pedersen, who has been a constant mentor. I
admire his positivity, calmness, and, most importantly, his resistance to cold weather!
Both my supervisors have been monumental in my thesis and in providing guidance. I
thank them both for the trust and patience they invested in me, although they knew
that my research entailed several complications in terms of security and ethicality.

I cherished my research stay at the University of Cambridge. The learnings from my
stay have shaped new perspectives toward research. The long enchanting early morning
walks around Cambridge fueled many thoughts and instill my passion. The compassion
of Dr. Alice Hutchings and Dr. Richard Clayton spellbinds me. Every moment spent
with Dr. Clayton made me realize my inner passion for research. I am forever grateful
for this opportunity.

I am lucky to have wonderful colleagues who never tire of listening to my opinions.
I especially want to thank Dimitrios Georgoulias and Rasmi-Vlad Mahmoud for their
patience, support, and feedback. It is always true that many ideas originate with small
discussions and over coffee.

I want to thank our students at Aalborg University, who trusted me with their
project supervision. I have always enjoyed working on projects and learning mutually
from them.

Lastly, I am forever in debt to the fantastic artists that have created inspiring and
engaging music that has helped me stay focused during the thesis. My special thanks
go to the bands Green Day, Iron Maiden, Metallica, and Indian Ocean. Thank you.

I dedicate this thesis to my parents, sister, wife, daughter, and friends.

I make a special dedication to all the dear family and friends we lost
to the pandemic, war, and natural disasters. We miss you.

Thank you.

Contents

Abstract iii

Resumé v

Acknowledgments vii

Dedication ix

Thesis Details xvii

Preface xix

1 Introduction 1

Introduction 1
1 Thesis Statement . 2
2 Outline and Contributions . 3
References . 5

I Preliminary Concepts 7

2 Cyber Deception Systems 9
References . 11

3 Attacks against Deception 13
References . 14

4 Internet Security Measurements 15
References . 16

xi

xii Contents

II Papers 17

A Gotta catch ’em all: a Multistage Framework for honeypot fingerprint-
ing 21
1 Introduction . 23
2 Multistage Honeypot Fingerprinting Framework 25

2.1 Overview . 25
2.2 Framework . 27

3 Evaluation . 33
3.1 Lab environment tests . 33
3.2 Evaluation Setup . 33
3.3 Results . 34
3.4 Shodan Honeyscore . 41
3.5 Validation . 41

4 Discussion . 43
4.1 Ethical considerations . 43
4.2 Limitations . 44

5 Countermeasures against fingerprinting 45
5.1 Metascan countermeasures . 45
5.2 Probe-based countermeasures . 45

6 Related Work . 46
7 Conclusion . 49
A Multistage Framework for Honeypot Fingerprinting 51
B Framework specific checks and pipeline 55
References . 59

B Towards systematic honeytoken fingerprinting 65
1 Introduction . 67
2 Background . 68
3 Honeytoken fingerprinting . 70

3.1 Network level . 70
3.2 Application/File Level . 71
3.3 System Level . 71
3.4 Data level . 72

4 Proof of Concept . 72
5 Conclusion . 73
References . 74

C Honeysweeper: Towards stealthy Honeytoken fingerprinting techniques
77

1 Introduction . 79
2 Background . 80

Contents xiii

3 Related work . 82
3.1 Honeypot fingerprinting . 82
3.2 Honeytoken fingerprinting . 83

4 Methodology . 85
4.1 Honeytoken Analysis . 85
4.2 Honeytoken Fingerprinting . 87

5 Proof of concept: honeysweeper . 89
5.1 Overview . 89
5.2 Limitations . 90

6 Countermeasures against fingerprinting 91
7 Conclusion . 92
References . 96

D RIoTPot: a modular hybrid-interaction IoT/OT honeypot 101
1 Introduction . 103
2 RIoTPot Design . 104
3 Preliminary Results . 106
4 Conclusion . 107
References . 108

E Interaction matters: a comprehensive analysis and a dataset of hybrid
IoT/OT honeypots 111
1 Introduction . 113
2 Related Work . 114
3 Extending RIoTPot . 117

3.1 RIoTPot extended architecture 118
3.2 Extended components . 118

4 Methodology . 121
4.1 Evaluation parameters . 121
4.2 Experimental setup . 123
4.3 Dataset . 124

5 Evaluation . 125
5.1 Interaction levels . 125
5.2 Deployment infrastructure . 128
5.3 Geographical location . 129
5.4 Emulated protocols . 130
5.5 Comparison with Conpot . 131

6 Discussion . 132
6.1 Malicious events . 132
6.2 Attack sources . 135
6.3 Impact of interaction-levels in honeypots 136

xiv Contents

6.4 Limitations . 136
7 Conclusion . 136
A Appendix . 137

A.1 Qualitative comparison . 137
A.2 Appendix: Experiment Overview 137
A.3 Appendix: supplementary results 138
A.4 Labeling benign traffic . 143
A.5 Appendix: supplementary discussion 144

References . 145

F Deceptive directories and “vulnerable” logs: a honeypot study of the
LDAP and log4j attack landscape 151
1 Introduction . 153
2 Related Work . 154

2.1 LDAP attacks . 154
2.2 LDAP honeypots . 155

3 Methodology . 155
3.1 LDAP honeypot . 155
3.2 Experimental setup . 157
3.3 Honeynet Project dataset . 157

4 Results . 158
4.1 Attack traffic count . 158
4.2 Attack sources . 159
4.3 Attack types . 160

5 Discussion . 161
5.1 Correlating data from the Honeynet Project 161
5.2 Attack samples . 161
5.3 Pivot attacks . 162
5.4 Limitations . 163
5.5 Ethical considerations . 163

6 Conclusion . 164
A Appendix . 164

A.1 Samples of attack types . 164
References . 165

G Open for hire: attack trends and misconfiguration pitfalls of IoT de-
vices 169
1 Introduction . 171
2 Related Work . 172

2.1 Internet-wide scanning for vulnerable IoT devices 173
2.2 IoT-Honeypots . 173

Contents xv

2.3 Network Telescopes . 175
2.4 IoT-Honeypot Fingerprinting . 175

3 Methodology . 176
3.1 Detection of misconfigured IoT-devices 176
3.2 IoT-Honeypot Fingerprinting . 180
3.3 IoT Honeypot Deployment . 180
3.4 Network-Telescope Analysis . 181

4 Results . 183
4.1 Results from Internet-wide scanning 183
4.2 Honeypot Detection . 185
4.3 Attack trends from honeypots and network telescope 186

5 Discussion . 190
5.1 Attack trends by protocol . 191
5.2 Impact of listing by scanning-services 194
5.3 Attacks from infected hosts . 194
5.4 Multistage attacks in honeypots 196

6 Conclusion . 197
A Appendix . 198

A.1 Scanning dates by protocol . 198
A.2 Misconfigured IoT devices by country 198
A.3 Ethical Considerations . 199
A.4 Most common Device-type identifiers with banners/response . . 201
A.5 Top Telnet and SSH credentials used by count 202
A.6 SHA256 Hash of Malware variants 202

References . 206

H A Bad IDEa: Weaponizing uncontrolled online-IDEs in availability
attacks 215
1 Introduction . 217
2 Background & Related Work . 218

2.1 Online IDEs . 218
2.2 Uncontrolled execution environment 219

3 Uncontrolled execution environments . 220
3.1 Generic architecture of online-IDEs 220
3.2 Uncontrolled online-IDE environments 220

4 Methodology . 222
4.1 Reconnaissance . 222
4.2 Botnet architecture . 224
4.3 Experimental setup . 225
4.4 Exploitation . 225

5 Evaluation . 226

xvi Contents

5.1 Reconnaissance . 226
5.2 Attacks & impact . 228

6 Discussion . 232
6.1 Attack types . 232
6.2 Comparison with amplification attacks 234
6.3 Implications . 234
6.4 Limitations . 235

7 Ethical considerations & countermeasures 235
7.1 Attack testing . 236
7.2 Responsible disclosure . 236
7.3 Countermeasures . 237

8 Conclusion . 238
References . 239

III Epilogue 243

Conclusion 245

Directions for Future work 251

Thesis Details

Thesis Title: An Empirical Analysis of Deception-based systems in the network
security of SMEs

Ph.D. Student: Shreyas Srinivasa

Supervisors: Prof. Jens Myrup Pedersen,
Aalborg University

Assoc. Prof. Emmanouil Vasilomanolakis,
Technical University of Denmark (DTU)

The main body of this thesis consist of the following papers.

[A] Srinivasa, S., Pedersen, J. M. & Vasilomanolakis, E., “Gotta catch ’em all: a
Multistage Framework for honeypot fingerprinting”, Digital Threats: Research
and Practice Association for Computing Machinery, ACM DTRAP vol.1, no.1,
month.1 2023 doi:https://doi.org/10.1145/3584976.

[B] Srinivasa, S., Pedersen, J. M. & Vasilomanolakis, E., “Towards systematic hon-
eytoken fingerprinting”, International Conference on Security of Information and
Networks (ACM SIN) . Ors, B. & Elci, A. (eds.). Association for Computing
Machinery, p. 1-5 5 p. 28

[C] Msaad, M., Srinivasa, S., M. Andersen, M., H. Audran, D., Uche Orji G, C. &
Vasilomanolakis, E., “Honeysweeper: Towards stealthy Honeytoken fingerprint-
ing techniques”, In: Reiser, H.P., Kyas, M. (eds) Secure IT Systems.NordSec
2022. Springer, Lecture Notes in Computer Science, vol 13700. Springer, Cham.
https://doi.org/10.1007/978-3-031-22295-5_6

xvii

xviii Thesis Details

[D] Srinivasa, S., Pedersen, J. M. & Vasilomanolakis, E., “RIoTPot: a modular hybrid-
interaction IoT/OT honeypot”, ESORICS 2021: 26th European Symposium on
Research in Computer Security, Darmstadt, Germany, October 4–8, 2021, Pro-
ceedings, Part II, Springer, Vol. 2. p. 745-751 7 p. (Lecture Notes in Computer
Science, Vol. 12973).

[E] Srinivasa, S., Pedersen, J. M. & Vasilomanolakis, E., “Interaction matters: a
comprehensive analysis and a dataset of hybrid IoT/OT honeypots”, 2022, An-
nual Computer Security Applications Conference (ACSAC) 2022. Association for
Computing Machinery, vol. X, no. X, p. 742–755, 14 p.

[F] Srinivasa, S., Pedersen, J. M. & Vasilomanolakis, E., “Deceptive directories and
“vulnerable” logs: a honeypot study of the LDAP and log4j attack landscape”,
Mar 2022, Proceedings - 7th IEEE European Symposium on Security and Pri-
vacy Workshops, Euro S and PW 2022. IEEE, p. 442-447 6 p.(IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW)).

[G] Srinivasa, S., Pedersen, J. M. & Vasilomanolakis, E., “Open for hire: attack trends
and misconfiguration pitfalls of IoT devices”, Nov 2021, IMC ’21: Proceedings
of the 21st ACM Internet Measurement Conference. Association for Computing
Machinery, p. 195-215 21 p.

[H] Srinivasa, S., Georgoulias, D., Pedersen, J. M. & Vasilomanolakis, E., “A Bad
IDEa: Weaponizing uncontrolled online-IDEs in availability attacks”, Mar 2022,
IEEE European Symposium on Security and Privacy, Workshop on Attackers and
Cyber-Crime Operations. IEEE, p. 82-92 11 p. 9799405. (IEEE European Sym-
posium on Security and Privacy Workshops (EuroS&PW)).

In addition to the main papers, the following publications have also been made.

[1] Lygerou, I., Srinivasa, S., Vasilomanolakis, E., Stergiopoulos, G & Gritzalis, D.,
“A decentralized honeypot for IoT Protocols based on Android devices”, 6 Aug
2022, In: International Journal of Information Security, 21, 6, p. 1211-1222 12
p., 1615-5270.

This thesis has been submitted for assessment in partial fulfillment of the PhD degree.
The thesis is based on the submitted or published scientific papers which are listed
above. Parts of the papers are used directly or indirectly in the extended summary of
the thesis. As part of the assessment, co-author statements have been made available to
the assessment committee and are also available at the Faculty. The thesis is not in its
present form acceptable for open publication but only in limited and closed circulation
as copyright may not be ensured.

Preface

This thesis came together at the Department of Electronic Systems at Aalborg Univer-
sity, under the kind supervision of Prof. Dr. Jens Myrup Pedersen (Aalborg University)
and co-supervision of Assoc. Prof. Dr. Emmanouil Vasilomanolakis (Technical Uni-
versity of Denmark). The contributions of the thesis are represented in the form of a
collection of papers. The included papers are peer-reviewed publications The layout
of the published papers has been revised to align with the thesis document with the
content unchanged.

The thesis is structured as follows. Chapter 1 provides an introduction, motivation,
and outline of the thesis by highlighting the contributions of each paper. Part I covers a
background for the preliminary concepts. Part II presents the collection of papers that
form the core contribution of the thesis. The thesis is concluded in Part III with the
conclusion and directions for future research.

Shreyas Srinivasa
Aalborg University, March 3, 2023

xix

xx Preface

Chapter 1

Introduction

Digitalization and automation have paved the way for modern evolution. The digital
infrastructure has facilitated significant improvements in everyday life and all market
sectors, thereby increasing efficiency and productivity. With this increasing digital
adoption, there is a challenge to trust and security in this environment.

In light of the high demand for contextual data and accessibility, security has as-
sumed minor importance.With the development of digital systems and networks, the
complexity and discreetness of attacks further reformed. An advancement in defensive
security strategies is imperative to address and limit the impact of cyberattacks. This
is not at least the case for small and medium-sized enterprises (SMEs), where a recent
Danish analysis [1] demonstrates that 40% of the companies have a digital security level
that is too low compared to their risk profile. It is hence necessary to create awareness
and emphasize the need for cybersecurity measures in SMEs.

The evolution of cyberattacks has led to the systemization of threats. Cyber threat
actors vary based on their skills, capabilities, resources, and inspiration. They are
classified into cybercriminals, nation-state actors, hacktivists, terrorist groups, thrill
seekers, and insider threats [3]. The attack surface and threat landscape scope are
extensive, with diverse threat actors. Protection against these various threats is not
only complex but also highly challenging. Moreover, the threat actors evolve their
strategies to evade protection and detection mechanisms.

Defensive security systems aim to detect, predict, and prevent cyber threats. Tra-
ditionally, detection systems are either signature or anomaly-based [2]. They rely on
signatures of known threats or constantly check for traffic or system behavior anomalies
through learning algorithms. However, due to the changing landscape, it is necessary
to look for novel threats. Furthermore, it is essential to understand the behavior of
the adversaries to characterize the threat actors. In firewalls and intrusion detection
systems, the focus is on detecting and preventing known suspicious actors based on

1

2 Chapter 1. Introduction

a predefined set of rules, signatures, blocklists, or anomalies. These systems are not
designed to identify novel threats and are limited to specific protocol services. A tech-
nique to identify unknown threats is to deceive the adversaries by deliberately exposing
a system modeled as a trap to observe the attack strategies. Such strategies that lure
attackers by setting up traps are categorized as deception-based systems.

Cyber Deception-based systems are modeled to simulate systems or services to de-
ceive adversaries, and capture attacks [5]. The idea is to expose a seemingly vulnerable
system to an active digital environment to detect suspicious activity. These systems aim
to provide high fidelity in the logged activities with reduced false positives. Moreover,
any interaction or activity with a system with no production value can be considered
severe. An example of a cyber deception-based system is honeypots. Honeypots are
decoys that simulate a target entity and are configured to capture any interaction with
them [4] [6]. Traditionally honeypots were modeled with a focus on specific protocols
or services and aimed at capturing malicious traffic within a network. However, the
research on honeypots has dramatically advanced to capture complex threats by al-
tering the deception layer. However, cyber deception systems have their limitations.
Both adversaries and defenders are fighting to lead in the deception race. The use
of deception-based techniques (e.g., phishing) by adversaries is known. Furthermore,
offenders leverage the limitations of deception in honeypot-like systems to avoid any po-
tential interaction, evade detection, and even exploit them. This poses a severe threat
that challenges deception-based systems’ goals and applicability. To gain a competitive
advantage over adversaries, it is required to propose new techniques and address the
limitations.

1 Thesis Statement
The thesis statement and the research questions are formulated as follows:

Cyber Deception systems aim at capturing adversarial attempts and strategies to fa-
cilitate further analysis and modeling of defenses against them. Due to the deceptive
strategies employed, these systems are subjected to challenges against evolving adversar-
ial strategies that intend to detect these systems. The value of a deception-based system
lies in its ability to remain undetected. This thesis aims to accomplish the following
research questions:

• RQ1: What are the limitations of cyber-deception systems that affect their feasi-
bility?

• RQ2: What techniques can be used to undermine the use of cyber deception?

• RQ3: How can the limitations of cyber deception be addressed to improve the
applicability?

2. Outline and Contributions 3

2 Outline and Contributions
The thesis is structured into three parts. Part I introduces the preliminary concepts and
provide background on cyber deception (Chapter 2), attacks against cyber deception
(Chapter 3), and Internet security measurements (Chapter 4). Part II presents a three-
fold collection of papers and their respective contributions. The papers are grouped
by their contributions concerning the thesis statement and are listed below alongside
highlighted contributions of each paper.

Honeypot Fingerprinting
This section of the Papers aims to address RQ1 and RQ2 to find the limitations and
techniques that undermine the feasibility of honeypots. The papers present research on
attacks against cyber deception focused on honeypot fingerprinting.

• Paper A ∗ (ACM DTRAP 2023) Honeypot fingerprinting techniques determine if
the end system is a honeypot. On successful fingerprinting, the purpose of honey-
pots is undermined. We present novel methods for active honeypot fingerprinting
(so-called probe-based). These are combined with a number of SotA and third-
party (so-called meta-scan) fingerprinting techniques in the form of a multistage
fingerprinting framework. We scan 2.9 billion IP addresses of the IPv4 space,
discover 187 million IP addresses with relevant open ports and identify a total of
21,855 honeypots.

• Paper B (ACM SIN 2020) Honeytoken is an umbrella term for a subset of hon-
eypots without protocol or system emulation. Instead, a honeytoken usually em-
ulates some resource (e.g., a file or a username/password) that is part of a real
system and triggers an alert whenever it is accessed or used. In this paper, we
attempt a preliminary study on the possibility of fingerprinting honeytokens. We
systematically classify the different honeytoken technologies and proceed by de-
termining ways for their identification. Furthermore, we provide proof of con-
cept experiments that demonstrate the feasibility of the proposed fingerprinting
mechanisms. To our knowledge, this is the first paper to examine honeytoken
fingerprinting.

• Paper C (NordSec 2022) Honeytokens are an important tool in proactively identi-
fying data breaches and intrusion detection, as they raise an alert when a deceptive
entity is accessed. In such deception-based defensive tools, it is vital that the ad-
versary does not detect the presence of deception. However, recent research shows
that adversaries may fingerprint honeypots and honeytokens. This work explores

∗includes dataset

4 Chapter 1. Introduction

potential fingerprinting attacks against the most common open-source honeyto-
kens. Our findings suggest that an advanced attacker can identify the majority of
honeytokens without triggering an alert. We extend the fingerprinting techniques
based on our previous findings. Furthermore, we propose methods that help im-
prove the deception layer, the information received from the alerts, and the design
of honeytokens.

New paradigms in Cyber Deception
This section of the Papers aims to address RQ3 and presents research into new paradigms
in cyber deception that address some limitations identified in RQ1 and RQ2. The re-
search presents RIoTPot, a hybrid interaction and modular honeypot, and performs
evaluation studies to understand the attack landscape and the influence of operational
parameters in honeypots.

• Paper D ∗ (ESORICS 2021) Honeypots are often used as a proactive attack detec-
tion mechanism and as a source of threat intelligence data. However, many honey-
pots are poorly maintained and cumbersome to extend. Moreover, low-interaction
honeypots are prone to fingerprinting attacks due to their limited emulation ca-
pabilities. Nonetheless, low-interaction honeypots are essential for environments
with limited resources. This paper introduces RIoTPot, a modular and hybrid-
interaction honeypot for Internet-of-Things (IoT) and Operational Technology
(OT) protocols mainly used in Industrial Control System environments.

• Paper E* (ACSAC 2022) In this paper, we extend and evaluate RIoTPot, a
hybrid-interaction honeypot, by exposing it to attacks on the Internet and per-
forming a longitudinal study with multiple evaluation parameters for three months.
Furthermore, we publish the aforementioned study in the form of a dataset avail-
able to researchers upon request. We leverage RIoTPot’s hybrid-interaction model
to deploy it in three interaction variants with six protocols deployed on both cloud
and self-hosted infrastructure to study and compare the attacks gathered. We fin-
gerprint the attacker’s IP addresses to identify the type of devices participating
in the attacks. Our results indicate that the honeypot interaction levels are im-
portant in attracting specific attacks and scanning probes.

• Paper F (AD&D Euro S&PW 2022) This paper presents a study of attacks on
the LDAP by deploying honeypots that simulate multiple profiles that support
the LDAP service and correlating the attack datasets obtained from honeypots
deployed by the Honeynet Project community.

∗includes dataset

References 5

Internet Security Measurements
This section of the Papers aims to perform measurements to understand the attack
landscape and evaluate the research from RQ3. The studies follow a measurement-based
approach for analyzing and studying the impact of misconfigured systems deployed on
the Internet. The studies aim at deriving key results and producing enriched datasets
to facilitate further research in the community.

• Paper G * (ACM IMC 2021) In this paper, we perform an Internet-level IPv4
scan to unveil 1.8 million misconfigured IoT devices that may be exploited to
perform large-scale attacks. These results are filtered to exclude a total of 8, 192
devices that we identify as honeypots during our scan. We deploy six state-of-
art IoT honeypots to study current attack trends for one month. We gather a
total of 200, 209 attacks and investigate how adversaries leverage misconfigured
IoT devices. In particular, we study different attack types, including denial of
service, multistage attacks, and attacks from infected online hosts. Furthermore,
we analyze data from a /8 network telescope covering 81 billion requests towards
IoT protocols.

• Paper H (WACCO Euro S&PW 2022) The increasing need for remote work and
collaborative workspaces have led to the IDE-as-a-service paradigm that offers
online code editing and compilation with multiple language support. In this paper,
we show that a multitude of online IDEs do not run control checks on the user
code and can be therefore leveraged by a botnet. We examine the concept of
uncontrolled execution environments and present a proof of concept to show how
uncontrolled online-IDEs can be weaponized to perform large-scale attacks by a
botnet.

Part III concludes the thesis statement and discusses future work.

References
[1] erhvervsstyrelsen.dk. (2021) Digital sikkerhed i danske smv’er. https://erhvervsstyrelsen.

dk/sites/default/files/2021-09/Digital%20sikkerhed%20i%20danske%20SMVer_
Erhvervsstyrelsen_Sep2021_EUwebtilg%C3%A6ngelig02.pdf.

[2] C. Flynt, “intrusion detection,” login Usenix Mag., vol. 26, no. 3, 2001.
[3] V. Mavroeidis, R. Hohimer, T. Casey, and A. Jesang, “Threat actor type inference and

characterization within cyber threat intelligence,” in 2021 13th International Conference
on Cyber Conflict (CyCon). IEEE, 2021, pp. 327–352.

[4] N. Provos et al., “A virtual honeypot framework.” in USENIX Security Symposium, vol.
173, no. 2004, 2004, pp. 1–14.

https://erhvervsstyrelsen.dk/sites/default/files/2021-09/Digital%20sikkerhed%20i%20danske%20SMVer_Erhvervsstyrelsen_Sep2021_EUwebtilg%C3%A6ngelig02.pdf
https://erhvervsstyrelsen.dk/sites/default/files/2021-09/Digital%20sikkerhed%20i%20danske%20SMVer_Erhvervsstyrelsen_Sep2021_EUwebtilg%C3%A6ngelig02.pdf
https://erhvervsstyrelsen.dk/sites/default/files/2021-09/Digital%20sikkerhed%20i%20danske%20SMVer_Erhvervsstyrelsen_Sep2021_EUwebtilg%C3%A6ngelig02.pdf

6 References

[5] C. Wang and Z. Lu, “Cyber deception: Overview and the road ahead,” IEEE Security &
Privacy, vol. 16, no. 2, pp. 80–85, 2018.

[6] L. Zhang and V. L. Thing, “Three decades of deception techniques in active cyber
defense-retrospect and outlook,” Computers & Security, vol. 106, p. 102288, 2021. [Online].
Available: https://arxiv.org/abs/2104.03594

https://arxiv.org/abs/2104.03594

Part I

Preliminary Concepts

7

Chapter 2

Cyber Deception Systems

Deception is one of the many traits living organisms exhibit to protect, pretend, and
prey. In his book The Art of War, (5 B.C), Sun Tzu states, “All warfare is based on
deception” [5]. Conventional use of deception includes military, marketing, and magic.
Some forms of deception include masking, repackaging, dazzling, mimicking, inventing,
and decoying [2]. In cybersecurity, deception can be leveraged in both offensive and
defensive techniques. In offensive security, cyber deception techniques are mostly limited
to impersonation, while they can be leveraged to a wider scope in defensive systems.

Cyber deception in defensive security focuses on impersonating a seemingly vulner-
able system to lure attackers. Honeypots are defensive cyber deception-based systems
and can be defined as “A security resource whose value lies in being probed, attacked or
compromised” [3]. The main components of a honeypot include deception and logging.
The deception layer is responsible for simulating a service or a system. The logging com-
ponent ensures that all the traffic between the adversary and the honeypot is captured
in a structured format. Honeypots are classified into low, medium, and high interaction
based on the deception layer and the interaction level they offer to the attackers. The
low-interaction honeypots (li-HP) have a limited simulation of service and low operation
costs. For example, a li-HP is limited to responding to specific requests or commands
and may always be static. The medium-interaction honeypots (mi-HP) provide an ex-
tended simulation than the li-HP and may include a collection of services or a target
device profile (e.g., a Windows 7 system). High-interaction honeypots (hi-HP) are ac-
tual systems that run full services as targets. These honeypots have higher operating
costs and maintenance. To limit the operational costs, hi-HPs can be configured as vir-
tual machines or containers to achieve the full system perspective. Hi-HPs may gather
higher traffic on careful configuration than li-HP and mi-HPs.

The Honeynet Project offers several open-source honeypots specific to protocols,
devices, or operational environments [1]. Most of the honeypots are either li-HP or

9

10 Chapter 2. Cyber Deception Systems

mi-HP. The honeypots from the Honeynet Project serve as an excellent resource for
security training and awareness programs.

Honeypots capture malware and form a good source of threat intelligence data. As
honeypots are non-production systems, there is no real reason to interact with them.
Hence, fewer false positives exist, and all traffic can be considered suspicious. The
attack data captured by honeypots can be used for analyzing the threat landscape and
modeling. Furthermore, the captured data can be modeled to understand the attacker’s
behavior and techniques. Honeypots can be further classified based on their use in
research and industry. Although honeypots can capture a multitude of attacks, most
of the traffic is from automated attacks like bots. Moreover, honeypots can capture
specific attacks like insider attacks if configured to operate within a network. With the
simplicity that honeypots provide, they are used in research and industry studies to
determine the attack landscape.

Honeytoken is an umbrella term for a subset of honeypots without protocol or sys-
tem emulation. Instead, a honeytoken usually emulates some resource (e.g. a file or
a username/password) that is part of a real system and triggers an alert whenever it
is accessed or used [4]. For example, a honeytoken can be a .docx file containing an
obfuscated script triggered when the file is opened. An advantage of honeytokens over
traditional honeypots is that they operate with lower system resources and are simpler
to manage. In addition, they are easy to generate and deploy. Honeytokens can indi-
rectly detect the presence of diverse attack vectors (e.g., malware) and identify direct
attacks like unauthorized access attempts. Due to their simple design and flexibility,
honeytokens are popular and are used by system administrators [6].

Although honeypots have many advantages, they are prone to be vulnerable to
certain attacks. We discuss the potential attack vectors that may undermine the value
of honeypots and possibly exploit them in the next chapter. Other forms of cyber
deception include tarpits, moving target defense, and honeynets [6]. In this thesis, we
evaluate honeypots and present our research in Papers D, E and F.

References 11

References
[1] T. H. Project, “The honeynet project.”
[2] N. Rowe, “A taxonomy of deception in cyberspace,” in International Conference on Infor-

mation Warfare and Security, 2006, pp. 173–181.
[3] L. Spitzner, “The honeynet project: Trapping the hackers,” IEEE Security & Privacy,

vol. 1, no. 2, pp. 15–23, 2003.
[4] ——, “Honeytokens: The other honeypot. 2003,” Internet: http://www. securityfocus.

com/infocus/1713, 2006.
[5] S. Tzu, “The art of war,” in Strategic Studies. Routledge, 2008, pp. 63–91.
[6] L. Zhang and V. L. Thing, “Three decades of deception techniques in active cyber

defense-retrospect and outlook,” Computers & Security, vol. 106, p. 102288, 2021. [Online].
Available: https://arxiv.org/abs/2104.03594

https://arxiv.org/abs/2104.03594

12 References

Chapter 3

Attacks against Deception

Fingerprinting is the process of profiling or determining the end system through probing
and analysis. Traditionally fingerprinting approaches are used to distinguish legitimate
devices from adversarial systems and perform vulnerability assessments [2, 3]. Con-
versely, fingerprinting techniques can be used to determine the characteristics of the
target machine that could be useful in identifying the potentially vulnerable points [1].
Tools like NMap and p0f are widely used in reconnaissance to determine the version of
the services running on the end system [4, 7].

Fingerprinting techniques are classified into active and passive. Active fingerprinting
involves using probes that interact with the target system to invoke specific responses
that help infer the target system. Using this technique requires active interaction with
the end system, which can be noisy. Passive fingerprinting involves examining data
related to the end system and does not involve interaction. The data about the end
system could be from network traffic or metadata from external databases.

Deception fingerprinting determines if the end system is a honeypot. As honeypots
are not real systems and are simulation-based, they are limited in responses. Through
selective active probing, adversaries can run commands that honeypots are known to
have a static or limited response. Honeypot fingerprinting has recently been an active
research area, and several approaches based on both active and passive techniques have
been proposed [5, 6].

Honeypot fingerprinting can be leveraged by adversaries to avoid or limit their in-
teraction with honeypots, thereby limiting their purpose. Moreover, adversaries can
develop a list of known honeypots that bot campaigns can use as a blocklist. Attackers
can further exploit misconfigured honeypot systems to escape into the production net-
works or leverage them to launch attacks on the Internet. In this thesis, we explore and
propose honeypot fingerprinting techniques to address the limitations of honeypots and
improve them. We present our work on honeypot fingerprinting in Papers A, B and C.

13

14 References

References
[1] L. G. Greenwald and T. J. Thomas, “Toward undetected operating system fingerprinting,”

in Proceedings of the First USENIX Workshop on Offensive Technologies, ser. WOOT ’07.
USA: USENIX Association, 2007.

[2] H. Jafari, O. Omotere, D. Adesina, H.-H. Wu, and L. Qian, “Iot devices fingerprinting
using deep learning,” in MILCOM 2018 - 2018 IEEE Military Communications Conference
(MILCOM), 2018, pp. 1–9.

[3] A. Keliris and M. Maniatakos, “Remote field device fingerprinting using device-specific
modbus information,” in 2016 IEEE 59th International Midwest Symposium on Circuits
and Systems (MWSCAS), 2016, pp. 1–4.

[4] G. Lyon, “Nmap network mapper,” 2021. [Online]. Available: https://nmap.org/
[5] S. Morishita, T. Hoizumi, W. Ueno, R. Tanabe, C. Gañán, M. J. van Eeten, K. Yoshioka,

and T. Matsumoto, “Detect me if you. . . oh wait. an internet-wide view of self-revealing
honeypots,” in 2019 IFIP/IEEE Symposium on Integrated Network and Service Manage-
ment (IM), IEEE. Washington DC, USA: IEEE, 2019, pp. 134–143.

[6] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting low-and medium-
interaction honeypots at internet scale,” in 12th {USENIX} Workshop on Offensive Tech-
nologies ({WOOT} 18), 2018.

[7] M. Zalewski, “the new p0f: 2.0. 8,” http://lcamtuf. coredump. cx/p0f. shtml, 2006.

https://nmap.org/

Chapter 4

Internet Security
Measurements

Internet, at its core, is an interconnected global packet-switched network that facilitates
seamless communication through data. With the rise in digitalization and automation,
there is an increase in Internet-connected services, focusing on accessibility and context
awareness. This upsurge has entailed several security incidents due to misconfigurations
and unpatched environments. Adversaries use probes that periodically scan the Internet
to identify and infiltrate vulnerable services.

The advancement in networking infrastructure has led to faster accessibility and
communication. Internet security measurements aim at implementing studies to moni-
tor, observe and analyze the Internet infrastructure to identify possible security trends
and implications [3]. Internet-wide scanning services like Shodan and Censys perform
daily scans of the Internet to provide information on services exposed [1, 4]. Further-
more, with open-source scanning tools like ZMap, it is possible to complete scanning
the Internet in less than an hour [2]. While adversaries effectively use Internet scan-
ning to look for vulnerable systems, the technique can also be leveraged for reporting
the findings to the administrators. Furthermore, the datasets obtained from Internet
scanning can be analyzed to determine the attack landscape and risk analysis.

In this thesis, we conduct measurement-based studies to determine the attack land-
scape and to enrich our findings. Furthermore, we share the results from our measure-
ment studies to facilitate further research and collaboration. In this thesis, we present
our research and findings from the measurement studies in Papers G and H.

15

16 References

References
[1] Censys, “Censys search,” 2021. [Online]. Available: https://censys.io/
[2] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-wide scanning and

its security applications,” in Proceedings of the 22nd USENIX Conference on Security, ser.
SEC’13. USA: USENIX Association, 2013, p. 605–620.

[3] M. S. Pour, C. Nader, K. Friday, and E. Bou-Harb, “A comprehensive survey of
recent internet measurement techniques for cyber security,” Computers & Security,
p. 103123, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167404823000330

[4] SHODAN, “Shodan,” 2021. [Online]. Available: https://www.shodan.io/

https://censys.io/
https://www.sciencedirect.com/science/article/pii/S0167404823000330
https://www.sciencedirect.com/science/article/pii/S0167404823000330
https://www.shodan.io/

Part II

Papers

17

Deception Fingerprinting

20

Paper A

Gotta catch ’em all: a Multistage Framework for honeypot
fingerprinting

Shreyas Srinivasa, Jens Myrup Pedersen, Emmanouil Vasilomanolakis

The paper has been published in the
ACM Journal of Digital Threats: Research and Practice. (ACM DTRAP)

issn:2692-1626, doi: 10.1145/3584976, 2023.

The layout has been revised.

1. Introduction 23

Abstract
Honeypots are decoy systems that lure attackers by presenting them with a seemingly
vulnerable system. They provide an early detection mechanism as well as a method
for learning how adversaries work and think. However, over the last years a number
of researchers have shown methods for fingerprinting honeypots. This significantly de-
creases the value of a honeypot; if an attacker is able to recognize the existence of such
a system, they can evade it. In this article, we revisit the honeypot identification field,
by providing a holistic framework that includes state of the art and novel fingerprinting
components. We decrease the probability of false positives by proposing a rigid multi-step
approach for labeling a system as a honeypot. We perform extensive scans covering 2.9
billion addresses of the IPv4 space and identify a total of 21,855 honeypot instances.
Moreover, we present a number of interesting side-findings such as the identification of
around 355,000 non-honeypot systems that represent potentially misconfigured or un-
patched vulnerable servers (e.g. SSH servers with default password configurations and
vulnerable versions). We ethically disclose our findings to network administrators about
the default configuration and the honeypot developers about the gaps in implementation
that lead to possible honeypot fingerprinting. Lastly, we discuss countermeasures against
honeypot fingerprinting techniques.

1 Introduction
Honeypots are decoy systems whose only value lies in being probed, attacked, and
compromised. They attempt to lure attackers in, to provide an early warning system,
and act as a method for understanding the adversaries’ mindset and determining new
attack trends [1]. Honeypots are not a stand alone security mechanism but rather
important supplements to existing infrastructure (e.g. firewalls and Intrusion Detection
Systems (IDS)). Nevertheless, they offer a unique attack understanding and perspective,
while exhibiting a very low number of false positives. The latter is due to the fact that
any communication towards a honeypot is considered hostile; i.e. benign users have no
reason to contact a honeypot.

Honeypots are commonly classified based on the interaction level they offer to the
adversary. This results in low, medium and high-interaction honeypots [2]. While the
first two categories offer different levels of emulation of protocols, the latter (i.e. high-
interaction) describes real world systems. High-interaction honeypots are too expensive
to maintain and significantly less used than low/medium interaction; hence, we consider
them out of the scope of this article. Over the years, low and medium interaction
honeypots have been designed and developed to emulate the majority of commonly used
protocols. These include SSH (e.g. Kippo [3] and Cowrie [4]), Telnet (e.g. Cowrie [4]),
HTTP (e.g. Glastopf [5]), FTP, SMB (e.g. Dionaea [6] and HosTaGe [7]) and also

24 Paper A.

Industrial Control Systems (ICS) protocols like Modbus and S7 (e.g. Conpot [8] and
HosTaGe [9]). Other research-based honeypots include AmpPot [10] that simulates
UDP-based protocols like NTP, SSDP which can be abused for DRDoS attacks and
RIoTPot [11] a modular and hybrid interaction honeypot that aims at operating a
honeypot at ternary interaction levels.

One of the key success criteria for a honeypot is that it is indistinguishable from a
real system. This can be translated to the following axiom: if a honeypot can be easily
identified as such, then its value is significantly decreased. The reason for this is that
an adversary can potentially either evade honeypots (e.g. perform reconnaissance and
add a blocklist of IP addresses into their malware, to avoid honeypots and reduce the
risk of detection [12]) or attempt to take them down (e.g. via a Distributed Denial of
Service (DDoS) attack). Note that modern malware (e.g. Hide’n Seek [13]) already
include hard-coded IP addresses (e.g. belonging to known security agencies) that are
blocklisted from all communications. Honeypot fingerprinting is the process of revealing
that a seemingly vulnerable system is, in fact, a honeypot.

In this article, we perform a comprehensive analysis of honeypot fingerprinting tech-
niques. For this, we present a holistic framework that includes a number of novel
fingerprinting methods along with all major state of the art techniques. Among oth-
ers, we propose a new protocol handshake fingerprinting component, a static Transport
Layer Security (TLS) certificate method and a Fully Qualified Domain Name (FQDN)
check. Furthermore, we present the results of extensive honeypot identification scans
over the Internet for 9 prominent honeypot implementations. Our results come as an
independent confirmation of previous studies ([14, 15]) but also as a step forward to a
more holistic study of honeypots. In particular, due to the multistage checks that our
framework performs, we argue that the presented results have a very low probability
for false positives. Moreover, we present several insights for IP addresses that are not
marked as honeypots, but are likely to be real vulnerable systems. Lastly, we discuss
ethical considerations and possible countermeasures against fingerprinting. The core
contributions of this article can be summarized as follows:

• We present novel methods for active honeypot fingerprinting (so-called probe-
based). These are combined with a number of SotA and third-party (so-called
meta-scan) fingerprinting techniques in the form of a multistage fingerprinting
framework. We scan 2.9 billion IP addresses of the IPv4 space, discover 187
million IP addresses with relevant open ports and identify a total of 21,855
honeypots.

• We showcase that out of the 21,855 identified honeypots, third-party tech-
niques can only reveal 33.9% of the total honeypot population. On the
contrary, we show that most of the honeypots can be identified via our probe-based
methodology with less false positives.

• As a side finding, we identify more than 355,000 potentially vulnerable entities

2. Multistage Honeypot Fingerprinting Framework 25

(i.e. SSH and FTP servers) that are not honeypots and appear to use trivial
passwords and/or are susceptible to high-severity vulnerabilities.

The rest of the article is structured as follows. We propose our framework for
honeypot fingerprinting in Section 2. Section 3 presents our evaluation. Section 4
discusses ethical considerations, fingerprinting countermeasures and the limitations. In
addition, in Section 5 we discuss countermeasures against fingerprinting. Section 6
presents the related work on honeypot fingerprinting research. We conclude the article
in Section 7.

2 Multistage Honeypot Fingerprinting Framework
Researchers classify fingerprinting techniques as active and passive, based on attacker-
honeypot interaction [16]. Active-fingerprinting involves creating specific probes and
using them to querying the target system to collect as much data as possible. On the
contrary, passive-fingerprinting makes use of available data about the target system for
further analysis to determine information about the target.

In the following, we attempt to examine methods in both the active and passive
spectrum in Section 2.1 . On the one hand, we assume that attackers prefer passive
methods since they come with multiple benefits. Mainly, they are stealthier (i.e. no
direct communication to the honeypot is needed) and easier to use (e.g. systems like
Shodan [17] already exist and offer an Application Programming Interface (API) for such
purposes). On the other hand, our hypothesis is that active approaches can identify a
much broader set of honeypots. We propose the novel framework (see Section 2.2) that
utilizes both active (Probe-based fingerprinting) and passive fingerprinting(Metascan-
based fingerprinting) techniques to fingerprint honeypots deployed on the Internet. The
aim of the proposed framework is to systematically fingerprint honeypots with multiple
sequential checks to reduce false positives. In comparison to state of the art (c.f. Section
6), we employ novel probing methods that include certificate checks, protocol handshake
and metascan methods that check for Internet Service Provider (ISP) and cloud hosting
information. The framework is further automated for all the checks involved in each
fingerprinting technique that helps in automated transition to stages during the scanning
process.

2.1 Overview
This section provides an overview of the proposed multistage fingerprinting framework
and the detection techniques.

26 Paper A.

Portscan

HTTP/HTTPS

Banner
Check

FTP/Modbus/S7/IMAP/SMTP

Protocol
Handshake

HTTP Static
Response

SSL/TLS
Certificate Check

Library
Dependency

Check

Static Command
Response

FQDN
Check

Open
Ports

SSH/FTP/S7/
Modbus/ IMAP/

SMTP

HTTPS

HTTPS
HTTP

SSH/
Telnet

SSH/
Telnet

Censys

Shodan

Keyword
Search

ISP/AS
Check

Cloud
Hosting
Check

Open
Ports Search

Results
HTTPS/HTTPS/SSH/

FTP/Telnet

Modbus/
S7

Honeypot

State-of-the-Art Modules

Novel Modules

Probe-based Fingerprinting Pipeline

Metascan-based Fingerprinting Pipeline

Fig. A.1: Multistage Framework for Honeypot Fingerprinting

Probe-based fingerprinting

Probe-based fingerprinting involves the creation of queries to derive fingerprinting infor-
mation and involves direct interaction with a system. These methods focus on leveraging
the data from responses and classifying the target machine based on fingerprinting iden-
tifiers. The information may include system-specific unique identifiers like the Initial
Congestion Window (ICW) or the Retransmission Time Out (RTO). Several finger-
printing tools like NMap [18], XProbe2 [19], Metasploit [20], and Hydra [21] utilize
probe-based methods to determine the Operating System (OS) and the protocol ver-
sions of the target systems. For example, these tools rely on banners advertised and the
Transmission Control Protocol (TCP) header information to determine the underlying
OS. The database of the scanning tool stores the identifiers that are specific to some OS.
The identifiers help compare parameter values obtained through probing for determining
the OS. The fingerprinting probes derive multilevel system information at network-level,
application-level, and the system-level. The integration of the information received from
different levels improves detection accuracy.

Metascan-based fingerprinting

Metascan-based fingerprinting is a form of passive-fingerprinting that leverages the
known information about the target system without direct interaction. The tech-
nique uses the IP address and performs a search on Internet mass-scan engines (e.g.
Shodan [17] and Censys [22]) to obtain attributes like hosting provider and the Inter-
net Service Provider (ISP). The data obtained through metascan can be leveraged for
fingerprinting purposes. For example, if the target system has the TCP port 502 (i.e.

2. Multistage Honeypot Fingerprinting Framework 27

the Modbus protocol default port) open and the IP address is attached with a network
assigned to a university or research facility, this might act as an indication that the
target system is a research honeypot. Similarly, if a cloud provider hosts the aforesaid
system, it is likely a honeypot because ICS are physical devices that are deployed in an
industrial network and are unlikely to be hosted by a cloud provider.

Mass-scan engines like Shodan and Censys crawl the Internet IP-space daily to find
vulnerable systems exposed to the Internet. They also store system- and network-specific
information about the exposed systems like banners, HTTP content, certificate, open
ports, and services. Furthermore, they provide metadata like the ISP, Autonomous
Systems (AS), and geo-location of the systems. Metascan fingerprinting techniques
rely on essential information about target systems for the fingerprinting process. Such
information can be obtained through the APIs offered by Shodan and Censys. Hence,
the mass-scan engines can act as a substitute for the probe-based checks and provide
the information required without interacting with the target systems.

2.2 Framework
We construct a framework that combines both probe- and metascan-based methodolo-
gies. The framework is automated for the sequential checks for the probe-based and
the metascan-based techniques. The probe-based technique uses methods that involve
direct interaction with the target machine to fetch fingerprinting-information, while the
metascan-based techniques use methods that involve no direct interaction with the tar-
get systems. In particular, the latter uses information derived from the Shodan and
Censys mass-scan engines. Some mass-scan engines employ banner-based fingerprinting
to fingerprint device types. For example, Censys [22] uses the Recog engine [23] to
detect device types using the information received by probing. The methods used in
the proposed metascan pipeline are novel specifically towards honeypot fingerprinting.
The novel methods of using the information about the ISP and checking if the instance
is on a cloud environment assist us in gathering additional information that can be
leveraged for the fingerprinting process. In addition, these methods help in reducing of
false positives from the results. We term the target system considered for fingerprinting
as an instance for the rest of our article.

Figure A.1 shows the proposed multistage fingerprinting framework. The framework
contains two independent main pipelines of Probe-based and the Metascan-based tech-
niques. The Probe-based Pipeline has multiple stages that are represented as boxes in
the figure, with each stage aiming at fingerprinting the instance at various levels (i.e.
network-level, application-level, system-level, protocol-level, implementation-level, and
configuration-level). The boxes are color-coded to gray and green for further classifi-
cation. The gray boxes denote that the stages refer to the state of the art, while the
green boxes represent the novel methods. The novel methods are comprised of persistent
checks that enrich the likelihood of the instance to be a honeypot. In the Metascan-

28 Paper A.

based Pipeline, the stages represent systematic checks referring to passive-fingerprinting
techniques and data analysis. Overall, an instance is only labeled as a honeypot if all
(relevant) components of the respective pipeline concur.

Probe-based Fingerprinting Pipeline

The Probe-based fingerprinting pipeline consists of seven probing stages. The instances
under evaluation transition into the next stage, based on the underlying application
service protocol. The probes from each stage fetch information which is then analyzed
to derive whether the instance is a honeypot.

Portscan The pipeline begins by performing a scan on the Internet for open ports
specific to the services emulated by the honeypots. Our framework utilizes ZMap [24]
for this process (alternatively one could use Masscan [25]). The search results consist
of a list of instances having these ports open to the Internet. Recent research reveals
faster Internet services across all ports by running a predictive network that learns from
extremely small sample sizes [26]. Augmenting such frameworks could improve this
stage and as a result the pipeline.

Banner Check The results of the portscan are further processed in the banner check
stage. In this stage, the probes check the banner advertised by the end system with
static banners offered by honeypot implementations. Honeypot implementations offer a
limited set of banners or even static banners that, in some cases, do not match the ac-
tual banners advertised by the services running on the underlying OS. As these banners
are hard-coded, they can be matched against a list of known honeypot banners. We use
the extended banner grab utility offered by ZMap to fetch banners from instances [27].
SotA honeypot fingerprinting techniques by Vetterl et al. [14] and Morishita et al. [15]
employ banner based fingerprinting to detect honeypots. We combine this knowledge
(see Table A.10 in the Appendix) to construct a holistic banner list for our framework.
The results of this stage provide us with a list of instances and their banners. The
instances that match the banners advertised by honeypots progress into the next stage
based on the underlying protocol. For the instances that do not match the banners,
we perform a vulnerability check that determines the number of vulnerable systems on
the Internet with specific protocol versions (see Section 3.3 in the evaluation). Finger-
printing honeypots only with banner checks is prone to false positives, and therefore,
we subject the instances to further protocol level and system-level checks.

HTTP Static Response The filtered instances with HTTP and HTTPS service
identified in previous stages are checked for static HTTP content in their response.
Honeypots emulating the web services offer limited content by default which can be
identified. The instances are queried with an HTTP GET request to fetch the content

2. Multistage Honeypot Fingerprinting Framework 29

and then match the static default content offered by the honeypots. Table A.11 in the
Appendix shows the HTTP response returned by honeypots. Upon match of static
content, the instance continues to the next stage. This technique was adapted from
[14, 15] for fingerprinting HTTP-based honeypots.

SSL/TLS Certificate check This stage compares certificate-specific attributes to
known values from default certificates provided by honeypots. Some honeypots offer
hard-coded TLS certificates that can be leveraged to fingerprint honeypot instances.
Though there is a change of fingerprint on each certificate, attributes like issuer and
provider remain static. We add this stage, particularly for honeypots that use any cer-
tificates. During our study, we observe that the Dionaea honeypot contains a certificate
issued by a provider name that is consistent in all its deployments [28]. The SSL/TLS
Certificate check component stage checks the attributes certificate issuer and the com-
mon subject name of the certificate retrieved from web servers to identify Dionaea hon-
eypots on the Internet. The stage can be extended further to include other honeypots
that use any certificates. Algorithm 1, in the Appendix, represents the pseudo-code
block that checks an instance for Dionaea’s default certificate parameters.

Protocol Handshake The communication of systems over any network is established
upon the negotiation of various communication parameters, before building a channel.
Honeypots offer limited emulation and communication preferences. This limitation is
caused due to the honeypot design or the utilization of certain protocol emulation li-
braries. We exploit this limitation of deviated behavior, in the protocol negotiation pro-
cess, to identify honeypots. First, we observe the deviation in the negotiation process
and the limited availability of parameters by establishing communication with in-house
lab honeypots (see Section 3.2). We develop probes that attempt to establish a connec-
tion through limited parameters and observe the response for deviation for all emulated
services. Table A.1 summarizes the responses for certain negotiations of protocols. We
observe protocol handshake deviations that cause the acceptance of malformed request
packets, return limited options for negotiation, or disconnect the session with an ar-
bitrary message that is different from non-honeypot implementations. Algorithm 4 in
the Appendix describes the protocol handshake checks. The algorithm accepts a list of
instances with their IP address and port. For each instance, a request is sent for session
initiation with specific parameters. The response is analyzed for deviations that match
the response from honeypots. Upon match, the flag isDeviated is set and such instances
progress to the next framework stage.

Library Dependency Check Emulations in low and medium-interaction honeypots
are often developed by referring to external libraries. Libraries offer limited emulation
capabilities based on their design and frequently return static values in certain queries.

30 Paper A.

Honeypot Protocol Request Response

Kippo SSH SSH-2.0-OpenSSH \n\n\n\n\n\n\n\n\n\n "bad packet length *" or
"protocol mismatch\n"

Cowrie SSH 1. SSH-2.0-OpenSSH_6.0p1 Debian-4+deb7u2 \n
2. SSH-2.0-OpenSSH_6.0p1 Debian-4+deb7u2 \n "protocol mismatch\n"

Gaspot Telnet I30100 9999FF1B

Conpot S7 "H", "0300002102f0803207000000000008 \n
00080001120411440100ff09000400110001"\n 0x32

Conpot Modbus function_code’: None, ’slave_id’: 0, \n
’request’: ’000000000005002b0e0200’ \n Disconnection

Glastopf HTTP GET /HTTP/1.0 Server: BaseHTTP/0.3 Python/2.5.1
Dionaea HTTP GET /HTTP/1.0 Server: nginx
Amun HTTP GET HTTP/1.1 Server: Apache/1.3.29
MTPot Telnet WILL (251) Linemode Won’t (252) Linemode

Table A.1: Protocol handshake deviation

Honeypot Protocol Library Updated
Kippo SSH TwistedConch May2015
Cowrie SSH TwistedConch May2018
MTPot Telnet telnetsrv Dec2012
Cowrie Telnet TwistedConch May2018
Dionaea HTTP custom Sep2016
Glastopf HTTP BaseHTTPServer Oct2016
Conpot HTTP BaseHTTPServer Mar2018

Table A.2: Library references in honeypots

Furthermore, some libraries referred by honeypots have not been well maintained. Vet-
terl et al. have leveraged the use of libraries in honeypots to craft specific probes that
return static values [14]. This static information can be used to fingerprint the honey-
pots. Table A.2 shows the libraries used by many well-known honeypots for the service
emulation and their last update. Leveraging the aforementioned static implementation
and limited emulation, we develop the probes based on [14] that request for specific
information from the end-systems. We compare the response to known static responses
from the honeypots. We proceed in case of a match. In honeypots, protocol handshake
is also dependent on the library used for emulation purposes and hence these two stages
are intertwined. Nevertheless, we use this check to check for additional dependencies
that can signal static behavior.

Static Command Response Due to the nature of honeypots, developers are com-
pelled to implement some services with static responses or disconnect the communication
for specific command requests. For instance, some honeypots attempt to overcome such
issues via a static response (e.g. "Invalid Command"), or disconnect with the user. We
leverage this gap in implementation for having probes request systems with commands

2. Multistage Honeypot Fingerprinting Framework 31

to expect known static responses from the end systems. Table A.14 shows the static
response returned by honeypots for specific commands by our probes.

Metascan-based Fingerprinting Pipeline

Metascan-based techniques aim at honeypot detection using passive-fingerprinting tech-
niques. Our framework uses information available through Shodan and Censys to deter-
mine if an instance is a honeypot. The metascan-pipeline consists of four stages based
on the underlying protocol. Although some SotA, e.g. [15], have used mass-scan engines
to search for honeypot signatures, we use persistent checks in our stages to assure that
the instance is a honeypot. We use checks to determine if the network belongs to a
research facility, has an identified domain attached to it, or if the instance is on a cloud
infrastructure. This information helps to further distinguish the honeypots by analyzing
operational parameters.

Shodan and Censys Search Contrary to the probe-based scanning that requires
us to use a tool to perform the scan, we leverage the available data from Shodan and
Censys that perform the scans daily. We search the platforms for systems with open
ports concerning the services emulated by honeypots in our tests. The result of the
search provides a list of instances that undergo further fingerprinting process. Both
Shodan and Censys provide APIs for querying their databases. Algorithm 3 in the
Appendix shows the procedure for the search performed on Shodan and Censys. The
search results return an IP address and port, for the identified instances.

Keyword Search Shodan and Censys store information about the systems exposed
to the Internet that include banners, web content, protocol negotiation parameters, and
more. In addition to system-specific information, they also provide metadata about the
IP address allocated to the system like geo-location, ISP/AS and the hosting provider.
The degree of information and the format available on these databases vary based on
the techniques followed by the mass-scan engine. We leverage such information to filter
the instances obtained in the previous step. The search is performed with keywords
identified from the probe-based stages like static content, banners, and protocol negoti-
ations. Table A.13 shows the used keyword parameters for filtering instances in Shodan
and Censys. The resulting data contains a list of instances of systems with specific ports
and matching filtered criteria.

ISP and AS Check Honeypots are also classified based on their usage in research and
production environments. Research organizations deploy honeypots to gather attack-
data for threat intelligence research. Enterprise systems deploy honeypots for proactive
attack detection. Following the previous stages, we examine whether the instance is part
of a research organization or an institute. It is also possible that an enterprise company

32 Paper A.

may be hosting a production honeypot with an unassigned domain. For instance, the
honeypots deployed in our lab lie under the university AS while they do not have a
domain registered to them. To cope with this, this component checks the WHOIS
database to search for information about the network to which the system is attached
to.

Cloud Hosting Check Cloud infrastructure enables defenders to set up and de-
ploy honeypots on cloud environments to easily gather attack-data. Many honeypot
developers offer a container-based configuration of honeypots for easy installation and
deployment. As a result, many honeypot instances can be found in cloud instances.
We argue that many honeypots are deployed in cloud environments though they are
logically invalid for the emulated infrastructure. For example, we find many instances
of Conpot, an ICS based honeypot, which emulates industrial cyber-physical systems.
However, it is improbable to find ICS devices on cloud networks. This component checks
whether instances related to specific ICS protocols (i.e. Modbus and S7) are deployed
on a cloud infrastructure.

Fully Qualified Domain Name (FQDN) check

A FQDN is allocated to an Internet-facing system to avoid memorization of the IP
addresses. We perform a check to examine whether the identified instances from both
pipelines have an assigned Domain Name Service (DNS) domain. Honeypot systems,
by design, are fake systems and are unlikely to have domain names allocated as it is
risky for the organizations deploying them. For instance, an attacker may claim to have
found a vulnerable or compromised system belonging to an enterprise domain, result-
ing in negative publicity for an organization. Therefore, administrators, in principle,
avoid assigning a domain/DNS for the honeypots. We utilize this understanding of the
administrators and filter the IP addresses received from the IP pool to find systems
without domain names assigned. The reverse DNS lookup is performed using the Do-
maintools that provides an extensive database for whois() information [29]. The IP
addresses that do not have a DNS are transitioned to the next state. The FQDN check
differs from the AS check, in a way that it checks for any domain associated with the
IP address, while the AS check performs a lookup of the IP address allocation by the
AS to an entity. The information about the AS and the ISP helps in identifying the
type of entity, for example, a research organization or honeypot instance in a production
network of an organization.

Framework Output

The output state of the framework provides a list of instances that are inferred as
honeypots from our fingerprinting framework. The list contains instances from both the
probe-based and the metascan-based honeypots.

3. Evaluation 33

3 Evaluation
We evaluate the ability of the proposed multistage honeypot fingerprinting framework
in discovering honeypots. The evaluation considers nine honeypot implementations and
specifically focuses on nine protocols as listed in Table A.3. The choice of honeypots
is based on a number of factors. First, these honeypots are considered some of the
most popular ones and most frequently deployed (see e.g. the ENISA recommendations
in [30]). Moreover, these represent the honeypots examined in the majority of the related
work (cf. Section 6), which provides us the ability to make some comparisons (e.g.
with [14, 15, 31]). Lastly, all of the selected honeypots are open-source implementations.

Our main goal is to examine how many honeypots the framework can identify. We
highlight here that the absence of ground truth data for honeypots is a known problem in
the field. However, we argue that the multistage nature of the framework highly reduces
the probability for false positives (we further discuss this issue in Section 3.5). In addi-
tion, we want to determine the relation between the probe-based and metascan-based
detection. Our hypothesis is that the probe-based pipeline should produce significantly
better results. Still, the question of whether the metascan pipeline can identify honey-
pots beyond the ones already identified via the probe-based methods is an open question
that we will attempt to answer. Lastly, we are interested in further examining encoun-
ters with IP addresses that pass some, but not all, of our tests. We believe that these
systems might be vulnerable ones, which can easily be exploited by adversaries.

3.1 Lab environment tests
First, we deploy all the honeypot implementations (see Table A.3) in a lab environ-
ment and test all probes which are implemented to collect state-specific information like
banners, static content, protocol handshake and static command responses. We con-
firm that honeypots test positive for all the different modules (see Figure A.1) of the
probe-based phase. Following these tests, we evaluate the multistage framework against
the known honeypot instances in the lab environment. All the honeypot instances were
successfully detected by our framework.

3.2 Evaluation Setup
After performing the aforesaid experiments, we are now ready to perform an Internet-
wide scan. We use the ZMap tool as our scanning tool [24] to scan a total of 2.9
billion IP addresses∗. Our tests follow the flow of Figure A.1. That is, we first perform
a probe-based scan and afterwards perform an independent metascan by making use
of Shodan and Censys [17, 22]. Our experiments were conducted in a period of six

∗ZMap excludes a number of IP addresses from its scan by default; these include reserved and
unallocated IP space.

34 Paper A.

Honeypots Ports & Services Version

Kippo Ports:22/2222
Services: SSH 0.9

Cowrie Ports: 22/2222 23/2323
Services: SSH, Telnet 2.1.0

Glastopf Ports: 80, 8080
Services: HTTP 3.1.2

Dionaea Ports: 80, 443, 21
Services: HTTP, FTP 0.9.0

Nepenthes Ports: 21
Services: FTP 0.2.2

Amun Ports: 23,21,80,36,143
Services: Telnet, FTP, HTTP, SMTP, IMAP 0.2.3

Conpot Ports: 80, 502, 102
Services: HTTP, Modbus, S7 0.5.2

Gaspot Ports: 100001
Services: ATG base [32]

MTPot Ports: 23
Services: Telnet base [33]

Table A.3: Honeypots tested in our internal lab environment

months. The experiment is carried out as 3 scanning periods, for the entire-framework.
The metascan-based approach was relatively faster to perform the search and analysis,
although Shodan and Censys enforce rate limiting on the API requests. Over a period of
six months, we conducted three iterations. The results depicted in the following sections
provide a summation of all the unique honeypot instances identified from the three scan
iterations.

We, once more, highlight that this article does not take into account high interaction
honeypots. This is due to the very different characteristics of high interaction honeypots
(i.e. real systems instead of emulated ones); in fact, this is the case with all the SotA
(e.g. [14, 15, 31]). Hence, both our article as well as all existing related work are prone
to false negatives.

3.3 Results
By firstly performing a ZMap scan, we derive Table A.4 that shows the number of
identified systems (not necessarily honeypots) on the Internet that exhibit relevant open
ports. Subsequently, the framework performs the various checks shown in Figure A.1.

3. Evaluation 35

Protocol Port No. of Systems on the
Internet (in Million)

HTTP 80,8080,
8888 67.31

HTTPS 443 56.06
SSH 22 18.65
FTP 21 10.39

SMTP 25 7.71
Telnet 23 5.27

Table A.4: Number of identified instances and protocols/ports

Honeypot identification

Overall, the framework detected a total of 21,855 honeypots. Figure A.2 shows the
honeypot instances detected over three sequential scans over a period of 6 months.
Figure A.2 also depicts the change in honeypot instances detected over the 3 scans.
The instances of honeypots Gaspot, Conpot and Amun (HTTP) were detected more
in the third scan while the others remained constant or reduced. This could be be-
cause of honeypots instances undergoing either a churn or because they were simply
blocked/offline. IP churn is the rate at which a networked host changes its IP address
as a result of a changed configuration by the ISP or the network administrator of the
organization. We discuss this further in Section 3.5. The metascan-based technique has
identified 7, 410 unique honeypots and the remaining 14, 246 were detected by the probe-
based technique. Figure A.3 summarizes the honeypots detected by probe-based and
metascan-based approaches for each honeypot. The numbers on the bars indicate the
unique instances detected by the approaches and scans. An interesting finding is that
all IP addresses identified as honeypots by the metascan-based approach were already
detected by the probe-based approach. This is important as it confirms our hypothesis
that probe-based is superior to the metascan. In fact, this suggests that the metascan
pipeline can be ignored without any loss of information.

Figure A.4, compares our findings with the SotA measurements from Vetterl et
al. (Bitter Harvest) [14], Morishita et al. (Detect Me) [15] and Zamiri et al. (Gas
What?) [31]. The figure shows the total honeypot instances detected by SotA in com-
parison to our approach. We note that the honeypots Nepenthes and Amun were not
evaluated by [14]; in addition, [31] only evaluated Gaspot and Conpot honeypots. We
want to highlight that the value of this figure does not lie within the improved results
on the majority of the honeypots. Direct comparison with previous measurements is not
adequate due to the different time frame. Instead, we argue that these results suggest
a number of interesting findings. First, they independently confirm previous studies’
conclusions with regard to the global (poor) state of honeypot deployments [14]. Sec-

36 Paper A.

0 500 1000 1500 2000 2500 3000 3500 4000
#Instances

Gaspot
MTPoT

Nepenthes
Conpot

Kippo
Amun(HTTP)
Amun(IMAP)
Amun(SMTP)

Amun(FTP)
Cowrie

Glastopf
Dionaea

H
on

ey
po

ts
Honeypots detected by scans

Scan1
Scan2
Scan3

Fig. A.2: Honeypots detected per scan

Fig. A.3: Honeypots detected by type and technique

ond, our results come more than one year after the aforesaid studies: this provided a
relatively long period for honeypot administrators to react, while many honeypots (e.g.
Conpot) have been updated to fix relevant vulnerabilities. Lastly, the multistage nature

3. Evaluation 37

of our framework suggests that, in contrast to related work, we should encounter a very
small number of false positives. That is, IP addresses are only marked as honeypots
when all (relevant) stages are confirmed.

Gaspot MTPoT NepenthesConpot Kippo Cowrie Glastopf Dionaea Amun
Honeypots

0

1000

2000

3000

4000

5000

6000

7000

D
et

ec
te

d
In

st
an

ce
s

Multistage Framework
Detect Me
Bitter Harvest
Gas What?

Fig. A.4: Comparison to previous measurements in related work

Honeypot Versions

We determine the versions of the instances detected as honeypots by examining specific
changes added to the honeypots through patches released by the developers. However,
versions could not be determined for some honeypots that do not maintain releases (i.e.
MTPot and Gaspot). We find that the majority of the honeypots detected, have not
been updated by the administrators even though there were patches released by the
honeypot developers (e.g. for certain fingerprinting attacks). Furthermore, we detect
instances running on honeypots that are no longer maintained by the developers. The
developers of these honeypots disclose that the project has been discontinued and also
suggest newer honeypots under active maintenance. We list the instances with the
identified deployed versions in Table A.5.

Honeypots with Default Configuration

The honeypots considered in our tests can be deployed with a default configuration. Nev-
ertheless, for some honeypots, the developers explicitly provide additional templates and

38 Paper A.

Honeypot Deployed
Version #Instances

Conpot
0.5.2*

0.5.2
0.5.0
0.4.0

221
496
167

Cowrie
2.1.0*

2.1.0
1.5.3
1.5.1

17
232
2925

Glastopf
3.1.2*

3.1.2
0.2.0

4
3416

Dionaea
0.8.0*

0.8.0
0.6.0

2259
1782

Table A.5: Detected honeypot versions (* latest version)

guidelines to change the default settings. The usage of default honeypot configuration
can be problematic as it makes fingerprinting significantly easier.

To determine this, we compare the cumulative results from the framework’s HTTP
Static Response and the Static Command Response stages to the default configuration
of the deployed honeypots in our lab environment (see Section 3.2). Therefore, upon
matching, we can infer that the instance is a honeypot deployed with its default con-
figuration. We observe that the majority of the detected honeypots are running with
default configurations that make primitive fingerprinting techniques like static http-
content very successful. We list the number of honeypot instances running with default
configurations in Table A.6.

Honeypots #Instances with
default configuration

#Instances without
default configuration

Gaspot 925 40
MTPot 215 0
Conpot 777 107

Nepenthes 531 58
Kippo 773 23
Cowrie 3149 25
Amun 7455 57

Glastopf 3416 4
Dionaea 4064 37
Total 21305 351

Table A.6: Detected honeypots running on default configuration

3. Evaluation 39

Non-honeypot encounters

As a result of multistage checks from the framework, instances are filtered out at each
stage when they fail the matching criteria. We further analyze the non-honeypot in-
stances that were filtered out at multiple stages to determine the cause of filtration at a
particular stage and/or the success in other stages. Table A.12 in the Appendix shows
the non-honeypot instances determined at stages in our framework based on honeypot
types. Furthermore, we find a total of 355, 054 vulnerable systems (see Table A.7) with
unpatched versions and default passwords among the non-honeypot systems identified.
Based on this, we derive the following findings.

Vulnerability # Instances
Default passwords (SSH)

root, root
admin, admin
root, 1234
admin, 1234
root, 123456
root, (no password)
admin, (no password)

216
124
23
43
21
18
28

Default passwords (FTP)
root, root
admin, admin
root, 1234
admin, 1234

94
29
19
8

Vulnerable Banners (SSH)
SSH-2.0-ROSSSH
SSH-2-0-libssh-0.7.0(5)

263,516
196

Vulnerable Banners (FTP)
220 ProFTPD 1.3.5 Server
220 ProFTPD 1.3.1 Server
220 Serv-U FTP Server v6.2

53,873
15,823
21,023

Total 355,054

Table A.7: Vulnerable instances of identified non-honeypot instances

SSH and FTP Instances with Default Passwords We find SSH instances running
on default passwords that met the initial criteria for SSH honeypot detection in our
framework, but fail in other stages (e.g. static command and library checks). These
instances’ credentials match the ones of the default passwords accepted by Kippo and
Cowrie honeypots. Our conclusion is that these are either vulnerable devices with

40 Paper A.

default logins or high-interaction honeypots. We list the number of vulnerable SSH
instances found with default passwords in Table A.7.

SSH and FTP Instances with Vulnerable Versions From the instances that
were filtered out of the banner check stage (in the probe-based pipeline), we identify
the number of instances that appear to contain vulnerable versions in their banners.
In particular, we take into account banners that have a high severity vulnerability (by
making use of the National Vulnerability Database [34]). We identify a total of 263, 712
instances with vulnerable versions as per the advertised banners. The banners and the
number of instances identified are listed in Table A.7.

Experiment repetition: gain and blocked/offline instances

Due to the nature of our experiments (i.e. long time windows and rather aggressive
fingerprinting scans) we expect that: i) we will observe some fluctuation in our results,
ii) we will have some gain as new honeypots are introduced on the Internet, iii) we
expect some of the networks to blocklist our scanners, and lastly iv) we anticipate some
honeypots not to be responsive due to them taken down, maintenance and/or network
errors.

We scan the Internet with a different scanning host that has different IP address
and subnet. We compare the results from the different scanning periods to identify new
and existing honeypot instances. In the next step, we analyze the IP address of the
new honeypot instances detected against our framework and check the IP address for
their subnet and their AS. If the IP address belongs to a different subnet but belongs
to the same AS, and further matches to the properties of the honeypot identified in
the previous period, we infer that the honeypots are the same but had some churn-
related effects. Moreover, we further examine the gain vs. blocked trade-off by trying
to connect to the new IP address of the honeypot instance from our previous scanning
host. If the honeypot instance blocks the connection from the first connected host but
was connected by the second scanning host, then it is very likely that the honeypot
administrator has blocklisted the IP address of the first scanning host.

Table A.8 shows the number of new honeypot instances detected in the scans and
the instances that were either blocked or offline. There was a significant number of
new Nepenthes honeypots instances detected in the third scan. On tracing the IP
addresses of the new instances, we find that all the new detected honeypots were hosted
by a hosting provider which was traced earlier hosting Nepenthes instances on another
subnet. We can infer that either the honeypots were configured to undergo some IP
rotation logic or were simply offline for a certain period. Overall, we find that only 2.3%
of the honeypot instances have changed their IP and only 1% are not offline after the
first scan.

3. Evaluation 41

Honeypot Scan-2
New Instances

Scan-2
Blocked/Offline

Scan-3
New Instances

Scan-3
Blocked/Offline

Gaspot 567 12 387 11
MTPoT 0 1 0 23

Nepenthes 0 3 573 16
Conpot 367 33 110 23
Kippo 0 4 0 13
Amun 0 3 63 51
Cowrie 0 4 0 98

Glastopf 3 2 0 13
Dionaea 0 0 0 0

Table A.8: Identification gain vs. blocked/offline instances

3.4 Shodan Honeyscore
The Shodan Honeyscore is a proprietary algorithm used to determine whether a crawled
instance is a honeypot or not [17]. Shodan offers an API that provides a score for
IPs detected as probable honeypots. The score ranges from [0, 0.3, 0.5, 0.8, 1], with 0
denoting that the IP is not a honeypot and 1 that it is. The API also returns the value
NA when no information is available for a specific IP address. Since the Honeyscore
is not open source, not many conclusions can be derived by examining its output. In
fact, it is not disclosed which honeypots can be identified by Shodan’s Honeyscore.
Nevertheless, we expect that there is some overlap with regard to the fingerprinting
techniques used by our framework and Shodan’s Honeyscore.

We fetch the Honeyscore for all the honeypot IP’s determined by our framework
and compare the results with Shodan. Figure A.5 depicts the Honeyscore assigned
to honeypot instances detected through our framework (for the combination of both
metascan and probe-based results). We observe that Shodan returns 0 as Honeyscore
for many of the IPs. This suggests that the Honeyscore is not taking into account as
many checks as our framework. Moreover, the high deviations observed with regard
to Glastopf and Amun suggest that Shodan is not very effective in identifying such
honeypots.

3.5 Validation
The absence of ground truth knowledge regarding honeypots creates a challenging land-
scape for measuring metrics such as precision or possible false positives. This is a
fundamental problem in the area of honeypot fingerprinting that cannot be solved in
its entirety. Hence, in the following we attempt to provide indications on why false
positives are not a significant issue in our approach.

42 Paper A.

0 500 1000 1500 2000 2500 3000
Honeypot Instances - Probe-based

Amun

Conpot

Cowrie

Dionaea

Gaspot

Glastopf

Kippo

MTPoT

Nepenthes
H

on
ey

po
ts

Honeyscore
0
0.3
0.5
0.8
1

Fig. A.5: Comparison with Shodan’s Honeyscore

First, in contrast to the state of the art, we propose a framework that requires
multiple steps to be confirmed until an IP address is marked as a honeypot. These
steps include a multitude of independent checks which, we argue, significantly decrease
the probability of false positives. Looking at the SotA, Vetterl et al. [14] measure the
detection accuracy using the responses received from the honeypots by generating a
cosine similarity score and Morishita et al. [15] use the matching of honeypot signatures
in four datasets. In contrast, our approach relies on multiple checks at each stage to
minimize false positives.

Second, we replicate and extend the ground truth validation proposed by [15] and
[35]. Morishita et al. argue that a honeypot IP address cannot be present in IP spaces
that are known for their commercial usage. This argument obviously does not solve the
absence of ground truth, but rather provides a minor indication that the identified IP
addresses are not clear false positives. Vogt et al. also use a similar validation in their
evaluation to check if the domain identified by their model is listed on sources providing
web-statistics like the top 1 million domains [35]. In this context, we evaluate our results
by comparing the identified honeypot IP addresses with the top 1 million domains from
Alexa [36], Majestic [37] and Cisco-Umbrella [38] with known benign FTP servers, as
well as known university SMTP domains. For this evaluation we fetch the Alexa top 1
million domains from Alexa, perform a DNS lookup and examine whether our results
match them. Similarly we fetch the top 1 million domains from the Majestic and the
Cisco-Umbrella websites. We confirm that none of IP address from these domains are

4. Discussion 43

found in our results. We note that the IP addresses for some of the domains change
based on the geo-location of resolution due to the Content Delivery Network (CDN).
Hence, we repeated the experiments by connecting to many different geo-locations by
using a Virtual Private Network (VPN) provider. Moreover, we fetch the list of official
FTP mirrors from GNU [39], Apache [40], Ubuntu [41], Debian [42] and find 1, 231
unique domain names. Upon performing a DNS lookup, we get 2, 784 IP addresses.
Once more, none of the identified honeypots match these IP addresses. Furthermore,
we retrieve the list of university domain names from [43] for evaluating Amun (SMTP)
honeypot. Upon performing a DNS lookup we find 12, 012 IP addresses. There were
no honeypots detected in the domains from this list. To sum up, while the SotA uses
a singular method to deal with false positives, our approach utilizes multiple stages.
Moreover, we further test our results with an adaption and extension of the techniques
employed by [15] to address the absence of ground truth knowledge.

4 Discussion
The evaluation of the multistage framework involved an experimental setup to reduce
false positives and help in classification of honeypot instances. In this section we discuss
the ethical considerations and experimental setup considered during the experimentation
phase.

4.1 Ethical considerations
This section takes into account the various ethical considerations we had during our
research.

Experiments

First, we inform the IT administrators of our organization about the ongoing research
and seek their assistance for providing an approved setup for scanning the Internet. This
is important as organizations tend to blocklist the IP addresses of sources that appear
to be scanning them. Second, we setup a website on the IP address of our scanner that
provides a disclosure/explanation of our research purpose. This assists in limiting the
effects of blocklisting the IP addresses of our organization.

Results Disclosure

The list of honeypot instances obtained through our framework is not publicly shared.
We only present here aggregated statistics and do not share any identifiers of the hon-
eypot instances. We seek guidance from the privacy department of our organization for
guidelines on storing the results of our experiments and being compliant to GDPR. We

44 Paper A.

followed the GDPR compliance by anonymizing the IP addresses after three months
following the completion of our research.

Ethical disclosure: notifying Honeypot Developers

We contact the honeypot developers of all of the active honeypot implementations and
provide them with the specifics of the honeypot fingerprinting methods that can be
used against them. Moreover, we contacted members of the Honeynet project [44],
an international security research organization that focuses on honeypot research, to
further disclose the fingerprinting mechanisms that we have identified.

Ethical disclosure: notifying Honeypot Administrators

We take all 21, 855 IP addresses that were identified as honeypots and perform a WHOIS
scan to find relevant contact information. Based on this, we identify 939 email addresses
that correspond to all the IP addresses that we managed to find information about. We
note that in many cases one email address corresponds to hundreds of honeypot in-
stances, deployed in the same network. There are multiple benefits from this procedure.
First and foremost, we notify honeypot administrators that their deployments are vul-
nerable to our fingerprinting methods. Second, we ask administrators to contact us
in case they are confident that our finding is a false positive and no honeypot deploy-
ment has taken place in their networks. This acts as an additional false positive sanity
check. Until the time of submission, we did not receive any false positive claim from
the contacted administrators.

4.2 Limitations
As discussed in Section 3.5, the research field of low and medium interaction honey-
pot fingerprinting has the fundamental limitation that there is no global ground truth
knowledge with regard to honeypot deployment. This translates to potential false pos-
itives. Our work is also influenced by this: while our findings come as the result of
multiple stages and checks there may still be cases in which an instance is incorrectly
labeled as a honeypot.

The proposed multistage framework leverages multiple checks to determine if the end
instance is a honeypot. As part of the failed checks from the framework, 355,000 non-
honeypot instances have been detected. While we argue that the majority of these are
most likely vulnerable/misconfigured devices, it might be that some are high-interaction
honeypots. Ideally, one could perform manual tests on a sample of these systems by log-
ging into them and attempting to understand the presence of a honeypot environment.
However, this would be illegal and therefore we could not perform such an action. More-
over, fingerprinting high-interaction honeypots requires extensive probing and analysis.
Hence, this is considered to be out of the scope of this article.

5. Countermeasures against fingerprinting 45

Lastly, while direct comparisons to the state-of-the-art is considered the default
evaluation methodology in many fields of cybersecurity, this is not possible in our setting.
The combination of the aforementioned ground truth knowledge problem, along with the
different time frames of the experiments make direct comparisons unreliable. We argue,
that our work and results is not competing to the state-of-the-art. This is amplified
by the fact that we are dealing with IP addresses and therefore topics such as static
vs dynamic IP addresses, Network Address Translation (NAT), and churn need to be
taken into account.

5 Countermeasures against fingerprinting
This section discusses potential countermeasures against fingerprinting. First, we want
to emphasize that, due to their nature, low and medium interaction honeypots can al-
ways be identified upon continuous interaction and response analysis. Instead, we argue
that the emphasis should be to reduce as much as possible fingerprinting vulnerabilities
that can easily be automated.

5.1 Metascan countermeasures
Metascan-based methods rely on data that is obtained without interaction from the tar-
get system. This can be translated to a scenario in which malware uses Shodan’s API
to ask whether an IP address is a honeypot before contacting it (e.g. for propagation
reasons). We argue that Shodan, Censys and other scanners must introduce limitations
to their honeypot identification services. From the honeypot deployment and imple-
mentation perspective, Moving Target Defense (MTD) techniques could be employed
by honeypot implementations to avoid a static IP identification. We also discourage the
usage of cloud hosting providers for honeypots based on ICS protocols. Honeypots like
RIoTPot [11] maintain an active list of IP addresses from known scanning-services and
label all the traffic from these sources. This list can be further used to block all traffic
from scanning-services and hence limit fingerprinting attempts.

5.2 Probe-based countermeasures
For probe-based methods, we suggest that the honeypots are made self-aware and dy-
namic each time an attack has been detected. Fingerprinting methods can be less effec-
tive if the honeypots contain non-static parameters while also choosing selective services
periodically. In addition, honeypots rely heavily on protocol emulation libraries. It is
important to refer to libraries that are regularly maintained. Furthermore, we suggest
making additional tweaks to the references to modify default static responses by com-
paring the responses to an actual system. Default configurations must be avoided and
dynamic configuration based on the attack and the environment is recommended.

46 Paper A.

Dynamic responses

Honeypot fingerprinting techniques exploit the limited exploitation capabilities of low-
interaction honeypots for indicators of deception. The limited simulation entails reduced
support and hard-coded responses for commands. Automated fingerprinting checks can
be deceived by introducing dynamic response patterns and a degree of randomness.
For example, the date command could respond with current date and time, or return
changing time on sequential requests. Fingerprinting techniques could either check
the response for the date command for static values or sophisticated techniques can
compare the response with the timestamp received in the packet. We acknowledge that
it is beyond the scope for low-interaction honeypots for enabling dynamic responses.
However, we suggest to implement dynamic response for common commands used by
bots and malware.

Maintenance and library support

Low-interaction honeypots use libraries for simulation of services. For example, Cowrie
uses the Twisted library for implementing the SSH protocol simulation. Most of the li-
braries used in honeypot implementations are however not maintained. This entails that
the honeypot implementations are vulnerable to any bugs affecting the libraries. Honey-
pot implementations must be periodically revised and maintained to prevent staleness.
Fingerprinting research by Vetterl et al. [14] suggest that limited protocol emulation in
honeypots that use poorly maintained libraries can be fingerprinted by examining the
responses and calculating the effective deviation. The authors suggest short and long-
term countermeasures from identification of fingerprinting probes to the development
of new-generation honeypots that are similar in actual protocols.

High interaction components

High-interaction honeypots are actual or real systems that run a vulnerable service and
log all the traffic. With high-interaction honeypots, the deceptive layer is the actual
vulnerable service with the underlying system and hence provides the attacker with
full interaction capabilities. High-interaction honeypots addresses some limitations of
low-interaction honeypots like limited simulation and low resources. However, as high-
interaction honeypots run on actual systems, there is a risk of them getting exploited to
perform attacks on systems on the Internet. Such risks can be addressed by configuring
network rules and using containerized, ephemeral instances.

6 Related Work
This section focuses on honeypot-specific fingerprinting research. We note here that
besides honeypots, there has been research in the identification of intrusion detection

6. Related Work 47

systems and network telescope sensors (e.g. [45, 46]). However, we consider this out of
the scope of this article. Similarly, we will not discuss here fingerprinting of honeypot-
like systems (such as honeytoken identification) [47]. We also note all papers in the
SotA exclude high interaction honeypots from their analysis.

Authors & Year Fingerprinting
technique IPv4 scan

Holz et al., 2005 [48] Static command
response check No

Wang et al., 2010 [49] Static command
response check No

Hayatle et al., 2012 [50] Static command
response check No

Aguirre et al., 2014 [51]
Library dependency
check, static command
response check

No

Vetterl et al., 2018 [14]

Banner check, protocol
handshake check,
Library dependency
check, static command
response check

Yes

Vetterl et al., 2019 [52]
Banner check,
Library dependency
check

Yes

Huang et al., 2019 [53]
Banner check, static
command response
check

No

Morishita et al., 2019 [15] Banner check, http
static response Yes

Zamiri et al., 2019 [31]
default config,
static response,
protocol handshake

Yes

Papazis et al., 2019 [28]
Banner check, http
static response, static
command check

No

Sun et al. , 2021 [54] fuzzing, limited response No

Table A.9: Overview of the related work

Techniques for fingerprinting honeypots were first proposed early in 2005 by Holz et
al. [48]. The authors state that limited simulation and virtualization cause restricted

48 Paper A.

interaction on the honeypot system that leads to fingerprinting possibilities. Holz et
al. propose fingerprinting techniques to detect User-mode Linux (UML) kernels by
observing the process id’s, virtualized environments by analyzing the ping response
time, and debuggers by using ptrace(). The presented techniques are focused more on
fingerprinting at the process and operating system level. This is mainly due to the
limited availability of honeypots at the time of research.

Wang et al. present an approach to detect honeypots in advanced botnet attacks [49].
Their work is based on the assumption that security professionals deploying honeypots
have a liability constraint; they cannot allow their honeypots to participate in attacks.
Hence, botmasters can detect honeypots by checking whether compromised machines
in their botnet can successfully send out unmodified malicious traffic. This approach is
based on monitoring the traffic which is transmitted by the infected system through the
bots. For example, the use of iptables command on Linux environments to list the port
forwarding helps in the identification of honeypots because of outbound traffic rules.
This information is transmitted by the bot to the botmaster. The authors also present
fingerprinting techniques involving ping response time.

Vetterl et al. propose the detection of nine well known open source honeypots by
constructing probes to fetch specific data and observe the deviation between the re-
sponse from actual honeypots [14]. The deviation is measured as a cosine coefficient.
This approach provides a good insight into the state of open source honeypots and their
vulnerability to fingerprinting attacks. The methodology is evaluated and the authors
identify 7, 605 honeypots on the Internet. In comparison, although our framework em-
ploys an approach to observe deviation in responses, we further extend the framework
to include additional checks to reduce false positives.

Moreover, Morishita et al. [15] propose honeypot fingerprinting through signature-
based detection. The authors develop signatures for 15 open source honeypots offering
multiple services. The signatures are then matched against responses obtained through
probes and mass-scan engines to determine if the system is a honeypot. The approach
is evaluated and the authors detect 19, 208 honeypots. Our approach checks for known
honeypot banners returned by the instances, although it does not rely solely on the
banner check to flag the instance as a honeypot.

In addition, Zamiri et al. detect GasPot [32], an ATG-based ICS honeypot through
probes designed to fetch information about the default configuration and limited emula-
tion of the protocols [31]. The authors study ICS honeypots (specifically of Conpot and
GasPot) list features, e.g. limited emulation static responses, and identify the underly-
ing OS to eventually fingerprint them. They perform an Internet-wide scan to detect
17 GasPot and 240 Conpot instances.

Huang et al. probe remote systems and label the response data to train a machine-
learning model to classify systems as honeypots [53]. The method follows a recur-
sive probing process to obtain featured data for classification. The features include
application-layer, network-layer, and system-layer properties. The authors train the

7. Conclusion 49

model for classification by providing data from known honeypot systems. However,
the authors do not classify the responses from widely recognized honeypots like Kippo,
Cowrie, or Dionaea.

Papazis et al. attempt to exploit some of the virtual network layers implemented in
honeypots, using tools like NMap, to fingerprint them [28]. In addition, they demon-
strate the identification of network and service anomalies like link latency and limited
emulation that may also lead to honeypot detection. The authors discuss detection
vectors for honeypots like Sebek, Artillery, BearTrap, KFSensor, HoneyD, Kippo and
Dionaea.

Lastly, Sun et al. propose fuzzing-based technique for fingerprinting honeypots in
industrial cyber-physical systems [54]. The technique is inspired by vulnerability mining
and utilizes error handling to distinguish honeypots and real devices. The technique
follows a two-step approach. In the first step mutation rules and security rules are setup
to generate effective and secure probe packets. Then, these probe packets are used for
scanning and identification in the second step. The authors test the method with a
dataset and do not scan the Internet with the created probes.

Table A.9 summarizes the fingerprinting related work. We note that majority of
the related work does not evaluate their proposed techniques by performing an active
search for honeypots on the Internet. This is mainly due to the fact that Internet-wide
scanning was not trivial until the emergence of ZMap [24]. That said, the fingerprinting
techniques suggested by [14, 15, 31, 52] include a thorough evaluation. However, their
core limitation is that they focus on a limited number of techniques for fingerprinting. In
this article, we propose a multistage framework that combines probe-based techniques
(targeting multiple system layers) with data available from Internet mass-scan search
providers to systematically detect honeypots.

7 Conclusion
Honeypots are unique mechanisms for understanding attack methodologies, discovering
new attack trends, as well as for early warning systems. In this article, we proposed a
framework for honeypot fingerprinting that includes new and SotA components and is
able to identify thousands of honeypot instances for nine of the most popular honeypot
implementations. Our work reduces false positives by the utilization of multiple checks
before determining that an instance is a honeypot. Our results also suggest that probe-
based fingerprinting techniques are significantly more effective in detecting honeypots
than the metascan techniques that utilize third-party systems like Shodan. Although
metascan techniques are less invasive, using them exclusively could result in higher
false-positives. We once more highlight that our work is in the direction of improving
honeypots rather than arguing against them. With the availability of open honeypot
identification APIs , such as Shodan’s Honeyscore, it is only a matter of time that we
see honeypot-evading malware. In this context, we contacted both the developers and

50 Paper A.

the administrators of the honeypots to make them aware of potential fingerprinting
issues. However, based on the experience of previous work we are not over-optimistic
with regard to the patching/updating of such systems. Instead, we argue that novel
components must be added in new/old honeypots that are in the direction of Moving
Target Defenses schemes. We plan to further investigate fingerprinting countermeasures
in our future work.

A. Multistage Framework for Honeypot Fingerprinting 51

Appendix

A Multistage Framework for Honeypot Fingerprint-
ing

Table A.10 shows the banners advertised by honeypots in our evaluation. Most honeypot
implementations offer limited banners or custom banners.

52 Paper A.

Honeypot Protocol Banner

Kippo SSH

Default: SSH-2.0-OpenSSH_5.1p1 Debian-5
SSH-1.99-OpenSSH_4.3
SSH-1.99-OpenSSH_4.7
SSH-1.99-Sun_SSH_1.1
SSH-2.0-OpenSSH_4.2p1 Debian-7ubuntu3.1
SSH-2.0-OpenSSH_4.3
SSH-2.0-OpenSSH_4.6
SSH-2.0-OpenSSH_5.1p1 Debian-5
SSH-2.0-OpenSSH_5.1p1 FreeBSD-20080901
SSH-2.0-OpenSSH_5.3p1 Debian-3ubuntu5
SSH-2.0-OpenSSH_5.3p1 Debian-3ubuntu6
SSH-2.0-OpenSSH_5.3p1 Debian-3ubuntu7
SSH-2.0-OpenSSH_5.5p1 Debian-6
SSH-2.0-OpenSSH_5.5p1 Debian-6+squeeze1
SSH-2.0-OpenSSH_5.5p1 Debian-6+squeeze2
SSH-2.0-OpenSSH_5.8p2_hpn13v11 FreeBSD-20110503
SSH-2.0-OpenSSH_5.9p1 Debian-5ubuntu1
SSH-2.0-OpenSSH_5.9

Cowrie SSH Debian GNU/Linux 7
Cowrie Telnet \xff\xfd\x1flogin:
Glastopf HTTP Apache httpd
Dionaea FTP 220 Welcome to the ftp service
Amun(SMTP) SMTP 220 mail\.example\.com SMTP Mailserver
Amun(IMAP) IMAP a001 OK LOGIN completed
Amun(FTP) FTP 220 Welcome to my FTP Server
Conpot SSH SSH-2.0-OpenSSH_6.7p1 Ubuntu-5ubuntu1.3
Conpot Telnet Connected to [00:13:EA:00:00:0]
Gaspot ATG Linux 3.X|4.X
Nepenthes FTP 220 —freeFTPd 1\.0—warFTPd 1\.65—

MTPot Telnet \xff\xfb\x01\xff\xfb\x03\xff\xfc’\xff\xfe\x01
\xff\xfd\x03\xff\xfe\"\xff\xfd’\xff \xfd\x18\xff\xfe\x1f

Table A.10: Banners advertised by Honeypots (adapted from [14] and [15] see Banner check in Section
2.2)

A. Multistage Framework for Honeypot Fingerprinting 53

Table A.11 shows the static content received as HTTP response from honeypots for
specific requests. The static responses are either due to limited emulation or due to
honeypots being deployed with default configuration.

Honeypot HTTP
Request HTTP Response Contents

Glastopf GET / HTTP/1.0

1. <h2>My Resource</h2>
2. <h2>Blog Comments</h2>\n <label for=\"comment\">Please post your comments
for the blog</label>\n
\n <textarea name=\"comment\" id=\"comment\" rows=\"4
\" columns=\"300\"></textarea>\n
\n <input type=\"submit
\" name=\"submit\" id=\"submit_comment\" value=\"Submit\" />\n

Amun GET / HTTP/1.0
<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML 2\.0//EN\"><html><head><title>
It works!</title></head><html><body><h1>It works!</h1>
tim\.bohn@gmx\.net

johan83@freenet\.de</body></html>\n\n

Dionaea GET / HTTP/1.0 <!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 3\.2 Final//EN\"><html>\n<title>
Directory listing for /</title>\n<body>\n<h2>Directory listing for /</h2>\n

Conpot GET /HTTP/1.0/
index.html

1. Last-Modified: Tue, 19 May 1993 09:00:00 GMT
2. Technodrome
3. Mouser Factory

Table A.11: HTTP Response from Honeypots (see HTTP Static Response in Section 2.2)

Table A.12 shows the non-honeypot instances determined at stages in our frame-
work based on honeypot types. Limited emulation in honeypots cause identification at
different levels that are determined by the stages in our framework.

Honeypot Portscan Failed
Banner

Failed
Static http
response

Failed
SSL/TLS
Certificate check

Failed Protocol
Handshake

Failed
Library
Dependency
Check

Not a
Honeypot

Kippo 4361857 4324502 NA NA 34887 1656 4361045
Cowrie 4361857 4318645 NA NA 37836 2100 4358581
Glastopf 57062712 56385819 673462 NA 0 0 57059281
Dionaea 43944853 43890588 49963 201 0 0 43940752
Nepenthes 10391953 10391645 NA NA 3 0 10391648
Conpot 29950 28693 NA NA 732 333 29758
Gaspot 222593 222393 NA NA 0 0 222393
MTPot 2923651 2923412 NA NA 0 0 2923412
Amun(SMTP) 6020828 6018931 NA NA 0 0 6018931
Amun(IMAP) 4152084 4150278 NA NA 0 0 4150278
Amun(FTP) 10391953 10389555 NA NA 0 0 10389555
Amun(HTTP) 43944853 43942485 NA NA 0 0 43943476
Total 187809144 186986946 724416 201 73458 4089 187789110

Table A.12: Non-honeypot encounters by stage. See also Section 3.3.

54 Paper A.

Table A.13 denotes the keywords used in Shodan and Censys to retrieve honeypots.
The keywords are derived from banners and static content advertised by honeypots.

Honeypot Shodan Censys
Glastopf <h2>My Resource</h2> 80.http.get.body: "<h2>My Resource</h2>/"

Dionaea ssl:"Nepenthes" 443.https.tls.certificate.parsed.subject.common_name:
"Nepenthes Development Team"

Conpot port:"102" product:"Conpot" 80.http.get.body: "Technodrome"

Nepenthes product:"Nepenthes HoneyTrap
fake vulnerable ftpd" 21.ftp.banner.banner: "220 —freeFTPd 1\.0—warFTPd "

Amun "220 Welcome to my FTP Server"

"80.http.get.body: tim.bohn@gmx.net"
21.ftp.banner.banner: "220 Welcome to my FTP Server"
25.smtp.starttls.banner: "220 mail\.example\.com SMTP Mailserver"
143.imap.starttls.banner: "OK LOGIN completed"

Gaspot I20100 port: "10001" "I20100"

Table A.13: Honeypot keywords search (see also paragraph Keyword Search in Section 2.2)

Table A.14 shows the static response returned by honeypots for specific commands
requested by our probes. Limited emulation or default configuration lead to static
response from the honeypots.

Honeypot Command Response

Conpot
S7_ID
station name
unit name

88111222
"STATOIL STATION"
"Technodrome"

Kippo nano
vi E558: Terminal entry not found in terminfo

Cowrie arp
IP address HW type Flags HW address Mask Device
192.168.1.27 0x1 0x2 52:5e:0a:40:43:c8 * eth0
192.168.1.1 0x1 0x2 00:00:5f:00:0b:12 * eth0

Amun(FTP) quit 221 Quit. 221 Goodbye!
Gaspot I30100 9999FF1B

Table A.14: Overview of honeypot static responses. In reference to Section 2.2

B. Framework specific checks and pipeline 55

Table A.15 provides an overview of the number of honeypot types and instances
detected over the three scanning periods.

Honeypot Scan 1 Scan 2 Scan 3 Total Total
(active)

Dionaea 4101 4101 4101 4101 4101
Glastopf 3431 3433 3420 3433 3420
Cowrie 3276 3272 3174 3276 3174

Amun(FTP) 2398 2388 2379 2398 2379
Amun(SMTP) 1897 1897 1883 1897 1883
Amun(IMAP) 1806 1806 1795 1806 1795
Amun(HTTP) 1377 1375 1455 1455 1455

Kippo 812 809 796 812 796
Conpot 399 751 884 884 884

Nepenthes 305 302 589 589 589
MTPoT 239 238 215 239 215
Gaspot 200 755 965 965 965

Table A.15: Honeypots detected per scan

B Framework specific checks and pipeline
Algorithm 1, represents the pseudo-code block that checks an instance for Dionaea’s
default certificate parameters. In lines 3-5, the algorithm retrieves the certificate from
the web server by accepting the IP and port of the instance and checks for common
attributes subject organization, country, and issuer. These attributes have static values
assigned by the honeypot developers. In steps 7-9, the algorithm checks if the values
match the Dionaea honeypot certificate’s static values. Upon match, the algorithm
returns that the instance is a Dionaea honeypot.

Algorithm 2 shows the checks done in the Metascan-based pipeline. The algorithm
checks or open ports, and performs keyword based check to list instances that match
the static content delivered by honeypots. Furthermore, additional checks like FQDN
and cloud hosting checks are performed for determining specific honeypot types.

Algorithm 3 represents the metascan search performed to determine instances with
specific ports exposed to the Internet. The algorithm performs a search on Shodan and
Censys mass scan engines for specific ports that are open on honeypots in our test.

Lastly, algorithm 4 represents the Protocol Handshake check procedure described in
Section 2.2. The algorithm checks for a deviated response from the instances for specific
negotiation parameters and response based on the port and the service of the instance.

56 Paper A.

Algorithm 1: Certificate Check
input : ip, port
output: isDionaea /* True if certificate from Dionaea */
begin

1 checkCert(ip,port)
2 isDionaea = false
3 cert = ssl.get_server_cert(ip, port)
4 X509 = Crypto.X509.load_cert(cert)
5 org = X509.subject.org
6 if cert then
7 if org= "dionaea.carnivore.it" then
8 isDionaea = true

9 Return isDionaea

10 end

Algorithm 2: Metascan-based Pipeline
input : ports /* ports */
output: findHoneypot /* Honeypots on the Internet */
begin

1 ip← metasearch(ports)
/* Shodan and Censys Search */

2 foreach ip do
3 kw = keywordSearch(ip)
4 if kw then
5 foreach ip do
6 if checkfqdn(ip) then
7 return hasFqdn = false

8 if !hasfqdn & port=502|102 then
9 if cloudCheck(ip) then

10 return isHoneypot = true

11 isHoneypot

12 if !hasfqdn then
13 if isResearch(ip) then
14 return isResearch = true

15 isHoneypot

16 endIf
17 endFor
18 end

B. Framework specific checks and pipeline 57

Algorithm 3: Metascan Search
input : port /* search parameter */
output: instanceIP /* Instances with open ports */
begin

1 instances[] = null
2 shodanSearch(port)
3 foreach ip do
4 instances[].append(ip, port)
5 return instances[]
6 endFor
7 censysSearch(port)
8 foreach ip do
9 instances[].append(ip, port)

10 return instances[]
11 endFor
12 end

58 Paper A.

Algorithm 4: Protocol Handshake Check
input : instance[], /* Instance [ip, port, protocol, isDeviated] */
output: instance[isDeviated] /* Handshake is deviated */
begin

1 CheckHandshake(instance[])
/* For each instance */2 foreach ip in Instance[] do

3 if port=22/2222 & protocol="SSH" then
4 request("SSH-2.0-OpenSSH\n\n\n\n\n\n\n\n\n\n")
5 if response = "bad Packet length" or "protocol mismatch"
6 return Instance[isDeviated] = true
7 else request("SSH-2.0-OpenSSH_6.0p1 Debian-4+deb7u2\n")
8 if response = "protocol mismatch\n"
9 return Instance[isDeviated] = true

10 elseif port=102 & protocol="S7" then
11 request(H,0300002102f08032070000...)
12 if response = "0x32"
13 return Instance[isDeviated] = true

14 elseif port=502 & protocol="Modbus" then
15 request(function_code:None, slave_id:0, request:0000000000050..)
16 if session.state = "Disconnected"
17 return Instance[isDeviated] = true

18 elseif port=25 & protocol="SMTP" then
19 request(PASS:Test)
20 if response = "220 OK"
21 return Instance[isDeviated] = true

22 elseif port=143 & protocol="IMAP" then
23 request(RCPT TO:TEST)
24 if response = "221 Bye Bye"
25 return Instance[isDeviated] = true

26 elseif port=21 & protocol="FTP" then
27 request(ftp (ip))
28 if packet.windowSize=4096 & session.disconnect.timeout=45
29 return Instance[isDeviated] = true

30 elseif port=23/2323 & protocol="Telnet" then
31 request(telnet (ip))
32 if packet.response= "You have connected to the telnet server"
33 return Instance[isDeviated] = true

34 elseif port=80/8080/443/8443 & protocol="HTTP/HTTPS" then
35 request(GET /HTTP/1.0 (ip))
36 if response.packet.header.server= "nginx" or "Apache/1.3.29" or

"BaseHTTP/0.3 Python/2.5.1" or "Microsoft-IIS/5.0"
37 return Instance[isDeviated] = true

References 59

References
[1] L. Spitzner, “The honeynet project: trapping the hackers,” IEEE Security Privacy,

vol. 1, no. 2, pp. 15–23, 2003.

[2] M. Nawrocki, M. Wählisch, T. C. Schmidt, C. Keil, and J. Schönfelder, “A survey
on honeypot software and data analysis,” arXiv preprint arXiv:1608.06249, 2016.

[3] Decester, “An ssh honeypot,” 2000. [Online]. Available: https://github.com/
desaster/kippo

[4] M. Oosterhof, “Cowrie ssh/telnet honeypot,” 2016. [Online]. Available:
:https://github.com/micheloosterhof/cowrie

[5] L. Rist, “Glastopf project,” 2009.

[6] D. Tools, “Web honeypot,” 2010. [Online]. Available: https://github.com/
DinoTools/dionaea/

[7] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer, “Hostage: A
mobile honeypot for collaborative defense,” in Proceedings of the 7th International
Conference on Security of Information and Networks, ser. SIN ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 330–333. [Online].
Available: https://doi.org/10.1145/2659651.2659663

[8] L. Rist, J. Vestergaard, D. Haslinger, A. Pasquale, and J. Smith, “Conpot ics/scada
honeypot,” Honeynet Project (conpot. org), 2013.

[9] E. Vasilomanolakis, S. Srinivasa, C. G. Cordero, and M. Mühlhäuser, “Multi-stage
attack detection and signature generation with ics honeypots,” in NOMS 2016 -
2016 IEEE/IFIP Network Operations and Management Symposium. Istanbul,
Turkey: IEEE, 2016, pp. 1227–1232.

[10] L. Krämer, J. Krupp, D. Makita, T. Nishizoe, T. Koide, K. Yoshioka, and
C. Rossow, “Amppot: Monitoring and defending against amplification ddos at-
tacks,” in International Symposium on Recent Advances in Intrusion Detection.
Springer, 2015, pp. 615–636.

[11] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, “Riotpot: a modular hybrid-
interaction iot/ot honeypot,” in 26th European Symposium on Research in Com-
puter Security (ESORICS) 2021, Springer. Darmstadt, Germany: Springer, 2021.

[12] C. Zou and R. Cunningham, “Honeypot-aware advanced botnet construction and
maintenance,” in International Conference on Dependable Systems and Networks
(DSN’06). Philadelphia, PA, USA: IEEE, 2006, pp. 199–208.

https://github.com/desaster/kippo
https://github.com/desaster/kippo
: https://github.com/micheloosterhof/cowrie
https://github.com/DinoTools/dionaea/
https://github.com/DinoTools/dionaea/
https://doi.org/10.1145/2659651.2659663

60 References

[13] B. Botezatu, “New hide ‘n seek iot botnet using custom-built peer-
to-peer communication spotted in the wild,” 2018. [Online]. Available:
https://bit.ly/35QbK1P

[14] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting low-
and medium-interaction honeypots at internet scale,” in 12th USENIX Workshop
on Offensive Technologies (WOOT 18). Baltimore, MD: USENIX Association,
Aug. 2018, p. 9. [Online]. Available: https://www.usenix.org/conference/woot18/
presentation/vetterl

[15] S. Morishita, T. Hoizumi, W. Ueno, R. Tanabe, C. Gañán, M. J. van Eeten,
K. Yoshioka, and T. Matsumoto, “Detect me if you. . . oh wait. an internet-wide
view of self-revealing honeypots,” in 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). Arlington, VA, USA: IEEE, 2019, pp.
134–143.

[16] L. Spitzner, “Passive fingerprinting,” pp. 1–4, 2000.

[17] SHODAN, “Shodan,” 2021. [Online]. Available: https://www.shodan.io/

[18] G. Lyon, “Nmap network mapper,” 2021. [Online]. Available: https://nmap.org/

[19] O. Arkin, F. Yarochkin, M. Kydyraliev, O. Arkin, F. Yarochkin, and M. Kydyraliev,
“The present and future of xprobe2: The next generation of active operating system
fingerprinting. sys-security group,” 2003.

[20] F. Holik, J. Horalek, O. Marik, S. Neradova, and S. Zitta, “Effective penetration
testing with metasploit framework and methodologies,” in 2014 IEEE 15th Interna-
tional Symposium on Computational Intelligence and Informatics (CINTI), IEEE.
Budapest, Hungary: IEEE, 2014, pp. 237–242.

[21] H. Van and K. Roland. (2021) Kali tools. THC.org. [Online]. Available:
https://www.thc.org/thc-hydra/

[22] Censys, “Censys search,” 2021. [Online]. Available: https://censys.io/

[23] Rapid7, “Recog,” 2021.

[24] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-wide scan-
ning and its security applications,” in Proceedings of the 22nd USENIX Conference
on Security, ser. SEC’13. USA: USENIX Association, 2013, p. 605–620.

[25] R. D. Graham, “Masscan: Mass ip port scanner,” 2014.

https://bit.ly/35QbK1P
https://www.usenix.org/conference/woot18/presentation/vetterl
https://www.usenix.org/conference/woot18/presentation/vetterl
https://www.shodan.io/
https://nmap.org/
https://www.thc.org/thc-hydra/
https://censys.io/

References 61

[26] L. Izhikevich, R. Teixeira, and Z. Durumeric, “Predicting ipv4 services across all
ports,” in Proceedings of the ACM SIGCOMM 2022 Conference, ser. SIGCOMM
’22. New York, NY, USA: Association for Computing Machinery, 2022, p.
503–515. [Online]. Available: https://doi.org/10.1145/3544216.3544249

[27] ZMap. (2020) Github. ZMap. [Online]. Available: https://github.com/zmap/
zmap/wiki/Sample-Applications

[28] K. Papazis and N. Chilamkurti, “Detecting indicators of deception in emulated
monitoring systems,” Service Oriented Computing and Applications, vol. 13, no. 1,
pp. 17–29, 2019.

[29] Domaintools. (2022) Domaintools whois lookup. Domaintools. [Online]. Available:
https://whois.domaintools.com/

[30] T. Grudziecki, P. Jacewicz, Ł. JUSZCZYK, P. Kijewski, and P. Pawliński.
(2012) Proactive detection of security incidents. ENISA. [Online]. Available:
https://www.enisa.europa.eu/publications/proactive-detection-report

[31] M.-R. Zamiri-Gourabi, A. R. Qalaei, and B. A. Azad, “Gas what? i can see your
gaspots. studying the fingerprintability of ics honeypots in the wild,” in Proceedings
of the Fifth Annual Industrial Control System Security (ICSS) Workshop, ser.
ICSS. New York, NY, USA: Association for Computing Machinery, 2019, p.
30–37. [Online]. Available: https://doi.org/10.1145/3372318.3372322

[32] K. Wilhoit and S. Hilt. (2015) The gaspot experiment: Unexamined perils in using
gas-tank-monitoring systems. Black Hat. USA.

[33] Cymmetria, “Mtpot,” 2016. [Online]. Available: https://github.com/Cymmetria/
MTPot

[34] H. Booth, D. Rike, and G. Witte, “The national vulnerability database (nvd):
Overview,” National Institute of Standards and Technology, Tech. Rep., 2013.

[35] R. Vogt, J. Aycock, and M. J. Jacobson Jr, “Army of botnets,” in NDSS, Citeseer.
San Diego, CA, USA: NDSS, 2007.

[36] Amazon. (2020) Alexa - an amazon company. Amazon. [Online]. Available:
https://www.alexa.com/topsites

[37] Majestic. (2021) The majestic million. Majestic. [Online]. Available: https:
//majestic.com/reports/majestic-million

[38] Cisco. (2020) Umbrella popularity list. Cisco. [Online]. Available: https:
//umbrella-static.s3-us-west-1.amazonaws.com/index.html

https://doi.org/10.1145/3544216.3544249
https://github.com/zmap/zmap/wiki/Sample-Applications
https://github.com/zmap/zmap/wiki/Sample-Applications
https://whois.domaintools.com/
https://www.enisa.europa.eu/publications/proactive-detection-report
https://doi.org/10.1145/3372318.3372322
https://github.com/Cymmetria/MTPot
https://github.com/Cymmetria/MTPot
https://www.alexa.com/topsites
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://umbrella-static.s3-us-west-1.amazonaws.com/index.html
https://umbrella-static.s3-us-west-1.amazonaws.com/index.html

62 References

[39] GNU.org. (2020) Gnu operating system. GNU.org. [Online]. Available: https:
//www.gnu.org/prep/ftp.en.html

[40] T. A. Foundation. (2020) The apache software foundation. Apache.org. [Online].
Available: https://www.apache.org/mirrors/

[41] O. A. M. for Ubuntu. (2020) Debian project. Ubuntu. [Online]. Available:
https://launchpad.net/ubuntu/+archivemirrors

[42] Debian. (2020) Debian project. Debian Project. [Online]. Available: https:
//www.debian.org/mirror/list

[43] Hipo. (2020) Github. Hipo. [Online]. Available: https://github.com/Hipo/
university-domains-list

[44] T. H. Project, “The honeynet project.”

[45] J. Bethencourt, J. Franklin, and M. Vernon, “Mapping internet sensors with
probe response attacks,” in 14th USENIX Security Symposium (USENIX
Security 05). Baltimore, MD: USENIX Association, jul 2005. [Online].
Available: https://www.usenix.org/conference/14th-usenix-security-symposium/
mapping-internet-sensors-probe-response-attacks

[46] E. Vasilomanolakis, M. Stahn, C. G. Cordero, and M. Mühlhäuser, “On probe-
response attacks in collaborative intrusion detection systems,” in 2016 IEEE Con-
ference on Communications and Network Security (CNS). Florence, Italy: IEEE,
2016, pp. 279–286.

[47] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, “Towards systematic
honeytoken fingerprinting,” in 13th International Conference on Security
of Information and Networks, ser. SIN 2020. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available: https:
//doi.org/10.1145/3433174.3433599

[48] T. Holz and F. Raynal, “Detecting honeypots and other suspicious environments,”
in Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop.
West Point, NY, USA: IEEE, June 2005, pp. 29–36.

[49] P. Wang, L. Wu, R. Cunningham, and C. C. Zou, “Honeypot detection in ad-
vanced botnet attacks,” International Journal of Information and Computer Secu-
rity, vol. 4, no. 1, pp. 30–51, 2010.

[50] O. Hayatle, A. Youssef, and H. Otrok, “Dempster-shafer evidence combining for
(anti)-honeypot technologies,” Information Security Journal: A Global Perspective,
vol. 21, no. 6, pp. 306–316, 2012.

https://www.gnu.org/prep/ftp.en.html
https://www.gnu.org/prep/ftp.en.html
https://www.apache.org/mirrors/
https://launchpad.net/ubuntu/+archivemirrors
https://www.debian.org/mirror/list
https://www.debian.org/mirror/list
https://github.com/Hipo/university-domains-list
https://github.com/Hipo/university-domains-list
https://www.usenix.org/conference/14th-usenix-security-symposium/mapping-internet-sensors-probe-response-attacks
https://www.usenix.org/conference/14th-usenix-security-symposium/mapping-internet-sensors-probe-response-attacks
https://doi.org/10.1145/3433174.3433599
https://doi.org/10.1145/3433174.3433599

References 63

[51] E. Aguirre-Anaya, G. Gallegos-García, N. S. Luna, and L. A. V. Vargas, “A new
procedure to detect low interaction honeypots,” International Journal of Electrical
and Computer Engineering, vol. 4, pp. 848–857, 2014.

[52] A. Vetterl, R. Clayton, and I. Walden, “Counting outdated honeypots: Legal and
useful,” in 2019 IEEE Security and Privacy Workshops (SPW). IEEE, 2019, pp.
224–229.

[53] C. Huang, J. Han, X. Zhang, and J. Liu, “Automatic identification of honeypot
server using machine learning techniques,” Security and Communication Networks,
vol. 2019, 2019.

[54] Y. Sun, Z. Tian, M. Li, S. Su, X. Du, and M. Guizani, “Honeypot identification in
softwarized industrial cyber–physical systems,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 8, pp. 5542–5551, 2021.

64 References

Paper B

Towards systematic honeytoken fingerprinting

Shreyas Srinivasa, Jens Myrup Pedersen, Emmanouil Vasilomanolakis

The paper has been published in the
International Conference on Security of Information and Networks (ACM SIN) . Ors,

B. & Elci, A. (eds.). Association for Computing Machinery p. 1-5 5 p. 28, 2020.

The layout has been revised.

1. Introduction 67

Abstract
With the continuous rise in the numbers and sophistication of cyber-attacks, defenders
are moving towards more proactive lines of defense. Deception methods such as hon-
eypots and moving target defense paradigms, are nowadays utilized in a multitude of
ways. A honeytoken is an umbrella term that describes honeypot-like entities/resources
that can be inserted into a network or system. The moment an adversary interacts with
a honeytoken, an alert is raised. Similar to honeypots, the value of honeytokens lies
in their indistinguishability; if an attacker can detect them, e.g. via a fingerprinting
tool, they can easily evade them. In this paper, we propose and discuss honeytoken fin-
gerprinting methods. To the best of our knowledge, this is the first paper to examine
honeytoken-specific fingerprinting. Furthermore, we showcase a proof of concept that is
able to successfully detect a number of honeytoken types.

1 Introduction
Proactive defense mechanisms such as honeypots and moving target defense schemes
have become a common additional line of defense. A honeypot is an information system
resource whose value lies in unauthorized or illicit use of that resource [1]. Over the
years, a number of honeypot approaches have been proposed (e.g. [2–5]) for defending
a multitude of protocols and systems (ranging from industrial control systems [6, 7] to
IoT devices [8]).

Honeytoken is an umbrella term for a subset of honeypots in which there is no
protocol or system emulation. Instead, a honeytoken usually emulates some resource
(e.g. a file or a username/password) that is part of a real system and triggers an alert
whenever it is accessed or used [9]. For example, a honeytoken can be a .docx file that
contains an obfuscated script that is triggered when the file is opened.

An advantage of honeytokens over traditional honeypots is that they operate with
lower system resources and are simpler to manage. In addition, they are easy to generate
and deploy. Honeytokens can indirectly detect the presence of diverse attack vectors
(e.g. malware) and identify direct attacks like unauthorised access attempts. Due to
their simple design and flexibility, honeytokens are popular and are used by system
administrators.

Over the years, there has been increase in honeytoken research including patents
by commercial organizations [10–12]. Honeytokens can be modelled as files, directories,
URLs, DNS entries, fake user accounts and fake data tuples in a database. While
there is no limitation in the design, the core of honeytokens is to detect and notify users
about unauthorized access. Some of the open-source and other research implementations
include Canarytokens [13], honeyλ [14], honeybits [15], HoneyGen [16], honeywords [17]
and lastly the honeyfile [18].

68 Paper B.

Recently, a number of researchers have discussed methods for fingerprinting honey-
pots [19–21]. The purpose of these works is to generate some type of signature probe
that is able to distinguish between a real system and a honeypot. While this research
suggests that many traditional honeypots can be easily identified, it does not take honey-
tokens into account. The key feature of honeytokens is that their alert logic is embedded
within a real digital entity with fake contents. This makes honeytokens hard to identify
as the only way of determining if an entity is a honeytoken is by utilizing it.

In this paper, we attempt a preliminary study on the possibility of fingerprinting
honeytokens. We first classify the different honeytoken technologies in a systematic way
and proceed by determining ways for their identification. Furthermore, we provide proof
of concept experiments that demonstrate the feasibility of the proposed fingerprinting
mechanisms. To the best of our knowledge this is the first paper to examine honeytoken
fingerprinting.

The rest of the paper is structured as follows. Section 2 provides a background
of honeytokens and honeytoken fingerprinting. In Section 3 we propose honeytoken
fingerprinting techniques. We present a proof of concept by scanning of honeytokens
using the proposed techniques in Section 4. We conclude our paper in Section 5 along
with our future work goals.

2 Background
Since honeypots and honeytokens are flexible in their design and emulation approach,
various concepts regarding their applicability and type have been proposed. Never-
theless, the factor that distinguishes honeytokens from honeypots is their ability to
detect threats by emulating low-level digital resources/entities like files, directories,
user-accounts, and URLs. Honeypots operate at a higher level by emulating services
and protocols that resemble a system or a service.

Fraunholz et al. survey deceptive technologies and provide a comprehensive overview
of honeytokens as well [22]. The survey suggests that most proposals cover different
types of entities and focus on the generation of deceptive digital twins. Furthermore,
the authors present a classification that distinguishes between server, database, authen-
tication, and file honeytokens. For example, the authors classify Honeyport [23] as a
server-based honeytoken as it emulates an open network port within a server. Similarly,
the honeytokens classified under database, authentication, and file, contain deceptive
elements to emulate a data record, password, and a document respectively.

Han et al. also survey deception techniques in computer security [24]. The authors
introduce a multi-dimension classification for honeypots, based on four orthogonal di-
mensions: goal, unit, layer, and deployment of deception. Internal to the deployment
dimension, a sub-class based on the deployment layer is relevant to honeytokens. The
layer is further divided the into network, system, application, and data layers.

2. Background 69

Based on the various honeytokens proposed in related research, we break down
honeytokens’ architecture into two primary mechanisms: deception and alerting. The
deception mechanism is responsible for the emulation of the digital entity and the decep-
tion logic. The alerting mechanism focuses on the alert trigger mechanism responsible
for notifying the user about the access attempt. The alerting mechanism is triggered
when the adversary tries accessing the honeytoken or using the data generated as a
honeytoken for an access attempt. Both deception and alerting mechanisms may vary
based on the digital entity replicated.

Honeytoken Deceptive
Entity/Resource

Alerting
Mechanism

Honeyentries [16], [25] Table data set DB Monitor
Honeyword [17] Password DB Monitor
Honeyaccount [26] User-account Event Logger
Honeyfile [18] File-Google Sheets Session Log
Honeyfile [23] File Event Logger
Honeypatch [27], [28] Vulnerability Session Log
HoneyURL [18] URL DNS Trigger
CanaryTrap [29] Email Email
Honeyport [23] Network port Session Log
CanaryToken [13] File-pdf, docx DNS Trigger
CanaryToken [13] Directory DNS Trigger
CanaryToken [13] URL DNS Trigger
Honeybits [15] Email DNS Trigger

Table B.1: Honeytoken-Mechanisms overview

Table B.1 provides an overview of the deception and alerting mechanisms employed
in research-based and open-source honeytokens. The deceptive entity denotes the digi-
tal entity or resource that is emulated by the honeytoken. These vary from passwords,
user-accounts, files, directories, email, software patches, URLs, network ports, etc. The
alerting mechanism lists the triggering and notification technique employed by the hon-
eytokens.

The DB Monitor monitors a dataset for changes and maintains an activity log. All
changes and access information are logged respectively. The Event Logger operates at
the system-level and maintains a log of all system events. User defined events can be
logged on the Event Logger ; this is supported by most modern operating systems. The
Session Log operates at the application-level and logs all the events at user-defined log
levels. These may vary from informational, debug, error and warning. DNS Triggers
operate at the network-level by performing a name resolution query to a DNS server.
The query includes a URL that triggers the alerting mechanism.

70 Paper B.

3 Honeytoken fingerprinting
We present generic techniques to detect honeytokens that operate at different levels. The
proposed fingerprinting techniques leverage the gaps in both the deceptive entity and
the honeytokens’ alerting mechanism to determine if the entity is indeed a honeytoken.
To understand the operating levels of the honeytokens, we classify the honeytokens
(see Table B.1) into Network Level, System Level, Application/File Level and Data
Level. Table B.2 provides an overview of the classification based on their operating
level. The table also lists the fingerprinting techniques associated with each operational
level corresponding to the alerting mechanism. In the following subsections we describe
fingerprinting techniques on the basis of the various operating levels.

Alerting
Mechanism

Operating
Level

Fingerprinting
Technique

DB Monitor Data Modified Date
Event Logger System Last Used, grep search
Session Log Application Grep search

DNS Trigger Application,
Network

Reverse Engineering
Network Sniffing

Table B.2: Honeytokens Fingerprinting Overview

3.1 Network level
Honeytoken overview Honeytokens operating at the network level are either repli-
cating a networking entity or using the network for communicating the alerts to the
administrator. For example, the Honeyport [23] emulates an open network port on a
web server and uses the web server’s session logs as the alerting mechanism. However,
a honeytoken may operate at a different level (e.g. the file level) and use the network
to communicate the alerts (e.g. Canarytoken [13]).

Network level fingerprinting Considering the alerting mechanisms classified to op-
erate at the network level in Table B.2, we observe the utilization of DNS. The honey-
tokens trigger a DNS resolution call made to a domain hardcoded within the embedded
alerting mechanism upon detecting an access attempt. For example, a file-level Ca-
narytoken contains an alerting mechanism that performs a DNS call upon opening the
respective file. Fingerprinting these calls can be done by sniffing the DNS traffic on the
compromised system. The DNS traffic will reveal the calls made to open-source honey-
token alert domains. However, inspecting the DNS traffic for calls made to honeytoken
domains is a passive approach. Using this fingerprinting technique will notify the user

3. Honeytoken fingerprinting 71

of the access attempt before identifying the honeytoken. In the following, we introduce
active fingerprinting techniques that detect honeytokens without triggering an alert.

3.2 Application/File Level
Honeytoken overview The application/file level fingerprinting techniques focus on
detecting honeytokens at the application or file level. These honeytokens operate by
emulating a file of a specific format (e.g. pdf or docx) and obfuscating an alert mech-
anism within the file. The alert is triggered when the file is opened through specific
applications like the Adobe Reader.

Application/File level fingerprinting File-level honeytokens using a network for
alerting mechanisms can be fingerprinted by decomposing the files using reverse engi-
neering techniques. For example, Canarytokens [13] that offer honeytokens as a pdf file
format can be decomposed by file parsing techniques. On parsing the pdf file with a
parsing tool from DidierStevensSuite we observe that the Canarytoken contains obfus-
cated DNS triggers to "canarytokens.net" in the /URI of the object stream [30]. We find
similar obfuscated DNS triggers in other file formats like docx, which is offered from the
open-source Canarytokens service. Adversaries can use file parsing techniques to ex-
plore the honeytokens for obfuscated code fragments that trigger the alert mechanisms.
Similarly, a honeydirectory, a directory-emulating honeytoken from Canarytokens, can
be identified by examining its meta-data.

3.3 System Level
Honeytoken overview Honeytokens that operate at the system level use the under-
lying operating system’s features to facilitate the alert mechanism. Examples of the
system features include event-logs and inotify alerts. Honeytokens like Honeyfile [18]
and Honeyaccount [26] employ system-level triggers to alert the users.

System level fingerprinting Fingerprinting system-level alert mechanisms are com-
plex because of their abstract calls and obfuscated deployments. Access monitors like
inotify run as a background service that monitors a file or a directory for modifications.
The inotify system calls are embedded within a C program and are initialized with a file
descriptor, file path, and the mask modes as parameters. The mask modes offer options
for the triggers like file accessed, modified, deleted, or created. The first step towards
fingerprinting would be to check for inotify processes running in the background; i.e.
the adversary has to list the background processes in the compromised system. Upon
finding a process relevant to a C program execution, it is evident that there is an alerting
mechanism setup. The adversary can open the C program’s path, which calls inotify
and check the file or directory path for changes.

72 Paper B.

3.4 Data level
Honeytoken overview Data-level honeytokens work on the generation of fake data
that resemble actual data. The generation of data-based honeytokens is complicated due
to the requirement of high resemblance to real data. An example of this is the generation
of employee data and access information. The honeytoken data that resembles the
employee information and his access information must resemble a real employee record.
Simultaneously, this data must be fake and attractive enough for an adversary. There
have been many research proposals over algorithms and techniques for the generation
of such data honeytokens [16, 26, 31].

Data level fingerprinting The fingerprinting technique for detecting data-level hon-
eytokens depends on the type of data emulated and the alerting mechanism used. Some
research concentrate only on the generation of data honeytokens and not the alerting
mechanism (e.g. HoneyGen [16]). Honeytokens like Honeyword [17] use a Honeychecker
module that is responsible for comparing the password-hash used by the adversary with
the list of passwords and triggering an alarm in case of unauthenticated access. While it
is complicated to fingerprint honeywords, we propose using meta-data to determine if it
is a real entity. For example, Honeyaccount [26] creates fake user-accounts for a system.
On a compromised system that is running Windows and is attached to a domain, user
accounts can be listed and checked for the last known activity of a user. In addition,
the adversary can make use of specific scripts in the Windows PowerShell to retrieve
meta-data about user accounts in the Active Directory. By observing the meta-data
retrieved from the Active Directory, the adversary can identify if the user account is
real or not.

4 Proof of Concept
This section demonstrates the applicability of some of the aforementioned honeytoken
fingerprinting techniques. In particular, we demonstrate fingerprinting in one of the
most used honeytoken implementation, the Canarytoken [13]. With respect to our
classification we emphasize on network and application/file level fingerprinting. The
source code and other screenshots of the proposed fingerprinting techniques can be
found on our GitHub account∗.

Firstly, we generate a pdf honeytoken by utilizing the Canarytoken service [13]. To
support our claims (see Section 3.1) we manually monitor the network and open the
generated pdf honeytoken. Figure B.1 shows the packets captured from a system when
a Canarytoken is accessed in Wireshark. To avoid manual sniffing of all the network
we implemented a honeytoken DNS sniffer (see GitHub for the implementation code)

∗https://github.com/aau-network-security/tokengrabber

5. Conclusion 73

Fig. B.1: Network-level (DNS) Fingerprinting

that checks the DNS traffic of the system for calls made to known honeytoken services.
We note here that if the adversary uses this method they risk triggering the honeytoken
and therefore notifying the administrator.

For a stealthier option, the attacker may use file level fingerprinting techniques (see
Section 3.2). We adopt the code of a pdf parser in [30], to identify honeytoken traces
in a given pdf file. By using such an application-level fingerprinting technique, the pdf
Canarytoken was parsed and the honeytoken was detected without triggering an alert to
the administrator. A URI reference obfuscated in the pdf object 16 was detected. The
URI referenced to [32] clearly indicates the call to a domain hosted by the Canarytokens
service.

5 Conclusion
In this paper, we propose fingerprinting techniques against the majority of existing
honeytoken proposals and implementations. Furthermore, as a proof of concept, we
successfully fingerprint open-source honeytokens. This work provides a foundation to
extend our research on honeytoken fingerprinting. In particular, for future work we
plan to work on countermeasures against fingerprinting for the various honeytokens.
Moreover, we will further examine the possible fingerprinting attacks against them,
beyond the presented proof of concept.

74 References

References
[1] L. Spitzner, “Passive fingerprinting,” pp. 1–4, 2000.

[2] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer, “Hostage: a
mobile honeypot for collaborative defense,” in Proceedings of the 7th International
Conference on Security of Information and Networks, 2014, pp. 330–333.

[3] M. Oosterhof, “Cowrie ssh/telnet honeypot,” 2016. [Online]. Available:
:https://github.com/micheloosterhof/cowrie

[4] D. Tools, “Web honeypot,” 2010. [Online]. Available: https://github.com/
DinoTools/dionaea/

[5] L. Rist, “Glastopf project,” 2009.

[6] E. Vasilomanolakis, S. Srinivasa, and M. Mühlhäuser, “Did you really hack a nuclear
power plant? an industrial control mobile honeypot,” in 2015 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2015, pp. 729–730.

[7] L. Rist, J. Vestergaard, D. Haslinger, A. Pasquale, and J. Smith, “Conpot ics/scada
honeypot,” Honeynet Project (conpot. org), 2013.

[8] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow,
“Iotpot: A novel honeypot for revealing current iot threats,” Journal of Information
Processing, vol. 24, no. 3, pp. 522–533, 2016.

[9] L. Spitzner, “Honeytokens: The other honeypot. 2003,” Internet: http://www.
securityfocus. com/infocus/1713, 2006.

[10] H. H. Neuvirth, T. Weinberger, Y. Zohar, C. A. Nelson, and A. E. Johnson, “Au-
tomated generation and deployment of honey tokens in provisioned resources on a
remote computer resource platform,” Sep. 10 2020, uS Patent App. 16/291,963.

[11] T. A. Be’ery and I. Grady, “Systems and methods for the detection of advanced
attackers using client side honeytokens,” Mar. 31 2020, uS Patent 10,609,048.

[12] S. Touboul, H. Levin, S. Roubach, A. Mischari, I. B. David, I. Avraham, A. Ozer,
C. Kazaz, O. Israeli, O. Vingurt et al., “Multi-factor deception management and
detection for malicious actions in a computer network,” Apr. 14 2020, uS Patent
10,623,442.

[13] Thinkst, “Canarytokens,” https://github.com/thinkst/canarytokens.

[14] A. Karimi, “Honeylambda,” https://github.com/0x4D31/honeyLambda.

: https://github.com/micheloosterhof/cowrie
https://github.com/DinoTools/dionaea/
https://github.com/DinoTools/dionaea/
https://github.com/thinkst/canarytokens
https://github.com/0x4D31/honeyLambda

References 75

[15] ——, “Honeybits,” https://github.com/0x4D31/honeybits.

[16] M. Bercovitch, M. Renford, L. Hasson, A. Shabtai, L. Rokach, and Y. Elovici,
“Honeygen: An automated honeytokens generator,” in Proceedings of 2011 IEEE
International Conference on Intelligence and Security Informatics. IEEE, 2011,
pp. 131–136.

[17] A. Juels and R. L. Rivest, “Honeywords: Making password-cracking detectable,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, 2013, pp. 145–160.

[18] M. Lazarov, J. Onaolapo, and G. Stringhini, “Honey sheets: What happens to
leaked google spreadsheets?” in 9th Workshop on Cyber Security Experimentation
and Test ({CSET} 16), 2016.

[19] C. Huang, J. Han, X. Zhang, and J. Liu, “Automatic identification of honeypot
server using machine learning techniques,” Security and Communication Networks,
vol. 2019, 2019.

[20] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting low-and
medium-interaction honeypots at internet scale,” in 12th {USENIX} Workshop on
Offensive Technologies ({WOOT} 18), 2018.

[21] S. Morishita, T. Hoizumi, W. Ueno, R. Tanabe, C. Gañán, M. J. van Eeten,
K. Yoshioka, and T. Matsumoto, “Detect me if you. . . oh wait. an internet-wide
view of self-revealing honeypots,” in 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). Arlington, VA, USA: IEEE, 2019, pp.
134–143.

[22] D. Fraunholz, S. D. Anton, C. Lipps, D. Reti, D. Krohmer, F. Pohl, M. Tammen,
and H. D. Schotten, “Demystifying deception technology: A survey,” arXiv preprint
arXiv:1804.06196, 2018.

[23] D. Fraunholz, D. Krohmer, F. Pohl, and H. D. Schotten, “On the detection and
handling of security incidents and perimeter breaches-a modular and flexible hon-
eytoken based framework,” in 2018 9th IFIP International Conference on New
Technologies, Mobility and Security (NTMS). IEEE, 2018, pp. 1–4.

[24] X. Han, N. Kheir, and D. Balzarotti, “Deception techniques in computer security:
A research perspective,” ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–36,
2018.

[25] M. G. Hoglund and S. M. Bracken, “Inoculator and antibody for computer security,”
Oct. 17 2017, uS Patent 9,792,444.

https://github.com/0x4D31/honeybits

76 References

[26] C. D. Faveri and A. Moreira, “Visual modeling of cyber deception,” in 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2018,
pp. 205–209.

[27] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser, “From patches to
honey-patches: Lightweight attacker misdirection, deception, and disinformation,”
in Proceedings of the 2014 ACM SIGSAC conference on computer and communica-
tions security, 2014, pp. 942–953.

[28] J. Avery and E. H. Spafford, “Ghost patches: Fake patches for fake vulnerabilities,”
in IFIP International Conference on ICT Systems Security and Privacy Protection.
Springer, 2017, pp. 399–412.

[29] S. Farooqi, M. Musa, Z. Shafiq, and F. Zaffar, “Canarytrap: Detecting data misuse
by third-party apps on online social networks,” Proceedings on Privacy Enhancing
Technologies, vol. 2020, no. 4, pp. 336–354, 2020.

[30] S. Didier. (2014) Pdf parser. [Online]. Available: https://github.com/
DidierStevens/DidierStevensSuite/blob/master/pdf-parser.py

[31] J. White, “Creating personally identifiable honeytokens,” in Innovations and Ad-
vances in Computer Sciences and Engineering. Springer, 2010, pp. 227–232.

[32] Canarytokens, “Canarytokens domain,” https://ev942nscoy6b9atf1lscy5gw6.
canarytokens.net/QBEINOXGQDLDQUOXILNWLUCAPCMWEAGOGJ.

https://github.com/DidierStevens/DidierStevensSuite/blob/master/pdf-parser.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/pdf-parser.py
https://ev942nscoy6b9atf1lscy5gw6.canarytokens.net/QBEINOXGQDLDQUOXILNWLUCAPCMWEAGOGJ
https://ev942nscoy6b9atf1lscy5gw6.canarytokens.net/QBEINOXGQDLDQUOXILNWLUCAPCMWEAGOGJ

Paper C

Honeysweeper: Towards stealthy Honeytoken fingerprinting
techniques

Mohamed Msaad, Shreyas Srinivasa, Mikkel M. Andersen, David H.
Audran, Charity U. Orji, Emmanouil Vasilomanolakis

The paper has been published in the
27th Nordic Conference on Secure IT Systems, Secure IT Systems. NordSec 2022.

Lecture Notes in Computer Science, vol 13700. Springer, Cham.
https://doi.org/10.1007/978-3-031-22295-5_6 2022.

The layout has been revised.

1. Introduction 79

Abstract
The increased number of data breaches and sophisticated attacks have created a need
for early detection mechanisms. Reports indicate that it may take up to 200 days to
identify a data breach and entail average costs of up to $4.85 million. To cope with
cyber-deception approaches like honeypots have been used for proactive attack detection
and as a source of data for threat analysis. Honeytokens are a subset of honeypots
that aim at creating deceptive layers for digital entities in the form of files and folders.
Honeytokens are an important tool in the proactive identification of data breaches and
intrusion detection as they raise an alert the moment a deceptive entity is accessed.
In such deception-based defensive tools, it is key that the adversary does not detect the
presence of deception. However, recent research shows that honeypots and honeytokens
may be fingerprinted by adversaries. Honeytoken fingerprinting is the process of detect-
ing the presence of honeytokens in a system without triggering an alert. In this work,
we explore potential fingerprinting attacks against the most common open-source hon-
eytokens. Our findings suggest that an advanced attacker can identify the majority of
honeytokens without triggering an alert. Furthermore, we propose methods that help in
improving the deception layer, the information received from the alerts, and the design
of honeytokens.

1 Introduction
Cyber attacks have reached a record level in 2021, making it the highest in 17 years
with a 10% increase from the previous year [1]. A $1.07 million cost increase is related
to the spike in remote work due to the COVID-19 pandemic [2] in addition to the
continuous growth of IoT devices [3, 4]. Further, the time needed to identify and
contain a security breach may take up to 287 days [5]. To combat this, the cyber-
defense community is moving toward more active lines of defense that leverage deception-
based techniques. Deception techniques confuse and divert attackers from real assets
by placing fake data and vulnerable systems across an organization’s network. Any
interaction with a deceptive entity may be considered an attack. In practice, there are
two leading deception technologies: honeypots and honeytokens.

Honeypots are deceptive systems that emulate a vulnerable program [6–9], for in-
stance, a vulnerable version of the Linux operating system (OS), an HTTP server, or
an IoT device. They lure attackers and deflect them from real assets while gathering in-
formation about the techniques and tools used during the interaction. Honeypots differ
by their low, medium or high-interaction level [10–12]. As the name implies, interaction
refers to how much capabilities are offered to the adversary. The process of discovering
the existence of a honeypot in a system is known as honeypot fingerprinting [11, 13].
The drawback of many honeypots is that their emulation of systems/protocols exposes

80 Paper C.

some artifacts that attackers can detect.
Honeytokens are digital entities that contain synthetic/fabricated data. They are

usually stored in a system under attractive names as a trap for intruders, and any
interaction with them is considered an attack. Honeytokens can be files such as PDFs,
SQL database entries, URLs, or DNS records that embed a token. Once accessed they
trigger and alert the system about the breach [14]. Additionally, honeytokens are less
complex and easier to maintain when compared to honeypots.

The honeytokens’ efficiency resides in their indistinguishability; hence, identifying
that an entity is a honeytoken (known as fingerprinting), diminishes its value. In this
paper, we explore and extend the research on honeytoken fingerprinting techniques and
demonstrate a fingerprinting tool that can successfully fingerprint 14 out of 20 honey-
tokens offered by the most popular open-source honeytoken service. Our contributions
in this work are as follows:

• We analyze the design of open-source honeytokens to identify potential gaps for
fingerprinting purposes.

• We introduce additional techniques to detect open-source honeytokens without
triggering alerts.

• We propose techniques to improve the deceptive capabilities of honeytokens and
introduce features that can enhance the use of information received from alerts
triggered by intrusions.

The rest of this paper is structured as follows. In Section 2, we discuss the back-
ground of the working mechanism and the fingerprinting mechanism of honeytokens.
Section 3 summarizes the related work of honeytoken fingerprinting. Section 4 presents
our proposed stealthy techniques for honeytoken fingerprinting. Moreover, in Section 5
we present a proof of concept for honeytoken fingerprinting. In Section 6, we discuss
countermeasures against honeytoken fingerprinting. We conclude our work in Section
7.

2 Background
Cyber-deception is an emerging proactive cyber defense methodology. When well crafted,
deception-based tools can be leveraged as source of threat intelligence data. Deception
techniques have two correlated defense strategies: first, to diverge the attacker from
tangible assets by simulating vulnerable systems to lure attackers and attract atten-
tion, protecting tangible assets from being attacked. Second, to notify about ongoing
suspicious activities, which can minimize the impact of an attack.

Honeytokens are deceptive entities that work by essentially triggering a notification
when the user initiates an action on them. The actions can vary depending on the

2. Background 81

honeytoken type, such as read, write, query and others. The concept is to embed a
token in the deceptive entity and rely on the deceptive layer to consume the token
and trigger the alert. Figure C.1 shows the conceptual flow of a honeytoken. The
honeytoken is deployed on a user’s system at either OS, application, or network levels.
On any attempt of access, the honeytoken triggers an alert to the user through the
notification mechanism. The recipient’s information is obtained by placing a request
to the honeytoken service. The honeytoken service acts as an endpoint and provides a
back-end for managing the honeytokens and the metadata of the deployed honeytokens.
Upon obtaining recipient information, a notification is sent either as an email or a text
message.

Action Token

Honeytoken OS/Application/Network

Load Honeytoken

Consume token

Request

Honeytoken
service

ForwardNotify

User

Adversary

Fig. C.1: Honeytoken concept and alert mechanism

To explain the honeytoken mechanism in detail, we use the Canarytokens (hon-
eytokens service) as a case study to provide concrete examples. Canarytokens is an
open-source honeytoken provider that offers 20 different honeytoken types. All the
honeytokens provided share the same deployment life-cycle as illustrated in Figure C.2.

To explain the deceptive layer and trigger mechanism, we use the PDF honeytoken
from the Canarytoken service. The Adobe Acrobat Reader (AAR) offers a range of
functionality for the PDF format to increase the document’s interaction. One of these
functionalities is the URI function, which allows linking a local URI to the world wide
web via the AAR plugin Weblink [15]. The weblink plugin exposes its functionalities
to other applications through the Host-Function-Table API. Once the honeytoken is
accessed with AAR, the URL is loaded by the weblink plugin, which on its turn will
start a DNS request to resolve the domain name. This DNS request will alert the owner
of the PDF honeytoken.

Unlike honeypots, honeytokens are accessible only if the attacker is within the system
where the honeytokens reside. The attacker can gain access through an attack or be an

82 Paper C.

Fig. C.2: Canarytokens life-cycle

insider. In both cases, honeytokens are very useful as an early alarm against successful
data exfiltration if triggered.

3 Related work
Since the invention of deception techniques, much research has been proposed for fin-
gerprinting the deceptive entities [11, 16–18]. These fingerprinting techniques fall into
two categories: passive and active fingerprinting. Passive techniques do not require
interaction with the deceptive entity and focus on monitoring. However, active finger-
printing can be either stealthy or noisy. We define stealthy fingerprinting as the process
of revealing a deceptive mechanism without triggering any alarm.

3.1 Honeypot fingerprinting
Holz et al. list some artifacts produced by the honeypot simulation to detect a honeypot
[19]. For instance, by verifying the User-Mode-Linux (UML). UML is a way of having
a Linux kernel running on another Linux. The initial Linux kernel is the host OS, and
the other is the guest OS. By default, the UML executes in Tracing Thread mode (TT)
and is not designed to be hidden and can be used to check for all the processes started
by the host OS main thread. By executing the command: “ps a", one can retrieve a list
of processes and identify UML usage’s existence. Another sign of UML is the usage of
the TUN/TAP back-end for the network, which is not common on a real system and

3. Related work 83

can identify UML usage. Another place to look for artifacts is at the file proc/self/maps
that contains the current mapped memory regions on a Linux system. On a real OS,
the end of the stack is usually 0xc0000000, which is not the case on a guest OS. These
artifacts can be used against honeypots, rendering them visible to the attacker.

Other fingerprinting techniques, such as the network latency comparison, focus on
the network layer. For instance, by calculating the differences between an HTTP server
and a honeypot HTTP server. Mukkamala et al. utilized timing analysis to reveal
if a program is a honeypot. Comparing the timing analysis of ICMP echo requests,
they showcased that an HTTP-server honeypot will respond slower than a real HTTP-
server [20]. In another work by Srinivasa et al., a framework for fingerprinting different
honeypots is proposed. The utilized techniques include so-called probe-based finger-
printing (such as port-scans or banner-checks), and metascan-based fingerprinting (e.g.,
using data from the Shodan API) [13].

3.2 Honeytoken fingerprinting
Honeytokens can take the form of different data types, such as files, database entries,
and URL/DNS records. The first step of fingerprinting is to classify honeytokens to
build a standard fingerprint method for each type. Fraunholz et al. have classified hon-
eytokens based on the entity type it emulates [21]. For instance, so-called honeypatches
are classified as server-based honeytokens as they emulate a vulnerable decoy. The decoy
may host monitoring software that collects important attack information and deceptive
files that misinform the attackers. The attacker is redirected to a decoy once the sys-
tem detects an exploit. Similarly, the database, authentication, and file honeytokens
emulate data records and authentication credentials, such as passwords and documents.
Similarly, Han et al. proposed a multi-dimensional classification of deception techniques
based on the goal, unit, layer, and deployment of the deception [22]. The majority of
the surveyed honeytokens are classified based on the detection goal. However, they
differ in the four deception layers— the network, system, application, and data layer.
In another work, Zhang et al. proposed a two-dimensional taxonomy, which eases the
systematic review of representative approaches in a threat-oriented mode, namely from
the domains of honeypots, honeytokens, and MTD techniques. They classify decep-
tion techniques depending on which phase of the Cyber Kill-Chain they can deceive an
attacker. Honeytokens can be used in eight out of twelve phases to deceive attackers [23].

To the best of our knowledge, the only work that examines honeytoken-specific
fingerprinting to date is by Srinivasa et al. [24]. The work showcases a proof of concept
regarding fingerprinting a public honeytoken provider as a case study. Additionally,
they suggest a honeytoken classification based on the four levels of operation and their
fingerprinting technique, respectively:

• Network level: The honeytokens operating on this level emulate a network en-
tity or use the network as the channel for delivering the alerts. The respective

84 Paper C.

fingerprinting technique for this deceptive layer relies on sniffing the network traf-
fic to detect such calls. In their example with the PDF honeytoken, Srinivasa et al.
observed the usage of DNS queries. However, this fingerprinting method remains
passive and not stealthy as it leads to triggering the alert.

• Application/File-Level: These honeytokens take the format of a specific file,
e.g., PDF or DOCX, and obfuscate an alert mechanism within the file. The alert
is triggered if specific applications like Adobe Reader or Microsoft Word opens
the honeytoken. The fingerprinting techniques relies on file decompression and
obtaining the file honeytoken metadata.

• System-Level: These honeytokens utilize operating systems’ features such as
event logs and inotify calls as alert mechanisms. For fingerprinting these, Srinivasa
et al. suggest monitoring background-running processes to check for the inotify
call and to look out for changes in the file or the directory path.

• Data-Level: These honeytokens emulate data and can be hard to distinguish
from actual data. The technique for fingerprinting honeytokens operating on the
data level could vary depending on the data emulated and its alert mechanism.
However, as mentioned by Srinivasa et al., viewing the file’s meta-data can help
an attacker determine whether the file is a possible honeytoken. For instance,
Honeyaccount [25] creates fake user-accounts for a system to deceive attackers in
using them and hence trigger the alert. On a compromised Windows machine, ad-
versaries can list the user accounts to verify the last known activity. Additionally,
adversaries can use Windows PowerShell scripts to recover meta-data about the
accounts in Active Directory. This can assist in identifying fake user accounts.

Srinivasa et al. also present different fingerprinting techniques for each honeytoken
type. For instance, to fingerprint a PDF honeytoken and determine its trigger channel,
they monitored the network traffic when interacting with the file. This fingerprinting
technique is noisy as the honeytoken triggers after the interaction. However, a stealthier
fingerprinting approach for the same honeytoken was also applied. They used a PDF
parser∗ to extract information from the PDF stream. The information consisted of a
URL where the domain name belonged to the honeytoken provider. All their proposed
fingerprinting techniques relied only on black box testing (i.e., triggering the honeytoken
to find the deceptive layer and the alerting mechanism). Lastly, the authors did not
consider multiple honeytokens but focused only on a few as a base for their proof of
concept.

∗https://github.com/DidierStevens/DidierStevensSuite/blob/master/pdf-parser.py

4. Methodology 85

4 Methodology
To build the fingerprinting techniques, we used different methods to extract information
from the honeytoken implementation. The methods include white box and black box
testing.

4.1 Honeytoken Analysis
To analyze the honeytokens, we started by building a classification to help us create
fingerprinting techniques for each honeytoken class. Srinivasa et al. have established a
Canarytoken honeytoken classification, and we use it as a building block for our extended
version [24].

In particular, we extend the previous classification and propose a new one that
maps all the publicly offered honeytokens from Canarytokens, as shown in Table C.1.
We added the dependency layer as a category of classification. The dependency can
be at the application or the OS layer. The PDF, .docx honeytokens can only trigger
when used with a specific application. For instance, .docx will only trigger with the
application Microsoft Word and would not if opened with the online version Microsoft
365, concluding that it is an application-dependent honeytoken. In contrast, other hon-
eytokens, such as the SQL-DUMP, will trigger with any query from an SQL-capable
application. This classification also relates to the privileges needed to stop the trig-
gering mechanism (e.g., the OS-dependent honeytokens will require higher privileges to
interrupt the trigger process than the application-dependent ones).

The first analysis step is to classify the honeytokens based on their underlying oper-
ation. We leverage the syntax form of the token as the base for the classification. From
all the 20 available honeytokens, we find four base usages: DNS, URL, SMTP, IP, and
access keys base.

The second step is to classify the honeytokens based on the location of the honey-
token identifier in the token. After analyzing all the URL/DNS-based honeytokens, we
observed that the token is a subdomain or a path identifier in the URL. This brought
us to conclude the trigger channel based on the location. Subdomain honeytokens will
use DNS as a trigger channel, while the URL honeytokens will use the HTTP protocol.

With the classification as a base, we focus on developing fingerprinting techniques
that target the dependency layer and the trigger channel. We use white and black box
testing in our methodology to identify the gap in the implementation of the honeytokens
that can be leveraged for developing fingerprinting techniques.

White box testing

The Canarytokens (honeytoken provider) service is open source, and we used white box
testing to investigate the implementation to find artifacts. In particular, we utilized

86 Paper C.

Honeytoken
Base

Honeytoken
Name

Trigger
Channel

Alerting
Entity

Dependency
Layer

Acrobat Reader PDF Adobe Acrobat Reader
& Others Application

Custom .exe/ Binary Windows
User Access Control OS

MySQL Dump SQL Server None
SQL Server SQL Server None

DNS DNS Server None

Windows Folder Windows
File Explorer OS

DNS
Subdomain

Based

SVN Server

DNS

SVN Server None

Windows Word Document Microsoft Word Desktop
Application Application

Windows Excel Document Microsoft Excel Desktop
Application Application

QR Code
Fast Redirect
Slow Redirect

URL
Custom Image Web Bug

URL
Based

Cloned Website

HTTP Web Browsers,
Curl & others None

SMTP
Based Email Address SMTP SMTP Server

Kubernetes Config File TLS Kubernetes
Application

None

IP
Based Wireguard Config File Wireguard

Protocol
Wireguard
Application

Access Key
Based AWS Key CloudWatch CloudWatch Application

Table C.1: Extended Canarytokens classification

manual static analysis to check the honeytokens’ generation code for any predicted
output or patterns that can be used as a fingerprinting base. From our testing, we
discover the following:

• ID length: We identify the usage of a fixed length in the honeytoken ID.

• Hardcoded data: We analyzed the source code to search for hardcoded data in the
honeytoken’s generation process. For instance, upon analyzing the code for the
.exe file honeytoken, we discover the usage of hardcoded data used to generate a
certificate.

• Template file usage: Canarytokens use a template file to generate the PDF, .docx
and .xlsx honeytokens. This template is not changed and leads to static metadata
that can be fingerprinted.

4. Methodology 87

• File size: This is a result of the template file usage and constant file size. We
consider this an additional artifact to the template to enhance the probability of
accurate fingerprinting.

Black box testing

The black box testing did not focus on testing the system’s internals. Instead, we used it
to extract additional information that is only available after the honeytoken generation
and validate our findings. The black box included creating and interacting with the
honeytoken to reveal the trigger channel and the entity responsible for triggering the
alert. The implemented techniques are as follows:

• Extracting metadata from the honeytokens to inspect if there are any static meta-
data present.

• Monitoring the network traffic when triggering a honeytoken to discover the trigger
channel and confirm the white box testing findings.

• Monitoring what sub-processes were started by the application or the OS that
triggers the honeytoken. This gives us an idea of how to circumvent the trigger
mechanism and stop the honeytoken alert if possible.

With the knowledge gained from the black box, we classify the honeytokens into
three categories depending on the token base: URL/DNS, IP, and access key based. The
URL/DNS-based honeytokens have a URL or a DNS subdomain directly in the data or
the file’s metadata. Regardless of the honeytoken type, they all have the same domain
name, canarytokens.com, or the equivalent IP address. The access key is a simple AWS
access key with an identifier to link the user information with the honeytoken.

4.2 Honeytoken Fingerprinting
The first step is to be able to fingerprint honeytokens generated from the official web-
site of Canarytokens†. We create and download all possible honeytokens to familiarize
ourselves and gain information about all the different honeytokens offered by the Ca-
narytokens service. In particular, we are interested on the underlying trigger mechanism,
the trigger channels, and the honeytoken dependency.

To begin, the fingerprinting technique was a simple keyword search in the honeytoken
data. The keyword is usually related to the honeytoken provider or publicly known
information. We searched for the "canarytokens" keyword in the data or the metadata
of all the URL/DNS base honeytokens. Regarding the IP-based honeytokens, our initial
fingerprinting method was to perform a reverse DNS lookup of the "canarytokens.com"
domain name and compare it to the one in the honeytoken. Finally, we did not discover

†https://canarytokens.org/generate

88 Paper C.

any fingerprinting strategy for the access key-based honeytokens since all the information
related to the access key, since the all the information is saved at the server of the access
key provider, except for a repeated pattern in the AWS key ID as displayed in Listing
C.1. The identifier has 12 constant characters AKIAYVP4CIPP, which can be used to
fingerprint all the AWS keys originating from Canarytokens.

1 # 1st key
2 [default]
3 aws_access_key_id = [AKIAYVP4CIPP] G6FXFYHS
4 aws_secret_access_key = UDxJeQftE3ekx + KS7skayD8MuN6CVVx0uemuxBSB
5 output = json
6 region = us -east -2
7
8 # 2nd -key
9 [default]

10 aws_access_key_id = [AKIAYVP4CIPP] CF45DQPM
11 aws_secret_access_key = 8 iTskHJBDDnYpUt1a2KY / hTlbScFoAS51cJl4nO5
12 output = json
13 region = us -east -2
14
15 # 3rd -key
16 [default]
17 aws_access_key_id = [AKIAYVP4CIPP] A3TB575H
18 aws_secret_access_key = mb8HpotCq27p4rCsQGwYpXo0xx + oQcIMpjdT +qOJ
19 output = json
20 region = us -east -2

Listing C.1: Canarytokens AWS access key repeated characters

The second major milestone is fingerprinting the honeytokens regardless of the do-
main name. We use the Canarytokens source code to set up the honeytoken service
on our private honeytoken server. The keyword search or the IP address comparison
approach is ineffective with this setup. However, the keyword search is still valid for the
.exe/.dll honeytoken files due to the hardcoded data found in the certificate generation
source code.

As mentioned before, the white box testing revealed that the URL/DNS- based hon-
eytokens follow a specific pattern. The DNS/URL contains a 25-character alphanumeric
identifier (ID) as displayed in Table C.2, which is used to link the honeytoken with the
user’s contact information. The ID is the subdomain for the DNS-based honeytokens
and is the path for the URL-based ones. The placement of the URL/DNS value in the
honeytoken is known to us. However, there are other URLs/DNS in some honeytokens.
For instance, the URL in the .docx honeytoken resides in the metadata, which already
includes other URLs to microsoft.com. In order to determine the existence of a honeyto-
ken URL, we loop through each URL and see if they have a 25-character alphanumeric
string in the DNS/URL. If they do, we label it as a possible honeytoken URL.

Our analysis suggests that the file type honeytokens use a static template to generate
the PDF, .docx, and .xlsx files. For instance, the template.pdf file in the source code leads

5. Proof of concept: honeysweeper 89

Table C.2: URL/DNS Honeytokens followed pattern

Identifier uq3501pu9mo56obz6kn5auhpq

URL http://domain.name/url/path/
uq3501pu9mo56obz6kn5auhpq/contact.php

DNS uq3501pu9mo56obz6kn5auhpq.domain.name

to constant metadata in the PDF honeytoken. Normally, some metadata attributes, such
as the Document UUID, should be unique for each file. A constant UUID will make it
easy to identify any PDF file from Canarytokens, even if the domain name is private.
Additionally, other data can make the attacker more confident that this is a honeytoken
file (e.g., created and modified dates). However, the file creation and modification dates
are old (7 years), and any data in it might not be valid anymore from the attacker’s
point of view. See Appendix Listing C.2 for more details.

The Canarytokens implementation uses template files to generate all the file type
honeytokens, which results in fixed file sizes. We observe that all the PDF, .docx,
and .xlsx have the same size of 5KB, 15KB, and 7.7KB respectively. This additional
artifact can be used with the template static metadata to raise the confidence of our
fingerprinting method. Additionally, this constant small file size indicates that the file
is empty and may not lure the attacker into interacting with it.

5 Proof of concept: honeysweeper
This section demonstrates the applicability of our honeytokens’ fingerprinting techniques
based on the Canarytoken implementation [26]. The fingerprinting tool’s, namely hon-
eysweeper, source code is available at our GitHub repository‡.

5.1 Overview
From all the information gained from the black/white box testing, we built an OS-
independent tool that can successfully fingerprint 14 out of the 20 honeytokens offered
by Canarytokens. The tool relies on a primary fingerprinting technique matching the 25-
character string identifier. However, this fingerprint method introduces the problem of
false positives. As we discussed earlier, some honeytokens (i.e., file-type ones) contain
more than one URL/DNS. If by any chance, another link contains a 25 characters
string, the tool will label it as a possible honeytoken. Nevertheless, from an attacker’s
perspective, we argue that false negatives are more critical since they would raise an
alarm.

‡https://github.com/aau-network-security/canarytokens_finger_printer

https://github.com/aau-network-security/canarytokens_finger_printer

90 Paper C.

Honeysweeper begins by revealing the honeytoken extension for the file-type ones
and then extracting the DNS/URL. URL/DNS/Email honeytokens can be added in
a text file and passed to the tool. As in the case of PDF, .docx and .xlsx files, the
tool needs to decompress the file as shown in Appendix Listings C.3 - C.4, and loops
through each file to extracts all the tokens. Once obtained, honeysweeper runs the
__find_canarytoken(string) to match any pattern that matches the 25-character string
in the honeytoken content. The PDF, .docx, and .exe/.dll honeytokens have higher
confidence due to the earlier additional artifacts, i.e., the static template as shown in
Appendix Listing C.2 and the small file size as shown in Figure C.3. The tool includes
checks for the PDF template as a proof of concept and can easily be enhanced to detect
other files such as .docx and .xlsx.

Fig. C.3: Honeytokens file-type constant size artifact

5.2 Limitations
The Wireguard and Kubernetes honeytokens are not included in honeysweeper as we
found no possible way of fingerprinting them when deployed with a private IP. All the
data in the honeytokens are randomly generated, e.g., the public and private keys.
However, this technique remains effective if the honeytokens are deployed with a known
honeytoken provider IP address. The fingerprinting techniques for SVN and SQL-server
are not included in the fingerprinting tool since both honeytokens are not directly ac-
cessible to the attacker. A possible fingerprinting method for the SQL server can be

6. Countermeasures against fingerprinting 91

to check the size of the table where the honeytoken resides. If the table is empty, it
may not deceive the attacker for any further interaction. The other honeytokens e.g.,
PDF, .docx, and SQL-dump are available directly on the system and the fingerprinting
methods are covered in honeysweeper.

6 Countermeasures against fingerprinting
The fixed ID length is the primary artifact shared among the studied honeytokens.
We propose that the honeytoken identifier should be randomized in length or set in a
range. For instance, the ID length could be between 25 and 32 characters, making the
fingerprinting process harder and removing the 25-character ID artifact. This mitigation
is valid for all the honeytokens containing a URL/DNS with 25 character identifiers.
However, this only solves one problem.

The following recommendations are valid for all the template-dependent honeyto-
kens. The PDF honeytokens should have random metadata. In the case of PDF, the
attacker can generate a PDF Canarytokens and compare it to any PDF exfiltrated.
Even if the honeytoken administrator changes the domain name and removes the 25-
character ID artifact, the metadata alone is enough to raise suspicion. To address this,
we propose to randomize the PDF XMP metadata. There are a few rules to keep the
metadata consistent and not leave a metadata-modification footprint [27]. We present
our solution in Appendix Listing C.5.

Moreover, the honeytoken administrator should modify the content of the .docx,
.xlsx, and PDF files before deployment to change the document size which are .docx
files are always 15KB, the .xlsx files with 7.7KB, and the PDF files with 5KB. Once
modified, the honeytokens will resemble an actual file with data and lure the attacker
into opening it. Otherwise, the attacker can combine the honeytoken file size with other
artifacts to ensure the existence of a trap.

The signing process for the .exe/binary honeytokens should be with certificates un-
related to any honeytoken provider. As seen in the Canarytokens source code, a new
certificate is generated to sign the .exe/.dll files. We generate an executable honeyto-
ken using the source code locally to investigate the generation process. We see that
a private key and a certificate is generated to sign the honeytoken and are removed
after the process is complete. Nevertheless, the information included in the signature
is hard-coded. Figure [C.4] shows the hard-coded information in the certificate. This
hard-coded information will be the same for all the .exe/binary honeytokens and can
be an artifact.

When deploying the stored procedure for a table on the SQL server, the adminis-
trator can set explicit permissions on the stored procedure by denying the public users
from viewing the stored procedure’s definition. The same approach applies for the SQL
functions as a honeytoken. The function permission can be fragmented. For example,
allow the public to select the functions and views but disallow viewing the definitions

92 Paper C.

Fig. C.4: Certificate hardcoded data

(syntax). Additionally, the trap table should be populated with random fake data to
lure the attacker into interacting with it.

The Wireguard and Kubernetes honeytokens should use an IP address not linked
with a honeytoken domain name. If no domain name is available and there is no
alternative but to use the Canarytokens servers due to development and maintenance
costs, an administrator can use a local server IP and redirect the traffic to Canarytokens
servers.

7 Conclusion
Deception techniques like honeytokens are an essential extra layer of defense, and de-
ploying them is becoming more and more common. However, for the deception technique
to achieve its goal, it should be well crafted to deceive and should not include easy to
exploit fingerprinting artifacts. This paper proposes fingerprinting techniques against
most existing Canarytokens’ honeytokens proposals and implementations. We analyze
all the publicly offered honeytokens and propose countermeasures against the suggested
techniques. As ethical disclosure, we informed Canarytokens of our findings. For future
work, we plan on exploring other fingerprinting methods. For instance, the signature
verification of the .exe/.dll files and other techniques. Additionally, we consider im-
proving the honeytoken ID generation process by including a non-repudiation concept.

7. Conclusion 93

Appendix

Static data on PDF Canarytoken
Listing C.2 shows the static data identified on parsing the composite XML file of the
PDF Canarytoken. We can observe static data on the modify date, create date and
metadata date.

1 <x:xmpmeta xmlns:x =" adobe:ns:meta /" x:xmptk =" Adobe XMP Core 5.6 - c015
81.157285 , 2014/12/12 -00 :43:15 ">

2 <rdf:RDF xmlns:rdf =" http: // www.w3.org /1999/02/22 - rdf -syntax -ns#">
3 <rdf:Description rdf:about =""
4 xmlns:xmp =" http: // ns. adobe .com/xap /1.0/ "
5 xmlns:dc =" http: // purl.org/dc/ elements /1.1/ "
6 xmlns:xmpMM =" http: // ns. adobe .com/xap /1.0/ mm/"
7 xmlns:pdf =" http: // ns. adobe .com/pdf /1.3/ ">
8 <xmp:ModifyDate >2015 -07 -22 T16:41:31 +02 :00 </ xmp:ModifyDate >
9 <xmp:CreateDate >2015 -07 -22 T16:38:51 +02 :00 </ xmp:CreateDate >

10 <xmp:MetadataDate >2015 -07 -22 T16:41:31 +02 :00 </ xmp:MetadataDate >
11 <xmp:CreatorTool >Acrobat Pro 15.8.20082 </ xmp:CreatorTool >
12 <dc:format >application /pdf </ dc:format >
13 <xmpMM:DocumentID >uuid:a2364080 -b5a8 -1b46 -b156 - ea05c4972d03 </

xmpMM:DocumentID >=
14 <xmpMM:InstanceID >uuid:7656c56e -b1e6 -f444 -801f -06 e28a50831f </

xmpMM:InstanceID >
15 <pdf:Producer >Acrobat Pro 15.8.20082 </ pdf:Producer >
16 </ rdf:Description >
17 </ rdf:RDF >
18 </ x:xmpmeta >

Listing C.2: PDF honeytoken static metadata

Fingerprinting of PDF Canarytoken
Listing C.3 shows the pseudo code for fingerprinting of PDF Canarytoken. The method
checks for URLs embedded in the PDF and against a list of known honeytoken service
URLs.

1 def find_token_in_pdf (file_location):
2 check_template (file_location) # check for template artifact
3 # List for URLs found
4 list_of_urls = []
5 pdf = open(file_location , "rb").read ()
6 stream = re. compile (b’.*? FlateDecode .*? stream (.*?) endstream ’, re.S)
7 for s in re. findall (stream , pdf):
8 s = s. strip (b’\r\n’)
9 line = ""

10 try:

94 Paper C.

11 line = zlib. decompress (s). decode (’latin -1 ’) # changed this
from UTF -8 to latin -1 as it throws errors . We

12 # want the app to be silent :)
13 except Exception as e:
14 print (e)
15 token = Tokenfinder . find_tokens_in_string (line)
16 if token :
17 list_of_urls . extend (token)
18 if len(list_of_urls) == 0:
19 print ("No canaries detected ")
20 return None
21 else:
22 print (str(len(list_of_urls)) + " canary URLs detected in the

file")
23 for url in list_of_urls :
24 print (" Canary detected !: ", url)
25 print ()

Listing C.3: PDF fingerprinting

Fingerprinting of .docx and .xlsx Canarytokens
Listing C.4 shows the pseudo code for fingerprinting of .docx and .xlsx Canarytokens.
The techniques unzips the composite file formats to check for URLs embedded in the
files.

1 def check_office_files (file_location):
2 list_of_urls = [] # List to hold all urls in the file
3 try:
4 # Unzip the office file without saving to folder
5 unzipped_file = zipfile . ZipFile (file_location ,"r")
6 # List of all the content of the zip
7 namelist = unzipped_file . namelist ()
8 # Reads every file in the zip file and looks if it contains the

string you wish to search for
9 for item in namelist :

10 content = str(unzipped_file .read(item))
11 token = Tokenfinder . find_tokens_in_string (content)
12 if token :
13 list_of_urls . extend (token)
14 except OSError as e:
15 print (f" Exception : {e}")
16 # If no results of the search
17 if len(list_of_urls) == 0:
18 return None
19 else:
20 print (str(len(list_of_urls)) +" canary URLs detected in the

file")
21 for url in list_of_urls :
22 print (" Canary detected : ", url)

7. Conclusion 95

23 print ()

Listing C.4: .docx and .xlsx fingerprinting

Mitigation of metadata in Canarytoken
Listing C.5 shows the mitigation by randomization of the file creation date and time.
The randomness avoids static creation dates that is implemented by Canarytokens.

1 from pikepdf import Pdf
2 import uuid , random , datetime , os
3
4 # make creation date with random Time -Zone [+1 to +3]
5 def creation_date ():
6 time = datetime . datetime .now ()
7 rand_region =str(random . randint (1, 3))
8 stamp = time. strftime (’2022 -%m -%d’)+’T’+ time. strftime (’%H:%M:%S’)

+ ’+0 ’+ rand_region + ’:00 ’
9 return stamp

10
11
12 def modification_date ():
13 time = datetime . datetime .now ()
14 return time. strftime (’%Y -%m -%d’)+’T’+ time. strftime (’%H:%M:%S’)
15
16 def add_metadata (source_pdf , out_dir):
17 mod_date = modification_date ()
18 with Pdf.open(source_pdf) as pdf:
19 with pdf. open_metadata (set_pikepdf_as_editor = False) as meta:
20 meta[’xmp: CreatorTool ’] = ’Acrobat Pro 22.001.20112 ’
21 meta[’xmpMM : DocumentID ’] = str(uuid. uuid4 ())
22 meta[’xmpMM : InstanceID ’] = str(uuid. uuid4 ())
23 meta[’xmp: CreateDate ’] = creation_date ()
24 meta[’xmp: ModifyDate ’] = mod_date
25 meta[’xmp: MetadataDate ’] = mod_date
26 meta[’pdf: Producer ’] = ’Acrobat Pro 22.001.20112 ’
27 pdf.save(os.path.join(out_dir , os.path. basename (source_pdf)))
28 print (’Done!’)
29
30 source_pdf = "/ Users /mm/ Downloads / pdftoken .pdf"
31 out_dir = ’/ Users /mm/ Desktop /’
32 add_metadata (source_pdf , out_dir)

Listing C.5: Metadata mitigation

96 References

References
[1] IBM, “Insights into what drives data breach costs,” 2021. [Online]. Available:

https://www.ibm.com/account/reg/uk-en/signup?formid=urx-51643

[2] ——, “Key findings,” 2021. [Online]. Available: https://www.ibm.com/downloads/
cas/OJDVQGRY

[3] K. Ghirardello, C. Maple, D. Ng, and P. Kearney, “Cyber security of smart homes:
Development of a reference architecture for attack surface analysis,” in Living in
the Internet of Things: Cybersecurity of the IoT - 2018, March 2018, pp. 1–10.

[4] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, “Open for hire: Attack
trends and misconfiguration pitfalls of iot devices,” in Proceedings of the 21st
ACM Internet Measurement Conference, ser. IMC ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 195–215. [Online]. Available:
https://doi.org/10.1145/3487552.3487833

[5] IBM, “How much does a data breach cost?” 2021. [Online]. Available:
https://www.ibm.com/security/data-breach

[6] I. Mokube and M. Adams, “Honeypots: Concepts, approaches, and challenges,” in
Proceedings of the 45th Annual Southeast Regional Conference, ser. ACM-SE 45.
New York, NY, USA: Association for Computing Machinery, 2007, p. 321–326.
[Online]. Available: https://doi.org/10.1145/1233341.1233399

[7] Q. D. La, T. Q. S. Quek, J. Lee, S. Jin, and H. Zhu, “Deceptive attack and defense
game in honeypot-enabled networks for the internet of things,” IEEE Internet of
Things Journal, vol. 3, no. 6, pp. 1025–1035, Dec 2016.

[8] E. Vasilomanolakis, S. Karuppayah, M. Fischer, M. Mühlhäuser, M. Plasoianu,
L. Pandikow, and W. Pfeiffer, “This network is infected: Hostage - a
low-interaction honeypot for mobile devices,” in Proceedings of the Third ACM
Workshop on Security and Privacy in Smartphones & Mobile Devices, ser. SPSM
’13. New York, NY, USA: Association for Computing Machinery, 2013, p. 43–48.
[Online]. Available: https://doi.org/10.1145/2516760.2516763

[9] D. Tools, “Web honeypot,” 2010. [Online]. Available: https://github.com/
DinoTools/dionaea/

[10] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer, “Hostage: a
mobile honeypot for collaborative defense,” in Proceedings of the 7th International
Conference on security of information and networks, ser. SIN ’14, vol. 2014-. ACM,
2014, pp. 330–333.

https://www.ibm.com/account/reg/uk-en/signup?formid=urx-51643
https://www.ibm.com/downloads/cas/OJDVQGRY
https://www.ibm.com/downloads/cas/OJDVQGRY
https://doi.org/10.1145/3487552.3487833
https://www.ibm.com/security/data-breach
https://doi.org/10.1145/1233341.1233399
https://doi.org/10.1145/2516760.2516763
https://github.com/DinoTools/dionaea/
https://github.com/DinoTools/dionaea/

References 97

[11] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting
low- and medium-interaction honeypots at internet scale,” in 12th USENIX
Workshop on Offensive Technologies (WOOT 18). Baltimore, MD: USENIX
Association, Aug. 2018. [Online]. Available: https://www.usenix.org/conference/
woot18/presentation/vetterl

[12] J. D. Guarnizo, A. Tambe, S. S. Bhunia, M. Ochoa, N. O. Tippenhauer, A. Shabtai,
and Y. Elovici, “Siphon: Towards scalable high-interaction physical honeypots,”
in Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security, ser.
CPSS ’17. New York, NY, USA: Association for Computing Machinery, 2017, p.
57–68. [Online]. Available: https://doi.org/10.1145/3055186.3055192

[13] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, “Gotta catch ’em all: a
multistage framework for honeypot fingerprinting,” 2021.

[14] A. Čenys, D. Rainys, L. Radvilavicius, and N. Goranin, “Database level honeytoken
modules for active dbms protection,” in Advances in Information Systems Devel-
opment, A. G. Nilsson, R. Gustas, W. Wojtkowski, W. G. Wojtkowski, S. Wrycza,
and J. Zupančič, Eds. Boston, MA: Springer US, 2006, pp. 449–457.

[15] Acrobat, “Acrobat api reference,” August 2021. [Online]. Available:
https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/html2015/
Acro12_MasterBook/API_References_SectionPage/API_References/Acrobat_
API_Reference/AV_Layer/Weblink.html

[16] E. Aguirre-Anaya, G. Gallegos-García, N. S. Luna, and L. A. V. Vargas, “A new
procedure to detect low interaction honeypots,” International Journal of Electrical
and Computer Engineering, vol. 4, pp. 848–857, 2014.

[17] R. N. Dahbul, C. Lim, and J. Purnama, “Enhancing honeypot deception
capability through network service fingerprinting,” Journal of Physics: Conference
Series, vol. 801, p. 012057, jan 2017. [Online]. Available: https://doi.org/10.1088/
1742-6596/801/1/012057

[18] X. Fu, W. Yu, D. Cheng, X. Tan, K. Streff, and S. Graham, “On recognizing virtual
honeypots and countermeasures,” in 2006 2nd IEEE International Symposium on
Dependable, Autonomic and Secure Computing, Sep. 2006, pp. 211–218.

[19] T. Holz and F. Raynal, “Detecting honeypots and other suspicious environments,”
in Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop,
June 2005, pp. 29–36.

[20] S. Mukkamala, K. Yendrapalli, R. Basnet, M. K. Shankarapani, and A. H. Sung,
“Detection of virtual environments and low interaction honeypots,” in 2007 IEEE
SMC Information Assurance and Security Workshop, June 2007, pp. 92–98.

https://www.usenix.org/conference/woot18/presentation/vetterl
https://www.usenix.org/conference/woot18/presentation/vetterl
https://doi.org/10.1145/3055186.3055192
https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/html2015/Acro12_MasterBook/API_References_SectionPage/API_References/Acrobat_API_Reference/AV_Layer/Weblink.html
https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/html2015/Acro12_MasterBook/API_References_SectionPage/API_References/Acrobat_API_Reference/AV_Layer/Weblink.html
https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/html2015/Acro12_MasterBook/API_References_SectionPage/API_References/Acrobat_API_Reference/AV_Layer/Weblink.html
https://doi.org/10.1088/1742-6596/801/1/012057
https://doi.org/10.1088/1742-6596/801/1/012057

98 References

[21] D. Fraunholz, S. D. Antón, C. Lipps, D. Reti, D. Krohmer, F. Pohl, M. Tammen,
and H. D. Schotten, “Demystifying deception technology: A survey,” CoRR, vol.
abs/1804.06196, 2018. [Online]. Available: http://arxiv.org/abs/1804.06196

[22] X. Han, N. Kheir, and D. Balzarotti, “Deception techniques in computer security:
A research perspective,” ACM Comput. Surv., vol. 51, no. 4, jul 2018. [Online].
Available: https://doi.org/10.1145/3214305

[23] L. Zhang and V. L. Thing, “Three decades of deception techniques in active cyber
defense-retrospect and outlook,” Computers & Security, vol. 106, p. 102288, 2021.
[Online]. Available: https://arxiv.org/abs/2104.03594

[24] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, “Towards systematic
honeytoken fingerprinting,” in 13th International Conference on Security
of Information and Networks, ser. SIN 2020. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available: https:
//doi.org/10.1145/3433174.3433599

[25] C. D. Faveri and A. Moreira, “Visual modeling of cyber deception,” in 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2018,
pp. 205–209.

[26] T. A. Research, “Canarytokens.” [Online]. Available: https://github.com/thinkst/
canarytokens

[27] A. Gungor, “Pdf forensic analysis and xmp metadata streams,”
2017. [Online]. Available: https://www.meridiandiscovery.com/articles/
pdf-forensic-analysis-xmp-metadata/

http://arxiv.org/abs/1804.06196
https://doi.org/10.1145/3214305
https://arxiv.org/abs/2104.03594
https://doi.org/10.1145/3433174.3433599
https://doi.org/10.1145/3433174.3433599
https://github.com/thinkst/canarytokens
https://github.com/thinkst/canarytokens
https://www.meridiandiscovery.com/articles/pdf-forensic-analysis-xmp-metadata/
https://www.meridiandiscovery.com/articles/pdf-forensic-analysis-xmp-metadata/

Paradigms in Cyber Deception

100 References

Paper D

RIoTPot: a modular hybrid-interaction IoT/OT honeypot

Shreyas Srinivasa, Jens Myrup Pedersen, Emmanouil Vasilomanolakis

The paper has been published in the
Proceedings of 26th European Symposium on Research in Computer Security

(ESORICS) 2021

The layout has been revised.

1. Introduction 103

Abstract
Honeypots are often used as a proactive attack detection mechanism and as a source of
threat intelligence data. However, many honeypots are poorly maintained and cumber-
some to extend. Moreover, low-interaction honeypots are prone to fingerprinting attacks
due to their limited emulation capabilities. Nonetheless, low-interaction honeypots are
essential for environments with limited resources. In this paper, we introduce RIoTPot,
a modular and hybrid-interaction honeypot for Internet-of-Things (IoT) and Operational
Technology (OT) protocols mainly used in Industrial Control System environments. RI-
oTPot’s modularity comes as a result of plug-n-play container services while its hybrid-
interaction capability enables users to switch between low- and high-interaction modes.
We deploy RIoTPot on the Internet, receive a large amount of attacks and discuss the
results received on both low- and high-interaction modes.

1 Introduction
Honeypots are deceptive systems that simulate a seemingly vulnerable system to gather
attacks. Over the years, many honeypot solutions have been proposed that are com-
monly classified to low-, medium- and high-interaction based on the level of interaction
they offer to the adversary [1, 2]. Low- and medium-interaction honeypots, due to their
limited emulation capabilities, are prone to honeypot fingerprinting that may limit their
scope [3]. Honeypot fingerprinting refers to adversarial methods that allow for the identi-
fication of the honeypot nature of a system. Nevertheless, these two classes of honeypots
are the most commonly deployed ones. Other common issues with honeypots include
the lack of flexibility in extending/adapting them, the absence of support, and limited
documentation.

Despite the aforementioned limitations, honeypots are an excellent defensive toolkit,
especially with regard to the increasing number of IoT and OT attacks. With such proto-
cols being consistently attacked, in both consumer [4] and commercial environments [5],
deception mechanisms like honeypots offer an early warning system and a method to
analyse adversaries’ techniques [6–8].

Traditional honeypot simulations may run on virtualized environments like VMs,
virtual containers (LXC), or even language-based virtual environments. Kedrowitsch et
al. made a first effort to propose the use of containers for honeypots [9]. The authors
propose the usage of Linux containers as a platform to develop honeypots and com-
pliment their proposal by comparing the detection methods of popular virtualization
platforms against containers. Kedrowitsch et al. conclude that limitations exist in the
use of either containers or virtual machines as a honeypot platform. A much recent pro-
posal by Reti et al. introduces the use of container-based deception for honeypots [10].
The authors investigate the possibilities of container-based honeypots and introduce the

104 Paper D.

concept of simulating container-escapes (fake network pivoting outside a container) as
a deception technique. Both approaches suggest the use of container systems to achieve
ease of deployment. Moreover, many open-source honeypots offer the possibility of a
containerized deployment for ease of installation. Nevertheless, besides the aforesaid
academic work there are not many actual honeypot implementations that make use of
containers. Furthermore, all existing honeypots have a binary interaction level: they
are either low-, medium-, or high-interaction [1].

In this paper, we present RIoTPot∗, a honeypot that: i.) breaks the traditional
binary interaction paradigm, ii.) focuses on IoT and OT protocols, and iii.) is designed
with a modular-by-design architecture. First, the hybrid-interaction level of RIoTPot
aims at providing defenders flexibility by giving them the ability to utilize the appropri-
ate interaction level based on their needs and capabilities. For instance, low constrained
environments scale better with low interaction components while high interaction comes
handy when deeper analysis of attack is required. Second, RIoTPot supports many IoT
and OT protocols (i.e., Telnet, SSH, CoAP, Modbus, MQTT), with more to be im-
plemented in the immediate future. At the moment, there are only a few real world
honeypot implementations that focus on IoT [8, 11] and even fewer for OT [7, 12].
Lastly, the modularity of the honeypot comes from its architecture; each functionality
of the honeypot is a plug-n-play component that can be edited, activated or deactivated
based on the user’s preferences.

2 RIoTPot Design
RIoTPot features a modular architecture that facilitates quick integration of new pro-
tocol simulation modules. A modular software architecture is a structural approach of
building software components as modules by separating the functionality of a program
into independent, interchangeable modules, such that each contains everything neces-
sary to execute only one aspect of the desired functionality [13]. Figure D.1 shows the
high level architecture of RIoTPot. The prominent modules in the architecture are the
RIoTPot core module, the packet capture and noise filter module, the low-interaction
modules, the high-interaction modules, and the attack database.

The RIoTPot core consists of the required components for the configuration, admin-
istration, and orchestration of the honeypot. In particular, the core module provides
RIoTPot with all the required parameters at startup. This includes user preferences for
specific protocols, profile simulation, and the desired interaction level. In addition, the
core is responsible for the network management for the high-interaction protocol ser-
vices simulated on containers. The received attack traffic is forwarded to the respective
container that hosts the protocol on which the attack was targeted. Furthermore, the
core also facilitates the communication between itself and the containers, if hosted on a

∗https://github.com/aau-network-security/riotpot

2. RIoTPot Design 105

Low-Interaction
Emulation

HTTP SSH
Telnet

MQTT
CoAP

Mod-
bus

AMQP

+

High-Interaction
Emulation with

pluggable Containers

Host Machine / Cloud

Attack
Database

Container

RIoTPot Core

</>

Packet Capture &
Noise Filter

Fig. D.1: High level architecture of RIoTPot

cloud environment.
For the Packet capture and noise filter module the attack capture component is

responsible for storing the attack packets as pcap files, using tcpdump, which can be used
for detailed analysis (e.g., deep packet inspection). The noise filter component filters out
the traffic received from Internet-wide scanners like Shodan [14] and Censys [15]. This
helps the honeypot administrator to concentrate on attacks that matter by removing
the noise traffic generated by such services.

The low-interaction mode is achieved through independent packages, with each pack-
age simulating a specific protocol. RIoTPot is implemented in Go language [16] and
facilitates the development of a modular architecture through packages. The packages
act as plug-ins that can be added to the honeypot to extend the protocols simulated.
For example, the fakeshell package emulates a system shell that can be leveraged by
the SSH and the Telnet packages. The fakeshell package can be extended to include

106 Paper D.

emulation of specific commands. Furthermore, RIoTPot provides a template that can
be used for integration of additional protocols. The high-interaction mode is achieved
by emulating the protocols as services in container images. Hence, since a container
implements the full protocol the honeypot provides the attacker with high interaction
capabilities. The containers act as high-interaction modules that offer a full implemen-
tation of a protocol. Additional protocol services can be added by integrating containers
with the desired protocol services. The hybrid-interaction mode further allows the user
to emulate selective protocols on low or high-interaction levels. For example, the user
can choose to have SSH in low-interaction mode and MQTT in high-interaction mode.

The attack database stores all the attack traffic received on the honeypot. The
database is setup as an independent module to ensure data availability even if a honeypot
module is down (e.g., due to a crash or DDoS attack). The database is accessible from
the low-interaction and high-interaction modules for attack storage.

To sum up, the design of RIoTPot facilitates modularity through packages and con-
tainers as plugins. Furthermore, the modular architecture assists the hybrid-interaction
model of RIoTPot.

3 Preliminary Results
The honeypot was deployed in both low and high interaction modes on two hosts in our
lab. The hosts were assigned a public IP each, under an unfiltered network. We define an
attack as any interaction with the honeypot as there is no production value whatsoever.
However, we differentiate incoming traffic from well-known crawlers (e.g. Shodan). The
attacks on the honeypots were recorded for a period of one week. In the low-interaction
variant, the protocols SSH, Telnet, HTTP, MQTT, CoAP and Modbus were simulated
through the plug-in packages, while the high-interaction variant simulated the MQTT
protocol in a container. In addition to recording the attacks in the database, the hosts
also had the tcpdump service running in the background to capture the attack packets for
comprehensive analysis. A total of 7, 587 attacks were observed across all the protocols
simulated by RIoTPot.

Figure D.2 shows the number of unique attacks received per protocol for a period of
one week. MQTT-HI indicates the high-interaction mode of the MQTT protocol. We
observe a trend in the number of attacks for all protocols. Furthermore, the number of
attacks on the MQTT protocol in the high-interaction mode is higher in comparison to
the low-interaction mode. Moreover, we observe recurring sessions from same suspicious
actors on the high-interaction mode, that included topic creation, subscription and
deletion, and modification of existing messages in topics which have not been observed
on the low-interaction mode.

Figure D.3 depicts the percentage of attacks from Internet-scanning engines (e.g.,
Shodan, Censys, Project Sonar [17], and ShadowServer [18]) in comparison to the attacks
from suspicious sources. We observe an average of 25% of the total traffic originating

4. Conclusion 107

Fig. D.2: Number of attacks on protocols per day

Fig. D.3: Attack noise classification in percentage

from 19 common scanning engines†. Filtering out such traffic reduces noise and alert
data fatigue for the administrators.

4 Conclusion
In this paper, we introduce RIoTPot, a honeypot that features a hybrid-interaction
model with a modular design for IoT and OT protocols. RIoTPot addresses the issue of
limited interaction and flexibility, in addition to ease of deployment. Our preliminary
results suggest that the honeypot is attractive to adversaries and is able to distinguish
between suspicious traffic (traffic originating from attackers) and common scanning
engines (traffic likely coming from Shodan-like systems). As future work, we aim to
extend RIoTPot to support more IoT and OT protocols like UPnP, AMQP, XMPP, S7,
DNP3, Fieldbus and Profibus. Furthermore, we intend to integrate threat intelligence

†For a complete list of the supported scanning engines see: https://github.com/aau-network-
security/riotpot#12-Noise-Filter

108 References

reporting through STIX to facilitate structured sharing of threat data [19]. Finally,
we plan to perform a more extensive evaluation of RIoTPot with an emphasis on ICS
environments.

References
[1] L. Zhang and V. Thing, “Three decades of deception techniques in active

cyber defense - retrospect and outlook,” Computers & Security, vol. 106, p.
102288, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167404821001127

[2] M. L. Bringer, C. A. Chelmecki, and H. Fujinoki, “A survey: Recent advances and
future trends in honeypot research,” International Journal of Computer Network
and Information Security, vol. 4, no. 10, p. 63, 2012.

[3] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting
low- and medium-interaction honeypots at internet scale,” in 12th USENIX
Workshop on Offensive Technologies (WOOT 18). Baltimore, MD: USENIX
Association, Aug. 2018. [Online]. Available: https://www.usenix.org/conference/
woot18/presentation/vetterl

[4] A. Mangino, M. S. Pour, and E. Bou-Harb, “Internet-scale insecurity of consumer
internet of things: An empirical measurements perspective,” ACM Transactions
on Management Information Systems, vol. 11, no. 4, Oct. 2020. [Online]. Available:
https://doi.org/10.1145/3394504

[5] X. Jiang, M. Lora, and S. Chattopadhyay, “An experimental analysis of security
vulnerabilities in industrial iot devices,” ACM Trans. Internet Technol., vol. 20,
no. 2, May 2020. [Online]. Available: https://doi.org/10.1145/3379542

[6] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer, “Hostage: A
mobile honeypot for collaborative defense,” in Proceedings of the 7th International
Conference on Security of Information and Networks, ser. SIN ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 330–333. [Online].
Available: https://doi.org/10.1145/2659651.2659663

[7] L. Rist, J. Vestergaard, D. Haslinger, A. Pasquale, and J. Smith, “Conpot ics/scada
honeypot,” Honeynet Project (conpot. org), 2013.

[8] M. Oosterhof, “Cowrie ssh/telnet honeypot,” 2016. [Online]. Available:
:https://github.com/micheloosterhof/cowrie

https://www.sciencedirect.com/science/article/pii/S0167404821001127
https://www.sciencedirect.com/science/article/pii/S0167404821001127
https://www.usenix.org/conference/woot18/presentation/vetterl
https://www.usenix.org/conference/woot18/presentation/vetterl
https://doi.org/10.1145/3394504
https://doi.org/10.1145/3379542
https://doi.org/10.1145/2659651.2659663
: https://github.com/micheloosterhof/cowrie

References 109

[9] A. Kedrowitsch, D. D. Yao, G. Wang, and K. Cameron, “A first look: Using
linux containers for deceptive honeypots,” in Proceedings of the 2017 Workshop on
Automated Decision Making for Active Cyber Defense, ser. SafeConfig ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p. 15–22. [Online].
Available: https://doi.org/10.1145/3140368.3140371

[10] D. Reti and N. Becker, “Escape the fake: Introducing simulated container-escapes
for honeypots,” 2021.

[11] E. Vasilomanolakis, S. Karuppayah, M. Fischer, M. Mühlhäuser, M. Plasoianu,
L. Pandikow, and W. Pfeiffer, “This network is infected: Hostage-a low-interaction
honeypot for mobile devices,” in Proceedings of the Third ACM workshop on Secu-
rity and privacy in smartphones & mobile devices, 2013, pp. 43–48.

[12] E. Vasilomanolakis, S. Srinivasa, and M. Mühlhäuser, “Did you really hack a nuclear
power plant? an industrial control mobile honeypot,” in 2015 IEEE Conference on
Communications and Network Security (CNS). IEEE, 2015, pp. 729–730.

[13] M. Mohammed, M. Elish, and A. Qusef, “Empirical insight into the context of
design patterns: Modularity analysis,” in 2016 7th International Conference on
Computer Science and Information Technology (CSIT), 2016, pp. 1–6.

[14] SHODAN, “Shodan,” 2021. [Online]. Available: https://www.shodan.io/

[15] Censys, “Censys search,” 2021. [Online]. Available: https://censys.io/

[16] Golang, “Go language,” 2021. [Online]. Available: https://golang.org/

[17] R. Research, “Project sonar,” 2021. [Online]. Available: https://www.rapid7.com/
research/project-sonar/

[18] ShadowServer.org, “Shadowserver.org,” 2021. [Online]. Available: https://www.
shadowserver.org/

[19] S. Barnum, “Standardizing cyber threat intelligence information with the struc-
tured threat information expression (stix),” Mitre Corporation, vol. 11, pp. 1–22,
2012.

https://doi.org/10.1145/3140368.3140371
https://www.shodan.io/
https://censys.io/
https://golang.org/
https://www.rapid7.com/research/project-sonar/
https://www.rapid7.com/research/project-sonar/
https://www.shadowserver.org/
https://www.shadowserver.org/

110 References

Paper E

Interaction matters: a comprehensive analysis and a dataset
of hybrid IoT/OT honeypots

Shreyas Srinivasa, Jens Myrup Pedersen, Emmanouil Vasilomanolakis

The paper has been published in the
Proceedings of Annual Computer Security Applications Conference (ACSAC) 2022.
Association for Computing Machinery 2022 Vol. XX(X), pp. XXX–XXX, 201X.

The layout has been revised.

1. Introduction 113

Abstract
The Internet of things (IoT) and critical infrastructure utilizing operational technol-
ogy (OT) protocols are nowadays a common attack target and/or attack surface used
to further propagate malicious actions. Deception techniques such as honeypots have
been proposed for both IoT and OT but they either lack an extensive evaluation or are
subject to fingerprinting attacks. In this paper, we extend and evaluate RIoTPot, a
hybrid-interaction honeypot, by exposing it to attacks on the Internet and perform a
longitudinal study with multiple evaluation parameters for three months. Furthermore,
we publish the aforementioned study in the form of a dataset that is available to re-
searchers upon request. We leverage RIoTPot’s hybrid-interaction model to deploy it
in three interaction variants with six protocols deployed on both cloud and self-hosted
infrastructure to study and compare the attacks gathered. At a glance, we receive 10.87
million attack events originating from 22, 518 unique IP addresses that involve brute-
force, poisoning, multistage and other attacks. Moreover, we fingerprint the attacker
IP addresses to identify the type of devices who participate in the attacks. Lastly, our
results indicate that the honeypot interaction levels have an important role in attracting
specific attacks and scanning probes.

1 Introduction
The number of cyber attacks targeting mission-critical infrastructure has increased
steadily [1]. Recent attacks on industrial systems like the US Colonial Pipeline [2] and
the Florida Water Treatment plant [3] have shown the impact caused on both the pub-
lic and the government. Mission-critical systems in Operational Technology (OT) rely
on sensors and connected devices to automate industrial control processes. However, a
study of recent attacks reveals a lack of security on these devices [4]. Furthermore, the
vast adoption of IoT devices in both consumer and industrial applications has increased
the attack space. Research shows a large number of vulnerable, misconfigured IoT de-
vices exposed to the Internet and sophisticated malware that can exploit them [5, 6].
Moreover, the ENISA Threat Landscape Report 2020 states that malware continues
to be the most challenging attack vector and up to 230, 000 variants are distributed
daily [7].

Honeypots are deception systems that act as a trapping mechanism for attackers.
They have low false positives as there is no justification to communicate with a honeypot,
and hence, all communication can be considered suspicious. Honeypots are classified
into low, medium, and high interaction based on the interaction capabilities they offer to
the attackers. Over the years, many honeypots have been proposed for various protocols
or device profiles. Well known examples include Cowrie [8], Conpot [9], HosTaGe [10],
Glastopf [11], Dionaea [12], and T-Pot [13].

114 Paper E.

Honeypots come with some limitations as a result of either the lack of interaction,
their static responses, or poor maintenance. Honeypot fingerprinting is the process of
determining if the system in communication is a honeypot through probing mechanisms.
Successful fingerprinting attacks can undermine the value of honeypots as their identity
is exposed. A number of techniques for fingerprinting honeypots have been proposed
in recent research [14–16]. Moreover, many open-source honeypot projects are aban-
doned or depend on libraries that are not in active maintenance; this leads to a lack of
extensibility and reduced scope [14].

In this paper, we extend RIoTPot, a modular and hybrid-interaction honeypot that
addresses the gap between extensibility and interaction to simulate application-layer
protocols used in IT, IoT, and OT environments [17]. The contributions of this paper
are as follows.

• We extend RIoTPot and provide the source code for IoT and OT device profiles
that emulate the Telnet, SSH, MQTT, Modbus, CoAP, and HTTP protocols.

• We perform a longitudinal study of RIoTPot imposing many evaluation param-
eters based on interaction-level, simulation environment, deployment infrastruc-
ture, and geolocation. We report our findings and discuss the impact of the
evaluation parameters on the operation of honeypots. In addition, we examine
how RIoTPot performs compared to another popular state of the art honeypot.

• We offer the attack dataset to the research community.

The rest of the paper is structured as follows. Section 2 provides an overview of the
related work in the use of honeypots for analyzing attack trends. We discuss RIoTPot,
the extensions we implemented and the offered dataset in Section 3. In Section 4, we
outline the methodology of our study and the experimental setup and evaluate our
approach in Section 5. We discuss our findings in Section 6 and conclude in Section 7.

2 Related Work
Honeypots are commonly classified into low, medium, and high-interaction based on the
interaction level they offer to attackers. Low-interaction honeypots offer limited simu-
lations of a protocol or service and are easy to manage. Medium-interaction offer an
extended interaction level to low-interaction and involve emulating a device that consti-
tutes multiple protocols. High-interaction honeypots are real (or virtual) systems/de-
vices with customized logging, limited egress traffic rules, and ephemeral configurations
to prevent misuse. At a glance, various well-known low/medium interaction honeypots
include: Cowrie [8], Conpot [9], HosTaGe [10], Glastopf [11], Dionaea [12] and TPot [13].
In addition, there are some high-interaction honeypots proposed such as Honware [18],
Siphon [19], and Sarracenia [20]. All of the aforementioned honeypots operate at low

2. Related Work 115

or high interaction modes thus offering a binary interaction capability. Moreover, they
vary a lot on how much extensibility they offer for integrating additional protocols or
targeting specific environments.

Another factor that is important to be taken into account is fingerprinting; adver-
saries may be able to detect if a target system is a honeypot using techniques that
leverage minimal data obtained from the target system. On the one hand, recent re-
search reveals that while low/medium-interaction honeypots are easy to manage and
are minimal in risk, they are more vulnerable to fingerprinting attacks [14, 15]. On the
other hand, high-interaction honeypots risk a compromised environment that can be
leveraged for malicious activities entailing higher maintenance.

Litchfield et al. propose HoneyPhy to address the issues of limited simulation of
honeypots that simulate cyber-physical environments [21]. The authors argue that the
honeypots fail to emulate the actual behavior of cyber-physical systems which can lead
to fingerprinting. The authors extend their work by proposing HoneyBot; a hybrid-
interaction honeypot designed explicitly for networked robotic systems [22] that is ca-
pable of switching interaction based on the attack requests. However, HoneyBot is
limited to a specific environment and cannot be extended for diverse operations.

The evaluation of honeypots in research studies that aim at presenting an overview
of the attack landscape is not uncommon [23–25]. Dang et al. performed a longitudinal
study of 12 months in a combined approach with both hardware and software honeypots
[26]. The experiment involved the deployment of four hardware and 108 software IoT
honeypots in gathering attacks on the IoT landscape. The software/virtual honeypots
are deployed on eight public cloud providers and various geolocations. The authors
present an overview of the attacks received on the honeypots and the implications. Minn
et al. propose IoTPOT, a honeypot that simulates Telnet services from various IoT
devices, to study the attack trends on the Telnet protocol [27]. The IoTPOT honeypot
consists of a low-interaction front-end connected with a high-interaction back-end called
IoTBOX that simulates the Telnet service from various IoT device profiles. The authors
deployed the honeypot for 39 days and collected 43 distinct malware samples.

Srinivasa et al. find a large number of misconfigured IoT devices on the Internet and
deploy six open-source IoT honeypots to study attack trends [5]. Tabari et al. present
a multi-faceted IoT-honeypot ecosystem with extendable sophistication by observing
real-world attacks [28]. The authors develop a honeypot for IoT cameras to observe
the attack landscape around them. Furthermore, the authors propose ProxyPot, a
honeypot proxy that sits between IoT devices and external networks to observe inbound
and outbound traffic. The IoT camera honeypots were deployed for two years and an
increase in the number of attacks was observed.

Vetterl et al. propose Honware, a high-interaction, virtual honeypot framework that
can emulate a wide range of IoT device firmware without the hardware [18]. The au-
thors evaluated the honeypot by deploying four device profiles of ADSL modems and
found various attacks targeting vulnerabilities specific to emulated devices. Further-

116 Paper E.

more, Guarnizo et al. present Siphon, a scalable high-interaction honeypot architecture
which utilizes IoT devices that are physically deployed at a geographical location and
connected to the Internet for simulation [19]. The authors deploy 85 honeypot instances,
in various locations, that utilize five physical cameras, an NVR, and an IP printer. An
analysis of the attacks revealed that honeypots in certain cities received more attack
traffic compared to others. Valeros et al. provide Hornet 40, a network dataset of
geographically placed honeypots to study the impact of geolocation [29]. The data con-
sists of 118 features, including 480 bytes of content for each flow. The dataset does
not contain interactive attack traffic as only passive honeypots were used in the study.
The attack data is collected from honeypots deployed at eight locations and contain 4.7
million network flows collected over a period of 40 days.

Barron et al. performed a four-month study that involved 102 medium-interaction
honeypots [30]. In addition to deploying the honeypots at multiple locations, the au-
thors experiment with parameters like the difficulty in the break-in and file generation.
They observe how the differences in these parameters caused deviance in the attack-
ers’ behavior. In addition, the authors leak the access information of the honeypots
on hacking forums and paste sites to monitor the attackers’ actions. The authors find
that the differences in the parameters introduced affected the human-based attackers
and list key takeaways from the experiment. We consider this work the closest to our
approach, where the authors introduce specific parameters in the study and how they
influence the attacker.

Appendix Table E.6 provides an overview of the qualitative comparison of honeypots
proposed in related work. The honeypots are compared based on their source-code
availability, supported protocols, interaction level, operational environments and known
fingerprinting techniques. Most of the proposed honeypots are available as open source
and support multiple protocols. However, we observe that there are no high-interaction
honeypots are available as open source. Furthermore, we observe that for open source
honeypots, certain fingerprinting methods have been proposed. Most of the honeypots
are designed to be deployed as virtual environments except IoTPot, which runs on
hardware. While most of the honeypots operate at binary interaction levels, i.e. low or
medium or high, RIoTPot is capable of operating in either low, high or hybrid interaction
levels.

The related work listed in Table E.1 summarizes research that involves the deploy-
ment of honeypots to study different attack surfaces. Nevertheless, none of the studies
compare attacks by deploying honeypots with varied interaction levels and operating
environments for multiple protocols. Furthermore, there are no public datasets that
offer diverse data based on interaction levels and protocols. We aim to address this gap
by deploying multiple honeypot instances with varied interaction levels and operating
environments that are geographically distributed. In addition, we analyze and compare
the attacks received on multiple interaction levels simulated on different IoT and OT
application protocols.

3. Extending RIoTPot 117

Study Interaction
level

Study
period

Geographically
distributed Deployment

Honeycloud [26]
(2019) Medium 12 months Yes hardware, cloud

IoTPOT [27](2015) Low 39 days No physical
Open for hire [5]

(2021) Low, Medium 1 month No physical

Muti-faceted
Honeypot [28](2020) Low 2 years No physical

Honware [18] (2019) High 14 days No physical
Siphon [19](2017) High 2 months Yes physical, cloud

Hornet 40 [29](2021) Passive 40 days Yes cloud
Picky Attackers [30] (2017) Medium 4 months Yes physical, cloud

RIoTPot (2022) Low, High, Hybrid 3 months Yes physical, cloud

Table E.1: Overview of related work & evaluation parameters

3 Extending RIoTPot
RIoTPot aims to address the limitations of extensibility, interaction, and operational
environments [17]. It follows a modular architecture and offers hybrid interaction levels.
We extend RIoTPot∗ to adapt to this longitudinal study along with various enhance-
ments (see also Figure D.1). RIoTPot offers multiple features such as extensibility, mode
of operations, and compatibility with diverse deployment environments.

The motivation for RIoTPot is to offer administrators with the ease of deploying
honeypots in their infrastructure, especially high-interaction honeypots in the form of
containers. RIoTPot is open-source and can run on virtual infrastructure, unlike other
high-interaction honeypots. Furthermore, RIoTPot offers administrators with the flexi-
bility of changing the interaction level based on the resources. RIoTPot is able to start
being deployed as low-interaction and switch to high-interaction on the fly. RIoTPot
is designed to focus on modularity to facilitate the integration of additional protocols
and maintenance. Many open-source projects are often abandoned due to the lack of
extensibility. Modular architecture addresses this gap by providing extensibility in the
form of modules. For low-interaction mode, honeypot administrators can use the de-
fault template for adding new simulations and easily integrate them with the startup
configuration. Similarly, for the high-interaction mode, the path for the container image
is provided for simulation. Through a modular implementation, administrators can add
any relevant scenarios to the RIoTPot simulation portfolio.

Many honeypot projects face the threat of fingerprinting (see Section 2). Fingerprint-
ing enables an adversary to detect honeypots based on elementary information obtained
through crafted request probes. This is particularly harmful for low and medium in-
teraction honeypots that are often utilizing specific libraries or hard-coded responses

∗https://github.com/aau-network-security/riotpot

https://github.com/aau-network-security/riotpot

118 Paper E.

that can be fingerprinted. Nevertheless, such honeypots are of low maintenance and
risk and thus an attractive deception mechanism. The hybrid interaction feature of
RIoTPot provides honeypot administrators with a choice of operating the emulation in
either low, high, or hybrid interaction. Hybrid allows some protocols to run in low and
some on high interaction. This allows defenders to lure attackers into specific protocols
in a breadcrumb-like approach. For instance, the administrators can run a protocol
that interests them on high interaction and some other (that would be expected by the
attacker) in low. The attacker would then eventually spend most of their time and effort
on the high interaction protocol.

While a number of honeypot projects are developed focusing on containerized de-
ployment, RIoTPot also offers a hybrid deployment scenario where administrators can
choose to run the high-interaction containers on remote hosts or local infrastructure.
This feature is beneficial in resource-constrained environments. For example, RIoTPot
can be deployed on Raspberry Pi, and the high-interaction containers can be deployed
in a cloud environment. Furthermore, if the simulation profile requires specific hard-
ware (e.g., sensors), RIoTPot simulation containers can be deployed on the supporting
infrastructure.

3.1 RIoTPot extended architecture
The architecture of RIoTPot follows modularity that enables quick integration of proto-
cols and emulation modules [17]. Modular software architecture is a structural approach
to building software components as modules by separating the functionality of a pro-
gram into independent, interchangeable modules, such that each contains everything
necessary to execute only one aspect of the desired functionality [31]. Figure E.1 shows
the extended architecture adapted from RIoTPot [17]. In addition to the quick inte-
gration of additional modules, the architecture facilitates the integration of extensions
to support extended analysis or configuration. The prominent modules in the architec-
ture are the RIoTPot core module, the low-interaction modules, the high-interaction
modules, and the attack database. The packet capture and noise filter modules serve as
extensions to support further analysis of the attack data.
3.2 Extended components
RIoTPot Core

The RIoTPot core consists of the essential components that enable the configuration,
administration and orchestration services. The core module facilitates the administra-
tors to configure the parameters like specifying the protocols for emulation, the desired
interaction-level and the path for the loading the images in case of high interaction
mode. The startup configuration allows users to choose the desired protocols and the
interaction-level. In addition to the configuration, the core facilitates the network man-
agement between the containers in the high interaction mode. The traffic is forwarded

3. Extending RIoTPot 119

Low-Interaction
Emulation

HTTP SSH Telnet

MQTT CoAP

Mod-
bus

AMQP

+

High-Interaction
Emulation with

pluggable Containers

Host Machine / Cloud

Attack
 Database

pcap
repository

Attack
Dataset

Arkime
(pcap analysis)

Container

RIoTPot Core

</>

Packet Capture &
Noise Filter

>_

Interactive Config
Shell

Fig. E.1: RIoTPot architecture adapted from [17], purple components suggest novel or enhanced parts

to the containers based on the simulated protocols on which the attacks are targeted.
Furthermore, the core is responsible for communication with remote containers, in case
of a cloud-based deployment. We extend the configuration module of the core by en-
hancing the static file-based configuration to a shell-based interactive configuration.
The shell-based configuration provides interactive prompts where the desired startup
configuration can be chosen by the administrator. The prompts include selection of
protocols for emulation, choosing the interaction levels as operation modes, providing
the parameters for remote database, pcap repository and the container images in case
of operation in high interaction mode.

Low-interaction modules

The low-interaction mode is enabled by the implementation of packages that simulate
individual protocols. RIoTPot is implemented in Go language [32] that enables devel-
opment of independent packages. The modular architecture of RIoTPot is achieved

120 Paper E.

by developing the protocols as independent packages that can further be integrated as
plug-ins. For example, the Telnet and the SSH protocols use the fakeshell package that
emulates a system shell and responds to a list of commands. The fakeshell package can
be extended to include more commands. A default template is provided with RIoTPot
that can be leveraged for the integration of additional protocols. By default, RIoTPot
supports emulation of seven protocols that include Telnet, SSH, HTTP, MQTT, AMQP,
Modbus and CoAP. We extend RIoTPot by enhancing the Telnet, SSH, HTTP, MQTT,
Modbus and CoAP modules for adapting to our study. The changes include extending
the shell emulation capabilities for the fakeshell module and enhancing the emulation
capabilities for the Modbus, MQTT and CoAP protocols.

High-interaction modules

RIoTPot operates in high-interaction mode by emulating protocols as services running
on container images. For each configured protocol, the administrator provides a rele-
vant image that will be deployed on a container for emulation. As the protocols operate
as full services on the containers, they act as high interaction modules that provide a
full implementation of a protocol and thereby provides the attackers with high inter-
action capabilities. Additional protocols can be integrated by specifying the protocol
and the image path in the startup configuration. The high-interaction modules have
been extended in this work by leveraging container images provided through the Docker
Hub repository [33]. An advantage of using Docker Hub is that it employs a verifi-
cation procedure for most of its images (e.g., verifying that the Apache Foundation is
the publisher of the httpd image and BusyBox for the busybox image). We use the
Busybox [34], OpenSSH [35], HTTPD [36], Modbus-Server [37], Eclipse-Mosquitto [38]
and CoAP-Gateway [39] images for high-interaction of protocols.

Hybrid interaction

The hybrid interaction mode allows to choose the desired interaction level for selective
protocols. Through the hybrid interaction mode, a specific protocol like SSH can run
in low interaction mode while another (e.g., HTTP) can run in high interaction mode.
This facilitates administrators to set up device profiles that constitute a collection of
protocols with less resource requirements and can choose the hybrid operation mode
through the interactive shell configuration prompts during startup.

Noise filter and packet capture

RIoTPot has two default extensions - the attack capture component and the noise filter.
The attack capture component stores all the traffic received on RIoTPot as pcap files
using tcpdump to facilitate comprehensive analysis. Through the attack capture exten-
sion, the users can further specify the required rotation levels for the packet capture.

4. Methodology 121

The attack capture component is responsible for storing the attack packets as pcap files,
using tcpdump, which can be used for detailed analysis (e.g., deep packet inspection).
The noise filter component filters out the traffic received from Internet-wide scanners
like Shodan [40] and Censys [41]. The component can filter traffic from 19 Internet
scanning services. The attack sources are labeled accordingly in the attack database.
This helps the administrator concentrate on attacks that matter by removing the noise
generated by such services.

Attack dataset

The traffic received on RIoTPot is stored in the attack database. It is provisioned as
an independent container to ensure no disruption in logging in the event of a crash
or failure. The attacks received on both low and high interaction modes are stored
in the database. The database instance is accessible from the low and high interaction
containers. To facilitate this longitudinal study we extend RIoTPot to log all the attacks
to a remote database in the cloud that ensures scalability and simplified backup process.
We further enhance RIoTPot by integrating Arkime, an open-source indexed packet
capture and searching tool [42]. We leverage Arkime to search through the pcap files
generated from the honeypot deployments. Arkime imports the pcap files from the
pcap repository and stores them in its back-end (Elasticsearch) for indexed searching
capability. Furthermore, Arkime supports querying based on attributes and integration
with Virustotal [43] that helps in identification of malicious events and sources.

4 Methodology
Our work aims to capture attacks on the IoT and OT landscape and evaluate RIoT-
Pot by leveraging its hybrid-interaction operational feature. Furthermore, we impose
six evaluation parameters to observe their influence on our experiment and compare
the results. We describe the evaluation parameters and the experimental setup of our
longitudinal study in the following sections.

4.1 Evaluation parameters
Interaction levels

As RIoTPot can operate in low, high, and hybrid interaction levels, we study and
compare the attacks received on each interaction level. The analysis based on interaction
levels will provide an insight into the effectiveness of deception used on each interaction
level.

122 Paper E.

Multiple honeypot instances

By deploying multiple instances of honeypots, we get a better understanding of the
observed attacks. For instance, an attack from a specific IP identified on all honeypot
instances can construe that the attack source is either an Internet-wide scanning service
or part of a reconnaissance process from a bot. On the contrary, unique attack sources
identified in specific instances provide insight into distinct attack types and approaches.

Deployment infrastructure

The honeypots’ deployment infrastructure plays a significant role in the deceptive layer.
While it is common for some application protocols to be open in cloud environments
(e.g., Telnet, SSH, MQTT, HTTP), it is peculiar to have protocols like Modbus on
the cloud. The cloud infrastructure that includes the containers for simulation, attack
database, and the pcap file repository are provisioned on the Digital Ocean cloud with
configurations to limit the egress traffic. We evaluate RIoTPot in self-hosted lab as
well as cloud infrastructure to study the influence of deploying honeypots in different
settings.

Geographical distribution

There is research on the impact of deploying honeypots in different geographical lo-
cations [44] and we therefore take this into consideration by deploying honeypots on
different continents and countries. In particular, our experiments are conducted at four
geographical locations, namely: New York City (cloud), Frankfurt (cloud), Singapore
(cloud), and Denmark (lab infrastructure) to review region-specific attacks. This way
the attack data can be analyzed to discover attacks that are region-specific or potential
region-specific malware variants.

Protocol emulation

We study six application protocols, namely: Telnet, SSH, HTTP, MQTT, Modbus, and
CoAP. The reason for choosing these protocols is to have a mixed emulation portfolio
that includes the most commonly used application protocols in both self-hosted and
cloud infrastructure and IoT and ICS environments. The protocols are simulated as
both low-interaction in the form of modules and high-interaction in dedicated ephemeral
containers. The analysis of attacks provides protocol-specific threats and attack trends
resulting from misconfiguration.

Period of study

The evaluation of RIoTPot is performed for three months, both for self-hosted and
cloud environments that result in a dataset of a large volume of attack traffic captured

4. Methodology 123

on each RIoTPot instance. The attacks gathered over time provide an overview of the
attack trends on each protocol simulation. Furthermore, we run the Conpot honeypot to
compare the attacks received from RIoTPot. The study was carried out from December
10, 2021 - to March 10, 2022.

4.2 Experimental setup
We intend to deploy RIoTPot in diverse environments, interaction modes, geographical
locations, and simulation environments to get a comprehensive view of the attacks. The
experiment was distributed across our lab and the cloud infrastructure to facilitate the
evaluation and the parameters. We deploy RIoTPot in tertiary interaction modes - low,
high, and hybrid interaction for further evaluation. We describe our lab’s experimental
setup and cloud infrastructure in the following sections.

Lab setup

The experimental setup in our lab is depicted on the Appendix Figure E.8. RIoTPot
was deployed on three hosts R1 (high-interaction), R2 (low-interaction) and R3 (hybrid-
interaction). In addition to RIoTPot, the Conpot [9] honeypot is deployed on host C1
(medium-interaction). All four hosts are connected to the Internet and configured with
a public IP address on an unfiltered network. However, the hosts are configured with
limited egress traffic to avoid misuse of honeypots. The containers spawned by RIoTPot
run as ephemeral instances that are re-spawned periodically to avoid infection spread
and recover from availability crashes. The attack data from all the hosts are stored as
partitioned, individual, and rotated files on a remote file repository to facilitate further
analysis. All the attack traffic is stored in the attack database to facilitate querying and
analysis. The attack database and the file repository are provisioned on remote systems
to avoid disruption in the logging in situations of system failure. Host R3 operates
in a hybrid interaction mode where the SSH, MQTT, Modbus, and CoAP operate in
high-interaction mode, and Telnet and HTTP operate in low-interaction modes.

Cloud setup

The experimental setup on the cloud infrastructure is shown in the Appendix Figure
E.9. Similar to the lab setup, the cloud instances are provisioned on the Digital Ocean
as Droplets and has 12 honeypot instances (R4-C4). The 12 honeypot instances are
distributed across three geographical locations - New York City, Frankfurt, and Sin-
gapore and configured with a public IP address accordingly. Similar to the lab setup,
the attack traffic from all the instances is stored as both Pcap files and in a database
running on dedicated remote systems. The containers are re-spawned periodically and
re-provisioned with a static configuration file. The egress traffic from all the containers

124 Paper E.

is limited for potential misuse of the vulnerable environments. The database is pro-
visioned with an elastic model to support the large volumes of attack traffic collected
from the honeypot instances. Digital Ocean droplet monitoring helps in tracking the
state of the honeypot instances that helps in identifying any failure situations [45].

Summary

Table E.2 summarizes the experimental setup of the evaluation. To summarize the
evaluation parameters of the longitudinal study described in Section 4.1, we deploy RI-
oTPot in three interaction levels (low, high, hybrid), two deployment environments
(lab, cloud), twelve independent hosts per interaction-level, four geographical loca-
tions(Denmark(lab) , New York City, Frankfurt, and Singapore), six application pro-
tocol emulations (Telnet, SSH, HTTP, MQTT, Modbus, CoAP), comparison with one
honeypot in medium interaction (Conpot) and an evaluation period of three months
(10Dec,2021-10Mar,2022).

Host Environment Geo-Location Interaction-level Protocols Emulated
R1 Lab Denmark High Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R2 Lab Denmark Low Telnet, SSH, HTTP, MQTT, Modbus, CoAP

R3 Lab Denmark Hybrid High - SSH, MQTT, Modbus, CoAP
Low - Telnet, HTTP

C1 Lab Denmark Medium Telnet, SSH, HTTP, Modbus, S7
R4 Cloud New York City High Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R5 Cloud New York City Low Telnet, SSH, HTTP, MQTT, Modbus, CoAP

R6 Cloud New York City Hybrid High - SSH, MQTT, Modbus, CoAP
Low - Telnet, HTTP

C2 Cloud New York City Medium Telnet, SSH, HTTP, Modbus, S7
R7 Cloud Frankfurt High Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R8 Cloud Frankfurt Low Telnet, SSH, HTTP, MQTT, Modbus, CoAP

R9 Cloud Frankfurt Hybrid High - SSH, MQTT, Modbus, CoAP
Low - Telnet, HTTP

C3 Cloud Frankfurt Medium Telnet, SSH, HTTP, Modbus, S7
R10 Cloud Singapore High Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R11 Cloud Singapore Low Telnet, SSH, HTTP, MQTT, Modbus, CoAP

R12 Cloud Singapore Hybrid High - SSH, MQTT, Modbus, CoAP
Low - Telnet, HTTP

C4 Cloud Singapore Medium Telnet, SSH, HTTP, Modbus, S7

Table E.2: Experimental setup overview

4.3 Dataset
The traffic received on all the honeypot instances from the study are stored in the attack
database and as pcap files in the pcap cloud. In this longitudinal study, we collect data
from 12 honeypot instances of RIoTPot and four instances of Conpot over a period of
three months. The dataset is a collection of the database dumps and the pcap files. The

5. Evaluation 125

pcap files capture the ingress and egress traffic from the honeypot instances. The dataset
is segregated based on honeypot instance, protocol, geolocation and interaction-levels.
The filtering of the scanning-service from the ingress traffic is performed by labeling the
traffic in the database. The labeled dataset of the labeled events of scanning-services
can be exported from the attack database. Currently, the dataset is checked for 19
scanning-services. The traffic captured on the pcap files are “packet-buffered”, so that
the output is written to pcap file at the end of each packet rather than at the end of each
line. The administration traffic is excluded from the pcap files and the attack database.
The pcap files are periodically rotated (daily). The dataset will be provided to academic
researchers upon request and following a non disclosure agreement†.

5 Evaluation
To provide a comprehensive overview of the findings during the study, we break down the
results based on the evaluation parameters. The findings are discussed in the following
sections.

5.1 Interaction levels
We discuss our findings based on interaction-levels in the following sections.

Total Events

Figure E.2 shows the total number of events on all RIoTPot instances based on in-
teraction levels low, high and hybrid. Compared to the low and hybrid interaction,
the high-interaction level received higher events. A total of 10.87 million events were
received on all instances, of which 32% (3, 487, 877) were from low, 35% (3, 788, 435)
from high, and the remaining 33% (3, 600, 823) from hybrid interaction. The total
events are inclusive of the probing traffic received from Internet-wide scanning probes
(e.g., [41], [40]).

The Appendix Figure E.10 shows the percentage of events received per day by inter-
action level. From the outset, we see a rise in the events received on the high-interaction
level compared to low and hybrid interaction levels. We see sharp differences in the
number of events between December 13-15,2021, and February 13-20,2022. A possi-
ble explanation for such uncertainty could be that the hybrid-interaction level involves
both low and high interaction levels on the simulated protocols. We discuss the possible
reasons for the deviations in Section 6.3.

†https://doi.org/10.11583/DTU.21088651

https://doi.org/10.11583/DTU.21088651

126 Paper E.

Fig. E.2: Total events by interaction

Event classification

A total of 10.87 million events were received on all the RIoTPot deployments. Table
E.3 summarizes the event classification by type and interaction level. Of the total
events, 56% of the traffic was identified from Internet scanning-services (e.g., Shodan
[40], Censys [41]). We consider the traffic from scanning-services as benign because of
the known intent behind their scans. Filtering out benign traffic simplifies the analysis
process of focusing on the traffic with malicious intent. A total of 19 unique scanning-
services‡ were identified and labeled by RIoTPot’s noise filter, which has a database of
benign scanning-services. While it is common to observe recurring traffic from scanning-
services like Shodan and Censys, some scans occur multiple times per day while other
services follow a different pattern that ranges from days to weeks. Note that we simulate
six protocols in RIoTPot and some scans target specific port ranges and some target
specific ports with custom requests [46]. Lastly, we did not detect any deviations in the
received scanning-services traffic on the basis of the interaction.

The traffic that is not labeled as scanning-services is classified as malicious. The
malicious classification includes both suspicious traffic and traffic with clear malicious
intent in the requests or payloads. The suspicious traffic includes probing traffic from
unknown sources and probable backscatter noise. As honeypots do not have any pro-
duction value, we consider any communication, excluding the aforementioned scanning

‡https://github.com/aau-network-security/riotpot#12-Noise-Filter

https://github.com/aau-network-security/riotpot#12-Noise-Filter

5. Evaluation 127

services, towards them suspicious. 4.8 million events are marked as malicious based on
our criteria. Note that the number of malicious events stated here is not unique by
attack source. We observe multiple attacks from the same attack source in the traffic
volume. Further classification of malicious traffic volume received based-on interaction
level is shown in Table E.3. We observe that the high-interaction instances received
higher volume than low and hybrid interaction levels.

Interaction-level Even-type Count
Low-interaction Scanning-service 2.02 M
High-interaction Scanning-service 2.02 M
Hybrid-interaction Scanning-service 2.02 M
Low-interaction Malicious 1.46 M
High-interaction Malicious 1.76 M
Hybrid-interaction Malicious 1.57 M
Total scanning-services events 6.07 M
Total malicious events 4.8 M
Total events 10.87 M

Table E.3: Total events by type and interaction level

Attack sources by interaction-level

Figure E.3 shows the number of unique IP addresses identified from the malicious traffic
over days and interaction level. We observe a steady increase in the total unique IP
addresses over days, with a peak from 13 February 2022 and a subsequent decline for
the next four days. Furthermore, we observe that the high-interaction level instances
received attacks from more unique sources than the other interaction levels.

Interaction
Level

#Malicious
Events

#Unique
IPs

High-Interaction 1, 763, 395 18, 431
Hybrid-interaction 1, 575, 807 12, 618
Low-interaction 1, 463, 883 8, 635
Distinct IPs from
all interaction levels 22, 518

Table E.4: Summary of malicious events and unique IPs

Table E.4 summarizes the distinct cumulative total number of unique source IP
addresses by interaction-level. The maximum number of unique IPs were detected on
the high-interaction instances. We identify 22, 518 unique IPs across all the malicious

128 Paper E.

events. We want to emphasize that in our study, RIoTPot emulates six protocol services,
and the unique attack sources summarized in Table E.4 are based on traffic received
across these protocol emulations.

Fig. E.3: Unique-IPs over day and interaction

5.2 Deployment infrastructure
RIoTPot is deployed on both lab (self-hosted) and cloud infrastructure for evaluation.
The lab infrastructure hosts three instances, whereas the cloud infrastructure hosts nine
instances of RIoTPot. Figure E.4 shows the distribution of malicious events received
on RIoTPot instances based on the hosted infrastructure. The number of events on the
cloud infrastructure is high due to higher instances of RIoTPot deployed (9 instances)
in comparison to the lab (3 instances). Furthermore the figure shows the number of
malicious events per instance in lab and cloud infrastructure. We observe that the
cloud instances have a higher number of malicious events than the lab instances. This
could be because of any suspicious scans or malicious requests that are region-specific.

In Figure E.4 the number of malicious events per interaction level on the lab and
cloud infrastructure is summarized. Although there are deviations in the traffic volume,
the number of malicious events across all interaction levels is increasing over time. The
high interaction instance received more attacks than low and hybrid interaction levels.
Note that the number of malicious events on the cloud is higher than in the lab, as
there are more instances of RIoTPot deployed on the cloud infrastructure compared to

5. Evaluation 129

the lab environment. We observed minor variations in the trend of malicious events in
both operating environments.

Fig. E.4: Comparison of total malicious events by infrastructure and interaction

5.3 Geographical location
To study the influence of geo-location and region-specific attack distribution, we deploy
RIoTPot in four locations - New York City, Frankfurt, Singapore, and Denmark (Lab).
Figure E.5 shows the distribution of malicious events from each location and interaction
levels. The interaction levels are color-coded, and the solid sphere represents the number
of daily events by interaction. The sphere’s radius is proportional to the number of
events denoted in the legend.

The lowest number of attacks received per interaction per day is 743, while the
highest is 13, 287. Compared with the cloud instances, the lab instances received signif-
icantly lower malicious events. Initially, the New York instances received higher traffic;
however, the Frankfurt instances received the highest traffic overall. The instances de-
ployed in Singapore reported the lowest traffic compared to the other cloud deployments
for the whole duration of the evaluation. We observed suspicious events specific to the
region that were not seen in other cloud instances. The suspicious events consisted of
port scans, brute-force attempts, and attacks specific to protocols emulated by RIoTPot.
We find region-specific benign scans from known entities like educational institutions
and government-aided organizations other than the malicious events. In the Appendix

130 Paper E.

Figure E.14 we further discuss how the location and the cloud vs. lab deployment is
connected to the number of attacks.

Fig. E.5: Distribution of malicious events across lab and cloud deployments

5.4 Emulated protocols
RIoTPot emulates six protocols - Telnet, SSH, HTTP, Modbus, MQTT, and CoAP. The
protocols are emulated in diverse interaction levels across the deployments. Table E.2
summarizes the interaction level of the individual protocols emulated on the instances.
Figure E.6 shows the number of malicious events recorded on each protocol. We observed
the highest number of events on the SSH protocol, followed by HTTP, Telnet, MQTT,
Modbus, and CoAP. Note that the number of events is not unique per source IP and is
the total count of the events observed across all interaction levels.

Appendix Figure E.13 summarizes the malicious events received per protocol by
interaction level. We observe that the highest number of malicious events in all protocol
emulations are received on the high-interaction instances. In protocols like Telnet, SSH,
MQTT, and Modbus, we observed a gradual decrease in the number of events on the
low-interaction instances. Many attack types like brute-force, poisoning, pivoting and
reflection attacks were observed. The attack types are discussed further in Section 6.1.

5. Evaluation 131

Fig. E.6: Total malicious events by protocol

5.5 Comparison with Conpot
To compare the attacks received on RIoTPot instances, we deploy Conpot [9], a medium-
interaction honeypot that can emulate the SSH, Telnet, HTTP, Modbus, and S7 pro-
tocols. We deploy Conpot on both the lab and cloud infrastructure, including the
geo-locations at which RIoTPot instances are deployed. Appendix Figure E.11 shows
the comparison of the malicious events received on RIoTPot and Conpot instances by
interaction-level, protocol, and hosted infrastructure. The figure lists the deployed in-
stances (see Table E.2) and the total malicious events received per instance. The Conpot
instances simulated four protocols (Telnet, SSH, HTTP, and Modbus) that can be com-
pared with the protocols emulated by RIoTPot instances. In comparison to Conpot,
we observe that RIoTPot received a higher number of events on the high and hybrid
interaction instances and a similar number of events with low interaction-level instances.
The figure also compares the number of malicious events observed on each RIoTPot in-
stance deployed by hosted infrastructure, location interaction-level, and emulated pro-
tocols. We observe that the instances deployed on the Frankfurt cloud infrastructure
(R7) received the highest number of malicious events. The instances R1,R2,R3,C1 were
deployed in the lab; R4,R5,R6,C2 in New York City; R7,R8,R9,C3 in Frankfurt and
R10,R11,R12,C4 in Singapore. We suspect that the difference in the number of mali-
cious events between Conpot and RIoTPot could be as a result of limited interaction
capabilities of Conpot in comparison to RIoTPot.

132 Paper E.

6 Discussion
This section discusses the attack types observed during the evaluation process and our
findings on the varied malicious events received based on the evaluation parameters. We
further state the limitations in our approach, and the ethical considerations followed in
our methodology.

6.1 Malicious events
We received a total of 4.8 million malicious events on all the instances. Note that
all the events that are not labeled as scanning-services are classified as malicious. The
malicious events further include traffic with malicious intent in the requests or payloads.
We observe diverse attack types in the malicious traffic received on all instances. The
attack types and the exclusive attacks observed during the evaluation are discussed in
the following sections.

Attack type by interaction-level

Figure E.7 shows an overview of the attack types observed during our evaluation by
percentage and interaction level. We observe attack types like brute-force, poisoning,
reflection, and portscans from unknown scanners. The brute-force attacks were the most
common observed attacks across all instances and targeted all the emulated protocols.
The emulated protocols were configured with weak access controls and credentials to
capture advanced attack types. A persistent volume of brute-force attacks was observed
at all interaction levels. Furthermore, we see brute-force attacks from the same actors
(IPs) across all the interaction levels. However, some regional attacks were observed
in specific instances where the attack source appeared to be from the same continent.
The poisoning attacks focused on modifying data following unauthorized access. For
example, we discover messages on the CoAP protocol to modify data. A larger vol-
ume of poisoning attacks was observed on the high-interaction level. In addition, we
observe that the attacks from the same attack source interrupted the connection on
low-interaction instances while pursuing the connection on high-interaction instances.
With this, we entail that the threat actors use specific information from the sessions to
determine the pursuit of the attack.

Reflection attacks were detected on the CoAP protocol. We identified reflection
attacks when the destination address port is port 80 and the source port is 5832. A
larger volume of reflection attacks was again observed in the high-interaction instances.
However, we acknowledge that the reflection attacks may be a part of backscatter traffic.
We observe malware injection attacks where an attacker tries to download malware
from malicious links. The malicious links are identified by analyzing the attacks logged
in the pcap files. Upon finding a suspicious link in the payload, we check the link
with Virustotal [43] to determine the maliciousness. We observe multiple variants of

6. Discussion 133

Fig. E.7: Attack types by interaction

the Mirai [47] malware along with LuaBot, Mozi [48] and BrickerBot, among others.
Lastly, we observed a specific volume of non-recurring portscanning traffic that was not
identical to known scanning-services or attack types. We group such kind of traffic
under portscans and suspicious requests.

Attack type by protocol

Appendix Figure E.12 shows the attack types in percentage received by emulated pro-
tocols. The attack traffic was stored both as pcap files and the session logs in the attack
database. We summarize the attack types found on each emulated protocol.

Telnet and SSH The Telnet and the SSH protocols received high volumes of brute-
force attacks. The Telnet protocol further received certain malware injections on suc-
cessful brute force attempts. Upon checking with Virustotal, the malware links observed
on the Telnet attacks were detected to be variants of the Mirai family. Similarly, several
variants of Mirai were detected on the SSH protocol. In addition to the trivial brute-
force attacks and malware injections, many port scans were observed. This entails that
there are still many actors looking for vulnerable Telnet and SSH instances.

134 Paper E.

HTTP The HTTP protocol emulated a static login page for a Siemens LOGO 230
RCEo Modbus controller. The protocol received a large number of brute-force attempts.
In addition to the brute-force attacks, the HTTP protocol received many Log4j attacks,
although the Apache webserver [36] was used for the emulation. The attacks tried
injection attacks through RMI (Remote Method Invocation) calls from remote servers.
Lastly, a large volume of web scrapers was identified along with unknown scanning
services.

MQTT The MQTT protocol was emulated using the Eclipse-Mosquitto [38] image for
the high-interaction and the library for the low-interaction. Although the protocol was
configured to allow anonymous logins, there was a large volume of brute-force attacks.
Moreover, several data poisoning attempts were detected where the attackers tried to
modify data in the queues. In addition, we detected that some attacks created new
topics and tried accessing the SYS$ topic specifically. The protocol was scanned mainly
by benign scanning services, however, some regional suspicious scans were detected in
the instances deployed in Frankfurt and Singapore.

Modbus The Modbus protocol received a large volume of poisoning attacks to read
and modify the data from the registers and coils. The attacks were observed to target
three function codes of the nineteen available to fetch information on the device, the
reporting server, and the holding register. Furthermore, we observe that most of the
attacks used invalid function codes to access the data in the registers. This entails that
the scans search for a device with specific function codes for a known exploit.

CoAP The CoAP protocol was configured to serve on UDP port 5683. Many brute-
force attacks were detected that tried to access the CoAP service. Furthermore, we
identify data poisoning attacks aimed at modifying values through publishing messages.
In addition to the data poisoning attacks, the CoAP protocol saw reflection flooding
attacks where the attackers tried to spoof the source packets to divert all the response
traffic to a victim. Such attacks were identified by observing the destination port. We
observed 27 victim IPs, of which 12 of them were located in Brazil, 4 in South Korea, 4
in Russia, 3 in China, 1 in France and 1 Germany. However, we found that the victim
IPs did not have a valid domain and served blank HTML pages.

Region-specific attacks

RIoTPot instances were deployed in four geo-locations. We detect attacks and attack
sources of the targeted instances in specific regions. Appendix Table E.7 lists the attack
type and volume in percentage of the source of malicious traffic, observed exclusively
in specific regions. We observe attacks from specific attack sources on several protocols
and attack types. The unique source IPs listed in the table denote the source of attacks

6. Discussion 135

that targeted that region exclusively. While Internet scanning-services are known to use
regional hosts for scanning specific locations, the unique IPs listed in Table E.7 are from
malicious events. To filter our results, we check if the IPs are Tor relays [49] or from a
VPN [50] and find that they are neither. We check the IPs sources on Internet scanning-
services like Shodan [40] to find that the hosts had SSH ports open. Furthermore, upon
looking up the IPs history, we find that they were recently moved from an ASN.

6.2 Attack sources
A total of 22, 518 unique IPs were identified from the malicious events. To get an
understanding of the attack sources, we try to identify the attack sources using banner-
based fingerprinting techniques. We send connection attempts on Telnet (port 23) and
HTTP requests on port 80, 8080 and 443 on the IPs by using Lift§, an open-source low-
impact fingerprinting tool. We then check the banners and the response for potential
identifiers for the attack sources. We take care to send a minimal number of packets in
our probes to limit the traffic with the attack sources. Table E.5 shows the device types
identified by the banner grabbing checks. A total of 5264 (23%) devices were identified
through the banner checks. We suspect that these are compromised devices that are
causing attacks on the Internet. In addition to the infected devices, we notice that a vast
majority of the HTTP response contained default test websites from Apache, NGinX
and Tengine web servers. A total of 4218 (19%) of such responses were identified. We
perform a reverse-DNS lookup to identify if there were any domains associated with
the IP address ranges and found 21 domains. The domains were associated with some
generic top-level domains that include .art (5), .games (6), .love (3), .website (2) and
.webcam (5). Lastly, the rest (58%) of the devices could not be determined.

Device type Protocol Count
Router HTTP 1819
DVR HTTP 1621
Router Telnet 721
IP Phone HTTP 311
Switch HTTP 287
Switch Telnet 211
IP Printer HTTP 176
NAS HTTP 118
Total 5264

Table E.5: Attack-source types

§https://github.com/trylinux/lift

https://github.com/trylinux/lift

136 Paper E.

6.3 Impact of interaction-levels in honeypots
Our evaluation and findings reveal that the attacks on low-interaction honeypots de-
creased gradually for some protocols (see Figure E.10), while the high-interaction in-
stances received a higher number of attack events. Hence, our results suggest that the
interaction levels play an essential role in attracting specific attacks. Our observation
of a gradual decrease in non-recurring scanning probes indicates that modern scanning
probes may have checks that help in characterizing if the scanned system is a honeypot¶.
The malicious events received on the hybrid-interaction model reveal that a combina-
tion of low and high-interaction emulation indeed attracts more attacks and successfully
deceives the checks from suspicious scanning probes. To summarize the impact of in-
teraction levels, low-interaction honeypots are still effective in capturing scanning and
bot traffic. However, we suggest that deploying high-interaction honeypots with limited
network configuration on some protocols is more effective to achieve a higher deception
layer.

6.4 Limitations
We acknowledge the following limitations in our approach. First, the lab infrastructure
is limited to one location, while the cloud deployments range to three locations. This
limitation causes an uneven comparison directly between the lab and the cloud deploy-
ments. The comparison between the instances deployed in the lab and cloud would
be descriptive if the number of deployed instances are the same. Second, we deploy
RIoTPot in four cities limiting the scope to three continents. Deploying RIoTPot in all
continents would provide a broader perspective of the attack landscape. Third, we limit
the number of emulated protocols to six. We acknowledge that more protocols would
provide us with an extensive dataset for analysis. However, this work aims to visualize
the impact of many evaluation and design parameters that can affect the purpose of
honeypots. Fourth, we consider each event as a connection and this entails some lim-
itations in terms of over-counting. As the connection terms vary across protocols, we
generalize counting by events and not as connections. Lastly, the dataset does not group
the attack data as Netflow formats. Storing the data as Netflow formats facilitates wider
integration possibilities with analysis platforms.

7 Conclusion
In this work, we extend RIoTPot, a modular and hybrid-interaction honeypot and
facilitate a longitudinal study. To ascertain the impact of parameters like the interaction
levels of honeypots, we perform an extensive longitudinal evaluation of RIoTPot by
measuring the malicious events gathered based on parameters like interaction level,

¶In fact, services like Shodan already have such capabilities [51]

A. Appendix 137

deployed infrastructure, geographical location, and emulated protocols. Our results
indicate that these parameters are essential in honeypot studies and can provide a
broader overview of the attack landscape. The results suggest that high-interaction
honeypots receive more sophisticated attacks in comparison with the low-interaction
honeypots. Moreover, we observe attacks specific to the hosting environment and geo-
location. Compared with Conpot, RIoTPot’s high interaction instances received a higher
volume of malicious events on all evaluation parameters. We observe diverse attacks
like reflection, data poisoning and malware on the honeypots. Lastly, we observe large
volumes of traffic from scanning-services that may cause alert fatigue and are false
positives.

A Appendix

A.1 Qualitative comparison
Table E.6 provides an overview of the qualitative comparison of honeypots proposed in
related work. The honeypots are compared based on their source-code availability, sup-
ported protocols, interaction level, operational environments and known fingerprinting
techniques. Most of the proposed honeypots are available as open source and support
multiple protocols. However, we observe that there are no high-interaction honeypots
are available as open source.

Honeypot Opensource Supported
protocols

Interaction
levels

Virtual vs.
Hardware

Known
fingerprinting methods

Conpot [9] Yes SSH, Telnet, Modbus, BACNet, HTTP medium virtual Yes
Cowrie [8] Yes SSH, Telnet medium virtual Yes
Glastopf [11] Yes HTTP, HTTPS medium virtual Yes
IoTPot [27] Yes No low hardware No
Dionaea [12] Yes Yes medium virtual Yes
Honware [18] No image based high virtual No

RIoTPot [17] Yes image based low, hybrid.
high virtual No

Table E.6: qualitative comparison of honeypots

A.2 Appendix: Experiment Overview
Lab setup

The lab setup of our experimental setup is shown in Figure E.8. Three instances of
RIoTPot R1,R2,R3 and one instance of Conpot C1 were deployed and assigned a public
IP each. All the traffic received and sent from the honeypots are stored in a remote
file system as a repository in addition to storing the session parameters in the attack
database.

138 Paper E.

Pcap
Repository

Attack
Database

RIoTPot

Containers
Conpot

R1

High
Interaction

Mode

Low
Interaction

Mode

R2 R3

Hybrid
Interaction

Mode

Router

Lab Setup

Medium
Interaction

Mode

C1

Fig. E.8: RIoTPot evaluation - lab setup

Cloud setup

The cloud setup of the methodology is shown in Figure E.9. The cloud instances are
provisioned at three geographical nodes, Frankfurt, New York city and Singapore.

A.3 Appendix: supplementary results
Percentage of events by interaction-level

Figure E.10 shows the percentage of daily events received on RIoTPot instances based
on interaction level. We observe a sharp decrease in the percentage of events over
time on the low interaction when compared with events on high and hybrid interaction
instances. We suspect that this could be because of limited interaction levels.

Comparison by interaction-level, location, honeypot and emulated protocols

Figure E.11 shows the comparison of the number of attacks received by honeypot in-
stance of RIoTPot(R) and emulated protocols with Conpot(C). We observe a high num-
ber of malicious events on the high interaction instances of RIoTPot in comparison to

A. Appendix 139

High
Interaction

Mode
R4

Low
Interaction

Mode
R5

Hybrid
Interaction

Mode
R6

Medium
Interaction

Mode
C2

High
Interaction

Mode
R7

Low
Interaction

Mode
R8

Hybrid
Interaction

Mode
R9

Medium
Interaction

Mode
C3

High
Interaction

Mode
R10

Low
Interaction

Mode
R11

Hybrid
Interaction

Mode
R12

Medium
Interaction

Mode
C4

Pcap
Cloud

Attack
Database

Cloud Setup

RIoTPot

Containers

Conpot

New York City Frankfurt Singapore

R10

R11

R12

Fig. E.9: RIoTPot evaluation - cloud setup

Fig. E.10: Percentage of events by interaction-level and percentage

the other deployments.

140 Paper E.

Fig. E.11: Total malicious events by instances

Attack Types by Protocol

Figure E.12 shows the percentage of attacks types on the emulated protocols. We
observe multiple attack types that include bruteforce, poisoning, reflection, malware
and portscans. Attacks like bruteforce and portscans are observed across all protocol
emulations and attacks like malware are observed with Telnet and SSH emulations.

Malicious events received per protocol by interaction level

Figure E.13 summarizes the malicious events received per protocol by interaction level.
We observe that the highest number of malicious events in all protocol emulations are
received on the high-interaction instances. In protocols like Telnet, SSH, MQTT, and
Modbus, we observed a gradual decrease in the number of events on the low-interaction
instances. Many attack types like brute-force, poisoning, pivoting and reflection attacks
(CoAP) were observed.

Attacks and geographical distribution

Figure E.14 shows the aggregation of the maximum and the minimum number of mali-
cious events obtained per interaction and city. The instances in Frankfurt city recorded

A. Appendix 141

Fig. E.12: Attack types in percentage by emulated protocols

Fig. E.13: Total malicious events by protocol and interaction

the maximum number of events on each interaction level, while the lowest number of
events were recorded at the lab infrastructure daily. The high-interaction instances re-

142 Paper E.

ceived more malicious events, regardless of infrastructure or location, followed by the
events on hybrid-interaction instances.

Fig. E.14: Total malicious events by interaction-level and city: lowest, average and highest per day

Region specific attack types

Table E.7 lists the attack type and volume in percentage of the source of malicious
traffic, observed exclusively in specific regions.

Instance Region Attack-type Protocol Unique attacker IP Volume
R1 Denmark(lab) Brute-force Telnet 19 7%
R4 New-York Brute-force SSH 36 11%
R7 Frankfurt Brute-force Telnet 27 14%
R10 Singapore Brute-force Modbus 7 14%
R5 New-York Brute-force HTTP 33 17%
R7 Frankfurt Poisoning MQTT 21 18%
R10 Singapore Poisoning MQTT 13 12%
R10 Singapore Reflection CoAP 6 16%

Table E.7: Summary of region-specific attack types

A. Appendix 143

Multistage attacks

Among the attack types discussed above, we observe multistage attacks on the instances.
Multistage attacks are attacks that are from the same adversary and sequentially target
multiple protocols emulated on the target system. A total of 4786 multistage attacks
were detected across all the RIoTPot deployments. Figure E.15 shows the protocols
targeted sequentially by adversaries. The start node denotes the protocol first attacked,
and the nodes step-2 and step-3 denote sequential attacks on the other protocols carried
out by the same adversary. The numbers below the protocols denote the volume of re-
quests received on the protocols used in the attack. Although such behavior is typical in
scanning-services, in this case, the attacks are classified as multistage attacks exclusively
when malicious content is observed in the requests. A majority of the requests start
from the Telnet and SSH protocols. The MQTT protocol is observed to have received
the highest volume of subsequent attacks.

Fig. E.15: Multistage attacks

A.4 Labeling benign traffic
RIoTPot has a database of known Internet-wide scanning services. However it is cur-
rently limited to 19 services and thus it may be missing benign services. To further
classify the unique source IPs identified in our dataset, we check them with Greynoise
API [52]. Greynoise provides a classification of suspicious IPs whether they are benign,
malicious or unknown. Figure E.16 shows the classification as retrieved from Greynoise.

144 Paper E.

Upon correlating the classification from Greynoise to the IPs from which malicious traf-
fic was observed on our honeypot instances, we find that all the IPs were either classified
as malicious or unknown from Greynoise.

Fig. E.16: Greynoise classification

A.5 Appendix: supplementary discussion
Ethical Considerations

We deploy 12 instances of RIoTPot in varied interaction levels. As honeypots are
configured to appear as vulnerable systems, they are prone to be used for causing
attacks on the Internet. We configure egress rules on all our deployments to limit the
traffic leaving our instances to prevent such misuse. In addition, to avoid the infection
spread by any malware attacks, we use ephemeral container instances for our honeypot
deployments. New instances are spawned regularly to avoid the spread of any infections.

References 145

References
[1] T. Miller, A. Staves, S. Maesschalck, M. Sturdee, and B. Green, “Looking back

to look forward: Lessons learnt from cyber-attacks on industrial control systems,”
Int. J. Crit. Infrastruct. Prot., vol. 35, no. C, dec 2021. [Online]. Available:
https://doi.org/10.1016/j.ijcip.2021.100464

[2] L. O. Monaco. (2021) Dag monaco delivers remarks at press confer-
ence on darkside attack on colonial pipeline. The United States Depart-
ment of Justice. [Online]. Available: https://www.justice.gov/opa/speech/
dag-monaco-delivers-remarks-press-conference-darkside-attack-colonial-pipeline

[3] F. Robles and N. Perlroth. (2021) ‘dangerous stuff’: Hackers tried to poison
water supply of florida town. The New York Times. [Online]. Available: https:
//www.nytimes.com/2021/02/08/us/oldsmar-florida-water-supply-hack.html

[4] J. Wang, M. K. Lim, C. Wang, and M.-L. Tseng, “The evolution
of the internet of things (iot) over the past 20 years,” Computers
& Industrial Engineering, vol. 155, p. 107174, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360835221000784

[5] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, Open for Hire: Attack
Trends and Misconfiguration Pitfalls of IoT Devices. New York, NY, USA:
Association for Computing Machinery, 2021, p. 195–215. [Online]. Available:
https://doi.org/10.1145/3487552.3487833

[6] X. Jiang, M. Lora, and S. Chattopadhyay, “An experimental analysis of security
vulnerabilities in industrial iot devices,” ACM Trans. Internet Technol., vol. 20,
no. 2, may 2020. [Online]. Available: https://doi.org/10.1145/3379542

[7] ENISA. (2020) Enisa threat landscape 2020 - malware. ENISA. [Online]. Available:
https://www.enisa.europa.eu/publications/malware

[8] M. Oosterhof, “Cowrie ssh/telnet honeypot,” 2016. [Online]. Available:
:https://github.com/micheloosterhof/cowrie

[9] L. Rist, J. Vestergaard, D. Haslinger, A. Pasquale, and J. Smith, “Conpot ics/scada
honeypot,” Honeynet Project (conpot. org), 2013.

[10] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer, “Hostage: A
mobile honeypot for collaborative defense,” in Proceedings of the 7th International
Conference on Security of Information and Networks, ser. SIN ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 330–333. [Online].
Available: https://doi.org/10.1145/2659651.2659663

https://doi.org/10.1016/j.ijcip.2021.100464
https://www.justice.gov/opa/speech/dag-monaco-delivers-remarks-press-conference-darkside-attack-colonial-pipeline
https://www.justice.gov/opa/speech/dag-monaco-delivers-remarks-press-conference-darkside-attack-colonial-pipeline
https://www.nytimes.com/2021/02/08/us/oldsmar-florida-water-supply-hack.html
https://www.nytimes.com/2021/02/08/us/oldsmar-florida-water-supply-hack.html
https://www.sciencedirect.com/science/article/pii/S0360835221000784
https://doi.org/10.1145/3487552.3487833
https://doi.org/10.1145/3379542
https://www.enisa.europa.eu/publications/malware
: https://github.com/micheloosterhof/cowrie
https://doi.org/10.1145/2659651.2659663

146 References

[11] L. Rist, “Glastopf project,” 2009.

[12] D. Tools, “Web honeypot,” 2010. [Online]. Available: https://github.com/
DinoTools/dionaea/

[13] D. T. A. H. Project, “T-pot: A multi-honeypot platform,” 2022.

[14] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, “Gotta catch ’em all: a
multistage framework for honeypot fingerprinting,” 2021.

[15] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting low-
and medium-interaction honeypots at internet scale,” in 12th USENIX Workshop
on Offensive Technologies (WOOT 18). Baltimore, MD: USENIX Association,
Aug. 2018, p. 9. [Online]. Available: https://www.usenix.org/conference/woot18/
presentation/vetterl

[16] S. Morishita, T. Hoizumi, W. Ueno, R. Tanabe, C. Gañán, M. J. van Eeten,
K. Yoshioka, and T. Matsumoto, “Detect me if you. . . oh wait. an internet-wide
view of self-revealing honeypots,” in 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), IEEE. Washington DC, USA: IEEE,
2019, pp. 134–143.

[17] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, “Riotpot: a modular hybrid-
interaction iot/ot honeypot,” in 26th European Symposium on Research in Com-
puter Security (ESORICS) 2021, Springer. Darmstadt, Germany: Springer, 2021.

[18] A. Vetterl and R. Clayton, “Honware: A virtual honeypot framework for capturing
cpe and iot zero days,” in 2019 APWG Symposium on Electronic Crime Research
(eCrime). Pittsburgh, PA, USA: IEEE, 2019, pp. 1–13.

[19] J. D. Guarnizo, A. Tambe, S. S. Bhunia, M. Ochoa, N. O. Tippenhauer, A. Shabtai,
and Y. Elovici, “Siphon: Towards scalable high-interaction physical honeypots,”
in Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security, ser.
CPSS ’17. New York, NY, USA: Association for Computing Machinery, 2017, p.
57–68. [Online]. Available: https://doi.org/10.1145/3055186.3055192

[20] S. Sentanoe, B. Taubmann, and H. P. Reiser, “Sarracenia: Enhancing the perfor-
mance and stealthiness of ssh honeypots using virtual machine introspection,” in
Secure IT Systems, N. Gruschka, Ed. Cham: Springer International Publishing,
2018, pp. 255–271.

[21] S. Litchfield, D. Formby, J. Rogers, S. Meliopoulos, and R. Beyah, “Poster: Re-
thinking the honeypot for cyber-physical systems,” in Poster at IEEE Symposium
on Security and Privacy. San Jose, California: IEEE, 2016.

https://github.com/DinoTools/dionaea/
https://github.com/DinoTools/dionaea/
https://www.usenix.org/conference/woot18/presentation/vetterl
https://www.usenix.org/conference/woot18/presentation/vetterl
https://doi.org/10.1145/3055186.3055192

References 147

[22] C. Irvene, D. Formby, S. Litchfield, and R. Beyah, “Honeybot: A honeypot for
robotic systems,” Proceedings of the IEEE, vol. 106, no. 1, pp. 61–70, 2018.

[23] M. Dodson, A. R. Beresford, and M. Vingaard, “Using global honeypot networks
to detect targeted ics attacks,” in 2020 12th International Conference on Cyber
Conflict (CyCon), vol. 1300. Estonia: IEEE, 2020, pp. 275–291.

[24] W. Z. Cabral, C. Valli, L. F. Sikos, and S. G. Wakeling, “Analysis of conpot and
its bacnet features for cyber-deception,” in Advances in Security, Networks, and
Internet of Things, K. Daimi, H. R. Arabnia, L. Deligiannidis, M.-S. Hwang, and
F. G. Tinetti, Eds. Cham: Springer International Publishing, 2021, pp. 329–339.

[25] P. D. Ali and T. G. Kumar, “Malware capturing and detection in dionaea hon-
eypot,” in 2017 Innovations in Power and Advanced Computing Technologies (i-
PACT). Vellore, India: IEEE, 2017, pp. 1–5.

[26] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and
J. Yang, “Understanding fileless attacks on linux-based iot devices with
honeycloud,” in Proceedings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 482–493. [Online]. Available:
https://doi.org/10.1145/3307334.3326083

[27] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: Analysing the rise of IoT compromises,” in 9th USENIX
Workshop on Offensive Technologies (WOOT 15). Washington, D.C.: USENIX
Association, Aug. 2015. [Online]. Available: https://www.usenix.org/conference/
woot15/workshop-program/presentation/pa

[28] A. Ziaie Tabari and X. Ou, A Multi-Phased Multi-Faceted IoT Honeypot
Ecosystem. New York, NY, USA: Association for Computing Machinery, 2020,
p. 2121–2123. [Online]. Available: https://doi.org/10.1145/3372297.3420023

[29] V. Valeros and S. Garcia, “Hornet 40: Network dataset of geographically
placed honeypots,” Data in Brief, vol. 40, p. 107795, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352340922000075

[30] T. Barron and N. Nikiforakis, “Picky attackers: Quantifying the role of system
properties on intruder behavior,” in Proceedings of the 33rd Annual Computer
Security Applications Conference, ser. ACSAC ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 387–398. [Online]. Available:
https://doi.org/10.1145/3134600.3134614

https://doi.org/10.1145/3307334.3326083
https://www.usenix.org/conference/woot15/workshop-program/presentation/pa
https://www.usenix.org/conference/woot15/workshop-program/presentation/pa
https://doi.org/10.1145/3372297.3420023
https://www.sciencedirect.com/science/article/pii/S2352340922000075
https://doi.org/10.1145/3134600.3134614

148 References

[31] M. Mohammed, M. Elish, and A. Qusef, “Empirical insight into the context of
design patterns: Modularity analysis,” in 2016 7th International Conference on
Computer Science and Information Technology (CSIT), 2016, pp. 1–6.

[32] Golang, “Go language,” 2021. [Online]. Available: https://golang.org/

[33] Docker. (2022) Dockerhub. Docker. [Online]. Available: https://hub.docker.com/

[34] Busybox. (2022) Busybox dockerhub. BusyBox. [Online]. Available: https:
//hub.docker.com/_/busybox

[35] Linuxserver.io. (2022) Openssh dockerhub. OpenSSH. [Online]. Available:
https://hub.docker.com/r/linuxserver/openssh-serve

[36] T. A. H. S. Project. (2022) Httpd dockerhub. The Apache Project. [Online].
Available: https://hub.docker.com/_/httpd

[37] OITC. (2022) Modbus-server dockerhub. OITC. [Online]. Available: https:
//hub.docker.com/r/oitc/modbus-server

[38] E. Project. (2022) Eclipse mosquitto dockerhub. Eclipse Project. [Online].
Available: https://hub.docker.com/_/eclipse-mosquitto

[39] plgd. (2022) Coap-gateway. plgd. [Online]. Available: https://hub.docker.com/r/
plgd/coap-gateway

[40] SHODAN, “Shodan,” 2021. [Online]. Available: https://www.shodan.io/

[41] Censys, “Censys search,” 2021. [Online]. Available: https://censys.io/

[42] A. Wick and community. (2022) Arkime. Arkime. [Online]. Available: https:
//arkime.com/index#home/

[43] Virustotal, “Virustotal,” 2022. [Online]. Available: https://www.virustotal.com

[44] V. Valeros and S. Garcia, “Hornet 40: Network dataset of geographically
placed honeypots,” Data in Brief, vol. 40, p. 107795, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352340922000075

[45] D. Ocean, “Digital ocean droplet monitoring,” 2022. [Online]. Available:
https://docs.digitalocean.com/products/monitoring/

[46] R. Trapkickin, “Who is scanning the internet?” 2015.

https://golang.org/
https://hub.docker.com/
https://hub.docker.com/_/busybox
https://hub.docker.com/_/busybox
https://hub.docker.com/r/linuxserver/openssh-serve
https://hub.docker.com/_/httpd
https://hub.docker.com/r/oitc/modbus-server
https://hub.docker.com/r/oitc/modbus-server
https://hub.docker.com/_/eclipse-mosquitto
https://hub.docker.com/r/plgd/coap-gateway
https://hub.docker.com/r/plgd/coap-gateway
https://www.shodan.io/
https://censys.io/
https://arkime.com/index#home/
https://arkime.com/index#home/
https://www.virustotal.com
https://www.sciencedirect.com/science/article/pii/S2352340922000075
https://docs.digitalocean.com/products/monitoring/

References 149

[47] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,
Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar,
C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,
and Y. Zhou, “Understanding the mirai botnet,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Association, Aug.
2017, pp. 1093–1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[48] Microsoft. (2021) The mozi botnet. Microsoft. [On-
line]. Available: https://www.microsoft.com/security/blog/2021/08/19/
how-to-proactively-defend-against-mozi-iot-botnet/

[49] T. T. Project. (2022) Exonerator. The Tor Project. [Online]. Available:
https://metrics.torproject.org/exonerator.html

[50] iphub. (2022) iphub. iphub. [Online]. Available: https://iphub.info/

[51] SHODAN, “Honeypot or not?” 2022. [Online]. Available: https://honeyscore.
shodan.io

[52] GreyNoise, “Greynoise,” 2022. [Online]. Available: https://viz.greynoise.io/

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.microsoft.com/security/blog/2021/08/19/how-to-proactively-defend-against-mozi-iot-botnet/
https://www.microsoft.com/security/blog/2021/08/19/how-to-proactively-defend-against-mozi-iot-botnet/
https://metrics.torproject.org/exonerator.html
https://iphub.info/
https://honeyscore.shodan.io
https://honeyscore.shodan.io
https://viz.greynoise.io/

150 References

Paper F

Deceptive directories and “vulnerable” logs: a honeypot
study of the LDAP and log4j attack landscape

Shreyas Srinivasa, Jens Myrup Pedersen, Emmanouil Vasilomanolakis

The paper has been published in the
Proceedings - 7th IEEE European Symposium on Security and Privacy Workshops,

Euro S and PW 2022. IEEE p. 442-447 6 p. Mar 2022.

The layout has been revised.

1. Introduction 153

Abstract
The Lightweight Directory Access Protocol (LDAP) has been widely used to query direc-
tory services. It is mainly utilized for reading, writing, and searching directory services
like the Active Directory. The vast adoption of LDAP for authentication has entailed
several attack attempts like injection attacks and unauthorized access due to third-party
key storage. Furthermore, recent vulnerabilities discovered in libraries like the Log4j can
lead adversaries to obtain unauthorized information from the directory services through
pivoting attacks. Moreover, the LDAP can be configured to operate on UDP, motivating
adversaries to exploit it for Distributed Reflection Denial of Service attacks (DRDoS).
This paper presents a study of attacks on the LDAP by deploying honeypots that simu-
late multiple profiles that support the LDAP service and correlating the attack datasets
obtained from honeypots deployed by the Honeynet Project community. We observe a
total of 39, 388 malicious events targeting the honeypots and discover 273 unique attack
sources performing pivot attacks in a period of one month.

1 Introduction
The Lightweight Directory Access Protocol (LDAP) has been used for querying and
searching the directory services over many years. As the name suggests, LDAP is a
lightweight implementation and the Internet variant of the Directory Assistance Service
(DAS) from the X.500 protocol (aka. Directory Access Protocol) [1, 2]. Due to its
light implementation, many applications support LDAP for synchronizing and managing
directory services (e.g., the Active Directory Server from Microsoft). LDAP allows cross-
platform clients to query the directory services that contain attribute-value pairs of
users, applications, computers, and devices in the network through an LDAP client [3].
Enterprise applications use LDAP for authentication in applications that include email
clients, SSH, server, and workstation access.

However, over the years, there have been many vulnerabilities in LDAP that enable
injection attacks, unauthorized access, and remote code execution capabilities [4–6]. As
many enterprise applications use LDAP for authentication, attackers are highly moti-
vated to exploit the protocol to gain unauthorized access into the targeted infrastructure.
According to the ENISA Threat Landscape Report 2021, there were several DDoS cam-
paigns that leveraged UDP-based LDAP services in 2020. It was observed that a wave
of DDoS attacks that targeted several Internet Service Providers in France, Belgium and
Netherlands leveraged DNS and LDAP services for amplification attacks [7]. Further-
more, Internet scanning data from Project Sonar [8], shows up to three million LDAP
services on the Internet with open TCP port 389 that accept unencrypted requests,
implying that misconfigured LDAP services can lead to attacks of significant impact.

Honeypots are deception systems that simulate target systems or services. They

154 Paper F.

work as decoys to attract attacks and store all the attack traffic. Traditionally, honey-
pots have been used to gather attacks from bots and as an effective source for threat
intelligence data. There are several open-source honeypot projects, some maintained by
the Honeynet Project, that are focusing either on specific protocols or vulnerabilities [9].
The simulation ranges across diverse application protocols used in IT, OT (Operational
Technology), and IoT environments. Honeypots have been an obvious choice to study
attack trends and, more recently, about attacker behavior psychology [10].

In this paper, we aim to extend and deploy a honeypot that simulates open-source
implementations of directory services to gather attack trends in LDAP. Moreover, we
add a Log4j component to our honeypots to allow an analysis of pivoting attacks to-
wards LDAP. Furthermore, we enhance our findings by correlating them with attack
data gathered from honeypots deployed by the Honeynet Project. We summarize our
contributions as follows:

• We extend an open-source honeypot to simulate three different LDAP profile ser-
vices.

• We deploy LDAP honeypots and perform an analysis of the attacks received on
the honeypots.

• We correlate the attacks received in our honeypots with attack data from the
Honeynet Project.

2 Related Work
In this section, we discuss related work in the areas of LDAP attack types and LDAP
honeypots.

2.1 LDAP attacks
Several vulnerabilities have been reported on the LDAP over the years. These include
Denial of Service attacks, remote code execution and privilege escalation on different
independent LDAP implementations [11]. Furthermore, more recently, the LDAP has
been exploited as a part of APTs that exploit other vulnerabilities (for example, CVE-
2021-44228 of the Apache Log4j vulnerability) [12]. Early research from Alonso et al.
show injection techniques possible through the LDAP [5]. The authors present injec-
tion techniques by manipulating the filters used for searching the directory services.
Obimbo et al. present the risks of using LDAP as an authentication protocol by exe-
cuting a DoS attack exploiting the TCP three-way handshake required for connection
initialization with an LDAP server [4]. More recently, Jeitner et al. presented tech-
niques to inject malicious payloads to launch injection attacks on protocols like DNS,

3. Methodology 155

LDAP, and Eduroam [6]. As LDAP is extensively used in enterprise infrastructure as
an authentication service, any potential attack vector towards LDAP is of high risk.

2.2 LDAP honeypots
Early work on LDAP Honeypots was proposed from Grimes [13]. The author provides
an overview of honeypots in general and Windows-based honeypots that administra-
tors can deploy to detect potential zero-day attacks. Furthermore, the author provides
an overview for modeling honeypots for windows-based environments and protocols by
using scripts from the HoneyD honeypot framework [14–16]. The HoneyD honeypot
framework acts as a daemon that can create virtual hosts on a network that can be con-
figured to run arbitrary services. The daemon can run on multiple addresses and provide
scripts to emulate an entire device or a specific protocol. Moreover, there is active re-
search that proposes using Honeytokens, a subset of honeypots that emulate a digital
entity like user accounts, files, and folders to detect malicious activity or infections. For
instance, Lukas et al. propose the creation of fake user accounts as honeytokens on
Active Directory Server to capture malicious access attempts [17].

The T-Pot project [18] is a collection of 25 different honeypots that includes the
Log4Pot honeypot [19]. Log4Pot simulates a vulnerable Log4j environment and can be
configured to listen on multiple ports. The honeypot further provides a log analysis tool
that extracts the attack payloads, decodes them and builds a timeline of attacks. The
GreedyBear Project [20] aggregates the attack data from the honeypots of the T-Pot
project, specifically from the Log4Pot and Cowrie honeypots, and converts them into
actionable feeds to facilitate threat intelligence. The GreedyBear project is currently
maintained by the Honeynet Project [9] and provides public access to feeds aggregated
by the GreedyBear project. Nevertheless, there is no work on honeypots that aims at
capturing attacks specific to LDAP. We address this gap by extending an open-source
honeypot to simulate directory services with LDAP and capture the attacks [21].

3 Methodology
This section presents the methodology for the LDAP honeypot implementation, the ex-
perimental setup and the analysis of attack data from the Honeynet Project community.

3.1 LDAP honeypot
To simulate LDAP service, we extend RIoTPot, an open-source honeypot that is mod-
ular and capable of operating in hybrid-interaction levels [21]. RIoTPot provides high-
interaction capability by running services on dedicated, ephemeral containers with cap-
turing the traffic as pcap files and in an attack database. Leveraging the modular feature

156 Paper F.

of RIoTPot, which facilitates easy integration of protocols and services into the simula-
tion portfolio, we integrate three profiles: Apache Directory Server [22], OpenLDAP [23]
and OpenDJ [24]; that support the LDAP service and run them in containerized mode.
We set up individual containers of the three profiles and utilize RIoTPot’s orchestration
and logging features to capture the attack traffic. Furthermore, we simulate a webservice
with the Log4J vulnerability [12] that refer to the directory services simulated by the
profiles in containers. In total, we deploy three webservices that connect to individual
directory services. We describe the simulated profiles in detail below.

Apache Directory Service

The Apache Directory Server (ADS) [22] is an open-source, extendable implementation
of Directory services. The service is implemented using the Java programming language
and can be embedded as a module in a server application. ADS supports the commu-
nication through LDAP and is compliant with the LDAP v3. In addition to the LDAP,
ADS supports Kerberos 5 and the Change Password protocols. Furthermore, ADS uses
an adaptation of the X.500 basic access control scheme with subentries to control access
and attributes within the Directory Information Tree (DIT). The directory service can
be configured through an LDIF file, a known format to define the properties of DIT,
directory objects, and attributes. The Apache community actively maintains the ADS
open-source repository.

OpenLDAP

OpenLDAP is an open-source implementation of LDAP [23]. The package includes a
stand-alone LDAP load-balancing daemon (l loadd) , a standalone LDAP service dae-
mon (slapd) and libraries that implement LDAP with additional utilities. The l loadd
listens for LDAP connections on a specified number of ports and forwards the LDAP
operations received over these connections to be processed by the backend, while the
slapd listens to incoming LDAP requests and responds to the LDAP queries received
over the connections. In addition, the slapd offers operation in tool mode which provides
multiple profiles for the daemon.

OpenDJ

OpenDJ is an opensource LDAPv3 compliant implementation of the directory service,
developed using Java [24]. The implementation features scalability for large domains,
monitoring tools, and replication between multiple instances. In addition to LDAP v3,
OpenDJ supports the Directory Service Markup Language (DSMLv2). The OpenIden-
tity Platform actively maintains the OpenDJ project.

3. Methodology 157

HTTP Service with Log4j vulnerability

Log4j is an open-source logging Java library that provides multiple logging levels for
debugging applications. The library is extensively used by applications developed in
Java. Recently, a bug in the Log4j library was disclosed in which an attacker can
perform remote code execution on the victim using the library for debug-logging [12].
This vulnerability allows unauthorized users to run arbitrary code on the target machine
when a configuration uses a JDBC Appender with a JNDI LDAP data source URI [25].
Attackers can spawn malicious LDAP servers to carry out the Log4j attacks on the
victims. To understand if there are any potential pivot attacks, that may target the
LDAP services through the Log4j exploit, we enhance our honeypot instances (see also
experimental setup below) with an HTTP service that showcases the Log4j vulnerability
and configure them to connect to individual directory services. The websites simulate
a login dashboard with a welcome header, fields for user login, and a login button. The
login button performs a standard procedure of verifying the username and password from
the directory service configured. The websites are each hosted on the same instance as
the directory simulations, and a search user is configured with the websites to be able
to search the directories, which enables the examination of LDAP injection attacks.

3.2 Experimental setup
To capture attacks on individual profiles, we deploy RIoTPot on three hosts, with each
RIoTPot instance simulating a directory service and an HTTP service. Figure F.1
shows the experimental setup of the honeypots in our lab environment. Each host is
assigned a public IP address and has ports 389 (LDAP) and 80 (HTTP) open to the
Internet. The traffic from each host is captured as a pcap file and stored in a remote file
repository. Furthermore, all traffic received on ports 80 and 389 are logged in an attack
database. The file repository and the attack database are set up on a remote host to
avoid disruption in logging in case of a crash. The directory service is configured with
basic authentication and is set with an admin username with a non-complex password.
We configure all the directory services with the same domain name (LDAP.xxx.xx) and
are initialized with five organization units and 120 users to look similar to a production
service.

3.3 Honeynet Project dataset
To get a holistic view of attacks, we analyze the data from the honeypots deployed by the
Honeynet Project community. In particular, we request the feed from the GreedyBear
[20] project that aggregates attacks towards the Log4j vulnerability. We correlate these
logs to the findings of our own honeypots. Upon analysis of the Honeynet Project data,
we identify JNDI calls in the payloads and find similar attacks in our honeypots. We
describe our findings in Section 5.

158 Paper F.

RIoTPot-1

ApacheDS
LDAP(389)

Website-1
HTTP(80)

RIoTPot-2

OpenLDAP
LDAP(389)

Website-2
HTTP(80)

RIoTPot-3

OpenDJ
LDAP(389)

Website-3
HTTP(80)

Host-1 Host-2 Host-3

PCAP
Repository

Attack
Database

Router-1 Router-2 Router-3

Honeypot Lab Setup

Fig. F.1: Overview of our experimental setup

4 Results
This section lists our findings on the attacks gathered from our honeypots.

4.1 Attack traffic count
We deploy three profiles of open-source Directory Services that support LDAP and add
three vulnerable websites with Log4j vulnerability associated with each profile. We
classify suspicious traffic as an LDAP attack when an injection pattern or an irregular
search is observed in the traffic [5]. Similarly, on the HTTP, we classify the traffic as
an attack when brute-force attempts and remote code execution patterns are detected.
Figure F.2 summarizes the number of attacks received on each directory service profile
on ports 389 and 80 for 30 days. At a glance, we received at total of 39, 388 attacks. The

4. Results 159

OpenLDAP directory service received the highest number of attacks on LDAP (2613)
in comparison to ApacheDS (2414) and OpenDJ (2341). We observe that the attacks
increased after the first 14 days of the deployment on all three profiles. We suspect this
could be because of possible listing on the Internet-wide scanning services. Note that the
attacks shown are exclusive of probing traffic from known Internet-scanning services. In
particular, the HTTP service received a total of 22,673 events and the LDAP received
8,100 events from known scanning services. The traffic from these benign scanning
services was identified using the noise-filter module of RIoTPot [21].

Fig. F.2: Attacks received over 30 days - LDAP and HTTP

4.2 Attack sources
As a result of exposing our honeypots to the Internet, we receive high traffic volume,
primarily benign, from Internet-wide scanning services. Figure F.3 shows the distribu-
tion of traffic from scanning services (benign) and attack traffic with malicious intent.
RIoTPot filters the traffic received on the honeypots by identifying the probing traffic

160 Paper F.

from 19 Internet-wide scanning services [21]. Filtering of benign scanning traffic reduces
the noise in the gathered data, thereby concentrating on the remaining suspicious traf-
fic. All traffic towards the honeypot instances can be considered suspicious as there is
no productive value in interaction with a honeypot. We label suspicious traffic to be an
attack upon observing malicious intent in the requests. We observe that the OpenLDAP
profile received the highest number of malicious requests compared to the other profiles.
The honeypots received traffic from 273 unique attack sources.

Fig. F.3: Traffic classification on honeypots

4.3 Attack types
We observe multiple attack types in our honeypots, including many LDAP injection
attacks, suspicious search, remote code execution, and brute-force attempts. Figure
F.4 shows the percentage of different attack types received on each simulated directory
service.

Fig. F.4: Attack types received on honeypots

The OpenDJ profile received the most LDAP Injection attacks in comparison to the
other profiles. The attacks aimed at bypassing the authentication by using blind ex-

5. Discussion 161

ploitation techniques to fetch the userPassword attribute. The profiles further received
random suspicious search queries with logical-operators on the LDAP filters. Moreover,
we identified many brute-force attempts on the HTTP webservice. In addition to the
brute-force attacks, the websites received attacks that exploited the Log4j vulnerability.
We observe fewer attacks towards Log4j in comparison to the other attack types and
this could be because of the time elapsed since the disclosure of the vulnerability.

5 Discussion
In this section, we discuss our findings from the analysis of the attack data received
from the Honeynet community and additional findings from the attack data received on
our honeypots.

5.1 Correlating data from the Honeynet Project
The data obtained from the Honeynet Project is an aggregated feed from GreedyBear
[20]. The project aggregates data from 30 Log4j honeypot instances. First, we correlate
the attack sources observed on both datasets. Over a period of 30 days, the GreedyBear
feed had an average of 3,269 events per day and 693 unique source IPs. Figure F.5 shows
the correlation of the number of unique IPs that have been observed on Honeynet
data and our honeypots over the same period of 30 days. The number of same actors
denote the total attack sources observed on both honeypot datasets and the different
actors denote the attack sources that were observed exclusively on our honeypots. Upon
further analysis, we find that the different actors observed on our honeypots targeted
also the LDAP service. The different actors observed on our honeypots may be the
result of running both LDAP and Log4j simulations. The attack sources shown in
the figure include the attacks received only on the Log4j simulation in our honeypots.
Furthermore, we find recurring probes from attack sources that are not from known
Internet-wide scanning services and appear to be performing pivot attacks. In addition,
we examined the code that was called through RMI to find patterns. Upon analysis
we find similarities in the code that aimed at performing LDAP injections from many
sources.

5.2 Attack samples
We list sample attacks in appendix Table F.1 for each attack type categorized in Figure
F.4. The table further lists different LDAP injection attack types and samples observed
on our honeypots. The Authentication Bypass attacks aimed at injecting filtered LDAP
queries with sequences to bypass authentication. The privilege escalation attacks aim at
listing unauthorized directory contents bypassing a search sequence with a low-security
level. We observe blind injection attacks that request a Boolean operation to check if an

162 Paper F.

Fig. F.5: Correlation of attack sources from the Honeynet Project and our honeypots

admin class exists that belongs to a domain type. In addition, the honeypot instances
received many suspicious search query requests. For instance, the sample listed in Table
F.1 requested a sequence from the LDAP service on the same host. This search entails
that the adversary previously performed reconnaissance to discover open LDAP ports
on the host. Many brute force attacks were identified in which adversaries tried to log
in via a list of passwords. We further determine, by checking the word list order, that
the passwords used were part of the NMap default password list [26]. Lastly, there were
Log4j attacks observed that performed RMI calls. We list some sample Log4j exploits
received in Table F.1.

5.3 Pivot attacks
Pivoting attacks can be described as attacker movement from one compromised system
to more systems within the same or remote infrastructure. We observe some attacks
that try to pivot into the directory services by leveraging the Log4j vulnerability through
LDAP injection techniques. Upon examining the code from RMI calls specified through
JNDI, we find LDAP filters that aim to list all organizational units and enumerate do-
main users and domain admins groups. We observe such attacks on all three simulation
profiles of our experiment. Figure F.6 depicts the number of pivoting attacks observed
on each simulation profile. The attacks begin with targeting the Log4j vulnerability,
and sequentially move on to target the simulated directory services through LDAP. We
observe that out of 429 unique attack sources (observed exclusively on Log4j), 273 of
them attempted pivot attacks on the directory services.

5. Discussion 163

Fig. F.6: Pivot attacks overview

5.4 Limitations
We acknowledge the following limitations in our approach. First, we exclusively consider
open-source implementations of directory services and LDAP. This limits our scope as
most enterprises use Microsoft Active Directory as their directory service [27]. Second,
our work is further limited in the simulation of LDAP operational modes, such as LDAPS
and CLDAP. The simulation of CLDAP would provide an overview of the reflection-
based attacks. Third, though we simulate a high-interaction profile for the directory
services and LDAP, we limit the experiment in terms of the domain simulation by
using an unregistered domain. Hence, using a registered domain in our experiment may
enhance the deception layer and appear more attractive for adversaries. Lastly, the
total attack events observed on each profile are the result of a month study only; an
extended study is needed for a more holistic understanding of the field.

5.5 Ethical considerations
As honeypots are systems that simulate vulnerable environments, they can be leveraged
by adversaries to cause attacks on the Internet. To prevent such attacks, we limit
the egress traffic from our honeypots. Furthermore, the containers spawned from our

164 Paper F.

honeypots for simulation are ephemeral, such that new instances are created periodically
to avoid spread of infections. In regards to the dataset from the Honeynet project, we
take care in not disclosing the IP addresses of honeypots deployed by the community.

6 Conclusion
This paper conducts a honeypot study of the attacks on LDAP by deploying three open-
source directory service profiles with the webservers simulating the Log4j vulnerability.
We observe many attack types, including LDAP injection attacks and suspicious search
queries. Lastly, we summarize the attack types and correlate our findings with the data
from the Honeynet community. As future work, we aim to perform a longitudinal study
of LDAP honeypots with extended profiles that include the Active Directory.

A Appendix

A.1 Samples of attack types
Table F.1 lists the sample attacks received on our honeypots like LDAP injection, suspi-
cious search queries, brute-force attacks and the Log4j RMI attacks. The table further
lists the different types of LDAP injection attacks in particular the authentication bypass
technique which aims to gain unauthorized access by injection of a filter that ignores
the password attribute in the LDAP query, the privilege escalation attacks which aims
at fetching unauthorized information and blind injection attacks that aims at fetching
boolean information about specific objects in the directory.

Attack-type Received Attack Sample
LDAP-Injection
Authentication Bypass &(USER=admin)(&))(PASSWORD=Pwd)

LDAP -Injection
Privilege elevation “www)(security_level=*))(&(directory=html”

LDAP -Injection
Blind LDAP Injections (&(objectClass=admin*)(type=domain*))

Suspicious search GET /?x=$jndi:ldap://127.0.0.1
Brute-force #cn=root,cn=users,dc=resilient,dc=dk password
Log4j-RCE GET /$%7Bjndi:$%7Blower:l%7D$%7Blower:d%7Da$%7Blower:p%7D://*************.*.psc****

Table F.1: Samples of attacks received on honeypots

References 165

References
[1] M. Rose, “Directory assistance service,” in RFC 1202, Performance Systems Inter-

national, Inc. Citeseer, 1991.

[2] B. Smetaniuk, “Distributed operation of the x. 500 directory,” Computer Networks
and ISDN Systems, vol. 21, no. 1, pp. 17–40, 1991.

[3] M. Wahl, T. Howes, and S. Kille, “Rfc2251: Lightweight directory access protocol
(v3),” 1997.

[4] C. Obimbo, B. Ferriman et al., “Vulnerabilities of ldap as an authentication service.”
J. Information Security, vol. 2, no. 4, pp. 151–157, 2011.

[5] J. M. Alonso, R. Bordon, M. Beltran, and A. Guzmán, “Ldap injection tech-
niques,” in 11th IEEE Singapore International Conference on Communication Sys-
tems. IEEE, 2008, pp. 980–986.

[6] P. Jeitner and H. Shulman, “Injection attacks reloaded: Tunnelling malicious pay-
loads over dns,” in 30th USENIX Security Symposium (USENIX Security 21), 2021,
pp. 3165–3182.

[7] ENISA. (2020) Enisa threat landscape 2020 - malware. ENISA. [Online]. Available:
https://www.enisa.europa.eu/publications/malware

[8] R. Research, “Project sonar,” 2021. [Online]. Available: https://www.rapid7.com/
research/project-sonar/

[9] T. H. Project, “The honeynet project.”

[10] K. J. Ferguson-Walter, M. M. Major, C. K. Johnson, and D. H. Muhleman, “Ex-
amining the efficacy of decoy-based and psychological cyber deception,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 1127–1144.

[11] MITRE. (2021) Ldap vulnerabilities and disclosures. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ldap

[12] A. S. Foundation. (2021) Cve-2021-44228. [Online]. Available: https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2022-23302

[13] Springer, Ed., Windows Honeypot Modeling. Berkeley, CA: Apress, 2005, pp.
63–88. [Online]. Available: https://doi.org/10.1007/978-1-4302-0007-9_3

[14] N. Provos, “Honeyd-a virtual honeypot daemon,” in 10th DFN-CERT Workshop,
Hamburg, Germany, vol. 2, 2003, p. 4.

https://www.enisa.europa.eu/publications/malware
https://www.rapid7.com/research/project-sonar/
https://www.rapid7.com/research/project-sonar/
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ldap
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23302
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23302
https://doi.org/10.1007/978-1-4302-0007-9_3

166 References

[15] N. Provos and T. Holz, Virtual honeypots: from botnet tracking to intrusion detec-
tion. Pearson Education, 2007.

[16] N. Provos et al., “A virtual honeypot framework.” in USENIX Security Symposium,
vol. 173, no. 2004, 2004, pp. 1–14.

[17] O. Lukas and S. Garcia, “Deep generative models to extend active directory graphs
with honeypot users,” arXiv preprint arXiv:2109.06180, 2021.

[18] T. Security, “T-pot - the all in one honeypot platform,” 2022. [Online]. Available:
https://github.com/telekom-security/tpotce

[19] P. Thomas, “A honeypot for the log4shell vulnerability (cve-2021-44228),” 2022.
[Online]. Available: https://github.com/thomaspatzke/Log4Pot

[20] (2022) Greedybear honeypot feed. Honeynet Project. [Online]. Available:
https://github.com/honeynet/GreedyBear

[21] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, “Riotpot: a modular hybrid-
interaction iot/ot honeypot,” in 26th European Symposium on Research in Com-
puter Security (ESORICS) 2021, Springer. Darmstadt, Germany: Springer, 2021.

[22] Apache. (2021) Apache directory. [Online]. Available: https://directory.apache.
org/apacheds/

[23] O. Kuzník. (2021) Openldap. [Online]. Available: https://www.openldap.org/

[24] OpenIdentityPlatform. (2021) Opendj. [Online]. Available: https://www.
openidentityplatform.org/opendj

[25] (2021) Cve-2021-44832. Apache Software Foundation. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44832

[26] G. Lyon, “Nmap network mapper,” 2021. [Online]. Available: https://nmap.org/

[27] S. Reimer and M. Mulcare, Active Directory® for Microsoft® Windows® Server
2003 Technical Reference. O’Reilly Media, Inc, 2009.

https://github.com/telekom-security/tpotce
https://github.com/thomaspatzke/Log4Pot
https://github.com/honeynet/GreedyBear
https://directory.apache.org/apacheds/
https://directory.apache.org/apacheds/
https://www.openldap.org/
https://www.openidentityplatform.org/opendj
https://www.openidentityplatform.org/opendj
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44832
https://nmap.org/

Internet Security Measurements

168 References

Paper G

Open for hire: attack trends and misconfiguration pitfalls of
IoT devices

Shreyas Srinivasa, Jens Myrup Pedersen, Emmanouil Vasilomanolakis

The paper has been published in the
IMC ’21: Proceedings of the 21st ACM Internet Measurement Conference. Association

for Computing Machinery Vol. XX(X), p. 195-215 21 p, 2021.

The layout has been revised.

1. Introduction 171

Abstract
Mirai and its variants have demonstrated the ease and devastating effects of exploiting
vulnerable Internet of Things (IoT) devices. In many cases, the exploitation vector is
not sophisticated; rather, adversaries exploit misconfigured devices (e.g. unauthenticated
protocol settings or weak/default passwords). Our work aims at unveiling the state of
IoT devices along with an exploration of the current attack landscape. In this paper, we
perform an Internet-level IPv4 scan to unveil 1.8 million misconfigured IoT devices that
may be exploited to perform large-scale attacks. These results are filtered to exclude a
total of 8, 192 devices that we identify as honeypots during our scan. To study current
attack trends, we deploy six state-of-art IoT honeypots for a period of 1 month. We
gather a total of 200, 209 attacks and investigate how adversaries leverage misconfigured
IoT devices. In particular, we study different attack types, including denial of service,
multistage attacks and attacks from infected online hosts. Furthermore, we analyze data
from a /8 network telescope covering a total of 81 billion requests towards IoT protocols
(e.g. CoAP, UPnP). Combining knowledge from the aforementioned experiments, we
identify 11, 118 IP addresses (that are part of the detected misconfigured IoT devices)
that attacked our honeypot setup and the network telescope.

1 Introduction
With the adoption of IoT, there is an increase of misconfigured devices on the Inter-
net. Some are incorrectly configured or left with default configuration, thereby making
them vulnerable [1]. Misconfigured IoT devices are exploited on a large scale by mal-
ware like Mirai that infect vulnerable devices with bots [2]. A device is considered to
be misconfigured if its incorrect configuration leads to vulnerabilities. NIST defines
misconfiguration as "An incorrect or suboptimal configuration of an information sys-
tem or system component that may lead to vulnerabilities" [3]. Moreover, attacks like
denial-of-service, ransomware, or data leaks can be purchased and facilitated through
botnets. For instance, many variants of the Mirai botnet and newer IoT malware like
GitPaste-12 [4], Kaiji [5], RHOMBUS [6] continue to look for vulnerable devices on the
Internet [2]. Furthermore, recent research shows the possibilities of DoS attacks through
messaging protocols like MQTT [7, 8] and CoAP [9].

According to the ENISA Threat Landscape Report 2020, malware attacks are the
leading and emerging threats worldwide [10]. While it is known that botmasters look for
vulnerable devices with misconfigured protocols of Telnet and SSH, research suggests
that bot deployments are now possible with IoT-based protocols like MQTT, AMQP,
and UPnP [11–14]. With the increasing adoption of IoT in diverse sectors like Industry
4.0, healthcare, and critical infrastructure, we argue that this poses a significant threat.

Heretofore, there has been research on the underlying IoT vulnerabilities and propos-

172 Paper G.

ing honeypots to analyze the threat actors for specific protocols [15–18]. However, to the
best of our knowledge, no work combines an active search for misconfigured devices with
an analysis of the attack trends in IoT by deploying multiple honeypots and studying
the traffic flow received on a network telescope. In this paper, we unveil the vulnera-
ble aspects of misconfigured services on IoT devices and emphasize the importance of
authentication and authorization in IoT protocols and devices.

Our contributions are summarized as follows:

• We perform Internet-wide scans on six protocols: Telnet, MQTT, CoAP, AMQP,
XMPP, and UPnP. As a result, we unveil 1.8 million misconfigured IoT devices
that can either be infected with bots or be leveraged for a (D)DoS amplification at-
tack. In addition, we use open datasets to complement our findings. Furthermore,
our scan takes into account the existence of honeypots. To deal with the lack of
ground truth knowledge for deployed honeypots on the Internet, we analyze the
response banners from our scan and the static banners returned by open-source
honeypots. Hence, we filter out from the results 8, 192 systems that we classify as
honeypots.

• We deploy six SOTA IoT honeypots, to capture and analyze the attack vectors
on the protocols scanned. Moreover, we analyze data from a /8 network-telescope
with 16 million IP addresses to better understand Internet scanning trends in IoT
protocols.

• Combing knowledge from the IPv4 scan, the honeypot deployment and the net-
work telescope traffic analysis, we discover 11, 118 (out of the 1.8 million) miscon-
figured IoT devices that attacked our honeypot setup and the network telescope.

The rest of the paper is organized as follows. Section 2 introduces the related work
in detecting vulnerable IoT devices on the Internet and IoT honeypots. In Section 3 we
describe our methodology of finding misconfigured devices on the Internet, detection of
honeypots and deploying state-of-the-art honeypots in our lab environment to learn the
attack vectors and analysis of FlowTuple data from a network telescope. Section 4 shows
the results obtained from our methodology. In Section 5 we discuss the attack trends
and findings of our research. Section 6 concludes the paper and discusses potential
future work.

2 Related Work
This section discusses the related work in the area of Internet-wide scanning for finding
vulnerable IoT devices, IoT honeypots, and IoT honeypot fingerprinting.

2. Related Work 173

2.1 Internet-wide scanning for vulnerable IoT devices
The widespread increase of IoT devices on the Internet has called upon various kinds of
research, focusing on their security and trust [19]. The majority of the research in this
area includes fingerprinting IoT devices to facilitate exploitation based on their type.
However, there is less research that follows the approach of scanning the Internet to
find vulnerable devices. Markowsky et al. [20] demonstrate how to scan the Internet
for vulnerable IoT devices using the Shodan scan engine [21] and scanning tools like
Masscan [22], NMap [23], and PFT [24]. The authors describe multiple ways of finding
vulnerable devices on the Internet using banners of known services. The scan finds more
than 1.6 million vulnerable devices on the Internet. Although we make use of a similar
methodology, i.e, we utilize ZMap and Shodan in our scanning approach, we leverage
open datasets and run the scans with custom probes for both TCP and UDP protocols.
Furthermore, unlike Markowsky et al. we do not try to connect to the devices after the
scanning process. We also use the banners and the initial response received from the
hosts from our scans. In addition to results from Shodan, we combine datasets from
open projects that do not index the scan results based on banners or responses.

Neshenko et al. [25] make an exhaustive survey of IoT vulnerabilities by an empir-
ical study of the published research work on IoT. Their analysis proposes a taxonomy
of IoT vulnerabilities, including their technical details and consequences. The authors
also evaluate IoT exploits through analysis of a passive network dataset obtained by a
network telescope. The evaluation provides good insights into the number of vulner-
able IoT devices by country, infected devices, and malicious IoT traffic. To sum up,
there is significant research on fingerprinting of IoT devices using passive data sets.
However, there is scarce work on scanning the Internet with custom probes to discover
misconfigured IoT devices.

The work of Springall et al. [26] is the closest to ours. The authors attempt to find
FTP servers on the Internet that accept anonymous logins and investigate real-world
attacks by deploying FTP honeypots. Springall et al. detect more than 20, 000 public
FTP servers that allowed write access. The authors focus mainly on the FTP protocol
and the anonymous login misconfiguration that allows remote users to authenticate
without any access information.

2.2 IoT-Honeypots
The use of honeypots and network telescopes to monitor attacks is not new. Honeypots
are deception-based entities that simulate the services of a target system. All connec-
tion attempts to a honeypot can be considered malicious as there is no real reason for
accessing a honeypot system. Over the years, many honeypots have been proposed,
both open-source and research-based, to understand the threats to IoT protocols. The
Honeynet Project [27] offers a number of open-source honeypots such as: Conpot [28],
Dionaea [29] and HosTaGe [30] that simulate IoT protocols (e.g. Telnet, MQTT, CoAP

174 Paper G.

Honeypot Telnet MQTT CoAP AMQP XMPP UPnP Open-source
IoTPot (2016) Yes - - - - - -

ThingPot (2018) - - - - Yes Yes
U-Pot (2018) - - - - - Yes Yes

IoTCandyJar (2017) - Yes Yes - Yes - Yes
HosTaGe (2020) Yes Yes Yes Yes - - Yes
Conpot (2020) Yes - - - - - Yes
Cowrie (2020) Yes - - - - - Yes
Dionaea (2020) - Yes - - - - Yes

MQTT and CoAP
Honeypots (2019) - Yes Yes - - - -

Anglerfish Yes Yes - - - Yes -

Table G.1: IoT Honeypots

and AMQP). Other honeypots include ThingPot [17], IoTPot [15], UPot [18] and IoT-
CandyJar [16].

Table G.1 lists IoT-honeypots and the protocols the simulate. IoTPOT [15] proposes
a honeypot and a sandbox environment for capturing Telnet-based attacks. Through
IoTPOT, the authors were able to identify four distinct DDoS malware families tar-
geting Telnet-enabled IoT devices based on the attacks gathered. Wang et al. propose
ThingPot [17] that emulates the XMPP protocol. The authors also implemented the
Philips Hue smart home lighting system profile into ThingPot that emulates the Hue
devices like the bridge and the smart lamps. During the evaluation of ThingPot, the
authors discovered attacks that tried to gain control of the system and some fuzzing
attempts. Hakim et al. propose U-Pot [18], a UPnP-based honeypot framework for
capturing attacks on IoT devices that use Universal Plug and Play (UPnP) protocol.
The authors claim that U-Pot offers high-interaction capabilities and is agnostic of de-
vice type. The authors deploy the profile of the Belkin Wemo smart switch [31] into
U-Pot and evaluate its performance by trying to measure the response times from the
honeypot. The results are observed to have near similar response times to real devices.

Luo et al. propose IoTCandyJar [16], a machine learning-based honeypot that learns
the behavioral knowledge of IoT devices by continuous Internet-wide probing. The
honeypot sends Internet-wide probes as seed requests to get response information from
devices with specific open ports. The honeypot responds to the attacker queries, using
the saved responses and the requests in its training database. HosTaGe [30, 32] is a low-
interaction mobile honeypot that emulates many protocols, including IoT protocols like
MQTT, CoAP, and AMQP. Further, the honeypot offers device profiles like Arduino,
a smoke-sensor, and a temperature sensor for simulation. Shimada et al. implemented
MQTT, and CoAP honeypots [33] to observe the possible attack vectors on the IoT
messaging protocols. The authors observed a large number of MQTT requests on the
honeypot and requests from unknown protocols. Lastly, we discover the Anglerfish
honeypot from the results of our honeypot detection methodology which is described

2. Related Work 175

in Section 3. The honeypot is managed by Netlab 360 [34], a commercial security
organization.

2.3 Network Telescopes
Data from network telescopes has been utilized in some research to study the scanning
trends. Durumeric et al. [35] use the data from an extensive network telescope to gain
insights in scanning traffic, behavior, and patterns. The authors reveal many attacks
detected from Darknet IP sources and derive many statistical patterns from the scanning
data. Similarly, Heo et al. [36] analyze the connection-level log data of a large-scale
campus network to study the trends in scanning. The log data used for analysis is
acquired from the firewalls deployed in the campus network. The authors provide an
in-depth analysis and classification of the scan traffic.

Jonker et al. [37] use four independent datasets that include honeypots and a network
telescope to perform a comprehensive analysis of the gathered attacks and introduce a
new framework to enable a macroscopic characterization of attacks, attack targets, and
DDoS Protection Services. The authors present significant results regarding the global
problems caused by DoS attacks and the most targeted types of servers.

Lastly, Richter et al. analyze the unsolicited traffic at firewalls from 89, 000 hosts
across 1, 300 networks of a significant Content Distribution Network [38]. Their findings
indicate that localized scanning campaigns likely target narrow regions in the IP address
space. Their characteristics vary compared to the Internet-wide scanning services in
terms of target selection. The authors further compare the suspicious traffic received on
the firewalls to the UCSD Darknet Network Telescope [39] and provide a comprehensive
analysis of the scanning services.
2.4 IoT-Honeypot Fingerprinting
Honeypot fingerprinting is the process of detecting if a target system is indeed a hon-
eypot. The fingerprinting process may involve either active, passive, or both finger-
printing techniques. Some examples include banner-based, static-response, the use of
low-interaction libraries, and response times. Honeypot fingerprinting can help adver-
saries in avoiding any interaction with a honeypot either directly or through malware
propagation. Research on honeypot fingerprinting has increased over time. Early works
on honeypot fingerprinting started in 2005 by Holz et al. [40] who queried the target
system for known static responses from honeypots. More recent works include Vet-
terl et al. [41] who systematically detected known open-source honeypots by analyzing
the deviation in response from that of honeypots. The authors considered open-source
honeypots that emulate Telnet, SSH, and HTTP protocols.

A first approach towards the detection of IoT honeypots was proposed by Surnin
et al. [42]. The authors detect honeypots that emulate SSH and Telnet protocols by
performing multiple checks through tests that determine if the target is a honeypot.

176 Paper G.

Based on the results of each test, the authors assign a probability for the target. In
this paper, we also use static banners sent by known IoT honeypots to detect and
filter them from our scan results. For this, we extend our previous work on honeypot
fingerprinting [43].

3 Methodology
This section describes the methodology for unveiling vulnerable devices and the attack
trends.

3.1 Detection of misconfigured IoT-devices
We follow two approaches for the detection of misconfigured IoT devices that are exposed
to the Internet. First, we perform Internet-wide scans for six protocols. In particular,
MQTT, CoAP, AMQP, XMPP and UPnP are chosen on the basis of their adoption and
usage in IoT [44]. In addition, Telnet is selected as it has been significantly targeted by
malware in the past [45–47]. We subsequently examine the received banners for known
vulnerabilities and misconfigurations, e.g. accepting the authentication in plain text.
Second, we use the available and open network datasets to search for vulnerable devices.

Internet-wide scanning:

In this approach, we scan the Internet for six protocols (Telnet, MQTT, CoAP, AMQP,
XMPP, and UPnP). We utilize ZMap [48] along with ZGrab [49] to capture the banners
of the responding hosts for further analysis. We use one of the servers running Ubuntu
20.04-LTS OS with a fixed static IP address in our lab as the scanning host. For the scan
of UDP protocols like CoAP and UPnP, we used custom scripts that requested a response
from the target host. For example, the UDP scan for CoAP protocol included the query
"/.well-known/core" in the scan request. Note that CoAP responds to all requests if
there is no authentication configured. Similarly, for UPnP, we send an "ssdp:discover"
request. The scans for all the six protocols were completed in a week between March
1-5 2021 (see Table G.9 in the Appendix for the specific scan dates for each protocol).
The information retrieved from the scans, such as IP address, port, response, banner,
were stored in a database for further analysis to identify the vulnerable hosts. The
scans followed the default blocklist provided by ZMap [50] and the European blocklist
from the FireHOL Project [51]. We discuss the ethical aspects of scanning in Appendix
Section A.3.

3. Methodology 177

Open datasets:

Open datasets of Internet-wide scans are provided by projects like Project Sonar from
Rapid7 [52] and Shodan [21]. These datasets contain essential information like IP ad-
dress, port, protocol, headers, and banner information of the host with the open ports
identified through the scan. We utilize the datasets from Project Sonar and Shodan
to search for misconfigured IoT devices in Telnet, MQTT, CoAP, AMQP, XMPP, and
UPnP. The information from the datasets assists us in verifying the results obtained
from our scans. The aforementioned datasets vary by scan frequency, and hence we
correlate the results identified in all the datasets.

Identifying misconfigured hosts:

The protocols considered in our work involve both TCP and UDP protocols. We consider
vulnerabilities associated with the misconfiguration of protocols in IoT devices. We focus
on devices that prominently lack any authentication, authorization, and encryption
configurations. Furthermore, we derive that many devices with default configurations
also use default parameters for authentication. To identify vulnerable hosts from the
scan data obtained from the above approach, we classify our methodology into two:
Banner-based and Response-Based.

Banner-based (TCP): This approach involves the analysis of the banners received
on a successful connection with the target host. Banner grabbing is a technique that is
used to retrieve more information from the target host. The information in the banners
may help know the type, version, username, and even the session-related metadata.
Based on the scanned protocol, the banners vary in the information sent. We use the
ZGrab tool in our scan to fetch the banner information from the connected target. This
approach is followed for the Telnet, MQTT, AMQP, and XMPP protocols. In Table
G.2 we list sample banners that indicate misconfiguration of the protocol on the target
device and are explained below.

• Telnet: We examine the banners received from the Telnet scan. The scan tries
to establish a session with the target host to discover an open Telnet port, either
23 or 2323. Upon connecting, the target host sends a banner to our scanning host
with basic server information. While the Telnet protocol itself can be exploited
for active banner grabbing, we instead use our ZMap Telnet scan probe to get
essential information on the target host. The banners received from the hosts
provide us with information like the protocol, server, version, and some headers.
We examine the banners received for established connections with unauthenticated
console access. In case of finding certain characters like "$", "root@xxx:∼$" and
"admin@xxx:∼$" in the response banners, we infer that the target hosts accept
unauthenticated connections.

178 Paper G.

Protocol Banner Response
Indicator Misconfiguration

Telnet $ No auth, console access
Telnet root@xxx:∼$ No auth, root console access
Telnet admin@xxx:∼$ No auth, root console access
MQTT MQTT Connection Code:0 Connection Accepted with no auth
AMQP Version: 2.7.1 No auth
AMQP Version: 2.8.4 No auth
XMPP MECHANISM<PLAIN> No encryption
XMPP MECHANISM<ANONYMOUS> No auth

Table G.2: Misconfiguration indicators: TCP protocols

• MQTT: The MQTT (Message Queuing Telemetry Transport) protocol scan in-
vestigates the possibility of connecting to port 1883 without any authentication.
The banner received upon connection establishment with a target host provides
information about supported authentication methods or connects to the target
directly. After a successful connection, all the topics and channels on the target
host are listed. We examine the received banners for "MQTT Connection Code:0"
which specifies unauthenticated access to MQTT servers.

• AMQP: The AMQP (Advanced Message Queuing Protocol) scan involves scan-
ning the Internet for port 5672. The probe retrieves metadata from the target host
like version, product, and the supported authentication mechanisms on connection.
The AMQP protocol has many open-source implementations like RabbitMQ [53],
Apache Qpid [54] and Apache ActiveMQ [55]. We refer to the CVE [56] and NIST
NVD [57] database to search for known vulnerable versions of the protocol used
in the devices detected from our scan. The findings are listed in Section 4.

• XMPP: The XMPP protocol (Extensible Messaging and Presence Protocol) is
widely used in IoT devices for message passing and communication. The XMPP
protocol is scanned for both client (5222) and server ports (5269). We primar-
ily scan for devices that support non-TLS connections on these ports. Then, we
examine the banners received from the hosts for known vulnerabilities and miscon-
figurations, like accepting the authentication in plain text. Furthermore, as XMPP
supports anonymous logins, it is possible to establish connections with the servers
without any authentication. The banner provides information like version, fea-
tures and supported authentication-mechanisms. The information received from
the banners is used to determine the potential vulnerabilities on the device.

Response-based (UDP): The protocols using UDP as the transport layer do not
respond with banners and therefore have to be explicitly queried for any information on

3. Methodology 179

the service. We target two UDP-based protocols, namely CoAP and UPnP, employed in
IoT devices on the Internet to search for any misconfigurations and known vulnerabili-
ties. We use the ZMap tool to scan for open CoAP and UPnP ports. The methodology
followed for each of the protocols is described below.

Protocol Response Misconfiguration
CoAP x1C Full Access
CoAP 220 Connected Session
CoAP 220-Admin Admin access connection
CoAP CoAP Resources Resource Disclosure

UPnP

upnp:rootdevice
USN: uuid:5a34308c-1a2c-4546
-ac5d-7663dd01dca1::upnp:rootdevice
EXT:
SERVER: Ubuntu/lucid UPnP/1.0
MiniUPnPd/1.4
LOCATION: http://192.168.0.1:16537/rootDesc.xml

Resource Disclosure

Table G.3: Misconfiguration indicators: UDP protocols

• CoAP: The CoAP (Constrained Application Protocol) is a web-based transfer
protocol used in constrained environments like IoT devices for machine-to-machine
communication. CoAP supports multicast and uses UDP as the transport layer.
We scan the Internet for CoAP port 5683 and query the end systems for "/.well-
known/core". The query triggers a response from the host, based on the config-
uration set by the administrators. Since CoAP can easily translate to HTTP, it
responds with responses like "x1C" that indicate full access to the target system.
Table G.3 summarizes some of the responses received from misconfigured devices
and their misconfiguration details. The sample responses listed in the table show
the indicators in the response that denote a specific misconfiguration. However,
having systems with CoAP exposed to the Internet itself is a vulnerability and
can be recruited for DoS amplification attacks [58].

• UPnP and SSDP: The UPnP (Universal Plug and Play) protocol enables device
discovery and control in a network. Internet providers use UPnP forwarding on
routers to deploy network configuration. The UPnP protocol uses SSDP (Simple
Service Discovery Protocol) for the advertisement and discovery of devices on
a network. SSDP has been used extensively in smart-home and industrial IoT
environments for automation and control of IoT devices. We scan the Internet for
devices with SSDP enabled on port 1900 and trigger a response to a query. Table
G.3 shows a sample response obtained from a device exposed to the Internet and
SSDP enabled. The devices exposed to the Internet could be recruited by malware
or botmasters or adversaries for DDoS attacks [59].

180 Paper G.

The banners and the responses received from active scanning and querying are stored
in a database to perform further analysis. Furthermore, we analyze the responses for
known high-severity vulnerabilities from the CVE database. The results are correlated
with the open datasets analyzed from Subsection 3.1. We find a total of 1, 832, 893
unique, vulnerable hosts exposed to the Internet and present our findings and analysis
in the results section.

3.2 IoT-Honeypot Fingerprinting
From our Internet-scanning methodology, we expect that some of the misconfigured
devices may be honeypots and can poison our result dataset. Thus, we perform honeypot
fingerprinting to identify honeypots in our dataset and filter them. Honeypots are widely
used deception-based network monitoring systems that proactively detect attacks. They
work by simulating protocols and services on the target system and classified based on
their simulation levels into low, medium, and high interaction. We filter honeypots from
our scan results by following banner-based honeypot fingerprinting. This technique is
adapted from existing research methodology proposed by Morishita et al. and Vetterl
et al. [41, 60] and is extended to detect IoT-based honeypots.

Honeypot fingerprinting is the technique used to determine if a vulnerable target
system is a honeypot [41, 42, 60]. This may assist honeypot developers improve the
simulation capabilities, or help adversaries evade honeypots. The techniques are based
on banners, response-deviation, static content, lack of simulation, and interaction ca-
pabilities. We leverage our previous work on multistage honeypot fingerprinting that
is based on banners and responses received from the honeypots [43]. The framework
performs sequential checks based on the services discovered on the target host and the
response received is analyzed to determine if the target is a honeypot. We deploy open-
source and widely used honeypots in our lab to determine the unique characteristics that
differentiate them from existing systems. These characteristics can be static banners,
response, or content. For the purposes of this paper we only attempt fingerprinting
for honeypots emulating Telnet. These include the HoneyPy [61], Cowrie [62], MT-
Pot [63], Telnet IoT honeypot [64], Conpot [28], Kippo [65], Kako [66], Hontel [67] and
Anglerfish [34] honeypots.

3.3 IoT Honeypot Deployment
The scans from our methodology reveal a large number of misconfigured devices. To
determine the potential attack vectors and to study the attack trends, one of the obvious
ways is to deploy honeypots. Honeypots have been a valuable resource for studying
the attack trends. We choose open-source honeypots and deploy them in our lab setup,
where they are configured to face the Internet without any firewall (see Appendix Section
A.3 for details about how we ensured that our honeypots were not used for malicious
purposes). The network traffic gathered on all these honeypots is analyzed to understand

3. Methodology 181

the attack trends. We describe the IoT honeypots and their deployment in the following
subsections.

IoT Honeypots

We choose Cowrie [62], HosTaGe [30], Dionaea [29], ThingPot [17], U-Pot [18], and
Conpot [28] honeypots in our methodology as we find these honeypots relevant to our
study based on emulated protocols and because they are open source and widely used
[41, 60]. Furthermore, these honeypots are capable of simulating IoT-based device
profiles. For example, the HosTaGe honeypot can simulate a CoAP-based smoke sensor
or, an Arduino board running IoT protocols. The protocols emulated by these honeypots
are listed in Table G.1.

Deployment Setup

The honeypots are deployed in our lab environment with an unfiltered network. More-
over, the honeypots are grouped based on the emulated protocols as shown in Figure
G.1. By grouping them in this way, we ensure no overlap of the protocols emulated
by the honeypots. Each group is assigned a public IP address with port-forwarding
enabled on the routers. This way, the honeypots are independent of their network and
are exposed to the Internet. All the honeypots, except HosTaGe, run as containers
on a system with Ubuntu 18.04 LTS Server. The HosTaGe honeypot is deployed on a
rooted Samsung S10 Galaxy device to emulate services on ports below 1024. All the
attacks gathered on the honeypots are exported daily and imported into the database.
We record the attacks on all the honeypots for one month in April 2021 on a day to day
basis. The findings are summarized in the Section 4.

3.4 Network-Telescope Analysis
The honeypots deployed in our lab environment provide us with traffic on a limited IP
address space. To address this limitation and get a more holistic view of the attack land-
scape, we analyze the FlowTuple data from a network telescope. A network telescope
is a portion of routed IP address space in which no legitimate traffic exists [68]. Tele-
scopes contain massive data that is captured across large number of routed IP address
space. This data helps us to understand the attack landscape across the large network,
in addition to the traffic we receive on our honeypots. An analysis of the traffic received
on the telescope provides information about the remote network events such as flooding
DoS attacks, infection of hosts by Internet worms, and network scanning [39]. Study-
ing these networking events assists us in further understanding the latest scanning and
attack trends employed by adversaries. In addition to the data from the honeypots,
we analyze the data from the CAIDA UCSD Network-Telescope scanners dataset [68].

182 Paper G.

U-Pot:
UPnP

Conpot:
SSH,

Telnet,
HTTP, S7,
MODBUS

ThingPot:
XMPP

Cowrie:
SSH,
Telnet

Dionaea:
HTTP,
MQTT,

FTP,SMB

HosTaGe

Telnet, MQTT,
AMQP, CoAP,
SSH, HTTP,

SMB

Router-1 Router-2 Router-3

Samsung Galaxy S10
Host-1

Ubuntu 18.04 LTS
Host-2

Ubuntu 18.04 LTS
Host-3

Honeypot Lab Setup

PostgresDB

Attack data Attack data

Fig. G.1: Honeypot experimental setup

The UCSD network telescope consists of a globally routed /8 network that carries al-
most no legitimate traffic. The captured data provides us with a snapshot of anomalous
’background’ traffic to 1/256th of all public IPv4 destination addresses on the Internet.
Unlike honeypots, telescopes do not simulate any protocols and hence do not respond
to any requests. A significant part of the addresses are unused, and any traffic on this
network is potentially suspicious.

The traffic to CAIDA UCSD Network Telescope is captured and offered in three
forms; FlowTuple data, Raw pcap data, and Aggregated Daily RSDoS Attack Meta-
data. The FlowTuple data is captured hourly and consists of elementary information
about the suspicious traffic. The information includes source and destination IP address,
ports, timestamp, protocol, TTL, TCP flags, IP packet length, TCP-SYN packet length,
TCP-SYN window length, packet count, country code, and ASN information [69]. Fur-
thermore, additional metadata like is_spoofed and is_masscan provide information if
the source IP address may be spoofed and if the Masscan tool [22] is used for the scan.
The files are stored on a minute basis, and hence there are 1, 440 files generated per day.
We use the FlowTuple data provided by CAIDA and parse the records for April 2021
and requests targeting the Telnet, AMQP, MQTT, XMPP, CoAP, and UPnP protocols.
Furthermore, we analyze and classify the suspicious sources into scanning and malicious
traffic based on the results we obtain from our honeypot deployment and the ground
truth from threat intelligence repositories GreyNoise [70], and Virustotal [71].

4. Results 183

4 Results
This section presents our findings primarily on misconfigured devices on the Internet and
the attack trends observed through our honeypots. The section is divided into the results
obtained through the Internet-wide scan, honeypot detection and the observations from
the deployed honeypots.

4.1 Results from Internet-wide scanning
Exposed devices

Upon scanning the Internet with ZMap [48] for six protocols namely Telnet, MQTT,
AMQP, XMPP, UPnP and CoAP, we find a total of 14 million hosts with open ports.
We compare our scan results with the Project Sonar [52] Internet-wide scan dataset and
Shodan [21]. The total number of unique hosts exposed to the Internet by the protocol
identified through our scan is listed in Table G.4. The Project Sonar does not provide
datasets for AMQP and XMPP protocols.

Protocol ZMap Scan Project Sonar Shodan
AMQP 34,542 NA 18,701
XMPP 423,867 NA 315,861
CoAP 618,650 438,098 590,740
UPnP 1,381,940 395,331 433,571
MQTT 4,842,465 3,921,585 162,216
Telnet 7,096,465 6,004,956 188,291
Total 14,397,929 (14M) 10,759,970 (10M) 1,709,380 (1M)

Table G.4: #Exposed systems on the Internet by protocol and source

The number of hosts listed from Project Sonar and Shodan was from the same period
when our scans were performed. The total number of exposed hosts detected by our
scan is higher than the Project Sonar dataset and Shodan. We argue that this could be
because of possible allow-listing performed by these scanning services. Another reason
could be that our methodology involves scanning the Internet for multiple ports for one
protocol. For example, we perform scans with both ports 23 and 2323 for the Telnet
protocol, while Project Sonar performs the scans only with port 23. This leads to having
a higher number of detected hosts.

Exposed Device Types

From Table G.4, we observe that the number of devices exposing Telnet (7M) is higher
than the other protocols. Telnet is highly targeted by botnets to infect with malware.

184 Paper G.

Fig. G.2: Top IoT device types by protocol (%)

From the banners and the responses received, we attempt to detect the device type. The
device types are identified by matching specific text from the banners and the response.
For example, the HiKVision Network Camera responds with a banner "192.0.0.64 lo-
gin:" for Telnet connections. The IP address is assigned to the camera as a default
configuration and hence responds with this banner [72]. We discover many device types
upon performing a similar approach to find consistent banner and response patterns
across the scan results. We use the results obtained from the scanning of the protocols
to identify device types. We list the major device types and the protocols on which
they were detected in Figure G.2. We observe that most of the device types are identi-
fied through the Telnet and the UPnP responses. The IoT devices were identified with
responses from the Telnet, UPnP, MQTT and CoAP protocols. The response received
from XMPP and AMQP services were not sufficient to label the target as an IoT device.
The basis on which the device types are identified is listed in Appendix-Table G.11 for
every protocol. Furthermore, other device types like NAS, micro 3D printers and so on
are also listed. To facilitate automated detection, we leverage ZTag [73], a tool for an-
notation of raw data with additional metadata that facilitates tagging and automation
of the data from our scans. The banners and static responses are used as metadata for
tagging the device types.

Misconfigured Devices

We consider the misconfigurations for the protocols listed on Tables G.2 and G.3 for
identifying the vulnerable devices. A misconfigured device is a device with no authenti-
cation, no encryption, or no authorization configured. We analyze the response received
from the scans of all the protocols and find a total of 1, 832, 893 misconfigured devices
that satisfy at least one of the conditions. The number of misconfigured devices identi-
fied by the protocol are listed in Table G.5. The table shows the vulnerability identified
in each of the protocols scanned and analyzed by us. In TCP protocols, we see that there

4. Results 185

Protocol Vulnerability #Devices found
CoAP No auth, admin access 427
AMQP No auth 2,731
Telnet No auth 4,013
XMPP No encryption 5,421
CoAP No auth 9,067
Telnet No auth, root access 22,887
MQTT No auth 102,891
XMPP Anonymous login 143,986
CoAP Reflection-attack resource 543,341
UPnP Reflection-attack resource 998,129

Total 1,832,893

Table G.5: Total misconfigured devices per protocol

are devices exposed with no authentication configured. This means that with a simple
connection request, the adversary could connect to the device. There is also a lack of au-
thorization configured in devices that allow the end systems to respond to queries from
unknown hosts. Furthermore, we detect many UDP-based devices that respond to dis-
covery queries and can be leveraged in denial of service attacks. We further discuss this
type of attack in Section 5. Table G.10 in the appendix lists the number of misconfigured
devices distributed by country on the six protocols. The source location of the attacks
are determined by using the ipgeolocation database [74]. We observe a large number of
countries including USA (27%), China (13%), Russia (9.1%), Taiwan (8.9%), Germany
(7.8%), Philippines(6.2%), UK(5.8%), Brazil (3.3%), India (3.2%), Thailand (2.7%) ,
Hong Kong (2.7%), South Korea (2.5%), Israel (2.1%), Canada (1.9%), Bangladesh
(1.1%), France (0.9%), Japan (0.7%), and other (1.3%).

4.2 Honeypot Detection
The misconfigured devices identified from our methodology could contain honeypots
that can lead to poisoned results. We use the honeypot detection approach, described
in Subsection 3.2, to filter out the honeypots from our results. To fingerprint honeypots,
we initially perform a search for open-source and research-based IoT-based honeypots.
We deploy these honeypots in our lab and capture the banners obtained through a
Telnet session from the ZMap client. Then, we systematically search the responses
received from our scanning process to filter the honeypot instances. Table G.6 lists the
honeypots detected using the Telnet banners and the response identified from honeypots
∗. Overall, with this approach we were able to detect a total of 8, 192 honeypots. The

∗The Anglerfish honeypot is not open-source, but was detected retrospectively as a result of large
number of suspicious static banners observed in the scan results.

186 Paper G.

results are validated on the basis of our previous work on honeypot fingerprinting [43].

Honeypot Telnet Banner #Detected Instances
HoneyPy Debian GNU/Linux 7\r\r\nLogin: 27
Cowrie \xff\xfd\x1flogin: 3,228

MTPot \xff\xfb\x03\xff\xfb\x01\xff\xfd\x1f\
xff\xfd\x18\r\nlogin: 194

Telnet IoT
Honeypot

\xff\xfd\x01Login: Password: \r\nWelcome to
EmbyLinux 3\.13\.0-24-generic\r\n # 211

Conpot Connected to [00:13:EA:00:00:0] 216
Kippo SSH-2.0-OpenSSH_5.1p1 Debian-5 47
Kako BusyBox v1.19.3 (2013-11-01 10:10:26 CST) 16
Hontel BusyBox v1.18.4 (2012-04-17 18:58:31 CST) 12
Anglerfish [root@LocalHost tmp]$ 4,241

Total 8,192

Table G.6: Detected honeypots through Telnet banner signatures

4.3 Attack trends from honeypots and network telescope

St
re

tc
ho

id
.c
om

Cen
sy

s

Sh
od

an
.io

Bits
ig

ht

Bin
ar

yE
dg

e.
io

Pr
oj
ec

t S
on

ar

Sh
ad

ow
Se

rv
er

.o
rg

In
te

rn
eT

TL

Alp
ha

 S
tri

ke
 L
ab

s

Sh
ar

as
hk

a

RW
TH

 A
ac

he
n

Uni
v

Crim
in

al
IP

ip
ip

.n
et

Net
 S

ys
te

m
s
Re

se
ar

ch

Le
ak

IX

ONYP
HE

Nat
la
s

Qua
dm

et
ric

s.
co

m

Arb
or

 O
bs

er
va

to
ry

HosTaGe

U-Pot

Conpot

ThingPot

Cowrie

Dionaea

Honeypot So
ur
ce
s

11035 125 22 3 342 9 1 0 0

2219 013 017 1 1112 0 11 0 3 19 8

1815 08 29 2 027 9 4 3 1 110 513

0027 021 09 0 0019 24 0 0 0 00 00

11122 12 14 1 029 5 2 2 1 317 34

2711 1219 15 3 229 6 4 3 2 25 23

11 0 0

0

0

Fig. G.3: Scanning-service traffic on honeypots (%)

Honeypots

We deploy six honeypots as depicted in Figure G.1 at our lab environment. The total
number of attack events detected by each honeypot by protocol over one month is listed
in Table G.7. We observe a total of 200, 209 attack events from all the honeypots. Even

4. Results 187

though any interaction with honeypots is considered an attack, we argue that recurring
scans from known sources (e.g. Shodan [21]) can be considered benign traffic. The attack
events consist of both benign and malicious traffic. Scanning-service traffic involves
internet-wide scanning events from known sources like Shodan [21], Censys [75], Project
Sonar [52], BinaryEdge [76], ZoomEye [77], Fofa [78] and educational organizations
like RWTH Aachen University [79]. Malicious traffic involves attacks from unknown
scanning sources or attacks with malicious payloads. The packets include both scanning
probes and malicious payloads.

Fig. G.4: Attack types in different honeypots (%)

Scanning service traffic We perform a reverse lookup of the source IP addresses of
the suspicious traffic received on the honeypots. We identify a total of 10, 696 unique
IP addresses that are registered to known scanning services shown in Figure G.3. Table
G.7 lists the total unique IP addresses registered to scanning services, detected per
honeypot. Figure G.3 shows the scanning-services received on each honeypot. It lists
the percentage of total scanning traffic distributed between the identified services. The
suspicious traffic that does not resolve to the scanning-services is classified as unknown
and is not included as a scanning service. Furthermore, we observe that the IPs from the
scanning services scan the Internet periodically and thus are recurring, unlike suspicious
one-time scans. The prominent scanning services identified are Stretchoid.com [80],
Censys, Shodan, Bitsight [81], BinaryEdge [76], Project Sonar [52], Shadow Server [82],
Interne TTL [83], Alpha Strike Labs [84], Sharashka [85], RWTH Aachen University [79],
CriminalIP [86], ipip.net [87], Net Systems Research [88], LeakIX [89], ONYPHE [90],
Natlas [91], Quadmetrics.com [92] and Arbor Observatory [93].

188 Paper G.

Honeypot Simulated Device
Profile Protocol #Attack

events
Scanning
service* Malicious* Unknown/

Suspicious*

HosTaGe Arduino Board
with IoT Protocols

Telnet
MQTT
AMQP
CoAP
SSH

HTTP
SMB

19,733
2,511
2,780
11,543
19,174
16,192
1,830

2,866 21,189 2,347

U-Pot Belkin Wemo
smart switch UPnP 17,101 1,121 7,814 1,786

Conpot Siemens S7 PLC

SSH
Telnet

S7
HTTP

12,837
12,377
7,113
11,313

1,678 11,765 1,876

ThingPot Philips Hue Bridge XMPP 11,344 967 2,172 963

Cowrie SSH Server
with IoT banner

SSH
Telnet

15,459
14,963 2,111 12,874 1,113

Dionaea Arduino IoT device
with frontend

HTTP
MQTT
FTP
SMB

11,974
1,557
3,565
6,873

1,953 13,876 1,694

Total 200,209 10,696 69,690 9,779

Table G.7: Total attack events by type and protocol on honeypots (* unique source IPs)

Malicious traffic Since honeypots have no production value, all traffic that is not
coming from a known scanning service is considered malicious. These interactions in-
clude brute-force attempts, dictionary attacks, malware droppers. Besides, the traffic
that does not match the scanning attributes of known scanning tools is malicious. The
malware classification is based on the received payloads. The requests are examined
for port scans from recognized scanning tools like ZMap. Furthermore, we classify the
source as malicious upon receiving recurring requests with malicious payloads. Figure
G.4 shows the malicious requests received per honeypot and type. We also observe re-
flection attack attempts on the CoAP and UPnP protocols. The malware attacks listed
in Table G.7 were classified based on the requested content. The requests included
URLs used for downloading the malware and messages with the malicious payload. We
also observed data poisoning attacks on the honeypots. For example, there were CoAP
requests that changed the data by publishing messages. The malware are identified by
analysis of the pcap files stored on the honeypots for unusual content. Upon finding
any unusual content, for example a file or script in the payload, we check the file with
VirusTotal. Regarding poisoning attacks, we observe if the data has been modified or
deleted from the services simulated by the honeypots. For example, we check for any
modifications attempted on the data in the MQTT queues. We further discuss some
interesting cases in Section 5. The honeypots further encountered non-recurring scan-
ning traffic from unknown sources and suspicious requests that were not identical to

4. Results 189

any known attack types. Such type of suspicious traffic is grouped under the unknown
scanners or suspicious requests.

Network-Telescope:

The UCSD CAIDA network telescope consists of 16 million IP addresses. Upon parsing
the FlowTuple dataset captured from the telescope, we observe an average of 78 billion
requests per day. An average of 2.7 billion is targeted towards the Telnet, MQTT,
AMQP, CoAP, XMPP, and UPnP protocols. Table G.8 shows the average number of
suspicious requests received on each protocol daily and the number of IPs that belonged
to scanning-services and unknown scanners. We observe that the Telnet protocol dom-
inates the number of suspicious traffic in comparison to the other protocols. This could
be because of the presence of many systems infected with malware like Mirai that con-
stantly scan for vulnerable systems on the Internet. For deeper analysis into the attack
sources, we check the source IPs to known scanning services and classify them into
known and suspicious sources. Table G.8 lists the number of known scanning-services
and the unknown suspicious scans.

Protocol Daily Avg. Count Unique IP Scanning-service Unknown/Suspicious
Telnet 2,554,585,920 85,615,200 4,142 85,611,058
UPnP 131,794,560 1,8633 2,279 16,354
CoAP 68,353,920 2,342 627 1,715
MQTT 17,072,640 5,572 1,248 4,324
AMQP 13,907,520 7,132 2,256 4,876
XMPP 6,429,600 4,255 1,973 2,282
Total 2.7 Bil. 85.6 Mil. 12525 85.6 Mil.

Table G.8: Telescope suspicious traffic classification

Suspicious traffic classification

We validate our findings on classification of attack sources i.e. scanning services and
malicious with [70], and Virustotal [71] databases. Greynoise offers a classification of
the attack sources observed on its honeypots into benign, malicious and unknown. The
unique source IP addresses of the traffic received on the honeypots and the telescope are
searched and corroborated with the classification from Greynoise database. Figure G.5
shows the comparison between the total number of attack sources classified as scanning
service by our classification and Greynoise. We find that a majority of the sources were
identified to be from scanning services by both our method and Greynoise, however,
there were 2, 023 IP addresses that were not identified by Greynoise. We also observe
that the number of scanning services detected by our method is higher for the AMQP,
Telnet and MQTT protocols, which is because we received traffic from multiple cyber-
security risk rating platforms. We suspect that these scans were limited to the European

190 Paper G.

continent or were country-specific.

Fig. G.5: Classification of scanning-services

The source IP addresses are further examined with the VirusTotal threat database.
We perform a search of the IP addresses from unknown suspicious requests received on
the honeypots and the telescope. Upon performing a search for an IP address, Virus-
Total provides a positive score attribute that indicates the number of security vendors
that have flagged them as malicious. Note that we consider the IP to be a malicious
actor if there is at least one security vendor to label them as malicious (VirusTotal has
other labels like phishing). The results are summarized in Figure G.6 that lists the
percentage of IPs indicated as malicious by protocol as classified by Virustotal. The
protocols from the honeypot are indicated by (H) and the telescope as (T). The details
about specific malware detected in the traffic are elaborated in Section 5. We observe
that the attack sources of the SMB from the honeypots have the highest classification
of malicious actors. This is because many well known malware propagate via SMB and
hence the detected numbers are higher.

5 Discussion
This section summarizes the attack trends observed from analyzing the attacks on hon-
eypots and the suspicious traffic from the network telescope. We then discuss the
impact of listing vulnerable honeypot hosts by scanning services like Shodan. Finally,
we investigate the attacks observed from infected hosts and the multistage attacks on
honeypots.

5. Discussion 191

Fig. G.6: Malware classification by Virustotal (%)

5.1 Attack trends by protocol
In the following, we provide an overview of the attack trends on the protocols simulated
by the honeypots. In addition to the logs, the network traffic is captured with tcpdump
on the hosts where the honeypots are deployed and the pcap files are further analyzed
to determine the attack vectors. Moreover, we discuss the findings from the analysis of
the pcap files from the honeypots by protocol.

Telnet and SSH Attacks

The Telnet protocol (simulated by HosTaGe, Conpot, and Cowrie honeypots) received
the highest number of attacks, with a total of 47, 073 attacks, of which 12, 709 were
the result of known scanning services. The remaining suspicious traffic received can be
further categorized into scans from unknown scanning actors and malware. We examine
the pcap files with the Virustotal database for signs of malware signatures and discover
113 Mirai variants. The hashes of the malware identified are listed in Appendix Table
G.13. Upon tracing the sources of the malware, we discovered that one of the sources
had a valid domain registration as a website for a restaurant in the UK. Beyond Mirai
variants, we identified BrickerBot.2, BrickerBot.1, Hehbot and Luabot malware that
brute-force into a target with default credentials. The Appendix Table G.12 lists the
default most used credentials that were recorded for Telnet and SSH. Moreover, we
observe a large number of brute-force attacks with default passwords targeting routers
and modems.

The SSH protocol was simulated by HosTaGe, Conpot, and Cowrie honeypots. We
observe a high number of brute-force and dictionary attacks on all honeypots. The
honeypots received many recent crypto-mining malware like LemonDuck and FritzFrog,

192 Paper G.

among other prominent malware variants. The hash of the malware samples is listed in
Appendix Table G.13.

MQTT, AMQP and XMPP Attacks

The MQTT protocol was simulated by the HosTaGe and Dionaea honeypots. The
attacks mainly aimed at accessing and changing data in the topics. A majority of the
attacks tried to access the ’$SYS’ topics. Some attacks tried to poison the data in the
topics available while others subscribed to receive messages from specific topics.

The AMQP protocol, simulated by HosTaGe, received similar attacks to that of the
MQTT protocol. The adversaries aimed at poisoning the data in the queue through
publishing data and subscribing to receive new messages. We also observed a large
number of messages published by the adversaries, causing a flood leading to a Denial
Of Service.

The XMPP protocol, simulated by the ThingPot honeypot, received brute-force
attacks where the adversaries tried to log in to the Philips Hue Bridge system. In
addition, we detected some dictionary attacks on the protocol. Lastly, we recorded
attempts from malware trying to log in as anonymous users to change the configured
state of the lights on the device. We speculate that the malware was trying to examine
their write privileges.

CoAP and UPnP attacks

The primary attacks on the CoAP protocol, simulated by HosTaGe, involved discovery
requests. However, after the reconnaissance, we observed returning threat actors, es-
pecially after being listed on scanning engines like Shodan and Binary Edge (see also
Section 5.2). The number of attacks increased, followed by poisoning attacks. Moreover,
we detected flooding attacks from unknown malicious actors which resulted in a DoS
attack against the honeypot. We observed that the flooding attacks originated from
two different sources at the same time. A reverse lookup of the IP addresses showed
the existence of duplicate DNS entries for both the IP addresses, which leads to the
possibility of reflection or amplification attacks. The webpages of the IPs pointed to an
Apache2 Ubuntu Default Page. Other sources of the DoS attacks appeared to originate
from Italy, Taiwan, and Brazil.

The U-Pot honeypot received a large number of discovery requests. Following the
discovery, there were many DoS attempts recorded on the honeypot. Similar to the
attacks on the CoAP protocol, the adversaries performed UDP flood attacks on the
honeypot. More than 80% of the total attacks received were a part of the DoS attacks.
Two of the adversaries were first observed scanning for the protocol three days before
the attack with the same source IP addresses. The source was traced to have a valid
domain registration and addressed to a construction service provider in Taiwan.

5. Discussion 193

Modbus and S7 attacks

The Modbus and the S7 protocol, simulated by Conpot, received a large number of
poisoning attacks where adversaries tried to access and change the values stored in
the registers. The attacks targeted three of the nineteen available function codes for
reading device identification, the holding register, and the reporting server. Only 10% of
the Modbus traffic used valid function codes to access the register data. Furthermore,
we observed DoS attacks from attackers that possibly targeted the ICSA-16-299-01
vulnerability for the Siemens S7 protocol [94]. The DoS was performed by flooding the
requests with PDU type 1, that results in spawning of a job request in the device.

FTP and SMB attacks

The FTP protocol, simulated by Dionaea, received brute-force and dictionary attacks.
In addition, a few attacks deployed malware upon successful authentication to the FTP
server. We examined the binary files deployed on the FTP server with Virustotal and
found positive results for malware. We discovered multiple deployments of the Mozi and
the Lokibot malware. The hash of the malware from Virustotal is listed in Appendix
Table G.13.

The SMB protocol, simulated by HosTaGe and Dionaea, was largely targeted with
the EternalBlue, EternalRomance, and the EternalChampion exploits that attack Mi-
crosoft’s implementation of the SMB protocol. Among the malware deployed, we find
the WannaCry and its variants the most common on the honeypots. The hash of the
malware identified via Virustotal is listed on Appendix Table G.13.

HTTP attacks

HTTP was simulated by HosTaGe, Conpot, and Dionaea. The honeypots responded
with static content and a login page for the simulated device profiles. The protocol
was targeted with a large number of web-scraping requests, brute-force, and dictionary
attacks. In addition, we observed DoS attacks with HTTP flood packets causing the
honeypots to crash. The majority of the DoS attacks came from China, Russia, Israel,
USA, and Italy. The attackers also tried to exploit the HTTP protocol by injecting
crypto-mining malware. Upon performing a reverse lookup of the attack sources with
the Exonerator service [95] we determine a total of 151 unique IPs originating from Tor
relays. Furthermore, we observe a daily recurring pattern of scans from these sources
and an increasing trend over the month.

Summary

We summarize the attack trends for each protocol emulated by the honeypots for April
2021 in Figure G.7. We observe that UDP protocols (CoAP and UPnP) received higher
traffic related to Denial of Service in comparison to TCP protocols. Furthermore, the

194 Paper G.

Fig. G.7: Attack trends by type (%) and protocol

TCP protocols have seen an increase in malware deployment and data poisoning. Our
simulated IoT environment suggests that there is an increasing number of attacks con-
centrating on misusing misconfigured IoT devices.

5.2 Impact of listing by scanning-services
The honeypots received many requests from known scanning-services as listed in Figure
G.3. We observed an increase in the number of attacks on the honeypots after their
listing on scanning-services like Shodan, BinaryEdge and ZoomEye. Figure G.8 shows
the total number of attacks on the honeypots by day. The attacks include all the
requests from scanning-services and other malicious sources. The attacks are distinct
by the connection sessions established from the source. The dates at which scanning-
services listed the honeypots are also marked in the figure. Furthermore, the figure
shows the days on which some major DoS attacks occurred (Day 24, 26). We observe
an upward trend in the number of attacks after being listed by scanning-services.

5.3 Attacks from infected hosts
From the results of the honeypots and the network telescope, we observe that there is
a large number of attacks originating from unknown sources. Furthermore, from the
attack trends, we observe many attempts of malware injections from unknown sources.
To determine attack sources originating from infected IoT devices, we search how many
of the identified misconfigured devices (see Table G.5) are present as attack sources

5. Discussion 195

Fig. G.8: Total attacks by day. We highlight known scanning listings and interesting attack events

against our honeypots and the telescope. We identify a total of 11, 118† unique IP ad-
dresses that originate from misconfigured IoT devices. Furthermore, all of the aforesaid
IP addresses were flagged as malicious by at least one scanning vendor in Virustotal.

We extend the detection of infected IoT devices by searching the remaining source
IP addresses in the Censys database [96]. The Censys database has a labelled dataset of
IoT devices and returns an "iot" tag if the IP address was identified as an IoT device from
its periodic Internet-wide scans. We identify an additional 1, 671‡ IoT devices from the
Censys database. A further analysis to determine the type of these IoT devices reveals
that the majority of the attacks originate from cameras, routers and IP phones.

Lastly, we extend the search for attacks from infected hosts from non-IoT devices.
Upon performing a simple reverse lookup of all the source IP addresses, we discover a
total of 797 registered domains of which 427 have a webpage. The domains were looked
up to see if they served additional on additional IP addresses than the one discovered
from our analysis. We found the domains registered with /30 and /29 subnets with
some unused IP addresses. From this analysis, we also infer that some of the Telnet
malware injections originated from an infected URL serving HTML. Upon searching

†In more details, 1, 147 attacked only the honeypots, 1, 274 attacked only the telescope, and 8, 697
both of them.

‡In particular, 439 attacked only the honeypots, 564 attacked only the telescope, and 668 both of
them.

196 Paper G.

Virustotal for these URLs, we find 346 of them tagged as malicious. The webpages were
found serving default wordpress sites, Ubuntu Apache test pages, static ad pages and
fake online shopping portals.

Fig. G.9: Multistage attacks detected on honeypots

5.4 Multistage attacks in honeypots
We define multistage attacks as attacks in which there is a pattern of multiple protocols
that are being sequentially attacked by the same adversary. Attackers may employ the
multistage attack strategy to amplify an attack or to find alternate sources for malware
injection. Although such types of traffic may be observed from scanning services, we
filter such sources by checking if they are registered to a domain affiliated to a scanning
service. The HosTaGe honeypot offers the detection of multistage attacks as a service.
For the other honeypots, we group the attacks from distinct source IP addresses and
check if multiple protocols are targeted. We note that the attacks are grouped based on
the source IP addresses and the time interval between attacks is not taken into account.
This entails that a follow up attack from the same adversary may have occurred anytime
in the one month experiment period.

We list the protocols targeted by attackers in the identified multistage attacks across
the honeypots in Figure G.9. The figure depicts the protocols targeted step-wise. The
numbers below the protocol indicate the total number of attacks received on that proto-
col at that stage and the thickness of the bars indicate the amplitude of the attacks. A
total of 267 multistage attacks were detected and we observe that the majority of them
initiated with Telnet and SSH. Furthermore, the SMB is noticed to be receiving most

6. Conclusion 197

of the attacks at the second step and the S7 protocol in step three.

6 Conclusion
With this work, we combine the search for misconfigured IoT devices on the Internet
with an analysis of attack trends in the IoT. To the best of our knowledge, our work
is the first to combine the results of a complete IPv4 scan with knowledge gained by
honeypot deployment and network telescope data. Beyond the large number of attacks
that we received and analyzed, we show that many of the misconfigured devices take
themselves the role of the attacker as part of malware propagation campaigns.

In particular, our scans reveal that there is a large number of misconfigured IoT
devices that can be leveraged to perform diverse type of attacks on the Internet. Fur-
thermore, the attacks received on the honeypots suggest a trend in attackers searching
for vulnerable IoT devices. This is supported by the network telescope data that suggest
a global trend. The attacks received from infected IoT hosts show that high magnitude
attacks are possible, specifically with devices running CoAP and UPnP. Through this
work, we aim at creating awareness about the implications of the misconfigurations
of IoT devices by exploring such devices that are making us of six popular protocols.
In fact, it is worth noting that by intersecting all of our experiments (IPv4 scanning,
network telescope and honeypots) we are able to identify 11, 118 misconfigured IoT
systems that are actively attacking the Internet; simultaneously 1.8 million devices are
potentially waiting to be exploited by adversaries.

In comparison to previous work on Internet-wide scanning [20, 26], we use custom
probes that scan for specific IoT protocols and further use open datasets to verify our
findings from the scan. We identify a large of number of misconfigured IoT devices
based on specific banner-based and response-based indicators. While Markowsky et
al. [20] demonstrate how to scan and find vulnerable devices using Shodan and Masscan,
they do not specifically search for misconfigured IoT devices. Our results confirm the
methodology of [26], which combines scanning the Internet and deploying honeypots to
study the attack trends on the FTP protocol. We instead focus on 6 protocols that are
used in IoT. We enhance our methodology by using the data from a network telescope
as with Neshenko st al. [25], who use the data to support their proposed taxonomy
of IoT vulnerabilities. Furthermore, our work highlights the need for sanitization of
Internet-scan data from honeypots. In this context, we identify 8,192 honeypots that
would otherwise be classified as misconfigured IoT systems. While individual work on
honeypot fingerprinting has shed light into this field [41, 43], no previous work on the
Internet measurements has taken honeypots into account.

To summarize our contributions, we scan the Internet, specifically to find misconfig-
ured IoT devices by the use of custom probes on 6 protocols (TCP and UDP). We verify
the results from our scan by validating them with open datasets on Internet-scanning.
We filter out potential honeypots from our scanning results by using our multistage

198 Paper G.

honeypot fingerprinting techniques [43] to avoid poisoning of the results. Lastly, we
deploy 6 IoT honeypots that emulate misconfigurations observed from IoT devices in
our scan. Furthermore, the analysis of the data from the telescope compliments our
observations on the attacks received on honeypots.

With regard to future work, we plan to extend the scanning scope of protocols to
include TR069, SMB, and industrial IoT protocols like DDS and OPC UA. The analysis
from the network telescope also motivates us to perform a deeper analysis on raw packet
data to uncover new threat actors on Industrial IoT devices and protocols. Lastly, based
on the recent work of Wan et al. [97] we see the need for combining geographically
distributed scanners, especially for certain protocols (e.g. SSH).

A Appendix

A.1 Scanning dates by protocol
The Internet-wide scans on all the 6 protocols were performed in a span of one week.
Table G.9 lists the dates on which the scans were started for the corresponding protocols.

Protocol Scan Date
CoAP 1 March 2021
UPnP 2 March 2021
Telnet 2 March 2021
MQTT 4 March 2021
AMQP 4 March 2021
XMPP 5 March 2021

Table G.9: Scan dates per protocol

A.2 Misconfigured IoT devices by country
Based on our scan, we detect a total of 1, 832, 893 misconfigured devices over the response
received from six protocols. Table G.10 lists the distribution of misconfigured devices
by country.

A. Appendix 199

Country Count
USA 494,881 (27%)
China 238,276 (13%)
Russia 166,793 (9.1%)
Taiwan 163,127 (8.9%)

Germany 142,966 (7.8%)
Philippines 113,639 (6.2%)

UK 106,308 (5.8%)
Brazil 60,485 (3.3%)
India 58,653 (3.2%)

Thailand 49,488 (2.7%)
Hong Kong 45,822 (2.5%)
South Korea 45,822 (2.5%)

Israel 38,491 (2.1%)
Canada 34,825 (1.9%)

Other countries 23,828 (1.3%)
Bangladesh 20,162 (1.1%)

France 16,496 (0.9%)
Japan 12,830 (0.7%)
Total 1,832,893

Table G.10: Misconfigured devices by country

A.3 Ethical Considerations
The Internet-wide scans were performed through a set of dedicated IP address provided
in the University network. The motivation to perform our own scans with ZMap is
because some networks blocklist Shodan, Censys and other scanning services. However,
we wanted to include datasets from scanning-services to cover the networks that may
have blocked our scanning IP. Furthermore, because of the CoAP and the UPnP proto-
cols in our scanning portfolio, we ran custom scripts to fetch specific response from the
hosts that helps us in identification of misconfigured devices. Moreover a recent study
shows the impact of location on Internet-wide scans, which presents certain limitations
of scanning services [98]. We were motivated by this study to perform our own scans.

Information regarding the misconfigured devices, like the source IP addresses are
not shared or disclosed. The data will be stored for a period of three months from the
date of collection, followed by anonymization of IP addresses to follow the local privacy
regulations. Furthermore, a webpage stating the purpose of the scan and research was
setup to ensure transparency and indicate intent of the scanning process. The scans
included a default blocklist from the ZMap repository [50] and the European blocklisted
provided by the FireHOL project [51].

200 Paper G.

The samples identified by Virustotal as malware will be shared on online threat
repositories like Malpedia [99] and Malware Bazaar [100] to facilitate research from
the open source community. Lastly, the destination IP addresses in the UCSD CAIDA
network telescope have not been disclosed or shared and are anonymized in our database
to facilitate the purposes of the telescope.

Honeypot sandboxing

We want to emphasize that our setting focused only on collecting attacks from the In-
ternet and in principle did not allow for honeypots to attack back a system or entity.
Furthermore, we use state of the art honeypots (HosTaGe, Conpot, Cowrie, Dionaea,
ThingPot and U-Pot) for which, to the best of our knowledge, there is no scientific pub-
lication suggesting the possibility of an adversary being able to hack their way out of
them and attack systems on the Internet through them. Moreover, we want to highlight
that we are only utilizing low/medium interaction honeypots. In contrast to high inter-
action honeypots, which are real systems and thus may be compromised, low/medium
interaction honeypots only partially emulate protocols. Adding to this, each honeypot
(except HosTaGe that runs on a mobile device) was deployed as a container for better
managing and as an additional security layer. HosTaGe is safeguarded by the device’s
firmware (Samsung’s Linux Container (LXC) sandboxing). Furthermore, HosTaGe’s
implementation of the various protocols does not allow the attacker for a lot of inter-
action (the reason for this, as with most low interaction honeypots, is the utilization
of protocol emulation libraries that are incomplete it terms of capabilities). In regards
to measures against reflection attacks (i.e., on CoAP and UPnP) we would like to note
the following. The CoAP implementation of HosTaGe is implemented using the JAVA
mbed-coap library and only responds to service discovery requests with static informa-
tion. Hence, it does not allow for an attacker to attack other devices. Similarly, for
U-Pot we utilized a low interaction image of the IoT device that responds to only service
discovery requests (by using a limited UPnP library, i.e., GUPNP).

In addition, for all the honeypots, we performed continuous monitoring on a daily
basis. That is, we examined what kind of attacks and communication was taking place
and whether anything looked overly suspicious. Moreover, note that all containers had
egress rules to limit any traffic attempting to leave the network. As we write on the
paper, the majority of the observed attacks come as the result of automated attacks
(e.g. via malware). Lastly, the IP space used for the honeypots is part of our monitored
university network; we can confirm that we have not received any complaints with regard
to the IP addresses of the honeypots neither from our NOC nor our ISP.

A. Appendix 201

A.4 Most common Device-type identifiers with banners/response

Device Protocol Device-Type Banner/Response
HiKVision Camera Telnet Camera "192.168.0.64 login:"
Polycom HDX Telnet Camera "Welcome to ViewStation"
D-Link DCS-6620 Telnet Camera "Welcome to DCS-6620"
D-Link DCS-5220 Telnet Camera "Network-Camera login:"
Avtech AVN801 UPnP Camera "Server: Linux/2.x UPnP/1.0 Avtech/1.0"
Panasonic BB-HCM581 UPnP Camera "Friendly Name: Network Camera BB-HCM581"
Anbash NC336FG UPnP Camera "Model Name: NC336FG"
Beward N100 UPnP Camera "Friendly Name: N100 H.264 IP Camera - 004B1000E3E2"
Io Data TS-WLC2 UPnP Camera "Model Name: TS-WLC2"
Io Data TS-WPTCAM UPnP Camera "Model Name: TS-WPTCAM"
Io Data TS-WLCAM UPnP Camera "Model Name: TS-WLCAM"
Io Data TS-WLCE UPnP Camera "Model Name: TS-WLCE"
G-Cam EFD-4430 UPnP Camera Friendly Name: G-Cam/EFD-4430
Seyeon Tech FW7511-TVM UPnP Camera "Model Name: FW7511-TVM"
ZyXEL PK5001Z Telnet DSL Modem "PK5001Z login"
ZTE ZXHN H108N Telnet DSL Modem "Welcome to the world of CLI"
Technicolor modem Telnet DSL Modem "TG234 login:"
ZTE ZXV10 Telnet DSL Modem "F670L Login"
Datacom DM991 Telnet DSL Modem "DM991CR - G.SHDSL Modem Router"
TP-Link TD-W8960N Telnet DSL Modem "TD-W8960N 6.0 DSL Modem"
Cisco C11-4P Telnet DSL Modem "MODEM : C111-4P"
TP-Link TD-W8968 Telnet DSL Modem "TD-W8968 4.0 DSL Modem Router"
BelAir 100N Telnet Router "BelAir100N - BelAir Backhaul and Access Wireless Router"
Tenda Wireless Router UPnP Router "Manufacturer: Tenda"
Totolink N150 UPnP Router "Friendly Name: TOTOLINK N150RA"
ZTE H108N UPnP Router "Model Name: H108N"
OBSERVA BHS_RTA 1.0.0 UPnP Router "Model Name: BHS_RTA"
DASAN H660GM UPnP Router "Model Name: H660GM"
Huawei HG532e UPnP Router "Model Name: HG532e"
ASUSTeK RT-AC53 UPnP Router "Friendly Name: RT-AC53"
NDM CoAP Router "/ndm/login"
QLink CoAP Router title: Qlink-ACK Resource
Signify Philips hue bridge UPnP Smart home "Model Name: Philips hue bridge 2015"
EQ3 HomeMatic UPnP Smart Home "Model Name: HomeMatic Central"
Hyperion 2.0.0 UPnP Smart Home "Model Description: Hyperion Open Source Ambient Light"
Home Assistant Telnet Smart Home "Home Assistant: Installation Type: Home Assistant OS"
Home Assistant MQTT Smart Home "homeassistant/light/"
Emby UPnP TV Receiver "Friendly Name: Emby - DS720plus"
Dedicated Micros Digital Sprite 2 Telnet TV Receiver "Welcome to the DS2 command line processor"
Roku UPnP TV Receiver "Server: Roku UPnP/1.0 MiniUPnPd/1.4"
Realtek RTL8671 UPnP Access Point "Model Name: RTL8671"
Synology DS918+ UPnP NAS "Friendly Name: DiskStation (DS918+)"
Sonos ZP100 UPnP Smart Speaker "Model Number: ZP120"
Octoprint MQTT 3D Printer "octoPrint/temperature/bed"
Gozmart MQTT HVAC "gozmart/sonoff/CC50E3C943CC110511/app"
Advantech MQTT HVAC "Advantech/"
Emerson Telnet Remote Display Unit "Emerson Network Power Co., Ltd."
Trimble SPS855 UPnP Remote Display Unit "Friendly Name: SPS855, 6013R31531: Trimble"

Table G.11: Most common device-types with identifiers in banners/response

202 Paper G.

A.5 Top Telnet and SSH credentials used by count

Protocol Credentials Count
Telnet admin,admin 9,772
Telnet root,root 1,721
Telnet root,admin 1,254
Telnet telnet,telnet 689
Telnet root,xc3511 556
Telnet admin,admin123 467
Telnet root,12345 456
Telnet user,user 321
Telnet admin,12345 267
Telnet admin,polycom 217
Telnet admin,(blank) 198
SSH admin, admin 11,543
SSH root, root 3,432
SSH root, admin 1,943
SSH zyfwp, PrOw!aN_fXp 1538
SSH cisco, cisco 629
SSH cisco, cisco 629
SSH admin, ssh1234 254

Table G.12: Top Telnet and SSH credentials used by adversaries

A.6 SHA256 Hash of Malware variants

SlNo SHA256 Hash Malware Variant
1 27870ada242e0f7fd5b1e7fc799f503004b3fd2c0f971784208cae31880b9950 Mirai
2 f05b1018a6fb23154885f55e27a7d20c36c186df5f4d08bd061a5666fdb05be9 Mirai
3 ad9d20dd5159975e4c192a335a41eabcb0bc10e3110d894416a025ac9955f7e7 Mirai
4 dd86acf2bd99afd9da305bb9a4c3da320df617e36f53f206fcf161c04152eca4 Mirai
5 c0571eee3ef8830218dd7bbfd7b915cf5516ba91691e1019b2699191ab3a332c Mirai
6 88511349498f79eaccfab8c9dd39a8d37560a016d00796c70699023fc76938fc Mirai
7 5552ee40fdb037c9b64be8e43c19bcee05b92578ce52a6998a90c2f1fca5c5b2 Mirai
8 5657f3003c50b602c15054d9fa7dfb2519a43413885c40ab1a617fc19275f913 Mirai
9 f489758839fb6afb5431ca7dff377b6c86168d251300328d0e6a135105233b3f Mirai
10 5b9d2c6415873feb6b98ca963bd4b61059056087d5010eb096ce00a2726c983f Mirai
11 5bb032bda8cc48150744fc08684fcf2c898abf0816f1479cfac02fe729cfa637 Mirai
12 dbebd8e8c11f9e06c1a1ab3019015157f1c82ccdda44f0f0707c69ae721c6890 Mirai

A. Appendix 203

Continuation of Table G.13
SlNo SHA256 Hash Malware Variant

13 72455f499bb407cd090fd079616eb7055824f321d90cbb86bb2f53a757f02c6e Mirai
14 378df341cea00d8c7838744959fab950d15ae443d14b770cfa2998ae7daf5190 Mirai
15 ae75c29f5f7d3bc602d9cfd355ab6dbcd466c96282fa8ae93a187470ddd34c50 Mirai
16 b8c05074193134695fb975549124835b8f3d1a1ccd24865a2531ad8a90059c7f Mirai
17 51167f36c3355359a873b19b1aa038fd0772e87b192c8f69b20336d48f980eb6 Mirai
18 bfdd172a08860b7fbfd278e6757f9219d90c25ff47cdf94b57bd3037e81470a1 Mirai
19 652589c71720af72f3566c978fa314408ab12a1286b798f2bec2a4f8525e629d Mirai
20 e4fafd804c7c9cf29326d4203a74333b211799798cb49d87adb45b9c52938bec Mirai
21 030b477706540babbfd5997d6afffe47a5cfd3f846521f03873a391a839853c5 Mirai
22 ededadd2a14910547f7dc3d63505b9c03cbf93cecebd302de2e10a75259b13d6 Mirai
23 9b8b0ad1b6f3fa068eec2ddfcb711739b131f4ea5199697a025821729d24ea5b Mirai
24 4f12ad1c5faa5e43bf17d1906e928e3c7291daa097f9011043582827340604cf Mirai
25 08fcac8bd754b5b38bad7cb2d17f4347462bc3711a1d82f88da010524ba83f5b Mirai
26 32b22639b5562d8ef9aa20057053c824ab767cc750a9b17b386f97f829dcdcb3 Mirai
27 94db041c5f1a70c755db90d54c72fb3dfa842729b2d158fb284b3dd90a47491d Mirai
28 a73ffc17dce716dceb0da272f73d3c6781100aed40565fc601909ef76e908dba Mirai
29 cda2b6de339a145e6bae502ce3aa71c26de3da7f59547a5764707afdc98fd24e Mirai
30 acae3ef96626d6b674ca9879419b2fcdc2875bbcc6483f9b4c6057f6374eacde Mirai
31 e60f7b11d9e26c4a105ca434a2b60bbbd77d69cb13a38b3d2d8aaff0794c9502 Mirai
32 6332c9baecf13d4d9aed26e8d0f14915e0052f34e2cbd84392a3648a0e61fb23 Mirai
33 79d78b3b1aab8e36228f1570659f08c7efc862abc8293291346c837306b3244c Mirai
34 ec62a759455911c621efb7d6c6aac0b781deabb42931967b712de23ced214589 Mirai
35 3a1063f0af803f8ec5a51076fd5758e1ff784d4eb75645bb81e86cd6fd2504ad Mirai
36 1925f7a2b715b4af5ff66221447cc5ed135d1b9f9aff2dee8ea1acb62d0dc0a0 Mirai
37 a897bfcd40d42e6d9d8d0b490310a4d21afe4da83bf107f9adc680b52bb09ad9 Mirai
38 f2c7a185f63f76b49c06479b754431b3c897b1e8b47073b0b6e87a49da6db056 Mirai
39 1947ab53faace7d095341791cd2583bcef5419c09b6de6b9052277a3b77e0a14 Mirai
40 bd59588546fe611472c611f46c1a94fd563d59673fa286b7e1d30344bd6cd64b Mirai
41 0c49abe389cb5f3e59d9f0950468714a68f15c4d1eb1a1c65c9b346ec30471b6 Mirai
42 f064edd2cbb8ab8e0abcfc54406d076390d454b156a6bb71988ebe57b3a3af55 Mirai
43 ce1de869640398a0e51f0f8ad798db97ecfac0b62a3095e823b4ad16f1ef5440 Mirai
44 4cd74e1b5d0441e3b44f4f22c85d41a38dc15ee7de45c6a88b3cadca3c144ef9 Mirai
45 7ba175cd5650ed0d9220003340aae62ee7dec51fea10bc3bf2204dc0899a3873 Mirai
46 d3c865bda24fff7a86d6f70c6909527561097ab7f83db9118dbdd8244dded9b5 Mirai
47 78b6d223f22ed8bf2b628b308eed80a641d415c8a73fdb31994607f3e5e1b570 Mirai
48 b89e37012f39d5abfedf07221cbb1e47e77229210362ad06185f042748118ede Mirai
49 c06f048b5facaf690ca6bb29f7de30f8cb25803fdeb98e41dc700b1e114b367c Mirai
50 82080712e408cbeba704ebb29cfd4d1f85cf1f07086008c451331287aa902a16 Mirai
51 5acad83b6314ff5800b5131902a3790d32d9bae5c8a642a23e2936509197072d Mirai
52 222a737ed1ea068fbc48b3df47627ab9b1f9b06dbe0f0303d38d2546f0afef65 Mirai
53 181a7eca48bef9e356287680dd4a8dd1657662722d26f21305e7939e0a4d96ad Mirai

204 Paper G.

Continuation of Table G.13
SlNo SHA256 Hash Malware Variant

54 3c725081c68aed61e1ce646f665865f7b171b379ec3241a0f8a0ed4ab717d728 Mirai
55 88a5b54b9281a7c4b421786af35ff2b7e1107712a027f8f07ad3c28224bacc29 Mirai
56 2e687dc6895cd29e515fe81cecf0fad92530d0d2f18a47b7fb92090b7234e0e0 Mirai
57 5d756eb57c9cff97407a699c96219423061a39ff33b36ac3ff2b4563e4a506f9 Mirai
58 9fc6591bbdd807413dac29d5589ce6b8a1d59c7591fb14affba44a5b91add167 Mirai
59 0d2a1e914747bd6ca919180a491839506c90f2c86b1b1fab543569493389accb Mirai
60 354ea3fc68c4c745d67417554099d0fa523cd6028ce6d9bac66e67c9739a4325 Mirai
61 179933aa4c9b520b636f1aa49f05b922f7d80b7ec252cb485764508704fc7321 Mirai
62 afae979dc58e9b601a75cfc5af9d2764bbb88d9042e984f2b89c417978ab3a4f Mirai
63 321cb08441c3a780a1247760c348b5a142e66013be3b3e194a2471d51f7f5891 Mirai
64 ee8ae18792c45b4e1ccede856e30fb141ad000142e90eea7c0a80f4ea9da0322 Mirai
65 4fafd982fd204e1549acdb7653cd4532acaada0fe3475f498387649b5211a852 Mirai
66 5ba6803107fc5d942c158ecfb2eedf7d1b620620574789a8244aca3a58608b66 Mirai
67 87cd6daa315466b7260b1e023da2b6dff926c6418592cfdcb6dc10f2bf323901 Mirai
68 4678be773edfec69238f6352033ef27ce0c78c63828434c06ed69d6128a57d73 Mirai
69 3324e5ccd6b28bbb18cf2d7f0e19b48c1603c29a8b562c12d40137b08f7b8725 Mirai
70 1aec808dc691fee0bf8de862cb088f97f3ab637fb7746668f04fe25798955c8a Mirai
71 9bb73bc9981ee9bdd3f0f628b0e727b6bf8ac06240e56608517487667a2e9f51 Mirai
72 0434c27a45ee62accfc00ca5fabe07d1d730575cca91df1efef17201a90fde29 Mirai
73 6aacfe5ffbc9808d585bfc623d1fec14ae22b9d8eca8e535583c76ef119fa071 Mirai
74 6f7199d4c55b4006c9f451e48ddcd1f80535660927d0aebe1374ad7598929218 Mirai
75 8f144c1cc3a37120a00abafb28091b3e399b4f65b9b798cbea5a123867eeffb2 Mirai
76 f3c2d7da375ed1afc88c1bc79787675603bed1bb82a67d360300bc7e77b5b6b4 Mirai
77 d4a6e144b49a5e16befa2974384a59bcf68da14ef394948bdf1780bbc589ba67 Mirai
78 7c7c7b54beb1bd503ebdc472b08ed35b0c4291fb465bcad34c26a80b92cb682f Mirai
79 224f2df0563584885aa637f71077ccce8bb4dab9d7e82dcb12dce92d4e0d704c Mirai
80 0c45b6faed996600eb05585c532fe7e9d34dc85526afffc08b2fe0fda204f0e9 Mirai
81 c91712f66f9522b6219808b0721baf5f309f627be6025b148f8688a89150cdbf Mirai
82 9e55a50e619d7f3724e0750449097c387601c255839a7e80676f0c25b4217efc Mirai
83 a99d6d088071bd216de1fb7dc104bc9fa0b5447debf63958ac4ebf904ac8da45 Mirai
84 1b3bb39a3d1eea8923ceb86528c8c38ecf9398da1bdf8b154e6b4d0d8798be49 Mirai
85 faccd187812a48c7911fb1b643bd346c74f4bc7ddcda2c84e97033e0385ff458 Mirai
86 71adda1a01f2a779796673ec08b1155aa55ffb3f40bdd8752b5a3955684d272e Mirai
87 82df7a015470179794acc9dc60868ea11221525090f5beecb1c98cdba8510389 Mirai
88 57744761595c2dccdf76560c4e0fe7ea33ea85be281d1b7a9c9b4e9e9dbb0221 Mirai
89 9de1b56f76a47fb1aadc6a78f20e0906bdd9dfcf5379f28fa2927fbdf15bd73b Mirai
90 2ca71e114a5388aa4d17bb0727bb668dca590b81a063670a44d2dab3adc05af0 Mirai
91 c56fafd9207e18c83d2bfb26550aa00fdba64e05bf5b2aea61629d4108c86517 Mirai
92 3321535dc19687c1d2fd5705012d2653fd6a828733302e4b5932780e7637c084 Mirai
93 8e3fb9f382c1a3136da6e83361464e694d77502b483907eb3f9c55890372e66c Mirai
94 c052c89438af51f7b8af26b3c5864650d0f2c2199653edc76671d62258f234cf Mirai

A. Appendix 205

Continuation of Table G.13
SlNo SHA256 Hash Malware Variant

95 1f56bc65381ff6e095c5aa0c84de5d368c08f3a8ee12a0e84c67fcd80626b4fa Mirai
96 b4623f517f49a825f2f53e4497f944fe10fe9368b3c0db1d30b3ebc63c120962 Mirai
97 b279115318cd447823c8410ee3a318a8c531733404394ec8336184102854c554 Mirai
98 46823451734e47b845bff6d3440ffbd096f8742d9bd8962b1a7c18bf0144d9b4 Mirai
99 8976173ee948c64e89657f734eaea431c5e7a49d5ab7528c676a8d50f1306157 Mirai
100 b79f967aece83b7eda2db4feb08c2eec352eff9d5802f6ea9214064b128987d9 Mirai
101 a05a6affb61f1c84dc30cc0578ddf5aa32b833fc5a772f3abac613293ff89b06 Mirai
102 865c8d9c31a120a92524cf24a8961bc16fe521bea6e72702afc8ac1a0ea9b4ad Mirai
103 3ef73e98076dc49d83f733eceab93dcffeeefdbdf6f0a36bef756d3448b5d9dc Mirai
104 5ce6a9bb4daca8f2d6624c654a445d68b2c2f28440c648adb16d0546b9299ecd Mirai
105 46d8fb0b1e46ff8ee0d65697080af8f7ee11d0a741ae0ca662aedad63a716ebd Mirai
106 6c5679eb7bd905b3ee86ea5770dbfd8fb50be013c6e93ad1df8fd75a6689d523 Mirai
107 057b9b5d11a4500bc0f46b9c2317ef8f82beaa6d95d5babe0194d4a7379d4f6f Mirai
108 439dc5e3183a9f4316472691791ca6c33c9e56bce480d88ed5a82c28481f6bc2 Mirai
109 de82fb3927bb9357cdba7f8c595bb87940e7502acb8b605ea7eb0e876ac2808b Mirai
110 7965a27369b329db4004b871429432beb5c0301c03a48bf64d0961e951e712cf Mirai
111 b936597d0d868607e45478b9be01a9365078d33bdda2a8c053500c729a8cbaf6 Mirai
112 0c1472a800bdaaad840110f93f3c4b248509f7505fc2a1330af2cdc7c2eccfc4 Mirai
113 bfee2d1d34214a93024447bc054c1eea2b05111a74508bd74997eea6a7c4ef65 Mirai
114 f060058462bfaef0bd9382de38d238b96ff4f886967b70020406dab38190bff6 LuaBot
115 0206efba7fc13700efd59354e9c6ca4d1ffe34f6689bd195798181824d46b83d LuaBot
116 e1f6d967db61ee131dc32b817a9285f5da3ebe3e1f9a4281c8fac9339e2b4521 LuaBot
117 9866b4f2f533de7d742251915802dab355a59f10a51a8bf7d146fd4cb015cd5a Brickerbot
118 4f9b895a2785f9788fcae8743ab04a24b62e0962b1f8a28dc1206c52327b7916 HEHbot
119 8a2a28d164a6d4011e83ae3f930de8bf1e01ba2e013bee43460f2f58bdaf4109 Photominer
120 01d8e2bcf22422e9c995d43c403c63477389fc9f4a141ef3bbd31c8f5c6ef7e6 Mozi
121 01d8e2bcf22422e9c995d43c403c63477389fc9f4a141ef3bbd31c8f5c6ef7e6 Mozi
122 c9038e31f798119d9e93e7eafbdd3e0f215e24ee2200fcd2a3ba460d549894ab Lokibot
122 b47e281bfbeeb0758f8c625bed5c5a0d27ee8e0065ceeadd76b0010d226206f0 WannaCry
123 0a73291ab5607aef7db23863cf8e72f55bcb3c273bb47f00edf011515aeb5894 WannaCry
124 d7d0f18071899c81ee90a7f8b266bd2cf22e988da7d0e991213f5fb4c8864e77 LemonDuck
125 d1e82d4a37959a9e6b661e31b8c8c6d2813c93ac92508a2771b2491b04ea2485 FritzFrog

End of Table

Table G.13: Malware hashes detected by our honeypots as found in Virustotal

206 References

References
[1] J. Frahim, C. Pignataro, J. Apcar, and M. Morrow. (2015) Securing the internet

of things: A proposed framework.

[2] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot: Mirai and
other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[3] NIST, “misconfiguration,” 2021. [Online]. Available: https://csrc.nist.gov/
glossary/term/misconfiguration

[4] A. Burt, “Gitpaste-12: a new worming botnet with reverse shell capability
spreading via github and pastebin,” Juniper Threat Labs, 2020. [Online].
Available: https://blogs.juniper.net/en-us/threat-research/gitpaste-12

[5] R. I. Augusto, N. C. Patrick, and I. T. Karen, “Xord-
dos, kaiji variants target exposed docker servers,” Trend Micro,
2020. [Online]. Available: https://www.trendmicro.com/en_us/research/20/
f/xorddos-kaiji-botnet-malware-variants-target-exposed-docker-servers.html

[6] Malwaremustdie, “Rhombus - linux ddos botnet aims vps & iot, w/persistence
& dropper,” Alienvault, 2020. [Online]. Available: https://otx.alienvault.com/
pulse/5e6aacfe61b118f3fc41026a

[7] I. Vaccari, M. Aiello, and E. Cambiaso, “Slowite, a novel denial of service
attack affecting mqtt,” Sensors, vol. 20, no. 10, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/10/2932

[8] ——, “Slowtt: A slow denial of service against iot networks,” Information, vol. 11,
no. 9, 2020. [Online]. Available: https://www.mdpi.com/2078-2489/11/9/452

[9] A. T. Vasques and J. J. C. Gondim, “Amplified reflection ddos attacks over iot
reflector running coap,” in 2020 15th Iberian Conference on Information Systems
and Technologies (CISTI). Seville, Spain: IEEE, 2020, pp. 1–6.

[10] ENISA. (2020) Enisa threat landscape 2020 - malware. ENISA. [Online].
Available: https://www.enisa.europa.eu/publications/malware

[11] S. Andy, B. Rahardjo, and B. Hanindhito, “Attack scenarios and security analysis
of mqtt communication protocol in iot system,” in 2017 4th International Con-
ference on Electrical Engineering, Computer Science and Informatics (EECSI).
Yogyakarta, Indonesia: IEEE, 2017, pp. 1–6.

[12] I. Mcateer, M. I. Malik, Z. Baig, and P. Hannay, “Security vulnerabilities and cy-
ber threat analysis of the amqp protocol for the internet of things,” in Australian

https://csrc.nist.gov/glossary/term/misconfiguration
https://csrc.nist.gov/glossary/term/misconfiguration
https://blogs.juniper.net/en-us/threat-research/gitpaste-12
https://www.trendmicro.com/en_us/research/20/f/xorddos-kaiji-botnet-malware-variants-target-exposed-docker-servers.html
https://www.trendmicro.com/en_us/research/20/f/xorddos-kaiji-botnet-malware-variants-target-exposed-docker-servers.html
https://otx.alienvault.com/pulse/5e6aacfe61b118f3fc41026a
https://otx.alienvault.com/pulse/5e6aacfe61b118f3fc41026a
https://www.mdpi.com/1424-8220/20/10/2932
https://www.mdpi.com/2078-2489/11/9/452
https://www.enisa.europa.eu/publications/malware

References 207

Information Security Management Conference. Perth, W.A.: Edith Cowan Uni-
versity, 2017, p. 11.

[13] M. H. Syed, E. B. Fernandez, and J. Moreno, “A misuse pattern for ddos in the
iot,” in Proceedings of the 23rd European Conference on Pattern Languages of
Programs, ser. EuroPLoP ’18. New York, NY, USA: Association for Computing
Machinery, 2018. [Online]. Available: https://doi.org/10.1145/3282308.3282343

[14] hackingump. (2020) Upnp – messing up security since years. [Online]. Available:
https://malwareandstuff.com/upnp-messing-up-security-since-years/

[15] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “Iotpot: Analysing the rise of iot compromises,” in 9th
USENIX Workshop on Offensive Technologies (WOOT 15). Washington,
D.C.: USENIX Association, Aug. 2015, p. 9. [Online]. Available: https:
//www.usenix.org/conference/woot15/workshop-program/presentation/pa

[16] T. Luo, Z. Xu, X. Jin, Y. Jia, and X. Ouyang. (2017) Iotcandyjar : Towards an
intelligent-interaction honeypot for iot devices.

[17] M. Wang, J. Santillan, and F. Kuipers, “Thingpot: an interactive internet-of-
things honeypot,” 2018.

[18] M. A. Hakim, H. Aksu, A. S. Uluagac, and K. Akkaya, “U-pot: A honeypot
framework for upnp-based iot devices,” in 2018 IEEE 37th International Per-
formance Computing and Communications Conference (IPCCC). Orlando, FL,
USA: IEEE, 2018, pp. 1–8.

[19] J. Wang, M. K. Lim, C. Wang, and M.-L. Tseng, “The evolution
of the internet of things (iot) over the past 20 years,” Computers
& Industrial Engineering, vol. 155, p. 107174, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360835221000784

[20] L. Markowsky and G. Markowsky, “Scanning for vulnerable devices in the internet
of things,” in 2015 IEEE 8th International Conference on Intelligent Data Acquisi-
tion and Advanced Computing Systems: Technology and Applications (IDAACS),
vol. 1. Warsaw, Poland: IEEE, 2015, pp. 463–467.

[21] SHODAN, “Shodan,” 2021. [Online]. Available: https://www.shodan.io/

[22] R. D. Graham, “Masscan: Mass ip port scanner,” 2014.

[23] G. Lyon, “Nmap network mapper,” 2021. [Online]. Available: https://nmap.org/

[24] G. H. Tools. (2021) Pft printer exploration. [Online]. Available: http:
//www.phenoelit.org/fr/tools.html

https://doi.org/10.1145/3282308.3282343
https://malwareandstuff.com/upnp-messing-up-security-since-years/
https://www.usenix.org/conference/woot15/workshop-program/presentation/pa
https://www.usenix.org/conference/woot15/workshop-program/presentation/pa
https://www.sciencedirect.com/science/article/pii/S0360835221000784
https://www.shodan.io/
https://nmap.org/
http://www.phenoelit.org/fr/tools.html
http://www.phenoelit.org/fr/tools.html

208 References

[25] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, “Demysti-
fying iot security: An exhaustive survey on iot vulnerabilities and a first empirical
look on internet-scale iot exploitations,” IEEE Communications Surveys Tutori-
als, vol. 21, no. 3, pp. 2702–2733, 2019.

[26] D. Springall, Z. Durumeric, and J. A. Halderman, “Ftp: The forgotten cloud,” in
2016 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), IEEE. Toulouse, France: IEEE, 2016, pp. 503–513.

[27] T. H. Project, “The honeynet project.”

[28] L. Rist, J. Vestergaard, D. Haslinger, A. Pasquale, and J. Smith, “Conpot ics/s-
cada honeypot,” Honeynet Project (conpot. org), 2013.

[29] D. Tools, “Web honeypot,” 2010. [Online]. Available: https://github.com/
DinoTools/dionaea/

[30] E. Vasilomanolakis, S. Srinivasa, and E. Lygerou, “Hostage: mobile honeypots for
rapid deployment,” in Black Hat Europe 2020, 2020.

[31] Belkin. (2021) Belkin wemo. [Online]. Available: https://www.belkin.com/us/

[32] E. Vasilomanolakis, S. Karuppayah, M. Fischer, M. Mühlhäuser, M. Plasoianu,
L. Pandikow, and W. Pfeiffer, “This network is infected: Hostage-a low-interaction
honeypot for mobile devices,” in Proceedings of the Third ACM workshop on Se-
curity and privacy in smartphones & mobile devices, 2013, pp. 43–48.

[33] H. Shimada, K. Ito, H. Hasegawa, and Y. Yamaguchi, “Implementation of mqtt/-
coap honeypots and analysis of observed data,” SECURWARE 2019, The Thir-
teenth International Conference on Emerging Security Information, Systems and
Technologies, vol. 10, pp. 35–40, 2019.

[34] N. 360, “Anglerfish honeypot,” 2021. [Online]. Available: https://blog.netlab.360.
com/tag/anglerfish-honeypot/

[35] Z. Durumeric, M. Bailey, and J. A. Halderman, “An internet-wide view
of internet-wide scanning,” in 23rd USENIX Security Symposium (USENIX
Security 14). San Diego, CA: USENIX Association, Aug. 2014, pp. 65–
78. [Online]. Available: https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/durumeric

[36] H. Heo and S. Shin, “Who is knocking on the telnet port: A large-scale empirical
study of network scanning,” in Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, ser. ASIACCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 625–636. [Online].
Available: https://doi.org/10.1145/3196494.3196537

https://github.com/DinoTools/dionaea/
https://github.com/DinoTools/dionaea/
https://www.belkin.com/us/
https://blog.netlab.360.com/tag/anglerfish-honeypot/
https://blog.netlab.360.com/tag/anglerfish-honeypot/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/durumeric
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/durumeric
https://doi.org/10.1145/3196494.3196537

References 209

[37] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti,
“Millions of targets under attack: A macroscopic characterization of the dos
ecosystem,” in Proceedings of the 2017 Internet Measurement Conference, ser.
IMC ’17. New York, NY, USA: Association for Computing Machinery, 2017, p.
100–113. [Online]. Available: https://doi.org/10.1145/3131365.3131383

[38] P. Richter and A. Berger, “Scanning the scanners: Sensing the internet from a mas-
sively distributed network telescope,” in Proceedings of the Internet Measurement
Conference. Amsterdam, Netherlands: Association for Computing Machinery,
New York,NY,United States, 2019, pp. 144–157.

[39] D. Moore, “Network telescopes: Observing small or distant security
events,” in 11th USENIX Security Symposium (USENIX Security 02).
San Francisco, CA: USENIX Association, Aug. 2002, p. 9. [Online].
Available: https://www.usenix.org/conference/11th-usenix-security-symposium/
network-telescopes-observing-small-or-distant-security

[40] T. Holz and F. Raynal, “Detecting honeypots and other suspicious environments,”
in Proceedings from the Sixth Annual IEEE SMC Information Assurance Work-
shop. West Point, NY, USA: IEEE, June 2005, pp. 29–36.

[41] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting low-
and medium-interaction honeypots at internet scale,” in 12th USENIX Workshop
on Offensive Technologies (WOOT 18). Baltimore, MD: USENIX Association,
Aug. 2018, p. 9. [Online]. Available: https://www.usenix.org/conference/woot18/
presentation/vetterl

[42] O. Surnin, F. Hussain, R. Hussain, S. Ostrovskaya, A. Polovinkin, J. Lee, and
X. Fernando, “Probabilistic estimation of honeypot detection in internet of things
environment,” in 2019 International Conference on Computing, Networking and
Communications (ICNC). Honolulu, HI, USA: IEEE, 2019, pp. 191–196.

[43] S. Srinivasa, J. M. Pedersen, and E. Vasilomanolakis, “Gotta catch ’em all: a
multistage framework for honeypot fingerprinting,” 2021.

[44] L. Babun, K. Denney, Z. B. Celik, P. McDaniel, and A. S. Uluagac, “A
survey on iot platforms: Communication, security, and privacy perspectives,”
Computer Networks, vol. 192, p. 108040, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1389128621001444

[45] B. Vignau, R. Khoury, S. Hallé, and A. Hamou-Lhadj, “The evolution
of iot malwares, from 2008 to 2019: Survey, taxonomy, process simulator
and perspectives,” Journal of Systems Architecture, vol. 116, p. 102143,
2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1383762121001053

https://doi.org/10.1145/3131365.3131383
https://www.usenix.org/conference/11th-usenix-security-symposium/network-telescopes-observing-small-or-distant-security
https://www.usenix.org/conference/11th-usenix-security-symposium/network-telescopes-observing-small-or-distant-security
https://www.usenix.org/conference/woot18/presentation/vetterl
https://www.usenix.org/conference/woot18/presentation/vetterl
https://www.sciencedirect.com/science/article/pii/S1389128621001444
https://www.sciencedirect.com/science/article/pii/S1389128621001444
https://www.sciencedirect.com/science/article/pii/S1383762121001053
https://www.sciencedirect.com/science/article/pii/S1383762121001053

210 References

[46] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,
Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar,
C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,
and Y. Zhou, “Understanding the mirai botnet,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Association, Aug.
2017, pp. 1093–1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[47] ——, “Understanding the mirai botnet,” in 26th USENIX Security Sympo-
sium (USENIX Security 17). Vancouver, BC: USENIX Association, Aug.
2017, pp. 1093–1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[48] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-wide
scanning and its security applications,” in 22nd USENIX Security Symposium
(USENIX Security 13). Washington, D.C.: USENIX Association, Aug.
2013, pp. 605–620. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/paper/durumeric

[49] Z. Durmeric, “zgrab2,” 2018. [Online]. Available: https://github.com/zmap/
zgrab2

[50] ZMap, “Zmap block and allow lists,” 2020. [Online]. Available: https:
//github.com/zmap/zmap/wiki/Block-and-Allow-Lists

[51] fireHOL, “Europe blocklist,” 2021. [Online]. Avail-
able: https://github.com/firehol/blocklist-ipsets/blob/master/ip2location_
country/ip2location_continent_eu.netset

[52] R. Research, “Project sonar,” 2021. [Online]. Available: https://www.rapid7.
com/research/project-sonar/

[53] VMWare, “Rabbitmq,” 2021. [Online]. Available: https://www.rabbitmq.com/

[54] A. Foundation, “Apache qpid,” 2021. [Online]. Available: https://qpid.apache.
org/

[55] ——, “Apache activemq,” 2021. [Online]. Available: https://activemq.apache.org/

[56] N. National Vulnerability Database, MITRE, “Common vulnerabilities and expo-
sures.”

[57] NIST. (2021) National vulnerability database. [Online]. Available: https:
//nvd.nist.gov/

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://github.com/zmap/zgrab2
https://github.com/zmap/zgrab2
https://github.com/zmap/zmap/wiki/Block-and-Allow-Lists
https://github.com/zmap/zmap/wiki/Block-and-Allow-Lists
https://github.com/firehol/blocklist-ipsets/blob/master/ip2location_country/ip2location_continent_eu.netset
https://github.com/firehol/blocklist-ipsets/blob/master/ip2location_country/ip2location_continent_eu.netset
https://www.rapid7.com/research/project-sonar/
https://www.rapid7.com/research/project-sonar/
https://www.rabbitmq.com/
https://qpid.apache.org/
https://qpid.apache.org/
https://activemq.apache.org/
https://nvd.nist.gov/
https://nvd.nist.gov/

References 211

[58] S. Arvind and V. A. Narayanan, “An overview of security in coap: Attack and
analysis,” in 2019 5th International Conference on Advanced Computing Commu-
nication Systems (ICACCS). Coimbatore, India: IEEE, 2019, pp. 655–660.

[59] Cloudflare, “Ssdp ddos attack,” 2021. [Online]. Available: https://www.
cloudflare.com/learning/ddos/ssdp-ddos-attack/

[60] S. Morishita, T. Hoizumi, W. Ueno, R. Tanabe, C. Gañán, M. J. van Eeten,
K. Yoshioka, and T. Matsumoto, “Detect me if you. . . oh wait. an internet-wide
view of self-revealing honeypots,” in 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), IEEE. Washington DC, USA: IEEE,
2019, pp. 134–143.

[61] P. Maddux. (2019) Honeypy honeypot. [Online]. Available: https://github.com/
foospidy/HoneyPy

[62] M. Oosterhof, “Cowrie ssh/telnet honeypot,” 2016. [Online]. Available:
:https://github.com/micheloosterhof/cowrie

[63] Cymmetria, “Mtpot,” 2016. [Online]. Available: https://github.com/Cymmetria/
MTPot

[64] P. Jeitner. (2018) Telnet iot honeypot. [Online]. Available: https://github.com/
Phype/telnet-iot-honeypot

[65] Decester, “An ssh honeypot,” 2000. [Online]. Available: https://github.com/
desaster/kippo

[66] P. Adkins. (2017) Kako honeypot. [Online]. Available: https://github.com/
darkarnium/kako

[67] M. Stampar. (2017) Hontel honeypot. [Online]. Available: https://github.com/
stamparm/hontel

[68] CAIDA. (2021) The caida ucsd network telescope "darknet scanners" dataset
- april-may2021. [Online]. Available: https://www.caida.org/data/passive/
telescope-darknet-scanners_dataset.xml

[69] C. STARDUST, “Flow level traffic (flowtuple),” 2021. [Online]. Available:
https://stardust-dev.caida.org/docs/data/flowtuple/

[70] GreyNoise, “Greynoise,” 2022. [Online]. Available: https://viz.greynoise.io/

[71] Virustotal, “Virustotal,” 2022. [Online]. Available: https://www.virustotal.com

https://www.cloudflare.com/learning/ddos/ssdp-ddos-attack/
https://www.cloudflare.com/learning/ddos/ssdp-ddos-attack/
https://github.com/foospidy/HoneyPy
https://github.com/foospidy/HoneyPy
: https://github.com/micheloosterhof/cowrie
https://github.com/Cymmetria/MTPot
https://github.com/Cymmetria/MTPot
https://github.com/Phype/telnet-iot-honeypot
https://github.com/Phype/telnet-iot-honeypot
https://github.com/desaster/kippo
https://github.com/desaster/kippo
https://github.com/darkarnium/kako
https://github.com/darkarnium/kako
https://github.com/stamparm/hontel
https://github.com/stamparm/hontel
https://www.caida.org/data/passive/telescope-darknet-scanners_dataset.xml
https://www.caida.org/data/passive/telescope-darknet-scanners_dataset.xml
https://stardust-dev.caida.org/docs/data/flowtuple/
https://viz.greynoise.io/
https://www.virustotal.com

212 References

[72] HKVision, “Hkvision network camera - user manual,” 2021. [Online].
Available: https://www.hikvision.com/UploadFile/image/EN-user%20manual%
20of%20%20network%20camera%20v3.0.0.pdf

[73] Z. Durumeric, “Ztag,” 2017. [Online]. Available: https://github.com/zmap/ztag

[74] ipgeolocation, “ipgeolocation.io,” 2021. [Online]. Available: ipgeolocation

[75] S. University, “Censys universal ipv4 internet dataset,” 2021. [Online]. Available:
https://scans.io/

[76] C. Inc., “Binaryedge,” 2021. [Online]. Available: https://www.binaryedge.io/

[77] Z. Org., “Zoomeye,” 2021. [Online]. Available: https://www.zoomeye.org/

[78] F. C. Surveying and Mapping, “Fofa,” 2021. [Online]. Available: https://fofa.so/

[79] C. . D. S. R. A. University. (2021) Rwth aachen scan. [Online]. Available:
http://researchscan.comsys.rwth-aachen.de/

[80] Stretchoid.com, “Stretchoid.com,” 2021. [Online]. Available: http://stretchoid.
com/

[81] Bitsight.com, “Bitsight.com,” 2021. [Online]. Available: https://www.bitsight.
com/

[82] ShadowServer.org, “Shadowserver.org,” 2021. [Online]. Available: https:
//www.shadowserver.org/

[83] InterneTTL, “Internettl,” 2021. [Online]. Available: http://www.internettl.org/

[84] A. Strike, “Alpha strike,” 2021. [Online]. Available: https://www.alphastrike.io

[85] Sharashka. (2021) Sharashka. [Online]. Available: https://sharashka.io/data-feeds

[86] CriminalIP. (2021) Criminalip. [Online]. Available: https://security.criminalip.
com/

[87] ipip.net. (2021) ipip.net. [Online]. Available: https://en.ipip.net/

[88] N. S. Research, “Net systems research,” 2021. [Online]. Available: https:
//www.netsystemsresearch.com/

[89] LeakIX, “Leakix,” 2021. [Online]. Available: https://leakix.net/

[90] Onyphe, “Onyphe,” 2021. [Online]. Available: https://www.onyphe.io/

[91] Natlas, “Natlas,” 2021. [Online]. Available: https://github.com/natlas/natlas

https://www.hikvision.com/UploadFile/image/EN-user%20manual%20of%20%20network%20camera%20v3.0.0.pdf
https://www.hikvision.com/UploadFile/image/EN-user%20manual%20of%20%20network%20camera%20v3.0.0.pdf
https://github.com/zmap/ztag
ipgeolocation
https://scans.io/
https://www.binaryedge.io/
https://www.zoomeye.org/
https://fofa.so/
http://researchscan.comsys.rwth-aachen.de/
http://stretchoid.com/
http://stretchoid.com/
https://www.bitsight.com/
https://www.bitsight.com/
https://www.shadowserver.org/
https://www.shadowserver.org/
http://www.internettl.org/
https://www.alphastrike.io
https://sharashka.io/data-feeds
https://security.criminalip.com/
https://security.criminalip.com/
https://en.ipip.net/
https://www.netsystemsresearch.com/
https://www.netsystemsresearch.com/
https://leakix.net/
https://www.onyphe.io/
https://github.com/natlas/natlas

References 213

[92] Quadmetrics, “Quadmetrics,” 2021. [Online]. Available: https://www.
quadmetrics.com/

[93] Arbor-Bbservatory, “arbor-observatory,” 2021. [Online]. Available: https:
//www.arbor-observatory.com/

[94] ICSA, “Cisa-icsa-16-299-01,” 2016. [Online]. Available: https://us-cert.cisa.gov/
ics/advisories/ICSA-16-299-01

[95] T. T. Project. (2022) Exonerator. The Tor Project. [Online]. Available:
https://metrics.torproject.org/exonerator.html

[96] Censys, “Censys search,” 2021. [Online]. Available: https://censys.io/

[97] G. Wan, L. Izhikevich, D. Adrian, K. Yoshioka, R. Holz, C. Rossow, and
Z. Durumeric, “On the origin of scanning: The impact of location on internet-wide
scans,” in Proceedings of the ACM Internet Measurement Conference, ser. IMC
’20. New York, NY, USA: Association for Computing Machinery, 2020, p.
662–679. [Online]. Available: https://doi.org/10.1145/3419394.3424214

[98] ——, “On the origin of scanning: The impact of location on internet-wide scans,”
in Proceedings of the ACM Internet Measurement Conference, ser. IMC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p. 662–679.
[Online]. Available: https://doi.org/10.1145/3419394.3424214

[99] F. IKE, “Malpedia,” 2021. [Online]. Available: https://malpedia.caad.fkie.
fraunhofer.de/

[100] abuse.ch, “Malwarebazaar,” 2021. [Online]. Available: https://bazaar.abuse.ch/

https://www.quadmetrics.com/
https://www.quadmetrics.com/
https://www.arbor-observatory.com/
https://www.arbor-observatory.com/
https://us-cert.cisa.gov/ics/advisories/ICSA-16-299-01
https://us-cert.cisa.gov/ics/advisories/ICSA-16-299-01
https://metrics.torproject.org/exonerator.html
https://censys.io/
https://doi.org/10.1145/3419394.3424214
https://doi.org/10.1145/3419394.3424214
https://malpedia.caad.fkie.fraunhofer.de/
https://malpedia.caad.fkie.fraunhofer.de/
https://bazaar.abuse.ch/

214 References

Paper H

A Bad IDEa: Weaponizing uncontrolled online-IDEs in
availability attacks

Shreyas Srinivasa, Dimitrios Georgoulias, Jens Myrup Pedersen,
Emmanouil Vasilomanolakis

The paper has been published in the
IEEE European Symposium on Security and Privacy, Workshop on Attackers and

Cyber-Crime Operations IEEE, p. 82-92 11 p. 9799405., 2022.

The layout has been revised.

1. Introduction 217

Abstract
Botnets are an ongoing threat to the cyber world and can be utilized to carry out DDoS
attacks of high magnitude. From the botmaster’s perspective, there is a constant need for
deploying more effective botnets and discovering new ways to bolster their bot ranks. In-
tegrated Development Environments (IDEs) have been essential for software developers
to write and compile source code. The increasing need for remote work and collaborative
workspaces have led to the IDE-as-a-service paradigm that offers online code editing and
compilation with multiple language support. In this paper, we show that a multitude of
online IDEs do not run control checks on the user code and can be therefore leveraged by
a botnet. We examine the concept of uncontrolled execution environments and present
a proof of concept to show how uncontrolled online-IDEs can be weaponized to perform
large-scale attacks by a botnet. Overall, we detect a total of 719 online-IDEs with un-
controlled execution environments and limited sandboxing. Lastly, as ethical disclosure,
we inform the IDE developers and service providers of the vulnerabilities and propose
countermeasures.

1 Introduction
Botnets malicious networks of infected systems responsible for high-impact cyber attacks
like Distributed Denial of Service (DDoS). They operate by leveraging vulnerable de-
vices connected to the Internet to execute attacks and are managed through a command
and control system (C&C Server). Mirai-like malware has caused high-impact attacks
in the past, and infected vulnerable IoT devices for performing DoS-like attacks [1].
Moreover, research studies indicate that browser-based bots are more effective and eco-
nomical than malware-based bots [2]. The ENISA Threat Landscape Report 2021 states
a rise in newer malware used for Denial of Service attacks, ransomware injection, and
crypto mining. The report further states that the number of attacks due to malware is
decreasing from previous years; however, the focus of newer malware is reduced on quan-
tity but possesses increased quality [3]. This entails that bot developers are exploring
newer delivery methods that are more discreet and effective [4].

Programmers have traditionally used IDEs (Integrated Development Environment)
for software development. IDEs facilitate the compilation, debugging, and execution
of language-specific source code. The leap in cloud computing has aided the idea of
online-IDE, and REPL environments (read, eval, print, loop), that are offered as a
service on the Internet [5]. Compared to traditional local-IDEs, online-IDEs have no
prerequisites like installation or setup. Like local-IDEs, online-IDEs provide features
like project creation, sharing, and version control that further facilitate collaboration,
remote work, training, and interviewing possibilities. Moreover, many online-IDEs offer
multi-language support that includes diverse programming and scripting styles. Online-

218 Paper H.

IDEs are now popular for many online learning platforms, collaborative development
services, and cloud-ready deployment providers.

However, upon careful analysis of online-IDEs and REPL platforms on the Internet,
we observe that many do not perform checks on the user code and can be therefore
leveraged to execute arbitrary code with malicious intent. Furthermore, recent research
shows deceptive source-code attacks that appear different to the compiler and human
eye, can be used to deceive the compilers into performing malicious operations [6]. In
this work, we aim at checking the uncontrolled behavior of IDEs by executing code that
leads to flooding requests on a target hosted in our lab infrastructure. Furthermore,
we implement a bot that can perform Denial of Services attacks by exploiting several
such online-IDE environments. To the best of our knowledge, there is no previous work
which looks at leveraging uncontrolled online IDE environments to perform attacks on
the Internet. Our contributions are summarized as follows:

• We examine the concept and criteria for uncontrolled execution environments and
find vulnerable online-IDEs by searching the Internet.

• As a proof of concept, we implement a bot that exploits the uncontrolled IDEs
and performs a flooding attack against a web server hosted at our lab.

• We estimate the magnitude of the attacks possible from uncontrolled online IDEs
by performing multiple attack types.

The rest of the paper is structured as follows. In Section 2 we discuss the back-
ground and related work. Section 3 gives an overview of online-IDEs and uncontrolled
execution environments. We discuss our methodology in section 4 and section 5 pro-
vides an evaluation of our approach. In section 6 we discuss the attack types and the
limitations. Section 7 describes the ethical considerations followed in our methodology
and disclosure. We discuss the future work and conclude in Section 8.

2 Background & Related Work

2.1 Online IDEs
Modern IDEs provide features that help in accelerating development with the use of
Artificial Intelligence, collaborative development, cloud deployments [7], and additional
features that include build automation tools, class browsers, object browsers, and ver-
sion control. Online IDEs provide most features of a local IDE with the advantage of
no installation required on the user system and with the possibility of remote access.
However, there are some issues specific to online-IDEs, like running static and dynamic
program analysis on the user program [8]. The rise in demand for online platforms
and cloud deployments, leads to an increase in online IDE services offered for train-
ing, assessments, and development environments. With this increase, there is also a

2. Background & Related Work 219

risk of potential exploitation of these platforms, wherein an adversary could use them
to spoof the attack source. Adversaries and botnet campaigns can utilize uncontrolled
online-IDEs to cause varied attacks such as availability attacks, crypto mining, and mal-
ware injection [9]. For example, PyCryptoMiner, a Linux crypto-miner botnet, spreads
through a compromised SSH service and deploys a base64-encoded Python script that
connects to the command and control (C&C) server to fetch and execute the crypto-
mining Python code [10]. The bot mines the Monero [11] crypto-currency, which is the
preferred mode of payment in the Darkweb [12]. Furthermore, botnets like Mirai have
caused availability attacks of high magnitude by infecting vulnerable systems [1].

2.2 Uncontrolled execution environment
Although there is research towards enhancing the capabilities of IDEs through the in-
clusion of static and dynamic testing plugins, there is little work on control of execution
in online-IDEs. Wu et al. summarize the problems in online-IDEs in regards to un-
controlled execution into (i) wrong file operations, (ii) banned method calls, and (iii)
excessive resource consumption that can lead to arbitrary code execution and resource
depletion [13]. The authors indicate that IDEs must offer partial file-based operations;
for example, deletion of a file on the platform must not be permitted. Similarly, the
authors specify the need for banning specific methods and packages that facilitate a
compromise of the IDE infrastructure or remote systems. The authors emphasize the
need for timeouts that limit resource consumption for the user program and present
techniques that can be used to handle the three risks using a program behavior anal-
ysis and control model. The model includes static and dynamic analysis techniques to
analyze the program behavior and control the code execution.

Arbitrary code execution (ACE) is an adversarial technique where the attacker can
execute malicious code on the target system [14]. The attackers leverage the vulnerabil-
ities in the target system to gain access to an execution environment. ACE is not un-
common in online-IDEs as they offer users an open code execution environment. While
the main objective of these IDEs is to provide an online execution environment, there is
little focus on controlling the environment for any malicious code (for example, HTTP
Flood requests). Kiransky et al. propose program shepherding, a method for moni-
toring control flow transfers during program execution to enforce a security policy [14].
The authors provide three techniques from program shepherding that act as building
blocks for security policies, including restricting execution privileges, restricting control
transfers, and sandboxing checks. The authors further present a detailed approach to
security policies regarding program shepherding that ensures malicious code detection
through multiple techniques and prevents execution. Program shepherding includes IDE
sandboxing, ensuring that malicious code execution does not impact external systems.

The approach closest to our work is from Pellegrino et al. [2], where the authors
explore the idea of using browser-based DDoS botnets and review ways attackers can

220 Paper H.

weaponize them. The authors present three ways of using browser-based JavaScript to
initiate thousands of HTTP requests per second and evaluate the costs compared to a
traditional botnet. In our work, we specifically search the Internet to find many online-
IDEs that do not have controlled execution environments and have limited sandboxing
capability. We demonstrate the impact through various attack types originating from
these vulnerable IDE instances. To the best of our knowledge, our work is the first
to explore the area of uncontrolled execution in online-IDEs and assess the impact of
potential attacks through measurement and estimation.

3 Uncontrolled execution environments
This section describes the generic architecture of online-IDEs and the criteria for clas-
sifying the online-IDEs into uncontrolled execution environments.

3.1 Generic architecture of online-IDEs
The architecture of online-IDEs can be broken down into three components (i) frontend,
(ii) backend, and (iii) messaging service. Figure H.1 shows the generic architecture of
online-IDEs. The frontend component provides a GUI as a web application for the user
to input the source code, execute button, and a window to view the output of the exe-
cuted code, similar to that of local IDE. The backend component contains the compiler
and the file system that compiles the user code. This component can either share the
host of the frontend or on a remote host for scalability purposes. The messaging service
is responsible for transporting the user input (source code) from the frontend to the
backend and the output from the backend to the frontend. In addition to the fron-
tend, backend, and message transport, some online-IDEs offer extensions that provide
collaboration, version control, build tools, and other features. There exist opensource
online-IDE frameworks such as Eclipse Theia [5], ICEcoder [15], Microsoft VSCode [16],
Code-server [17] and AtheosIDE [18] that follow similar architecture. However, we ob-
serve from our reconnaissance that most online-IDEs have their stack similar to the
generic architecture.

3.2 Uncontrolled online-IDE environments
In order to classify an online-IDE as having an uncontrolled execution environment that
can be exploited and weaponized to carry out flooding attacks, we adopt and extend
the criteria defined by Wu et al. [13].

3. Uncontrolled execution environments 221

source-code
editor

Output window

Front-end
Web App

Back-end
(Local/Remote)

Compiler

source-code

ouputM
es

sa
ge

 T
ra

sp
or

t M
essage Trasport

Online-IDE

Fig. H.1: Generic architecture of online IDEs

Unrestricted file operations

File operations such as read, write and modify are facilitated through the default pack-
ages in many programming languages. The file operations facilitate data import from
files and export of output. Most online-IDEs support the import of source-code through
files, which we observe are not validated for malware. Furthermore, it is crucial to re-
strict access to the file system on the hosting system. Unrestricted file operations on
the online-IDEs can lead to malware injection, installation of malicious libraries, and
corruption of the file system that can compromise the availability of the service.

Unrestricted package/module import

Programming languages depend on modules or packages for specific operations like
creating HTTP requests or file handling. Developers import/include these packages
into their source code to support such operations. We observe that an adversary can
leverage unrestricted package imports for malicious purposes like creating HTTP floods
or malware injection.

Unbounded resource consumption

It is crucial to prevent or limit the execution of a program that consumes resources
as this may entail resource depletion and eventually cause the online-IDE to crash.
However, many online-IDEs run on scalable cloud platforms. Bots can leverage such
online-IDEs to carry out high magnitude attacks or inject crypto-mining malware. An
adversary can further leverage the elastic resources offered by the IDE to run malicious
code that exploits remote systems.

222 Paper H.

Non-sandboxed environments

Sandboxing is a mechanism in which an instance is isolated to prevent any spread of
vulnerabilities or infections to other machines in the network. Furthermore, sandboxed
environments offer controlled use of underlying resources and are ideal for executing
untested code. Non-sandboxed environments are risky, allow for access to networked
systems, and can be used to exploit remote systems. Non-sandboxed online-IDEs in
particular are ideal for malware spreading. Botnets can inject malware or execute
malicious code to cause a flood on remote systems and further allow communication
between the infected system and the control server.

Stateless runtime sessions

Web servers maintain sessions to maintain the current user’s data for a period. Online-
IDEs can use sessions to track the use and the requests from the current user to limit
them to a specific period. Moreover, online-IDEs can use sessions to track the user’s
state and stop the program execution when the user state is idle or disconnected. In
stateless sessions, the online-IDEs do not keep track of the user sessions, which can be
exploited by a user running arbitrary code and terminating the session while the online-
IDE is still executing the user code. The user can create multiple sessions, run arbitrary
code and close the sessions while saving system resources. Furthermore, an online IDE
must also restrict the number of sessions per user for controlled resource usage.

4 Methodology
This section presents our methodology for finding online IDEs, checking for uncontrolled
execution, and leveraging them in our botnet for performing a Denial of Service attack.

4.1 Reconnaissance
We use Google Dorking to find IDEs on the Internet using. Google Dorking is the
process of finding specific web pages on the Internet by using search parameters with
keywords [19]. For example, intext:”online IDE” returns a list of online IDEs. The
search parameters can be narrowed to find language-specific IDEs, like intext:"online
python compiler". The keyword search in the dork process of our approach has specific
keywords, for example, “Python Online IDE" that provide language-specific results.
However, some online-IDEs support execution of multiple languages. In this case, we
manually determine the languages supported by the IDEs to check for multi-language
support. This work limits the proof of concept to include online-IDEs that support
Python language execution. Moreover, we leverage datasets from Internet-wide scan-
ning services like Censys [20] and Shodan [21] for searching for online-IDE instances

4. Methodology 223

using keywords like “online IDE”, “online REPL”, and further filtering the results using
common labels contained in the HTML of code-editors like the Ace editor [22] (e.g.
JavaScript editor syntax like ace.edit).

Google Dorking
+

Shodan & Censys
Search

IDE-1

IDE-2
IDE-3

IDE-n

.

.

. Execute
Test Script

Recon automator

Fig. H.2: Reconnaissance-phase automation

The overall reconnaissance process is illustrated in Figure H.2. After the Google
Dorking process, we use language-specific scripts to check if the IDEs from the search
results support uncontrolled code execution and group them based on language in our
database. The IDEs are further checked for uncontrolled execution parameters by execu-
tion of custom language-specific scripts. The output of the scripts is posted to a remote
server repository as a json document embedded in an HTTP post request. The server
repository contains a list of all the IDEs with an uncontrolled execution environment,
the language supported by the IDE, and additional metadata about rate limiting. The
reconnaissance process is performed weekly to find new IDE environments and check if
the existing IDEs in the list are still unpatched.

To check for the uncontrolled execution parameters defined in Section 3.2 we use the
following approaches in our proof of concept script:

• Unrestricted-file operations: To check for restricted file read and write opera-
tions, we try accessing the environment variables from the host. The access to
environment variables further helps determine if the IDE is operating in con-
tainer mode. We use the checks os.environget() to read the HOME variable and
os.environ[’FOO’]=’1’ to create a new variable in our proof of concept script. To
check for delete operations, we remove the environment variable created during
the test write operation. We set flags to determine the successful operation. In
addition to the above checks, we check for access to some critical file system paths.

• Unrestricted package/module import: We import packages from python default
libraries such as sockets, threading, and os that can be used for our proof of

224 Paper H.

concept. The successful import of the packages is determined by implementing
checks in the proof of concept script.

• Unbounded resource consumption: By importing the threading package from the
previous check, we implement a function that can create a large number of HTTP
requests over time. In this way, we check for both unbounded resource consump-
tion and network rate limiting.

• Non-sandboxed environments: To check if the python code is executing under a
container mode, we read the “/proc/self/cgroup” and check if the field “docker”
exists. In addition to the container check, we check for Internet access through
the IDE host by executing a simple HTTP request through the sockets package.

• Stateless runtime-sessions - To check if an online-IDE environment supports state-
less runtime sessions, we execute multiple HTTP requests to our test webserver
for a specific period (i.e., 5 seconds) and close the IDE session. We measure the
number of requests received and the period to check the total execution time from
the first request received.

4.2 Botnet architecture
In order to explore the magnitude of the discovered vulnerability, we decided to develop
an application that would, to some extent, simulate the operation of a real-world bot,
part of a botnet architecture. This translates into the botmaster having control over the
bots and utilizing them to carry out attacks at will. Additionally, in this particular case,
the botmaster does not have to worry about propagating the bot malware to infect new
hosts and increase the size of their network, and also the availability of the bots/IDE
instances is very high since they are running on active websites.

Overall, there are only two requirements for the botnet to be functional, namely
discovering the IDEs (see Section 4.1) and then including them in the botmaster appli-
cation.

Botmaster application

The basis for the vulnerability’s exploitation lies within the arbitrary execution of code
on the IDEs. In our implementation, which was developed in Java, for this task we use
the Selenium web browser automation software and a Chrome WebDriver. Locating the
XPaths of the elements of interest in the HTML of each website allowed for the interac-
tion through Selenium, which runs locally in our code editor. The most vital elements
in common in all IDEs were the code editor text-area, the programming language op-
tion, and the run/execute button. These XPaths were hardcoded into the application,
and since they differed in each platform, the entire process had to be repeated uniquely
for each IDE. Lastly, to provide ease and simplicity to our experiments, as part of the

4. Methodology 225

botmaster application, we included an interface that can be used to navigate through
the list of available IDEs and to orchestrate attacks by “tailoring” the Bot Attack Code
(see Section 4.2) which can be deployed on the IDE, through a Start Attack button.

Bot attack code

The bot attack code is an HTTP flood attack; it was found publicly available on a
GitHub repository ∗ and is a part of the botmaster application. It is written in Python,
and it was slightly altered in order to match the requirements of our experiments.
The attack revolves around 4 discrete variables, the target, the attack duration, the
number of utilized IDEs, and the sessions per IDE. After inserting the values of these
variables in the botmaster interface, the attack code runs on the chosen IDEs. At
this point, we noticed that a large number of IDEs would have an issue providing the
expected indentation in the code using the carriage return \r and new line \n whitespace
characters. Hence, the solution was to create two separate attack classes, one that would
use the whitespace characters and one that would use Selenium keyboard commands
such as ENTER, HOME, and BACKSPACE, to achieve the desired outcome.

4.3 Experimental setup
We leverage 18 online-IDEs supporting the Python program execution discovered during
the reconnaissance process. To ethically involve these IDEs in our experiment, we ask
for consent from the environments that provide contact information about the owner.
The experimental setup is described in Figure H.3. We deploy an Nginx web server in
our lab to target the attacks from the IDEs. We set up the Zeek-IDS on the host of the
webserver to log all the ingress traffic on the webserver.

To visualize the logs from the Zeek-IDS and monitor the resources on the host, we
use the Kibana visualization dashboard. All ingress traffic towards the server is logged.
The web server and Zeek are set up on a host with a quad-core Intel Xeon processor and
a memory of 32 gigabytes. The Nginx web server listens on the HTTP port 4444 and
is deployed with the default configuration. The Elastic search database and the Kibana
dashboard run on a remote host, and the Zeek logs are shipped using an Elastic agent.
The bot developed for the proof of concept runs on a remote client in our lab. The bot
client has a quad-core Intel Xeon processor of 2.4 GHz and 32 gigabytes of memory.
The web server is publicly accessible via the Internet through an unfiltered network in
the lab environment.

4.4 Exploitation
Before we use the uncontrolled online-IDEs in our experiment, we ethically disclose the
vulnerabilities to the service owners and developers. Furthermore, we ask for consent

∗https://anonymous.4open.science/r/Bad-IDEa-1078

https://anonymous.4open.science/r/Bad-IDEa-1078

226 Paper H.

Google Dork

Censys
+

Shodan

Reconnaissance
Phase

Lab environment

Target Web server host

Elastic Agent

Zeek Logs

Botmaster Application

IDE-1

IDE-3

IDE-2

IDE-n

Botnet Architecture

AttacksAttack Code

Fig. H.3: Methodology overview

from the owners to use the IDEs in our experiment and test our bot. We request consent
for testing from 50, but end up having consent from 18 IDE owners and test the exploit
by performing an HTTP-flood for five seconds from each online IDE. Furthermore, we
create multiple instances of the online-IDEs to increase the magnitude of requests. All
traffic to the webserver is logged and monitored with Zeek IDS. We limit the exploita-
tion to IDEs that support the Python language. The IDEs are listed in the bot as
described in section 4.2 and the HTTP flood code that targets our web server is exe-
cuted. All incoming traffic is measured per IDE and time. Evaluating the maximum
traffic capability of these individual IDEs is ethically challenging without compromis-
ing the availability of the underlying host and the network. Therefore, we perform a
controlled execution of the experiments to ensure that the host’s availability and the
network are not compromised. Furthermore, we evaluate our approach and estimate
the impact of the attacks.

5 Evaluation

5.1 Reconnaissance
This section summarizes our findings from the search for uncontrolled online-IDEs.

IDEs found

We search the Internet through our reconnaissance approach specified in Section 4.1
to find a total of 2269 online-IDEs of which 719 had uncontrolled execution. Most of
the IDEs from the results supported more than one programming language. Figure H.4
shows the total number of IDEs classified based on their language support. As mentioned
in the methodology, the IDEs were found through the reconnaissance process. We also

5. Evaluation 227

observed that most of the IDEs used multiple hosts for their backend based on the
language chosen by the user, and some of them did not have any login or authentication
from the user before program execution.

Fig. H.4: Classification by language support

Classification by use-type

Most of the online IDEs are development purpose-driven, where the user can set up a
collaborative development workspace. We further classify the uncontrolled online-IDEs
that we find in our reconnaissance based on their user type into an interview (24%), skill-
training (22%), practice (23%), and collaborative development (31%) environments. We
also find online-IDEs used as notebooks, where the user has an interactive environment
with the possibility of importing datasets. Lastly, we find IDEs used by educational and
training platforms that offer programming courses as a service.

Classification by uncontrolled-criteria

We define criteria for uncontrolled online-IDE in section 3.2 and classify the IDEs found
during the reconnaissance phase. Figure H.5 shows the percentage of IDEs classified
based on the criteria of uncontrolled execution of online-IDEs. We observe that most of
the IDEs run on non-sandboxed environments, followed by unrestricted file operations
and package imports. Furthermore, we find that 719 online-IDEs from the total of 2269
from our reconnaissance process satisfy all the criteria for uncontrolled execution. We

228 Paper H.

consider this a base for evaluating our experiment further on uncontrolled online-IDEs
in availability attacks.

Fig. H.5: Classification by criteria for uncontrolled environment

5.2 Attacks & impact
We evaluate the possibility of leveraging the uncontrolled environments by performing
controlled flood requests through the online-IDEs to target the webserver hosted at our
lab facility. We used 18 of the total uncontrolled IDEs detected from our reconnaissance
and performed code injection through the bot explained in section 4.2. The online-IDE
environments that were used in our experiment did not have any user authentication
or registration. Although we wanted to use as many IDEs identified in our search, we
limited the number based on the consent we received for experimentation and did not
cause any compromise in the availability of intermediary networking systems. Further-
more, we identified a range of 17 instances of uncontrolled online-IDEs from a reputed
database provider during the reconnaissance process. As the number of instances was
high, we immediately contacted the service owners about the potential misuse. Simi-
larly, we disclosed the vulnerability to many critical operators so that the systems could
be patched as quickly as possible and could not be used in our evaluation. In the fol-
lowing sections, we summarize the estimation, attacks, and impact of the requests sent
from the uncontrolled IDEs.

5. Evaluation 229

Estimation

Performing DDoS attacks ethically over the Internet is challenging. To address this
challenge, we follow an estimation-based approach to determine the impact of the attacks
sourced from the IDEs. While there is existing work on mathematical modeling of DDoS
attacks to predict the probability of resource depletion and bandwidth, to estimate the
impact of the attacks from the IDEs, we refer to the method proposed by Balarezo et
al. [23] for traffic-based models and specifically the Queuing Model. The Queuing Model
uses a multidimensional approach that provides the probabilities for bandwidth, CPU,
and memory exhaustion based on how networking elements process traffic. The ingress
traffic measurements are carried out at periodic intervals of five seconds, and the values
for the bandwidth, CPU, and memory are noted.

With the aim of developing a formula able to estimate the average attack magni-
tude of the architecture described in Section 4.2, we performed controlled HTTP-flood
requests from the IDEs to our web server with a duration of 5 seconds, to avoid any po-
tential disruption of the service. The experiment resulted in an average of 103 requests
per IDE session, throughout all of the 32 IDEs, which proved vital in the formulation
process. Figure H.6 shows the average number of requests from a single session of an
IDE over time up to 60 seconds, calculated using Formula H.1. The figure also repre-
sents the estimated average number of requests possible from two (n=2) instances of an
IDE running in parallel.

The variables taken into account when estimating the average total number of re-
quests that can be achieved over a specific time interval are the number of IDEs used
in the attack (I), the number of sessions per IDEs (S), the total duration of the attack
in seconds (D), and the number of average requests per second for each IDE session (r).
Combining all of these variables, we developed Formula H.1:

RAvg = I ∗ S ∗ D ∗ r (H.1)

Attack requests received on multiple IDE instances over time

We further estimate the number of requests possible from multiple IDEs with multiple
instances running in parallel. Figure H.7 depicts the estimated average number of
requests from multiple IDEs denoted by I and the number of instances of each IDE
denoted by S. The experiment is performed using 18 IDEs from which we received
consent. We estimate an average of 6 million requests possible with 32 IDEs with 32
instances over a minute using Formula H.1. The program that performs the HTTP
floods is controlled by the number of threads performing the requests. We limit the
number of threads to avert resource exhaustion on the IDEs.

230 Paper H.

Fig. H.6: Estimated average requests per IDE instance by second

Fig. H.7: Estimated average requests received from multiple IDEs (I) and sessions (S)

Language-specific comparison

We compare the number of requests received from different languages supported by
IDEs. The number of requests are obtained based on similar experiments that we carry
out on Python-based IDEs. For the other languages, we perform the experiment with

5. Evaluation 231

0

500

1,000

1,500

2,000

2,500

3,000

3,500 #Requests

XHR-Chrome[2] XHR-Firefox[2] Python-IDE Java-IDE JavaScript-IDE Go-IDE C#-IDE

1886

1359

1622.5

2892

1456

2174

3269

515

1921

3167

561

1875

3058

444

1965

3098

552

1867

3079

489

1632

C#-IDE

Go-IDE

Java-IDE

JavaScript-IDE

Python-IDE

XHR-Chrome[2]

XHR-Firefox[2]

Environment

Test environment

#
R
eq

u
es

ts

Fig. H.8: Average number of requests received from IDE-environments and a comparison with [2]

6 multi-language IDEs that we received consent for experimentation. Figure H.8 shows
the number of requests received from different language supporting IDEs. We observe
the highest number of requests from the Python supporting IDEs, in comparison with
the other languages. To get a better understanding of the number of requests, we place
the number of requests received from the Javascript program by Pellegrino et al. in
the figure [2]. Note that this is not a direct comparison as the number of requests
from the IDEs in our experiments were carried out for a period of 5 seconds and the
method from Pellegrino et al. was recorded per second. However, we believe that
by increasing the number of threads in our program can lead to similar results. In
terms of economics, Pellegrino et al. use advertisements as a medium for executing the
malicious embedded JavaScript on clicks, and hence incurs some costs. In our approach,
we leverage accessible, open IDE execution environments with higher resources and
negligible costs (zero) to execute the attacks.

Note that while in this evaluation, we evaluate the possibility of using IDEs that
support the Python language, it is possible to achieve a higher number of requests by
combining multiple IDEs that support other languages. While large botnets targeting
DDoS attacks like the Meris Botnet have a significantly higher number of requests per
second in comparison to our experiment, we believe that bots could employ vulnerable
IDE instances armed with diverse attack types to increase the attack magnitude [24].

232 Paper H.

We further discuss the attack types and the impacts in the following section.

6 Discussion
Uncontrolled-IDE environments provide a degree of flexibility where the users can try
performing varied attack types. Our experiments reveal that unfiltered networks of the
IDEs allow different attack types. This section discusses some of the attack types that
we try and describe the results.

6.1 Attack types
HTTP-Flood

We first evaluate our approach with HTTP-flood attacks from the IDEs. We execute
the Single Session HTTP Flood to send a large number of requests from limited HTTP
sessions. We observe that the CPU and memory of the victim (web server in our lab)
are significantly depleted over the bandwidth of attacks received. A similar result was
observed by performing Single Request HTTP Flood where multiple HTTP requests were
made using a single session, masking them in a single packet. Programming languages
offer multiple ways of creating HTTP requests. For example, the Python language offers
the requests, urllib and sockets packages from which HTTP requests can be made. We
experiment with all three variations of the packages and find approximately the same
results with the maximum number of requests. However, we preferred to use the sockets
package as it offered multiple options for setting the payload, and the max number of
requests was achieved through controlled threading.

UDP-Flood

We try performing a controlled UDP-flood attack through the IDEs and find that some
IDEs block UDP-based traffic. However, we were able to run UDP-based flood attacks
from 18 IDEs in our experiment. We run the UDP-flood for a limited period of five
seconds and observe the attack bandwidth ranging up to 1320 Mb/s with the CPU load
steadily increasing to an average of 22% per second. Figure H.9 shows the estimated
bandwidth of attacks received over time from HTTP and UDP requests. The estimation
is based on the attacks received during our controlled experiment. We find that UDP-
based attacks caused a higher impact on the victim’s resources, leading to quicker service
disruption than the HTTP requests. Note that the attack bandwidth could be higher
as we used a controlled test script in our experiment, and the requests originated from
a single online-IDE instance.

6. Discussion 233

Fig. H.9: Estimated bandwidth comparison between HTTP and UDP flood

Multi-vector attacks

Multi-vector attacks involve using multiple flood-type attacks to achieve maximum
bandwidth. While multi-vector attacks are ideal for achieving higher bandwidth by
weaponizing, the supporting IDEs are a high-risk environment. We try the possibility
of combining the HTTP and UDP-flood attacks from the IDEs. Our experiment shows
that almost 55% of the IDEs are vulnerable to multi-vector attacks.

Text-encoding attacks

Boucher et al. [6] recently proposed a new type of attack in which the source code is
maliciously encoded to appear different to a compiler than to a human. The authors
present a proof of concept in multiple languages: Python, Java, JavaScript, Go, C#,
C++, and Rust. We try the exploits with the IDEs to see if they support text-encoding
standards like Unicode to manipulate the compiler-view. Our experiment revealed that
98% of the online-IDEs were vulnerable to the attack. We consider such vulnerabilities
as potential discrete techniques for exploits. However, this is out of the scope of this

234 Paper H.

work as we emphasize to availability rather than integrity attacks.

Other findings

We performed our experiment with the online-IDEs that support Python language
scripting. Other than the unrestricted package imports, we also found unpatched ver-
sions of systems that are vulnerable to CVEs CVE-2020-14422, CVE-2020-8492, CVE-
2019-9674, CVE-2013-1753 that can lead to Denial of Service attacks [25]. Furthermore,
as some IDEs allowed the OS and system packages, we could obtain information about
the host operating systems and the other packages. We further check for vulnerabilities
using the version information we obtain and inform the owners about the vulnerabilities.
Furthermore, we find user-authenticated IDE environments, which require user-signup,
equally vulnerable as non-authenticated ones, though we exclusively consider the unau-
thenticated platforms in our experiment.

6.2 Comparison with amplification attacks
Amplification attacks involve an amplification factor that enhances the original attack
vector to multiply the initial attack. While these attacks are known to amplify over
UDP-based protocols like DNS, more recently, there is research where TCP-based pro-
tocols can be leveraged [26]. In this work, we use vulnerable IDE instances to contribute
to an existing attack process by potentially weaponizing uncontrolled online-IDE envi-
ronments. Although the IDEs can contribute more attack requests, it is not similar
to an amplification factor. Our approach implies that the attacks can be magnified in
numbers by spawning multiple IDE instances and threads on the go without compromis-
ing the system or injection of malware. However, similar to DoS attacks, the attacker’s
identity remains hidden as the source of the attacks traced back to the IDEs.

6.3 Implications
Our work suggests that uncontrolled online-IDEs can be leveraged as an open system
for availability attacks by botnets. Through our observation, we find that many online-
IDEs possess high, scalable resources that can be exploited for carrying out attacks
on the Internet and for crypto mining purposes. Although the number of uncontrolled
online-IDEs is not as significantly high as the number of vulnerable devices employed by
massive botnets, we believe that uncontrolled online-IDEs can be used as a magnitude
factor since they are an accessible resource. While there is no evidence of bots using
such environments for attacks, we proactively identify the vulnerabilities and ethically
disclose them to the owners to prevent such exploitation by adversaries. Furthermore,
the primary reason for uncontrolled execution is a result of misconfigured environments.
As online-IDEs are considered as a platform for learning, many security implications
are overlooked in order to achieve similarity to that of local IDE environments.

7. Ethical considerations & countermeasures 235

Using uncontrolled IDEs provide attackers with discrete ways of launching avail-
ability attacks. In comparison to other vectors used for attacks, uncontrolled IDEs
provide the following advantages: (i) uncontrolled online-IDEs provide direct execu-
tion environments without any compromise steps to be undertaken by the attackers,
(ii), online-IDEs are equipped with reasonable resources that can facilitate attacks, (iii)
multiple sessions of online-IDEs can be created to increase the magnitude of the attacks
in case of ephemeral instances, (iv) uncontrolled online IDE environments are simpler
to find on the Internet and do not require aggressive probing to find vulnerabilities, (v)
since we observe no CAPTCHA checks in the IDEs on our findings, attackers can avoid
any bypassing mechanisms that limit the botnets.

6.4 Limitations
Our approach utilizes online-IDEs on the Internet for availability attacks. As these IDEs
are hosted on private infrastructure, evaluating availability attacks is ethically challeng-
ing. To address the ethical challenges, the evaluation of our approach involves some
limitations. Firstly, we use a limited number of identified IDE instances to evaluate
our methodology. This limits the full potential of the possible impact of the attacks.
Second, we use rate-limiting in our test code to not cause any possible disruptions in
the IDE service. This limits the use of the resources on the online-IDEs infrastructure.
Third, we use an estimation-based approach to predict the possible number of attack
requests per second achieved by multiple IDE instances running in parallel, which does
not provide enough accuracy in the calculations and may have a high error rate. Lastly,
we acknowledge packet drops occurring at intermediary devices in some of our exper-
imental trials and discard environments that affect the overall throughput. Through
this work, we intend to disclose the impact of running such environments to the owners
and proactively prevent misuse of resources. It is a challenge to measure the impact
of our approach in an ethical manner. We extrapolate the measurements received on
a limited time-based experiment to accommodate the impacts to the IDE owners. We
further acknowledge that many unknown factors may influence the values in our exper-
iments. Our method is an honest attempt to identify uncontrolled IDE environments
and prevent their misuse.

7 Ethical considerations & countermeasures
It is challenging to test our methodology as it involves sending high traffic from the
Internet that may disrupt availability. We follow several precautions to avoid such a
scenario. In this section, we discuss the ethical considerations followed in our approach.

236 Paper H.

7.1 Attack testing
We follow multiple steps in our attack testing approach to ensure that the availability
of the online-IDEs or the intermediary networking systems are not compromised. The
ethical measures we follow in our methodology are summarized below.

Informed consent

We take consent from the online-IDE owners to perform our experiment. We obtain
consent from 18 IDE owners to perform our experiments. We assure the IDE owners of
non-malicious experiments and measures to prevent resource exhaustion. Furthermore,
we test a limited number of IDEs in our experiment, although we find many vulnerable
uncontrolled online-IDEs.

Limited threads (rate-limiting)

We run an HTTP-flood program to test the possibility of achieving maximum requests
from the IDEs. However, we limit the number of threads in our program to prevent
resource exhaustion. We use an estimation-based approach to ethically predict the
number of requests that can be achieved from the IDEs.

Lab infrastructure for testing

We set up a web server in our lab infrastructure to target all the requests from the IDEs.
However, we understand that this does not fully comply with the challenge of reducing
the disruption in the network due to the traffic from the IDEs. We try to reduce the
disruption by limiting the number of threads and the runtime of the experiment. The
website used for measuring the HTTP flood requests received from the IDEs contained
the necessary information about our experiment.

7.2 Responsible disclosure
We perform responsible disclosure to all the owners of identified uncontrolled online-IDE
execution environments. The disclosure informs the owners of the importance, criteria,
vulnerabilities, and proof of concept to test the environments independently. Further-
more, we perform an early disclosure to certain critical service providers (for example, a
leading database service) that have a high possibility of traffic, even if this entailed the
possibility of not using these environments for testing our approach. Additionally, we
ask for IDE owners’ consent to experiment on uncontrolled environments before they
patch their systems. Until the time of submission of this paper, we hope that most of
the uncontrolled IDE environments are patched.

7. Ethical considerations & countermeasures 237

7.3 Countermeasures
In this section we propose and discuss countermeasures against the criteria defined for
uncontrolled execution environments.

Restricted file operations

File operations are essential for the import and export of data. However, it is crucial to
restrict the operations and limit access to critical paths of the file system by simply em-
ploying containerized environments. Many online-IDEs use file operations for importing
the source files; it is also essential to perform validation to scan for potential malware.
An adversary can leverage unrestricted operations to either download malware or spread
the malware to external systems.

Limited package support

Adversaries can use packages to perform malicious operations on the host machine, like
downloading malware, accessing the host’s file system, and scanning the network. De-
velopers use packages to support additional operations or import external libraries not
part of the default package list. It is also crucial to limit the features of default libraries
(for example, the sockets package) to restrict access to the network and limit the import
of external libraries. While we acknowledge that limiting the functionality of libraries
is a hard problem, we suggest to limit the attacks that leverage packages, by config-
uring network rate limiting in addition to memory and CPU resource limiting. Linux
environments provide default tools for limiting the system resources per process. Ad-
ministrators can further use containerization of individual user sessions to limit resource
usage.

Bounded resource consumption

Limiting the resources per user and program is required. Unlimited resources can lead to
disruptive operations on the host and be leveraged as an attack source. Also, limiting the
number of threads that can be created ensures controlled resource usage. Furthermore,
the use of timeouts that restrict the execution period ensures that a program does not
run for extended periods and prevents flood-type attacks.

Sandboxed environments

Sandboxed environments ensure no access to external systems, and the user sessions are
isolated from the other sessions running on the online-IDE. Each user has a dedicated
isolated environment that is purged after the user session expires. Online-IDEs can
leverage containerized environments to achieve sandboxing of individual user sessions
and purge them after the end of the session.

238 Paper H.

Stateful user sessions

Online-IDEs run over a web service and can be configured to maintain stateful user
sessions to track idle or disconnected users for stopping the program execution. This
prevents bots from spawning multiple IDE instances to inject malicious code and exit
the session to save resources on the bot client. Maintaining stateful user sessions can
also help limit the number of sessions per user and limit resource usage.

Other measures

We accessed the IDEs through the Tor network and found that 98% of the online-IDEs
identified allowed access. To limit suspicious events, we suggest the use of CAPTCHAs
to verify the source of traffic and also limit the execution of suspicious code. We further
suggest online-IDEs to integrate CAPTCHAs for validating each user session irrespec-
tive of the network to limit the bot activity. Moreover, we strongly recommend that all
the online-IDEs have user authenticated sessions to prevent unnecessary resource usage.
Lastly, to defend against text-encoding attacks, we recommend following the counter-
measures suggested by Boucher et al. [6] to prohibit the support for text directionality
control characters both in language specifications and in compilers implementing these
languages.

8 Conclusion
This work identifies online-IDEs that offer uncontrolled execution environments that
can be leveraged to perform availability attacks. We perform an Internet-wide search
for online-IDEs and filter them by executing a test script that satisfies the uncontrolled
execution criteria. Furthermore, we perform experiments to verify the possibility of
availability attacks through the online-IDEs by informed consent. The estimated im-
pact of the attacks is calculated by measuring the requests obtained from the experi-
ments. We emphasize the consequences of having uncontrolled execution environments
and proactively conduct experiments to assess the impact through this work. Lastly,
we perform immediate ethical disclosure to the IDE owners to prevent misuse of the
environment. As future work, we plan to generate scripts that can be used for check-
ing uncontrolled execution of online-IDE environments such as permissions set for code
execution, maximum file size that can be written, paths accessed, and max network
bandwidth to help the administrators.

References 239

References
[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,

Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar,
C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,
and Y. Zhou, “Understanding the mirai botnet,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Association, Aug.
2017, pp. 1093–1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[2] G. Pellegrino, C. Rossow, F. J. Ryba, T. C. Schmidt, and M. Wählisch,
“Cashing out the great cannon? on Browser-Based DDoS attacks and
economics,” in 9th USENIX Workshop on Offensive Technologies (WOOT 15).
Washington, D.C.: USENIX Association, Aug. 2015. [Online]. Available: https:
//www.usenix.org/conference/woot15/workshop-program/presentation/pellegrino

[3] ENISA. (2020) Enisa threat landscape 2020 - malware. ENISA. [Online]. Available:
https://www.enisa.europa.eu/publications/malware

[4] P. Wainwright and H. Kettani, “An analysis of botnet models,” in Proceedings of
the 2019 3rd International Conference on Compute and Data Analysis, 2019, pp.
116–121.

[5] R. Saini, S. Bali, and G. Mussbacher, “Towards web collaborative modelling for the
user requirements notation using eclipse che and theia ide,” in 2019 IEEE/ACM
11th International Workshop on Modelling in Software Engineering (MiSE), 2019,
pp. 15–18.

[6] N. Boucher and R. Anderson, “Trojan Source: Invisible Vulnerabilities,” Preprint,
2021. [Online]. Available: https://arxiv.org/abs/2111.00169

[7] Z. Alizadehsani, E. G. Gomez, H. Ghaemi, S. R. González, J. Jordan, A. Fernández,
and B. Pérez-Lancho, “Modern integrated development environment (ides),” in
Sustainable Smart Cities and Territories, J. M. Corchado and S. Trabelsi, Eds.
Cham: Springer International Publishing, 2022, pp. 274–288.

[8] L. Wu, G. Liang, S. Kui, and Q. Wang, “Ceclipse: An online ide for programing in
the cloud,” in 2011 IEEE World Congress on Services. IEEE, 2011, pp. 45–52.

[9] P. Chinprutthiwong, R. Vardhan, G. Yang, Y. Zhang, and G. Gu, “The service
worker hiding in your browser: The next web attack target?” in 24th International
Symposium on Research in Attacks, Intrusions and Defenses, ser. RAID ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p. 312–323. [Online].
Available: https://doi.org/10.1145/3471621.3471845

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/woot15/workshop-program/presentation/pellegrino
https://www.usenix.org/conference/woot15/workshop-program/presentation/pellegrino
https://www.enisa.europa.eu/publications/malware
https://arxiv.org/abs/2111.00169
https://doi.org/10.1145/3471621.3471845

240 References

[10] J. Liu, Z. Zhao, X. Cui, Z. Wang, and Q. Liu, “A novel approach for detecting
browser-based silent miner,” in 2018 IEEE Third International Conference on Data
Science in Cyberspace (DSC). IEEE, 2018, pp. 490–497.

[11] J. Rüth, T. Zimmermann, K. Wolsing, and O. Hohlfeld, “Digging into browser-
based crypto mining,” in Proceedings of the Internet Measurement Conference
2018, ser. IMC ’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 70–76. [Online]. Available: https://doi.org/10.1145/3278532.3278539

[12] D. Georgoulias, J. M. Pedersen, M. Falch, and E. Vasilomanolakis, “A qualitative
mapping of darkweb marketplaces,” in Symposium on Electronic Crime Research
(eCrime). IEEE, 2021.

[13] L. Wu, G. Liang, and Q. Wang, “Program behavior analysis and control for online
ide,” in 2012 IEEE 36th Annual Computer Software and Applications Conference
Workshops, 2012, pp. 182–187.

[14] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure execution via
program shepherding,” in 11th USENIX Security Symposium (USENIX
Security 02). San Francisco, CA: USENIX Association, Aug. 2002. [Online].
Available: https://www.usenix.org/conference/11th-usenix-security-symposium/
secure-execution-program-shepherding

[15] M. Pass. (2021) Icecoder. [Online]. Available: https://github.com/icecoder/
ICEcoder

[16] Microsoft. (2022) Visual studio code. [Online]. Available: https://github.com/
microsoft/vscode

[17] Coder. (2022) Code-server. [Online]. Available: https://github.com/coder/
code-server

[18] L. Siira. (2022) Atheoside. [Online]. Available: https://github.com/Atheos/Atheos

[19] J. Zhang, J. Notani, and G. Gu, “Characterizing google hacking: A first large-
scale quantitative study,” in International Conference on Security and Privacy in
Communication Networks, J. Tian, J. Jing, and M. Srivatsa, Eds. Cham: Springer
International Publishing, 2015, pp. 602–622.

[20] Censys, “Censys search,” 2021. [Online]. Available: https://censys.io/

[21] SHODAN, “Shodan,” 2021. [Online]. Available: https://www.shodan.io/

[22] A. B.V. (2022) Ace editor. [Online]. Available: https://github.com/ajaxorg/ace

https://doi.org/10.1145/3278532.3278539
https://www.usenix.org/conference/11th-usenix-security-symposium/secure-execution-program-shepherding
https://www.usenix.org/conference/11th-usenix-security-symposium/secure-execution-program-shepherding
https://github.com/icecoder/ICEcoder
https://github.com/icecoder/ICEcoder
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://github.com/coder/code-server
https://github.com/coder/code-server
https://github.com/Atheos/Atheos
https://censys.io/
https://www.shodan.io/
https://github.com/ajaxorg/ace

References 241

[23] J. F. Balarezo, S. Wang, K. G. Chavez, A. Al-Hourani, and S. Kandeepan,
“A survey on dos/ddos attacks mathematical modelling for traditional, sdn and
virtual networks,” Engineering Science and Technology, an International Journal,
vol. 31, p. 101065, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2215098621001944

[24] CloudFlare, “Meris botnet,” 2021. [Online]. Available: https://blog.cloudflare.
com/meris-botnet/

[25] C. Details, “Cve details,” 2021. [Online]. Avail-
able: https://www.cvedetails.com/vulnerability-list/vendor_id-10210/product_
id-18230/year-2020/opdos-1/Python-Python.html

[26] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Hell of a handshake:
Abusing TCP for reflective amplification DDoS attacks,” in 8th USENIX
Workshop on Offensive Technologies (WOOT 14). San Diego, CA: USENIX
Association, Aug. 2014. [Online]. Available: https://www.usenix.org/conference/
woot14/workshop-program/presentation/kuhrer

https://www.sciencedirect.com/science/article/pii/S2215098621001944
https://www.sciencedirect.com/science/article/pii/S2215098621001944
https://blog.cloudflare.com/meris-botnet/
https://blog.cloudflare.com/meris-botnet/
https://www.cvedetails.com/vulnerability-list/vendor_id-10210/product_id-18230/year-2020/opdos-1/Python-Python.html
https://www.cvedetails.com/vulnerability-list/vendor_id-10210/product_id-18230/year-2020/opdos-1/Python-Python.html
https://www.usenix.org/conference/woot14/workshop-program/presentation/kuhrer
https://www.usenix.org/conference/woot14/workshop-program/presentation/kuhrer

242 References

Part III

Epilogue

243

Conclusion

Adversaries constantly develop new attack tactics and techniques to evade security sys-
tems and cause significant damage, causing an increasing reliance on defense-based
detection systems. The detection of novel attack techniques is challenging with the
changing threat landscape. Our studies show that cyberattacks have been modeled to
be more intelligent and discreet. The conclusion from the empirical analysis is outlined
in the following.

Cyber deception systems are vital in capturing attacks and facilitating further analy-
sis. Deception is a tactic that both adversaries and defenders leverage in their strategies.
The value of cyber deception systems like honeypots is based on their ability to deceive
adversaries and capture their attack techniques. Although honeypots are a good re-
source for gathering attack data, they are vulnerable to detection attacks. This thesis
addresses the pitfalls of honeypots to enhance their value by improving their deception
and capturing capabilities.

The thesis follows a two-phase approach to the research on improving and evaluating
the use of cyber deception systems. In the first phase, state-of-the-art honeypots are
surveyed and tested for endurance against fingerprinting attacks. A combined, multi-
stage fingerprinting framework is proposed that covers a wide scope of honeypots and
has a better detection rate than the state-of-the-art. Furthermore, novel honeypot fin-
gerprinting techniques are proposed, which are a first in the area. In the second phase,
RIoTPot, a hybrid-interaction and modular honeypot is proposed to address the limita-
tions of limited interaction and extensibility. The honeypot is evaluated by performing
a longitudinal study that aims to assess the impact of the operational parameters of
a honeypot, like interaction level, simulation environment, deployment infrastructure,
and geo-location. Our study further evaluates the honeypot to understand the attack
landscape on the directory services targeted extensively. Overall, the findings from the
thesis can be summarized as follows.

Attacks against cyber deception (RQ1 and RQ2): Our analysis of the state-of-
the-art deception-based systems against fingerprinting attacks reveals that many open-
source honeypots are vulnerable and can be detected. Moreover, we observe that there

246 Paper H. Conclusion

is still a gap in the design, modeling, and implementation of honeypots based on the
purpose. Our studies’ results indicate that many misconfigured open-source honeypots
are exposed to the Internet, which can be detected with less effort, and administrators
are passive towards these deployments. Recent research reveals a trend in honeypot
fingerprinting and entails that honeypot developers and administrators must maintain
their deployments. Although honeytokens are low maintenance and risky, they mustn’t
be detected by adversaries. Our work shows the gaps in implementation from a popu-
lar honeytoken service and presents methods to detect them using passive techniques.
We follow ethical guidelines, disclose our findings to the responsible honeypot and hon-
eytoken developers, and attempt to contact the administrators of the misconfigured
deployments. Overall, this research presents effective techniques to detect honeypots
and honeytokens that can be considered for improvement and advancement in their
deceptiveness.

Cyber deception (RQ3): We consider open-source deception-based systems, mainly
honeypots, in our empirical analysis. Our analysis reveals multiple gaps in these honey-
pots where they are either poorly maintained or simulate specific services. As a result,
most of these honeypots are modeled as low or medium interaction entailing limited
simulation. In this thesis, we aimed to bridge this gap by proposing RIoTPot (Paper
D), a honeypot that offers hybrid interaction and modular architecture. The hybrid
interaction breaks the binary interaction-level paradigm by providing flexibility in sim-
ulating services on multiple levels. Furthermore, the modular architecture facilitates
operating high-interaction honeypots and provides extensibility to add more services.
This contribution addresses limitations arising from the binary interaction paradigm
and the limited simulation levels. We evaluate RIoTPot by conducting both targeted
(Paper E) and longitudinal studies (Paper F) and studying the attack landscape. Our
results indicate that running honeypots in high-interaction levels received higher ex-
clusive traffic than low and medium-interaction levels and the influence of operational
parameters.

Internet security measurements (RQ3): The measurement studies conducted
during the thesis provide insight into the attack landscape and an overview of the
prevailing threats. The studies were focused on studying the attacker methods and
identifying the potential threats by finding misconfigured services. The studies had two
facades that followed a measurement-based approach. The first followed a measurement-
based approach to scan the Internet to find misconfigured services, and the second to
analyze the attacks gathered on honeypots. The resulting datasets from the honeypot
and the Internet measurements studies aim toward the thesis’s goal to create datasets
that are valuable to the threat research community. Our findings from the Internet
scans reveal a large number of misconfigured services span across IT, IoT, and the OT
landscape. The measurements and analysis from the honeypot studies provide extensive

247

insight into the attack trends and the landscape, including targeted attacks, multistage
attacks, and pivot attacks. Internet security measurements provide compelling datasets
for the analysis of threat research. We want to continue our work in this area by using
all the lessons from this thesis on improving the scanning scope, removing false positives,
and characterizing the end systems.

Reflections I want to assert that the thesis and the research mindset expanded my
knowledge horizons. Working with deception-based systems is complex due to varied
perspectives. Several challenges were encountered and addressed during the thesis. I
present some of my selective reflections on these challenges.

1. Honeypot Fingerprinting: In the research on honeypot fingerprinting, I real-
ized that characterizing and profiling end systems with limited data is challenging.
This challenge becomes a paradox, especially if the goal is to determine if the end
system has a deceptive layer. The state-of-the-art techniques are limited in scope
and, most of the time, do not apply to active deception systems.

2. Honeypot operation and studies: Running and operating honeypots follow
the complexity curve of Internet scanning. While professional services are oper-
ating Internet-scanning (Shoda, Censys) and Honeyfarms (Greynoise) and make
it look effortless, it is bewildering as a researcher from the University. There are
constant challenges from the SOC teams, ISPs, and IT about running vulnerable
services and the entailing threats (even after informing). IP churning is common
for Internet scanning and operating honeypots to preserve freshness. The limited
infrastructure, resources, and authoritative permissions can be taxing for a Univer-
sity researcher. This is one of my hardest battles during this thesis, making the
resulting datasets valuable. Another challenge with developing deception-based
systems is the psychological aspect of sequentially thinking with a hacker mindset
and as a defender. This aspect is underrated and crucial for developing effective
deception-based systems.

3. Internet scanning: Internet scanning is more challenging and complex than it
looks, especially in a privacy-centered region like Europe. In addition, it is common
to get flagged by the authorities, ISPs, CERTs, and most importantly, the IT
Team of the university. I would emphasize that even with profound coordination,
informed consent, and disclosure, the scanning process always has limitations. The
lessons learned from the Internet scanning process are extensive, and we quickly
tried developing alternate approaches with less noisy techniques to achieve our
goal. My study abroad at the University of Cambridge and the valuable guidance
from Dr. Richard Clayton helped enormously with Internet scanning. We aim to
leverage this skill to continue our Internet scans and expand our research in this
area.

248 Paper H. Conclusion

4. Data analysis: The amount of data gathered from the studies can be overwhelm-
ing. With such large datasets, filtering the noise before triage is very important.
However, with honeypots, every interaction can be considered suspicious; hence,
implementing filters and discarding information can be tricky. Furthermore, work-
ing with large datasets requires persistent, scalable storage, analysis, and visual-
ization systems. It is essential to plan and model a resilient architecture for the
research that fits the study. Lastly, creating labeled datasets is valuable for future
research; planning and schematizing for long-term maintenance are necessary.

5. Data sharing and collaboration: The GDPR makes it highly challenging to
share the resulting datasets from the research as they contain information on vul-
nerable systems, honeypots, or attack sources that have to be pseudo-anonymized
because of IP addresses, thereby limiting collaboration. As this data cannot be
publicly shared, following a strict embargo process is essential. We received nu-
merous collaboration requests and have successfully pursued them by finding a
way to collaborate with our datasets.

The Interreg COM3 Project (Thesis funding project): The European Interreg
COM3 project funded this thesis. The thesis contributed to its goal of creating cyber-
security in small and medium enterprises. The contributions were in the form of aware-
ness courses designed with a focus on Cybersecurity awareness through honeypots, Data
Breaches and Privacy leak awareness, and Threat Identification & Self-Assessment for
SMEs. The courses are developed to suit the online learning format and are integrated
into the project outcome. Furthermore, many awareness programs were undertaken for
outreach during the project. The findings from the papers are used to create awareness
of the impact of cyberattacks. However, the pandemic imposed limitations on outreach
activities. I understood the challenges of SMEs in rural regions and the knowledge
gaps that exist in the top-level management of enterprises. Working with international
partners in the project gave me a broader perspective of the cybersecurity challenges
persisting in SMEs.

Summary: Cyber deception is an effective tool to study the attacks and further can
be used for characterizing the attack source and techniques. While it may be less effort
to simulate any service or a target, it is important to configure it to suit the goal of the
deployment. As with the definition of deception-based systems, the goal is to deceive the
attackers into capturing the attack activity for further analysis. However, we emphasize
that the adversaries must not be undermined as their techniques evolve constantly. It is
crucial to keep pace with this evolution to advance the effectiveness of deception-based
systems. Furthermore, it is imperative to have a collaborative platform for sharing novel
threats and the data gathered to help the threat research community. We acknowledge
the efforts of The Honeynet Project towards aggregating attack data collected from

several honeypot deployments and making it available to researchers.
One of the most effective methods of protection against cyberattacks is by creating

security awareness. The Interreg COM3 project that funded this thesis aimed at creat-
ing cybersecurity awareness programs for small and medium enterprises. Through this
thesis, we created awareness programs by introducing honeypots for detecting and pre-
senting a realistic experience of cyber attacks. The results from the studies performed
in this thesis helped foster an emphasis on cybersecurity measures in enterprises. We
acknowledge the Interreg COM3 project for the funding and for taking an active step
in creating cybersecurity awareness.

As there is time complexity (3 years) involved with this thesis, some of the work
is still in its development phase. The ideas include leveraging the attacks (labeled
dataset) gathered during the experiments to train ML models for effective threat detec-
tion and setting up a platform that acts as a malware repository for researchers that
provides samples based on filters on protocols and services. Meeting fellow researchers
at academic conferences always fueled interesting ideas and enough motivation to pur-
sue more profound research. One avenue we wanted to explore is diving into the human
side of the attackers through experiments and the gathered attack dataset. One of the
many outcomes of this thesis is the artifacts and tools produced (open-source) that can
help researchers to conduct studies to understand diverse threat landscapes. Lastly,
our study promotes deception-based systems for proactively detecting attacks and con-
stantly gathering attack data on malicious actors.

“There is nothing more deceptive than an obvious fact.” - Sir Arthur Conan Doyle

250 Paper H. Conclusion

Directions for Future work

The thesis statement aimed to empirically analyze cyber deception systems to identify
their value and the limitations that undermine them. However, in this thesis, our scope
was limited to honeypots and honeytokens. Honeypots are an effective strategy to gain
new insights and facilitate threat research. They can be used to collect valuable data
that helps model attacker behavior. However, determining the right level of deception
and scope is crucial.

The idea of honeypots can be explored further to extend their bounds and capabilities
as an integrated component. Honeypots offer flexibility that can be leveraged to analyze
the attack landscape in diverse areas. Deceptive decoys can be beneficial in either
modeling or integrating the essence of honeypots into existing systems without actually
using a whole system. Honeytokens are an excellent example of the essence of cyber
deception in a minimal form. They can be further extended to include other digital
entities. Other deception-based systems, like moving target defense, hold great value
and can be explored further regarding their applicability. Honeytokens are emerging
research because of their simplified operation. As a result of our research, we can
suggest areas for improvement in how honeytokens can be improved to gather actionable
information.

Research in Counter-deception techniques is necessary to siphon the development of
defensive deception techniques. Fingerprinting research helps understand the adversarial
mindset, which is beneficial in enhancing deception-based systems. With the increase
in cyber threat intelligence public databases and datasets, passive fingerprinting has a
broad scope.

One of the core contributions of the thesis is the creation of datasets derived from our
studies. These datasets are valuable and form the ground for future research in threat
analysis. The datasets could be used with training from machine-learning models for
effective threat classification and research. Furthermore, the datasets can be used for
extending AI-based detection systems. Overall, honeypots and honeytokens provide
researchers with a labeled dataset, creating avenues for further research.

Deception is a legacy misleading technique. Over the years, living things have evolved
this technique and applied it in many forms. The art of deception will continue evolving,
and defensive security teams must try to stay ahead with effective deception techniques.

Sh
r

eya
S Sr

in
iva

Sa
a

n
 em

pir
ic

a
l a

n
a

lySiS o
f c

yb
er

 D
ec

eptio
n

 SyStem
S

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-732-1

