
Aalborg Universitet

Efficient Analysis and Synthesis of Complex Quantitative Systems

Jensen, Peter Gjøl

DOI (link to publication from Publisher):
10.5278/vbn.phd.tech.00043

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Jensen, P. G. (2018). Efficient Analysis and Synthesis of Complex Quantitative Systems. Aalborg
Universitetsforlag. https://doi.org/10.5278/vbn.phd.tech.00043

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.5278/vbn.phd.tech.00043
https://vbn.aau.dk/en/publications/31351542-c810-493c-ad57-8857ac47902f
https://doi.org/10.5278/vbn.phd.tech.00043

EFFICIENT ANALYSIS AND
SYNTHESIS OF COMPLEX
QUANTITATIVE SYSTEMS

BY
PETER GJØL JENSEN

DISSERTATION SUBMITTED 2018

EFFIC
IEN

T A
N

A
LYSIS A

N
D

 SYN
TH

ESIS O
F C

O
M

PLEX Q
U

A
N

TITATIVE SYSTEM
S

PETER
 G

JØ
L JEN

SEN

Efficient Analysis and

Synthesis of Complex

Quantitative Systems

Ph.D. Dissertation

Peter Gjøl Jensen

Dissertation submitted March, 2018

Dissertation submitted: March, 2018

PhD supervisor: Prof. Kim Guldstrand Larsen
 Aalborg University

Assistant PhD supervisor: Assoc. Prof. Jiˇrí Srba
 Aalborg University

PhD committee: Associate Professor Bent Thomsen (chairman)
 Aalborg University

 Professor, Dr. Jaco van de Pol
 University of Twente

 Professor Saddek Bensalem
 Université Grenoble Alpes

PhD Series: Technical Faculty of IT and Design, Aalborg University

Department: Department of Computer Science

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-178-1

Published by:
Aalborg University Press
Langagervej 2
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Peter Gjøl Jensen

Printed in Denmark by Rosendahls, 2018

Abstract

From toasters and to space-stations, computerized technology is pervasive
in modern technology and society, therefore the need for truly correct, safe
and optimal control algorithms is higher than ever. Techniques like model
checking and synthesis have long promised, and to some extend delivered,
correctness and optimality guarantees in limited and highly critical applica-
tion areas like software for satellites, medical devices or powerplants. Com-
mon for many of the application areas is the criticality of timing; airbags,
pacemakers and traffic-lights have timing constraints that should never be
violated.

In this thesis, we attempt to improve the applicability of model checking
and synthesis methods for timed systems by attacking three different inhibit-
ing factors to their applicability; 1) speed of computation, 2) what can be
synthesized and 3) tool integration and interaction.

To improve on the speed of computation, we attack what is called the
state-space explosion problem and present alternatives for the state-space
representation. We attack this problem by developing novel algorithms and
datastructures for the reduction of memory and time consumption.

To increase the applicability of synthesis, we present a semi-algorithm
for parameter synthesis for Timed Automata, extendable to more expressive
formalisms. We also demonstrate an over/under-approximate technique for
the synthesis of Metric Interval Temporal Logic specifications and show the
methods feasibility on a series of examples. As a final contribution to the
topic, we present a tool which encompass both ideas from the formal meth-
ods community and the machine intelligence community, providing both safe
and optimal control synthesis.

In the topic of tool integration, we extend the tool Uppaal to facilitate
interoperability with other tools. We show that integration between Uppaal

and a plethora of other tools is possible via the Function Mockup Interface
standard and demonstrate that Uppaal can be used as the driving tool for
a so-called co-simulation. We also present a case-study using externally de-
fined components, such as an ARM-processor emulator, in a classical model
checking context.

iii

Resumé

Fra toastere til rumstationer har computerbaseret teknologi gennemsyret det
moderne samfund, og derfor er behovet for sikre, korrekte og optimale sty-
ringsmekanismer højere end nogensinde. Teknikker, såsom modeltestning
og syntese, har længe lovet, og til en hvis grad leveret korrektheds og opti-
malitets garantier i et begrænset omfang. Teknikkerne anvendes dog oftest
kun for højkritiske domæner såsom satellitsoftware, kliniske instrumenter og
kraftværk. Fællestrækket for mange af applikationsområderne er det tidskri-
tiske aspekt. Airbags, pacemakers og trafiklys har alle tidsspecifikke krav,
som aldrig bør overskrides.

I denne afhandling forsøger vi at forbedre anvendeligheden af model-
testning og syntese. Vi angriber tre forskellige begrænsende faktorer for
metodernes anvendelighed: 1) Hastigheden af beregning, 2) hvad der kan
syntetiseres og 3) værktøjsintegration og interaktion.

For at reducerer beregningstiden angriber vi det såkaldte tilstandsrum-
seksplosionproblem og præsenterer alternativer til tilstandsrummets repræsen-
tation. Vi forsøger at tackle problemet ved at udvikle nye algoritmer der kan
reducerer både beregningstid og hukommelsesforbrug.

For at forbedre anvendeligheden af syntese, præsenterer vi en semialgo-
ritme til parameter syntese for tidsautomater, der kan udvides til formalismer
med større udtrykskraft. Vi demonstrerer også en over/under approksima-
tions teknik for syntese af Metrisk Interval Temporal Logik-speficikationer
og viser, at teknikken er praktisk anvendelig på en række eksempler. Som
et sidste bidrag til emnet præsenterer vi et værktøj, der omfavner ideer fra
både det formelle verifikations miljø og maskinintelligens miljøet for derved
at kunne syntetisere sikre og optimale styringsalgoritmer.

Indenfor værktøjsintegrationsemnet udvider vi værktøjet Uppaal således,
at det kan samarbejde med andre værktøjer. Vi viser, at integration mellem
Uppaal og et væld af andre værktøjer er mulig via Function Mockup Inter-
face standarden og demonstrerer at Uppaal kan bruges som det drivende
værktøj i en såkaldt co-simulering. Endvidere præsenterer vi et casestudie,
der bruger externt definerede komponenter, såsom en ARM-processor emu-
lator i en klassisk model testnings kontekst.

v

Contents

Abstract iii

Resumé v

Preface xi

I Introduction 1
1 State of the Art . 4

1.1 Models . 4
1.2 Tools . 6
1.3 Parameterized Models . 6
1.4 Logics . 6
1.5 Methods . 7

2 Contributions . 8
2.1 State-space Representation 9
2.2 Synthesis . 12
2.3 Tool Integration . 16

3 Conclusion . 19
References . 20

II Papers 31

A PTrie: Data Structure for Compressing and Storing Sets via Prefix

Sharing 33

1 Introduction . 35
2 Definition of PTrie . 37
3 Operations on PTrie . 40

3.1 Member Algorithm . 40
3.2 Insert Algorithm . 42
3.3 Delete Algorithm . 44

vii

Contents

4 Implementation . 47
5 Experimental Evaluation . 48

5.1 Simulated Workload . 49
5.2 Real Workload by Petri Net Model Checking 51

6 Conclusion . 53
References . 53

B Refinement of Trace Abstraction for Real-Time Programs 57

1 Introduction . 59
2 Motivating Example . 61
3 Real-Time Programs . 63
4 Trace Abstraction Refinement for Real-Time Programs 67
5 Parameter Synthesis for Real-Time Programs 71
6 Experiments . 72
7 Conclusion . 75
References . 76

C Discrete and Continuous Strategies for Timed-Arc Petri Net Games 79

1 Introduction . 81
2 Disk Operation Scheduling Example 83
3 Definitions . 85

3.1 Timed-Arc Petri Net Game 88
4 Synthesis in Continuous and Discrete Time 91

4.1 Proof of Theorem 7 . 94
5 Discrete-Time Algorithm for Synthesis 102

5.1 Extrapolation of TAPGs 103
5.2 The Algorithm . 104

6 Experiments . 109
6.1 Disk Operation Scheduling 110
6.2 Infinite Job Shop Scheduling 110
6.3 Office Fridge Example . 112

7 Conclusion . 113
References . 113

D Practical Controller Synthesis for MTL0,∞ 119

1 Introduction . 121
2 Timed Games and MTL0,∞ . 123

2.1 Metric Temporal Logic MTL0,∞ 126
3 From MTL0,∞ to Timed Büchi Automata 128

3.1 Closures & Extended Formulas 129
3.2 Constructing non-deterministic automata 131

4 Tool Chain . 135
4.1 Experimental Evaluation 136

viii

Contents

5 Conclusions . 140
References . 141

E Uppaal Stratego 145

1 Introduction . 147
2 Games, Automata and Properties 149
3 Strategies . 150
4 Query Language . 151
References . 151

F Co-Simulation of Hybrid Systems with SpaceEx and Uppaal 155

1 Introduction . 157
2 Background on FMI . 159
3 Translating Models into FMUs 162

3.1 Uppaal . 162
3.2 SpaceEx . 163
3.3 Discussion on Co-Simulation Semantics 164

4 Case Study . 166
4.1 Evaluation . 166
4.2 Supervisory Control Example 168
4.3 Stochastic Simulations and SMC 170

5 Related Work . 172
6 Conclusions . 173
7 Acknowledgments . 174
References . 174

G Integrating Tools: Co-Simulation in Uppaal using FMI-FMU 177

1 Introduction . 179
1.1 Interleaving Semantics . 180
1.2 Contributions . 181
1.3 Related Work . 182

2 Semantics . 183
2.1 Stochastic Timed Automata 183
2.2 Stochastic Semantics . 186
2.3 Function Mockup Unit . 186

3 Extension of Uppaal . 187
3.1 Type Conversion . 188

4 FMI/FMU in Uppaal . 188
4.1 Master Algorithm and FMUs as Timed Automata 190

5 Case Study . 193
5.1 How to model one house 193
5.2 A Controller as a Timed Automaton 193
5.3 Composition of models 195

ix

Contents

6 experiments . 196
6.1 Simulation . 196
6.2 Estimation . 197
6.3 Statistical Modelcheking 198

7 Conclusion . 199
8 Future Work . 200
References . 200

H WUPPAAL: Computation of Worst-Case Execution-Time for Binary

Programs with Uppaal 205

1 Introduction . 207
2 Computation of WCET via real-time model checking 210
3 WUPPAAL . 216
4 Implementation and experimental results 221
5 Conclusion . 223
References . 224

x

Preface

Behind a thesis as this, more people than just the author contribute either
directly or indirectly. Several people deserve my gratitude for helping me in
its creation, more than this preface gives room for.

I would like to thank Kim G. Larsen and Jiří Srba for providing me with
much appreciated supervision and freedom to explore ideas of my own.

My six months in Sydney would not have been nearly as fruitful and en-
joyable without the supervision and hospitality of Franck Cassez and the rest
of the lunch gang of the Department of Computing at Macquarie University.

My colleagues Axel, Danny, Erik, Jakob, Mads, Pablo, Rene, Scott and
Ulrik; thank you for listening to my complaints, arguments and stupid ideas.
I am sure my time as a PhD-student would have been a lonesome, had it not
been for you.

The path to a PhD is paved with many impressions over the years, and
Alexandre David deserves thanks for inspiring me to do high performance
software.

To Kim Kristensen, my early math and science teacher, I attribute part
of my achievement. He introduced me to the wonders of natural science, a
fascination I have kept ever since.

For many inspiring discussions around a campfire, the people of Shelter-
foreningen deserves thanks.

My reserve family of Gandrup, the clan of Scheel Nellemann, you have
housed, wined and dined me on several occasions, for this I am grateful.

Lene Scheel Jensen and Jens Christian Gjøl Jensen, my dear parents, thank
you for all the support, motivation and interest through the years. I believe
that my passion for my craftsmanship, my ability critical reasoning and my
work ethics are skills inherited from you, traits I admire in both of you, and
virtues I will reap the fruits of for many years to come.

Lastly, Yasmin, thank you for providing me with never-ending interesting
discussions, inspiration and motivation; you truly are my muse.

Peter Gjøl Jensen
Aalborg University, March 19, 2018

xi

Preface

xii

Part I

Introduction

1

Computers have become an ever-present part of ours lives and are now
deeply integrated into our society. However, most computer systems are not
of the kind with a screen for direct human interaction, but rather an embedded
system controlling, supporting or communicating seamlessly with the world
on our behalf. Examples of such embedded systems range from those found
in modern hearing aid and dishwashers to those controlling highly critical
systems such as nuclear power plants, trains and satellites.

Such systems need software, and in particular for critical systems, correct
and safe software, in the sense that desired behavior is guaranteed without vi-
olating invariant properties. In classical software development freedom from
bugs and safety requirements are validated via testing. As the correctness of
both the development process and the testing phase are heavily dependent
on human creativity and discipline, either phase is prone to errors.

To ensure correctness of software via verification, techniques such as model
checking [49, 63, 118] have been proposed. The model checking approach
accepts as input a model and a specification and can then verify, with certainty,
whether or not the model satisfies the specification. It is important to note
here that a model is a general term and ranges over both an exact model
(for instance the program itself) and very abstract models (for instance the
specification of a communication protocol).

Another approach to reduce human involvement in constructing con-
trol software is that of synthesis [115, 116]. As model checking, synthesis is
modelcentric—however instead of checking that the specification is satisfied,
the aim is to automatically construct a model that fulfills the specification. A
closely related, non-constructive, sister-problem to synthesis is that of satisfia-
bility. The satisfiability problem asks whether a hypothetical model can exist
for which the specification is satisfied, not requiring the actual model to be
constructed. Many techniques have been proposed for synthesis in various
domains, among others are methods from algorithmic game theory, symbolic
methods and explicit methods for reactive synthesis, parameter synthesis and
machine learning.

Synthesis promises more than just correctness. Using synthesis it is also
possible to prove that the system is correct even with changes to the initial pa-
rameters, or even to modify the controller in a way such that a given criteria is
improved upon. This has numerous practical applications such as improving
traffic-flow in a city or reducing the energy consumption of a plastic molding
machine.

Common for all of the methods mentioned above is the notion of a model.
For the correct verification and synthesis, the provided model has to include
the behavior of the environment under control. While systems for light-
switches are not concerned with time, physics or probabilities, one can think
of many contexts in which time (airbags), physics (satellite-control) or proba-
bilities (traffic-control) are important to correctly model the world around the

3

Players Models Methods Tools
1
2 -player Stochastic Timed Automata [4] Value Iteration [70, 74, 108] Prism [97]

Markov Chain Statistical Model Checking [124] Uppaal SMC [35, 36]
Discrete Time Markov Chains [53] Numerical methods [121]
Continous Time Markov Chains [12] Monte Carlo [94, 104]

1-player Timed Automata (TA) [6, 7] Difference Bound Matrices [2] Uppaal [14]
Priced Timed Automata (PTA) [11, 17] Time Darts [89, 91] Tappaal [37, 54]
Timed Arc Petri Nets (TAPN) [75] PTries [89] LTSmin [22]
Time Petri Nets [111] Polyhedra [81] DIVINE [13]
Stopwatch Timed Automata [42] Trace Abstraction Refinement [41] Kronos [26]
Hybrid Automata [80] IC3 [28] SpaceEx [73]

CEGAR [50] Tina [21]
Romeo [107]

1 1
2 -player Probabilistic Timed Automata [84, 98] Value Iteration [70, 74, 108] Prism [97]

Markov Decision Process Statistical Model Checking [35, 79, 124] Fortuna [19]
Duration Probabilistic Automata [117] Regions [84, 98] Modest [77]
Priced Timed Markov Decision Processes [56] Monte Carlo [94, 104] Uppaal Stratego [55]
Priced Probabilistic Time Automata [20]

2-player Timed Games [110] On-the-fly algorithm [39] Uppaal Tiga [16]
Priced Timed Games [24] Uppaal Stratego [55]

2 1
2 -games Simple Stochastic Game [43, 44, 52] Value itteration [46] Prism [45]

n 1
2 -games Stochastic Multi-player Games [45] Reduction to 2 1

2 player games Prism [45]

Table 1: A non-comprehensive overview of the different models, methods and tools used in with
different number of players.

software. To capture these features, various formalisms have been proposed
for modeling, each with their own trade-offs in terms of computability, ap-
plicable methods and complexity. A similar story can be told for the side
of specifications. Let us now review the current state-of-the-art formalisms,
methods and tools.

1 State of the Art

1.1 Models

In this thesis we will primarily focus on timed models, in this review of
the models, we will thus restrict our attention to such systems. In the field
of purely stochastic models, which we here call 1

2 -player games, Stochas-
tic, Timed Automata [4] resides along with the timed derivatives of Markov
Chains; Discrete Time Markov Chains [53] and Continuous Time Markov
Chains [12].

As such models include no notion of choice, the properties one can inspect
are limited to stochastic performance measures such as “What is the expected
outcome of a fair dice throw?” or “How likely is it that a specific bug will be
triggered in my control system?”.

If we consider 1-player games, replacing stochastics with non-deterministic
choice, we obtain models such as Timed Automata (TA) [6, 7], Priced Timed
Automata (PTA) [11, 17], Timed Arc Petri Nets (TAPN) [119] and Time Petri
Nets (TPN) [111].

Here more interesting questions arise as the non-determinism can be in-

4

1. State of the Art

terpreted in two settings; either antagonistic or protagonistic. In the antag-
onistic case, we can ask questions like “Can this error-state be reached?” or
“Can my system livelock/deadlock?”. In the protagonistic setting, we might
ask to find “A Schedule satisfying the constraints of the teaching staff” or
“A controller such that our robot does not tip over flowerpots”. Here it is
important to realize that such a constructed controller assumes that it is in
total control of the environment.

Adding a stochastic adversary to the model brings us to the 1 1
2 -player

games. Here, the controlling player is able to nondeterministically choose
its actions, while the adversary will have a stochastic behavior. This gives
ground to 1 1

2 -player games modeled as Probabilistic Timed Automata [84,
98], Priced Probabilistic Timed Automata, Markov Decision Process, Duration
Probabilistic Automata [117] and Priced Timed Markov Decision Processes
[56]. These will, given a strategy for the controller, become 1

2 -player games.
For the case of reactive systems, adding such a stochastic environment

opens the methods up to more realistic scenarios, for instance traffic control-
scenarios where one could ask the following “Assuming the cars behave with
these probabilities, how do I control the traffic lights such that we most likely
reduce the queuing time?” or “If I only have stochastic information on the
duration of tasks, how do I plan them so that the throughput is maximized?”

In the case of 2-player games, both players are assumed to control each
their set of non-deterministic actions. Here both players can have mutually
exclusive goals. The synthesis problem was shown to be decidable for the
class of Timed Games [110], while undecidable in general for Priced Timed
Games [30].

Here we wish to synthesize a controller such that given requirements are
fulfilled no matter the actions of the antagonistic opponent. Among inter-
esting applications is the synthesis of a controller that ensures safety for an
adaptive cruise-control setting [102] or to synthesize a controller ensuring a
habitable environment for a pig stable [90].

The addition of a stochastic nature to the 2 players gives us 2 1
2 player

games, where both the antagonist and the controller need to address the
stochasticity in the game. For the formalism of Simple Stochastic Games [52],
work has been done to obtain complexity results and investigate expressive-
ness of different logics [43, 44, 52]. To the best of our knowledge no similar
work can be found regarding a timed extension of 2- 1

2 player games.
Formalisms for n and n- 1

2 player games exist and distributed controller
synthesis can be seen as a special case of such a game [109]. Some of these
can be reduced to, or approximated by, 1- 1

2 , 2 or 2- 1
2 player games [45], for

example using an Alternating Temporal Logic (ATL) [9], but in general we
shall consider games for n > 2 out of the scope of this thesis.

5

1.2 Tools

We will here provide a short survey of tools closely related to the formalisms
and logics presented in this thesis. For evaluating the purely stochastic mod-
els, tools such as Prism [97] have evolved. In the model-cheking setting of
1-player games, Uppaal [14], Tappaal [37, 54], Tina [21] and Romeo [107] ex-
ist for each their formalism, providing verification of propositions in a subset
of TCTL. Games containing a stochastic adversary can have strategies syn-
thesized by either Prism [45] or Uppaal Stratego [55, 56]. For the class of
TGs Uppaal offers the Uppaal Tiga [16] extension, capable of synthesizing
strategies with hard constraints. The combination of Uppaal Stratego for
1 1

2 -player games and Uppaal Tiga for 2-player games internally in Uppaal

Stratego, provides the capability of both synthesizing strategies with hard-
guarantees as well as near-optimal schedulers respecting these guarantees.
This was originally proposed by Bruyére et. al [32].

Prism supports n- 1
2 by reduction to 2- 1

2 player games [45] for, among
others, ω-regular objectives using an ATL-like syntax [9].

1.3 Parameterized Models

The above mentioned models have all parameters settled a priori. An interest-
ing family of models arise when some initial parameters are left unspecified.
This leads (in the 1-player setting) to the verification-question: does there
exist an initial set of parameters s.t. our model satisfies the desired specifica-
tion. A special case of this question is the robustness problem for Timed Au-
tomata; is the given specification sensitive to small changes in the constants
of the model [25]? However, it also gives rise to the more interesting question
of parameter synthesis: find the set of parameters for which the property is
satisfied (or for which the system is robust). This problem was formalized
and solved for hybrid systems using the tool HyTech [82]. In recent years
novel methods have been proposed, utilizing more complex strategies, such
as Trace Abstraction Refinement [41], the Inverse Method [66] or for special
cases such as integer parameters [92]. This notion of parametric verification
and synthesis can be extended across all the above-mentioned player-settings
and formalisms—however, in many cases, introducing open parameters into
a model renders analysis-questions undecidable, for instance for Timed Au-
tomata [10].

1.4 Logics

Logics are used to define high-level specifications for models which are then
used to either validate a model using model checking, or construct a model
using synthesis. Two simple and classical logical specifications are the safety
and reachability objectives. Here the goal is to either avoid an error, or to

6

1. State of the Art

reach a desired configuration (often subjected to other requirements such
as “within a given time-period” or “before you run out of power” borrowed
from more expressive logics). The area of behavioral logics is heavily studied,
and conventionally one considers variants one of two families of logics; the
trace-based Linear Temporal Logic (LTL) [114] or the branching-based Compu-
tational Tree Logic (CTL) [48]—both sub-sets of the CTL* logic [64]. However,
all three logic are strictly less expressive than µ-Calculus [96] describing a
simple framework for reasoning on computational systems.

Different logics have also been developed quantifying over different as-
pects of the model. For probabilistic systems CTL has been extended to
quantify over probabilistic measures, called Probabilistic CTL [76] and this
notion has been generalized into the Weighted CTL (WCTL) [29] logic. In the
setting of Timed Systems LTL has been generalized to Metric Temporal Logic
(MTL) [95] while CTL have been generalized to Timed CTL [3].

1.5 Methods

Different techniques have been deployed to make the verification, synthe-
sis or probabilistic computation faster or more precise. In the probabilistic
setting, Prism deploys value-iteration-algorithms [46, 74, 108], converging to
the exact result. A different method is taken by Uppaal SMC [35, 36], which
utilizes a Monte-Carlo based method for sampling and probabilistic approx-
imation.

In the area of timed systems, both fully symbolic, “semi-symbolic” and
discrete methods have been proposed, each with their different trade-offs.
These methods employ state-of-the art techniques such as Difference Bound
Matrices [2], Time Darts [89, 91] or polyhedra-based representations [72, 81].

Other approaches focus on the representation of explicit points in the
state-space. Here, advanced algorithmic structures, such as Binary Decision
Diagrams [33], have enabled the verification of systems with astronomically
sized, but finitely representable, state-spaces. Other approaches, such as
PTries [88, 89] and Tree Compression [99] instead focus on different com-
pression techniques for reducing the memory consumption.

Alternative approaches for verfication, such as Counter-Example Guided
Abstraction Refinement (CEGAR) [47, 60, 83] and Trace Abstraction Refine-
ment (TAR) [41, 78], do not explore a given model, instead they attempt to
construct a “good enough” abstraction to prove or disprove a property. One
can think of such an abstraction as an invariant over the system, excluding
more and more infeasible behavior. For the spurious trace-based abstrac-
tion methods such as CEGAR and TAR, either a non-spurious trace is found,
proving property violation is found, or the invariant eventually gets strength-
ened enough to disprove the property. A closely related method to CEGAR
and TAR is that of IC3 [28], in which invariants are sought constructed such

7

that the system can be proven correct.
In different domains semantical equivalence and reduction-techniques

have been proposed to speed up computation; a partial-order reduction [122],
L/U-extrapolation [105] and up-to-congruence techniques [23] to mention a
few. Compositional analysis techniques, such as those used in Uppaal Ec-
dar [57], facilitate the verification of a contract-based relation-ship between
increasingly refined and decomposed systems. General techniques for re-
ducing computation time via parallelism also exist and can be found in tools
such as LTSmin [22], DIVINE [13] and parallel versions of Uppaal SMC [35].
A generic methods for making different simulation tools interoperable (so
called co-simulation) is proposed using the FMI-standard [31]. In recent
work, this also encompasses Uppaal SMC and SpaceEx [73, 120].

2 Contributions

The papers constituting the remainder of this thesis have been published in
the following journals or proceedings.

(A) PTrie: Data Structure for Compressing and Storing Sets via Prefix Sharing
was published in the proceedings of 14th International Colloquium on
Theoretical Aspects of Computing (2017) [88] and received the best paper
award.
Co-Authors: Kim G. Larsen, Jiří Srba

(B) Refinement of Trace Abstraction for Real-Time Programs was published
in the proceedings of 11th International Workshop on Reachability Problems
(2017) [41].
Co-Authors: Franck Cassez, Kim G. Larsen

(C) Discrete and Continuous Strategies for Timed-Arc Petri Net Games was
published in International Journal on Software Tools for Technology Transfer
(2017) [87]. The paper is an extended version of the paper Real-Time
Strategy Synthesis for Timed-Arc Petri Net Games via Discretization pub-
lished in the proceedings of International Symposium on Model Checking
Software (2016) [86].
Co-Authors: Kim G. Larsen, Jiří Srba

(D) Practical Controller Synthesis for MTL0,∞ was published in the pro-
ceedings of The International Symposium on Model Checking Software (2017)
[106].
Co-Authors: Guangyuan Li, Axel Legay, Kim G. Larsen, Danny Bøg-
sted Poulsen

(E) Uppaal Stratego was published in the proceedings of Tools and Al-
gorithms for the Construction and Analysis of Systems (2015) [55].

8

2. Contributions

Co-Authors: Alexandre David, Kim G. Larsen, Marius Mikučionis,
Jakob Haahr Taankvist

(F) Co-Simulation of Hybrid Systems with SpaceEx and Uppaal was pub-
lished in the proceedings of International Modelica Conference (2015) [120].
Co-Authors: Sergiy Bogomolov, Marius Greitschus, Kim G. Larsen,
Marius Mikučionis, Thomas Strump, Stavros Tripakis

(G) Integrating Tools: Co-Simulation in Uppaal using FMI-FMU was pub-
lished in the proceedings of The 22nd International Conference on Engi-
neering of Complex Computer Systems (2017) [85].
Co-Authors: Kim G. Larsen, Axel Legay, Ulrik Nyman

(H) WUPPAAL: Computation of Worst-Case Execution-Time for Binary Pro-
grams with Uppaal was published in Models, Algorithms, Logics and Tools:
Essays Dedicated to Kim Guldstrand Larsen on the Occasion of His 60th Birth-
day (2017) [40].
Co-Authors: Franck Cassez, Pablo Gonzalez

The presentation is as follows; in Section 2.1 we discuss the results of papers
A and B with an emphasis on the state-space representation. Section 2.2
is concerned with the synthesis problem and we here present results from
papers B, C, E and D. In the last section on tool integration we discuss the
papers F, G and H demonstrating different aspects of tool-composition for
use with Uppaal. As the thesis has contributions to several domains within
the world of model checking and synthesis, we will in this section highlight
the most important and significant contributions.

2.1 State-space Representation

One of the main obstacles in the domain of model checking (and by extension
synthesis) is that of the state-space-explosion problem. The problem arises,
in particular, when a model is composed of multiple concurrent processes,
leading to a combinatorial explosion in the number of (product) states of the
model. In literature one can find numerous attempts at alleviating this prob-
lem; partial-order reductions [122], symbolic representations [33, 61, 81] or
compression-algorithms [67, 99]. In this thesis we have focused on two novel,
but significantly different, approaches to tackling the state-space-explosion
problem.

Data structures

In Paper A we focus on improving the efficiency of the implementation of a
set. Specifically our work introduces a novel data structure called Partial Trie

9

(PTrie) that utilizes prefix-sharing as a way of both memory-reduction and
state-of-the-art comparable lookup times.

We prove correctness and termination for the operations provided for
PTries and show that PTries are closed under the insert, delete and member-
check operations. The main contribution of the paper can be summed up as
follows.

Contribution 1

We formalize and implement a novel and generic data structure, for the
representation of sets of binary strings, that compared to state-of-the-
art hash-maps for use in real-life model checking reduced the memory-
consumption (on average) with 60-70% while incurring a minor (5%)
slowdown (on average).

While such contributions in a theoretical academic context are uninterest-
ing, in practice, a 70% memory-reduction can significantly improve on the
applicability of a method. In the context of model checking, this leads to a
larger set of feasibly analyzable systems as memory is a constant factor of
a computer-system while time, often, is a more abundant resource. We also
note that the data structure extends beyond model checking in applicability
and might see interesting use-cases in other data- and performance-intensive
areas. Lastly we emphasize that the formalization provides for a sound and
rigorous framework for further work into more complex operations on the
data structure such as tree-walks and partial-matching, but also classical ex-
tensions of such as parallel- and distributed-versions.

Trace-based Verification

In Paper B we attack the problem from a different angle. Here we are in-
spired by the program verification community and study the application of
the technique Trace Abstraction Refinement (TAR) [78] for real-timed sys-
tems. In particular, we study the reachability problem for Timed Automata
(TA) and extensions hereof, such as Stopwatch Automata and Linear Hybrid
Automata [5].

What is particular interesting, regarding the TAR-methodology, is that it
attempts to prove correctness of a system using regular-languages and Hoar-
triples. The main idea of TAR is not to characterize the state-space (as in
conventionalmodel checking), but rather characterize impossible or unusable
behavior in relation to the goal, in particular to characterize such behavior
in terms of a regular language over impossible or unusable operations. If
the TAR framework is able to prove that the reachability-goal lies within
the impossible behavior it can answer the reachability problem. Similar if
a feasible sequence of Hoar-triples can be found validating a sequence of

10

2. Contributions

operations over the program, a positive answer can be given.
To align the TA-based formalisms for analysis via the TAR-framework we

develop an intermediary representation called a Real-Timed Program. What
we argue and demonstrate in Paper B is that this formalism captures a variety
of timed-formalisms and thus is widely applicable.

Contribution 2

We demonstrate the feasibility of the TAR method in the setting of
timed-systems and show that the TAR based approach, in certain in-
stances, can solve problem-instances unsolvable by current state-of-the-
art methods.

Future Work

PTries have already proven useful in the model checking community [87–89]
and further applications in different areas such as database-systems, filesys-
tems and similar data-intensive areas are of interest. In that regard, as PTries
are a fairly novel data-structure, classical data-structure extensions require
attention; parallel- and distributed versions could be developed, and also
complex operations, such as partial matching, are of interest. In particular
partial matching can be useful for solving the coverability-question for Petri-
nets [68, 93] or for implementing an efficient “zone”-database for the verifi-
cation of Timed Automata. With more complex lookups, PTries could yield a
practical performance boost for the Antichain [59] and HKC-algorithms [23]
for language-inclusion checking for NFAs.

While the application of TAR for timed systems is novel, ideas and op-
timizations for the method have been developed in the program verification
community. As such, many of these could be transferred into the timed
domain, however, with extra care regarding the implicit dependencies be-
tween time-sensitive variables. Other interesting work relies on utilizing the
Antichain [59], HKC [23] with simulation-relation methods [1] for speeding
up the TAR method. Another uncharted direction of TAR is fully hybrid sys-
tems. While such systems can be encoded as Stopwatch Automata, which are
covered directly in the work of Paper B, native support using techniques for
(i)nfeasibility-computation of non-linear differential equations such as those
presented by Le Coënt et al in [51, 103] can prove interesting. Such a tech-
nique will require the construction of a dedicated SAT-solver for traces over
general hybrid systems, but otherwise relying on the framework of TAR.
Here the key ingredient is that the TAR method only requires an interpo-
lating solver that can 1) disprove (or prove) the feasibility of a trace and 2)
construct reasonable interpolants which are neither the strongest pre nor the
weakest post.

11

2.2 Synthesis

Synthesis has recently gained renewed attention partially due to novel al-
gorithms, advances in the machine-intelligence community but also due to
significant improvements in computational power and memory realistically
attainable. In this thesis we study various aspects of the synthesis problem
for timed and hybrid systems.

The synthesis problem in the model checking world conventionally attains
one of two forms; either

• a partially specified model is given, and the problem is to derive strate-
gies s.t. a set of objectives are met by filling out the unspecified parts of
the model,

• or concrete model is given, however with certain parameters left un-
specified, and the problem is then to provide values s.t. a set of objec-
tives are met.

Parameter Synthesis

While the main driver for Paper B is tackling the state-space-explosion prob-
lem, our TAR based algorithm proved easily extendable to solving the pa-
rameter synthesis problem for timed- and linear-hybrid systems.

Contribution 3

We provide (to the best of our knowledge) the first adaption of the TAR
method for solving the parameter set synthesis problem for timed and
hybrid systems. Furthermore, we demonstrate and argue that our semi-
algorithm is capable of synthesizing the exact and maximal parameter
sets solving the parameter synthesis problem.

As the problem of parameter synthesis for timed-systems is undecidable
in general [10], the method we propose is only a semi-algorithm. Further-
more, the method relies on the supported logic of the underlying solver
which in terms implies that the algorithm is not complete in general. How-
ever, for parametric linear hybrid automata with real-valued parameters, the
theory is the decidable class of First Order Logic over Linear Arithmetic using
Furrier-Mutzkin [71, 112] for quantifier elimination implying that our method
is a semi-algorithm for this class of systems. We demonstrate on a number
of case-studies that the method can solve parameter synthesis problems not
solvable by existing state-of-the-art methods.

Furthermore, we demonstrate a fully automatic characterization of the
constants used in Fischer’s [100] protocol ensuring mutual inclusion for a
constant number of processes. We note that the the parameter set constructed

12

2. Contributions

is not dependent on the number of processes, thus indicating that the param-
eter set is universal. However, this statement was not automatically proved
and methods for this feat remain further work. While we use the Z3-SAT
solver [58], further work would include experimenting with different, more
specialized, techniques and tools for quantifier elimination and feasibility
checking.

Discrete and Continuous Time

In classical model checking for timed systems, it is well know that the an-
swer to the reachability problem coincides for discrete-time semantics and
continuous-time-semantics [27]. A less encouraging result is known for the
liveness problem; here the answer in the discrete-semantics only imply the an-
swer in the continuous-semantics. In Paper C we study similar connections
in the setting of timed games [113].

Contribution 4

We provide a syntax and semantics for Timed-Arc Petri Net Games
(TAPG) and prove that the answers to the synthesis problem in discrete
and continuous-time do not coincide. We prove that the existence of a
controller in continuous time semantics (resp. discrete time semantics)
does not imply the existence of a controller in discrete time semantics
(resp. continuous time semantics).

With this negative result, our work provides a positive alternative.

Contribution 5

If the controller is restricted to a sub-class of non-lazy controllers (only
instantaneous actions or “wait”-actions are allowed), then the answer
to the synthesis question for timed systems coincide for discrete and
continuous semantics.

We use this result to implement a discrete-time strategy synthesis algo-
rithm for TAPGs and demonstrate that the synthesis problem can be an-
swered more efficiently for certain types of systems. This is done via an
experimental evaluation comparing the state-of-the-art continuous-time syn-
thesis tool Uppaal Tiga to our discrete-time alternative, implemented in Tap-
paal.

Logics

In the previously discussed work, we have been focusing on various forms
of synthesis for the reachability problem the safety problem. In Paper D we

13

study the synthesis problem in the context of a more complex logic; Metric
Interval Temporal Logic (MITL) [8]. It is known that synthesis of controllers
for MITL specifications on timed-systems is undecidable [62]. Nonetheless,
in Paper D we study the restricted MITL0,∞ fragment in an attempt to assess
the feasibility of synthesis regardless of its undecidability.

Contribution 6

We demonstrate the construction of a (non-deterministic) monitoring
timed Büchi-automata from a MITL0,∞ formula and prove the con-
struction correct. We then show that deterministic over- and under-
approximations can be constructed allowing for a decidable synthe-
sis of a controller for the over- and under-approximated problems via
Uppaal Tiga.

To demonstrate our approach, we implement the proposed approximation
techniques in the tool Casaal and combine it in a tool-chain with Uppaal Tiga.
We then apply this tool-chain on a number of case-studies, demonstrating the
feasibility of the approach proposed, in particular, we compute strategies for
non-trivial and periodic goals. For the presented case-studies we notice that
the computed over/under-approximations often are “exact and tight”, im-
plying exact controller synthesis.

Tool Support

In Paper E we introduce an integrated tool-chain for different synthesis meth-
ods simulation and verification on timed automata-like formalisms. The tool,
namely Uppaal Stratego, integrates the existing classical Uppaal, the timed
game synthesis tool Uppaal Tiga and the statistical-modelchecking engine
Uppaal SMC with a machine-learning-based extension presented in [56]. All
of these methods combined allow for the automatic construction (and verifi-
cation) of, safe, near-optimal schedulers—as well as their analysis.

Contribution 7

We provide a semantic sound platform based on the Uppaal-toolsuite
for automatic synthesis, verification, evaluation and optimization of
controllers for an expressive game and probabilistic extension of timed
automata.

As depicted in Figure 1, Uppaal Stratego is a tool that integrates work
and tools previously developed in the Uppaal family. There are two main
contributions in the Uppaal Stratego tool-chain; one is the seamless inte-
gration of the tools, facilitating automatic synthesis via Uppaal Tiga and the
later optimization via machine-learning. The other being the extended query-
and proposition-language for specifying controllers.

14

2. Contributions

Fig. 1: The different distributions of Uppaal embodying Uppaal Stratego and the n-player
problems addressed by each distribution for timed systems.

It is worth noting that this relatively recent tool-chain already has seen
both academic interest for satellite- and car-control-systems [102, 123], but
also industry interest with real-life case-studies and applications such as
heating-control [101] and traffic-control [65].

Further Work

The adaption of the TAR method for solving 2-player games is interesting.
Not only as the computations will significantly differ from the classical meth-
ods but the representation of the strategies also will. This may impact the
practical applicability as TAR-based strategies can prove more “abstract” and
thus more compact.

In the area of discrete-time synthesis, utilizing well-known optimizations
such as partial-order reduction and Timed Darts can reduce the memory- and
time-consumption further. Furthermore, while Paper C defines a subclass
for which the semantics coincide for strategy-synthesis, the proof is non-
constructive and thus it is not yet known how to construct a continuous-time
strategy from a discrete-time strategy (and vice versa).

Investigating synthesis for stronger logics, such as MITL0,∞, in the con-
text of discrete and continuous time semantics may reveal interesting classes
of systems for which synthesis is decidable. The general idea of over- and
under-approximation can also be pursued in synthesis for more complex sys-
tems such as hybrid automata.

Lastly all of these techniques, when matured, should be provided read-
ily available to users. Uppaal Stratego provides a solid platform for further
development and some interesting challenges are still open; efficient strategy-
representation, semantic-preserving export/import and certificate of correct-

15

ness of the constructed controller.

2.3 Tool Integration

In the academic research in formal methods, it is often expected that a com-
plete system description is provided in some given rigorous framework with
a formal syntax and semantics. Such expectations (or assumptions) allow for
strong theorems and argumentation. However, in the context of industry-
sized systems this can pose limitations to applicability, but almost surely in-
troduces redundant work and maintainability issues because the model and
the implementation has to be kept in sync. An even more severe problem
is the lack of homogeneity of the modeling frameworks; it is common in in-
dustry that numerous tools and frameworks are used in the construction of a
product often making a joint co-simulation a troublesome task. To remedy this
problem, among others, the Function Mockup Interface (FMI) [69] standard
has been introduced. The FMI standard dictates a protocol and method for
exchanging information between tools such that a joint analysis of a system
can be given.

In this section we outline the contributions of the thesis in terms of easing
integration of model-based-development (and synthesis) for industry using
the FMI-standard—but also utilizing a direct interconnection between tools
via a C-interface.

Co-Simulation

In Paper F and Paper G we study the co-simulation-framework proposed as
part of the Function Mockup Interface standard (FMI). The FMI standard is
used in industry for the exchange of (physical) models between a heteroge-
neous zoo of tools. While more complex modes of operations are proposed
under the FMI-standard, we restrict ourselves to the simpler, co-simulation-
standard. A co-simulation (in the context of the FMI standard) consists of
several Function Mockup Units (FMU), composed in a system where they
exchange values at given points in time, all coordinated by a so-called Master
Algorithm (MA), implemented in a host simulation tool.

In Paper F we discuss the embedding of timed systems, via integration of
Uppaal and SpaceEx as a FMUs, into a co-simulation environment, adjacent
to FMUs native to the simulation-host-tool, Ptolemy. As illustrated in Fig-
ure 2 the proposed method considers a system composed of A1, . . . , An sub-
systems where each subsystem is defined in a given tool (Uppaal, SpaceEx

or other FMU exporting tools). The system is then composed and directed by
the MA implemented in Ptolemy.

The paper demonstrates that such an integration is possible, however, it
is not without problems.

16

2. Contributions

Fig. 2: Generalized idea of the FMI/FMU concept as presented in Paper F. A System composed
of subsystems (green) A1, A2, . . . An−1, An composed under MA (blue) in Ptolemy.

Contribution 8

We argue that the FMU-standard, for the semantic consistency of com-
positionality of timed-systems, has to abandon the non-zero-delay re-
quirement. We also demonstrate that the acyclic-requirement (for avoid-
ing algebraic loops in the simulation) conflicts with interleaving seman-
tics for timed-systems.

What we demonstrate is that timed-systems (such as timed automata),
when composed under the master-algorithm proposed by Ptolemy, exhibits
only a sub-set of the behavior defined in their original compositional seman-
tics. As such there is a strong argument for alternative MAs when timed-
systems are involved.

This issue is partially solved in Paper G where we attempt to replace
Ptolemy as a simulation-driver with Uppaal. This construction is made
feasible by a recent extension of Uppaal, allowing for calls of external C-
functions.

Contribution 9

We propose a framework for embedding FMUs into a Uppaal timed au-
tomata and show how a MA, dictating the semantics of the system, can
itself be implemented as a timed automata. We furthermore propose
a timed automata-based MA which allows for interleaving-semantics,
allowing for sane composition of timed automata as FMUs.

While it is not explicitly stated in Paper G, the implementation allows
for vertical composition of systems as illustrated in Figure 3. Such a com-
positional structure is not only practical in terms of human overview of the
system but also has the potential to speed up computation as step-sizes are
negotiated in a tree-like manner. As such, embedded FMU/MA composi-
tions can negotiate more lax stepsizes.

17

Fig. 3: MA (blue) composing the systems A and B (green) which themselves are composed of
subsystems (green) A1, . . . , An and B1, . . . , Bn and a MA (blue) in Uppaal.

Black-box verification

While the above methods for simulation are useful in practice, they do not
come with hard guarantees with regard to the outcome of the analysis. How-
ever, they provide a quick way for integrating several pre-existing compo-
nents into a single simulation. In Paper H we study a tool-integration in
Uppaal using the external C-linking feature recently introduced. The pur-
pose is to offload the modeling-workload and reuse pre-existing tools for an
on-the-fly unfolding of timed automata. In the paper we utilize programs for
software-slicing for pre-computing an (abstract) control-flow graph (CFG).
We then use an off-the-shelf ARM-processor-emulator called QEMU [18] for
providing the exact semantics of each instruction of the CFG. The paper then
presents a tool-chain for facilitating worst-case-execution-time analysis, glu-
ing a Uppaal-model containing the timing-information of the caches, with
QEMU, proving a correct semantics of each operation of the CFG.

Contribution 10

We demonstrate a tool-chain composing external libraries and internal
modeling in order to reduce modeling overhead and increase reuse by
having the external libraries unfold the (untimed) system on-the-fly.

Further Work

While the work presented in this section only concerns itself with model
checking and simulation problems, it is immediately possible to extend the
given results and methods into the realm of automatic synthesis using trace-
based methods. In particular the external C-functions are already available
in development branch of Uppaal Stratego, and thus an adaption of the

18

3. Conclusion

FMI/FMU framework from Paper G with Uppaal Stratego is straightfor-
ward.

However, better interoperability between methods for verification and
synthesis is interesting further work; so-called co-verification. For instance,
as Paper C argues, a significant difference exists between the semantic inter-
pretations of time, hence a discrete-time optimized verification- or synthe-
sisengine should be used for electronic controller circuits while real-time and
hybrid aware engines should compute the continuous and physical part of a
system. Such an idea could be implemented on top of the decompositional
framework of Timed I/O Automata [57].

3 Conclusion

The work presented as part of this thesis provides a step in the direction
of more efficient verification engines, practical controller synthesis and aca-
demic tools ready for integration into industrial tool-chains.

We have presented novel datastructure called PTrie that is generally appli-
cable in a wide range of context, but in the specific setting of model checking
has provided truly significant speedups. Alternative methods for state-space
characterization has also been investigated, and we have successfully applied
the Trace Abstraction Refinement technique to timed systems. Furthermore,
we have demonstrated that this method is not only applicable to verification
but with a minor extension is extendable to solve the parameter synthesis
question for timed and hybrid systems.

We have proven that discrete and continuous semantics do not coincide
for the safety synthesis question for Timed-Arc Petri-net Games, a result that
translates directly to timed automata. To remedy the negative result, we
propose a semantic restriction on the games considered. We prove that con-
tinuous and discrete-time semantics coincide for the safety-synthesis ques-
tion for systems in which the controller is restricted to only untimed choices.
For this class of problems, we demonstrate that an explicit-state discrete-
time synthesis tool can outperform a state-of-the-art symbolic synthesis tool,
Uppaal Tiga. However, we leave open the translation of a discrete (resp.
continuous) time controller to a continuous (resp. discrete) time controller.

On a range of case-studies, we demonstrate that over- and under- ap-
proximations of MITL0,∞ is a viable strategy for the synthesis of controllers
with complex objectives. An important point stressed in this work is that the
approximations often are tight; the over- and under-approximation are the
same, implying that the synthesis question for the given problem-instance is
decidable.

In another aspect of this thesis, we study the interaction and interoper-
ability of tools. We demonstrate both semantic issues when using the off-

19

References

the-shelf protocol FMI from industry for co-simulation with timed automata.
We then argue for a solution to the semantic inconsistencies, notably that
using Uppaal SMC itself as a driver for the simulation can ensure semantic
integrity. At the same time we demonstrate a new way of interacting with
Uppaal SMC, namely via native C-function calls. We also demonstrate that
the proposed method works well with the existing features of Uppaal SMC
and hint that such an integration is also possible for the synthesis tool Uppaal

Stratego.
We also utilize the external C-function calls to implement a generic frame-

work for model checking of binary programs. We here combine Uppaal with
the ARM-emulator Qemu and program abstraction techniques from the pro-
gram verification community. We show the feasibility of this approach and
we argue that this greatly reduces the integration-effort needed for model
checking of industrial software while at the same time reducing the room for
human error.

Lastly, with Stratego we demonstrate tool-interaction and novel methods
for synthesis, enabling synthesis of controllers for industrial systems. How-
ever, there is an effort undertaken to migrate more of the techniques and
technologies developed as part of this thesis into the tool. This is an attempt
to construct a platform for industry strength controller synthesis in a usable
manner for engineers. Here we put an emphasis on that all parts of a sys-
tem need not be modeled within the tool, but rather can be provided as a
black-box for use by the tool.

References

[1] P. A. Abdulla, Y.-F. Chen, L. Holík, R. Mayr, and T. Vojnar, “When simulation
meets antichains: On checking language inclusion of nondeterministic finite
(tree) automata,” in Proceedings of the 16th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, ser. TACAS’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 158–174. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-12002-2_14

[2] R. Alur, “Timed automata,” in Computer Aided Verification, ser. Lecture
Notes in Computer Science, N. Halbwachs and D. Peled, Eds. Springer
Berlin Heidelberg, 1999, vol. 1633, pp. 8–22. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-48683-6_3

[3] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in dense real-time,”
Information and computation, vol. 104, no. 1, pp. 2–34, 1993.

[4] R. Alur, C. Courcoubetis, and D. L. Dill, “Model-checking for probabilistic real-
time systems,” in In Automata, Languages and Programming: Proceedings of the

18th ICALP, Lecture Notes in Computer Science 510. Springer, 1991, pp. 115–126.

[5] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, “Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems,”

20

References

in Hybrid Systems, R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 209–229.

[6] R. Alur and D. Dill, “Automata for modeling real-time systems,” in
Automata, Languages and Programming, ser. Lecture Notes in Computer Science,
M. Paterson, Ed. Springer Berlin Heidelberg, 1990, vol. 443, pp. 322–335.
[Online]. Available: http://dx.doi.org/10.1007/BFb0032042

[7] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical

Computer Science, vol. 126, no. 2, pp. 183 – 235, 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0304397594900108

[8] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing punctuality,” J.

ACM, vol. 43, pp. 116–146, January 1996.

[9] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time temporal
logic,” J. ACM, vol. 49, no. 5, pp. 672–713, Sep. 2002. [Online]. Available:
http://doi.acm.org/10.1145/585265.585270

[10] R. Alur, T. A. Henzinger, and M. Y. Vardi, “Parametric real-time reasoning,” in
Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing,
ser. STOC ’93. New York, NY, USA: ACM, 1993, pp. 592–601. [Online].
Available: http://doi.acm.org/10.1145/167088.167242

[11] R. Alur, S. La Torre, and G. J. Pappas, “Optimal paths in weighted timed au-
tomata,” in Hybrid systems: computation and control. Springer, 2001, pp. 49–62.

[12] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Model-checking continuous-
time markov chains,” ACM Trans. Comput. Logic, vol. 1, no. 1, pp. 162–170, Jul.
2000. [Online]. Available: http://doi.acm.org/10.1145/343369.343402

[13] J. Barnat, L. Brim, V. Havel, J. Havlíček, J. Kriho, M. Lenčo, P. Ročkai, V. Štill,
and J. Weiser, “DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded
C & C++ Programs,” in Computer Aided Verification (CAV 2013), ser. LNCS, vol.
8044. Springer, 2013, pp. 863–868.

[14] G. Behrmann, A. David, K. Larsen, J. Hakansson, P. Petterson, W. Yi, and
M. Hendriks, “Uppaal 4.0,” in QEST’06, 2006, pp. 125–126.

[15] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime,
“Uppaal-tiga: Time for playing games!” in Proceedings of the 19th International

Conference on Computer Aided Verification, ser. LNCS, no. 4590. Springer, 2007,
pp. 121–125.

[16] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime,
“Uppaal-tiga: Time for playing games!” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, W. Damm and H. Hermanns, Eds.
Springer Berlin Heidelberg, 2007, vol. 4590, pp. 121–125. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-73368-3_14

[17] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager, Minimum-cost reachability for priced time automata. Springer, 2001.

[18] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings of

the Annual Conference on USENIX Annual Technical Conference, ser. ATEC ’05.
Berkeley, CA, USA: USENIX Association, 2005, pp. 41–41. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1247360.1247401

21

References

[19] J. Berendsen, D. Jansen, and F. Vaandrager, “Fortuna: Model checking priced
probabilistic timed automata,” in Quantitative Evaluation of Systems (QEST), 2010

Seventh International Conference on the, Sept 2010, pp. 273–281.

[20] J. Berendsen, D. N. Jansen, and J.-P. Katoen, “Probably on time and within
budgeton reachability in priced probabilistic timed automata,” in Quantitative

Evaluation of Systems, 2006. QEST 2006. Third International Conference on. IEEE,
2006, pp. 311–322.

[21] B. Berthomieu and F. Vernadat, “Time petri nets analysis with tina,” in Quan-

titative Evaluation of Systems, 2006. QEST 2006. Third International Conference on.
IEEE, 2006, pp. 123–124.

[22] S. Blom, J. van de Pol, and M. Weber, “Ltsmin: Distributed and symbolic reach-
ability,” in Computer Aided Verification. Springer, 2010, pp. 354–359.

[23] F. Bonchi and D. Pous, “Checking nfa equivalence with bisimulations up to
congruence,” in ACM SIGPLAN Notices, vol. 48, no. 1. ACM, 2013, pp. 457–
468.

[24] P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen, “Optimal strategies in priced
timed game automata,” in FSTTCS, 2004.

[25] P. Bouyer, N. Markey, and O. Sankur, Robustness in Timed Automata. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–18. [Online]. Available:
https://doi.org/10.1007/978-3-642-41036-9_1

[26] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine, “Kronos:
A model-checking tool for real-time systems,” in Formal Techniques in Real-Time

and Fault-Tolerant Systems. Springer, 1998, pp. 298–302.

[27] M. Bozga, O. Maler, and S. Tripakis, “Efficient verification of timed automata
using dense and discrete time semantics,” in Correct Hardware Design and Verifi-

cation Methods. Springer, 1999, pp. 125–141.

[28] A. R. Bradley, “Sat-based model checking without unrolling,” in Verification,

Model Checking, and Abstract Interpretation, R. Jhala and D. Schmidt, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 70–87.

[29] T. Brihaye, V. Bruyere, and J.-F. Raskin, “Model-checking for weighted timed
automata,” in FORMATS/FTRTFT, vol. 3253. Springer, 2004, pp. 277–292.

[30] ——, “On optimal timed strategies,” in Formal Modeling and Analysis of Timed

Systems. Springer, 2005, pp. 49–64.

[31] D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis,
and M. Wetter, “Determinate composition of fmus for co-simulation,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2013-
153, Aug 2013. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2013/EECS-2013-153.html

[32] V. Bruyère, E. Filiot, M. Randour, and J. Raskin, “Meet your expectations with
guarantees: Beyond worst-case synthesis in quantitative games,” CoRR, vol.
abs/1309.5439, 2013. [Online]. Available: http://arxiv.org/abs/1309.5439

[33] R. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE

Transactions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

22

References

[34] P. Bulychev, A. David, K. G. Larsen, A. Legay, G. Li, D. B. Poulsen, and
A. Stainer, “Monitor-based statistical model checking for weighted metric tem-
poral logic,” in LPAR, 2012.

[35] P. Bulychev, A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen,
“Checking and distributing statistical model checking,” in NASA Formal Meth-

ods. Springer, 2012, pp. 449–463.

[36] P. E. Bulychev, A. David, K. G. Larsen, M. Mikucionis, D. B. Poulsen, A. Legay,
and Z. Wang, “UPPAAL-SMC: statistical model checking for priced timed
automata,” in Proceedings 10th Workshop on Quantitative Aspects of Programming

Languages and Systems, QAPL 2012, Tallinn, Estonia, 31 March and 1 April 2012.,
2012, pp. 1–16. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.85.1

[37] J. Byg, K. Y. Jørgensen, and J. Srba, “TAPAAL: Editor, simulator and verifier
of timed-arc Petri nets,” in Automated Technology for Verification and Analysis:

7th International Symposium, ser. LNCS, vol. 5799. Springer, 2009, pp. 84–89.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-04761-9_7

[38] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Efficient
on-the-fly algorithms for the analysis of timed games,” in CONCUR 2005

- Concurrency Theory, 16th International Conference, ser. Lecture Notes in
Computer Science, M. Abadi and L. de Alfaro, Eds., vol. 3653. San
Francisco, CA, USA: Springer, August 2005, pp. 66–80. [Online]. Available:
http://dx.doi.org/10.1007/11539452_9

[39] ——, “Efficient on-the-fly algorithms for the analysis of timed games,” in CON-

CUR, 2005.

[40] F. Cassez, P. G. de Aledo, and P. G. Jensen, WUPPAAL: Computation

of Worst-Case Execution-Time for Binary Programs with UPPAAL. Cham:
Springer International Publishing, 2017, pp. 560–577. [Online]. Available:
https://doi.org/10.1007/978-3-319-63121-9_28

[41] F. Cassez, P. G. Jensen, and K. G. Larsen, “Refinement of trace abstrac-
tion for real-time programs,” in International Workshop on Reachability Problems.
Springer, 2017, pp. 42–58.

[42] F. Cassez and K. Larsen, “The impressive power of stopwatches,” in CONCUR

2000—Concurrency Theory. Springer, 2000, pp. 138–152.

[43] K. Chatterjee, M. Jurdziński, and T. A. Henzinger, “Quantitative stochastic
parity games,” in Proceedings of the Fifteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, ser. SODA ’04. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2004, pp. 121–130. [Online]. Available:
http://dl.acm.org/citation.cfm?id=982792.982808

[44] K. Chatterjee, M. Jurdziński, and T. Henzinger, “Simple stochastic parity
games,” in Computer Science Logic, ser. Lecture Notes in Computer Science,
M. Baaz and J. Makowsky, Eds. Springer Berlin Heidelberg, 2003, vol. 2803, pp.
100–113. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-45220-1_11

[45] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis, “PRISM-games:
A model checker for stochastic multi-player games,” in Proc. 19th International

23

References

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’13), ser. LNCS, N. Piterman and S. Smolka, Eds., vol. 7795. Springer,
2013, pp. 185–191.

[46] ——, “Automatic verification of competitive stochastic systems,” Formal

Methods in System Design, vol. 43, no. 1, pp. 61–92, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10703-013-0183-7

[47] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided
abstraction refinement,” in Computer aided verification. Springer, 2000, pp. 154–
169.

[48] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization
skeletons using branching time temporal logic,” in Workshop on Logic of Pro-

grams. Springer, 1981, pp. 52–71.

[49] ——, “Design and synthesis of synchronization skeletons using branching-time
temporal logic,” in Logic of Programs, Workshop. London, UK, UK: Springer-
Verlag, 1982, pp. 52–71. [Online]. Available: http://dl.acm.org/citation.cfm?
id=648063.747438

[50] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” J. ACM, vol. 50,
no. 5, pp. 752–794, 2003.

[51] A. L. Coënt, F. De Vuyst, L. Chamoin, and L. Fribourg, “Control synthesis
of nonlinear sampled switched systems using euler’s method,” arXiv preprint

arXiv:1704.03102, 2017.

[52] A. Condon, “The complexity of stochastic games,” Information and Computation,
vol. 96, no. 2, pp. 203–224, 1992.

[53] C. Courcoubetis and M. Yannakakis, “Verifying temporal properties of finite-
state probabilistic programs,” in Foundations of Computer Science, 1988., 29th An-

nual Symposium on. IEEE, 1988, pp. 338–345.

[54] A. David, L. Jacobsen, M. Jacobsen, K. Y. Jørgensen, M. H. Møller, and J. Srba,
“Tapaal 2.0: Integrated development environment for timed-arc petri nets,” in
Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2012,
pp. 492–497.

[55] A. David, P. G. Jensen, K. G. Larsen, M. Mikučionis, and J. H. Taankvist,
“Uppaal stratego,” in Tools and Algorithms for the Construction and Analysis of

Systems, ser. Lecture Notes in Computer Science, C. Baier and C. Tinelli, Eds.
Springer Berlin Heidelberg, 2015, vol. 9035, pp. 206–211. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-46681-0_16

[56] A. David, P. G. Jensen, K. G. Larsen, A. Legay, D. Lime, M. G. Sørensen, and
J. H. Taankvist, “On time with minimal expected cost!” in ATVA, 2014, pp.
129–145.

[57] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski, “Timed i/o
automata: A complete specification theory for real-time systems,” in Proceedings

of the 13th ACM International Conference on Hybrid Systems: Computation and

Control, ser. HSCC ’10. New York, NY, USA: ACM, 2010, pp. 91–100. [Online].
Available: http://doi.acm.org/10.1145/1755952.1755967

24

References

[58] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceedings of

the Theory and Practice of Software, 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, ser. TACAS’08/ETAPS’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–340. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1792734.1792766

[59] M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin, “Antichains: A new al-
gorithm for checking universality of finite automata,” in International Conference

on Computer Aided Verification. Springer, 2006, pp. 17–30.

[60] H. Dierks, S. Kupferschmid, and K. G. Larsen, “Automatic abstraction refine-
ment for timed automata,” in International Conference on Formal Modeling and

Analysis of Timed Systems. Springer, 2007, pp. 114–129.

[61] D. Dill, “Timing assumptions and verification of finite-state concurrent
systems,” in Automatic Verification Methods for Finite State Systems, ser.
LNCS. Springer, 1990, vol. 407, pp. 197–212. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-52148-8_17

[62] L. Doyen, G. Geeraerts, J. Raskin, and J. Reicher, “Realizability of real-time
logics,” in Proceedings of FORMATS 2009, 7th International Conference on Formal

Modeling and Analysis of Timed Systems, ser. Lecture Notes in Computer Science,
vol. 5813. Springer, 2009, pp. 133–148.

[63] E. A. Emerson and E. M. Clarke, “Characterizing correctness properties of
parallel programs using fixpoints,” in Automata, Languages and Programming,
J. de Bakker and J. van Leeuwen, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1980, pp. 169–181.

[64] E. A. Emerson and J. Y. Halpern, ““sometimes” and “not never” revisited: on
branching versus linear time temporal logic,” Journal of the ACM (JACM), vol. 33,
no. 1, pp. 151–178, 1986.

[65] A. B. Eriksen, C. Huang, J. Kildebogaard, H. Lahrmann, K. G. Larsen, M. Mu-
niz, and J. H. Taankvist, “Uppaal stratego for intelligent traffic lights,” in 12th

ITS European Congress, European Congress and Exhibition on Intelligent Transport

Systems and Services. ERTICO-ITS Europe, 2017.

[66] Étienne André, T. Chatain, L. Fribourg, and E. Encrenaz, “An inverse
method for parametric timed automata,” Electronic Notes in Theoretical

Computer Science, vol. 223, pp. 29 – 46, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066108004921

[67] S. Evangelista and J.-F. Pradat-Peyre, “Memory efficient state space storage
in explicit software model checking,” in Model Checking Software: 12th

International SPIN Workshop, ser. LNCS, vol. 3639. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 43–57. [Online]. Available: http:
//dx.doi.org/10.1007/11537328_7

[68] A. Finkel, The minimal coverability graph for Petri nets. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1993, pp. 210–243. [Online]. Available: https:
//doi.org/10.1007/3-540-56689-9_45

[69] FMI Standard Orginization, “Functional mock-up interface,” http://fmi-
standard.org/.

25

References

[70] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker, “Automated verification
techniques for probabilistic systems,” in Formal Methods for Eternal Networked

Software Systems. Springer, 2011, pp. 53–113.

[71] J. Fourier, Analyse des travaux de l’Academie Royale des Sciences, pendant l’année

1827. Partie mathématique, 1827.

[72] G. Frehse, “Phaver: Algorithmic verification of hybrid systems past
hytech,” in Hybrid Systems: Computation and Control, ser. Lecture Notes
in Computer Science, M. Morari and L. Thiele, Eds. Springer Berlin
Heidelberg, 2005, vol. 3414, pp. 258–273. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-31954-2_17

[73] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable
verification of hybrid systems,” in Computer Aided Verification, ser. Lecture
Notes in Computer Science, G. Gopalakrishnan and S. Qadeer, Eds.
Springer Berlin Heidelberg, 2011, vol. 6806, pp. 379–395. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22110-1_30

[74] S. Haddad and B. Monmege, “Reachability in mdps: Refining convergence
of value iteration,” in Reachability Problems, ser. Lecture Notes in Computer
Science, J. Ouaknine, I. Potapov, and J. Worrell, Eds. Springer International
Publishing, 2014, vol. 8762, pp. 125–137. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-11439-2_10

[75] H.-M. Hanisch, “Analysis of place/transition nets with timed arcs and its ap-
plication to batch process control,” in Application and Theory of Petri Nets 1993.
Springer, 1993, pp. 282–299.

[76] H. Hansson and B. Jonsson, “A logic for reasoning about time and reliability,”
Formal aspects of computing, vol. 6, no. 5, pp. 512–535, 1994.

[77] A. Hartmanns and H. Hermanns, “A modest approach to checking probabilis-
tic timed automata,” in Quantitative Evaluation of Systems, 2009. QEST’09. Sixth

International Conference on the. IEEE, 2009, pp. 187–196.

[78] M. Heizmann, J. Hoenicke, and A. Podelski, “Refinement of trace abstraction,”
in SAS, ser. Lecture Notes in Computer Science, J. Palsberg and Z. Su, Eds., vol.
5673. Springer, 2009, pp. 69–85.

[79] D. Henriques, J. Martins, P. Zuliani, A. Platzer, and E. Clarke, “Statistical model
checking for markov decision processes,” in Quantitative Evaluation of Systems

(QEST), 2012 Ninth International Conference on, Sept 2012, pp. 84–93.

[80] T. A. Henzinger, The theory of hybrid automata. Springer, 2000.

[81] T. A. Henzinger, P.-H. Ho, and H. Wong-toi, “Hytech: A model checker for
hybrid systems,” Software Tools for Technology Transfer, vol. 1, pp. 460–463, 1997.

[82] T. A. Henzinger and H. Wong-Toi, Using HyTech to synthesize control parameters

for a steam boiler. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp.
265–282. [Online]. Available: https://doi.org/10.1007/BFb0027241

[83] H. Hermanns, B. Wachter, and L. Zhang, “Probabilistic cegar,” in CAV, vol.
5123. Springer, 2008, pp. 162–175.

26

References

[84] H. E. Jensen, “Model checking probabilistic real time systems,” in Chalmers

Institute of Technology, 1996, pp. 247–261.

[85] P. G. Jensen, K. G. Larsen, A. Legay, and U. Nyman, “Integrating tools: Co-
simulation in uppaal using fmi-fmu,” in 2017 22nd International Conference on

Engineering of Complex Computer Systems (ICECCS), Nov 2017, pp. 11–19.

[86] P. G. Jensen, K. G. Larsen, and J. Srba, “Real-time strategy synthesis
for timed-arc Petri net games via discretization,” in Proceedings of

the 23rd International Symposium on Model Checking Software (SPIN’16),
ser. LNCS, vol. 9641. Springer, 2016, pp. 129–146. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-32582-8_9

[87] ——, “Discrete and continuous strategies for timed-arc petri net games,”
International Journal on Software Tools for Technology Transfer, Sep 2017. [Online].
Available: https://doi.org/10.1007/s10009-017-0473-2

[88] ——, PTrie: Data Structure for Compressing and Storing Sets via Prefix

Sharing. Cham: Springer International Publishing, 2017, pp. 248–265. [Online].
Available: https://doi.org/10.1007/978-3-319-67729-3_15

[89] P. G. Jensen, K. G. Larsen, J. Srba, M. G. Sørensen, and J. H. Taankvist, “Memory
efficient data structures for explicit verification of timed systems.” in NASA

Formal Methods, 2014, pp. 307–312.

[90] J. J. Jessen, J. I. Rasmussen, K. G. Larsen, and A. David, “Guided controller
synthesis for climate controller using uppaal tiga,” in Formal Modeling and

Analysis of Timed Systems, ser. Lecture Notes in Computer Science, J.-F. Raskin
and P. Thiagarajan, Eds. Springer Berlin Heidelberg, 2007, vol. 4763, pp.
227–240. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-75454-1_17

[91] K. Y. Jørgensen, K. G. Larsen, and J. Srba, “Time-darts: A data
structure for verification of closed timed automata,” in Proceedings

Seventh Conference on Systems Software Verification, SSV 2012, Sydney,

Australia, 28-30 November 2012., 2012, pp. 141–155. [Online]. Available:
http://dx.doi.org/10.4204/EPTCS.102.13

[92] A. Jovanović, D. Lime, and O. H. Roux, Integer Parameter Synthesis for Timed

Automata. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 401–415.
[Online]. Available: https://doi.org/10.1007/978-3-642-36742-7_28

[93] R. M. Karp and R. E. Miller, “Parallel program schemata,” Journal of Computer

and System Sciences, vol. 3, no. 2, pp. 147 – 195, 1969. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022000069800115

[94] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in Machine

Learning: ECML 2006, ser. Lecture Notes in Computer Science, J. Fürnkranz,
T. Scheffer, and M. Spiliopoulou, Eds. Springer Berlin Heidelberg, 2006, vol.
4212, pp. 282–293. [Online]. Available: http://dx.doi.org/10.1007/11871842_29

[95] R. Koymans, “Specifying real-time properties with metric temporal logic,”
Real-Time Systems, vol. 2, no. 4, pp. 255–299, Nov 1990. [Online]. Available:
https://doi.org/10.1007/BF01995674

[96] D. Kozen, “Results on the propositional µ-calculus,” Theoretical computer science,
vol. 27, no. 3, pp. 333–354, 1983.

27

References

[97] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic model
checking with PRISM: A hybrid approach,” International Journal on Software Tools

for Technology Transfer (STTT), vol. 6, no. 2, pp. 128–142, 2004.

[98] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston, “Automatic verifi-
cation of real-time systems with discrete probability distributions,” in Formal

Methods for Real-Time and Probabilistic Systems. Springer, 1999, pp. 75–95.

[99] A. Laarman, J. van de Pol, and M. Weber, “Parallel recursive state
compression for free,” in Model Checking Software: 18th International SPIN

Workshop, ser. LNCS, vol. 6823. Springer, 2011, pp. 38–56. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22306-8_4

[100] L. Lamport, “A fast mutual exclusion algorithm,” ACM Transactions on Computer

Systems (TOCS), vol. 5, no. 1, pp. 1–11, 1987.

[101] K. G. Larsen, M. Mikučionis, M. Muñiz, J. Srba, and J. H. Taankvist, Online and

Compositional Learning of Controllers with Application to Floor Heating. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 244–259. [Online]. Available:
https://doi.org/10.1007/978-3-662-49674-9_14

[102] K. G. Larsen, M. Mikučionis, and J. H. Taankvist, Safe and Optimal Adaptive

Cruise Control. Cham: Springer International Publishing, 2015, pp. 260–277.
[Online]. Available: https://doi.org/10.1007/978-3-319-23506-6_17

[103] A. Le Coënt, J. A. dit Sandretto, A. Chapoutot, and L. Fribourg, “Control of
nonlinear switched systems based on validated simulation,” in Symbolic and

Numerical Methods for Reachability Analysis (SNR), 2016 International Workshop on.
IEEE, 2016, pp. 1–6.

[104] A. Legay and S. Sedwards, “Lightweight monte carlo algorithm for markov
decision processes,” arXiv preprint arXiv:1310.3609, 2013.

[105] G. Li, “Checking timed büchi automata emptiness using lu-abstractions,” in
Formal Modeling and Analysis of Timed Systems: 7th International Conference,
ser. LNCS. Springer, 2009, vol. 5813, pp. 228–242. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04368-0_18

[106] G. Li, P. G. Jensen, K. G. Larsen, A. Legay, and D. B. Poulsen, “Practical
controller synthesis for mtl0,∞,” in Proceedings of the 24th ACM SIGSOFT

International SPIN Symposium on Model Checking of Software, ser. SPIN
2017. New York, NY, USA: ACM, 2017, pp. 102–111. [Online]. Available:
http://doi.acm.org/10.1145/3092282.3092303

[107] D. Lime, O. H. Roux, C. Seidner, and L.-M. Traonouez, “Romeo: A parametric
model-checker for petri nets with stopwatches,” in International Conference on

Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2009,
pp. 54–57.

[108] O. Madani, “Polynomial value iteration algorithms for deterministic
mdps,” in Proceedings of the Eighteenth Conference on Uncertainty in

Artificial Intelligence, ser. UAI’02. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2002, pp. 311–318. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2073876.2073913

28

References

[109] P. Madhusudan and P. S. Thiagarajan, “Distributed controller synthesis for local
specifications,” in ICALP, vol. 1. Springer, 2001, pp. 396–407.

[110] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete controllers for
timed systems,” in STACS 95. Springer, 1995, pp. 229–242.

[111] P. M. Merlin, “A study of the recoverability of computing systems.” 1975.

[112] D. Monniaux, “A quantifier elimination algorithm for linear real arithmetic,” in
Logic for Programming, Artificial Intelligence, and Reasoning. Springer, 2008, pp.
243–257.

[113] A. Pnueli, E. Asarin, O. Maler, and J. Sifakis, “Controller synthesis for timed
automata,” in System Structure and Control, Citeseer. Elsevier, 1998.

[114] A. Pnueli, “The temporal logic of programs,” in Foundations of Computer Science,

1977., 18th Annual Symposium on. IEEE, 1977, pp. 46–57.

[115] A. Pnueli and R. Rosner, “A framework for the synthesis of reactive
modules,” in Concurrency 88: International Conference on Concurrency, Hamburg,

FRG, October 18-19, 1988, Proceedings, 1988, pp. 4–17. [Online]. Available:
https://doi.org/10.1007/3-540-50403-6_28

[116] ——, “On the synthesis of a reactive module,” in Conference Record of the

Sixteenth Annual ACM Symposium on Principles of Programming Languages,

Austin, Texas, USA, January 11-13, 1989, 1989, pp. 179–190. [Online]. Available:
http://doi.acm.org/10.1145/75277.75293

[117] D. Poulsen and J. van Vliet, “Duration probabilistic automata,” Technical report,
Aalborg University, Tech. Rep., 2011.

[118] J. P. Queille and J. Sifakis, “Specification and verification of concurrent systems
in cesar,” in International Symposium on Programming, M. Dezani-Ciancaglini and
U. Montanari, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp.
337–351.

[119] C. Ramamoorthy and G. Ho, “Performance evaluation of asynchronous concur-
rent systems using petri nets,” Software Engineering, IEEE Transactions on, vol.
SE-6, no. 5, pp. 440–449, Sept 1980.

[120] S. Sergiy, M. Greitschus, P. G. Jensen, K. G. Larsen, M. Mikučionis, A. Podelski,
T. Strump, and S. Tripakis, “Co-simulation of hybrid systems with spaceex and
uppaal,” 2015, p. to appear.

[121] W. J. Stewart, Introduction to the numerical solution of Markov chains. Princeton
University Press Princeton, 1994, vol. 41.

[122] A. Valmari, Stubborn sets for reduced state space generation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1991, pp. 491–515. [Online]. Available:
https://doi.org/10.1007/3-540-53863-1_36

[123] E. R. Wognsen, B. R. Haverkort, M. Jongerden, R. R. Hansen, and K. G.
Larsen, A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded

Systems. Cham: Springer International Publishing, 2015, pp. 305–320. [Online].
Available: https://doi.org/10.1007/978-3-319-22975-1_20

29

References

[124] H. L. Younes and R. G. Simmons, “Probabilistic verification of discrete event
systems using acceptance sampling,” in Computer Aided Verification. Springer,
2002, pp. 223–235.

30

Part II

Papers

31

Paper A

PTrie: Data Structure for Compressing and Storing
Sets via Prefix Sharing

Peter Gjøl Jensen, Kim Guldstrand Larsen and Jiří Srba

The paper has been published in the
Proceedings of Theoretical Aspects of Computing – ICTAC 2017, pp. 248–265,

2017.

c© Springer International Publishing AG 2017
The layout has been revised.

1. Introduction

Abstract

Sets and their efficient implementation are fundamental in all of computer science,
including model checking, where sets are used as the basic data structure for storing
(encodings of) states during a state-space exploration. In the quest for fast and mem-
ory efficient methods for manipulating large sets, we present a novel data structure
called PTrie for storing sets of binary strings of arbitrary length. The PTrie data
structure distinguishes itself by compressing the stored elements while sharing the
desirable key characteristics with conventional hash-based implementations, namely
fast insertion and lookup operations. We provide the theoretical foundation of PTries,
prove the correctness of their operations and conduct empirical studies analysing the
performance of PTries for dealing with randomly generated binary strings as well
as for state-space exploration of a large collection of Petri net models from the 2016
edition of the Model Checking Contest (MCC’16). We experimentally document that
with a modest overhead in running time, a truly significant space-reduction can be
achieved. Lastly, we provide an efficient implementation of the PTrie data struc-
ture under the GPL version 3 license, so that the technology is made available for
memory-intensive applications such as model checking tools.

1 Introduction

Formal verification techniques are being increasingly employed in many dif-
ferent industrial applications, including both hardware and software systems.
In the hardware industry such techniques have been adopted by most of the
major leading companies and a widespread adoption in the software indus-
try is under way. Formal techniques have become essential for certain safety-
critical applications for example in the avionics and aerospace industry but
also in other areas—like the development of operating systems, control sys-
tems for railways and numerous other applications. The performance of the
respective verification tools depends to a large extent on fast and memory
efficient implementations of the underlying data structures used in the verifi-
cation algorithms. This is in particular due to the state-space-explosion prob-
lem that all modern model checkers must deal with. Such tools are not only
constrained by the time requirements but also by the physical limitations like
the amount of memory resources of the hardware that the implementation is
targeted for.

A common data structure used in model checking and many other appli-
cations is a set. We revisit the state-of-the-art implementation approaches for
storing sets that offer the basic operations of inserting an element to the set,
removing an element from the set and a membership check. This simple set
interface is sufficient for the applications in many explicit model checkers,
while the symbolic approaches may require more complex operations like in-

35

Paper A.

tersection and union that are, however, more expensive in implementation. In
order to compete with the foremost hash-based approaches for storing sets,
we develop a particular tree-based representation of a set called PTrie that is
optimized both for speed and memory. PTrie is designed for storing binary
strings of arbitrary length but via binary encoding/decoding techniques it
can be used as a general set-implementation. An early implementation of
PTrie was briefly mentioned in a tool paper by Jensen et. al [1], indicating
encouraging performance results. Since then the data structure was further
developed, extensively tested and matured so that it became competitive with
the industrial leading implementations.

Although generic data structures for sets already exist in the standard-
library of C++, Google’s dense_hash (and sparse_hash) implementations per-
form significantly faster (or have a smaller memory footprint) than other
reasonable alternatives as documented e.g. in [2, 3]. PTrie are designed as
an almost general replacement of such library implementations and yield
a sensible trade off between time and space consumption by utilizing the
inherent prefix-sharing whenever beneficial. The main characteristic of the
structure is the partial (lazy) construction of the trie—hence the name Partial
Trie (PTrie)—that is optimized for storing a large number of binary strings
of varying size. At the same time the PTrie data structure utilizes the prefix-
sharing of the binary strings, often resulting in significant compression of
the stored data, sometime up to 70% compared to the Google’s hash-based
implementation . In the present paper, we formally define the syntax and
semantics of PTries, give the algorithms for the interface operations, prove
their correctness and provide an open-source implementation that is thor-
oughly tested against other approaches.

Related Work. While tries were introduced already in the 1960’s [4], their
primary focus was on reducing search time in large sets of text-strings. Dif-
ferent variants of tries have been developed during the years, such as Radix
tree [5, 6] designed for storing more than single characters on edges or trie-
based hashmaps for both the sequential and concurrent setting [7, 8]. Our
work differs by having a very conservative approach to the expansion of the
trie in order to achieve both speed and overall memory reductions. Notably,
the burst tries [9] do not make use of a B-Tree-style pointer scheme and
do not enforce removal of the prefix, resulting in an overhead in memory-
consumption and not reduction as in PTries. The HAT-tries [7] enforce the
use of hashes for elements in buckets, which is not necessary in our data
structure. Moreover, neither [9] nor [7] provide a formal definition of their
algorithms or the semantics, and they do not present the delete-operation (or
“inverse burst”), which we provide. Also Bagwell’s work on HAMT [10] is
mostly using trie-structures in combination with hashes of data and comes
with added memory-footprint rather than memory reduction. In our ex-

36

2. Definition of PTrie

periments, we compare the PTrie performance only with Google’s dense-
hash/sparsehash implementations as other popular trie libraries [11–13] are
not competitive with Google hash libraries for the model checking applica-
tion domain that relies on fast and memory efficient implementation of sets.

Various forms of trees (Red/Black trees, binary trees, heaps) are conven-
tionally also used for implementing sets and map-like data structures but
such implementations are generally regarded inferior in terms of perfor-
mance [14, 15]. Binary Decision Diagrams (BDD) [16] are another efficient
way of storing binary strings, however with a very high average computa-
tional cost (as documented e.g. in [1]) for the basic single-element operations
such as insert and delete.

In the domain of model checking, Laarman et. al. [17] introduced a tree-
style compressing data structure for multi-core model checking, a method
that compresses inserted data on-the-fly by utilizing sub-string sharing be-
tween integer strings, encoded into a tree structure. A similar technique has
been used by the tool DIVINE [18], leading to great memory reductions, how-
ever, at the cost of performance. While both papers demonstrate promising
results, we argue that these works are orthogonal as they both rely on effi-
cient map and set implementations. Furthermore, these methods come with a
number of restrictions making them less suitable as general set and map im-
plementations. Other model checking specific compression-techniques like
Delta-compression [19] have been proposed but suffer from even a greater
impact on running-time as well as lacking general applicability. The explicit-
state model checker LoLa [20] implements a basic prefix sharing scheme for
the state-compression, but has yet to provide this as a stand-alone library
with accompanying benchmarks and does not include the essential perfor-
mance enhancements used in PTrie.

2 Definition of PTrie

Let B = {0, 1} be a binary alphabet and let B∗ be the set of all binary strings
over B where ǫ is the empty string. If w = b1b2 . . . bn and w′ = b′

1b′
2 . . . b′

m then
w ◦ w′ = b1b2 . . . bnb′

1b′
2 . . . b′

m is the concatenation of the two strings (we shall
often write just ww′ instead of w ◦ w′). For a binary string w = b1b2 . . . bn,
the length of w is defined as |w| = n where by definition |ǫ| = 0, and we use
the substring notation w[i,j] where 1 ≤ i, j ≤ n such that w[i,j] = bibi+1 . . . bj if
i ≤ j and w[i,j] = ǫ if i > j.

Let Bn be the set of all binary strings of length n and let Θn = {ww′ | w ∈
B∗, w′ ∈ {•}∗, |ww′| = n} be the set of all extended binary strings of length
n, i.e. binary strings that can be suffixed with a sequence of wild characters
•. The semantics of an extended binary string w is the set of all binary strings
it represents �w� and it is inductively defined as follows (where b ∈ B ∪ {•}

37

Paper A.

and w ∈ (B ∪ {•})∗).

�ǫ� ={ǫ}

�b ◦ w� =

{
{b ◦ w′ | w′ ∈ �w�} if b ∈ B

{0 ◦ w′, 1 ◦ w′ | w′ ∈ �w�} if b = •

In the rest of this paper, we assume an implicitly given integer constant
ι > 0 called the byte size and an integer constant κ ≥ 2 called the bucket size.

Definition 1 (PTrie Syntax)

A PTrie is a tuple P = (F, L, E, ⊤, λ, β) where

1. F is a finite set of forwarding vertices,

2. L is a finite set of leaf vertices such that F ∩ L = ∅,

3. E ⊆ F × (F ∪ L) is a finite set of edges such that (F ∪ L, E) is a tree,

4. ⊤ ∈ F is the root vertex of the tree (F ∪ L, E),

5. λ : E → Θι is a labeling function assigning an extended binary string of
length ι to each edge such that

(a) �λ(u, v)� ∩ �λ(u, v′)� = ∅ for all (u, v), (u, v′) ∈ E where v �= v′,
and

(b) λ(u, v) ∈ Bι for all (u, v) ∈ E where v ∈ F,

6. β : L ∪ F → 2B
∗

is a bucket function such that

(a) 0 < |β(u)| ≤ κ for all u ∈ L,

(b) |w| ≥ ι for all w ∈ β(u) where u ∈ L,

(c) w[1,ι] ∈ �λ(u, v)� for all w ∈ β(v) where (u, v) ∈ E and v ∈ L, and

(d) |w| < ι for all u ∈ F and all w ∈ β(u).

A PTrie example is given in Figure A.1a. We note particularly the dif-
ference between forwarding and leaf vertices. The bucket at a forwarding
vertex contains the suffix of the string to be appended to the labels on the
path from the root to the vertex (for example vertex c contains the bucket
with the suffixes {1, 00} that represent the strings 010 ◦ 1 and 010 ◦ 00). How-
ever, the bucket at a leaf vertex must first specify the concrete binary string
that matches the extended binary string on its incoming edge, followed by
the suffix of the string (for example the vertex b represents the strings 111
and 111 ◦ 0 as the first three bits of each string in the bucket of b must match
the extended binary string 11•).

Before we introduce the main algorithms of the data structure, let us for-
mally define the semantics of a PTrie as a set of strings that the PTrie repre-
sents.

38

2. Definition of PTrie

⊤ β(⊤) = ∅

aβ(a) = ∅ b

β(b) = {111, 111 ◦ 0}

c g

β(g) = {0, 1, 01, 11}β(c) = {1, 00}

100

11•000

01
0

d

•
•
•

β(d) = {000 ◦ 01, 110}e

β(e) = {100, 100 ◦ 10}

f

β(f) = {101 ◦ 101}

100

101

(a) A PTrie P = (F, L, E, ⊤, λ, β) with byte size ι = 3 and maximal bucket size
κ = 2 containing the binary strings �P� = {000 ◦ 100, 000 ◦ 100 ◦ 10, 000 ◦ 101 ◦
101, 010 ◦ 1, 010 ◦ 00, 010 ◦ 000 ◦ 01, 010 ◦ 110, 100 ◦ 0, 100 ◦ 1, 100 ◦ 01, 100 ◦ 11, 111, 111 ◦
0}. Squares indicate forwarding vertices and circles indicate leaf-vertices. We let the
labeling (λ) be implicitly indicated by the labeling on the edges. The path and suffix
of the binary string 000 ◦ 101 ◦ 101 is highlighted.

⊤ β(⊤) = ∅

f

β(f) = {000 ◦ 101 ◦ 101}

b β(b) = {ǫ, 0}c
β(c) = {1, 00}

g

β(g) = {0, 1, 01, 11}

100

111000

01
0

g

1••

β(g) = {110}d

0••

β(d) = {000 ◦ 01, 000 ◦ 111} h

β(h) = {011}

•
•
•

Fig. A.2: The PTrie from Figure A.1a after inserting {010 ◦ 000 ◦ 111, 111 ◦ 011} and removing
{000 ◦ 100, 000 ◦ 100 ◦ 10}.

39

Paper A.

Definition 2 (PTrie Semantics)

Let P = (F, L, E, ⊤, λ, β) be a PTrie. The semantics of P, denoted by �P� ⊆ B∗,
is defined inductively as follows in the height of the tree so that �P� = �⊤�

and

�u ∈ L� = β(u)

�u ∈ F� = β(u) ∪
⋃

(u,v)∈E, v∈F

{λ(u, v) ◦ w | w ∈ �v�} ∪
⋃

(u,v)∈E, v∈L

�v� .

3 Operations on PTrie

Let us assume a given PTrie P = (F, L, E, ⊤, λ, β) and a binary string w.
We shall now explain the algorithms for the basic set operations

• Member(P, w) for checking the existence of w in P,

• Insert(P, w) for adding w into P, and

• Delete(P, w) for removing w from P.

The algorithms will use the following functions for manipulating PTries:

• Find(P, u, w) for searching from the vertex u for the binary string w,

• Split(P, v) for subdividing a vertex once its bucket size becomes larger
than κ, and its inverse,

• Merge(P, v) for reducing the size of the PTrie by merging two vertices.

We also define the parent function (used by the Split and Merge algorithms)
as P : F ∪ L → F such that P(v) = u where u ∈ V is the unique vertex such
that (u, v) ∈ E and by agreement P(⊤) = ⊤.

3.1 Member Algorithm

The algorithm for checking whether a binary string is already stored in a
PTrie is presented in Algorithm 2 which is based on Algorithm 1 that searches
for the presence of a binary string in a PTrie. This algorithm is also used for
the insertion and deletion algorithms.

Algorithm 1 implements a search from a given vertex u following a given
binary string as long as possible, until either a leaf-vertex is reached or no
further match is possible and the algorithm returns the reached vertex and
the suffix of the string w that could not be uniquely matched in the PTrie.
This algorithm closely mimics the inductive definition of the semantics of
PTrie in Definition 2.
Theorem 1

Algorithm 2 run on an input PTrie P and a binary string w terminates and
returns tt if and only if w ∈ �P�.

40

3. Operations on PTrie

Algorithm 1: Find(P, u, w)

Data: A PTrie P = (F, L, E, ⊤, λ, β), a vertex u ∈ V and a binary string
w

Result: (v, w′) where w′ is a suffix of w that cannot be any further
matched by a (unique) path starting from u and labeled with
the longest possible prefix of w and v ∈ V is the vertex where
this mismatch happens

1 begin

2 if |w| < ι then

3 return (u, w)
4 Eu = {(u, v) ∈ E | w[1,ι] ∈ �λ(u, v)�};
5 if Eu = ∅ then

6 return (u, w)
7 else

8 Let {(u, v)} = Eu // note that |Eu| ≤ 1 due to Definition 1,
case 5a

9 if v ∈ L then

10 return (v, w)
11 else

12 return Find(P, v, w[ι+1,|w|])

Algorithm 2: Member(P, w)

Data: A PTrie P = (F, L, E, ⊤, λ, β) and a binary string w
Result: tt if w ∈ �P�, else ff

1 begin

2 (v, w′) ← Find(P, ⊤, w);
3 if w′ ∈ β(v) then

4 return tt
5 else

6 return ff

41

Paper A.

3.2 Insert Algorithm

Algorithm 3: Insert(P, w)

Data: A PTrie P = (F, L, E, ⊤, λ, β) and a binary string w
Result: P′ where �P′� = �P� ∪ {w} and P′ satisfies all conditions of

Definition 1.
1 begin

2 (v, w′) ← Find(P, ⊤, w);
3 if w′ ∈ β(v) then

4 return P

5 else

6 if v ∈ F then

7 if |w′| < ι then

8 β(v) ← β(v) ∪ {w′};
9 return (F, L, E, ⊤, λ, β)

10 else

11 ℓ ← arg max
ℓ′∈Θι where w′

[1,ι]∈�ℓ′�

0 if ∃u ∈ F ∪ L s.t.

�ℓ′� ∩ �λ(v, u)� �= ∅

|�ℓ′�| otherwise
12 Make a fresh leaf vertex u;
13 L ← L ∪ {u};
14 E ← E ∪ {(v, u)};
15 λ(v, u) ← ℓ;
16 β(u) ← {w′};
17 return (F, L, E, ⊤, λ, β)

18 else

19 β(v) ← β(v) ∪ {w′};
20 if |β(v)| ≤ κ then

21 return (F, L, E, ⊤, λ, β)
22 else

23 return Split((F, L, E, ⊤, λ, β), v)

We shall now focus on inserting a binary string w into a PTrie P as de-
scribed in Algorithm 3. We start by matching the prefix of w from the root of
the PTrie (line 2) to the vertex v from which we cannot follow the prefix of w
any further. Either the vertex v is a forwarding vertex and if the unmatched
suffix w′ of w is shorter than ι, we insert it into the bucket of v at line 8 and
we are done. If w′ is on the other hand longer than ι, we need to create a new
leaf vertex u and store w′ in its bucket at line 16. The point is to label the edge
(v, u) with the most general and non-conflicting label ℓ selected at line 11. In
the second case where v is a leaf vertex, we add the suffix w′ of w into the

42

3. Operations on PTrie

Algorithm 4: Split(P, v)

Data: A PTrie P = (F, L, E, ⊤, λ, β) and a vertex v ∈ L such that
β(v) > κ.

Result: P′ such that �P� = �P′� and P′ satisfies all conditions of
Definition 1

1 begin

2 if |�λ(P(v), v)�| = 1 then

3 F ← F ∪ {v}; L ← L \ {v};
4 β(v) ← {w[ι+1,|w|] | w ∈ β(v) and |w| < 2ι};
5 B ← {w[ι+1,|w|] | w ∈ β(v) and |w| ≥ 2ι};
6 if B = ∅ then

7 return (F, L, E, ⊤, λ, β)
8 else

9 Make a fresh leaf vertex u;
10 L ← L ∪ {u}; E ← E ∪ {(v, u)}; λ(v, u) ← •ι; β(u) ← B;
11 if |β(u)| ≤ κ then

12 return (F, L, E, ⊤, λ, β)
13 else

14 return Split((F, L, E, ⊤, λ, β), u)

15 else

16 Let w ◦ •m = λ(P(v), v) such that w ∈ {0, 1}∗ and m > 0.
17 ℓ0 ← w0 ◦ •m−1; ℓ1 ← w1 ◦ •m−1;
18 B0 = {w ∈ β(v) | w[1,ι] ∈ �ℓ0�}; B1 = {w ∈ β(v) | w[1,ι] ∈ �ℓ1�};
19 if B0 �= ∅ and B1 �= ∅ then

20 Make a fresh leaf vertex u;
21 L ← L ∪ {u}, E ← E ∪ {(P(v), u)};
22 λ(P(v), v) ← ℓ0; λ(P(v), u) ← ℓ1;
23 β(v) ← B0; β(u) ← B1;
24 return (F, L, E, ⊤, λ, β)

25 else

26 if B0 �= ∅ then

27 λ(P(v), v) ← ℓ0;
28 else

29 λ(P(v), v) ← ℓ1;
30 return Split((F, L, E, ⊤, λ, β), v)

43

Paper A.

bucket at line 19 and should the size of the bucket exceed the maximum size
κ, we call the function Split at line 23 to balance the PTrie.

An example of inserting two strings is given in Figure A.2. The insertion
of the string 010 ◦ 000 causes the creation of the sibling g for the vertex d and
splitting of the label ••• into 0•• and 1••. The insertion of 111 ◦ 011 implies
that the leaf vertex b turns into a forwarding vertex while we create a fresh
leaf vertex h and adjust the buckets accordingly.

Theorem 2

Algorithm 3 run on an input PTrie P and a binary string w terminates and
returns a PTrie P′ such that �P′� = �P� ∪ {w}.

3.3 Delete Algorithm

We here discuss the algorithm for removing a binary string w from a PTrie
P as described in Algorithm 5. As with the insertion algorithm, the Delete

algorithm may call the function Merge defined in Algorithm 6—a function
that attempts to revert divisions previously made by the Split algorithm.

Initially we try to match the prefix of w to a unique path from the root
of the PTrie (line 2 of Delete) and we let v be the vertex reached at the end
of this prefix and w′ be the unmatched suffix of w. If w did not exist in the
PTrie, we return the unaltered PTrie at line 4. Otherwise we remove w′ from
the bucket of v. Either v ∈ L, and we attempt to reduce the PTrie (line 22),
or we are in the more complex situation where v ∈ F. If v ∈ F and v has no
children (as illustrated by vertex g in Figure A.1a) then we can turn v into
a leaf node (line 13) and attempt to reduce the size of the PTrie (line 15).
However, as ⊤ has to stay in F, we return P if v = ⊤ (line 10). If |β(v)| > κ

then turning v into a leaf-node would violate condition 6a in Definition 1 and
we therefore return the PTrie as it is (line 12). If v ∈ F and v has only a single
child such that this child is not a forwarding vertex, and merging v with its
child will not violate condition 6a in Definition 1, then we also attempt to
merge (line 18). Otherwise just return PTrie without further modifications
(line 20).

An example of removing two different strings from our running example
is presented in Figure A.2. The removal causes the leaf vertex e to get an
empty bucket implying that it gets removed. This change in turn propagates
to the vertex a that is also removed and its bucket content is merged with
that of f .

Theorem 3

Algorithm 5 given a PTrie P and a binary string w terminates and returns a
PTrie P′ such that �P′� = �P� \ {w}.

44

3. Operations on PTrie

Algorithm 5: Delete(P, w)

Data: A PTrie P = (F, L, E, ⊤, λ, β) and a binary string w
Result: P′ where �P′� = �P� \ {w} and P′ satisfies all conditions of

Definition 1
1 begin

2 (v, w′) ← Find(P, ⊤, w);
3 if w′ �∈ β(v) then

4 return P

5 else

6 β(v) ← β(v) \ {w′};
7 if v ∈ F then

8 if v has no children then

9 if v = ⊤ then

10 return (F, L, E, ⊤, λ, β)
11 if |β(v)| > κ then

12 return (F, L, E, ⊤, λ, β)
13 L ← L ∪ {v}; F ← F \ {v};
14 β(v) ← {λ(P(v), v) ◦ w | w ∈ β(v)};
15 return Merge((F, L, E, ⊤, λ, β), v)

16 else

17 if v has exactly one child u and u ∈ L then

18 return Merge((F, L, E, ⊤, λ, β), u)
19 else

20 return (F, L, E, ⊤, λ, β)

21 else

22 return Merge((F, L, E, ⊤, λ, β), v)

45

Paper A.

Algorithm 6: Merge(P, v)

Data: A PTrie P = (F, L, E, ⊤, λ, β) and a vertex v ∈ L
Result: P′ s.t. �P� = �P′� and P′ satisfies all conditions of Definition 1

1 begin

2 if λ(P(v), v) = •ι then

3 if |β(v)| = 0 and |β(P(v))| > κ then

4 E ← E \ {(P(v), v)}; L ← L \ {v};
5 return (F, L, E, ⊤, λ, β)

6 if P(v) = ⊤ then

7 return P

8 else

9 u ← P(v); ℓ ← λ(u, v);
10 if |β(v)|+ |β(u)| ≤ κ then

11 E ← (E ∪ {(P(u), v)}) \ {(P(u), u), (u, v)}; F ← F \ {u};
12 λ(P(u), v) ← ℓ;
13 β(v) ← {ℓ ◦ w | w ∈ β(v) ∪ β(u)};
14 return Merge((F, L, E, ⊤, λ, β), v)

15 else

16 return (F, L, E, ⊤, λ, β)

17 else

18 Let b1 . . . bn•m = λ(P(v), v);
19 ℓ ← b1 . . . bn−1•

m+1;
20 V ← {(P(v), u) ∈ E | u �= v and �λ(P(v), u)� ∩ �ℓ� �= ∅};
21 if V = ∅ then

22 λ(P(v), v) ← ℓ;
23 return Merge((F, L, E, ⊤, λ, β), v)

24 else

25 if V = {u} for some u ∈ L and |β(v)|+ |β(u)| ≤ κ then

26 λ(P(v), v) ← ℓ;
27 β(v) ← β(v) ∪ β(u);
28 E ← E \ {(P(u), u)}; L ← L \ {u};
29 return Merge((F, L, E, ⊤, λ, β), v)

30 else

31 return P

46

4. Implementation

⊤

a

b

c

c′

d

d′

e

e′

f

f ′

g

g′

h β(h) = {000, 111}

h′ β(h′) = {000, 111}

000
000 000 000 000 000 •••

001
001 001 001 001 001 •••

Fig. A.3: A worst-case scenario for PTries with ι = 3 and κ = 2 containing 4 binary strings
{000 ◦ 000 ◦ 000 ◦ 000 ◦ 000 ◦ 000 ◦ 000, 000 ◦ 000 ◦ 000 ◦ 000 ◦ 000 ◦ 000 ◦ 111, 100 ◦ 100 ◦ 100 ◦ 100 ◦
100 ◦ 100 ◦ 000, 100 ◦ 100 ◦ 100 ◦ 100 ◦ 100 ◦ 100 ◦ 111}

4 Implementation

The PTrie interface is implemented as an open source C++ library and it is
available at https://github.com/petergjoel/ptrie under the GPL version
3 license. Apart from the implementation of all the basic set operations on
PTries as described in this paper (implemented in ptrie::set), two other
flavors of PTries exist: one providing unique and non-changing identifiers for
inserted elements (ptrie::stable_set) and one providing the functionality
of a map, combined with non-changing identifiers (ptrie::map)1. The source
code provides further documentation and information.

Let us now settle some implementation details. We currently use the
bucket size κ = 64 and the byte size ι = 8, following conventions for standard
byte-sizes. As modern architectures do not support addressing nor allocation
of memory areas of less than a single byte, our implementation of PTries
allows only the insertion of binary strings with bit-lengths that are a multiple
of ι. Furthermore, to avoid frequent splits and re-merging of PTries, the
Delete and Merge algorithms initiate the balancing of PTrie only once the
buckets become smaller than κ

3 , as opposed to the constant κ used in the
pseudocode. The experimental evaluations point towards a slightly worse
memory utilization at the exchange of less frequent re-balancing of the PTrie.

Regarding the memory for storing vertices of a PTrie, forwarding vertices
are implemented as directly indexed tables with 64-bit indexes and with some
additional book-keeping information they occupy 2064 bytes. Leaf vertices
are, on the other hand, lightweight constructions taking up only 16 bytes.
The current implementation of PTrie prefixes all inserted binary strings with
their length (using two additional bytes). In our experience, such an addi-
tion generally improves the performance and reduces memory-consumption.
Moreover, as we aim at making the PTries fast, the speed optimization can
occasionally imply an increased memory consumption for some very spe-
cific sets of binary strings, as demonstrated in Figure A.3, where just a few

1 Both these extension come with a smaller overhead in run-time and memory. Also, currently
neither of these extensions support Delete.

47

Paper A.

strings create a long sequence of memory-demanding forwarding vertices.
This implies that long, almost similar, binary strings which differ only at
the beginning and at the end will make the PTrie perform badly in terms of
memory.

Hence, depending on the specific application domain, the concrete en-
coding of the states into binary strings can have an effect on the PTrie perfor-
mance. As a heuristic attempt to improve prefix-sharing of Petri net markings
(an experiment discussed in detail in the next section), we first statically or-
der places in the models by the number of incoming and outgoing arcs. Each
such marking is then encoded according to a number of schemes in order to
minimize its length. The schemes all fall in one of three categories: either only
non-empty places are stored (with the least amount of bits), or a bit-vector
is used to represent non-empty places in the fixed ordering of places, or we
use a combination of the two previous schemes. To determine which way a
marking was encoded, we prefix the encoding with a 8-bit header describing
the exact encoding scheme that is employed. Details of the encoding-scheme
can be found at https://bit.ly/AlignedEncodercpp.

5 Experimental Evaluation

We conducted two series of experiments comparing our PTrie implemen-
tation against google::sparse_hash_set and google::dense_hash_set by
Google2, generally regarded as the state-of-the-art [2, 3] space-efficient and
time-efficient, respectively, implementations of sets based on hashing. We
employ jemalloc [21] for memory allocation and MurmurHash64A3 as hash-
function for the hash-map implementations. In our evaluation we omit the
std::unordered_set implementation from the standard library of C++14 as
it was consistently outperformed by the Google implementations (see [2, 3]
for further benchmarks).

In the first round of experiments, we test the speed and memory re-
quirements of insertion, deletion and lookups, simulating a workload using
pseudo-random 64-bit integers (with the same seed so that the same sequence
of numbers is inserted/deleted/checked in all test setups). In the second
round of experiments, we modify the verification-tool verifypn [22]4 that is
distributed as a part of the Petri net verification tool Tappaal [23, 24], and
we conduct an exhaustive exploration of the full state-space of large Petri
net models used at the MCC’16 competition [25]. All experiments were con-
ducted on AMD Opteron 6376 Processors and limited to 120GB of RAM and
4 days of computation.

2Both available at https://github.com/sparsehash/sparsehash.
3Available at https://github.com/aappleby/smhasher/wiki/MurmurHash2.
4Available at https://code.launchpad.net/verifypn.

48

5. Experimental Evaluation

E ptrie dense sparse ptrie/dense ptrie/sparse

Insert

28 437.2 386.0 569.1 113% 77%
29 869.0 757.1 1111.3 115% 78%
30 1749.2 1540.2 2326.7 114% 75%
31 3572.0 3081.7 4785.6 116% 75%
32 7184.6 6126.6 9963.6 117% 72%

average 2762.4 2378.3 3751.2 115% 75%

Insert+50%Delete

28 751.5 744.1 742.7 101% 101%
29 1516.8 1494.3 1461.9 102% 104%
30 3038.5 3032.1 2997.8 100% 101%
31 6392.3 5837.4 6150.1 110% 104%
32 13356.1 11701.0 13115.5 114% 102%

average 5011.1 4561.8 4893.6 105% 102%

Insert+50%Member

28 709.6 591.2 771.0 120% 92%
29 1468.4 1219.3 1583.8 120% 93%
30 2829.1 2363.0 3195.4 120% 89%
31 5839.8 4707.6 6597.3 124% 89%
32 12244.2 9473.2 13676.5 129% 90%

average 4618.2 3670.8 5164.8 123% 90%

Table A.1: Time in seconds for the simulated workload experiments

5.1 Simulated Workload

We conduct three sets of experiments called Insert, Insert+50%Delete and In-
sert+50%Member, all scaled by the number 2E of pseudorandomly generated
and inserted elements into the set implementation. In the Insert experiment,
we iteratively insert 2E binary numbers encoded as 64-bit unsigned integers.
In the Insert+50%Delete and Insert+50%Member experiments, after each inser-
tion, we choose with 50% probability whether to execute a Delete or Member
operation, respectively. In Insert+50%Delete, we randomly draw for deletion
an element that was previously inserted, but we do not check whether the
element was already removed or not. This implies that with 33% probability
it tries to remove a nonexisting element. In Insert+50%Member, we randomly
select an element for which we do an Member operation, such that about one
half of the existence checks are with a positive answer.

The results measuring the speed of operations are presented in Table A.1.

49

Paper A.

E ptrie dense sparse ptrie/dense ptrie/sparse

Insert and Insert+50%Member

28 2033.6 6151.7 4239.6 33% 48%
29 3197.6 12295.7 8455.9 26% 38%
30 6115.7 24583.7 16923.0 25% 36%
31 10827.6 49159.7 33908.2 22% 32%
32 37839.6 98311.7 67757.7 39% 56%

average 12002.8 38100.5 26256.9 29% 42%

Insert+50%Delete

28 1935.8 6157.7 3032.3 31% 64%
29 3383.8 12301.6 5966.5 28% 57%
30 6960.7 24589.6 12057.8 28% 58%
31 13488.9 49165.6 24914.0 27% 54%
32 37493.6 98317.6 68195.0 38% 55%

average 12652.6 38106.4 22833.1 31% 57%

Table A.2: Memory in megabyte for the simulated workload experiments

For pure insertions, PTries are on average about 15% slower than dense_hash

but 25% faster than sparse_hash. When we add deletions, PTries are about
5% slower than dense_hash and essentially comparable with sparse_hash

(on average just 2% slower). In the last experiment where we add frequent
queries on the presence of a string in the set, dense_hash becomes 23% faster
but on the other hand PTries are by 10% faster than sparse_hash. In sum-
mary, sparse_hash is in general slower or equal in speed with PTrie, while
dense_hash is the fastest of the three data structures.

However, we can see in Table A.2 a significant reduction of the memory-
footprint in all of the experiments (Insert+50%Member is not included as its
memory usage is identical with pure inserts). PTries deliver about 70% of the
memory reduction compared to dense_hash and between 42%–57% reduc-
tion compared to sparse_hash (depending on whether deletions are included
or not).

In conclusion, PTrie is the most memory efficient data structure that is
faster or at worst equal in speed with sparse_hash. The fastest set imple-
mentation is dense_hash, however, at the cost of a large memory overhead.
We remark that the drop in relative memory-reduction in the Insert experi-
ment when E = 32 is due to the creation of a large number of forwarding
vertices—this occurs with high probability for truly random strings when E
is a multiple of 8.

50

5. Experimental Evaluation

Model ptrie dense sparse ptrie/dense ptrie/sparse 106 states 106operations
a 408.7 517.8 680.5 79% 60% 42.7 486.9
b 12882.8 15888.9 19163.1 81% 67% 693.8 2151.2
c 2337.9 2839.3 3693.7 82% 63% 131.1 5553.7
d 244.6 292.3 526.6 84% 46% 113.3 863.5
e 589.2 693.6 1141.2 85% 52% 261.2 2010.6

f 69451.0 68601.0 70879.3 101% 98% 320.6 22339.6
g 16.4 16.1 20.6 102% 79% 3.0 24.9
h 318.7 312.8 389.7 102% 82% 48.9 354.4
i 5011.5 4917.2 5812.8 102% 86% 406.0 3051.2
j 69.5 67.9 78.3 102% 89% 11.5 66.8

k 25.7 20.4 21.3 126% 121% 1.7 6.7
l 41.4 32.8 33.8 126% 123% 2.8 13.2
m 439.9 345.7 647.9 127% 68% 164.4 1047.5
n 78.3 60.9 112.4 129% 70% 32.2 199.3
o 263.9 163.6 185.2 161% 143% 17.4 108.4

avg 4608.4 4482.2 5380.0 103% 86% 289.3 3195.2

Table A.3: Time in seconds for the 5 best, 5 median and 5 worst Petri net models, ordered by
the performance of ptrie relative to dense_hash. Legend for the models: a=Angiogenesis-
PT-05, b=PolyORBNT-PT-S05J20, c=Diffusion2D-PT-D05N010, d=SmallOperatingSystem-PT-
MT0128DC0032, e=SmallOperatingSystem-PT-MT0128DC0064, f=ARMCacheCoherence-PT-
none, g=TCPcondis-PT-05, h=AutoFlight-PT-01b, i=SimpleLoadBal-PT-10j=ResAllocation-PT-
R020C002, k=ParamProductionCell-PT-5, l=ParamProductionCell-PT-0, m=SwimmingPool-PT-
04, n=SwimmingPool-PT-03 and o=IOTPpurchase-PT-C05M04P03D02.

5.2 Real Workload by Petri Net Model Checking

In order to test the PTrie performance on a realistic scenario, we integrate
PTrie as a part of a Petri net model checker. We replace the state-storage of
the verification algorithm used by verifypn with the respective set imple-
mentations (by using an encoding of Petri net markings to binary strings as
discussed in the implementation section). We then conduct an exhaustive
state-space search on the P/T nets from the MCC’16 competition. To reduce
the impact of auxiliary data structures used by the algorithm, we conduct the
search with two different search-strategies (breadth first and depth first), and
we report the minimum of the memory and time-consumption from either of
these searches. We consider in total 94 Petri nets with a nontrival but feasible
state-space size. More concretely, we selected all nets with more than 106 and
less than 1010 reachable markings. Out of these 94 nets, PTrie-based variant
completed 89 test-cases, ran out of memory on 4 models and timed out on
a single instance. The dense_hash-based model checker completed only a
subset of the test-cases solved by PTrie and exceeded the memory-bound for
additional 9 nets. A similar performance was achieved by sparse_hash that
also completed only a subset of problems solved by PTrie but exceeded the
memory for 7 additional nets. In the summary tables we consider so only 80
state-space searches that were completed by all three set-implementations.

51

Paper A.

Model ptrie dense sparse ptrie/dense ptrie/sparse 106 states 106operations

a 2815.6 16481.6 15063.5 17% 19% 435.3 2983.9
b 2817.6 16481.5 15063.6 17% 19% 432.9 2961.9
c 2855.6 16481.6 15063.6 17% 19% 432.9 2961.9
d 2883.6 16481.6 15063.6 18% 19% 435.3 2983.9
e 14707.6 65901.4 60223.4 22% 24% 1885.4 15271.5

f 16579.6 35751.6 33971.6 46% 49% 1005.9 12032.2
g 21283.5 44344.2 43515.5 48% 49% 896.3 3363.7
h 7539.6 20667.6 15373.6 37% 49% 347.6 1271.7
i 7541.6 20667.5 15375.5 37% 49% 347.6 1271.7
j 1463.6 5203.6 2965.6 28% 49% 68.2 1286.2

k 133.7 169.6 129.6 79% 103% 2.8 13.2
l 879.7 1303.6 763.6 68% 115% 17.4 108.4
m 105.7 91.6 81.6 115% 130% 1.7 6.7
n 93.6 87.5 71.6 107% 131% 1.5 5.9
o 147.7 169.6 111.6 87% 132% 2.4 9.8

avg 5150.6 13339.3 11056.9 39% 47% 289.3 3195.2

Table A.4: Memory in megabytes for the 5 best, 5 median and 5 worst Petri net models, ordered
by the perforamce of PTrie relative to sparse_hash. Legend for the models: a=DNAwalker-PT-
06track28RL, b=DNAwalker-PT-04track28LL, c=DNAwalker-PT-07track28RR, d=DNAwalker-
PT-05track28LR, e=DNAwalker-PT-12ringLLLarge, f=Kanban-PT-0010, g=BridgeAndVehicles-
PT-V50P50N20, h=BridgeAndVehicles-PT-V50P20N10, i=BridgeAndVehicles-PT-V50P50N10,
j=AutoFlight-PT-05a, k=ParamProductionCell-PT-0, l=IOTPpurchase-PT-C05M04P03D02,
m=ParamProductionCell-PT-5, n=ParamProductionCell-PT-3 and o=ParamProductionCell-PT-4.

In Table A.3 we can see that PTries are on average as fast as the fastest
hash-map implementation via dense_hash with only a 3% overhead on aver-
age, while PTries provide significant 14% speedup compared to sparse_hash.
There seems to be no correlation between the number of states/markings
(equivalent to the number of insert operations) and the relative performance
achieved. With respect to memory usage, the experiments confirm the effec-
tiveness of PTrie as seen in Table A.4. In general we observe a significant
memory footprint reduction by up to 81% compared to sparse_hash and on
average by 53%. The reductions in the case of dense_hash are as expected
even higher. We can notice that higher relative memory reduction occurs
when we use PTries for models with a larger number of reachable states/-
markings, confirming that PTries are particularly beneficial for memory de-
manding applications like model checking. We can observe that for some
instances of prefix-sharing, PTries are particularly effective as demonstrated
by the “DNAwalker”-cases (using less than 7 bytes per stored marking versus
36 for sparse_hash), while ineffective for the “ParamProductionCell”-cases
(using more than 64 bytes per marking versus 49 for sparse_hash). Here we
experience the situation described in Figure A.3 caused by the ordering of
places in the binary encoding of markings and by the fact that there is large
number of places where the number of tokens hardly ever changes during
the computation.

52

6. Conclusion

6 Conclusion

We presented PTrie, a novel data structure for compressing sets of binary
strings while providing fast operations for element addition/removal and
containment checks. Compared to the state-of-the-art alternatives that either
trade memory savings for time (google::sparse_hash_set), or focus on op-
timizing the speed of operations (google::dense_hash_set), our data struc-
ture improves the performance of sparse_hash both in terms of memory as
well as time. Compared to dense_hash, we are on average 5-23% slower on
random strings, while only 3% slower when storing strings coming from a
real application domain, and at the same time we provide 60-70% of memory
reduction.

In the future work, we plan to provide an efficient parallelization of the
PTries for the use in multi-core architectures, and extend the set of basic op-
erators with intersection, union and difference. Even though these additional
operations are not necessary for explicit model checking applications, they
may find other application domains and tree-based design of PTries seems
to be suitable for this purpose. Finally, a research of tree-walking algorithms
for PTries, facilitating complex searches through the elements of the set, are
of high interest too.

Acknowledgements. We acknowledge the support from Sino-Danish Basic
Research Center IDEA4CPS, the Innovation Fund Denmark center DiCyPS,
and the ERC Advanced Grant LASSO. The third author is partially affiliated
with FI MU in Brno.

References

[1] P. G. Jensen, K. G. Larsen, J. Srba, M. G. Sørensen, and J. H. Taankvist,
“Memory efficient data structures for explicit verification of timed
systems,” in NASA Formal Methods: 6th International Symposium, ser.
LNCS. Springer, 2014, vol. 8430, pp. 307–312. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-06200-6_26

[2] Timonk, “Big memory, part 3.5: Google
sparsehash!” https://research.neustar.biz/2011/11/27/
big-memory-part-3-5-google-sparsehash/, 2011, accessed: 2017-01-
20. [Online]. Available: https://research.neustar.biz/2011/11/27/
big-memory-part-3-5-google-sparsehash/

[3] N. Welch, “Hash table benchmarks,” http://incise.org/
hash-table-benchmarks.html, accessed: 2017-01-20. [Online]. Avail-
able: http://incise.org/hash-table-benchmarks.html

53

References

[4] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, no. 9, pp.
490–499, 1960. [Online]. Available: http://doi.acm.org/10.1145/367390.
367400

[5] D. R. Morrison, “Patricia—practical algorithm to retrieve information
coded in alphanumeric,” Journal of the ACM (JACM), vol. 15, no. 4, pp.
514–534, 1968.

[6] G. Gwehenberger, “Anwendung einer binären verweiskettenmethode
beim aufbau von listen/use of a binary tree structure for processing
files,” it-Information Technology, vol. 10, no. 1-6, pp. 223–226, 1968.

[7] N. Askitis and R. Sinha, “HAT-trie: A cache-conscious trie-based data
structure for strings,” in Proceedings of the thirtieth Australasian conference
on Computer science-Volume 62. Australian Computer Society, Inc., 2007,
pp. 97–105.

[8] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky, “Concurrent
tries with efficient non-blocking snapshots,” in Acm Sigplan Notices, vol.
47 (8). ACM, 2012, pp. 151–160.

[9] S. Heinz, J. Zobel, and H. E. Williams, “Burst tries: A fast, efficient
data structure for string keys,” ACM Transactions on Information Systems,
vol. 20, pp. 192–223, 2002.

[10] P. Bagwell, “Ideal hash trees,” Es Grands Champs, vol. 1195, 2001.

[11] M. Renaud, “Trie (aka. prefix tree),” https://github.com/m-renaud/
trie, accessed: 2017-04-19.

[12] J. Yang, “An implementation of two-trie and tail-trie using double array,”
https://github.com/jianingy/libtrie, accessed: 2017-04-19.

[13] D. C. Jones, “HAT-trie implementation,” https://github.com/dcjones/
hat-trie, accessed: 2017-04-19.

[14] cplusplus.com, “C++ set implementation reference,” http://www.
cplusplus.com/reference/set/set/, accessed: 2017-01-20.

[15] ——, “C++ map implementation reference,” http://www.cplusplus.
com/reference/map/map/, accessed: 2017-01-20.

[16] R. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[17] A. Laarman, J. van de Pol, and M. Weber, “Parallel recursive state
compression for free,” in Model Checking Software: 18th International
SPIN Workshop, ser. LNCS, vol. 6823. Springer, 2011, pp. 38–56.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-22306-8_4

54

References

[18] P. Ročkai, V. Štill, and J. Barnat, Techniques for Memory-Efficient Model
Checking of C and C++ Code, ser. LNCS. Cham: Springer, 2015,
vol. 9276, pp. 268–282. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-22969-0_19

[19] S. Evangelista and J.-F. Pradat-Peyre, “Memory efficient state space
storage in explicit software model checking,” in Model Checking
Software: 12th International SPIN Workshop, ser. LNCS, vol. 3639. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 43–57. [Online].
Available: http://dx.doi.org/10.1007/11537328_7

[20] K. Wolf, “Running LoLA 2.0 in a model checking competition,” LNCS
Transactions on Petri Nets and Other Models of Concurrency (ToPNoC), vol.
9930, pp. 274–285, 2016.

[21] J. Evans, “A scalable concurrent malloc (3) implementation for freebsd,”
in Proc. of the BSDCan Conference, Ottawa, Canada, 2006.

[22] J. Jensen, T. Nielsen, L. Oestergaard, and J. Srba, “TAPAAL and reach-
ability analysis of P/T nets,” LNCS Transactions on Petri Nets and Other
Models of Concurrency (ToPNoC), vol. 9930, pp. 307–318, 2016.

[23] A. David, L. Jacobsen, M. Jacobsen, K. Jørgensen, M. Møller, and J. Srba,
“TAPAAL 2.0: Integrated development environment for timed-arc Petri
nets,” in Tools and Algorithms for the Construction and Analysis of Systems:
18th International Conference, ser. LNCS, vol. 7214. Springer, 2012, pp.
492–497.

[24] J. Byg, K. Y. Jørgensen, and J. Srba, “TAPAAL: Editor, simulator
and verifier of timed-arc Petri nets,” in Automated Technology
for Verification and Analysis: 7th International Symposium, ser.
LNCS, vol. 5799. Springer, 2009, pp. 84–89. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04761-9_7

[25] F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, G. Chiardo,
A. Hamez, L. Jezequel, A. Miner, J. Meijer, E. Paviot-Adet, D. Racordon,
C. Rodriguez, C. Rohr, J. Srba, Y. Thierry-Mieg, G. Tri.nh, and K. Wolf,
“Complete Results for the 2016 Edition of the Model Checking Contest,”
http://mcc.lip6.fr/2016/results.php, June 2016.

55

References

56

Paper B

Refinement of Trace Abstraction for Real-Time
Programs

Franck Cassez, Peter Gjøl Jensen and Kim Guldstrand Larsen

The paper has been published in the
Proceedings of Reachability Problems 2017, LNCS Vol. 10506, pp. 42–58, 2017.

c© Springer International Publishing AG 2017
The layout has been revised.

1. Introduction

Abstract

Real-time programs are made of instructions that can perform assignments to discrete
and real-valued variables. They are general enough to capture interesting classes of
timed systems such as timed automata, stopwatch automata, time(d) Petri nets and
hybrid automata. We propose a semi-algorithm using refinement of trace abstractions
to solve both the reachability verification problem and the parameter synthesis prob-
lem for real-time programs. We report on the implementation of our algorithm and
we show that our new method provides solutions to problems which are unsolvable
by the current state-of-the-art tools.

1 Introduction

Model-checking is a widely used formal method to assist in verifying soft-
ware systems. A wide range of model checking techniques and tools are
available and there are numerous successful applications in the safety-critical
industry and the hardware industry – in addition the approach is seeing
an increasing adoption in the general software engineering community. The
main limitation of this formal verification technique is the so-called state ex-
plosion problem. Abstraction refinement techniques were introduced to overcome
this problem. The most well-known technique is probably the Counter Ex-
ample Guided Abstraction Refinement (CEGAR) method pioneered by Clarke
et al. [1]. In this method the state-space is abstracted with predicates on
the concrete values of the program variables. The (counter-example guided)
refinement of trace abstraction (TAR) method was proposed recently by Heiz-
mann et al. [2, 3] and is based on abstracting the set of traces of a program
rather than the set of states. These two techniques have been widely used
in the context of software verification. Their effectiveness and versatility in
verifying qualitative (or functional) properties of C programs is reflected in
the most recent Software Verification competition results [4, 5].

Analysis of timed systems. Reasoning about quantitative properties of pro-
grams requires extended modeling features like real-time clocks. Timed Au-
tomata [6] (TA), introduced by Alur and Dill in 1989, is a very popular for-
malism to model real-time systems with dense-time clocks. Efficient sym-
bolic model checking techniques for TA are implemented in the real-time
model-checker Uppaal [7]. Extending TA, e.g., with the ability to stop and
resume clocks (stopwatches), leads to undecidability of the reachability prob-
lem [8, 9]. Semi-algorithms have been designed to verify hybrid systems
(extended classes of TA) and are implemented in a number of dedicated
tools [10–12]. However, a common difficulty with the analysis of quantita-
tive properties of timed automata and extensions thereof is that ad-hoc data

59

Paper B.

structures are needed for each extension and each type of problem. As a
consequence, the analysis tools have special-purpose efficient algorithms and
data structures suited and optimized only towards their specific problem and
extension.

In this work we aim to provide a uniform solution to the analysis of timed
systems by designing a generic semi-algorithm to analyze real-time programs
which semantically captures a wide range of specification formalisms, includ-
ing hybrid automata. We demonstrate that our new method provides solu-
tions to problems which are unsolvable by the current state-of-the-art tools.
We also show that our technique can be extended to solve specific problems
like robustness and parameter synthesis.

Related work. The refinement of trace abstractions (TAR) was proposed by
Heizmann et al. [2, 3]. It has not been extended to the verification of real-
time systems. Wang et al. [13] proposed the use of TAR for the analysis of
timed automata. However, their approach is based on the computation of
the standard zones which comes with usual limitations: it is not applicable to
extensions of TA (e.g., stopwatch automata) and can only discover predicates
that are zones. Their approach has not been implemented and it is not clear
whether it can outperform state-of-the-art techniques e.g., as implemented
in Uppaal. Dierks et al. [14] proposed a CEGAR based method for Timed
Systems. To the best of our knowledge, this method got limited attention in
the community.

Tools such as Uppaal [7], SpaceEx [11], HyTech [12], PHAver [10], veri-
fix [15], symrob [16] and Imitator [17] all rely on special-purpose polyhedra
libraries to realize their computation.

Our technique is radically different to previous approaches and leverages
the power of SMT-solvers to discover non-trivial invariants for the class of
hybrid automata. All the previous analysis techniques compute, reduce and
check the state-space either up-front or on-the-fly, leading to the construc-
tion of significant parts of the state-space. In contrast our approach is an
abstraction refinement method and the refinements are built by discovering
non-trivial program invariants that are not always expressible using zones,
or polyehdra. This enables us to successfully analyze (terminate) instances
of non-decidable classes like stopwatch automata. A simple example is dis-
cussed in Section 2.

Our contribution. In this paper, we propose a refinement of trace abstrac-
tions (TAR) technique to solve the reachability problem and the parame-
ter synthesis problem for real-time programs. Our approach combines an
automata-theoretic framework and state-of-the-art Satisfiability Modulo The-
ory (SMT) techniques for discovering program invariants. We demonstrate
on a number of case-studies that this new approach can compute answers to

60

2. Motivating Example

ι ℓ0 ℓ1 ℓ2

Edge Guard Update Rate
i True x:=y:=z:=0 dy/dt=1

t0 True z:=0 dy/dt=0

t1 x==1 x:=0 dy/dt=0

t2 x-y>=1 and z<1 - dy/dt=0

i t0

t1

t2

Fig. B.1: Finite Automaton A1

problems unsolvable by special-purpose tools and algorithms in their respec-
tive domain.

2 Motivating Example

The finite automaton A1 (Fig. B.1), accepts the regular language L(A1) =
i.t0.t∗1 .t2. By interpreting the labels of A1 according to the Table in Fig. B.1,
we can view it as a stopwatch automaton with 2 clocks, x and z, and one
stopwatch y (the variables). Each label defines a guard g (a Boolean con-
straint on the variables), an update u which is a (discrete) assignment to
the variables, and a rate (vector) r that defines the derivatives of the vari-
ables.1 We associate with a sequence w = a0.a1. · · · .an ∈ L(A1), a (possi-
bly empty) set of timed words, τ(w), of the form (a0, δ0). · · · (an, δn) where
δi ≥ 0, i ∈ [0..n]. For instance, the timed words associated with i.t0.t2 are of
the form (i, δ0).(t0, δ1).(t2, δ2), for all δi ∈ R≥0, i ∈ {0, 1, 2} such that follow-
ing constraints can be satisfied:

x0 = y0 = z0 = δ0 ∧ δ0 ≥ 0 (P0)

x1 = x0 + δ1 ∧ y1 = y0 ∧ z1 = δ1 ∧ δ1 ≥ 0 (P1)

x1 − y1 ≥ 1 ∧ z1 < 1 ∧ x2 = x1 + δ2 ∧ y2 = y1 ∧ z2 = z1 + δ2 ∧ δ2 ≥ 0 (P2)

The initial values of the variables x, y, z (in location ι, source of edge i)
are denoted x−1, y−1, z−1 and are unconstrained. Hence we assume that the
initial predicate on the variables x−1, y−1, z−1 is P−1 = True. P0 must be
satisfied after taking i and letting time progress for δ0 ≥ 0 time units, which
is enforced by a constraint on the variables2 x0, y0, z0 that stand for the values
of x, y, z after taking i; similarly P0 ∧ P1 must hold after i.t0 and P0 ∧ P1 ∧ P2
after i.t0.t2. Hence the set of timed words associated with i.t0.t2 is not empty
iff P0 ∧ P1 ∧ P2 is satisfiable. The timed language, T L(A1), accepted by A1

1As x and z are clocks their rate is always 1 and omitted in the Table.
2If x was not reset by i, we would have a constraint x0 = x−1, with x−1 unconstrained.

61

Paper B.

Sequence PHAver Uppaal

i.t0 z = x − y ∧ 0 ≤ z ≤ x 0 ≤ y ≤ x ∧ 0 ≤ z ≤ x

i.t0.t1 z = x − y + 1 ∧ 0 ≤ x ≤ z ≤ x + 1 0 ≤ z − x ≤ 1 ∧ 0 ≤ y

i.t0.(t1)
2 z = x − y + 2 ∧ 0 ≤ x ≤ z − 1 ≤ x + 1 1 ≤ z − x ≤ 2 ∧ 0 ≤ y

i.t0.(t1)
3 z = x − y + 3 ∧ 0 ≤ x ≤ z − 2 ≤ x + 1 2 ≤ z − x ≤ 3 ∧ 0 ≤ y

.
i.t0.(t1)

k z = x − y + k ∧ 0 ≤ x ≤ z − k + 1 ≤ x + 1 k − 1 ≤ z − x ≤ k ∧ 0 ≤ y

.

Table B.1: Symbolic representation of reachable states after a sequence of instructions. Uppaal

concludes that T L(A1) �= ∅ due to the over-approximation using DBMs. PHAver does not
terminate.

is the set of timed words associated with all the words w accepted by A1
i.e., T L(A1) = ∪w∈L(A1)

τ(w).

The language emptiness problem is a standard problem in Timed Automata
theory and is stated as follows [6]: “given a (Timed) Automaton A, is T L(A)
empty?”. It is known that the emptiness problem is decidable for some
classes of real-time programs (e.g., Timed Automata [6]), but undecidable
for slightly more expressive classes (e.g., Stopwatch Automata [9]). It is usu-
ally possible to compute symbolic representations of sets of reachable valua-
tions after a sequence of labels. However, to compute the set of reachable
valuations we may need to explore an arbitrary and unbounded number of
sequences. Hence only semi-algorithms exist to compute the set of reach-
able valuations. For instance, using PHAver to compute the set of reachable
valuations for A1 does not terminate (Table B.1). To force termination, we
can compute an over-approximation of the set of reachable valuations. Com-
puting an over-approximation is sound (if we declare a timed language to
be empty it is empty) but incomplete i.e., it may result in false positives (we
declare a timed language non empty whereas it is empty). This is witnessed
by the column “Uppaal” in Table B.1 where Uppaal over-approximates sets
of valuations in the stopwatch automaton with DBMs. After i.t0, the over-
approximation is 0 ≤ y ≤ x ∧ 0 ≤ z ≤ x. This over-approximation intersects
the guard x − y ≥ 1 ∧ z − y < 1 of t2 and ℓ2 is reachable but this is an artifact
of the over-approximation.3

Neither Uppaal nor PHAver can prove that T L(A1) = ∅. The technique
we introduce in this paper enables us to discover arbitrary abstractions and
invariants that enable us to prove T L(A1) = ∅. Our method is a version
of the Trace Abstraction Refinement (TAR) technique introduced in [2]. Let us
demonstrate how the method works on the stopwatch automaton A1:

• find a (untimed) word accepted by A1. Let w1 = i.t0.t2 be such a word.

3Uppaal terminates with the result “the language may not be empty”.

62

3. Real-Time Programs

We check whether τ(w1) = ∅ by encoding the corresponding associ-
ated timed traces as described by Equations (P0)–(P2) and then check
whether P0 ∧ P1 ∧ P2 is satisfiable4. As P0 ∧ P1 ∧ P2 is not satisfiable we
have τ(w1) = ∅.

• from the proof that P0 ∧ P1 ∧ P2 is not satisfiable, we can obtain an induc-
tive interpolant that comprises of two predicates I0, I1 – one for each con-
junction – over the clocks x, y, z. An example of inductive interpolant5

is I0 = x ≤ y and I1 = x − y ≤ z. These predicates are invariants of any
timed word of the untimed word w1, and can be used to annotate w1
with pre- and post-conditions (Equation B.1), which are Hoare triples
of the form {P} a {Q}:

{True} i {I0} t0 {I1} t2 {False} (B.1)

{True} i {I0} t0 {I1}{I1}{I1} (t1)
∗(t1)
∗(t1)
∗ {I1}{I1}{I1} t2 {False} (B.2)

We can also prove that {I1} (t1)
∗ {I1} is a valid Hoare triple and

combined with Equation B.1 this gives Equation B.2. For each word
w ∈ i.t0.(t1)

∗.t2, τ(w) = ∅ and as L(A1) ⊆ i.t0.(t1)
∗.t2 we can conclude

that T L(A1) = ∅.

3 Real-Time Programs

Our approach is general enough and applicable to a wide range of timed
systems called real-time programs. As an example, timed, stopwatch, hybrid
automata and time Petri nets are special cases of real-time programs.

In this section we define real-time programs. Real-time programs define
the control flow of instructions, just as standard imperative programs do. The
instructions can update variables by assigning new values to them. Each in-
struction has a semantics and together with the control flow this precisely
defines the semantics of real-time programs.

Notations. A finite automaton over an alphabet Σ is a tuple A = (Q, ι, Σ,
∆, F) where Q is a finite set of locations s.t. ι ∈ Q is the initial location, Σ

is a finite alphabet of actions, ∆ ⊆ (Q × Σ × Q) is a finite transition relation,
F ⊆ Q is the set of accepting locations. A word w = α0.α1. · · · .αn is a finite
sequence of letters from Σ; we let w[i] = αi the i-th letter, |w| be the length of
w which is n + 1. Let ǫ be the empty word and |ǫ| = 0, Σ∗ is the set of finite
words over Σ. The language, L(A), accepted by A is defined in the usual
manner as the set of words that can lead to F from ι.

4This can be done using an SMT-solver e.g., Z3.
5This is the pair returned by Z3 for P0 ∧ P1 ∧ P2.

63

Paper B.

Let V be a finite set of real-valued variables. A valuation is a function
ν : V → R. The set of valuations is [V → R]. We denote by β(V) a set of
constraints on the variables in V. Given ϕ ∈ β(V), we let Vars(ϕ) be the set
of free variables in ϕ. The truth value of a constraint ϕ given a valuation ν

is denoted by ϕ(ν) and we write ν |= ϕ when ϕ(ν) = True. We let �ϕ� =
{ν | ν |= ϕ}. An update of the variables in V is a binary relation µ ⊆ [V →
R]× [V → R]. Given an update µ and a set of valuations V , we let µ(V) =
{ν′ | ∃ν ∈ V and (ν, ν′) ∈ µ}. We let U (V) be the set of updates on the
variables in V. A rate ρ is a function from V to Q (rates can be negative),
i.e., an element of QV . We let R(V) ⊆ QV be a set of valid rates – that is,
rates that can be written (syntactically) as a predicate on an edge. Given a
valuation ν, a valid rate ρ ∈ Q(V) and a timestep δ ∈ R≥0 the valuation
ν + ρ × δ is defined by: (ν + ρ × δ)(v) = ν(v) + ρ(v)× δ for v ∈ V.

Real-Time Instructions. Let I = β(V)×U (V)×R(V) be a countable set of
instructions. Each α ∈ I is a tuple (guard, update, rates) denoted by (γα, µα, ρα).
Let ν : V → R and ν′ : V → R be two valuations. For each pair (α, δ) ∈
I × R≥0 we define the following transition relation:

ν
α,δ

−−→ ν′ ⇐⇒

1. ν |= γα(guard of α is satisfied in ν),

2. ∃ν′′ s.t. (ν, ν′′) ∈ µα (discrete update allowed by α) and

3. ν′ = ν′′ + δ × ρα(continuous update as defined by α).

The semantics of α ∈ I is a mapping �α� : [V → R] → [V → R] that can be
extended to sets of valuations as follows:

ν ∈ [V → R], �α�(ν) = {ν′ | ∃δ ≥ 0, ν
α,δ

−−→ ν′}

K ⊆ [V → R], �α�(K) =
⋃

ν∈K

�α�(ν).

Let K be a set of valuations, α ∈ I and w ∈ I∗. We inductively define the
post operator Post as follows:

Post(K, ǫ) = K

Post(K, α.w) = Post(�α�(K), w)

The post operator extends to logical constraints ϕ ∈ β(V) by defining it as:

Post(ϕ, w) = Post(�ϕ�, w)

In the sequel, we assume that, when ϕ ∈ β(V), then �α�(�ϕ�) is also definable
as a constraint in β(V). This inductively implies that Post(ϕ, w) can also be
expressed as a constraint in β(V) for sequences of instructions w ∈ I∗.

64

3. Real-Time Programs

Timed Words and Feasible Words. A timed word (over alphabet I) is a fini-
te sequence σ = (α0, δ0).(α1, δ1). · · · .(αn, δn) such that for each 0 ≤ i ≤ n,
δi ∈ R≥0 and αi ∈ I . The timed word σ is feasible if and only if there exists a
set of valuations {ν0, . . . , νn+1} ⊆ [V → R] such that:

ν0
α0,δ0−−−→ ν1

α1,δ1−−−→ ν2 · · · νn
αn ,δn−−−→ νn+1.

We let Unt(σ) = α0.α1. · · · .αn be the untimed version of σ. We overload the
term feasible as follows: an untimed word w ∈ I∗ is feasible iff w = Unt(σ)
for some feasible timed word σ.

Lemma 1

An untimed word w ∈ I∗ is feasible iff Post(True, w) �= False.

Proof. The lemma follows trivially from the inductive definition of Post.

Real-Time Programs. The specification of a real-time program decouples
the control (e.g., for Timed Automata, the locations) and the data (the clocks).
A real-time program is a pair P = (AP, �·�) where AP is a finite automaton
AP = (Q, ι, I, ∆, F) over the finite alphabet6 I ⊆ I , ∆ defines the control-
flow graph of the program and �·� (as defined previously for I) provides the
semantics of each instruction. A timed word σ is accepted by P if and only if:

1. Unt(σ) is accepted by AP (Unt(σ) ∈ L(AP)) and

2. σ is feasible.

Notice that the definition of feasibility of a timed word σ is independent from
the acceptance of Unt(σ) by AP. The timed language, T L(P), of a real-time
program P is the set of timed words accepted by P, i.e., σ ∈ T L(P) if and
only if Unt(σ) ∈ L(AP) and σ is feasible.

Remark 1

We do not assume any particular values initially for the variables of a real-
time program (the variables that appear in I). This is reflected by the defini-
tion of feasibility that only requires the existence of valuations without con-
taining the initial one ν0. When specifying a real-time program, initial values
can be set by regular instructions. This is similar to standard programs where
the first instructions can set the values of some variables.

6I can be infinite but we require the control-flow graph ∆ (transition relation) of AP to be
finite.

65

Paper B.

Timed Language Emptiness Problem. The (timed) language emptiness prob-
lem asks the following:

Given a real-time program P, is T L(P) empty?

Theorem 4

T L(P) �= ∅ iff ∃w ∈ L(AP) such that Post(True, w) �⊆ False.

Proof. T L(P) �= ∅ iff there exists a feasible timed word σ such that Unt(σ)
is accepted by AP. This is equivalent to the existence of a feasible word w ∈
L(AP), and by Lemma 1, feasibility of w is equivalent to Post(True, w) �⊆ False.

Useful Classes of Real-Time Programs. Timed Automata are a special case
of real-time programs. The variables are called clocks. β(V) is restricted
to constraints on individual clocks or difference constraints generated by the
grammar:

b1, b2 ::= True | False | x − y � k | x � k | b1 ∧ b2 (B.3)

where x, y ∈ V, k ∈ Q≥0 and �∈ {<, ≤,=, ≥,>}7. We note that wlog. we
omit location invariants as for the language emptiness problem, these can be
implemented as guards. An update in µ ∈ U (V) is defined by a set of clocks
to be reset. Each pair (ν, ν′) ∈ µ is such that ν′(x) = ν(x) or ν′(x) = 0 for
each x ∈ V. The valid rates are fixed to 1, and thus R(V) = {1}V .

Stopwatch Automata can also be defined as a special case of real-time pro-
grams. As defined in [8], Stopwatch Automata are Timed Automata extended
with stopwatches which are clocks that can be stopped. β(V) and U (V) are
the same as for Timed Automata but the set of valid rates is defined by the
functions of the form R(V) = {0, 1}V (the clock rates can be either 0 or 1).
An example of a Stopwatch Automaton is given by the timed system A1 in
Fig. B.1.

As there exists syntactic translations (preserving reachability) that maps
hybrid automata to stopwatch automata [8], and translations that map time
Petri nets [18, 19] and extensions [20, 21] thereof to timed automata, it follows
that time Petri nets and hybrid automata are also special cases of real-time
programs. This shows that the method we present in the next section is ap-
plicable to wide range of timed systems. What is remarkable as well, is that it
is not restricted to timed systems that have a finite number of discrete states
but can also accommodate infinite discrete state-spaces. For example, the
automaton in Fig. B.2 has two clocks x and y and an unbounded integer vari-
able k. Even though k is unbounded, our technique discovers the invariant
y ≥ k at location 1 which is over a real-time clock y and the integer variable
k. It allows us to prove that T L(P2) = ∅.

7 While difference constraints are strictly disallowed in most definitions of Timed Automata,
the method we propose retain its properties regardless of their presence.

66

4. Trace Abstraction Refinement for Real-Time Programs

4 Trace Abstraction Refinement for Real-Time Pro-

grams

In this section we propose a semi-algorithm to solve the language emptiness
problem for real-time programs. The semi-algorithm is a version of the re-
finement of trace abstractions (TAR) approach [2] for timed systems.

Refinement of Trace Abstraction for Real-Time Programs. Fig. B.3 gives a
precise description of the TAR semi-algorithm for real-time programs. This is
the standard trace abstraction refinement semi-algorithm as introduced in [2]
– we therefore omit theorems of completeness and soundness as these will be
equivalent to the theorems in [2] and are proved in the exact same manner.
The input to the semi-algorithm is a real-time program P = (AP, �·�). An
invariant of the semi-algorithm is that R is empty or contains only infeasible
traces.

Initially the refinement R is the empty set. The semi-algorithm works as
follows:

Step 1 check whether all the (untimed) traces in L(AP) are in R. If this is the
case, T L(P) is empty and the semi-algorithm terminates. Otherwise,
there is a sequence w ∈ L(AP) \ R, goto Step 2;

Step 2 if w is feasible i.e., there is a feasible timed word σ such that Unt(σ) =
w, then σ ∈ T L(P) and T L(P) �= ∅ and the semi-algorithm terminates.
Otherwise w is not feasible, goto Step 3;

Step 3 w is infeasible and given the reason for infeasibility we can construct
a finite interpolant automaton, IA(w), that accepts w and other words that
are infeasible for the same reason. How IA(w) is computed is addressed
in the sequel. The automaton IA(w) is added to the previous refinement
R and the semi-algorithm starts a new round at Step 1.

Checking Feasibility. Given a word w ∈ I∗, we can check whether w is
feasible by encoding the side-effects of each instruction in w, similar to a
Static Single Assignment (SSA) form in programming languages.

ι 0 1 2

Edge Guard Update
i True x:=y:=k:=0

t0 x ≥ 1 —
t1 True x:=0; k++

t2 y < k —

i
t0

t1

t2

Fig. B.2: Real-time program P2

67

Paper B.

Step 1: L(AP) ⊆ R? Step 2: w is feasible?

T L(P) = ∅ T L(P) �= ∅, w is a witness

R = ∅ Step 3: R := R ∪ L(IA(w))

Yes
No. Let w ∈ L(AP) \ R

Yes

No

Fig. B.3: Trace Abstraction Refinement Semi-Algorithm for Real-Time Programs

Let us define a function for constructing such a constraint-system charac-
terizing the feasibility of a given trace. We shall assume that constraints in
β(V) and updates in U (V) are syntactically defined. Let P = (Q, q0, I , ∆, F)
be a real-time program and w ∈ I∗ be a word over I . Let Vn = {xn, xn

µ |
x ∈ V} ∪ {δn} be a set of variables extended with an index n ∈ N≥0. For a
given constraint-system ϕ ∈ β(V) write ϕ[V/Vn] for replacing all occurrences
of V with their indexed occurrence in Vn (implying that ϕ[V/Vn] ∈ β(Vn)).
We assume that the relation µ ∈ U (V) is of SSA form, and let µ[V/(Vn ,Vm)]

be the replacement of all occurrences of variables x ∈ V with their indexes
and sub-scripted occurrence in Vn if x is assigned to and from Vm if x is read
from. As an example, (v ← v + w)[V/(Vn ,Vm)] = vn

µ ← vm + wm where ←
denotes assignment. Given this we can now recursively define the function
Enc : I∗ → β({Vn | 0 ≤ n ≤ |w|})

Enc(ǫ) =True

Enc(w.α) =Enc(w) ∧ δn ≥ 0 ∧ ϕ[V/Vn−1] ∧ δn ≥ 0 ∧ µ[V/(Vn
µ ,Vn−1)]

∧
∧

v∈V

vn = vn
µ + ρ(v)× δn where n = |w|− 1 and (ϕ, µ, ρ) = α

The function Enc : I∗ → β(VN≥0) constructs a constraint-system characteriz-
ing exactly the feasibility of a word w:

Lemma 2

A word w is feasible i.e., Post(True, w) �⊆ False iff Enc(w) is satisfiable.

We shall frequently refer to such a constraints system C = Enc(w) for
some word w where |w| = n as a sequence of conjunctions P0 ∧ · · · ∧ Pm ∧
· · · ∧ Pn = C where Pm ∈ β(Vm−1 ∪ Vm) refers to the encoding of the m’th
instruction, and we shall call such an element Pm a predicate.

An example of an encoding for the real-time program A1 (Fig. B.1) is
given by the predicates in Equation (P0)–(P2). The variables xk, yk, zk denote
the values of x, y, z after k steps (initially the variables can have arbitrary
values). The sequence w1 = i.t0.t2 is feasible iff Enc(w1) = P0 ∧ P1 ∧ P2 is
satisfiable.

68

4. Trace Abstraction Refinement for Real-Time Programs

True

I1

I3 I4 I5 I6

False

I2
t0

t2

t0 t1

t0

t1

t2

i

i

Fig. B.4: Interpolant automaton for L(IA(w1)) ∪ L(IA(w2)).

From such a sequence we can use interpolating SMT-solvers to construct
a sequence of craig-interpolants.

Construction of Interpolant Automata. When it is determined that a trace
w is infeasible, we can easily discard such a single trace and continue search-
ing. However, the power of the TAR method is to generalize the infeasibility
of a single trace w into a family (regular set) of traces. This regular set of
infeasible traces is computed from the reason of infeasibility of w and is for-
mally specified by an interpolant automaton, IA(w). The reason for infeasibility
itself has the form of an inductive interpolant.

Given a conjunctive formula f = P0 ∧ · · · ∧ Pm, if f is unsatisfiable, an
interpolating SMT-solver is capable of producing inductive arguments for the
unsatisfiability reason. This argument is an inductive interpolant I0, . . . , Im−1
s.t for each 0 ≤ n ≤ m − 1, In ∧ Pn+1 implies In+1 (with Im = False), and for
each 0 ≤ n ≤ m − 1, the variables in In appear in both Pn and Pn+1.

One can intuitively think of each interpolant as a sufficient condition for
infeasibility of the post-fix of the trace and this can be represented by a se-
quence of Hoare triples of the form {P} a {Q}:

{True} a0 {I0} a1 {I1} · · · {Im−1} am {False}

Consider the real-time program P2 of Fig. B.2 and the two infeasible untimed
words w1 = i.t0.t2 and w2 = i.t0.t1.t0.t2. The Hoare triples for w1 and w2 are
given by Equation B.4-B.5 where the predicates are: I1 = y ≥ x ∧ (k = 0),
I2 = y ≥ k, I3 = y ≥ x ∧ k ≤ 0, I4 = y ≥ 1 ∧ k ≤ 0, I5 = y ≥ k + x,
I6 = y ≥ k + 1.

{True} i {I1} t0 {I2} t2 {False} (B.4)

{True} i {I3} t0 {I4} t1 {I5} t0 {I6} t2 {False} (B.5)

As can be seen in Equation B.5, the sequence contains two occurrences of
t0: this suggests that a loop occurs in the program, and this loop may be
infeasible as well. Formally, because Post(I6, t1) ⊆ I5, any trace of the form
i.t0.t1.(t0.t1.t0)

∗.t2 is infeasible. This enables us to construct IA(w2) as accept-
ing the regular set of infeasible traces i.t0.t1.(t0.t1.t0)

∗.t2. Overall, because w1
is also infeasible, we obtain a refinement which is L(IA(w1)) ∪ L(IA(w2)),
Fig. B.4.

69

Paper B.

Let us formalize the interpolant-automata construction. Given the inter-
polants I0, . . . Ik for the constraint-system P0 ∧ · · · ∧ Pk+1 = Enc(w) for some
word w where k = |w| − 1 and given the automata description of our Real
Time Program A = (Q, q0, Σ, ∆, F), then we can construct an interpolant au-
tomaton AI = (QI , qI

0, ΣI , ∆I , FI) s.t. w ∈ L(AI) and for all w′ ∈ L(AI) we
have that w′ is infeasible. Let Q = {True, False, I0, . . . , Ik}, q0 = True, ΣI = Σ,
F = {False}, then we let the transition-function be the largest transition-
function satisfying the following.

1. (True, w[0], I0) ∈ ∆I ,

2. (Ik, w[k], False) ∈ ∆I ,

3. (In−1, w[n − 1], ln) ∈ ∆I for 1 < n ≤ k, and

4. for each 1 ≤ n, m ≤ k, if Im ⊂V In then (In−1, w[n − 1], Im) ∈ ∆I where
⊂V is subset-checking, modulo variable indexing.

The above conditions induce an algorithm IA for constructing interpolant
automata from an untimed word w.

Theorem 5 (Interpolant Automata)

Let w be an infeasible word over P, then for all w′ ∈ L(IA(w)), w′ is infeasible.

We can verify that the construction using rules 1-3 is correct as these
come directly from the feasibility-check of the trace and the definition of
interpolants.

The pumping-rule (rule 4) utilizes that if by firing some transition labeled
α from some interpolant In−1 gives us a “stronger” argument for infeasibility
than in Im, then surely every sequence which is infeasible from Im is also
infeasible from In−1 after firing α.

Feasibility Beyond Timed Automata. Satisfiability can be checked with an
SMT-solver (and decision procedures exist for useful theories). In the case of
timed automata and stopwatch automata, the feasibility of a trace can be en-
coded as a linear program. The corresponding theory, Linear Real Arithmetic
(LRA) is decidable and supported by most SMT-solvers. It is also possible to
encode non-linear constraints (non-linear guards and assignments). In the
latter cases, the SMT-solver may not be able to provide an answer to the SAT
problem as non-linear theories are undecidable. However, we can still build
on a semi-decision procedure of the SMT-solver, and if it provides an answer,
get the status of a trace (feasible or not).

70

5. Parameter Synthesis for Real-Time Programs

1: T L(Assume(I).P) = ∅?

I

I := True

2: I := I ∧ ¬∃iEnc(Unt(σ))

Yes

No
Let σ ∈ T L(Assume(I).P)

Fig. B.5: Semi-algorithm SafeInit.

5 Parameter Synthesis for Real-Time Programs

In this section we show how to use the trace abstraction refinement semi-
algorithm presented in Section 4 to synthesize good initial values for some
of the program variables. Given a real-time program P, the objective is to
determine a set of initial valuations I ⊆ [V → R] such that, when we start the
program in I, P does not accept any timed word.

Given a constraint I ∈ β(V), we define the associated assume guard-
transformer for instructions that for a letter α = (γ, ρ, µ) defines Assume(α, I) =
(γ′, ρ, µ) s.t. γ = γ ∧ I. Let P = (Q, ι, I , ∆, F) be a real-time program. Then
we can define the real-time program Assume(I).P = (Q, ι, I , (∆ \ {(ι, i, q0)})∪
{(ι, Assume(i, I), q0)}, F).

Safe Initial Set Problem. The safe initial state problem asks the following:

Given a real-time program P, is there I ∈ β(V) s.t. T L(Assume(I).P) =
∅?

Semi-Algorithm for the Safe Initial State Problem. Let w ∈ L(P). When
Enc(w) is satisfiable, we define the (existentially quantified) constraint:

∃Vars(Enc(w)) \ V−1.Enc(w)

That is, the projection of the set of solutions on the initial values of the vari-
ables. We let ∃i(w) be ∃Vars(Enc(w)) \ V−1.Enc(w) with all the free occur-
rences of x−1 replaced by x (remove index for each var). ∃i(w) is a constraint
over the set of variables V (and existential quantifiers)8.
The semi-algorithm in Fig. B.5 works as follows:

8Existential quantification for the theory of Linear Real Arithmetic is within the theory via
Fourier–Motzkin-elimination – hence the solver only needs support for Linear Real Arithmetic
for Parameter Synthesis for Stopwatch and Timed Automata.

71

Paper B.

1) initially I = True

2) using the semi-algorithm from Figure B.3, test if T L(Assume(I).P) is
empty – if so P does not accept any timed word when we start from �I�

3) Otherwise, there is a witness word σ ∈ T L(Assume(I).P), implying
that I ∧ Enc(Unt(σ)) is satisfiable. We can then determine a sufficient
condition I′ = ∃i(Unt(σ)) for the feasibility s.t. (¬I′) ∧ Enc(Unt(σ)) is
unsatisfiable and use this to strengthen the constraint I (step 2).

If the semi-algorithm terminates, it computes exactly the set of parameters
for which the system is not safe (I), captured formally by Theorem 6.

Theorem 6

If the semi-algorithm SafeInit terminates and outputs I, then for any I′ ∈
β(V), T L(Assume(I′).P) = ∅ if and only if I′ ⊆ I.

=⇒. Let us assume by contradiction that upon termination we have the fol-
lowing.

T L(Assume(I).P) �= ∅

This violates the termination critirion of either Figure B.3 or Figure B.5.

⇐=. Let us assume by contradiction that upon termination there exists some
I′ �= ∅ for which I′ ∩ I = ∅ and T L(Assume(I′).P) = ∅. Then let us prove
inductively that no such I′ can ever exist.

In the base-case in step 1, if the algorithm terminates, clearly I′ = ∅

violating our requirements for the contradiction. For our contradiction to
be valid, we must instead look at how we modify I in step 2. For I′ to be
non-empty, the quantification over parameter-values for σ must construct a
larger-than-needed set of parameter value, i.e., that I′ ⊆ ¬∃iEnc(Unt(σ)).
This contradicts the definition of existential quantification. As we never over-
approximate the parameter set needed for the valuation in step 2, we can
conclude that I′ cannot exist.

6 Experiments

We have conducted two sets of experiments, each testing the applicability of
our proposed method (denoted by rttar) compared to state-of-the-art tools
with specialized data structures and algorithms for the given setting. All
experiments were conducted on AMD Opteron 6376 Processors and limited
to 1 hour of computation. The rttar tool uses the Uppaal parsing-library,
but relies on Z3 [22] for the interpolant computation.

72

6. Experiments

Verification of Timed and Stopwatch Automata. The real-time programs,
P1 of Fig. B.1 and P2 of Fig. B.2 can be analyzed with our technique. The anal-
ysis (rttar algorithm, B.3) terminates in two iterations for the program P1,
a stopwatch automaton. As emphasized in the introduction, neither Uppaal

(over-approximation with DBMs) nor PHAver can provide the correct answer
to reachability problem for P1.

To prove that location 2 is unreachable in program P2 requires to discover
an invariant that mixes integers (discrete part of the state) and clocks (con-
tinuous part). Our technique successfully discovers the program invariants
I5 and I6 (thanks to the interpolating SMT-solver). As a result the refinement
depicted in Fig. B.2 is constructed and as it contains L(AP2) the refinement
algorithm terminates and proves that 2 is not reachable. AP2 can only be ana-
lyzed in Uppaal with significant computational effort and bounded integers.

Robustness of Timed Automata. Another remarkable feature of our tech-
nique is that it can readily be used to check robustness of timed automata. In
essence, checking robustness amounts to enlarging the guards of an TA A by
an ε > 0. The resulting TA is Aε. The automaton A is (safety) robust iff there
is some ε > 0 such T L(Aǫ) = ∅.

To address the robustness problem for a real-time program P, we use the
semi-algorithm presented in Section 5 and reduce the robustness-checking
problem to that of parameter synthesis. Assuming P is robust9 i.e., there
exists some ǫ > 0 such that T L(Aǫ) = ∅ and the previous process terminates
we can compute the largest set of parameters for which P is robust.

As Table B.2 demonstrates, symrob [16] and rttar do not always agree on
the results. Notably, since the TA M3 contains strict guards, symrob is unable
to compute the robustness of it. Furthermore, symrob over-approximates ǫ,
an artifact of the so-called “loop-acceleration”-technique and the polyhedra-
based algorithm. This can be observed in the modified model M3c, which
is now analyzable by symrob, but differ in results compared to rttar. This
is the same case with the model denoted a. We experimented with ǫ-values
to confirm that M3 is safe for all the values tested – while a is safe only for
values tested respecting ǫ <

1
2 . We can also see that our proposed method is

significantly slower than symrob. As our tool is currently only a prototype
with rudimentary state-space-reduction-techniques, this is to be expected.

Parametric Stopwatch Automata. In our last series of tests, we compare
the rttar tool to Imitator [17] – the state-of-the-art parameter synthesis

9Proving that a system is non-robust requires proving feasibility of infinite traces for ever
decreasing ǫ. We have developed some techniques to do so but this is outside of the scope of
this paper.

73

Paper B.

Test Time ǫ < Time ǫ <

symrob rttar

csma_05 0.43 1/3 68.23 1/3
csma_06 2.44 1/3 227.15 1/3
csma_07 8.15 1/3 1031.72 1/3
fischer_04 0.16 1/2 45.24 1/2
fischer_05 0.65 1/2 249.45 1/2
fischer_06 3.71 1/2 1550.89 1/2
M3c 4.34 250/3 43.10 ∞

M3 N/A N/A 43.07 ∞

a 27.90 1/4 15661.14 1/2

Table B.2: Results for robustness analysis comparing rttar with symrob. Time is given in
seconds. N/A indicates that symrob was unable to compute the robustness for the given model.

Test Imitator rttar

Sched2.50.0 201.95 1656.00
Sched2.100.0 225.07 656.26
A1 DNF 0.1
fischer_2 DNF 0.23
fischer_4 DNF 40.13
fischer_2_robust DNF 0.38
fischer_4_robust DNF 118.11

Table B.3: Results for parameter synthesis comparing rttar with Imitator. Time is given in
seconds. DNF marks that the tool did not complete the computation within an hour.

tool for reachability 10. We shall here use the semi-algorithm is presented in
Section 5 For the test-cases we use the gadget presented initially in Fig. B.1, a
few of the test-cases used in [23], as well as two modified version of Fischers
Protocol, shown in Fig. B.6. In the first version we replace the constants in the
model with parameters. In the second version (marked by robust), we wish
to compute an expression, that given an arbitrary upper and lower bound
yields the robustness of the system – in the same style as the experiments
presented in Section 6, but here for arbitrary guard-values.

As illustrated by Table B.3 the performance of rttar is slower than Im-
itator when Imitator is able to compute the results. On the other hand,
when using Imitator to verify our motivating example from Fig. B.1, we ob-
serve that Imitator never terminates, due to the divergence of the polyhedra-
computation. This is the effect illustrated in Table B.1.

10We compare with the EFSynth-algorithm in the Imitator tool as this yielded the lowest
computation time in the two terminating instances.

74

7. Conclusion

Fig. B.6: A Uppaal template for a single process in Fischers Algorithm. The variables e, a and b

are parameters for ǫ, lower and upper bounds for clock-values respectively.

When trying to synthesize the parameters for Fischers algorithm, in all
cases, Imitator times out and never computes a result. For both two and
four processes in Fischers algorithm, our tool detects that the system is safe
if and only if a < 0 ∨ b < 0 ∨ b − a > 0. Notice that a < 0 ∨ b < 0 is a
trivial constraint preventing the system from doing anything. The constraint
b − a > 0 is the only useful one. Our technique provides a formal proof that
the algorithm is correct for b − a > 0.

In the same manner, our technique can compute the most general con-
straint ensuring that Fischers algorithm is robust. The result of rttar algo-
rithm is that the system is robust iff ǫ ≤ 0 ∨ a < 0 ∨ b < 0 ∨ b − a − 2ǫ > 0 –
which for ǫ = 0 (modulo the initial non-zero constraint on ǫ) reduces to the
constraint-system obtained in the non-robust case.

7 Conclusion

We have proposed a version of the trace abstraction refinement approach to
real-time programs. We have demonstrated that our semi-algorithm can be
used to solve the reachability problem for instances which are not solvable
by state-of-the-art analysis tools.

Our algorithms can handle the general class of real-time programs that
comprises of classical models for real-time systems including timed automata,
stopwatch automata, hybrid automata and time(d) Petri nets.

As demonstrated in Section 6, our tool is capable of solving instances of
reachability problems problems, robustness, parameter synthesis, that cur-
rent tools are incapable of handling.

For future work we would like to improve the scalability of the proposed
method, utilizing well known techniques such as extrapolations, partial order
reduction and compositional verification. Furthermore, we would like to

75

References

extend our approach from reachability to more expressive temporal logics.

Acknowledgments. The research leading to these results was made possi-
ble by an external stay partially funded by Otto Mønsted Fonden.

References

[1] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Counterexample-
Guided Abstraction Refinement. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 154–169. [Online]. Available: http://dx.doi.org/
10.1007/10722167_15

[2] M. Heizmann, J. Hoenicke, and A. Podelski, Refinement of Trace Abstrac-
tion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 69–85.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-03237-0_7

[3] ——, “Software model checking for people who love automata,” in CAV,
ser. Lecture Notes in Computer Science, N. Sharygina and H. Veith, Eds.,
vol. 8044. Springer, 2013, pp. 36–52.

[4] D. Beyer, “Competition on software verification,” in International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2012, pp. 504–524.

[5] F. Cassez, A. Sloane, M. Roberts, M. Pigram, P. Suvanpong, and P. G.
de Aledo Marugán, “Skink: Static analysis of programs in LLVM in-
termediate representation (competition contribution),” in Tools and Al-
gorithms for the Construction and Analysis of Systems - 23rd International
Conference, TACAS 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017. Proceedings, 2017, B - International Conferences, forthcoming.

[6] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, Apr. 1994. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(94)90010-8

[7] G. Behrmann, A. David, K. Larsen, J. Hakansson, P. Petterson, W. Yi,
and M. Hendriks, “Uppaal 4.0,” in QEST’06, 2006, pp. 125–126.

[8] F. Cassez and K. G. Larsen, “The impressive power of stopwatches,”
in CONCUR 2000 - Concurrency Theory, 11th International Conference,
University Park, PA, USA, August 22-25, 2000, Proceedings, ser.
Lecture Notes in Computer Science, C. Palamidessi, Ed., vol.
1877. Springer, 2000, pp. 138–152. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-44618-4_12

76

References

[9] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s
decidable about hybrid automata?” Journal of Computer and System
Sciences, vol. 57, no. 1, pp. 94 – 124, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022000098915811

[10] G. Frehse, “Phaver: Algorithmic verification of hybrid systems past
hytech,” in Hybrid Systems: Computation and Control, ser. Lecture
Notes in Computer Science, M. Morari and L. Thiele, Eds. Springer
Berlin Heidelberg, 2005, vol. 3414, pp. 258–273. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-31954-2_17

[11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable
verification of hybrid systems,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, G. Gopalakrishnan and S. Qadeer,
Eds. Springer Berlin Heidelberg, 2011, vol. 6806, pp. 379–395. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-22110-1_30

[12] T. A. Henzinger, P.-H. Ho, and H. Wong-toi, “Hytech: A model checker
for hybrid systems,” Software Tools for Technology Transfer, vol. 1, pp. 460–
463, 1997.

[13] W. Wang and L. Jiao, Trace Abstraction Refinement for Timed Automata.
Cham: Springer International Publishing, 2014, pp. 396–410. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-11936-6_28

[14] H. Dierks, S. Kupferschmid, and K. G. Larsen, “Automatic abstraction
refinement for timed automata,” in International Conference on Formal
Modeling and Analysis of Timed Systems. Springer, 2007, pp. 114–129.

[15] P. Kordy, R. Langerak, S. Mauw, and J. W. Polderman, A Symbolic
Algorithm for the Analysis of Robust Timed Automata. Cham: Springer
International Publishing, 2014, pp. 351–366. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-06410-9_25

[16] O. Sankur, Symbolic Quantitative Robustness Analysis of Timed Automata.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 484–498.
[Online]. Available: http://dx.doi.org/10.1007/978-3-662-46681-0_48

[17] É. André, L. Fribourg, U. Kühne, and R. Soulat, IMITATOR 2.5: A
Tool for Analyzing Robustness in Scheduling Problems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 33–36. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32759-9_6

[18] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux, “Comparison
of the expressiveness of timed automata and time petri nets,” in For-
mal Modeling and Analysis of Timed Systems, Third International Conference,

77

References

FORMATS 2005, Uppsala, Sweden, September 26-28, 2005, Proceedings, ser.
Lecture Notes in Computer Science, P. Pettersson and W. Yi, Eds., vol.
3829. Springer, 2005, B - International Conferences, pp. 211–225.

[19] F. Cassez and O. H. Roux, “Structural translation from time petri nets
to timed automata,” Journal of Software and Systems, vol. 79, no. 10, pp.
1456–1468, Oct. 2006.

[20] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux, “The expres-
sive power of time Petri nets,” Theoretical Computer Science, vol. 474, pp.
1–20, 2013.

[21] J. Byg, M. Jacobsen, L. Jacobsen, K. Jørgensen, M. Møller, and J. Srba,
“TCTL-preserving translations from timed-arc Petri nets to networks of
timed automata,” Theoretical Computer Science, vol. 537, pp. 3 – 28, 2014.

[22] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceedings
of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
ser. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 337–340. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1792734.1792766

[23] É. André, G. Lipari, H. G. Nguyen, and Y. Sun, Reachability
Preservation Based Parameter Synthesis for Timed Automata. Cham:
Springer International Publishing, 2015, pp. 50–65. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-17524-9_5

78

Paper C

Discrete and Continuous Strategies for Timed-Arc
Petri Net Games

Peter Gjøl Jensen, Kim Guldstrand Larsen and Jiří Srba

The paper has been published in the
International Journal on Software Tools for Technology Transfer Vol. 10009,

pp. 1–18, 2017.
The paper is an extended version of [1] with full proofs, additional

examples, improved implementation and updated experimental results.

c© Springer-Verlag GmbH Germany 2017
The layout has been revised.

1. Introduction

Automatic strategy synthesis for a given control objective can be used
to generate correct-by-construction controllers of real-time reactive systems.
The existing symbolic approach for continuous timed games is a computa-
tionally hard task and current tools like Uppaal Tiga often scale poorly with
the model complexity. We suggest an explicit approach for strategy synthe-
sis in the discrete-time setting and show that even for systems with closed
guards, the existence of a safety discrete-time strategy does not imply the ex-
istence of a safety continuous-time strategy and vice versa. Nevertheless, we
prove that the answers to the existence of discrete-time and continuous-time
safety strategies coincide on a practically motivated subclass of urgent con-
trollers that either react immediately after receiving an environmental input
or wait with the decision until a next event is triggered by the environment.
We then develop an on-the-fly synthesis algorithm for discrete timed-arc Petri
net games. The algorithm is implemented in our tool Tappaaland based on
the experimental evidence, we discuss the advantages of our approach com-
pared to the symbolic continuous-time techniques.

1 Introduction

Formal methods and model checking techniques have traditionally been used
to verify whether a given system model complies with its specification. How-
ever, when we consider formal (game) models where both the controller and
the environment can make choices, the question now changes to finding a
controller strategy such that any behaviour under such a fixed strategy com-
plies with the given specification. The model checking approach can be used
as a try-and-fail technique to check whether a given controller is correct but
automatic synthesis of a correct-by-construction controller, as already pro-
posed by Church [2, 3], is a more difficult problem as documented e.g. by the
SYNTCOMP competition and SYNT workshop [4]. The area has recently seen
renewed interest, partly given the rise in computational power that makes
synthesis feasible. We focus on the family of timed systems, where for the
model of timed automata [5] synthesis has already been proposed [6] and
implemented [7, 8].

In the area of model checking, symbolic continuous-time on-the-fly meth-
ods were ensuring the success of tools such as Kronos [9], UPPAAL [10],
Tina [11] and Romeo [12], utilizing the zone abstraction approach [5] via
the data structure DBM [13]. These symbolic techniques were recently em-
ployed in on-the-fly algorithms [14] for synthesis of controllers for timed
games [6–8]. While these methods scale well for classical reachability, the
limitation of symbolic techniques is more apparent when used for liveness
properties and for solving timed games. We have shown that for reachabil-
ity and liveness properties, the discrete-time methods performing point-wise

81

Paper C.

exploration of the state-space can prove competitive on a wide range of prob-
lems [15], in particular in combination with additional techniques as time-
darts [16], constant-reducing approximation techniques [17] and memory-
preserving data structures like PTrie [18, 19].

In this paper, we benefit from the recent advances in the discrete-time ver-
ification of timed systems and suggest an on-the-fly point-wise algorithm for
the synthesis of timed controllers relative to safety objectives (avoiding un-
desirable behaviour). The algorithm is described for a novel game extension
of the well-studied timed-arc Petri net formalism [20, 21] and we show that
in the general setting, the existence of a controller for a safety objective in
the discrete-time setting does not imply the existence of such a controller in
the continuous-time setting and vice versa, not even for systems with closed
guards—contrary to the fact that continuous-time and discrete-time reach-
ability problems coincide for such timed models [22], in particular also for
timed-arc Petri nets [23]. However, if we restrict ourselves to the practically
relevant subclass of urgent controllers that either react immediately to the en-
vironmental events or simply wait for another occurrence of such an event,
then we can use the discrete-time methods for checking the existence of a
continuous-time safety controller on closed timed-arc Petri nets. The algo-
rithm for controller synthesis is implemented in our open source tool Tap-
paal [24], including the memory optimization technique via PTrie [18, 19].
The experimental data show a promising performance on a large data-set of
infinite job scheduling problems and scaled instances of the disk operation
scheduling problem.

Related Work. An on-the-fly algorithm for synthesizing continuous-time
controllers for both safety, reachability and time-optimal reachability for time
automata was proposed by Cassez et al. [8] and later implemented in the tool
Uppaal Tiga [7]. This work is based on the symbolic verification techniques
invented by Alur and Dill [5] in combination with ideas on synthesis by
Pnueli et. al [6] and on-the-fly dependency graph algorithms suggested by
Liu and Smolka [14]. For timed games, abstraction refinement approaches
have been proposed and implemented by Peter et al. [25, 26] and Finkbeiner
et al. [27] as an attempt to speed up synthesis, while using the same under-
lying symbolic representation as Uppaal Tiga. These abstraction refinement
methods are complementary to the work presented here. Our work uses the
formalism of timed-arc Petri nets that has not been studied in this context
before and we rely on the methods with discrete interpretation of time as pre-
sented by Andersen et. al [15]. As an additional contribution, we implement
our solution in the tool Tappaal, utilizing memory reduction techniques by
Jensen et. al [18], and compare the performance of both discrete-time and
continuous-time techniques. Control synthesis and supervisory control was
also studied for the family of Petri net models [28–31] but these works do not

82

2. Disk Operation Scheduling Example

0

R3

0

R2

0

R1

0

track1

track2

track3

W1

inv: ≤ 4

W2

inv: ≤ 4

W3

inv: ≤ 4

down1

inv: ≤ 2

down2

inv: ≤ 2

up3

inv: ≤ 2

up2

inv: ≤ 2

Buffer

inv: ≤ 10

[1, 2]

[1, 4]

[1, 2]

[1, 4]

[1, 4]

[1, 2]

[1, 2]

Buffer inv: ≤ 10

0

R1

0

R2

0

R3

Fail

[6, 10][6, 10]

[6, 10]

[D, D][D, D][D, D]

Fig. C.1: A timed-arc Petri net game model of a harddisk

consider the timing aspects.

2 Disk Operation Scheduling Example

We shall now provide an intuitive description of the timed-arc Petri net game
of disk operation scheduling in Figure C.1, modelling the scheduler of a me-
chanical harddisk drive (left) and a number of read stream requests (right)
that should be fulfilled within a given deadline D. The net consists of places
drawn as circles (the dashed circle around the places R1, R2, R3 and Buffer
simply means that these places are shared between the two subnets) and tran-
sitions drawn as rectangles that are either filled (controllable transitions) or
framed only (environmental transitions). Places can contain tokens (like the
places R1 to R3 and the place track1) and each token carries its own age. Ini-
tially all token ages are 0. The net also contains arcs from places to transitions
(input arcs) or transitions to places (output arcs). The input arcs are further
decorated with time intervals restricting the ages of tokens that can be con-
sumed along the arc. If the time interval is missing, we assume the default
[0, ∞] interval not restricting the ages of tokens in any way.

83

Paper C.

In the initial marking (token configuration) depicted in our example, the
two transitions connected by input arcs to the place track1 are enabled and
the controller can decide to fire either of them. As the transitions contain a
white circle, they are urgent, meaning that time cannot pass as long at least
one urgent transition is enabled. Suppose now that the controller decides
to fire the transition on the left of the place track1. As a result of firing the
transition, the two tokens in R1 and track1 will be consumed and a new token
of age 0 is produced to the place W1. Tokens can be also transported via a
pair of an input and output transport arcs (not depicted in our example) that
will transport the token from the input to the output place while preserving
its age.

In the new marking we just achieved, no transition is enabled due to the
time interval [1, 4] on the input arc of the environmental transition connected
to the place W1. However, after one time unit passes and the token in W1
becomes of age 1, the transition becomes enabled and the environment may
decide to fire it. On the other hand, the place W1 also contains the age invari-
ant ≤ 4, requiring that the age of any token in that place may not exceed 4.
Hence after age of the token reaches 4, time cannot progress anymore and
the environment is forced to fire the transition, producing two fresh tokens
into the places Buffer and track1. Hence, reading the data from track 1 of
the disk takes between 1ms to 4ms (depending on the actual rotation of the
disk) and it is the environment that decides the actual duration of the reading
operation.

The idea is that the disk has three tracks (positions of the reading head)
and at each track tracki the controller has the choice of either reading the data
from the given track (assuming there is a reading request represented by a to-
ken in the place Ri) or move the head to one of the neighbouring tracks (such
a mechanical move takes between 1ms to 2ms). The reading requests are
produced by the subnet on the right where the environment decides when to
generate a reading request in the interval between 6ms to 10ms. The number
of tokens in the right subnet represents the parallel reading streams. The net
also contains inhibitor arcs with a cirle-headed tip that prohibit the environ-
mental transitions from generating a reading request on a given track if there
is already one. Finally, if the reading request takes too long and the age of
the token in Ri reaches the age D, the environment has the option to place a
token in the place Fail.

The control synthesis problem asks to find a strategy for firing the con-
trollable transitions that guarantees no failure, meaning that irrelevant of the
behaviour of the environment, the place Fail never becomes marked (safety
control objective). The existence of such a control strategy depends on the
chosen value of D and the complexity of the controller synthesis problem can
be scaled by adding further tracks (in the subnet of the left) or allowing for
more parallel reading streams (in the subnet on the right). In what follows,

84

3. Definitions

we shall describe how to automatically decide in the discrete-time setting
(where time can be increased only by nonnegative integer values) whether
a controller strategy exists. As the controllable transitions are urgent in our
example, the existence of such a discrete-time control strategy implies also
the existence of a continuous-time control strategy where the environment
is free to fire transitions after an arbitrary delay taken from the dense time
domain—a result we formally state and prove in Section 4.

3 Definitions

Let N0 = N ∪ {0} and N∞
0 = N0 ∪ {∞}. Let R≥0 be the set of all nonnegative

real numbers. A timed transition system (TTS) is a triple (S, Act, →) where S is
the set of states, Act is the set of actions and → ⊆ S × (Act ∪ R≥0)× S is the
transition relation written as s

a
→ s′ whenever (s, a, s′) ∈ →. If a ∈ Act then

we call it a switch transition, if a ∈ R≥0 we call it a delay transition. We also

define the set of well-formed closed time intervals as I
def
= {[a, b] | a ∈ N0, b ∈

N∞
0 , a ≤ b} and its subset I inv def

= {[0, b] | b ∈ N∞
0 } used in age invariants.

Definition 3 (Timed-Arc Petri Net)

A timed-arc Petri net (TAPN) is a 9-tuple
N = (P, T, Turg, IA, OA, g, w, Type, I) where

• P is a finite set of places,

• T is a finite set of transitions such that P ∩ T = ∅,

• Turg ⊆ T is the set of urgent transitions,

• IA ⊆ P × T is a finite set of input arcs,

• OA ⊆ T × P is a finite set of output arcs,

• g : IA → I is a time constraint function assigning guards to input arcs
such that

– if (p, t) ∈ IA and t ∈ Turg then g((p, t)) = [0, ∞],

• w : IA ∪ OA → N is a function assigning weights to input and output
arcs,

• Type : IA ∪ OA → Types is a type function assigning a type to all arcs
where Types = {Normal, Inhib} ∪ {Transportj | j ∈ N} such that

– if Type(z) = Inhib then z ∈ IA and g(z) = [0, ∞],

– if Type((p, t)) = Transportj for some (p, t) ∈ IA then there is exactly
one (t, p′) ∈ OA such that Type((t, p′)) = Transportj,

85

Paper C.

– if Type((t, p′)) = Transportj for some (t, p′) ∈ OA then there is
exactly one (p, t) ∈ IA such that Type((p, t)) = Transportj,

– if Type((p, t)) = Transportj = Type((t, p′)) then w((p, t)) = w((t, p′)),

• I : P → I inv is a function assigning age invariants to places.

Remark 2

Note that for transport arcs we assume that they come in pairs (for each
type Transportj) and that their weights match. Also for inhibitor arcs and
for input arcs to urgent transitions, we require that the guards are [0, ∞].
This restriction is important for some of the results presented in this paper
and it also guarantees that we can use DBM-based algorithms in the tool
Tappaal [24].

Let N = (P, T, Turg, IA, OA, g, w, Type, I) be a TAPN. We denote by •x
def
=

{y ∈ P ∪ T | (y, x) ∈ IA ∪ OA, Type((y, x)) �= Inhib} the preset of a transition

or a place x. Similarly, the postset is defined as x•
def
= {y ∈ P ∪ T | (x, y) ∈

(IA ∪ OA)}. Let B(R≥0) be the set of all finite multisets over R≥0. A marking
M on N is a function M : P −→ B(R≥0) where for every place p ∈ P and
every token x ∈ M(p) we have x ∈ I(p), in other words all tokens have to
satisfy the age invariants. The set of all markings in a net N is denoted by
M(N).

We write (p, x) to denote a token at a place p with the age x ∈ R≥0. Then
M = {(p1, x1), (p2, x2), . . . , (pn, xn)} is a multiset representing a marking M
with n tokens of ages xi in places pi. We define the size of a marking as
|M| = ∑p∈P |M(p)| where |M(p)| is the number of tokens located in the
place p.

Definition 4 (Enabledness)

Assume a given TAPN N = (P, T, Turg, IA, OA, g, w, Type, I). We say that a
transition t ∈ T is enabled in a marking M by the multisets of tokens

In = {(p, x1
p), (p, x2

p), . . . , (p, x
w((p,t))
p) | p ∈ •t} ⊆ M

and
Out = {(p′, x1

p′), (p′, x2
p′), . . . , (p′, x

w((t,p′))
p′) | p′ ∈ t•}

if

• for all input arcs except the inhibitor arcs, the tokens from In satisfy the
age guards of the arcs, i.e.

∀p ∈ •t. xi
p ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

86

3. Definitions

• for any inhibitor arc pointing from a place p to the transition t, the
number of tokens in p is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = Inhib

⇒

|M(p)| < w((p, t))

• for all input arcs and output arcs which constitute a transport arc, the
age of the input token must be equal to the age of the output token and
satisfy the invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA it holds that

Type((p, t)) = Type((t, p′)) = Transportj

⇒
(

xi
p = xi

p′ ∧ xi
p′ ∈ I(p′)

)
for 1 ≤ i ≤ w((p, t))

• for all normal output arcs, the age of the output token is 0, i.e.

∀(t, p′) ∈ OA). Type((t, p′)) = Normal

⇒

xi
p′ = 0 for 1 ≤ i ≤ w((t, p′)).

A TAPN N defines a TTS T(N)
def
= (M(N), T, →) where states are the

markings and the transitions are as follows.

• If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can fire and produce the marking M′ = (M � In) ⊎ Out where ⊎
is the multiset sum operator and � is the multiset difference operator;

we write M
t
→ M′ for this switch transition.

• A time delay d ∈ R≥0 is allowed in M if

– (x + d) ∈ I(p) for all p ∈ P and all x ∈ M(p), and

– if M
t
→ M′ for some t ∈ Turg then d = 0.

By delaying d time units in M we reach the marking M′ defined as

M′(p) = {x + d | x ∈ M(p)} for all p ∈ P; we write M
d
→ M′ for this

delay transition.

87

Paper C.

Let →
def
=

⋃
t∈T

t
→ ∪

⋃
d∈R≥0

d
→. By M

d,t
→ M′ we denote that there is a

marking M′′ s.t. M
d
→ M′′ t

→ M′.
The semantics defined above in terms of timed transition systems is called

the continuous-time semantics. If we restrict the possible delay transitions to
take values only from nonnegative integers and the markings to be of the
form M : P −→ B(N0), we call it the discrete-time semantics.

An example of a TAPN modeling an office fridge can be seen in Fig-
ure C.2. Initially, the Fridge contains two tokens, representing two boxes of
yogurt. If a sudden Hunger occurs—which happens every 6 to 24 hours—the
yogurts are moved to the Eat place. As the arcs moving the yogurts are di-
amond tipped transport-arcs (with weight two), the ingredients retain their
age when moved. At the Eat place, we can now either put an uneaten yogurt
back to the fridge (by firing the middle transition and hence preserving its
age) or eat it and replace it with a new product, resetting the age of the (now
replaced) yogurt—this occurs when firing the top transition. Notice that both
transitions are urgent, denoted by the rectangle with an empty inner circle.
This implies that we need to choose immediately whether or not we consume
any of the yogurts. When replacing the yogurt, we also place a token in the
Watching place. As the new yogurt is precious to us, we will for the next
12 hours be watching the fridge, inhibiting anyone to steal the yogurt—here
modeled by an circle-tipped inhibitor arc. After exactly 12 hours, the token
in Watching is forced to disappear as a combination of the guards [12,12] and
the invariant [0, 12] abbreviated as inv: ≤ 12. If any yogurt reaches an age
between 36 to 42 hours, and we are not Watching the fridge, then someone
may Steal a yogurt. At the same time, if any of the yogurts gets more than
three days old, it may be sent to the Bin.

As this describes a plain TAPN, it is always nondeterministically decided
what happens when, so it is surely possible that a yogurt gets stolen or is
placed to the bin. However, there are some transitions that we are clearly in
control of and others that are controlled by the environment. This brings us
to the definition of a two player game.

3.1 Timed-Arc Petri Net Game

We extend the TAPN model into the game setting by partitioning the set of
its transitions into the controllable and uncontrollable ones.

Definition 5 (Timed-Arc Petri Net Game)

A Timed-Arc Petri Net Game (TAPG) is a TAPN with its set of transitions T
partitioned into the set of transitions Tctrl owned by the controller and the set
Tenv owned by the environment.

Let us transform our fridge model from Figure C.2 into a TAPG, depicted
in Figure C.3. In the game, we are able to define which transitions are con-

88

3. Definitions

Eat 0 0

Fridge

Watching inv: ≤ 12

0
Hunger inv: ≤ 24

Steal

Bin

2× 2×

[36, 42]

[72, ∞)

[6, 24]

[12, 12]

Fig. C.2: A TAPN model of the office fridge

Eat 0 0

Fridge

Watching inv: ≤ 12

0
Hunger inv: ≤ 24

Steal

Bin

2× 2×

[36, 42]

[72, ∞)

[6, 24]

[12, 12]

Fig. C.3: A TAPG model of the office fridge

trollable (denoted by solid rectangles, like the two urgent transitions in our
figure) and which are not controllable and its firing is determined by the
environment (denoted by frame rectangles). Hence we are not in control of
when we get hungry or whether other person will steal or throw out our
food.

Let G be a fixed TAPG. Recall that M(G) is the set of all markings over
the net G. A controller strategy for the game G is a function

σ : M(G) → M(G) ∪ {wait}

from markings to markings or the special symbol wait such that

• if σ(M) = wait then either M can delay forever (M
d
→ for all d ∈ R≥0),

89

Paper C.

or there is d ∈ R≥0 where M
d
→ M′ and for all d′′ ∈ R≥0 and all t ∈ Tctrl

we have that whenever M′ d′′

→ M′′ then M′′
t

�→, and

• if σ(M) = M′ then there is a d ∈ R≥0 and there is a t ∈ Tctrl such that

M
d,t
→ M′.

Intuitively, a controller can in a given marking M either decide to wait
indefinitely (assuming that it is not forced by age invariants or urgency to
perform some controllable transition) or it can suggest a delay followed by
a controllable transition firing. The environment can in the marking M also
propose to wait (unless this is not possible due to age invariants or urgency)
or suggest a delay followed by firing of an uncontrollable transition. If both
the controller and environment propose transition firing, then the one pre-
ceding with a shorter delay takes place. In the case where both the controller
and the environment propose the same delay followed by a transition firing,
then any of these two firings can (nondeterministically) happen.

This intuition is formalized in the notion of plays following a fixed con-
troller strategy that summarize all possible executions for any possible envi-
ronment.

Let π = M1M2 . . . Mn . . . ∈ M(G)ω be an arbitrary finite or infinite se-
quence of markings over G and let M be a marking. We define the concate-
nation of M with π as M ◦ π = MM1 . . . Mn . . . and extend it to the sets of
sequences Π ⊆ M(G)ω so that M ◦ Π = {M ◦ π | π ∈ Π}.

Definition 6 (Plays According to the Strategy σ)

Let G be a TAPG, M a marking on G and σ a controller strategy for G. We
define a function Pσ : M(G) → 2M(G)ω

returning for a given marking M the
set of all possible plays starting from M under the strategy σ.

• If σ(M) = wait then Pσ(M) =
⋃
{M ◦Pσ(M′) | d ∈ R≥0, t ∈ Tenv, M

d,t
→

M′} ∪ X where X = {M} if M
d
→ for all d ∈ R≥0, or if there is d′ ∈ R≥0

such that M
d′

→ M′ and M′
d′′

�→ for any d′′
> 0 and M′

t
�→ for any t ∈ Tenv,

otherwise X = ∅.

• If σ(M) �= wait then according to the definition of controller strategy

we have M
d,t
→ σ(M) and we define Pσ(M) =

⋃
{M ◦ Pσ(σ(M))} ∪

⋃
{M ◦ Pσ(M′) | d′ ≤ d, t′ ∈ Tenv, M

d′ ,t′
→ M′}.

The first case says that the plays from the marking M where the controller
wants to wait consist either of the marking M followed by any play from
a marking M′ that can be reached by the environment from M after some
delay and firing a transition from Tenv, or a finite sequence finishing with

90

4. Synthesis in Continuous and Discrete Time

the marking M if it is the case that M can delay forever, or we can reach a
deadlock where no further delay is possible and no transition can fire.

The second case where the controller suggests a transition firing after
some delay, contains M concatenated with all possible plays from σ(M) and
from σ(M′) for any M′ that can be reached by the environment before or at
the same time the controller suggests to perform its move.

We can now define the safety objectives for TAPGs. A safety objective is a
Boolean expression over arithmetic predicates which observe the number of
tokens in the different places of the net. Let ϕ be so a Boolean combination
of predicates of the form e ⊲⊳ e where e ::= p | n | e + e | e − e | e ∗ e and
where p ∈ P, ⊲⊳∈ {<, ≤,=, �=, ≥,>} and n ∈ N0. The semantics of ϕ in a
marking M is given in the natural way, assuming that p stands for |M(p)|
(the number of tokens in the place p). We write M |= ϕ if ϕ evaluates in the
marking M to true. We can now state the safety synthesis problem.

Definition 7 (Safety Synthesis Problem)

Given a marked TAPG G with the initial marking M0 and a safety objective
ϕ, decide if there is a controller strategy σ such that

∀π ∈ Pσ(M0). ∀M ∈ π. M |= ϕ . (C.1)

If Equation (C.1) holds then we say that σ is a winning controller strategy for
the objective ϕ.

As an example, we might want to find a strategy for managing our yo-
gurts in the office, modelled in Figure C.3. Formally, we can state our
goal of not having our food stolen nor thrown out as the safety objective
Steal = 0 ∧ Bin = 0. One can verify that this can be achieved by e.g. always
consuming both yogurts every time hunger strikes. Another safe controller
strategy is to return a yogurt into the fridge as long as it is strictly less than
12 hours old, otherwise to eat it.

As another example in Figure C.1, we may wish to synthesize, for a given
deadline D, a controller for the safety objective Fail = 0, hence yielding a
controller that can serve three parallel streams with the maximal latency of
D. The synthesis problem for this scenario is considerably more complex and
with shall return to this problem in our experiments.

4 Synthesis in Continuous and Discrete Time

It is known that for classical TAPNs with closed intervals, the continuous and
discrete-time semantics coincide up to reachability [23], which is what safety
synthesis reduces to if the set of controllable transitions is empty. Contrary to
this, Figures C.4a and C.4b show that this does not hold in general for safety
strategies.

91

Paper C.

0P1

Bad

0

P2

P3

0 P4

U1

U2

C1

C2

[1, inf)

[0, 0]

(a) A TAPG where Bad ≤ 0 can be
guaranteed by the controller under the
continuous-time semantics (by exploit-
ing Zeno behaviour) but not under the
discrete-time semantics.

0P0

P1

inv: ≤ 0

P2

Bad

0

P3

U0

T1

T3

T2

[0, 0]

[1, ∞)

(b) A TAPG where Bad ≤ 0 can be
guaranteed by the controller under the
discrete-time semantics but not under
the continuous-time semantics.

0

P0

inv: ≤ 1

P1 Bad

T0

T1

U0

U1

[1, ∞)

[0, 0]

(c) A TAPG where Bad ≤ 0 can be guaranteed by the controller under the continuous-
time semantics (without exploiting Zeno behaviour) but not under the discrete-time
semantics.

Fig. C.4: Difference between continuous and discrete-time semantics

92

4. Synthesis in Continuous and Discrete Time

For the game in Figure C.4a, there exists a strategy for the controller and
the safety objective Bad ≤ 0 but only in continuous-time semantics as the con-
troller has to keep the age of the token in place P1 strictly below 1, otherwise
the environment can mark the place Bad by firing U1. If the controller instead
fires transition C1 without waiting, U2 becomes enabled and the environment
can again break safety. Hence it is impossible to find a discrete-time strategy
as even the smallest possible discrete delay of 1 time unit will enable U1.
However, if the controller waits an infinitesimal amount (in the continuous
semantics) and fires C1, then U2 will not be enabled as the token in P2 aged
slightly. The controller can now fire C2 and repeat this strategy over and over
in order to keep the token in P1 from ever reaching the age of 1.

The counter example described before relies on Zeno behaviour, however,
this is not needed if we use transport arcs which do not reset the age of
tokens (depicted by arrows with diamond-headed tips), as demonstrated in
Figure C.4c. Here the only strategy for the controller to avoid marking the
place Bad is to delay some fraction and then fire T0. Any possible integer
delay (1 or 0) will enable the environment to fire U0 or U1 before the controller
gets to fire T1. Hence we get the following proposition.

Proposition 1

There is a TAPG and a safety objective where the controller has a winning
strategy in the continuous-time semantics but not in the discrete-time seman-
tics.

Figure C.4b shows, on the other hand, that a safety strategy guaranteeing
Bad ≤ 0 exists only in the discrete-time semantics but not in the continuous-
time semantics. Here the environment can mark the place Bad by initially
delaying 0.5 and then firing U0. This will produce a token in P1 which re-
stricts the time from progressing further and thus forces the controller to fire
T3 as this is the only enabled transition. On the other hand, in the discrete-
time semantics the environment can either fire U0 immediately, but then T1
will be enabled, or it can wait (a minimum of one time unit), which in turn
enables T2. Hence the controller can in both cases avoid the firing of T3 in the
discrete-time semantics. This implies the following proposition.

Proposition 2

There is a TAPG and a safety objective where the controller has a winning
strategy in the discrete-time semantics but not in the continuous-time seman-
tics.

This indeed means that the continuous and discrete-time semantics are
incomparable and it makes sense to consider both of them, depending on the
concrete application domain and whether we consider discretized or contin-
uous time. Nevertheless, there is a practically relevant subclass of the prob-
lem where we consider only urgent controllers and where the two semantics

93

Paper C.

coincide. This class contains, for example, all digital circuit-controllers su-
pervising a real-time environment and other applications such as worst-case-
optimal controller synthesis for duration probabilistic automata [32].

We say that a given TAPG is with an urgent controller if all controllable
transitions are urgent, formally Tctrl ⊆ Turg. For example the game net in
Figure C.3 is with urgent controller as the two controllable transitions are
both urgent. We can now state our main result of this section, showing that
the discrete and continuous semantics coincide for the subclass timed-arc
Petri net games with urgent controllers.

Theorem 7

Let G be a TAPG with urgent controller and let ϕ be a safety objective. There
is a winning controller strategy for G and ϕ in the discrete-time semantics
iff there is a winning controller strategy for G and ϕ in the continuous-time
semantics.

4.1 Proof of Theorem 7

The rest of this section is now devoted to proving Theorem 7. Clearly, if the
urgent controller has a winning strategy while the environment is allowed
to make real-time delays, it also has a winning strategy if the environment is
only allowed to perform discrete-time delays. We prove the opposite implica-
tion by showing that any universal evidence for nonexistence of a controller
winning strategy in the continous semantics can be translated into such an
evidence in discrete semantics (under the restriction that we consider only
urgent controllers). We start by defining a witness for the fact that the con-
troller does not have a winning strategy. A witness can allow for noninteger
delays of the environmental moves and the main development of the proof is
based on showing that such a witness can be transformed into another one
with integer delays only. We do so by translating a witness into a system of
linear constraints consisting only of difference constraints which guarantee
that if the system has a real solution then it also has an integer solution.

Let us first define a witness for the nonexistence of a controller strategy
for a given TAPG G with urgent controller. The intuition of the witness is
to provide a strategy for the environment such that it considers all possible
choices of the controller. Thus, for the environment choices there are only
singleton continuations (if any), and for controller choices there is a multitude
of possible continuations.

Definition 8

A witness is a function γ : M(G) → 2M(G) for a marked TAPG G with
urgent controller that for every marking M defines the next possible markings
for the environment to consider. The function γ must satisfy the following
conditions for every M ∈ M(G).

94

4. Synthesis in Continuous and Discrete Time

• If M �|= ϕ then γ(M) = ∅.

• Else if there is no d ∈ R≥0 and no t ∈ T such that M
d
→ M′ t

→ then
γ(M) = ∅.

• Else if for all t ∈ Tctrl it holds that M
t

�→ then γ(M) = {M′} where for

some d ∈ R≥0 and some t ∈ Tenv it holds that M
d,t
→ M′.

• Else

– either γ(M) = {M′} such that M
t
→ M′ for some t ∈ Tenv, or

– γ(M) = {M′ | M
t
→ M′, t ∈ Tctrl} provided that there is at least

one t ∈ Tctrl such that M
t
→.

Let us note that as the controller is urgent, the cases above enumerate all
next markings to consider once we fix some environmental strategy but still
consider all possible controller moves. Let π ∈ M(G)+ and by last(π) we
denote the last marking in the nonempty sequence of markings π. We now
define Γ0 = {M0} containing the initial marking and Γk = {π ◦ M | π ∈
Γk−1, M ∈ γ(last(π))} ∪ {π | π ∈ Γk−1, γ(last(π)) = ∅} such that Γk

describes all possible plays of length at most k under a fixed environmental
strategy.

Observe now that a witness γ disproves the existence of any controller
winning strategy for the objective ϕ iff there is k ∈ N such that Γk = Γk+1
and for all π ∈ Γk we have last(π) �|= ϕ showing that every branch of the tree
eventually breaks ϕ. We call such a witness a counter witness and denote Γk as
P(γ). In what follows, whenever the witness function γ for a given marking
M returns a set of next markings, we implicitly assume that we know what
time delay and transition was fired (according to the definition of γ) in order
to reach each individual marking from γ(M).

Given a counter witness disproving the existence of any controller win-
ning strategy, we shall now construct a linear constraint system describing a
family of witnesses while preserving the plays in P(γ) and alternating only
the delays during each play. The goal is to prove that the delays can be altered
into integer delays while still preserving the counter witness. The technique
of encoding a net computation via a linear constraint system is an adaption
of the one used by Mateo et al. [23]. The notation from [23] for describing the
linear programs corresponding to a given trace in the system is reused but
generalized from a single trace to trees.

Let G be a marked TAPG with urgent controller, and γ be a counter wit-
ness for the safety objective ϕ. A counter witness tree is a graph where all plays
from P(γ) are organized such that they share prefixes and the edges are la-
belled by a real-time delay and a transition that was fired after the delay in

95

Paper C.

M0

M00

M01 M010 �|= ϕ

M000

M0000

M0001

M0002

M00010 �|= ϕ

M00000 �|= ϕ

M00020 �|= ϕ

up2

W1 3.0, Fail

1.4, track2

up3

W2

down1

1.6, Fail

1.6, Fail

1.6, Fail

Fig. C.5: The tree representation of a counter witness for ϕ = Fail ≤ 0 for the example in Figure
1 where D = 3. The labels of the edges indicate which place will receive a new token by delaying
and firing the corresponding transition. Dashed edges indicate the choices of the environment,
solid edges are the controller choices (with default delay 0).

order to reach the next marking in the play (according to γ). An example of a
counter witness tree is given in Figure C.5. Here the solid edges correspond
to the controller choices (with the implicit delay 0 as we are restricted to an
urgent controller) and the dashed edges are the environmental choices where
arbitrary real-time delays are possible.

Remark 3

Strictly speaking, organizing the plays so that they share prefixes, may result
in the fact that two different plays, after their prefixes diverged, can still both
converge later on the same marking M. Hence this situation will not give
us a tree structure as the node M will have more than one parent. This is
undesirable, so we will implicitly assume that once plays in the game started
to differ after a common prefix, any possible markings that are afterwards
shared among such plays will appear in the witness tree is several copies
(one for each such branch containing a shared marking).

The idea is now to create a constraint system from the counter witness
where the concrete delays are replaced by variables, and then solve the re-
sulting constraint system and argue that there is an integer solution to the
system. Let us first construct a table Θ, assisting us in creating this constraint
system and reflecting the classical firing rule of P/T nets (disregarding the
timing constraints for a moment).

The table Θ that serves as a documentation for the counter witness γ

and it is given in the form of a matrix with m rows (representing tokens)
where m is the maximum number of tokens in any marking in P(γ) and n
columns (representing markings in the counter witness tree) where n is the
total number of nodes in the counter witness tree. Here we let M and M′

to range over specific marking in the counter witness tree (columns) and y
range over the tokens in the markings (rows). As each column of the table
represents a single marking where not necessarily all m tokens are used,
we mark each field Θy,M with either ⊥ (unused token) or the pair (p, f)

96

4. Synthesis in Continuous and Discrete Time

where p ∈ P represents the location of the token and f ∈ {0, •} is a flag
signalling whether the age of the given token was reset to 0 or left unchanged

(represented by the value •). We let Θ
place
y,M and Θ

flag
y,M to denote the elements p

and f of the pair of Θy,M, respectively.
We can now define the notion of a valid table.

Definition 9 (Valid table for a witness γ)

Given a counter witness γ with its corresponding witness tree, a table Θ is
valid if the following conditions are satisfied.

a) For the initial marking M0 = {(p1, x1), (p2, x2), . . . , (pk, xk)}, it holds that

the first column of Θ with index M0 is given by Θy,M0

def
= (py, xy) if

1 ≤ y ≤ k, and Θy,M0

def
= ⊥ if k < y ≤ m.

b) For each column M in the table where M |= ϕ and an edge M
d,t
→ M′ in

the witness tree, there are two sets Consume, Produce ⊆ {1, 2, . . . , m} of
token indices and a bijection U : {0, . . . , m} → {0, . . . , m} such that

• Consume is giving the (indices of) tokens consumed when the tran-
sition t was fired in the marking M after the delay of d time units
in order to reach the marking M′ and where it holds that for all

p ∈ •t we have w(p, t) = |{y ∈ Consume | Θ
place
y,M = p}|, and for all

p ∈ P \•t we have {y ∈ Consume | Θ
place
y,M = p} = ∅,

• Produce is giving the (indices of) tokens produced in the column
M′ by firing the transition t and where it holds that for all p ∈ t•

we have w(t, p) = |{y ∈ Produce | Θ
place
y,M′ = p}| and for all p ∈

P \ t• we have {y ∈ Produce | Θ
place
y,M′ = p} = ∅, and

• the bijection U : {1, . . . , m} → {1, . . . , m} maps the indices of col-
umn M to those in the column M′ such that

1. if |Consume| ≤ |Produce| and y ∈ Consume then U (y) ∈ Produce,
2. if |Consume| ≥ |Produce| and U (y) ∈ Produce then y ∈ Consume,

3. if y ∈ Consume and Type((Θ
place
y,M , t)) = Transportj = Type((t, p′))

then U (y) = y and Θ
place
y,M′ = p′,

4. if y ∈ {1, . . . , m} \ Consume and Θy,M �= ⊥ then U (y) = y and

Θ
place
y,M′ = Θ

place
y,M ,

5. if y ∈ {1, . . . , m} \ Consume and Θ
place
y,M = ⊥ then either U (y) ∈

Produce, or U (y) = y and Θ
place
y,M′ = ⊥, and

6. if ΘU (y),M′ = ⊥ then y ∈ Consume or Θ
place
y,M′ = ⊥.

97

Paper C.

M0 M00 M000 M0000 M00000

1 (R1, 0) (R1, •) (R1, •) (R1, •) (Fail, 0)
2 (R2, 0) (R2, •) (R2, •) (R2, •) (R2, •)
3 (R3, 0) (R3, •) (R3, •) (R3, •) (R3, •)
4 (track1, 0) (up2, 0) (track2, 0) (up3, 0) (up3, •)

M0001 M00010 M0002 M00020 M01 M010

1 (R1, •) (Fail, 0) (R1, •) (Fail, 0) (W1, 0) (W1, •)
2 (W2, 0) (W2, •) (R2, •) (R2, •) (R2, •) (Fail, 0)
3 (R3, •) (R3, •) (R3, •) (R3, •) (R3, •) (R3, •)
4 ⊥ ⊥ (down1, 0) (down1, •) ⊥ ⊥

Table C.1: A valid table for the counter witness tree in Figure C.5. The rows track the placement
of the four tokens we have in the game (here ⊥ means that a token is not present in the net).
Otherwise each cell indicates where is the token located (first coordinate) and whether its age
did not change compared to the previous marking (the value • in the second component) or if it
was reset to the age 0 (again indicated in the second component).

• and for the column M′ in the table holds:

– if Type((p, t)) = Inhib for some p ∈ P then |{y ∈ {1, . . . , m} |

Θ
place
y,M = p}| < w(p, t)

– for all y ∈ Produce, if Type((t, Θ
place
y,M′)) = Normal then T

f lag
y,M′ = 0

else T
f lag
y,M′ = •, and

– if y /∈ Produce and Θy,M′ �= ⊥ then T
f lag
y,M′ = •.

We can now transform the counter witness tree from Figure C.5, into such
a table, as presented in Table C.1.

By following the indices, and the columns given by the table, one can
reconstruct an untimed version of the tree given in Figure C.5, verifying that
the table encodes a valid tree of traces in the classical untimed semantics of
Petri nets.

Each column of the table with index M now defines the corresponding
untimed marking u(M) as follows.

Definition 10 (Untimed marking for column M)

Let M be a column index in a valid table. We define the untimed marking

u(M)
def
= {Θ

place
y,M ∈ P | 1 ≤ y ≤ m} as a multiset of all places where a token is

present in the column M of the table.

From the construction, we can verify the validity of the following lemma.

Lemma 3 (Untimed consistency of a valid table)

Let Θ be a valid table and M and M′ two of its column indices such that

M
d,t
→ M′. Then u(M)

t
→ u(M′) in the classical (untimed) Petri net semantics.

98

4. Synthesis in Continuous and Discrete Time

While the construction so far preserves the movement of tokens, it does
not encode the restrictions of token ages. We continue by encoding these
timing constraints imposed by guards, age invariants and urgency.

We introduce first some notation. Let M
d,t
→ M′ be an edge in the witness

tree. By eM we denote the global execution time of the transition t, yielding the
total time elapsed since the computation started from the initial marking until
the transition t was fired. Note that if t ∈ Tenv then from M there is a unique
outgoing edge in the witness tree and if t ∈ Tctrl then there can be several
outgoing edges but all delays on such edges are 0 as we deal with urgent
controller. Hence the global execution time of firing t can be associated to
the marking M. Now we can define a shorthand age(y, M) for the age of the
token given by the row y in a valid table for γ, just at the moment of firing
the transition t.

Definition 11 (Token-age expression)

Let Θ be a valid table for γ and let M be its column index. We define
age(y, M), where 1 ≤ y ≤ m, as the expression

“ eM − eMj−1 ”

such that in the witness tree for γ with the branch

M0M1 . . . Mj−1Mj Mj+1 . . . Mi . . . Mk ∈ P(γ)

where M = Mi and it is the case that Θ
flag
y,Mj

= 0 and Θ
flag
y,Mj+1

= Θ
flag
y,Mj+2

= . . . =

Θ
flag
y,Mi

= •. By convention M−1 is replaced with 0, such that i.e. age(y, M0) =
eM0 .

We can now construct a system of inequalities from a valid table Θ.

Definition 12 (Constraint system)

Let Θ be a valid table for a counter witness γ. The constraint system C for Θ

is the set of inequations over the variables eM where M is a column index of
Θ and C is constructed as follows. For each two column indices M and M′

with an edge M
d,t
→ M′ in the witness tree for γ, we

• add to C the constraint eM ≤ eM′ , and

• if Θ
place
y,M = p and y ∈ Consume1 and (p, t) ∈ IA and g((p, t)) = [ℓ, u], we

add ℓ ≤ age(y, M) and if u �= ∞ also age(y, M) ≤ u to C, and

• if M′ enables some urgent transition then we add eM′ − eM = 0 to C.

1The set Consume for the edge M
d,t
→ M′ was fixed in Definition 9, part b).

99

Paper C.

If the initial marking enables some urgent transition then we also add the
constraint eM0 = 0. Finally, we add the inequalities for age invariants such
that for all y ∈ {1, . . . , m} and all column indices M:

• if Θ
place
y,M = p and I(p) = [0, u] where u ∈ N0, we add the inequality

age(y, M) ≤ u to C.

Given our witness from Figure C.5, translated into a valid table in Ta-
ble C.1, we can now construct the constraint system as follows. In order to
simplify the notation, we shall write e.g. e010 instead of eM010 .

• First, we add the inequalities for preserving the ordering of transition
in the witness tree:

e0 ≤ e00, e00 ≤ e000, e000 ≤ e0000, e0000 ≤ e00000

e000 ≤ e0001, e0001 ≤ e00010

e000 ≤ e0002, e0002 ≤ e00020

e0 ≤ e01, e01 ≤ e010 .

• For the nontrivial age invariants, we add

age(2, M0001) ≤ 4, age(2, M00010) ≤ 4

age(1, M01) ≤ 4, age(1, M010) ≤ 4

age(4, M00) ≤ 2, age(4, M0000) ≤ 2

age(4, M00000) ≤ 2, age(4, M0002) ≤ 2

age(4, M00020) ≤ 2

that expand to

e0001 − e000 ≤ 4, e00010 − e000 ≤ 4

e01 − e0 ≤ 4, e010 − e0 ≤ 4

e00 − e0 ≤ 2, e0000 − e000 ≤ 2

e00000 − e000 ≤ 2, e0002 − e000 ≤ 2

e00020 − e0002 ≤ 2 .

• For urgency, we add the constraints

e0 = 0, e000 − e00 = 0 .

100

4. Synthesis in Continuous and Discrete Time

• Finally for the guards on input arcs, we add the constraints

1 ≤ age(4, M00) ≤ 2, 3 ≤ age(1, M0000) ≤ 3

3 ≤ age(1, M0001) ≤ 3, 3 ≤ age(1, M0002) ≤ 3

3 ≤ age(2, M01) ≤ 3

that expand to

1 ≤ e00 − e0 ≤ 2, 3 ≤ e0000 ≤ 3

3 ≤ e0001 ≤ 3, 3 ≤ e0002 ≤ 3

3 ≤ e01 ≤ 3 .

One can verify that the original global real-time delays from Figure C.5
form a solution of the constructed constraint system: e0 = 0, e00 = 1.4,
e000 = 1.4, e0000 = 3.0, e00000 = 3.0, e0001 = 3.0, e00010 = 3.0, e0002 = 3.0,
e00020 = 3.0, e01 = 3.0, e010 = 3.0 Moreover, the constructed equation system
also has an integer solution (this is not only a coincidence), e.g. e0 = 0,
e00 = 2, e000 = 2, e0000 = 3, e00000 = 3, e0001 = 3, e00010 = 3, e0002 = 3,
e00020 = 3, e01 = 3, e010 = 3 and such a solution also forms a counter witness
in our TAPG with urgent controller.

Lemma 4

Let γ be a counter witness for a TAPG G and the safety objective ϕ.

a) There is a valid table Θ for γ and the corresponding constraint system
C has a solution.

b) Let eM where M ranges over the columns of Θ be another solution of

C. Then for any play M0M1M2 . . . Mk ∈ P(γ) such that M0
d0,t0→ M1

d1,t1→

M2
d2,t2→ . . . Mk, the same sequence of transitions t0, t1, t2, . . . , tk−1 can

be fired from M0 with the following delays: M0
eM0 ,t0
→ M′

1

eM1
−eM0 ,t1
→

M′
2

eM2−eM1
,t2

→ . . . M′
k such that Mi |= ϕ iff M′

i |= ϕ.

c) The constraint system C has an integer solution.

Proof. a) From the requirements for a valid table, Lemma 3 and the construc-
tion of the constraint system, we can by case analysis verify that if we define
eMi

= d0 + d1 + . . . + di in the play M0M1M2 . . . Mi . . . Mk ∈ P(γ) where

M0
d0,t0→ M1

d1,t1→ M2
d2,t2→ . . . Mi

di ,ti→ . . . Mk, then this forms a solution for the
system C. Hence by considering the timing given in the counter witness tree,
we have a solution for the constraint system.

101

Paper C.

b) On the other hand, we notice that the system C contains all the timing
constraints that are necessary for successfully executing all the transitions in
the counter witness tree and for producing valid plays. Then simply comput-
ing the relative delays before a transition firing can be done by subtracting
from the global execution time when the transition is fired the global exe-
cution time of the transition that we fired right before. Clearly, as both Mi

and M′
i where achieved by firing the same sequence of transitions with just

different delays, they have the same token distribution and hence Mi |= ϕ iff
M′

i |= ϕ.
c) As the constraint system C uses only difference constraints (difference

of at most two variables is compared with a constant), it falls within the
special subset of linear programming problems with totally unimodular ma-
trices [33]. For this specific subclass, solving the constraint-system reduces
to a shortest-path problem with integer weights only. This reduction implies
that an integer solution of such a system exists [34, 35], provided that the
system is solvable, which it is by part a) of the lemma.

From Lemma 4 we have that if it is possible to construct a counter witness
for the existence of a controller strategy in the continuous-time semantics,
then we can translate such a counter witness into a counter witness with
integer delays only. This concludes the proof of Theorem 7.

5 Discrete-Time Algorithm for Synthesis

We shall now define the discrete-time algorithm for synthesising controller
strategies for TAPGs. As the state-space of a TAPG is infinite in several as-
pects (the number of tokens in reachable markings can be unbounded and
even for bounded nets the ages of tokens can be arbitrarily large), the ques-
tion of deciding the existence of a controller strategy is in general undecidable
(already the classical reachability is undecidable [36] for TAPNs).

We address undecidability by fixing a constant k, bounding the number
of tokens in any marking reached by the controller strategy. This means
that instead of checking the safety objective ϕ, we verify instead the safety
objective ϕk = ϕ ∧ k ≥ ∑p∈P p that at the same time ensures that the total
number of tokens is at most k. This will, together with the extrapolation
technique below, guarantee the termination of the algorithm. We note that in
case the net is bounded, there is always some constants k for which checking
the property ϕk is equivalent to the original safety property ϕ and hence the
analysis is both sound and complete in this case.

102

5. Discrete-Time Algorithm for Synthesis

5.1 Extrapolation of TAPGs

We shall now recall a few results from [15] that allow us to make finite ab-
stractions of bounded nets (in the discrete-time semantics). The theorems
and lemmas in the rest of this section also hold for continuous-time seman-
tics, however, the finiteness of the extrapolated state-space is not guaranteed
in this case.

Let G = (P, T, Tenv, Tctrl, Turg, IA, OA, g, w, Type, I) be a TAPG. In [15] the
authors provide an algorithm for computing a function Cmax : P → (N0 ∪
{−1}) returning for each place p ∈ P the maximum constant associated
to this place, meaning that the ages of tokens in place p that are strictly
greater than Cmax(p) are irrelevant. The function Cmax(p) for a given place
p is computed by essentially taking the maximum constant appearing in any
outgoing arc from p and in the place invariant of p, where a special care
has to be taken for places with outgoing transport arcs (details are discussed
in [15]). In particular, places where Cmax(p) = −1 are the so-called untimed
places where the age of tokens is not relevant at all, implying that all the
intervals on their outgoing arcs are [0, ∞].

Let M be a marking of G. We split it into two markings M> and M≤ where
M>(p) = {x ∈ M(p) | x > Cmax(p)} and M≤(p) = {x ∈ M(p) | x ≤ Cmax(p)}
for all places p ∈ P. Clearly, M = M> ⊎ M≤.

We say that two markings M and M′ in the net G are equivalent, written
M ≡ M′, if M≤ = M′

≤ and for all p ∈ P we have |M>(p)| = |M′
>
(p)|. This

means that for tokens with ages below the maximum constants M and M′

agree and also on the number of tokens above the maximum constant. Let us
here introduce the notion of timed bisimilarity (we refer e.g. to [37] for more
information).

Definition 13 (Timed Bisimulation)

A binary relation R over the markings is a timed bisimulation if for any two
markings such that MRM̂ we have

• if M
d
→ M′ then M̂

d
→ M̂′ such that M′RM̂′,

• if M̂
d
→ M̂′ then M

d
→ M′ such that M′RM̂′,

• if M
t
→ M′ then M̂

t
→ M̂′ such that M′RM̂′, and

• if M̂
t
→ M̂′ then M

t
→ M′ such that M′RM̂′.

This means that delays and transition firings on one side can be matched
by exactly the same delays and transition firings on the other side and vice
versa.

We can now see that the above defined relation ≡ is an equivalence rela-
tion and it is also a timed bisimulation.

103

Paper C.

Theorem 8 ([15])

The relation ≡ is a timed bisimulation.

We can now define a function computing canonical representatives for
each equivalence class of ≡.

Definition 14 (Cut)

Let M be a marking. We define its canonical marking cut(M) by cut(M)(p) =
M≤(p) ⊎

{
Cmax(p) + 1, . . . , Cmax(p) + 1︸ ︷︷ ︸

|M>(p)| times

}
.

The idea of cut is to utilize our knowledge from Theorem 8 that for any
two markings which are timed bisimilar, it is sufficient to only do computa-
tions on one of them. The cut function takes this one step further and defines,
for a group of bisimilar markings, a single canonical representative M capa-
ble of exhibiting the same behaviour as any marking M′ where M = cut(M′).

Lemma 5 ([15])

Let M, M1 and M2 be markings. Then (i) M ≡ cut(M), and (ii) M1 ≡ M2 if
and only if cut(M1) = cut(M2).

Note that as our safety objective ϕ deals only with the number of tokens
in places but not with their actual ages, we get that M |= ϕ if and only if
cut(M) |= ϕ for any marking M.

5.2 The Algorithm

After having introduced the extrapolation function cut and our enforcement
of the k-bound, we can now design an algorithm for computing a controller
strategy σ, provided such a strategy exists.

Algorithm 7 describes a discrete-time method to check if there is a con-
troller strategy or not. It is centered around four data structures: Waiting set
for storing markings to be explored, Losing set that contains marking where
such a strategy does not exist, Depend function for maintaining the set of de-
pendencies to be reinserted to the waiting list whenever a marking is declared
as losing, and Processed set for already processed markings. All markings in
the algorithm are always considered modulo the cut extrapolation. The algo-
rithm performs a forward search by repeatedly selecting a marking M from
Waiting and if it can determine that the controller cannot win from this mark-
ing, then M gets inserted into the set Losing while the dependencies of M are
put to the set Waiting in order to backward propagate this information. If
the initial marking is ever inserted to the set Losing, we can terminate and
announce that a controller strategy does not exist. If this is not the case and
there are no more markings in the set Waiting, then we terminate with suc-
cess. In this case, it is also easy to construct the controller strategy by making
choices so that the set Losing is avoided.

104

5. Discrete-Time Algorithm for Synthesis

Algorithm 7: Safety Synthesis Algorithm

Input: A TAPG G = (P, T, Tenv, Tctrl, Turg, IA, OA, g, w, Type, I), initial
marking M0, a safety objective ϕ, a bound k.

Output: tt if there exists a controller strategy ensuring ϕ from M0 and
not exceeding k tokens in any intermediate marking, ff
otherwise

1 begin

2 Waiting := Losing := Processed := ∅; ϕk = ϕ ∧ k ≥ ∑p∈P p;
3 M ← cut(M0); Depend[M] ← ∅;
4 if M �|= ϕk then

5 Losing ← {M}
6 else

7 Waiting ← {M}
8 while Waiting �= ∅ ∧ cut(M0) �∈ Losing do

9 M ← pop(Waiting);

10 Succsenv := {cut(M′) | t ∈ Tenv, M
t
→ M′};

11 Succsctrl := {cut(M′) | t ∈ Tctrl, M
t
→ M′};

12 Succsdelay :=

∅ if M
1
�→

{cut(M′)} if M
1
→ M′

13 if ∃M′ ∈ Succsenv s.t. M′ �|= ϕk ∨ M′ ∈ Losing then

14 Losing ← Losing ∪ {M};
15 Waiting ← (Waiting ∪ Depend[M]) \ Losing;
16 else

17 if Succsctrl ∪ Succsdelay �= ∅ ∧ ∀M′ ∈ Succsctrl ∪ Succsdelay.

M′ �|= ϕk ∨ M′ ∈ Losing then

18 Losing ← Losing ∪ {M};
19 Waiting ← (Waiting ∪ Depend[M]) \ Losing;
20 else

21 if M �∈ Processed then

22 foreach M′ ∈ (Succsctrl ∪ Succsenv ∪ Succsdelay) do

23 if M′ �∈ Losing ∧ M′ |= ϕk then

24 Depend[M′] ← Depend[M′] ∪ {M};
25 Waiting ← Waiting ∪ {M′};
26 Processed ← Processed ∪ {M};
27 return tt if cut(M0) �∈ Losing, else ff

105

Paper C.

To prove that our algorithm is correct, we prove termination, soundness,
and completeness.

Lemma 6 (Termination)

Algorithm 7 terminates.

Proof. Let us first argue that the sets Waiting, Losing and Processed can contain
only an a priori bounded number of markings. To see this, we observe that
markings added to Processed and Losing are only those that were previously
removed from Waiting. Therefore it is sufficient to show that the number of
different markings in Waiting is bounded. From the definition of ϕk at line 2,
we can see that a marking satisfies ϕk only if is has at most k tokens and due
to the test at line 23, only such markings can be inserted to Waiting. For the
given number k, we notice that there are only finitely many extrapolated (by
the function cut) markings with at most k tokens. Hence the set Waiting can
contain only a bounded number of different extrapolated markings.

Unless the test at line 4 succeeds and we immediately terminate due to
the check at line 8, the following invariant will hold during the execution of
the main while-loop at lines 8 to 26: Waiting ∩ Losing = ∅. This is due to the
fact that at every line where we add markings to Waiting (lines 15, 19 and
25), we are guaranteed that such markings are not in the set Losing, and we
only add a new marking to Losing (lines 14 and 18) when the marking was
just popped from Waiting at line 9. Similarly, it is easy to observe that during
the execution of the algorithm, the sets Losing and Processed are only growing
(there are no lines that ever remove elements from these sets).

In each iteration of the while-loop, we can observe that the size of the
set Waiting is either decreased by popping an element at line 9, or if new
elements are added to Waiting then either the cardinality of Losing or Processed
increases by one. We show that by analysing the lines where new elements
are possibly added to Waiting. This can happen at lines 15 and 19 but at
the previous lines 14 and 18, respectively, the marking M got inserted into
Losing. Because this M was just popped from Waiting at line 9 and due to
the previously introduced fact that Waiting ∩ Losing = ∅, the cardinality of
Losing is so increased. Another place where a new marking can be added to
Waiting is at line 25. However, in this case we know that M �∈ Processed due
to the test at line 21, and this implies that by executing line 26, the cardinality
of the set Processed increased.

In summary, in each iteration of the while-loop either the size of Waiting
decreases and if not then either the cardinality of Losing or Processed increases.
As these sets are a priori bounded, we know that eventually the set Waiting
becomes empty and the algorithm terminates (unless the algorithm already
terminated due to the successful check cut(M0) ∈ Losing at line 8).

Having proved the termination, we now continue by proving soundness.

106

5. Discrete-Time Algorithm for Synthesis

Lemma 7 (Soundness)

If Algorithm 7 returns ff then there is no controller winning strategy from
M0 for the safety objective ϕk = ϕ ∧ k ≥ ∑p∈P p.

Proof. We prove the lemma by establishing the invariant claiming that there
is no controller winning strategy for any marking ever inserted into the set
Losing. By observing that the algorithm returns ff only if cut(M0) ∈ Losing
and the fact that by Theorem 8 the marking cut(M0) is losing if and only if
M0 is losing (note that our safety logic only queries the number of tokens in
places but not their actual ages), this will conclude the proof of this lemma.

The invariant clearly holds before the while-loop is entered as Losing is
empty. Assume now that the set Losing contains markings for which the
controller has no strategy to satisfy ϕk and that we add a new marking M to
the set Losing. We want to argue that the controller does not have a winning
strategy from the marking M. A new marking M can be added only at lines
14 or 18.

• If the marking M was added to Losing at line 14 then surely, by the test

at line 13, there is an environmental transition M
t
→ M′ with t ∈ Tenv

such that cut(M′) �|= ϕk (and hence also M′ �|= ϕk) or cut(M′) ∈ Losing.
Hence, clearly the controlled cannot have a winning strategy from M as
the environment can force the computation to the marking M′ that ei-
ther breaks the safety formula ϕk or cut(M′) belongs to Losing that con-
tains only markings from which controller cannot win and as cut(M′)
is losing for the controller, so is the marking M′ by using Theorem 8.

• If the marking M was added to Losing at line 18 then the environment
can let the controller to act from M, implying that the controller has

to either fire some t ∈ Tctrl such that M
t
→ M′ or perform a unit delay

such that M
1
→ M′ and in both situations the controller cannot win from

M′ as in the previous case because either cut(M′) �|= ϕk or cut(M′) ∈
Losing.

The soundness of the approach is hence introduced.

Finally, we can present the completeness lemma.

Lemma 8 (Completeness)

If Algorithm 7 returns tt then the controller has a winning strategy from M0
for the safety objective ϕk = ϕ ∧ k ≥ ∑p∈P p.

Proof. Assume that Algorithm 7 returns tt. We shall define a winning strategy
for the controller starting from the initial marking M0. Note that as we con-
sider here discrete-time semantics, it is enough for each marking M visited
during a play to determine whether the controller’s strategy should suggest

107

Paper C.

(i) to fire some controllable transition without any delay, (ii) to perform a de-
lay of one time unit, or (iii) to do nothing (allowed only if none of the options
(i) and (ii) are possible). Such a strategy can, in a straightforward way, be ex-
tended to the controller strategy as defined in Section 3.1 that proposes from
a marking M to delay d time units followed by firing of a controllable transi-
tion, or to wait for ever. In what follows, we shall define a winning strategy
for the controller from a marking M by defining it for the marking cut(M).
By Theorem 8 such a strategy from cut(M) is a valid winning strategy also
for the marking M.

The intuition behind the controller strategy is to make sure that any play
includes only markings M such that cut(M) ∈ Processed � Losing (in the rest
of this proof we consider the sets Processed and Losing after the termination
of the algorithm). By examining that the set Processed contains only markings
that were previously in Waiting and that any marking inserted into Waiting
at line 25 must satisfy the proposition ϕk because of the check at line 23
(the markings inserted to Waiting at lines 15 and 19 were in the set Waiting
earlier), we can see that all markings in Processed� Losing satisfy the formula
ϕk. Hence staying in Processed � Losing is a safe controller strategy.

Let us so assume a marking M ∈ Processed � Losing. We shall now deter-
mine whether the controller should propose to fire some controllable transi-
tion enabled in M, to delay in M for one time unit, or to do nothing. There
are three cases to consider.

• If M
1
→ M′ such that cut(M′) ∈ Processed � Losing then the controller

will propose to delay for one time unit. Clearly, there cannot be any t ∈

Tenv with M
t
→ M′′ where M′′ �|= ϕk or cut(M′′) ∈ Losing as otherwise

this would be detected at line 13 and it would imply that M ∈ Losing
(due to the back-propagation of this fact at line 15). This contradicts
our assumption that M ∈ Processed � Losing and hence the controller’s
choice to delay one time unit is safe here.

• If M
1
→ M′ but cut(M′) �∈ Processed� Losing then as cut(M′) was surely

processes due to the classical forward search implemented at lines 21
to 25, this can only be possible if cut(M′) ∈ Losing. As the fact that
a marking is added to Losing is back-propagated at lines 15 and 19,
and because M �∈ Losing, we know due to the test at line 17 there is

at least one t ∈ Tctrl such that M
t
→ M′′ such that M′′ |= ϕk and

cut(M′′) �∈ Losing. Should this not be the case, then M would end up
in the set Losing at line 18. This contradicts our initial assumption that
M ∈ Processed � Losing. The controller can in this case propose to fire
one of such transitions t discussed above and the resulting marking
will belong to Processed � Losing. Clearly, as in the previous case, any
environmental transition enabled in M must also lead to a marking

108

6. Experiments

from Processed � Losing.

• If M �
1
→ then as before any environmental transition from M leads to a

marking from Processed � Losing and if some controller transition is en-
abled at M then at least one such transition will bring us, by arguments
already given above, to Processed � Losing.

We have so defined a controller strategy that will visit only markings from
Processed � Losing and hence it is a winning controller strategy for the objec-
tive ϕk.

We are now ready to state the correctness of our algorithm that follows
from Lemmas 6, 7 and 8.

Theorem 9 (Correctness)

Algorithm 7 terminates and returns tt if and only if there is a controller
strategy for the safety objective ϕk = ϕ ∧ k ≥ ∑p∈P p.

Clearly, if the input Petri net game is k-bounded (there is no reachable
marking with more than k tokens) then a marking satisfies ϕk if and only if
it satisfies ϕ and hence our algorithm decides the existence of the controller
winning strategy for the safety objective ϕ (in the discrete-time semantics).
For unbounded nets, the existence of such a controller winning strategy is
undecidable (already the reachability problem is undecidable for timed-arc
Petri nets under discrete-time semantics [36]) but our algorithm can possibly
find a controller winning strategy for the objective ϕ that visits only markings
with a bounded number of tokens even for games on unbounded timed-arc
Petri nets. There can though still be other controller winning strategies that
may require an unbounded number of tokens in the visited markings. Such
strategies will not be discovered by our algorithm.

6 Experiments

The discrete-time controller synthesis algorithm was implemented in the tool
Tappaal [24] and we evaluate the performance of the implementation by
comparing it to Uppaal Tiga [7] version 0.18, the state-of-the-art continuous-
time model checker for timed games. The experiments were run on AMD
Opteron 6376 processor limited to using 19 GB of RAM2 and with one hour
timeout (denoted by �).

Compared to our experiments presented at [1], the performance of Tap-
paalimproved as we now use a more efficient PTrie [18] implementation that
is both faster and has a smaller memory foot-print than the one used in [1].

2Uppaal Tiga only exists in a 32 bit version, but for none of the tests the 4GB limit was
exceeded for Uppaal Tiga.

109

Paper C.

1 Stream D = 133 D = 173 D = 213 D = 253 D = 293 D = 333 D = 373
Tracks 70 90 110 130 150 170 190
Tappaal 16.86s 36.84s 69.55s 119.68s 182.60s 271.82s 376.48s
Uppaal 36.41s 76.63s 193.37s 351.17s 509.46s 1022.83s 1604.04s

2 Streams D = 19 D = 27 D = 35 D = 43 D = 51 D = 59 D = 67
Tracks 6 8 10 12 14 16 18
Tappaal 1.17s 5.61s 19.13s 49.23s 114.23s 225.38s 426.99s
Uppaal 19.11s 93.46s 436.15s 1675.85s 3328.66s � �

3 Streams D = 17 D = 21 D = 25 D = 29 D = 35 D = 39 D = 43
Tracks 3 4 5 6 7 8 9
Tappaal 1.30s 8.5s 38.16s 129.27s 454.08s 1153.65s �

Uppaal 885.56s � � � � � �

Table C.2: Time in seconds to find a controller strategy for the disk operation scheduling for the
smallest D where such a strategy exists.

6.1 Disk Operation Scheduling

In the disk operation scheduling model presented in Section 2 we scale the
problem by changing the number of tracks and the number of simultaneous
read streams. An equivalent model using the timed automata formalism was
created for Uppaal Tiga. We then ask whether a controller exists respecting a
fixed deadline D for all requests. For each instance of the problem, we report
the computation time for the smallest deadline D such that it is possible to
synthesize a controller. Notice that the disk operating scheduling game net
has an urgent controller, hence the discrete and continuous-time semantics
coincide.

The results in Table C.2 show that our algorithm scales considerably bet-
ter than TiGa (that suffers from the large fragmentation of zone federations)
as the number of tracks increases (by which we scale the size of the problem)
and it is significantly better when we add more read streams (by which we
scale the concurrency and consequently also the number of timed tokens/-
clocks).

6.2 Infinite Job Shop Scheduling

In our second experiment, infinite job shop scheduling, we consider the du-
ration probabilistic automata [38]. Kempf et al. [32] showed that "non-lazy"
schedulers are sufficient to guarantee optimality in this class of automata.
Here non-lazy means that the controller only chooses what to schedule at the
moment when a running task has just finished (the time of this event is deter-
mined by the environment). We here consider a variant of this problem that
should guarantee an infinite (cyclic) scheduling in which processes—while
competing for resources—must meet their deadlines. The countdown of a
process is started when its first task is initiated and the process deadline is

110

6. Experiments

2 Processes/7-13 tokens

Max Age 10 Tasks 12 Tasks 14 Tasks 16 Tasks 18 Tasks
5 (100) 54s (100) 118s (100) 238s (100) 464s (100) 661s

D ≤ 144 (100) 100s (98) 413s (85) 1201s (35) � (18) �

10 (100) 270s (100) 699s (98) 1281s (87) 2370s (28) �

D ≤ 288 (96) 221s (69) 1443s (43) � (16) � (1) �

15 (100) 852s (85) 2043s (28) � (15) � (5) �

D ≤ 432 (87) 315s (60) 1960s (19) � (8) � (0) �

20 (84) 1982s (23) � (14) � (4) � (2) �

D ≤ 576 (90) 554s (66) 2914s (34) � (4) � (1) �

3 Processes/10-19 tokens

Max Age 2 Tasks 3 Tasks 4 Tasks 5 Tasks 6 Tasks
5 (100) 2s (100) 33s (100) 295s (71) 1375s (42) �

D ≤ 57 (99) 16s (69) 1827s (4) � (0) � (0) �

10 (100) 14s (99) 328s (50) 3538s (20) � (8) �

D ≤ 114 (98) 32s (52) 3338s (6) � (0) � (0) �

15 (100) 44s (73) 1052s (32) � (6) � (1) �

D ≤ 171 (98) 27s (50) � (1) � (0) � (0) �

4 Processes/13-25 tokens

Max Age 2 Tasks 3 Tasks 4 Tasks 5 Tasks 6 Tasks
5 (95) 178s (35) � (9) � (1) � (0) �

D ≤ 66 (3) � (0) � (0) � (0) � (0) �

10 (62) 1805s (12) � (3) � (0) � (0) �

D ≤ 132 (0) � (0) � (0) � (0) � (0) �

Table C.3: Results for infinite scheduling of DPAs. The first row in each age-instance is Tappaal,
the second line is Uppaal Tiga. The format is (X) Ys where X the number of solved instances
(within 3600 seconds) out of 100 and Y is the median time needed to solve the problem. The
largest possible constant for each row is given as an upper bound of the deadline D.

111

Paper C.

2 Yogurts/9 tokens 3 Yogurts/13 tokens

Scale Uppaal Tappaal Uppaal Tappaal

1/6 1.10s 0.22s � 95.44s
1/3 1.11s 5.64s � OOM
1/2 1.12s 42.68s � OOM
2/3 1.15s 231.29s � OOM
5/6 1.11s 656.10s � OOM
1/1 1.11s OOM � OOM

Table C.4: Results for the office fridge example from Figure C.3 where constants are scaled by
the given factor. We limit the number of tokens in the net to 9 or 13. Time is given in seconds,
OOM signifies that the tool exceeded the memory-limitation (19 GB) and � indicates that more
than one hour of computation time was used.

met if the process is able to execute its last task within the deadline. After
such a completed cycle, the process starts from its initial configuration and
the deadline-clock is restarted. The task of the controller is to find a schedule
such that all processes always meet their deadline. The problem can be mod-
elled using urgent controller, in which case the discrete and continuous-time
semantics coincide.

The problem is scaled by the number of parallel processes, number of
tasks in each processes and the size of constants used in guards (except the
deadline D that contains a considerably larger constant). For each set of
scaling parameters, we generated 100 random instances of the problem and
report on the number of cases where the tool answered the synthesis problem
(within one hour deadline) and if more than 50 instances were solved, we also
compute the median of the running time.

The comparison with Uppaal Tiga in Table C.3 shows a trend similar to
the previous experiment. Our algorithm scales nicely as we increase the num-
ber of tasks as well as the number of processes. This is due to the fact that
the zone fragmentation in TiGa increases with the number of parallel compo-
nents and more distinct guards. When scaling the size of constants, the per-
formance of the discrete-time method gets worse and eventually Uppaal Tiga

can solve more instances.

6.3 Office Fridge Example

As the last experiment, we return to our motivating example from Figure C.3.
In this experiment, we scale all constants in the model by the factors of 1

6 , 1
3 ,

1
2 , 2

3 , 5
6 and 1. We also scale the number of yogurts from 2 to 3—this also

changes the weight on the transport-arc from Fridge to Eat to 3.
As illustrated in Table C.4, our algorithm is sensitive to the size of the

constants. This is expected as the algorithm uses an explicit exploration of

112

7. Conclusion

the discrete state-space. We observe that eventually our algorithm runs out
of memory—in particular with the exact values as provided in Figure C.3.
Compared to Uppaal Tiga, it is apparent that the symbolic approach does
not suffer from scaling the sizes of constants, however, it exceeds the one
hour timeout for the case of 3 yogurts while we can still solve this problem
for the scaling factor 1

6 .

7 Conclusion

We introduced timed-arc Petri net games and showed that for urgent con-
trollers, the discrete and continuous-time semantics coincide. The presented
discrete-time method for solving timed-arc Petri net games scales consid-
erably better with the growing size of problems, compared to the existing
symbolic methods. On the other hand, symbolic methods scale better with
the size of the constants used in the model. In the future work, we may try to
compensate for this drawback by using approximate techniques that “shrink”
the constants to reasonable ranges while still providing conclusive answers
in many cases, as demonstrated for pure reachability queries in [17]. An-
other future work includes the study of different synthesis objectives, as well
as the generation of continuous-time strategies from discrete-time analysis
techniques on the subclass of urgent controllers.

Acknowledgments. The research leading to these results has received fund-
ing from the project DiCyPS funded by the Innovation Fund Denmark, the
Sino Danish Research Center IDEA4CPS and the ERC Advanced Grant LASSO.
The third author is partially affiliated with FI MU, Brno, Czech Republic.

References

[1] P. G. Jensen, K. G. Larsen, and J. Srba, “Real-time strategy synthesis
for timed-arc Petri net games via discretization,” in Proceedings of the
23rd International Symposium on Model Checking Software (SPIN’16), ser.
LNCS, vol. 9641. Springer, 2016, pp. 129–146. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-32582-8_9

[2] A. Church, “Logic, arithmetic, and automata,” in Proc. Internat. Congr.
Mathematicians (Stockholm, 1962). Djursholm: Inst. Mittag-Leffler, 1963,
pp. 23–35.

[3] ——, “Application of recursive arithmetic to the problem of circuit syn-
thesis,” Journal of Symbolic Logic, vol. 28, no. 4, pp. 289–290, 1963.

113

References

[4] S. Jacobs, R. Bloem, R. Brenguier, R. Könighofer, G. A. Pérez, J. Raskin,
L. Ryzhyk, O. Sankur, M. Seidl, L. Tentrup, and A. Walker, “The second
reactive synthesis competition (SYNTCOMP 2015),” in Proceedings of the
Fourth Workshop on Synthesis (SYNT’15), ser. EPTCS, vol. 202, 2016, pp.
27–57. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.202.4

[5] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, Apr. 1994. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(94)90010-8

[6] A. Pnueli, E. Asarin, O. Maler, and J. Sifakis, “Controller synthesis for
timed automata,” in System Structure and Control, Citeseer. Elsevier,
1998.

[7] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime,
“Uppaal-tiga: Time for playing games!” in Computer Aided Verification,
ser. Lecture Notes in Computer Science, W. Damm and H. Hermanns,
Eds. Springer Berlin Heidelberg, 2007, vol. 4590, pp. 121–125. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-73368-3_14

[8] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Efficient on-
the-fly algorithms for the analysis of timed games,” in IN CONCUR 05,
LNCS 3653. Springer, 2005, pp. 66–80.

[9] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine,
“Kronos: A model-checking tool for real-time systems,” in CAV, 1998,
pp. 546–550.

[10] G. Behrmann, A. David, K. Larsen, J. Hakansson, P. Petterson, W. Yi,
and M. Hendriks, “Uppaal 4.0,” in QEST’06, 2006, pp. 125–126.

[11] B. Berthomieu and F. Vernadat, “Time Petri nets analysis with TINA,” in
Third International Conference on Quantitative Evaluation of Systems. IEEE
Computer Society, 2006, pp. 123–124.

[12] G. Gardey, D. Lime, M. Magnin, and O. Roux, “Romeo: A tool for ana-
lyzing time Petri nets,” in Computer Aided Verification, ser. Lecture Notes
in Computer Science, K. Etessami and S. Rajamani, Eds. Springer, 2005,
vol. 3576, pp. 261–272.

[13] D. Dill, “Timing assumptions and verification of finite-state concurrent
systems,” in Automatic Verification Methods for Finite State Systems, ser.
LNCS. Springer, 1990, vol. 407, pp. 197–212. [Online]. Available:
http://dx.doi.org/10.1007/3-540-52148-8_17

[14] X. Liu and S. A. Smolka, “Simple linear-time algorithms for minimal
fixed points (extended abstract),” in Proceedings of the 25th International

114

References

Colloquium on Automata, Languages and Programming, ser. ICALP ’98.
London, UK, UK: Springer-Verlag, 1998, pp. 53–66. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646252.686017

[15] M. Andersen, H. Larsen, J. Srba, M. Sørensen, and J. Taankvist, “Ver-
ification of liveness properties on closed timed-arc Petri nets,” in
MEMICS’12, ser. LNCS, vol. 7721. Springer, 2013, pp. 69–81.

[16] K. Jørgensen, K. G. Larsen, and J. Srba, “Time-darts: A data structure for
verification of closed timed automata,” in Proceedings Seventh Conference
on Systems Software Verification, ser. EPTCS, vol. 102. Open Publishing
Association, 2012, pp. 141–155.

[17] S. Birch, T. Jacobsen, J. Jensen, C. Moesgaard, N. Samuelsen, and J. Srba,
“Interval abstraction refinement for model checking of timed-arc Petri
nets,” in Proceedings of the 12th International Conference on Formal Mod-
elling and Analysis of Timed Systems (FORMATS’14), ser. LNCS, vol. 8711.
Springer-Verlag, 2014, pp. 237–251.

[18] P. G. Jensen, K. G. Larsen, J. Srba, M. G. Sørensen, and J. H. Taankvist,
“Memory efficient data structures for explicit verification of timed
systems,” in NASA Formal Methods: 6th International Symposium, ser.
LNCS. Springer, 2014, vol. 8430, pp. 307–312. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-06200-6_26

[19] P. G. Jensen, K. G. Larsen, and J. Srba, “PTrie: Data structure for com-
pressing and storing sets via prefix sharing,” in Proceedings of the 14th
International Colloquium on Theoretical Aspects of Computing (ICTAC’17),
ser. LNCS, vol. 10580. Springer, 2017, p. 18, to appear.

[20] T. Bolognesi, F. Lucidi, and S. Trigila, “From Timed Petri Nets to Timed
LOTOS,” in Proc. of PSTV’90. North-Holland, 1990, pp. 395–408.

[21] H. Hanisch, “Analysis of Place/Transition Nets with Timed Arcs and its
Application to Batch Process Control,” in Proc. of Application and Theory
of Petri Nets, ser. LNCS, vol. 691. Springer, 1993, pp. 282–299.

[22] M. Bozga, O. Maler, and S. Tripakis, “Efficient verification of timed au-
tomata using dense and discrete time semantics,” in Correct Hardware
Design and Verification Methods. Springer, 1999, pp. 125–141.

[23] J. Mateo, J. Srba, and M. Sørensen, “Soundness of timed-arc workflow
nets in discrete and continuous-time semantics,” Fundamenta Informati-
cae, vol. 140, no. 1, pp. 89–121, 2015.

[24] A. David, L. Jacobsen, M. Jacobsen, K. Jørgensen, M. Møller, and J. Srba,
“TAPAAL 2.0: Integrated development environment for timed-arc Petri

115

References

nets,” in Tools and Algorithms for the Construction and Analysis of Systems:
18th International Conference, ser. LNCS, vol. 7214. Springer, 2012, pp.
492–497.

[25] H. Peter, “Component-based abstraction refinement for timed controller
synthesis,” in 2013 IEEE 34th Real-Time Systems Symposium, IEEE. IEEE
Computer Society, 2009, pp. 364–374.

[26] H.-J. Peter, R. Ehlers, and R. Mattmüller, “Synthia: Verification and syn-
thesis for timed automata.” in CAV. Springer, 2011, pp. 649–655.

[27] B. Finkbeiner and H.-J. Peter, “Template-based controller synthesis for
timed systems,” in Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2012, pp. 392–406.

[28] B. Finkbeiner, “Bounded synthesis for Petri games,” in Correct System
Design: Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of
His 60th Birthday, ser. LNCS. Springer, 2015, vol. 9360, pp. 223–237.

[29] B. Finkbeiner and E. Olderog, “Petri games: Synthesis of distributed
systems with causal memory,” in Proceedings Fifth International
Symposium on Games, Automata, Logics and Formal Verification,
ser. EPTCS, vol. 161, 2014, pp. 217–230. [Online]. Available:
http://dx.doi.org/10.4204/EPTCS.161.19

[30] J. Raskin, M. Samuelides, and L. Begin, “Petri games are monotone
but difficult to decide,” Université Libre De Bruxelles, Technical Report,
2003.

[31] Q. Zhou, M. Wang, and S. Dutta, “Generation of optimal control policy
for flexible manufacturing cells: A Petri net approach,” The International
Journal of Advanced Manufacturing Technology, vol. 10, no. 1, pp. 59–65,
1995. [Online]. Available: http://dx.doi.org/10.1007/BF01184279

[32] J.-F. Kempf, M. Bozga, and O. Maler, “As soon as probable: Optimal
scheduling under stochastic uncertainty,” in Tools and Algorithms
for the Construction and Analysis of Systems, ser. Lecture Notes in
Computer Science, N. Piterman and S. Smolka, Eds. Springer
Berlin Heidelberg, 2013, vol. 7795, pp. 385–400. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36742-7_27

[33] J. Cong, B. Liu, and Z. Zhang, “Scheduling with soft constraints,” in
Proceedings of the 2009 International Conference on Computer-Aided Design,
Nov 2009, pp. 47–54.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction
to algorithms. third edition.” 2009.

116

References

[35] A. Hoffman and J. Kruskal, “Integral boundary points of convex polyhe-
dra, in Linear Inequalities and Related Systems (H. Kuhn and A. Tucker,
Eds.),” Annals of Maths. Study, vol. 38, pp. 223–246, 1956.

[36] V. Ruiz, F. C. Gomez, and D. de Frutos Escrig, “On non-decidability of
reachability for timed-arc Petri nets,” in Proceedings of the 8th International
Workshop on Petri Net and Performance Models (PNPM’99), 1999, pp. 188–
196.

[37] K. G. Larsen and Y. Wang, “Time-abstracted bisimulation: Implicit
specifications and decidability,” Information and Computation, vol.
134, no. 2, pp. 75 – 101, 1997. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0890540197926237

[38] O. Maler, K. G. Larsen, and B. Krogh, “On zone-based analysis of dura-
tion probabilistic automata,” in Proceedings of the 12th International Work-
shop on Verification of Infinite-State Systems, 9 2010.

117

References

118

Paper D

Practical Controller Synthesis for MTL0,∞

Guangyuan Li, Peter Gjøl Jensen, Kim Guldstrand Larsen,
Axel Legay and Danny Bøgsted Poulsen

The paper has been published in the
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model

Checking of Software, pp. 102–111, 2017.

c© 2017 ACM New York
The layout has been revised.

1. Introduction

Abstract

Metric Temporal Logic MTL0,∞ is a timed extension of linear temporal logic, LTL,
with time intervals whose left endpoints are zero or whose right endpoints are in-
finity. Whereas the satisfiability and modelchecking problems for MTL0,∞ are both
decidable, we note that the controller synthesis problem for MTL0,∞ is unfortunately
undecidable. As a remedy of this we propose an approximate method to the synthesis
problem, which we demonstrate to be adequate and scalable to practical examples.
We define a method for converting MTL0,∞ formulas into (nondeterministic) Timed
Game Büchi Automata and furthermore show how to construct determinized over-
and underapproximation of a such. For the proposed method, we present a toolchain
seamlessly integrating the needed components for practical MTL0,∞ synthesis. Lastly
we demonstrate on a number of case-studies the applicability and scalability of the
proposed method.

1 Introduction

Automatic controller synthesis offers the promise of a disruptive technology
for developing correct-by-construction control software. In short, controller
synthesis is concerned with the algorithmic construction of a control strategy,
that will ensure a given behavioural specification to be satisfied regardless of
the input provided by an environment. This problem was first stated in a
discrete time setting by Church in 1962 in [1] and then theoretically solved
for various specification formalisms in [2] and later works [3–8].

The synthesis problem is computationally harder for linear time logics
than the satisfiability and model checking problems, and was for this rea-
son considered intractable for a long time. Until recently, the intractability
of proposed methods stemmed from the determinization of Büchi automata,
which is a computationally hard problem. However, the synthesis problem
has recently gained in practical performance due to the development of the
so-called Safraless synthesis algorithms [9] that avoid the Büchi determiniza-
tion phase. For real-time specification, the Metric Interval Temporal Logic
(MITL [10]) is a logic that has proven its usefulness for speciciations [11] and
thus a logic adequate for synthesing controllers. Unfortunately, the synthesis
problem is known to be undecidable [12] for general MITL - but restricting
the formulas to certain sub-classes the synthesis problem is rendered decid-
able [3, 13]. Overall, the main challenge in the real-time setting is that the
Safraless approach is not always applicable as determinization is not possi-
ble in general. Allowing only upper or lower bounds on all until operators
gives a sub-class of MITL called MTL0,∞. Although the satisfiability and
model checking problems for MTL0,∞ are both decidable, the controller syn-
thesis problem is still rendered undecidable – this follows trivially from the

121

Paper D.

work on Event Clock Logic by Doyen et. al [12], as we will show later in this
paper. However, it is still possible to synthesise controllers for some MTL0,∞
formulas by use of an approximate technique – as we present here.

The main obstacle for synthesising a controller for a MTL0,∞ objective is
the construction of a Deterministic Timed Büchi Automaton equivalent to the
objective. Unfortunately, in a previous work [14], we already argued that the
sub-class with only upper bounds (MTL≤a) is non-deterministic in the sense
that for some formulas no Deterministic Timed Büchi Automaton exists. In
that work, we showed how to construct over- and under-approximating au-
tomata for a given specification. The construction was implemented in the
tool Casaal and used for monitoring purposes. Furthermore, experimen-
tal results witnessed that the approximations were often exact and when not
exact, at least tight. The often “exact and tight” propertys of our previous
work gave hope that a similar construction could be made for the full class
of MTL0,∞ formulas and used for controller synthesis. The idea is to paral-
lel compose the automaton into the model of the environment and obtain a
Timed Game with Büchi Objectives - a tool like Uppaal Tiga [15] can then be
used to synthesise the controller. For the cases where an deterministic and ex-
act Büchi automaton does not exist for the objective, the under-approximation
may be used instead to construct a safe controller. For the purpose of syn-
thesis for the over-approximation is mainly to verify the non-existence of a
controller i.e. if you cannot synthesise a controller for the over-approximation
you cannot synthesise one for the original objective.

In the current paper we show how to construct under- and overapprox-
imation for MTL0,∞ objectives and we extend Casaal for this new con-
struction. Experiments show that in many cases the approximations are
in fact exact. Our main contribution is the approach for synthesising con-
trollers for MTL0,∞ objectives, but along the way we also develop the – to
our knowledge – first exact translation from MTL0,∞ to (non-deterministic)
Timed Büchi Automata. That particular construction is since modified –
using techniques developed in a previous work [14] – to obtain the final
under-/over-approximating deterministic Timed Büchi Automata. Another
contribution of the paper is a tool chain that seamlessly integrate Casaal

and Uppaal Tiga [15] to form a practical way of synthesising controllers
for MTL0,∞ objectives. We also demonstrate the applicability of our method
on a number of case-studies, showing that the synthesis of controllers for
MTL0,∞ objectives is feasible within a reasonable computation time for non-
trivial formulas and reasonable model-sizes. Our experiments demonstrate
that the over- and underapproximation is often exact, supporting our claim
of an “exact and tight” property. In short, our contributions are

• a full and exact translation of MTL0,∞ objectives into (non-deterministic)
Timed Büchi Automata,

122

2. Timed Games and MTL0,∞

• an automatic construction of deterministic over- and underapproxima-
tions, implemented in Casaal,

• seamless integration between Uppaal Tiga and Casaal in a single tool-
chain for synthesis, and

• a demonstration of the approach on a number of case-studies.

The paper is structured in the following way: in Section 2, we introduce
timed games and MTL0,∞. Section 3, proposes the translation from MTL0,∞ to
(non-deterministic) Timed Büchi Automata. Section 4 presents the tool chain
and demonstrates the applicability and efficiency of the tool chain through a
number of practical examples.

Related Work The continuous semantics and the pointwise semantics are two
commonly adopted semantics for MITL. Rajeev Alur et al. in [10] proposed
a procedure for translating MITL (under continuous semantics) into timed
Büchi automata, this procedure has never been implemented in practice.
Oded Maler et al. [16] proposed a procedure to translate MITL(under con-
tinuous semantics) into temporal testers (not timed Büchi automata), their
procedure also has not been implemented. Marc Geilen [17] has implemented
a procedure to translate bounded MTL0,∞ to timed automata, the semantics
he used is also the continuous semantics. As for pointwise semantics, in
previous papers [14, 18], we have provided a constructions and a tool com-
ponent (Casaal) for translating the safety fragment and co-safety of MTL0,∞
into timed automata. In a recent paper [19], Thomas Brihaye et al. proposed
a technique to translate MITL into Timed Büchi Automata through alternat-
ing timed automata. Their approach is based on a new (interval) semantics,
where clock valuations are not real values, but intervals with real endpoints.

2 Timed Games and MTL0,∞

Let us introduce the main formalism and definitions used throughout the
text. A timed word ω over a finite set of actions Σ is an infinite sequence of
time points and actions ω = (t1, a1)(t2, a2)(t3, a3) . . . , where for every i we
have ai ∈ Σ, ti ∈ R≥0 and ti+1 ≥ ti. A timed word ω = (t1, a1)(t2, a2)(t3, a3) . . .
is called non-Zeno if the sequence {ti}i∈N is unbounded.

Let X be a finite set of real-valued variables called clocks. A clock bound
over X has the form x ∼ n or x − y ∼ n, where x, y ∈ X, ∼∈ {<, ≤, ≥,>}
and n ∈ Z≥0. We denote the set of all possible clock bounds over X by
B(X), and let Θ(X) be the set of all Boolean formulas over B(X) (including
conjunctions and disjunctions). A valuation over X is an element of RX

≥0, i.e.
it is a function v : X → R≥0. We let 0 be the valuation that assigns 0 to
any clock from X. For a given valuation v, clock set Y ⊆ X and real number

123

Paper D.

δ ∈ R≥0 we let v + δ to be the valuation such that (v + δ)(x) = v(x) + δ for
every clock x ∈ X; and v[Y] is the valuation where v[Y](x) = 0 if x ∈ Y and
v[Y](x) = v(x) otherwise.

Definition 15

A Timed Büchi Automaton (TBA) over actions Σ is a tuple A = (L, ℓ0, X, F, E),
where L is a finite set of locations, ℓ0 is the initial location, X is a finite set of
clocks, F ⊆ L is a set of accepting locations, and E ⊆ L × Σ × Θ(X)× 2X × L
is a set of edges.

The semantics of a TBA A is defined by a Labeled Transition System
(LTS) (S, s0, →). The set of states S = L × RX

≥0 of a TBA consists of pairs of
locations and valuations over X. The initial state s0 is (l0, 0). There exists a

delay transition (l, v1)
δ
−→ (l, v2), iff δ ∈ R≥0 and v2 = v1 + δ. There exists a

discrete transition (l1, v1)
a
−→ (l2, v2) if there exists an edge e = (l1, a, g, Y, l2)

such that v1 |= g and v2 = v1[Y]. In the latter case we say that an edge e is
enabled in the state (l1, v1). A TBA is deterministic if any state (l, v) has at
most one successor for any action a ∈ Σ.

A run ρ of a TBA A is an infinite sequence of alternating delay and dis-

crete transitions ρ = (l0, 0)
δ1−→ (l1, v1)

a1−→ (l2, v2)
δ2−→ (l3, v3)

a2−→ (l4, v4)
δ3−→

. . . . We sayρ is accepting if li ∈ F for infinitely many i. For i ∈ N we denote
by ρi the finite prefix of ρ upto (li, vi). We denote by Exec(A) (Exec f (A))
the set of all (finite) runs of A. A timed word ω = (δ1, a1)(δ1 + δ2, a2)(δ1 +
δ2 + δ3, a3) . . . is accepted by a TBA A if there exists an accepting run ρ for
which ω is the corresponding timed word. We use L(A) to denote the set
of all non-Zeno timed words accepted by A. An ordinary Timed Automaton
(TA) with final locations may be represented as a Timed Büchi Automaton by
making all final locations terminal (looping) and accepting.

Definition 16

A Timed Game with Büchi conditions (TGB) over disjoint sets of controllable
and uncontrollable actions, Σc and Σu, is a Timed Büchi Automaton G =
(L, l0, X, F, E) over Σc ∪ Σu. A Timed Game (TG) is a TGB where all locations
are accepting.

A strategy for a TGB G is a mapping σ, which given a finite run ρ describes
how the run may proceed according to a controller. Formally σ : Exec f (G) →
Σc ∪ {λ}, where λ indicates a delay action. A strategy σ is only allowed to
suggest actions allowed by the TGB and thus, given a finite run ρ ending in
a state (l, v), (1) if σ(ρ) = a ∈ Σc, then there must exist a transition (l, v)

a
−→

(l′, v′) and (2) if σ(ρ) = λ, there must exist a positive delay δ ∈ R> such that

(l, v)
δ
−→ (l′, v′).

Given a strategy σ, we say that an infinite run ρ = (l0, 0)
δ1−→ (l1, v1)

a1−→

(l2, v2)
δ2−→ (l3, v3)

a2−→ (l4, v4)
δ3−→ . . . is consistent with σ if for any i ∈ N either

124

2. Timed Games and MTL0,∞

(li, vi)
ai−→ (li+1, vi+1) and (ai ∈ Σu)∨ ((ai ∈ Σc)∧ ai = σ(ρi)), or ai = δ ∈ R>0

and σ(ρi
δ′

−→) = λ whenever δ′
< δ. We denote by Outcome(G, σ) all runs that

are consistent with σ, and denote by L(G, σ) the corresponding set of timed
words.

Given a TGB G, we say that a strategy σ is winning if whenever ρ ∈
Outcome(G, σ), then ρ is accepting. Given a TG G and a set of timed words
L, we say that a strategy σ is winning with respect to the objective L if
L(G, σ) ⊆ L. When L is expressed using a deterministic TBA, the following
easily obtained result is crucial for the method we develop in the following
sections:

Theorem 10

Let G be a TG and A a determinstic TBA. Then G has a winning strategy with
respect to L(A) if and only if the TGB G ⊗A has a winning strategy1.

The emptiness problem for TBA is known to be PSPACE-complete [20]
and the existence of winning strategies for TGB is EXPTIME-complete [21].
Moreover, for the synthesis problem, memoryless strategies are sufficient.
The tools Uppaal and Uppaal Tiga provide efficient on-the-fly exploration
of a finite symbolic reachability graph, where the nodes are symbolic states. A
symbolic state S is a pair (l, Z), where l is a location and Z is a so-called zone
being the set of valuations satisfying a given clock constraint g ∈ B(X). In
particular, a winning strategy σ produced by Uppaal Tiga for a given TGB
is represented using zones. More precisely, for each location l, the represen-
tation Rσ gives a finite set of pairs Rσ(l) = {(Z1, a1), . . . , (Zn, an)}, where
ai ∈ Σc ∪ {λ} with Zi ∩ Zj = ∅ if i �= j. Given a state (l, v) the value of the
strategy σ is simply a if v ∈ Z with (Z, a) ∈ Rσ(l).

Example 2.1

Consider the game in Fig. D.1, where a Cat chases a Mouse on a 5 × 5
grid. Initially the Cat and the Mouse are in positions (1, 5) and (5, 1), re-
spectively. During the chase, they may both repeatedly move to any legal
neighbouring position (note that position (3, 3) is illegal as there is already
a flower-pot). Formally, the chasing game is modelled as a TG, being the
product of a TG component for the Cat (controller) and a TG component
for the Mouse (environment). For both the Cat and the Mouse, there is a
minimum time-seperation between two consequitive moves, being 5 and
6 respectively. A simplest objective of the game is for the Cat to catch
the Mouse, i.e. to bring the Timed Game into a product-state (Pc

i,j, Pm
i,j) for

some legal position (i, j). More advanced objectives could be to ensure that
the Cat will repeatedly catch the Mouse, and to do so within a maximum

1G ⊗A is the TGB obtained as a synchronous product of G and A, where accepting states are
determined by the A component.

125

Paper D.

1

1

2

2

3

3

4

4

5

5

(a) The Arena (b) The Cat (c) The Mouse

Fig. D.1: The Arena for Chasing Game (a) and snippets for the TG components for the Cat (b)
and for the Mouse (c). Edges between Pc nodes are controllable (full) and labeled with the guard
x ≥ 5 and the reset x := 0. Edges between Pm nodes are uncontrollable (dashed) and labeled
with the guard y ≥ 6 and the reset y := 0.

time-bound, say 40. In addition the Cat might for some reason want to
repeatedly return to its initial position with some (minimum or maximum)
time-seperation.

2.1 Metric Temporal Logic MTL0,∞

Applying Theorem 10 it suffices to express the objectives of a TG as determin-
istic TBAs in order to enable controller synthesis. However, often it will be
far easier and significantly less error-prone to express objectives in a suitable
temporal logic, e.g. MTL0,∞.

Definition 17

An MTL0,∞ formula ϕ over actions Σ is defined by the grammar

ϕ ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 |©ϕ | ϕ1U∼d ϕ2, | ϕ1Û∼d ϕ2

where a ∈ Σ, ∼∈ {<, ≤, ≥,>} and d ∈ N.

The common abbreviations are: false =¬true, ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2),
ϕ1 → ϕ2 = (¬ϕ1)∨ ϕ2, ϕ1R∼d ϕ2 = ¬(¬ϕ1U∼d ¬ϕ2),ϕ1R̂∼d ϕ2 = ¬(¬ϕ1Û∼d ¬ϕ2),
�∼d ϕ = true U∼d ϕ, �̂∼d ϕ = true Û∼d ϕ, �∼d ϕ = false R∼d ϕ and �̂∼d ϕ =
false R̂∼d ϕ.

The semantics of MTL0,∞ is defined over infinite timed words. Let wi be
the i-th suffix of the timed word w. For a given infinite timed word w = (t1,
a1)(t2, a2)(t3, a3) . . . and an MTL0,∞ formula ϕ, the satisfaction relation wi |=
ϕ is defined inductively:

1. wi |= true

126

2. Timed Games and MTL0,∞

2. wi |= a iff ai = a

3. wi |= ¬ϕ iff wi � ϕ

4. wi |= ©ϕ iff wi+1 |= ϕ

5. wi |= ϕ1 ∧ ϕ2 iff wi |= ϕ1 and wi |= ϕ2

6. wi |= ϕ1U∼d ϕ2 where ∼∈ {<, ≤, ≥,>} iff there exists j such that j ≥ i,
wj |= ϕ2, tj − ti ∼ d, and wk |= ϕ1 for all k with i ≤ k < j

7. wi |= ϕ1Û∼d ϕ2 where ∼∈ {<, ≤, ≥,>} iff there exists j such that j > i,
wj |= ϕ2, tj − ti ∼ d, and wk |= ϕ1 for all k with i < k < j

An infinite timed word w satisfies an MTL0,∞-formula ϕ iff w1 |= ϕ. The
language L(ϕ) of ϕ is the set of all infinite non-Zeno timed words that satisfy
ϕ.

In [22], Doyen et al. proved that the controller synthesis problem for ECL
(Event Clock logic) is undecidable. It is trival to check that all the future
temporal operator in ECL can be defined in MTL0,∞(for instance, �[a,b]ϕ can
be defined as (�̂<a ¬ϕ) ∧ �̂≤b ϕ). So the future fragment of ECL is a subset
of MTL0,∞. In [22] some past time temporal operators, e.g. ⊖(the last-time)
and �=0 (the last occurrence), are used to encode the configurations and
the infinite space-bounded runs for lossy 3-counter machines. We find that
these past time formulas can be replaced by some future time formulas: for
instance, �(Q → (⊖tick ∧ �=0tick)) can be replaced by �(©Q → (tick ∧
�=0Q)), and �(c → (�=0AB)) can be replaced by �(©c → (AB ∧ �=0c)).
Thus the controller synthesis problem for the future fragment of ECL is also
undecidable, and so is MTL0,∞. We summarise the above reasoning with the
following theorem.

Theorem 11

The MTL0,∞ controller synthesis problem is undecidable.

Still, interesting properties exists for which we want to synthesise controllers.

Example 2.2

Reconsidering Example 2.1, we may formulate the first objective as �Catch,
where Catch = ∨i,j(Pc

i,j ∧ Pm
i,j). Repeated, and timed-bounded repeated

catching may be expressed as the formulas ��Catch and ��≤40Catch. Fi-
nally, we may conjoin the formula ��≥200Pc

1,5, which expresses that the Cat
always revisits its initial position after at least 200 time-units.

In the following sections we present a procedure for translating MTL0,∞
into a Timed Büchi Automaton. The translation goes by first translating the

127

Paper D.

MTL0,∞ formula into a Transition-based Timed Büchi automaton (TTBA) and
subsequently using the degeneralization algorithm proposed in [23] to trans-
late the TTBA into an equivalent TBA.

Definition 18

A Transition-based Timed Büchi automaton (TTBA) over actions Σ is a tuple
A = (L, l0, X, F, E), where L is the set of locations, l0 is the initial location,
X is a finite set of clocks, F is a finite set of accepting conditions, and E ⊆
L × Σ × Θ(X)× 2F × 2X × L is a set of edges.

The set of states (including initial state s0 = (l0, 0)) and the set of delay
transitions of a TTBA are defined as for a TBA. For a TTBA there exists a
discrete transition (l1, v1)

a,F1−−→ (l2, v2) if there exists an edge (l1, a, g, F1, Y, l2)
in the TTBA such that v1 |= g and v2 = v1[Y].

A run of a TTBA is an infinite sequence of alternating delay and discrete

transitions s0
δ1−→ s1

a1,F1−−→ s2
δ2−→ s3

a2,F2−−→ s4
δ3−→

A timed word w = (t1, a1)(t2, a2)(t3, a3) . . . over Σ is accepted by a TTBA
A iff there exists states s0, s1, s2, . . . where s0 is the initial state of A such that

s0
t1−→ s1

a1,F1−−→ s2
t2−t1−−−→ s3

a2,F2−−→ s4
t3−t2−−−→ . . . is a run of A, and for each f ∈ F,

there are infinitely many i where f ∈ Fi. We denote by L(A) the set of all
non-Zeno timed words that are accepted by A.

3 From MTL0,∞ to Timed Büchi Automata

In this section, we first present the translation of an MTL0,∞ into a TTBA, the
translation goes through four phases. First we construct a closure of a for-
mula in Section 3.1, giving the information needed for constructing extended
formulas. In Section 3.2 we continue by constructing extended formulas con-
taining book-keeping information for the time-constrained operators – such
as monitoring clocks (and their resets). Next, we show how to transform
a formula (via a normal-form of the formula) into a TTBA. Finally one can
derive deterministic over- and underapproximations for such a TTBA, based
on the classical subset-construction from NFA to DFA – this construction is
only subtly different than the one presented by Bulychev [14], we thus refrain
from repeating it.

In the rest of this section, we assume that ϕ is an MTL0,∞ formula over
Σ and has been transformed into positive normal form, where the negation
operator (¬) is not allowed (¬true is replaced by false, ¬a is replaced by∨

b∈Σ\{a} b when a is an action in Σ), and additionally the syntax is extended
with the release operator R being the dual of U. Without loss of generality, we
also assume that all temporal operators occurring in ϕ are included in {U≤d,
R≤d, U≥d, R≥d}.

128

3. From MTL0,∞ to Timed Büchi Automata

3.1 Closures & Extended Formulas

We use Sub(ϕ) to denote all the sub-formulas of ϕ. For each ϕ1U≤d ϕ2 ∈
Sub(ϕ), we assign a clock x(ϕ1U≤d ϕ2)

. Intuitively these clocks are used by the
resulting TTBA to determine the time progression since starting to evaluate
whether (ϕ1U≤d ϕ2) is satisfied. We let XU≤ = {x(ϕ1U≤d ϕ2)

| ϕ1U≤d ϕ2 ∈

Sub(ϕ)} be the set of all U≤d-clocks and let XU≥, XR≤ and XR≥ be sets of
clocks defined in a similar way. For untimed modalities, ϕ1Uϕ2 and ϕ1Rϕ2,
we do not assign clocks and thus assume d > 0 when we write U≥d or R≥d

in this section. For a clock bound x ∼d, where ∼∈ {≤, ≥} we write x ∼ d
for the negated constraint e.g. x ≤ d = x > d.

The set of basic formulas for ϕ, written as BF(ϕ), is a finite set defined by
the following rules:

1. If ©ϕ1 ∈ Sub(ϕ), then ϕ1 ∈ BF(ϕ)

2. If ϕ1Uϕ2 ∈ Sub(ϕ) or ϕ1U≥d ϕ2 ∈ Sub(ϕ), then ϕ1Uϕ2 ∈ BF(ϕ)

3. If ϕ1Rϕ2 ∈ Sub(ϕ) or ϕ1R≥d ϕ2 ∈ Sub(ϕ), then ϕ1Rϕ2 ∈ BF(ϕ)

4. If ϕ1U∼d ϕ2 ∈ Sub(ϕ) where ∼∈ {≤, ≥} and x is the clock assigned to
ϕ1U∼d ϕ2, then
ϕ1U∼d−x ϕ2, x ∼ d, x ∼ d ∈ BF(ϕ).

5. If ϕ1R∼d ϕ2 ∈ Sub(ϕ) where ∼∈ {≤, ≥} and x is the clock assigned to
ϕ1R∼d ϕ2, then
ϕ1R∼d−x ϕ2, x ∼ d, x ∼ d ∈ BF(ϕ).

Informally, ϕ1U≤d−x ϕ2 encodes that the TTBA has started evaluating ϕ1U≤d ϕ2
in a previous state (s) and therefore from the current state (s′) the formula
ϕ1U≤d′ ϕ2 should be satisfied where d′ = d − v(x) and v(x) is the distance
in time between s and s′. Similarly interpretation exists for U≤d−x, U≤d−x,
R≤d−x and R≥d−x. A formal definition is in Definition 19

As a conjunction of formulas can be represented as a set of formulas, we
will use 2BF(ϕ) for both the powerset of BF(ϕ) and the set of all conjunctive
formulas over BF(ϕ). Notice that because a conjunction with zero conjuncts
is true then true ∈ 2BF(ϕ). The closure of ϕ, denoted CL(ϕ), is the set of all
positive Boolean combinations (i.e., without negation) over BF(ϕ). CL(ϕ) will
form the set of non-initial locations for the deterministic TTBAs we construct
for ϕ. Obviously, CL(ϕ) has only finitely many different non-equivalent for-
mulas.

As information preserved in the closure and the basic formulas is not
sufficient for the construction of the TTBA, we here introduce the notion
of extended formula. Initially, for a given clock x we define the function
rst(x) (and unch(x)) for assigning clock-resets (and non-resets) of the clocks

129

Paper D.

that track the temporal progress of the timed operators U≥, R≤ (and U≤,R≥).
These functions are later used for constructing the TTBA and capture “For the
validity of the formula, when starting to evaluate a time-constrained operator
U≥ or R≤ (U≤ or R≥), if rst(x) (unch(x)) then x must be (must not be) reset”.
We here note that rst(x) only if x ∈ XU≥ ∪ XR≤, and symmetrically unch(x)
only if x ∈ XU≤ ∪ XR≥. One can observe the application of rst (unch) in the
definition of the function β in the rules 11 and 13 (10 and 16).

Let Fϕ = {ψ ∈ Sub(ϕ)| if there exists ψ1 such that ψ1Uψ ∈ Sub(ϕ)or
ψ1U≥d ψ ∈ Sub(ϕ) for some d}. For each ψ ∈ Fϕ we introduce a boolean
variable aψ that indicates ψ is assumed to be false at the present state and
define {aψ | ψ ∈ Fϕ} as the set of all such boolean variables for subformulas
of ϕ. We shall later use Fϕ to construct the acceptance condition for the TTBA
in Section 3.2.

Now we define Ext(ϕ), the set of extended formulas for ϕ, as the smallest
set satisfying the following rules:

1. Sub(ϕ) ⊆ Ext(ϕ)

2. {aψ | ψ ∈ Fϕ} ⊆ Ext(ϕ)

3. If φ ∈ CL(ϕ), then φ, ©φ ∈ Ext(ϕ)

4. If x ∈ XU≤ or x ∈ XR≥, then unch(x) ∈ Ext(ϕ)

5. If x ∈ XU≥ or x ∈ XR≤, then rst(x) ∈ Ext(ϕ)

6. If Φ1, Φ2 ∈ Ext(ϕ), then Φ1 ∧ Φ2, Φ1 ∨ Φ2 ∈ Ext(ϕ)

Ext(ϕ) includes all the formulas needed to construct a TTBA for ϕ. Ex-
tended formulas can be interpreted using extended timed words. An ex-
tended timed word ω = (t1, a1, v1)(t2, a2, v2)(t3, a3, v3) . . . is a sequence where
w = (t1, a1)(t2, a2)(t3, a3) . . . is a timed word over Σ, and for every i ∈ N, vi

is a clock valuation over X=XU≤ ∪ XU≥ ∪ XR≤ ∪ XR≥ such that for all x ∈ X,
either vi+1(x) = vi(x) + ti+1 − ti or vi+1(x) = ti+1 − ti.

The semantics for extended formulas is naturally induced by the seman-
tics of MTL0,∞ formulas:

Definition 19

Let ω = (t1, a1, v1)(t2, a2, v2)(t3, a3, v3) . . . be an extended timed word and
Φ ∈ Ext(ϕ). The satisfaction relation ωi |=e Φ is inductively defined as fol-
lows:

1. ωi |=e x ∼ d iff vi(x) ∼ d, where ∼∈ {<, ≤,>, ≥}

2. ωi |=e aψ iff wi � ψ

3. ωi |=e rst(x) iff vi+1(x) = ti+1 − ti

130

3. From MTL0,∞ to Timed Büchi Automata

4. ωi |=e unch(x) iff vi+1(x) = vi(x) + ti+1 − ti

5. ωi |=e φ iff wi |= φ, if φ ∈ Sub(ϕ)

6. ωi |=e ϕ1U∼d−x ϕ2 iff there exists j such that j ≥ i, wj |= ϕ2, tj − ti ∼

d − vi(x), and wk |= ϕ1 for all k with i ≤ k < j, where ∼∈ {≤, ≥}.

7. ωi |=e ϕ1R∼d−x ϕ2 iff for all j ≥ i such that tj − ti ∼ d − vi(x), either
wj |= ϕ2 or there exists k with i ≤ k < j and wk |= ϕ1, where ∼∈ {≤, ≥
}.

8. ωi |=e Φ1 ∧ Φ2 iff ωi |=e Φ1 and ωi |=e Φ2

9. ωi |=e Φ1 ∨ Φ2 iff ωi |=e Φ1 or ωi |=e Φ2

10. ωi |=e ©Φ iff ωi+1 |=e Φ

ωi is a model of Φ if ωi |=e Φ and two extended formulas are said to be
equivalent if they have exactly the same models.

3.2 Constructing non-deterministic automata

Let us now construct a TTBA Aϕ = (L, l0, X, F, E) for which L(Aϕ) = L(ϕ).
The intuition of the elements of A is

• L = {ϕ} ∪ 2BF(ϕ), indicating that “in location ℓ ∈ L the future must
satisfy ℓ”,

• ℓ0 = ϕ, as the entire proposition is initially assumed satisfied,

• X = XU≥ ∪ XR≤ ∪ XU≤ ∪ XR≥ is the set of monitoring clocks,

• F = Fϕ is the set of accepting locations which must be visited infinitly
often, and

• E = (L × Σ × Θ(X) × 2F × 2X × L) is the transition relation where a
single edge (ψ, α, g, F′, λ, ψ′) captures the inductive argument “when α

is observed, ψ is true only if ψ′ is true in the future given that g is
satisfied and the clocks in λ are reset – implying that formulas in the
set F′ are false”.

Edges of the TTBA are found by rewriting each ψ ∈ {ϕ} ∪ 2BF(ϕ) into
a formula of Ext(ψ) that tells what action should be performed by the next
transition, what clocks should be reset and what are the future obligations.
This is similar to our work in [14] but in the current paper the rewriting also
tells what subset of Fϕ are assumed to be false. This difference is crucial
since [14] did not consider Büchi acceptance conditions. The rewriting is

131

Paper D.

done by the β function, capturing the condition for the input formula to
be satisfied at the “current point in time” while using the next-operator to
specify “under what condition is the next observation valid, what should
be satisfied after the next observation, and what monitoring clocks should
be reset” – a intuition is utilized when construction a normal-form over the
rewritten formula. We inductively define β as

1. β(true) = true

2. β(false) = false

3. β(©ϕ1) = ©(ϕ1)

4. β(ϕ1) = ϕ1, if ϕ1 is an action or a clock bound

5. β(ϕ1 ∧ ϕ2) = β(ϕ1) ∧ β(ϕ2)

6. β(ϕ1 ∨ ϕ2) = β(ϕ1) ∨ β(ϕ2)

7. β(ϕ1Uϕ2) = β(ϕ2) ∨ (β(ϕ1) ∧ aϕ2 ∧ ©(ϕ1Uϕ2))

8. β(ϕ1 R ϕ2)= β(ϕ2) ∧ (β(ϕ1) ∨ ©(ϕ1 R ϕ2))

9. β(ϕ1 U≤d ϕ2) = β(ϕ2) ∨ (β(ϕ1)∧
©((x ≤ d)∧ (ϕ1 U≤d−x ϕ2))) , where x is the clock assigned to ϕ1 U≤d ϕ2

10. β(ϕ1 U≤d−x ϕ2) = β(ϕ2) ∨ (β(ϕ1) ∧ unch(x)∧
©((x ≤ d) ∧ (ϕ1 U≤d−x ϕ2)))

11. β(ϕ1 U≥d ϕ2) = β(ϕ1) ∧ (β(ϕ2) ∨ aϕ2) ∧ rst(x)∧
©((ϕ1 U≥d−x ϕ2)∨ ((x ≥ d)∧ (ϕ1 U ϕ2))), where x is the clock assigned
to ϕ1 U≥d ϕ2

12. β(ϕ1 U≥d−x ϕ2) = β(ϕ1) ∧ (β(ϕ2) ∨ aϕ2)∧
©((ϕ1U≥d−x ϕ2) ∨ ((x ≥ d) ∧ (ϕ1U ϕ2)))

13. β(ϕ1 R≤d ϕ2) = β(ϕ2) ∧ (β(ϕ1) ∨ rst(x)∧
©((ϕ1 R≤d−x ϕ2)∨ (x > d))) , where x is the clock assigned to ϕ1 R≤d ϕ2

14. β(ϕ1 R≤d−x ϕ2) = β(ϕ2) ∧ (β(ϕ1)∨
©((ϕ1 R≤d−x ϕ2) ∨ (x > d)))

15. β(ϕ1 R≥d ϕ2) = β(ϕ1)∨
©(((x < d)∧ (ϕ1 R≥d−x ϕ2))∨ (ϕ1 R ϕ2)), where x is the clock assigned
to ϕ1R≥d ϕ2

16. β(ϕ1 R≥d−x ϕ2) = β(ϕ1) ∨ (unch(x)∧
©(((x < d) ∧ (ϕ1 R≥d−x ϕ2)) ∨ (ϕ1Rϕ2)))

132

3. From MTL0,∞ to Timed Büchi Automata

As an example, let us briefly discuss rules 9 and 10. Here the transfor-
mation of rule 9 states that either ϕ2 is true already or ϕ1 is true, at the next
observation the temporal constraint x ≤ d must be respected, and φ1 must
be true until φ2 is true under the restriction that d is deducted by the amount
monitored by x. The transformation of rule 10 is similar to the above, how-
ever, we also require that the monitoring clock x is not reset as the clock is
vital for tracking the validity of the entire formula. The remaining rules 12-16
follow a similar pattern.

From the rules defining β, we note that the rules are constructed in such
a way that alternative futures are separated by disjunction and each alterna-
tive is “guarded” by a necessary condition. For instance, let ϕ = α1Uα2 for
α1, α2 ∈ Σ, then for ϕ to be satisfied, either the next observation is α2, and
ϕ is satisfied, or the next observation is α1, in which case, α2 must not be
observed – and the next observation must recursively satisfy ϕ again. As we
will now generalize, this implies that our TTBA must have a transition from
ϕ to ϕ, given that α1 is observed and not α2 – as well as a transition from ϕ

to an accepting state under the condition that α2 is observed.
From the definition of β we can see that β(ψ) is an extended formula in

Ext(ϕ). From the semantics given in Section 2.1 for MTL0,∞, we know that
(
∨

a∈Σ a) ≡ true and for any a, b ∈ Σ, if a �= b, then a ∧ b ≡ false. Using these
facts and that © distributes over disjunction and conjunction, we can show
by induction that β(ψ) can be transformed equivalently into a disjunction of
the following form:

k∨

j=1

(
aj ∧ gj ∧ Aa

j ∧ rst(Xj) ∧ unch(Yj) ∧ ©(ψj)
)

where for every j between 1 and k: aj ∈ Σ is an action, gj is a conjunction
of clock bounds, Aj is a subset of F, Xj is a subset of XU≥ ∪ XR≤, Yj is a
subset of XU≤ ∪ XR≥, ψj ∈ 2BF(ϕ), rst(Xj) is the abbreviation of

∧
x∈Xj

rst(x),
unch(Yj) is the abbreviation of

∧
x∈Yj

unch(x) and Aa
j is the abbreviation of∧

f∈Aj
a f .

We call each aj ∧ gj ∧ Aa
j ∧ rst(Xj) ∧ unch(Yj) ∧ ©(ψj) a basic conjunction

of β(ψ). From each basic conjunction aj ∧ gj ∧ Aa
j ∧ rst(Xj)∧ unch(Yj)∧©(ψj)

of β(ψ) we define the transitions from ψ to ψj by

(ψ, aj, gj, Fj, λ, ψj) ∈ E iff Fj = F \ Aj and Xj ⊆ λ ⊆ (X \ Yj)

Theorem 12

Let ϕ be an MTL0,∞formula over Σ, and let Aϕ be the TTBA built according
to the procedure given above. Then L(Aϕ) = L(ϕ).

133

Paper D.

Given a basic conjunction a ∧ g ∧ Aa ∧ rst(X1) ∧ unch(Y1) ∧ ©(ψ1), its
sub-formula rst(X1) ∧ unch(Y1) tells us that the clocks in X1 should be re-
set and the clocks in Y1 should not be reset. It does not tell us what to
do with the remaining clocks. In the construction so far we thus enumer-
ate all the possible situations for clocks in X \ (X1 ∪ Y1), and hence get a
non-deterministic choice as to what clocks to reset for a basic conjunction.
However, we will see that this particular non-determinism can be avoided as
there exists a best choice, which is to reset all clocks in (XU≤ ∪ XR≥) \ Y1
and keep all clocks in (XU≥ ∪ XR≤) \ X1 unchanged. The intuition of this
choice is that each clock x ∈ (XU≤ ∪ XR≥) should be reset to zero unless
unch(x) is asked to be true, and each clock x ∈ (XU≥ ∪ XR≤) should not be
reset unless rst(x) is asked to be true. Using this approach, for a given basic
conjunction a ∧ g ∧ Aa ∧ rst(X1) ∧ unch(Y1) ∧ ©(ψ1) of β(ψ), the transition
(ψ, a, g, F \ A, λ, ψ1) with λ = (X1 ∪ ((XU≤ ∪ XR≥) \ Y1)) will be the unique
transition from ψ to ψ1.

Theorem 13

Let ϕ be a MTL0,∞ formula over Σ and A be the TTBA with best-choice-clock-
resets above , then L(Aϕ) = L(Aϕ).

Example 3.1

Let Σ = {p, !p} and f = �(p → ©(!p U≥10 p)), then X = XU≥ = {x}, XU≤

= XR≥= XR≤ = ∅, F={p}, and

β(f) = β(p → ©(!pU≥10 p)) ∧ ©(f)

= (!p ∨ ©(!pU≥10 p)) ∧ ©(f)

= (!p ∧ ©(f)) ∨ (p ∧ ©(f ∧ f1)) ∨ (!p ∧ ©(f ∧ f1)),

where f1 =!p U≥10 p.
By the construction of A f , f has 6 outgoing transitions: (f , !p, true, {},

{p}, f), (f , !p, true, {x}, {p}, f), (f , p, true, {}, {p}, f ∧ f1), (f , p, true,
{x}, {p}, f ∧ f1), (f , !p, true, {}, {p}, f ∧ f1), (f , !p, true, {x}, {p}, f ∧ f1).

By theorem 13, the following three can be removed: (f , !p, true, {x},
{p}, f), (f , p, true, {x}, {p}, f ∧ f1), (f , !p, true, {x}, {p}, f ∧ f1). The
other three will remain. Similarly we can compute the outgoing transitions
for f ∧ f1, etc.

We observe that the structure of the disjunctive normal form gives the
sufficient conditions for generating the under and over-approximations by
applying the method discussed by Bulychev [14]. Fig.D.2(a) shows us
the reduced TTBA A f and Fig.D.2(b) shows us the determinized under-
approximation.

134

4. Tool Chain

f
 !p

{Acc[p]}

f & f1

 p
{Acc[p]}

 !p
{Acc[p]}

f & f2

 !p & rst(x)

(x>=10) & f & f3

 !p & rst(x) !p

 !p

 p & (x>=10)
{Acc[p]}

f & f3

 !p & (x>=10)

 p
{Acc[p]}

 !p

(a) A f

f
 !p

{Acc[p]}

f & f1

 p
{Acc[p]}

f & f2 | (x>=10) & f & f3

 !p & rst(x)
 p & (x>=10)

{Acc[p]}

 !p & (x<10)

f & f2 | f & f3

 !p & (x>=10)

 p
{Acc[p]}

 !p

(b) Au
f

Fig. D.2: The resulting automata for f = �(p → ©(!p U≥10 p)), where f1 =!p U≥10 p, f2 =
!p U≥10−x p, and f3 = !p U p.

G G ′

φ TBA

Au

Ao

Composer

G ′ ⊗Au

G ′ ⊗Ao

Tiga σ

Casaal

Fig. D.3: The tool chain workflow. The squiggly arrow indicate a manually performed step. The
dashed arrow indicated the symmetric flow for the over approximation.

4 Tool Chain

The conversions of MTL0,∞ to TBA has been implemented in the tool com-
ponent Casaal- a stand alone tool that was first described in [14]. In Fig-
ure D.3 we illustrate the work flow of using Casaal in combination with
Uppaal Tiga. The starting-point of the workflow is a standard Uppaal Tiga

TG G together with an MTL0,∞ property φ. The TG G is manually instru-
mented into G ′ to make the propositions in φ visible for the constructed
monitor. Casaal then takes φ and constructs under- and over-approximating
deterministic TBA Au and Ao. Furthermore, Casaal constructs a new com-
bined TGB G ′ ⊕Au that is then passed on to Uppaal Tiga that will attempt
to construct a winning strategy for the given property.

135

Paper D.

4.1 Experimental Evaluation

Cat and Mouse Example

As our first evaluation example we consider the Cat and Mouse game from
Example 2.1. As objectives we consider the properties in Table D.1. The
properties are choosen to span the expressive power of MTL0,∞ covering both
safety, liveness and mixtures. Table D.1 reports for each property the size of
the generated TBA in terms of number of edges and locations. It furthermore
reports the time and memory consumed by Casaal for constructing the TBA.
For Uppaal Tiga we measure the time and memory used for synthesising a
strategy. Finally the number of zones making up the strategy is reported as
a means of quantifying the size of the strategy. We note that for all except
one of the considered properties the tool chain provides exact answers as to
whether a strategy exists or not2.

Train-Gate Example

As our second example we consider the classic and scalable Uppaal Train-
Gate example used for illustrating verification using Uppaal. Here the chal-
lenge is to automatically synthesise correct-by-construction control strategies
with respect to various objectives using our tool chain. In the example a num-
ber of trains has to pass over a common bridge, while the control strategy to
be synthesised will take different actions to ensure safety and a variation of
(bounded) liveness objectives.

A train is initially in Safe location and may approach (uncontrollably)
at any moment. When the train is approaching it will alert the controller,
which in turn should be synthezised to take appropriate actions to ensure
the objective. In particular, while approaching a train can only be stopped
within 10 time units of its signal of approach. Once stopped, a train may at
any point be restarted and granted access to the bridge by the controller – all
depending on the given objective. We attempted to synthesise strategies for
the controller for various parameterized formulas (see Table D.2).

For the properties proposed in Table D.2, we observe in Table D.3 that the
under- and over-approximation yield the same TBA, hence the approximation
is exact. We note that for all but φ1 the formulas are tractable for Casaal

with a running time of less than a minute. Still, it is interesting to see how
the size of the TBA increases quite rapidly for φ1 when adding an extra train.
For φ2, φ3 and φ4, even though the generated TBA are equivalent in size,

2All of the experiments reported were done using Casaal version 3.0 and a development
snapshot of Uppaal Tiga running on an Intel Core i7-4578U 3.0 GHz processor. Uppaal Tiga was
run using the following options: –search-order 0 –backwards-order 0 –priority-order 2.
Both tools were limited to 4GB of memory and individually allowed to compute for up to 2
hours.

136

4. Tool Chain

Casaal Uppaal Tiga

|L| |E| ∃σ Time Mem #Zones

- ψ1 5 15 false 1.10 19 N/A
- ψ2 4 12 true 21.69 25 11417
- ψ3 3 9 true 32.38 27 13022
- ψ4 5 18 true 35.77 29 12996
- ψ5 9 45 false 130.90 45 N/A
- ψ6 9 45 true 151.30 45 28851
- ψ7 9 45 true 150.44 44 28958
- ψ8 4 15 true 27.78 24 16676
- ψ9 3 9 true 4.17 27 8813
- ψ10 4 15 false 61.78 39 N/A
- ψ11 4 15 true 49.15 37 18380
U ψ12 7 32 true 11.79 50 111277
O ψ12 8 38 true 1.08 34 30812
U ψ13 6 43 false 0.00 0 N/A
O ψ13 8 61 true 1.09 32 24427

Table D.1: Experimental results for the Cat and Mouse model from Example D.1. Time is given
in seconds and memory in megabytes. We omit the resource consumption of Casaal as these
are negligible for the given formulas. Formulas marked with a dash yield equivalent TBAs for
the under- and over-approximation, while U and O signify the under- and over-approximation
respectively. Formulas, with description, can be found in Table D.6.

137

Paper D.

φ0 No collisions and all trains will cross after approaching
(�¬collision) ∧

∧n
i=1(�(Appr[i] =⇒ �Cross[i]))

φ1 No collisions and all trains will cross after 10 time units after ap-
proaching.
(�¬collision) ∧

∧n
i=1((�(Appr[i] =⇒ �≥10Cross[i])))

φ2 No collisions and all trains will cross before 10 ten time units after
approaching.
(�¬collision) ∧

∧n
i=1((�(Appr[i] =⇒ �≤10Cross[i])))

φ3 No collisions and all trains will cross before 30 time units after ap-
proaching.
(�¬collision) ∧

∧n
i=1((�(Appr[i] =⇒ �≤30Cross[i])))

φ4 No collisions and all trains will cross before 50 time units after ap-
proaching.
(�¬collision) ∧

∧n
i=1((�(Appr[i] =⇒ �≤50Cross[i])))

Table D.2: Specifications for the Train-Gate example.

the time for synthesis used by Uppaal Tiga differs quite a lot. We here
observe that φ2 through φ4 are structurally the same formula and differ only
in the bounds provided. Thus the TGBs constructed by Casaal will also
be structurally equivalent – however, for Uppaal Tiga the difference in the
provided bounds, and hence the clock-guards of the constructed TGB, will
result in different intersections of zones. As a result, we can observe an
increasing zone-fragmentation from φ2 through φ4.

Chinese Juggler In our third case-study, we consider the synthesis problem
for the scalable Chinese Juggler. The juggler is tasked with keeping n plates
balancing on sticks. If a plate has been balancing for more than s time units,
it can turn unstable. If a disk is unstable, after u time-units it can fall to
the ground and shatter. At the same time, the juggler can only stabilize
the disks at a certain pace, leaving him to choose which plates to stabilize
for achieving his goal. A classical control problem is to ensure that no disk
breaks. We instantiate the disks with s1 = 8, s2 = 8, s3 = 20, s4 = 20 and
u1 = 6, u2 = 3, u3 = 10, u4 = 3 for the 0-4 and syntehsise controllers for the
properties shown in Table D.5 for 1 ≤ n ≤ 4.

We observe in Table D.4 that for all the specifications for the Chinese
Juggler, the constructed TTBA is exact. We also note that the resource-
consumption of Casaal is negligible. For the untimed specification φ0 we can
see that the constructed TTBA is small, resulting in good scalability. How-
ever, φ2 and φ3 in particular, show an exponential growth in the number of
transitions, leading to an explosion of the number of zones needed to rep-
resent the strategy, ultimately leading to poor performance for the largest

138

4. Tool Chain

Casaal Uppaal Tiga

#Trains Time Mem #Loc #Edges ∃σ Time Mem #Zones

φ0 1 0.04 35 3 6 true 0.01 9 11
φ1 1 0.04 35 5 17 true 0.01 9 21
φ2 1 0.04 35 3 8 true 0.02 9 6
φ3 1 0.04 35 3 8 true 0.02 9 12
φ4 1 0.04 35 3 8 true 0.01 9 12

φ0 2 0.04 35 7 30 true 0.01 9 152
φ1 2 0.08 35 31 309 true 0.15 12 804
φ2 2 0.03 35 5 40 false 0.09 10 N/A
φ3 2 0.03 35 5 40 false 0.28 10 N/A
φ4 2 0.03 35 5 40 true 0.20 10 132

φ0 3 0.04 35 17 112 true 0.52 15 1556
φ1 3 0.72 67 174 3719 true 58.59 216 24211
φ2 3 0.04 36 9 170 false 16.77 56 N/A
φ3 3 0.04 36 9 170 false 44.69 77 N/A
φ4 3 0.04 36 9 170 true 53.70 81 2738

φ0 4 0.05 37 41 360 true 26.95 141 14479
φ1 4 10.48 365 893 37256 ?? TO
φ2 4 0.13 40 17 664 ?? TO
φ3 4 0.08 40 17 664 ?? TO
φ4 4 0.08 40 17 664 ?? TO

φ0 5 0.17 40 97 1056 true 2740.56 3192 132371
φ1 5 174.15 3175 4358 336505 ?? TO
φ2 5 0.23 56 33 2462 ?? TO
φ3 5 0.21 56 33 2462 ?? TO
φ4 5 0.20 56 33 2462 ?? TO

Table D.3: Experimental results for the Train-Gate controller synthesis. Time is given in seconds
and memory in megabytes.

139

Paper D.

Casaal Uppaal Tiga

n |L| |E| ∃σ Time Mem #Zones

ψ1 1 2 4 true 0.01 10 11
ψ2 1 3 6 true 0.01 10 13
ψ3 1 4 13 true 0.01 10 22

ψ1 2 6 24 true 0.03 10 119
ψ2 2 5 36 true 0.26 10 179
ψ3 2 30 279 true 2.24 10 903

ψ1 3 16 96 true 4.26 18 1498
ψ2 3 9 162 true 504.31 116 2997
ψ3 3 173 3546 ?? TO

ψ1 4 40 320 true 790.78 333 26300
ψ2 4 17 648 ?? TO
ψ3 4 892 36364 ?? TO

Table D.4: Experimental results for the Chinese-Juggler controller synthesis. Time is given in
seconds, memory in megabytes and n gives the number of plates being juggled.

φ0 If a plate turns unstable, it eventually becomes stable∧n
i=1(�(unstable[i] =⇒ �stable[i]))

φ1 If a plate turns unstable, it becomes stable within 5 time-units∧n
i=1(�(unstable[i] =⇒ �≤5stable[i]))

φ2 If a plate turns unstable, it becomes stable after 5 time-units∧n
i=1(�(unstable[i] =⇒ �≥5stable[i]))

Table D.5: Specifications for the Chinese-Juggler example.

instance.

5 Conclusions

In this paper we have significantly extended the practical scope of automatic
controller synthesis for real-time systems. In particular, our method sup-
ports synthesis for all objectives expressed in MTL0,∞, a sublogic of MTL
containing LTL and rich enough to express a wide variety of safety, live-
ness and bounded liveness properties. In general the synthesis problem for
MTL0,∞ is undecidable. We overcome this obstacle by a new algorithm imple-
mented Casaal converting MTL0,∞ into under-approximating Timed Büchi
Automata. Combined with Uppaal Tiga supporting synthesis for Timed
Games with Büchi conditions we obtain a complete tool chain. In our exper-
imental evaluation we demonstrated that for complex MTL0,∞ we predomi-

140

References

nantly obtain “exact and tight” approximations, supporting our initial claim.
Furthermore, we showed on a number of scalable examples that synthesis for
MTL0,∞ objectives is feasible using our tool-chain.

Future work includes to refine our determinstic under- and overapproxi-
mation construction by using the breakpoint technique [24] for Büchi deter-
minization.

Acknowledgements. This work is partially supported by the National Sci-
ence Foundation of China Nos. NNFC 61472406 and NNFC 61532019, the
BBMF through the ASSUME project BBMF 01IS15031J, the Sino-Danish Cen-
ter IDEA4CPS, the ERC Advanced Grant LASSO, the Innovation Fund Center
DiCyPS, the DFF Research Project ASAP and ANR contract Malthy.

References

[1] A. Church, “Logic, Arithmetic, Automata,” in Proc. International Mathe-
matical Congress, 1962.

[2] J. R. Buchi and L. H. Landweber, “Solving Sequential Conditions
by Finite-State Strategies,” Transactions of the American Mathematical
Society, vol. 138, pp. 295–311, 1969. [Online]. Available: http:
//dx.doi.org/10.2307/1994916

[3] P. Bouyer, L. Bozzelli, and F. Chevalier, “Controller synthesis for MTL
specifications,” in In Proc. 17th International Conference on Concurrency
Theory (CONCUR’06, 2006.

[4] E. A. Emerson and E. M. Clarke, “Using branching time temporal logic
to synthesize synchronization skeletons,” Sci. Comput. Program., vol. 2,
no. 3, pp. 241–266, 1982.

[5] O. Kupferman and M. Y. Vardi, “µ-calculus synthesis,” in MFCS, 2000,
pp. 497–507.

[6] Z. Manna and P. Wolper, “Synthesis of communicating processes
from temporal logic specifications,” ACM Trans. Program. Lang.
Syst., vol. 6, no. 1, pp. 68–93, Jan. 1984. [Online]. Available:
http://doi.acm.org/10.1145/357233.357237

[7] A. Pnueli and R. Rosner, “On the synthesis of a reactive
module,” in Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’89. New
York, NY, USA: ACM, 1989, pp. 179–190. [Online]. Available:
http://doi.acm.org/10.1145/75277.75293

141

References

ψ1 Whenever the mouse is caught it, it should not caught again before after 10 time
units and it should be caught infinitely often.
(�(Catch =⇒ ©(¬CatchU≥10Catch))) ∧� ⋄ Catch

ψ2 Catch the mouse within 100 time units
⋄≤100Catch

ψ3 Wheneever the cat is at its initial position; then the mouse is caught within 100 time
units
�(Initial =⇒ ⋄≤100Catch)

ψ4 Cat should be at its initial place within 10 time units and whenever its at initial
position, it should catch the mouse within 100 time units.
⋄≤10 ∧ ψ3

ψ5 Cat should be at its initial place after 10 time units and whenever its at initial posi-
tion, it should catch the mouse within 100 time units.
⋄≥10 ∧ ψ3

ψ6 Cat should be at its initial place after 10 time units and whenever its at initial posi-
tion, it should catch the mouse within 110 time units.
⋄≥10 ∧�(Initial =⇒ ⋄≤110Catch)

ψ7 Cat should always return to its initial position before 200 time units; and always
catch the mouse within 110 time units after visiting initial
� ⋄≤200 ∧�(Initial =⇒ ⋄≤110Catch)

ψ8 Cat should always return to its initial position; and always catch the mouse within
110 time units after visiting initial
� ⋄ ∧�(Initial =⇒ ⋄≤110Catch)

ψ9 After catching the mouse, the cat should return to its initial state within 40 time
units.
�(Catch =⇒ ⋄≤40Initial)

ψ10 When the cat is at its initial position, it should catch the mouse within 100 units and
after catching the mouse it should return to its initial position within 40 time units.
(�Initial =⇒ ⋄≤100Catch) ∧ (�(Catch) =⇒ ⋄≤40Initial)

ψ11 When the cat is at its initial position, it should catch the mouse within 110 units and
after catching the mouse it should return to its initial position within 40 time units.
(�Initial =⇒ ⋄≤110Catch) ∧ (�(Catch) =⇒ ⋄≤40Initial)

ψ12 Eventually, within 200 time units, the lazy cat moves away from the initial position
and plays with the mouse for 50 time units. Within 100 units of moving from the
initial position, the cat moves back to the initial position.
�≥200(¬Initial ∧ (�≤50¬Catch =⇒ Catch) ∧ (�≤100Initial))

ψ13 It always holds that within 200 time units, the lazy cat moves away from the initial
position and plays with the mouse for 50 time units. Within 100 units of moving
from the initial position, the cat moves back to the initial position.
�(�≥200(¬Initial ∧ (�≤50¬Catch =⇒ Catch)) ∧ (�≤100Initial))

Table D.6: Specifications for the Cat and Mouse example.

142

References

[8] P. Ramadge and W. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987. [Online]. Available: http:
//epubs.siam.org/doi/abs/10.1137/0325013

[9] O. Kupferman, N. Piterman, and M. Vardi, “Safraless compositional syn-
thesis,” in 18th Conference on Computer Aided Verification, 2006, pp. 31–44.

[10] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing punctu-
ality,” J. ACM, vol. 43, pp. 116–146, January 1996.

[11] R. Alur, “Formal verification of hybrid systems,” in Proceedings of the
ninth ACM international conference on Embedded software, ser. EMSOFT
’11. New York, NY, USA: ACM, 2011, pp. 273–278. [Online]. Available:
http://doi.acm.org/10.1145/2038642.2038685

[12] L. Doyen, G. Geeraerts, J. Raskin, and J. Reicher, “Realizability of real-
time logics,” in Proceedings of FORMATS 2009, 7th International Conference
on Formal Modeling and Analysis of Timed Systems, ser. Lecture Notes in
Computer Science, vol. 5813. Springer, 2009, pp. 133–148.

[13] O. Maler, D. Nickovic, and A. Pnueli, “On synthesizing controllers from
bounded-response properties,” in CAV, 2007, pp. 95–107.

[14] P. Bulychev, A. David, K. G. Larsen, A. Legay, G. Li, D. B. Poulsen,
and A. Stainer, “Monitor-based statistical model checking for weighted
metric temporal logic,” in LPAR, 2012.

[15] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime, “Uppaal-tiga: Time for playing games!” in Proceedings of the
19th International Conference on Computer Aided Verification, ser. LNCS, no.
4590. Springer, 2007, pp. 121–125.

[16] O. Maler, D. Nickovic, and A. Pnueli, “From mitl to timed automata,” in
FORMATS’06. Springer, 2006, pp. 274–289.

[17] M. Geilen, “An improved on-the-fly tableau construction for a real-time
temporal logic,” in In International Conference on Computer Aided Verifica-
tion. Springer, 2003, pp. 276–290.

[18] P. Bulychev, A. David, K. G. Larsen, and G. Li, “Efficient controller syn-
thesis for a fragment of MTL0,∞,” Acta Informatica, vol. 51, no. 3-4, pp.
165–192, 2014.

[19] T. Brihaye, M. Estiévenart, and G. Geeraerts, “On mitl and alternating
timed automata over infinite words,” in Formal Modeling and Analysis of
Timed Systems. Springer, 2014, pp. 69–84.

143

References

[20] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, Apr. 1994. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(94)90010-8

[21] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete
controllers for timed systems (an extended abstract),” in STACS,
1995, pp. 229–242. [Online]. Available: http://dx.doi.org/10.1007/
3-540-59042-0_76

[22] L. Doyen, G. Geeraerts, J.-F. Raskin, and J. Reichert, “Realizability of real-
time logics,” in Formal Modeling and Analysis of Timed Systems. Springer,
2009, pp. 133–148.

[23] D. Giannakopoulou and F. Lerda, “From states to transitions: Improving
translation of ltl formulae to büchi automata,” in Formal Techniques for
Networked and Distributed Sytems—FORTE 2002. Springer, 2002, pp. 308–
326.

[24] A. Morgenstern, K. Schneider, and S. Lamberti, “Generating determin-
istic ω-automata for most ltl formulas by the breakpoint construction.”
in MBMV, 2008, pp. 119–128.

144

Paper E

Uppaal Stratego

Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen,
Marius Mikučionis and Jakob Haahr Taankvist

The paper has been published in the
Proceedings of Tools and Algorithms for the Construction and Analysis of Systems:
21st International Conference, TACAS 2015, LNCS Vol. 9035, pp. 206–211, 2015.

c© Springer-Verlag Berlin Heidelberg 2015
The layout has been revised.

1. Introduction

Abstract

Uppaal Stratego is a novel tool which facilitates generation, optimization, com-
parison as well as consequence and performance exploration of strategies for stochas-
tic priced timed games in a user-friendly manner. The tool allows for efficient and
flexible “strategy-space” exploration before adaptation in a final implementation by
maintaining strategies as first class objects in the model checking query language.
The paper describes the strategies and their properties, construction and transforma-
tion algorithms and a typical tool usage scenario.

1 Introduction

Model checking may be used to verify that a proposed controller prevents
an environment from causing dangerous situations while, at the same time,
operating in a desirable manner. This approach has been successfully pur-
sued in the setting of systems modeled as finite-state automata, timed au-
tomata, and probabilistic automata of various types with nuSMV [1], FDR [2],
Uppaal [3] and PRISM [4] as prime examples of model checking tools sup-
porting the above mentioned formalisms. Most recently the simulation-based
method of statistical model checking has been introduced in Uppaal SMC [5],
allowing for highly scaleable analysis of fully stochastic Sriced Timed Au-
tomata with respect to a wide range of performance properties. For in-
stance, expected waiting-time and cost, and time-bounded and cost reacha-
bility probabilities, may be estimated (and tested) with an arbitrary precision
and high degree of confidence. Combined with the symbolic model check-
ing of Uppaal this enables an adequate analysis of mixed critical systems,
where certain (safety) properties must hold with absolute certainty, whereas
for other quantitative (performance) properties a reasonably good estimation
may suffice, see e.g. [6].

Rather than verifying a proposed controller, synthesis – when possible –
allows an algorithmic construction of a controller which is guaranteed to en-
sure that the resulting systems will satisfy the desired correctness properties.
The extension of controller synthesis to timed and hybrid games started in
the 90s with the seminal work of Pnueli et al. [7, 8] on controller synthesis
for timed games where the synthesis problem was proven decidable by a
symbolic dynamic programming technique. In Uppaal Tiga [9, 10] an effi-
cient on-the-fly algorithm for synthesis of reachability and safety objectives
for timed games has been implemented, with a number of successful indus-
trial applications having been made including zone-based climate control for
pig-stables [11] and controllers for hydraulic pumps with 60% improvement
in energy-consumption compared with industrial practice at the time [12, 13].

However, once a strategy has been synthesized for a given objective no

147

Paper E.

Fig. E.1: Uppaal Stratego template of a single person reading a newspaper.

further analysis has been supported so far. In particular it has not been
possible to make a deeper examination of a synthesized strategy in terms of
other additional properties that may or may not hold under the strategy. Nei-
ther has it been possible to optimize a synthesized non-deterministic safety
strategy with respect to desired performance measures. Both of these issues
have been addressed by the authors in recent work [14, 15], and in this paper
we present the tool Uppaal Stratego which combines these techniques to
generate, optimize, compare and explore consequences and performance of
strategies synthesized for stochastic priced timed games in a user-friendly
manner. In particular, the tool allows for efficient and flexible “strategy-
space” exploration before adaptation in a final implementation.

Uppaal Stratego
1 integrates Uppaal and the two branches Uppaal SMC

[5] (statistical model checking), Uppaal Tiga [10] (synthesis for timed games)
and the method proposed in [15] (synthesis of near-optimal schedulers) into
one tool suite. Uppaal Stratego comes with an extended query language
where strategies are first class objects that may be constructed, compared,
optimized and used when performing (statistical) model checking of a game
under the constraints of a given synthesized strategy.

Consider the jobshop scheduling problem shown in Fig. E.1 which models
a number of persons sharing a newspaper. Each task process reads a section
of the paper, whereas only one person can read a particular section at a
time. Each reader wants to read the newspaper in different orders, and the
stochastic environment chooses how long it takes to read each section. This
makes the problem a problem of finding a strategy, rather than finding a
static scheduler as in the classical jobshop scheduling problem.

Figure E.1 shows a stochastic priced timed game (SPTG) which models
one person reading the newspaper. The circles are locations and the arrows
are transitions. The solid arrows are transitions controlled by the controller
and the dashed are transitions controlled by the stochastic environment. The
model reflects the reading of the four sections in the preferred order (here
comics, sport, local and economy) for the preferred amount of time. In the
top locations the person is waiting for the next section to become available;
here four Boolean variables are used to ensure mutex on the reading of a sec-

1Uppaal Stratego is available at http://people.cs.aau.dk/~marius/stratego/.

148

2. Games, Automata and Properties

tion. In the bottom locations, the person is reading the particular section for
a duration given by a uniform distribution on the given interval, e.g. [10,11]
for our person’s reading of sport. The stopwatch WTime is only running in
the waiting locations thus effectively measuring the accumulated time when
the person is waiting to read. Given a complete model with several per-
sons constantly competing for the sections, we are interested in synthesizing
strategies for several multi-objectives, e.g. synthesize a strategy ensuring that
all persons have completed reading within 100 minutes, and then minimize
the expected waiting time for our preferred person.

2 Games, Automata and Properties

Using the features of Uppaal Stratego we can analyze the SPTG in Fig. E.1.
Internally, Uppaal Stratego has different models and representations of
strategies, an overview of these and their relations are given in Fig. E.2. The
model seen in Fig. E.1 is a SPTG, as WTime is a cost function or price with
location dependent rate (here 0 or 1), and we assume that environment takes
transitions according to a uniform distribution over time.

As shown in Fig. E.2 we can abstract a SPTG into a timed game (TGA).
This abstraction is obtained simply by ignoring the prices and stochasticity in
the model. Note that since prices are observers, this abstraction does not af-
fect the possible behavior of the model, but merely forgets the likelihood and
cost of various behaviors. The abstraction maps a 1 1

2 -player game, where the
opponent is stochastic into a 2-player game with an antagonistic opponent.

Given a TGA (G) we can use Uppaal Tiga to synthesize a strategy σ (either
deterministic or non-deterministic). This strategy can, when put in parallel
with the TGA, G|σ, be model checked in the same way as usual in Uppaal.
We can also use the strategy in a SPTG P , and obtain P|σ. Under a strategy it
is possible to do statistical model checking (estimation of probability and cost,
and comparison), which enables us to observe the behavior and performance
of the strategy when we assume that the environment is purely stochastic.
This also allows us to use to use prices under σ, even though they were not

P
Stochastic Priced Timed Game

P|σ σ◦

Strategy

P|σ◦

Statistical Model Checking
Stochastic Priced Timed Automata

G
Timed Game

σ
Strategy

G|σ

(Statistical) Model Checking
Timed Automata

Abstraction

Synthesis

φ

Synthesis
Uppaal Tiga

φ

Fig. E.2: Overview of models and their relations. The lines show different actions. The dashed
lines show that we use the object.

149

Paper E.

considered in the synthesis of σ. From both P and P|σ learning is possible
using the method proposed in [15]. The learning algorithm uses a simulation
based method for learning near-optimal strategies for a given price metric. If
σ is the most permissive strategy guaranteeing some goal, then the learning
algorithm can optimize under this strategy, and we will get a strategy σ◦

which is near-optimal but still has the guarantees of σ. As the last step we
can construct P|σ◦, which we can then do statistical model checking on.

3 Strategies

In Uppaal Stratego we operate three different kinds of strategies, all mem-
oryless. Non-deterministic strategies are strategies which give a set of actions in
each state, with the most permissive strategy – when it exists – offering the
largest set of choices. In the case of timed games, most permissive strategies
exist for safety and time-bounded reachability objectives. Deterministic strate-
gies give one action in each state. Stochastic strategies give a distribution over
the set of actions in each state. Fig. E.3 shows how strategies are generated
and used. For generating strategies, we can use Uppaal Tiga or the method
proposed in [15] on SPTGs. Uppaal Tiga generates (most permissive) non-
deterministic or deterministic strategies. The method proposed in [15] gener-
ates strategies which are deterministic. A strategy generated with Uppaal

Stratego can undergo different investigations: model checking, statistical
model checking and learning. Learning consume non-deterministic strate-
gies (potentially multiple actions per state) and may produce a deterministic
one by selecting a single action for each state, such that the final deterministic
strategy is optimized towards some goal. Figure E.3 shows that currently it
is possible to model check only under symbolically synthesized strategies (as
opposed to optimized ones) as symbolic model checking requires the strat-
egy to be represented entirely in terms of zones (constraint systems over
clock values and their differences). Statistical model checking can only be
done under stochastic strategies. All deterministic strategies can be thought
of as stochastic by assigning a probability of 1 to the one choice. To evalu-
ate non-deterministic strategies statistically we applying a stochastic uniform

Model

Optimization [15] Statistical MC
Uppaal SMC

Symbolic synthesis
Uppaal Tiga

Symbolic MC
Uppaal

Near-optimal Strategies [15]Uppaal Tiga Strategies

Fig. E.3: Overview of algorithms and data structures in Uppaal Stratego.

150

4. Query Language

Table E.1: Types of queries.

Uppaal
Safety A[] prop under NS

Liveness A<> prop under NS

Tiga
Guarantee objective strategy NS = control: A<> prop

Guarantee objective strategy NS = control: A[] prop

SMC
Evaluation Pr[bound](<> prop) under SS

Expected value E[bound;int](min: prop) under SS

Simulations simulate int [bound]{expr1,expr2} under SS

[15]
Minimize objective strategy DS = minE (expr) [bound]: <> prop under NS

Maximize objective strategy DS = maxE (expr) [bound]: <> prop under NS

Fig. E.4: Uppaal Stratego queries and results for the model in Fig. E.1.

distribution over the non-deterministic choices.

4 Query Language

We let strategies become first class citizens by introducing strategy assign-
ment strategy S = and strategy usage under S where S is an identifier.
These are applied to the queries already used in Uppaal, Uppaal Tiga and
Uppaal SMC as well as those proposed in [15]. An overview of these queries
is given in Table E.1. Notice that we changed the syntax of the queries pre-
sented in [15]. Recall the example with the four authors sharing a newspaper
as presented in Fig. E.1. We compute a strategy for Kim to reach his plane
within one hour on line 1 in Fig. E.4. Respecting this, we find that Marius
cannot join, as the query on line 2 is not satisfied. Instead, we optimize that
Peter joins in on line 3 ([<=60] is a bound on how long the simulations we
learn from used can be). Finally, line 4 estimates that Jakob is done with
probability ≥0.9 under Peter’s optimizations.

References

[1] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An
opensource tool for symbolic model checking,” in Proceedings of the
14th International Conference on Computer Aided Verification, ser. CAV’02.
London, UK: Springer-Verlag, 2002, pp. 359–364. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647771.734431

[2] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. Roscoe, “FDR3
— a modern model checker for CSP,” in Tools and Algorithms for the Con-

151

References

struction and Analysis of Systems, ser. Lecture Notes in Computer Science,
E. Ábrahám and K. Havelund, Eds., vol. 8413, 2014, pp. 187–201.

[3] G. Behrmann, A. David, K. Larsen, J. Hakansson, P. Petterson, W. Yi,
and M. Hendriks, “Uppaal 4.0,” in QEST’06, 2006, pp. 125–126.

[4] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of
probabilistic real-time systems,” in Proc. 23rd International Conference on
Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakrishnan and
S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

[5] P. E. Bulychev, A. David, K. G. Larsen, M. Mikucionis, D. B. Poulsen,
A. Legay, and Z. Wang, “UPPAAL-SMC: statistical model checking for
priced timed automata,” in Proceedings 10th Workshop on Quantitative
Aspects of Programming Languages and Systems, QAPL 2012, Tallinn,
Estonia, 31 March and 1 April 2012., 2012, pp. 1–16. [Online]. Available:
http://dx.doi.org/10.4204/EPTCS.85.1

[6] A. David, K. G. Larsen, A. Legay, and M. Mikučionis, “Schedulability
of Herschel-Planck revisited using statistical model checking,” in
Leveraging Applications of Formal Methods, Verification and Validation.
Applications and Case Studies - 5th International Symposium, ISoLA
2012, Heraklion, Crete, Greece, October 15-18, 2012, Proceedings, Part
II, 2012, pp. 293–307. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-34032-1_28

[7] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete
controllers for timed systems,” in STACS’95, ser. Lecture Notes
in Computer Science, E. Mayr and C. Puech, Eds. Springer
Berlin Heidelberg, 1995, vol. 900, pp. 229–242. [Online]. Available:
http://dx.doi.org/10.1007/3-540-59042-0_76

[8] E. Asarin, O. Maler, and A. Pnueli, “Symbolic controller synthesis for
discrete and timed systems,” in Hybrid Systems II, ser. Lecture Notes in
Computer Science, P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Eds.
Springer Berlin Heidelberg, 1995, vol. 999, pp. 1–20. [Online]. Available:
http://dx.doi.org/10.1007/3-540-60472-3_1

[9] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Efficient
on-the-fly algorithms for the analysis of timed games,” in CONCUR
2005 - Concurrency Theory, 16th International Conference, ser. Lecture
Notes in Computer Science, M. Abadi and L. de Alfaro, Eds., vol. 3653.
San Francisco, CA, USA: Springer, August 2005, pp. 66–80. [Online].
Available: http://dx.doi.org/10.1007/11539452_9

152

References

[10] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen,
and D. Lime, “Uppaal-Tiga: Time for playing games!” in Computer
Aided Verification, ser. Lecture Notes in Computer Science, W. Damm
and H. Hermanns, Eds. Springer Berlin Heidelberg, 2007, vol.
4590, pp. 121–125. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-73368-3_14

[11] J. J. Jessen, J. I. Rasmussen, K. G. Larsen, and A. David, “Guided
controller synthesis for climate controller using uppaal tiga,” in
Formal Modeling and Analysis of Timed Systems, ser. Lecture Notes in
Computer Science, J.-F. Raskin and P. Thiagarajan, Eds. Springer
Berlin Heidelberg, 2007, vol. 4763, pp. 227–240. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-75454-1_17

[12] H. Zhao, N. Zhan, D. Kapur, and K. G. Larsen, “A "hybrid" approach
for synthesizing optimal controllers of hybrid systems: A case study of
the oil pump industrial example,” 2012.

[13] F. Cassez, J. J. Jessen, K. G. Larsen, J. Raskin, and P. Reynier, “Automatic
synthesis of robust and optimal controllers - an industrial case study,”
in Hybrid Systems: Computation and Control, 12th International Conference,
HSCC 2009, San Francisco, CA, USA, April 13-15, 2009. Proceedings, ser.
Lecture Notes in Computer Science, R. Majumdar and P. Tabuada,
Eds., vol. 5469. Springer, 2009, pp. 90–104. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00602-9_7

[14] A. David, H. Fang, K. G. Larsen, and Z. Zhang, “Verification
and performance evaluation of timed game strategies,” in Formal
Modeling and Analysis of Timed Systems, ser. Lecture Notes in Computer
Science, A. Legay and M. Bozga, Eds. Springer International
Publishing, 2014, vol. 8711, pp. 100–114. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-10512-3_8

[15] A. David, P. G. Jensen, K. G. Larsen, A. Legay, D. Lime, M. G. Sørensen,
and J. H. Taankvist, “On time with minimal expected cost!” in ATVA,
2014, pp. 129–145.

153

References

154

Paper F

Co-Simulation of Hybrid Systems with SpaceEx and
Uppaal

Sergiy Bogomolov, Marius Greitschus, Peter G. Jensen, Kim G.
Larsen, Marius Mikucionis, Thomas Strump, Stavros Tripakis

The paper has been published in the
Proceedings of the 11th International Modelica Conference, pp. 159–169, 2015.

c© 2015 Linköping University Electronic Press
The layout has been revised.

1. Introduction

Abstract

The Functional Mock-up Interface (FMI) is an industry standard which enables co-
simulation of complex heterogeneous systems using multiple simulation engines. In
this paper, we show how to use FMI in order to co-simulate hybrid systems modeled
in the model checkers SpaceEx and Uppaal. We show how FMI components can
be automatically generated from SpaceEx and Uppaal models. We also validate the
co-simulation approach by comparing the simulations of a room heating benchmark
in two cases: first, when a single model is simulated in SpaceEx; and second, when
the model is split in two submodels, and co-simulated using SpaceEx and Uppaal.
Finally, we perform a measurement experiment on a composite model to show a
potential for statistical model checking using stochastic co-simulations.

1 Introduction

Despite advances in model checking and other formal verification techniques,
simulation remains the workhorse for system analysis. A plethora of simula-
tion tools are available today, from academia as well as from industry. These
tools support a large variety of modeling languages, targeted at different
types of systems from various disciplines (e.g., mechanical, electrical, digi-
tal, continuous or discrete, or mixes thereof). Unfortunately, these tools can
rarely interoperate. This is a problem because modern cyber-physical sys-
tems are highly complex and multidisciplinary, requiring specialized model-
ing languages and tools from several domains.

The Functional Mock-up Interface1 (FMI) is a standard developed to address
this problem. FMI defines an XML schema for describing simulation compo-
nents and a C API that these components must implement. The components
are called functional mock-up units, or FMUs. An FMU is typically gener-
ated automatically (exported) from some simulation tool, and corresponds to
a (sub-)model designed in that tool. The sub-models/FMUs are then imported
into a host simulator. The host commands the simulation by calling the API
methods of the FMUs, thus effectively achieving integration of the original
simulation environments. FMI supports two integration modes: (a) model ex-
change, where the host simulator is handles the numerical integration; and
(b) co-simulation, where each FMU implements its own numerical integration
mechanism (or any other internal mechanism to advance its state in time).
Because each mode imposes its own requirements on FMUs (for instance, in
model exchange, the FMUs must provide the host with information such as
state derivatives, which are not necessary for co-simulation) the FMI APIs for
the two modes are different.

1See https://www.fmi-standard.org/ for more details.

157

Paper F.

In this paper, we use FMI in order to connect two state-of-the-art modeling
and verification tools for cyber-physical systems: SpaceEx [1] and Uppaal [2].
SpaceEx is a tool for modeling and verifying hybrid systems [3]. Uppaal is
primarily a model-checker for timed automata [4], however, it also supports
statistical model checking of hybrid systems [5].

Our goal is to integrate these two tools for co-simulation. That is, we want
to be able to: (a) build a sub-model of the system (e.g., the model of the plant
under control) in SpaceEx; (b) build another sub-model (e.g., the controller) in
Uppaal; (c) automatically generate an FMU for each sub-model; (d) import
the FMUs, connect and co-simulate them in a host environment.

The motivations for connecting SpaceEx and Uppaal in this manner are
numerous. First, although both SpaceEx and Uppaal support simulation of
hybrid systems, each tool offers its own modeling language, which is not
compatible with that of the other tool. Translating from one language to the
other is limited to common features supported by the tools. For example,
even though the frameworks CIF [6, 7] and HSIF [8] solve the complexity
problem of one format translation to another by performing at most two
translations, the approach still suffers from the fact that Uppaal features like
committed locations and C-like function code are not supported in SpaceEx

and Uppaal has limited support for ODEs. Moreover, by using co-simulation,
we are able to take advantage not just of the specific strengths of the language
of each tool, but also of their native simulation engines, since each FMU is
internally running essentially a “copy” of the simulation algorithm of the
original tool.

As host environment we use the tool ptolemy2. ptolemy is a modeling
and simulation environment for heterogenous systems [9]. Recently, support
has been implemented in ptolemy for using it as a host environment for co-
simulation based on FMI. FMUs (developed by other tools) can be imported
into ptolemy, connected using ptolemy’s graphical user interface, and co-
simulated using an implementation of the co-simulation algorithm described
by [10]. This algorithm has desirable properties, such as determinacy, namely,
the fact that the results of the simulation are independent of arbitrary factors
such as names of the FMUs, order of creation, or order of evaluation in the
diagram.

The contributions of this paper are the following:

1. We show how FMUs can be generated automatically from models of
hybrid and timed automata built in SpaceEx and Uppaal. There are
several subtleties involved in this, as hybrid and timed automata are
models designed primarily with verification in mind, whereas FMI is
designed for simulation and therefore imposes certain properties on
FMUs, such as determinism.

2See http://ptolemy.eecs.berkeley.edu/.

158

2. Background on FMI

2. We report on the implementation and case studies. In particular, we
apply our co-simulation framework to a room heating benchmark [11].

3. We validate the co-simulation algorithm proposed by [10] by comparing
the results of the case study in two settings: (a) when the case study is
modeled and simulated in a single tool, and (b) when the various com-
ponents of the case study are modeled in two tools and co-simulated
using our framework. We show that our co-simulation framework com-
putes the same simulation trajectories as the setting (b) provided that
the maximum simulation step size of co-simulation is sufficiently small.

4. We demonstrate how stochastic simulations can be included into the
composite model with hybrid systems and applied a simple statistical
measurement to show the potential for statistical model checking using
FMI co-simulations.

The rest of the paper is organized as follows. In Sec. 2, we introduce
the necessary background on FMI for this work. Afterwards, we present
our translation of SpaceEx and Uppaal models into FMUs in Sec. 3. This
is followed by the case study in Sec. 4. We discuss related work in Sec. 5.
Finally, we conclude the paper in Sec. 6.

2 Background on FMI

Conceptually an FMU can be seen as a (timed) state machine. This machine
has a set of input variables (or ports), a set of output variables, and a set of
internal states. The machine interacts with its environment only by means of
a clearly defined set of interface methods. These methods are specified in the
FMI standard. For the purposes of this paper, and following the formalization
presented by [10], the key interface methods of FMI (for co-simulation) are:

• A method to initialize the state of the FMU. If S is the set of states of
the FMU, then init ∈ S.

• A method set to set a given input variable to a certain value. The signa-
ture of set is set : S×U ×V → S, where U is the set of input variables
of the FMU, and V is the set of all possible values (for simplicity we
ignore typing and use a single universe V of values for all variables).
Given state s, input variable u ∈ U, and value v ∈ V, set(s, u, v) returns
the new state obtained after setting u to v.

• A method get which returns the value of a given output variable. Its
signature is get : S × Y → V, where Y is the set of output variables of
the FMU. Given state s and output variable y ∈ Y, get(s, y) returns the
value of y in s.

159

Paper F.

• A method doStep which advances the state of the machine in time. Its
signature is doStep : S × R≥0 → S × R≥0, where R≥0 is the set of
non-negative real numbers. The behavior of doStep is explained below.

As said above, an FMU is essentially a state machine: the get method cor-
responds to the output function of the machine, while the doStep method
corresponds to the transition function. The difference is that doStep takes as
input a time step h ∈ R≥0: in that sense, an FMU is a timed state machine.

The behavior of doStep is as follows. Given state s ∈ S, and time step
h ∈ R≥0, a call to doStep(s, h) is interpreted as the co-simulation algorithm
“asking” the FMU to perform a simulation step of length h. For a number
of reasons, including numerical integration issues, the FMU may “accept” or
“reject” this request. If it rejects, it means that it was not able to advance time
by h (but may have been able to advance time by a smaller delay h′

< h).
Formally, doStep(s, h) returns a pair (s′, h′) where s′ ∈ S is a state and h′ ∈
R≥0 is a time step, such that:

• either h′ = h, which is interpreted as F having accepted h, and having
moved to a new state s′;

• or 0 ≤ h′
< h, which is interpreted as F having rejected h, but having

made partial progress up to h′, and having reached a new state s′.

It is worth noting that FMUs are deterministic machines, in the sense that
for a given sequence of inputs (i.e., a sequence of input values and time steps),
the sequence of states and outputs that the machine produces is unique. This
is because there is a unique initial state init ∈ S, and set, get, doStep are all
total functions. Moreover, the fact that these functions are total implies that
the machine is able to accept any input at any time, therefore, it is implicitly
input-enabled.

We also rely on zero-time steps in a sense of allowing doStep(s, h) calls
with h = 0 (despite that version 2.0 of the FMI standard forbids this), because
they are essential for modeling discrete transitions like instantaneous mode
switches in hybrid automata models.

In addition to the above, each FMU comes with a set of input-output de-
pendencies, D ⊆ U × Y. D specifies for each output variable which input
variables it depends upon (if any): (u, y) ∈ D means that output variable y
depends on input variable u. This information is used to ensure that a net-
work of FMUs has no cyclic dependencies, and also to determine the order
in which all network values are computed during a simulation step [10].

FMI specifies the methods that every FMU must implement, but it does
not specify the co-simulation algorithm (also called a master algorithm). In
fact, devising such an algorithm with good properties is not a trivial problem,
and has been the topic of previous work [10]. In that work, two co-simulation
algorithms were proposed and proved to have desirable properties, such as

160

2. Background on FMI

termination of a simulation step, and determinacy. The determinacy property
says that the results of a simulation do not depend on the order in which the
algorithm chooses to call doStep over a set of FMUs. This ensures that the
simulation results are well-defined and are not influenced by arbitrary factors
such as FMU names, order of creation, geometrical position in the diagram
of a graphical model, etc., as is often the case with simulation tools.

In a nutshell, the co-simulation method proposed by [10] relies on the
following principle. First, the co-simulation algorithm chooses a default time
step, hmax, called the maximum step size. Second, the algorithm saves the
state of each FMU in the model (FMI specifies methods for an FMU to ex-
port and import its state, although these are optional). Assuming there are
n FMUs, F1, ..., Fn, the algorithm maintains n states, s1, ..., sn. Third, the algo-
rithm calls Fi.doStep(si, hmax) on each FMU Fi, and collects the returned time
steps h′

1, ..., h′
n. There are two cases: either all FMUs accepted the proposed

time step, i.e., h′
1 = h′

2 = · · · = h′
n = hmax, in which case this simulation

step is over, and the algorithm proceeds to the next one; or at least one FMU
Fi rejected hmax, i.e., h′

i < hmax for some i. In the latter case, the algorithm
computes the minimum of h′

1, ..., h′
n, hmin = min{h′

1, ..., h′
n}, restores the saved

state of each FMU, and tries again with new step size hmin.
Assuming that the FMUs satisfy the reasonable “monotonicity” property

that if they were able to advance time by h′
i then they are also able to advance

time by any smaller step, and by the fact that hmin is smaller than all h′
i,

the second attempt is guaranteed to succeed. That is, hmin will be accepted
by all FMUs. As a result, at most after two attempts, a co-simulation step
is successful, and the algorithm proceeds with the next step, repeating the
same procedure as above.

The FMI standard sets out a framework where FMUs share the notion of
time and exchange variable values via input-output ports: outputs from one
FMU are mapped as inputs to other FMU(s) and so on. The output port val-
ues are said to be owned and controlled by the emitting FMU, whereas the
inputs are computed and provided by another (outputting) FMU. The frame-
work foresees that before producing an output an FMU may first need some
input values and thus input-output dependency information is introduced.
Overall the I/O port connectivity graph derived from the model of intercon-
nected FMUs, together with the local I/O dependencies of each individual
FMU, result in a global I/O dependency graph for the entire model [10].

Time and I/O values are synchronized by the co-simulation algorithm:
the time is agreed by repeatedly consulting each FMU and the I/O values
are propagated according to dependencies. The co-simulation algorithm as-
sumes that each FMU provides a static dependency list of its ports before sim-
ulation starts, and that the resulting global I/O dependency graph is acyclic,
and therefore there exists a schedule for computing the value of every input
port before the value of a dependent output port is requested [10].

161

Paper F.

3 Translating Models into FMUs

The behavior of individual FMUs is provided by the model-checker’s sim-
ulation engines based on the guidelines described by [12]. In particular,
the report distinguishes continuous and discrete dynamics. The continu-
ous behavior is modeled by differential equations over continuous variables
whose values can be shared among FMUs by the means of port connections.
The output ports of an FMU are mapped to the owned/controlled variables
which are read and written to, whereas input ports map to read-only vari-
ables within the FMU.

The discrete behavior is modeled by discrete transitions in the timed/hy-
brid automata control flow structure. The discrete transitions are designed to
be executed with micro-steps of zero delay. Transitions can also be decorated
with event labels and each tool supports its own kind(s) of synchronizing
compositions internally and therefore the discrete transition synchronization
is also handled individually within the tools. [12] provides the means of dis-
crete transition synchronization by allocating two special port variables: one
for incoming (input) synchronization and one for outgoing (output) synchro-
nization. The domain of discrete input (output) ports coincides with the set
of input (output) labels plus a special value absent which denotes no synchro-
nization or an internal discrete transition.

3.1 Uppaal

Uppaal uses timed automata models [4], extended with discrete variables
over structured types to describe behaviors of a timed system. In timed au-
tomata, the continuous dynamics is controlled by real-valued clock variables
(with derivatives set to one) and discrete states complemented with integer
variables – both of which are candidates for exchange via FMU input-output
ports. Statistical model checking (SMC) extensions [5, 13] allow a finer control
of the clock derivatives by means of ordinary differential equations, moreover
the discrete transitions are stochastic where the execution is determinized by
probability distributions over time and over branching edges. The stochastic
semantics of a parallel composition is similar to the FMI co-simulation al-
gorithm [10]: the way the minimum delay is negotiated and thus the timed
composition within the FMI framework is straightforward, and task is to find
a systematic way of handling discrete synchronizations. Uppaal also sup-
ports the maximal progress or ASAP semantics on edges labeled with urgent
channels.

Uppaal supports the notion of discrete I/O synchronization natively by
means of input and output channel labels. Thus, its discrete input and output
transitions can be mapped directly to the input/output port variables of an
FMU that is dedicated to transfer the synchronization label name. Nonethe-

162

3. Translating Models into FMUs

less, we distinguish the following kinds of transitions: internal (transitions
without I/O channel synchronization or internally synchronized transitions
for which channels are not marked as input or output), input transitions (la-
beled by an input synchronization where the channel name is marked as
an FMU input), and output transitions (labeled by an output synchroniza-
tion where channel is marked as an FMU output). The marked outputs are
controlled by the Uppaal simulation and are executed asynchronously irre-
spective of whether the receiving FMU is ready to synchronize. Meanwhile,
the input transitions are executed only when there is a corresponding input
label set on a discrete input port. At most one (internal, input or output)
transition is allowed at a time, hence fine-grained simulation control can be
achieved by the co-simulation algorithm.

Uppaal FMUs do not introduce I/O dependencies between continuous
variables because the models do not use algebraic expressions to compute
variable values. Instead of algebraic expressions the automata use discrete
transitions to update the variable values. However, only one discrete transi-
tion is allowed at a time, therefore all discrete outputs have dependencies on
the inputs dedicated to synchronization labels which restrict the selection of
a particular discrete transition and hence specific variable update.

3.2 SpaceEx

SpaceEx [1] uses hybrid automata to describe system behavior where the
continuous variable derivatives are constrained by differential equations. The
continuous variables are candidates for input and output exchange via FMU
ports. The discrete transitions of hybrid automata can be decorated with la-
bels. Synchronization may involve multiple participating processes, but there
is no notion of input and output – all processes are equal contributors, there-
fore the simulator needs to implement the input/output semantics required
by FMI. We use a special label naming notation to mark input and output
labels (see Fig. F.5). The transitions with input labels are only executed when
the discrete input variable of FMU is set to the corresponding label name.
Meanwhile, the transitions with an output label are controlled by SpaceEx’
simulation, and are executed asynchronously by setting the discrete output
variable with the label name irrespectively of whether the receiving FMU
can synchronize with it. We ensure the SpaceEx FMU determinism by en-
forcing the must-semantics of discrete transitions in a hybrid automaton. In
other words, a discrete transition is taken as soon as its guard is enabled.
Finally, we resolve the non-determinism between input, output, and internal
transitions in the following way: input transitions have priority over output
transitions and output transitions are preferred over the internal ones.

Both Uppaal and SpaceEx translations simulate the source models as they
are without intermediate transformations, except of the following additions:

163

Paper F.

x = 1
a! x = 1

b!

a?

b! x = 1
c!

b?

c! x = 1
d!

c?

d!

A1 A2 A3 A4
Fig. F.1: An example of four timed automata chain.

1) input enabledness is ensured by broadcast channels in Uppaal model-
ing and asynchronous I/O is implemented for SpaceEx synchronization la-
bels, 2) for determinization SpaceEx uses maximal progress whereas Uppaal

uses stochastic semantics with a possibility of urgent channels for maximal
progress.

3.3 Discussion on Co-Simulation Semantics

In this section, we discuss the co-simulation semantics and contrast it to those
typically used by a model checking tool. In particular, we demonstrate by
example how the FMI co-simulation algorithm resolves input/output depen-
dencies and contrast it with execution analysed in a model checker. Our goal
is to offer insights in the differences of the two semantics.

Consider a system model shown in Fig. F.1 which consists of four timed
automata composed in parallel. Labels of the form a! denote sending output
a, whereas a? denotes receiving an input a. The variable x is a clock measur-
ing time starting from zero. The constraint x = 1 is a guard which allows
the corresponding transition of the automaton to occur only if the guard is
satisfied, i.e., in this case only when x equals 1. The automata synchronize in
a chain: the first can output a to the second one, the second one can output b
to the third one and so on.

In principle, the system can be loaded into an FMI model in any com-
bination: individually (one automaton per FMU) or collectively (multiple
automata per FMU), but before an FMU can be loaded into an FMI model, it
must declare its input/output dependencies. According to [10] each automa-
ton should expose an input/output variable which will contain the synchro-
nization label value. Automaton A1 in the example above will have only an
output variable, which may have values {a, absent}. Automaton A2 will have
an input variable ranging over {a, absent} and an output variable ranging over
{b, absent}, and so on. The special value absent denotes that currently there
is no synchronization. Timed automata must declare a dependency between
its input and output label variable in order to avoid simultaneous input and
output synchronizations.

In addition, it is assumed that each FMU is input-enabled, meaning that
it can handle (i.e., it is able to receive) any declared input at any time. If a
component is not input-enabled and an input synchronization is triggered

164

3. Translating Models into FMUs

then simulation is aborted, to avoid such situation we allow only broadcast
channels, which do not block the sender process and receiver may simply
ignore the synchronization if has no receiving edge.

Suppose the automata from Fig. F.1 are loaded within separate FMUs
and connected according to synchronization labels. That is, the output of
FMU(A1) is connected to the input of FMU(A2), the output of FMU(A2) is
connected to the input of FMU(A3), and so on. The co-simulation algorithm
would detect that it has to fulfill inputs values for the FMU(A4), FMU(A3),
and FMU(A2) in order to proceed, therefore the input/output value propa-
gation will have to start with FMU(A1) and then proceed to the FMU(A2)
etc.. Once the values of all input and output variables are propagated, the
algorithm proceeds with advancing each FMU in time by calling doStep(). It
is this dynamic behavior in time which interests us in this example.

In particular, observe that A2,3,4 automata are non-deterministic in the
sense that, according to Uppaal semantics, at time x = 1 an automaton can
either delay, or take an outputting transition, or synchronize on inputs. For
instance, at time x = 1, A2 can either emit b, or receive a (which will be
available in this case, because it is sent by A1 at exactly that time), or let
the time pass. In timed automata semantics, all these options are possible at
the individual component level. Moreover, not only individual components
can be non-deterministic, but their composition is non-deterministic as well,
based on so-called interleaving semantics. This means that when multiple au-
tomata are enabled at a given time, the choice of which one to execute is
arbitrary. Non-determinism is a useful abstraction and thus model reduction
technique in verification and model checking. The same is true when these
tools are used for simulation, i.e. different simulations in Uppaal may yield
different results.

In FMI, the situation is very different, as all FMUs are treated as deter-
ministic components, and their composition, ensured by the co-simulation
algorithm, is guaranteed to yield deterministic results as well. Interestingly,
in this example, if all automata decide to output at time x = 1, some of
them will succeed outputting in parallel, while others will be preempted by
incoming inputs. In particular, the master algorithm will request FMU(A1)
to produce its output, and thus FMU(A2) will be busy handling an input
and will not be producing output at that time. Since FMU(A2) is not send-
ing anything, then FMU(A3) will be free to produce an output and hence
preempt FMU(A4).

As witnessed from above, such FMI system selects a particular sequence
of steps (which is expected) but is not able to simulate all possible execu-
tion orders as in original semantics even if we allow FMUs to determinize
their actions by themselves, which means that FMI simulations are select-
ing a particular subset of all possible behaviors and some behaviors may not
be reproducible in FMI. Also FMI simulations may contain parallel synchro-

165

Paper F.

nizations (e.g. actions A1
a
 A2 and A3

c
 A4 at the same computation step)

which are possible only in several steps in timed automata semantics (ac-
tion a and only then action c within zero-time), hence the intermediate state
between a and c actions might not be accessible in FMI without very fine
grained control over individual doStep() calls in one zero-time computation
step. However, the successor state of such parallel executions can be matched
with a state after multiple transitions in the given automata semantics, hence
the FMI simulation states in between system computation steps are included
in the original semantics, albeit definite proof requires more formal insight
to examine all scenarios.

4 Case Study

We have implemented the FMI standard in the Uppaal [2] and SpaceEx [1]
model checkers by providing model export to FMU3. In this section, we
present and evaluate the performance of the resulting FMI framework on
a case study inspired by the well-known room heating benchmark originally
proposed by [11]. Our model consists of a room with a heater (Fig. F.2a)
and a controller (Fig. F.2b) which regulates the heater behavior. We model
the room and the controller as a SpaceEx and Uppaal FMU, respectively (see
Fig. F.3). Our bang-bang controller turns the heater on and off as soon as
some temperature thresholds Tlow and Thigh have been reached. The as-soon-
as-possible behavior is enforced by using urgent channels which effectively
make the controller deterministic. The room temperature T evolves according
to the following differential equation:

Ṫ = k · (Tenv − t) + hpower

Ṫenv = 0

ḣpower = 0

In other words, the room temperature depends linearly on the difference
between the current room temperature T and outside temperature Tenv. We
assume the outside temperature Tenv and heater power hpower to be constant.
The constant k defines the heat exchange rate between the room and outside
environment. If the heater is off, the heater power is set to zero.

4.1 Evaluation

We evaluate our FMU framework by comparing simulation trajectories of
the FMUs with the ones produced by a SpaceEx model consisting of both the

3A package containing the benchmarks is available for download at http://swt.

informatik.uni-freiburg.de/tool/spaceex/co-simulation.

166

4. Case Study

off

Ṫ = k · (Tenv − T)

Ṫenv = 0

ḣpower = 0

on

Ṫ = k · (Tenv − T) + hpower

Ṫenv = 0

ḣpower = 0

hon? hoff ?

(a) Room component modelled in
SpaceEx. The component switches be-
tween “on” and “off” modes. The tem-
perature variable T is exported as out-
put and synchronizations labels hon

and hoff as inputs.

off on

T ≤ Tlow

hon!

T ≥ Thigh

hoff !

(b) Controller in Uppaal uses urgent
channels to ensure as-soon-as-possible
transition trigger. Temperature T is an
input and labels hon and hoff are out-
puts.

FMU

FMU

Controller

Room

hmode

hmodeT

T

Fig. F.3: SpaceEx and Uppaal FMUs connected using the room temperature T and heater mode
hmode.

controller and room components. We consider three different simulation step
values: 1 (see Fig. F.4a), 0.1 (see Fig. F.4b) and 0.01 (see Fig. F.4c). Considering
the simulations, we observe that the FMU trajectories overshoot the controller
constraints in the sense that the controller exhibits a delayed reaction when
the room temperature crosses the temperature thresholds. The behavior is
justified by the fact that the method call doStep for every FMU relies only on
the local information about the state evolution when making decisions, e.g.,
the controller FMU does not have any information about the room temper-
ature evolution beyond the value which can be provided when the method
doStep is called. Therefore, the controller FMU detects that the guard is en-
abled only a simulation iteration later after this event has already happened.
We observe that the impact of the overshooting can be made arbitrary small

167

Paper F.

 18

 19

 20

 21

 22

 23

 0 2 4 6 8 10 12 14

FMI
SpaceEx

(a) Maximum step size 1.

 18

 19

 20

 21

 22

 23

 0 2 4 6 8 10 12 14

FMI SpaceEx

(b) Maximum step size 0.1.

 18

 19

 20

 21

 22

 23

 0 2 4 6 8 10 12 14

FMI SpaceEx

(c) Maximum step size 0.01.

Fig. F.4: Simulation trajectories: each red x is a data point reported by SpaceEx, and blue +
reported by the co-simulation.

by choosing a small enough simulation step (see Fig. F.4c vs. Fig. F.4a and
Fig. F.4b).

We note that the overshooting problem is inherent to the considered mas-
ter algorithm and can be circumvented by incorporating additional cross-
component knowledge into the master algorithm. Overall, our experiments
validate that on this case study our co-simulation framework based on SpaceEx

and Uppaal provides equivalent simulation results compared to the setting
where all components are modelled in one tool.

4.2 Supervisory Control Example

In this section, we show how supervisory control systems similar to the
benchmarks presented by [11] can be modeled using the FMI paradigm.
Compared to Section 4.1, we consider a model of the building with two rooms
sharing a common wall and a heater. In this setting, the room temperature
is influenced by both the outside temperature and heat transfer between the
rooms. Figure F.5 shows a hybrid automaton from SpaceEx modeling the
room temperature dynamics. The difference from the previous example here
is an extra term (Tother − t) ∗ 0.2 denoting a contribution from another room.
Another room is modeled analogously except that it responds to heater2_on
and heater2_off signals instead of heater1_on and heater1_off.

168

4. Case Study

Fig. F.5: Hybrid automaton for a heated room connected to another room. Inputs are temper-
atures Tenv, Tother and labels IN_heater1_on and IN_heater1_off, while output is temperature t.
We use the prefix IN to mark input labels.

Our controller consists of two parts: local bang-bang controller and a
supervisor shown in Fig. F.6. In order to model the transitions of the heaters
between the rooms, we assume that the controllers can be turned on/off
by the supervising controller. Therefore, the local controller has an extra
mode besides On and Off which stands for the controller being currently
deactivated. The supervising controller has two kinds of stochastic behavior:
it can pick any pair of rooms (one recipient and another donor) to transfer
the heater, and it can choose the timing of transfer. When a pair of rooms
is selected (by choosing concrete room identifiers for rec and donor variables)
the donor is disabled by moving from location decide to location move and
the recipient is enabled by going from move to idle. The supervisor may
stay in location idle arbitrary long, but the exact duration is decided by an
exponential probability distribution of rate 1 which means the duration of
1/1 time units on average. Similarly the supervisor may stay in decide and
move but the duration will be 1/10000 on average, i.e. denoting that the
heater is moved rather quickly.

Figure F.7 shows the overall component connectivity diagram where the
supervisor is reading temperatures from each room and controls the local
movable heater controllers. The movable heaters then may either turn on
the heat in their room or let them cool off giving the heat to outside. The
individual heated rooms are then connected to the outside temperature and
to each other denoting the heat exchange. The splitter FMUs are repeaters
needed to connect multiple components to the same signal.

In the following, we discuss the behavior of the resulting composed model.
Figure F.8 shows the temperature dynamics in each room. In particular, the
plot shows that in the beginning the temperature drops until the supervi-
sor detects a room temperate below Tget = 17◦, then around 6 time units a
heater raises the temperature in room 1. The local controller keeps rising the

169

Paper F.

temperature until it goes over 22◦ bound at around 7.5 time units. Notice that
the temperature in room 2 also rises due to heat exchange between the rooms.
Around 10 time units the supervisor decides to hand over the heater to room
2. At 14 time units the heater is switched back to room 1 and so on. We
can conclude that even though the temperature drops well below 18◦ overall
it seems that the controllers manage to sustain the temperature at the sim-
ilar level without loosing control (without dropping to outside temperature
level).

4.3 Stochastic Simulations and SMC

The following is a demonstration of statistical model checking (SMC) using
the FMI framework. We show how the performance of two stochastic con-
trollers simulated by Uppaal can be compared using SMC approach together
with the heated room simulation provided by SpaceEx. Figure F.9 shows
two controllers: (a) reacting within 1 time unit to 18.0◦ and 22.0◦ temper-
ature bounds and (b) reacting within 2 time units to 19.0◦ and 21.0◦ tem-
perature bounds. The channels used in these controllers are not urgent and
therefore the delay between temperature detection and heater activation is
decided stochastically based on uniform distribution over the allowed delay
by invariants, i.e. the concrete delay will be chosen from [0, 1] for the first
controller and from [0, 2] for the second one. The On and Off locations do
not have any invariant and therefore in principle the process may stay there
forever. In such cases Uppaal uses an exponential (Poisson) probability dis-
tribution to decide a particular time delay and hence asks to provide a rate
of the exponential. The higher the exponential rate, the shorter the delays,

(a) Local bang-bang controller
which can be moved (disabled).
The inscribed U means urgent lo-
cation where time delay is not al-
lowed. The inputs are tempera-
ture variable T[id] and labels en-

able[id] and disable[id], while out-
puts are labels heater1_on and
heater1_off.

(b) Supervising controller moves the
heaters between rooms by reading inputs
on T[i] and sending outputs on labels en-

able[i] and disable[i] where i is the room in-
dex.

Fig. F.6: Two layers of Uppaal controllers.

170

4. Case Study

Fig. F.7: ptolemy diagram for supervisory control of two heated rooms.

hence we can provide a high rate to ensure that the detecting transition is
fired arbitrary quickly.

In our setup, we would like to know which controller is better at keeping
the room temperature within 18.0◦ and 22.0◦ bounds. In order to answer
this question we setup two FMI models for each controller with an equal
room, run 100 simulations with 100 time units in length and 0.05 granularity,
compute the amount of time spent outside the temperature range for each
simulation and then compute the confidence intervals for both models. Ta-
ble F.1 shows a summary of amounts of time during which the temperature
was either below or above the range. The estimated time duration use confi-
dence interval (CI) notation which means that if we repeat the measurement
experiment then the real mean (which is unknown) will fall into the interval
with a probability of 95%. The results show that the second controller was

 16

 17

 18

 19

 20

 21

 22

 0 5 10 15 20 25 30

room1

room2

Fig. F.8: Temperature trajectories for each of the rooms composed with stochastic supervising
controller.

171

Paper F.

(a) Wide range and fast. (b) Narrow range and slow.

Fig. F.9: Stochastic controllers use regular (non-urgent) channels, therefore timings are stochastic:
delays are distributed uniformly (when clock invariant is used) and exponentially (in locations
On and Off).

more successful at maintaining the lower bound of the temperature, but was
more overshooting beyond the upper bound. In total, the first controller kept
the temperature in good range longer by 8.57 time units on average, which is
much larger than confidence interval, hence the first controller is better.

Table F.1: Time with temperature outside the range (95% CI).

Controller Time below Time above Total

Wide and fast 7.56 ± 0.20 32.69 ± 3.36 40.26 ± 0.59
Narrow and slow 2.40 ± 0.19 46.43 ± 0.82 48.83 ± 0.79

5 Related Work

The FMI standard and corresponding documentation are constantly evolving,
as new versions of the standard are developed. The web site4 also contains
a list of tools supporting FMI. Descriptions of FMI can also be found in the
academic literature [14].

Discussions about the limitations of FMI can be found in the works by [10,
15]. [10] also formalize the main methods of FMI (get, set, doStep) by es-
tablishing a contract (pre-/post-conditions) for each method and propose a
master algorithm (i.e., a co-simulation algorithm). Furthermore, the authors
proves its termination, determinacy, and other properties. However, the pa-
per does not discuss how FMUs can be created. A different, master-slave
based, co-simulation approach is proposed by [16], but formal properties
such as determinacy are not discussed in this work.

[15] defines a suite of test models that should be supported by a hybrid
co-simulation environment, giving a mathematical model of an ideal behav-

4https://www.fmi-standard.org/

172

6. Conclusions

ior, plus a discussion of practical implementation considerations. Further-
more, the paper describes a set of basic modeling components in the spirit
of ptolemy actors (constant, gain, adder, integrator, etc.). Finally, the authors
provide a kind of denotational description for each component (input and
output signals), but no encoding into FMUs is discussed.

The FMU generation problem for various formalisms is discussed by [12].
This work only refers to a generic model of timed machines which does not
include the particularities of Uppaal’s timed automata. In addition, hybrid
automata are not considered in this work.

Recently, the co-simulation algorithm presented by [10] has been imple-
mented in the open-source ptolemy tool. As mentioned above, we use this
framework in order to import FMUs into ptolemy and co-simulate them.
However, this framework does not address the FMU generation problem.

[17] present a plugin for Rhapsody for generating FMUs from Statechart
SysML blocks. They provide high level guidelines for how to generate Stat-
echart FMUs, but do not provide a formalization. [18] also discuss how to
encode statechart models, described in MechatronicUML.

Co-simulation is one, but not the only approach to solve the tool inter-
operability problem. A further attempt to solve this problem is the Hybrid
Systems Interchange Format (HSIF), designed with the goal of being “a sort of
‘maximum common denominator’ among all hybrid system modeling envi-
ronments” [19]. HSIF aims therefore at defining a “maximal syntax” where
all the syntax of different languages could be translated into. It could be seen
as a type of XML schema for hybrid systems. HSIF is primarily aimed at en-
abling model translation between different hybrid system tools. [20] present
the tool Hyst which provides an automatic source-to-source model trans-
lation between a number of up-to-date hybrid model checkers. In their
approach, [20] do not use any intermediate format like HSIF. Both model
translation-based approaches outlined above provide support only of the
common subset of the tool features. Our co-simulation framework does not
limit the model designer to use the “maximal syntax” among all the tools
because every FMU takes care of its features independently.

6 Conclusions

We have shown how two state-of-the-art modeling and verification tools for
hybrid systems, SpaceEx and Uppaal, can be integrated using the FMI co-
simulation standard. The result is a powerful framework which allows users
to build submodels separately in each of the two tools (as well as in other
tools potentially), then generate individual FMUs for each submodel, and
then combine all the FMUs into a single model, which can be co-simulated
within the ptolemy FMI implementation. We demonstrated the feasibility of

173

References

our framework by comparing the co-simulation results of a simple two-FMU
model to the simulation results that are obtained when we model and simu-
late the entire system in a single tool. By empirical evaluation on case studies
we found that, provided time steps are small enough, individual components
can ensure timely reactions to continuous signals, and the simulations can be
made arbitrary close to self-contained model simulation. In addition to in-
dividual tool export to FMUs, we showed how the non-deterministic models
can be determinized using stochastic semantics and included into FMI co-
simulation. We also provided an example how statistical model checking
can be performed using numerous FMI simulations which is an essential fea-
ture evaluating stochastic behavior. The integration of model-checkers into
co-simulation frameworks provides further possibilities of analyzing early
design models like conformance monitoring by checking that a simulation
trace of a refined (e.g. hybrid) model is included in a more a abstract (e.g.
timed automata) specification. We envision our work being a further step to-
wards integrating tools developed in the formal methods community into the
industrial system design and modeling workflow of cyber-physical systems.

7 Acknowledgments

We are grateful to Christopher Brooks, Fabio Cremona, and Edward Lee
from UC Berkeley, for their work on the ptolemy framework. This work
was partly supported by the European Research Council (ERC) under grant
267989 (QUAREM), by the Austrian Science Fund (FWF) under grants S11402-
N23 (RiSE) and Z211-N23 (Wittgenstein Award), by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS), by EU FET project SENSATION, the Sino-Danish Center IDEA4CPS
and the Center DiCyPS of the Danish Innovation Foundation, by Academy of
Finland, by the National Science Foundation (awards #1329759 and #1139138),
and by the Industrial Cyber-Physical Systems Research Center (iCyPhy) sup-
ported by IBM and United Technologies Corporations.

References

[1] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ri-
pado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable Verifica-
tion of Hybrid Systems,” in 23rd International Conference on Computer
Aided Verification (CAV), ser. LNCS, S. Q. Ganesh Gopalakrishnan, Ed.
Springer, 2011.

174

References

[2] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Interna-
tional Journal on Software Tools for Technology Transfer, vol. 1, no. 1-2, pp.
134–152, 1997.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic anal-
ysis of hybrid systems,” Theoretical Computer Science, vol. 138, no. 1, pp.
3–34, 1995.

[4] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Com-
puter Science, vol. 126, pp. 183–235, 1994.

[5] A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, J. van
Vliet, and Z. Wang, “Statistical model checking for networks of priced
timed automata,” in Formal Modeling and Analysis of Timed Systems, ser.
Lecture Notes in Computer Science, U. Fahrenberg and S. Tripakis, Eds.
Springer Berlin Heidelberg, 2011, vol. 6919, pp. 80–96.

[6] D. N. Agut, D. A. van Beek, and J. Rooda, “Syntax and semantics of
the compositional interchange format for hybrid systems,” The Journal of
Logic and Algebraic Programming, vol. 82, no. 1, pp. 1 – 52, 2013.

[7] H. Beohar, D. E. N. Agut, D. A. van Beek, and P. J. L. Cuijpers, “Hier-
archical states in the compositional interchange format,” in Proceedings
Seventh Workshop on Structural Operational Semantics, SOS 2010, Paris,
France, 30 August 2010., ser. EPTCS, L. Aceto and P. Sobocinski, Eds.,
vol. 32, 2010, pp. 42–56.

[8] A. Pinto, L. P. Carloni, R. Passerone, and A. Sangiovanni-Vincentelli,
“Interchange format for hybrid systems: Abstract semantics,” in Hybrid
Systems: Computation and Control, ser. LNCS, J. P. Hespanha and A. Ti-
wari, Eds. Springer Berlin Heidelberg, 2006, vol. 3927, pp. 491–506.

[9] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong, “Taming heterogeneity – the Ptolemy approach,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, Jan. 2003.

[10] D. Broman, C. Brooks, L. Greenberg, E. A. Lee, S. Tripakis, M. Wetter,
and M. Masin, “Determinate Composition of FMUs for Co-Simulation,”
in 13th ACM & IEEE International Conference on Embedded Software (EM-
SOFT’13), 2013.

[11] A. Fehnker and F. Ivancic, “Benchmarks for hybrid systems verification,”
in In Hybrid Systems: Computation and Control (HSCC). Springer, 2004,
pp. 326–341.

175

References

[12] S. Tripakis, “Bridging the Semantic Gap Between Heterogeneous Mod-
eling Formalisms and FMI,” in International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation – SAMOS XV, 2015.

[13] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen,
“Uppaal SMC tutorial,” International Journal on Software Tools for Technol-
ogy Transfer, 2015.

[14] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel,
H. Olsson, J.-V. Peetz, and S. Wolf, “The Functional Mockup Interface
for Tool independent Exchange of Simulation Models,” in 8th Interna-
tional Modelica Conference. Dresden, Germany: Modelica Association,
Mar. 2011.

[15] D. Broman, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis, and M. Wet-
ter, “Requirements for Hybrid Cosimulation Standards,” in Hybrid Sys-
tems: Computation and Control (HSCC), 2015.

[16] J. Bastian, C. Clauß, S. Wolf, and P. Schneider, “Master for Co-Simulation
Using FMI,” in 8th International Modelica Conference, 2011.

[17] Y. A. Feldman, L. Greenberg, and E. Palachi, “Simulating Rhapsody
SysML Blocks in Hybrid Models with FMI,” in 10th Modelica Conference,
2014, pp. 43–52.

[18] U. Pohlmann, W. Schäfer, H. Reddehase, J. Röckemann, and R. Wagner,
“Generating Functional Mockup Units from Software Specifications,” in
9th Modelica Conference, 2012, pp. 765–774.

[19] A. Pinto, A. L. Sangiovanni-Vincentelli, L. P. Carloni, and R. Passerone,
“Interchange formats for hybrid systems: review and proposal,” in Hy-
brid Systems: Computation and Control, ser. HSCC. Springer, 2005.

[20] S. Bak, S. Bogomolov, and T. T. Johnson, “HYST: a source transformation
and translation tool for hybrid automaton models,” in Proceedings of the
18th International Conference on Hybrid Systems: Computation and Control,
HSCC, Seattle, WA, USA, April 14-16, 2015. ACM, 2015, pp. 128–133.

176

Paper G

Integrating Tools: Co-Simulation in Uppaal using
FMI-FMU

Ulrik Nyman, Peter Gjøl Jensen, Kim Guldstrand Larsen and
Axel Legay

The paper has been published in the
Proceedings of 22nd International Conference on Engineering of Complex Computer

Systems, pp. 11–19, 2017.

c© 2018 IEEE
The layout has been revised.

1. Introduction

Abstract

While standalone tools for verification and modeling have proven useful, their chosen
formalism and description-language can at times be restrictive. We demonstrate how
to use Uppaal SMC to analyze controller systems consisting of Function Mockup
Units (FMU) modeled in other tools, such as Matlab and Modelica. Apart from sup-
porting FMI-FMU modules the newly added C interface can call any external func-
tion. The only requirement for sound analysis is statelessness and determinism of the
external function. We demonstrate the expressive power by implementing the FMI-
FMU master algorithm as a timed automata, interfacing with external, non-native
and non-trivial Function Mockup Units (FMU). We also model two components in
Uppaal SMC exporting one of them as an FMU while keeping the other as a native
component. Furthermore we demonstrate the first simulation environment for the
Function Mockup Units, capable of checking bounded MITL properties.

1 Introduction

Model-checking tools often come with support for a specific formalism, im-
posing restrictions on the behavior of the modeled system. Such formalisms
serve the purpose of giving the system a semantics such that the behaviour
of the system carries a sound and consistent meaning. In particular without
a semantics, investigating the accuracy or probabilistic behavior of a system
is nonsensical. At the same time, a variety of formalisms have emerged in
different domains, each well suited for a specific task (eg. digital, mechani-
cal or thermodynamic modeling), but incapable of co-simulating – that is, to
obtain joint results. To remedy this, the Function Mockup Interface-standard
(FMI) [1] was proposed to enable domain-specific modeling tools to be used
side by side when encapsulated in a Function Mockup Unit (FMU). In particu-
lar, the FMI-standard defines a protocol for how values can be communicated
between FMUs by standardizing the interface-description and giving a com-
mon C-api.

However, while the FMI standard only specifies how values can be com-
municated, it purposely does not specify the details of how they will be com-
municated, calling for the development of so-called Master Algorithms (MA)
for coordinating the interaction between several FMUs.

As previously demonstrated [2], the MA has an impact on the semantics
of the overall system, and is thus of great importance to the overall mean-
ing of the measures obtained. We demonstrate that our implementation of
the MA will, given enough simulations, eventually explore all possible exe-
cutions. This ensures that we will also discover cases where the ordering of
events has a great impact on the outcome.

We will be implementing our approach as an extension of the statistical

179

Paper G.

model checking tool Uppaal SMC [3], thus ensuring that we have a formally
defined semantics. We show that meaningful probabilistic measures can be
obtained, and in particular that we can statistically verify MITL (Metric In-
terval Temporal Logic) properties. The work presented here extends beyond
applications within the FMI-standard – we propose and implement an exten-
sion of Uppaal that allows for calling arbitrary C-libraries during the statis-
tical simulation. This effectively opens up Uppaal SMC to a great number
of applications – and we will argue that under statelessness of the external
library, that doing so is semantically sound. By statelessness, we do not mean
that the components cannot change their state, but that all relevant state infor-
mation should be communicated through the FMI-FMU interface such that
it is controlled by the MA. This is also required in order to retain the se-
mantics in future settings such as classical model checking, as demonstrated
in [4]. External FMUs can contain stochastic behavior, but they should not
contain unresolved non-determinism, as such non-determinism would not
have a meaningful interpretation when simulating the system.

Notice that for FMUs we embrace the argument of Broman et. al. [5] –
that it is sane to expect that components only can give a maximum delay and
must accept all smaller delays.

1.1 Interleaving Semantics

While the work of Bogolomov et. al [2] showcased Uppaal as an FMU along-
side SpaceEx with ptolemy as MA, it also exposed inconsistencies in the se-
mantics of timed automata when recomposed via the MA as opposed to in-
ternally in Uppaal. Let us recall the example provided by Bogolomov et. al;
consider the four TAs presented in Figure G.1. If the four TAs communicate
in a pipeline pattern s.t. A1 outputs to A2, A2 to A3 and A3 to A4, then only
a single, deterministic trace can occur. Given that all TAs start in their ini-
tial location (marked by double-circle) and with clock-value x1=x2=x3=x4=0

nothing will happen until a single unit of time has elapsed (x1 == 1, x2 == 1,
x3 == 1 and x4 == 1). After exactly one time unit (enforced by the invariants
x1 <= 1, x2 <= 1, x3 <= 1 and x4 <= 1), all the automata are able to output
– however, as TAs synchronize on channels (a, b, c, d , output marked by ! and
input by ?), it becomes important in which order the automata synchronize.
Notice here that even though all the synchronizations happen at the same
instance of time, it is important to track the “happened before” relationship.
Keeping this in mind, we can observe that only a single deterministic trace
of the system can occur given the pipeline communication-pattern, namely
that an a! always will be observed followed by c!, implying that on all traces,
eventually the product-state A1.A && A2.AB && A3.C && A4.CD is reached.
However, one can easily verify using Uppaal that this is not the case. In fact,
all possible permutations with at least one winner is possible, as Uppaal im-

180

1. Introduction

Fig. G.1: Four Uppaal timed automata exemplifying the different semantics of different Master
Algorithms. An intuitive explanation of the syntax of Uppaal timed automata can be found in
Section 5.2.

plements interleaving semantics – which most definitions of NTA (Networks
of Timed Automata) require.

We argue that such behavior is also important in real-life models, for
instance due to a too coarse granularity on the observation of time. In par-
ticular in a probabilistic context, such under-approximation of the behavior
of the system leads to erroneous probability estimates. While we do not ad-
dress channel-based synchronization between FMUs in this paper, we note
that similar erroneous behavior can be achieved using only integer-valued
variables. For the specifics of channel based synchronization between FMUs,
we refer the reader to [2].

Another known problem in modeling and simulation is that of zero-crossing;
namely that it is impossible in a simulation setting to detect the exact time
when a certain value crosses a zero threshold. As mentioned in [6] this is also
a problem in the context of FMI-FMU models. This is a problem that we are
aware of, but that our current solution does not try to address.

1.2 Contributions

We demonstrate the ease with which already existing system models from
Modelica can be exported as FMUs and used for verifying statistical proper-
ties of the model in Uppaal SMC. In particular, the ability to specify a MA
within a sound semantical framework facilitating probabilistic and temporal
reasoning is a strength of the methods proposed in this paper. These features
are essential to modeling real-world scenarios where behavior is inherently
uncertain and time-dependent – such scenarios include signal noise, human
interaction and general natural phenomena. As we base our approach on top
of a tool that already supports the notions of time and probabilities, we auto-
matically gain the analytical capabilities of this tool. While we only demon-

181

Paper G.

strate the Statistical Model Checking features of Uppaal SMC in this paper,
our proposed method of embedding FMUs as timed automata also enables
classical model checking, controller synthesis and controller learning on com-
posed models using the more complex features of Uppaal, Uppaal Tiga and
Uppaal Stratego under some reasonable restrictions on the FMUs.

The contributions of the paper can be summarized as follows:

• Implementation of direct call of FMI-FMU modules from inside a sta-
tistical model checking tool that supports time and probabilities.

• Discussion on different semantics for FMI-FMU implementations.

• Flexible modeling of the master algorithm as a timed automaton tem-
plate.

• Statistical model checking of bounded reachability of temporal logics
(MITL).

1.3 Related Work

FMI-FMU has its origin in the European research project MODELISAR. It was
created specifically for integrating a wide variety of modeling tools. Indus-
try tools that support the FMI-FMU standard include: MATLAB/Simulink,
MapleSim and AUTOSAR Simulation [1].

In the following we try to cover recent and relevant related work that take
a practical approach to co-simulating industrial systems.

Pazold et. al. [7] compare different approaches for simulating a HVAC
system for a complete building. They conclude that a weak coupling using
a co-simulation strategy using sub-models exported as FMUs is a reasonable
approach. A case-study by Pedersen et. al. [8] describes how to integrate a
special purpose maritime embedded system into an FMI-FMU co-simulation
setting at the company MAN Diesel & Turbo.

We also find that it is relevant to look at related work that considers the
semantics of the complete co-simulation system and Master Algorithm (MA).

In [9] Guermazi et al. provide a framework for co-simulating the UML
models specified in Papyrus (the open-source UML/SysML modeler of the
Eclipse foundation) in an FMI-FMU context. The work is build on top of the
formal semantics foundation of UML (fUML [10])

In [5] Broman et al. argue for an number of sanity conditions for a MA.
In this work we deviate by 1. allowing the order of FMI/FMU-definition
determine the outcome of the simulation and 2. not requiring an order on
the input/output-relation. However, both properties can be ensured by mod-
ifying the proposed timed automaton template for a MA. At the same time,
Broman et al. propose the getMaxStepSize-extension of the FMI-FMU stan-
dard to enable step-size negotiation between FMUs.

182

2. Semantics

In [2] Bogomolov et al. argue for allowing Zero-delay step-sizes in the
doStep-procedure to enable timed automata style synchronizations across
FMUs – a value which is otherwise strictly disallowed by the FMI-FMU stan-
dard. This paper also discusses using Hybrid- and timed automata as FMUs
and the related semantic difficulties and utilizes the step-negotiation strategy
introduced in [5].

In [6] Cremona et al. introduce the concept of step revision, similar to that
presented in [5], as a method for ensuring the accuracy of modeling a mix
of continuous-time and discrete-event systems in an attempt to address the
Zero-crossing problem.

Statistical model checking of Priced Timed Automata and Stochastic Hy-
brid Systems was introduced into the Uppaal tool-chain by Bulychev et
al. in [11, 12]. In their work they present methods and algorithms for ob-
taining various statistical measures over stochastic systems using expressive
logics [3, 13]. While the Uppaal SMC tool has been used in a number of
case-studies ([14–18]) it previously did not facilitate co-simulation as master-
algorithm using the FMI-FMU standard.

The PLASMA statistical model checking tool [19] supports statistical anal-
ysis over a System of Systems composed of FMUs [20]. However, their work
does not provide a formal semantics of the composed system or individual
components, nor does it allow C-functions to be embedded directly in the
model. Furthermore, the integration of FMUs in C allows for analysis, syn-
thesis and learning using the more complex features of classical Uppaal [21]
and Uppaal Stratego [3] – features that are out of the scope of this paper.

2 Semantics

We shall here describe the semantics of Timed Automata (TA), Network Of
Timed Automata (NTA), Stochastic Timed Automata (STA) and Function
Mockup Units (FMUs). We will then discuss a semantical embedding of
FMUs into the the STA framework.

2.1 Stochastic Timed Automata

Formally, a TA is a finite automaton extended with a set of real-valued, time-
progress-measuring counters (X) called clocks. In addition, a TA allows for
synchronization with other TAs over a finite set of so-called channels (Σ). For
a set of channels Σ we let Σo = {a! | a ∈ Σ} be the set of output actions over
Σ while we let Σi = {a? | a ∈ Σ} be the set of input actions. For a set of
clocks X we call an element c ⊲⊳ n where c ∈ X and n ∈ N and ⊲⊳ ∈ {≤,<}
(⊲⊳ ∈ {≥,>}) an upper (lower) bound over X. Let B≤(X) (B≥(X)) be the set
of all upper (lower) bounds over X.

183

Paper G.

We call a mapping ν : X → R for a valuation over X and denote all
valuations over X by V(X).

Definition 20 (Timed Automaton)

A Timed Automaton (TA) is a tuple A = (L, ℓ0,X, Σ, →, I,R), where

1. L is a finite set of control locations,

2. ℓ0 ∈ L is the initial location,

3. X is a finite set of clocks,

4. Σ is a finite set of channels,

5. → ⊆ L × B≥(X) × (Σo ∪ Σi) × 2X × L is a set of edges. We write
Loc g,a,U

−→ Loc′ for an edge where Loc is the source and Loc′ the target
location, g ∈ B≥(X) is a guard, a ∈ Σo ∪ Σi is a label, and U ∈ V(X) →
V(X) is a partial function giving the discrete-clock updates,

6. I : L → B≤(X) is an invariant function, mapping locations to a set of
invariant constraints and

7. R : L → X → R assign rates to the individual clocks in each location1.

Let ν ∈ V(X) be a valuation, R : X → R give clocks rates, d ∈ R be a
real-valued number and let U ∈ V(X) → V(X) be an update-function ; then
we let (ν + d · R) be the valuation ν′ where ν′(x) = ν(x) + d · R(x) and we
let ν′′ = U (ν). If g = c ⊲⊳ n is a clock bound over X and ν ∈ V(X) then ν

satisfies g (ν � g) iff ν(c) ⊲⊳ n. This generalizes in a natural way to a set of
clock bounds.

The state of TA A = (L, ℓ0,X, Σ, →, I,R) is a tuple (Loc, ν) where Loc ∈ L
and ν ∈ V(X). From a state (Loc, ν) the TA may

1. do a timed transition (Loc, ν)
d
−→ (Loc, ν′) if ν′ = (ν + d · R(Loc)) and

ν′
� I(Loc) or

2. do a discrete transitions (Loc, ν)
a
−→ (Loc′, ν′) if there exists Loc

g,a,U
−−→

Loc′ such that ν � g, ν′ = U (ν) and ν′
� I(Loc′).

We define a partition over the clocks of a TA into time-independent, real-
valued variables (XV) and time-dependent clocks (XT) s.t. XV = {x ∈ X |
∀Loc ∈ L we have R(ℓ)(x) = 0 and x is not restricted by I(Loc)} and XT =
X \ XV.

1 Allowing rates other than one is non-standard in TA semantics – in fact this renders
most classical model checking questions undecidable. However, as the methods presented are
simulation-based, arbitrary rates on clocks are practically feasible and semantically sane [12].

184

2. Semantics

We define the infix-operator valuation-join operator
X,Y
⊗ : V(X)×V(Y) →

V(X) as

ν
X,Y
⊗ ν′ = ν′′ where ν′′(x) =

{
ν′(x) if x ∈ Y

ν(x) otherwise

We shall simply write ⊗ for this operation and let X, Y be implicitly de-
fined by the given valuations.

Following the compositional framework of [22] we require that a TA for
any state s is

1. input-enabled i.e. for any a! ∈ Σo there exists some s′ such that s
a!
−→ s′

and

2. action-deterministic i.e. if s
a
−→ s′ and s

a
−→ s′′ then s′ = s′′.

Let us now define a Network of Timed Automata (NTA) with shared
clocks.
Definition 21 (Network Of Timed Automata)

Let A1,A2, . . . ,An be TA where Ai = (Li, ℓi
0, (XV

i ∪XT

i), Σ, →i, Ii,Ri) with the
implicit indices ordering 1 < 2 < · · · < n. Let XV =

⋃
i∈1,...,n X

V

i be the set
of shared clocks, then it holds for all i ∈ 1, . . . , n that XV = XV

i and for all
j ∈ 1, . . . , n where i �= j that XT

j ∩ XT

i = ∅. Also let S(Ai) = Li × V(XT

i)×

V(XV); then we define the states of the network A1‖A2‖ . . . ‖An to be a pair
〈(s1, s2, . . . , sn), ν〉 where if (ℓi, νi) = si then (ℓi, νi ⊗ ν) ∈ S(Ai). A network
may transit from 〈(s1, s2, . . . , sn), ν〉 by

• a timed transition

〈(s1, s2, . . . sn), ν〉
d
−→ 〈(s′1, . . . , s′n), ν〉

if for all i, (ℓi, νi ⊗ ν)
d
−→ (ℓi, ν′

i ⊗ ν) where (ℓi, νi) = s1, (ℓ′i, ν′
i) = s2, and

• a discrete transition

〈((ℓ1, ν1), . . . , (ℓn, νn)), ν〉
a!
−→

i
〈((ℓ′1, ν′

1), . . . , (ℓ′n, ν′
n)), νn〉

if (assuming w.log. that i = 1)

1. (ℓ1, ν1 ⊗ ν)
a!
−→ (ℓ′1, ν′

1 ⊗ ν1), and

2. for j ∈ {2, . . . , n} we have

(ℓj, νj ⊗ νj−1)
a?
−→ (ℓ′j, ν′

j ⊗ νj)

Notice that the discrete transition-rule can be generalized beyond i = 1 by a
temporary reordering of the indices.

185

Paper G.

Fs(ω) =
m

∑
i=0

(
It>0δ

Ai
si
(t) · ∏

j �=i

(
Iτ>tδ

Aj
sj
(t)dτ

)
· γ

Ai

st
i

(a1! · Fs′(ω
1)dt

)
(G.1)

2.2 Stochastic Semantics

David et al. provides the full stochastic semantics of Stochastic Timed Au-
tomata in [23]. Here the semantics is given as a series of repeated races
among components making up the network. In essence, each sub-component
will choose a delay in accordance with the probability distributions defined
locally to that component. The component with the smallest delay will then
win the race and gets to do a discrete step – again chosen according to a
local distribution. However, this discrete step can synchronize with neigh-
boring components, possibly altering their internal state. This procedure is
then repeated over and over.

In the semantics the delays are chosen as follows: if the possible delays
are bounded, the distribution is a uniform distribution between the minimal
delay before some action is possible and the maximal delay where a delay is
still possible.

Formally, we assume there for any state (s) of any TA A exists a delay-
density δAs : R → R and a probability mass function γA

s : Σo → R. Naturally
we will require these functions to be “sane” in the sense that they do not
assign probability mass (density) to impossible actions (delays) i.e. γA

s (a!) �=

0 (δAs (a!) �= 0) implies s
a!
−→ s′ (s d

−→ s′).
Let ω = a1!a2! . . . an! be a finite sequence of output-actions: then we define

the probability of a network A1‖ . . .Am generating the sequence from state

s = (s1, . . . Sn) recursively by Equation G.1. where si
d
−→ sd

i , s
d
−→

a1!
−→

i
s′,

ω1 = a2! . . . an! and base case Fs(ǫ) = 1.

2.3 Function Mockup Unit

Similar to Broman et. al. [5], we shall here define the semantics of a single
FMU as a (timed) state machine. For simplicity, we shall in the definition
ignore the types of the variables, and assume wlog. that they all are reals.

Definition 22

An FMU is a tuple F = (S , init, V, set, get, doStep) where

• S is a set of states,

• init ∈ S is the initial state,

• V is a set of variable names,

186

3. Extension of Uppaal

• set : S × RV → S is a value-setter function,

• get : S × V → R is a value-getter function and

• doStep : S × R≥0 → S is the time-progression function.

For a given FMU F , the exact semantics is defined by the underlying imple-
mentation, and we shall hence only focus on the interaction with STAs.

Definition 23

A stochastic FMU is a tuple Fs = (S , V, set, get, doStep,P) s.t.

• S , V, set, get, doStep are defined as for a regular FMU and

• P : S → [0, 1] is the probability that Fs starts in s ∈ S and we have that
1 = Σs∈SP(s).

Let Fs be a stochastic FMU, then we let

pick(Fs) = (S , init, V, set, get, doStep)

where init ∈ inits is the initial state chosen according to P – by agreement
for a non-stochastic FMU we let pick(s) = 1 where inits = {s} and P(s′) =
0 for all other s′ �= s.

Notice here that our extension of FMUs with stochastic initial state has
the probabilistic choices resolved once; this construction is both practically
and theoretically sound. In practice, such a construction can be ensured by
using seeded pseudo-random number generators. Here the seed is chosen at
random initially, leading to a subsequent determined execution. In a theo-
retical setting, similar generative constructions have been used to define the
semantics of probabilistic programs – for instance for the semantics of the
IBAL language as proposed by Pfeffer et al. in [24].

It is easy to see that the semantics of an FMU fits well within the stochastic
semantics for NTA as the standard specifies a collection of (complex) update-
functions over a state – which in turn can be encoded as a real. However, as
FMUs have no notion of discrete-update labels, to correctly embed an FMU
into an NTA, we shall in the next section describe one way of encapsulating
an FMU within a single STA, such as to make it compatible with the NTA
framework.

3 Extension of Uppaal

To facilitate the import of FMUs in Uppaal, we have extended Uppaal with
a construct for loading dynamic C libraries at run-time. External C func-
tions in Uppaal look and act exactly like regular functions in Uppaal and

187

Paper G.

only their declaration differ by the additional import environment – an ex-
ample of the new syntax can be seen in Figure G.2. We shall here dis-
cuss the type-conversions between the C-like language in Uppaal and ac-
tual C. Furthermore we introduced the type string for string constants and
the type ptr_t for holding pointers to external data—a type with its binary
defined by, and dependent on, the hardware platform Uppaal is executing
on and functionally equivalent to size_t known from regular C. Lastly, to
facilitate single-initialization of external libraries, we have introduced the
void __ON_CONSTRUCT__() and void __ON_DESTRUCT__() – that if
existing, will be called upon model-initialization (and de-initialization respec-
tively), but not for each proposition given to Uppaal. These can be defined
at a global scope as well as in the scope of each individual TA.

3.1 Type Conversion

To maintain sanity during simulation some restrictions on the types being
transferable between Uppaal and external functions are in place. Currently,
the types bool, chan, clock, double, ptr_t, int and string can be used in external
functions, omitting complex types constructed using the struct keyword as
well as two, and more, level arrays. A chart of the type-conversion to C

and other restrictions are given in Table G.1. We further emphasize some
significant differences from linking directly between C programs and working
calling external functions from Uppaal.

• A bool variable in Uppaal is either zero or one—as such, any function
returning bool will return 0 if the C-function called returned 0, and 1
otherwise.

• const is enforced, implying that any variable sent as const, even if sent as
an array or by reference, will not have its value changed in the Uppaal

environment—regardless of the behavior of the C-function called.

• Each import-statement has a private scope, as exemplified by Figure G.2.

• Integers in Uppaal can be given a bounded range. If this range is
violated – either when values are sent by reference or returned – the
model is said to have violated model-sanity, causing a run-time error.

Utilizing this extension of Uppaal and the FMI-standard, we will imple-
ment a co-simulation-algorithm directly as a timed automaton.

4 FMI/FMU in Uppaal

The FMI/FMU standard, version 2.0 is a standard for conducting co-simulation
between different simulation environments. While the standard also supports

188

4. FMI/FMU in Uppaal

Uppaal type C type By Value Return Array
bool bool

chan const char

clock double

double double

ptr_t size_t

int int32_t

string const char

<type>[] <type>

Table G.1: The type-conversion between Uppaal and C. The complex types chan, string, clock
and array-types are sent in C-convention as pointers to raw memory and are thus forced to be
sent as references. All types can be sent by reference, but the immutable types chan and string

are forced const. Lastly, only single-dimension arrays are supported, and only of mutable types;
arrays of chan and string are currently not supported.

// model.xml

...

import "liby"

{

incleft = void inc_a();

getleft = int get_a();

}

...

import "liby"

{

incright = void inc_a();

getright = int get_a();

getright2 = int get_a();

}

...

//libinc.so

int a = 0;

void inc_a()

{

++a;

return a;

}

int get_a()

{

return a;

}

//libinc.so

int a = 0;

void inc_a()

{

++a;

return a;

}

int get_a()

{

return a;

}

Fig. G.2: Scoping rules of external libraries when loading into Uppaal. Each import-statement
creates a new environment – this implies that the variable a has two logical instances, ale f t and
aright where incleft and getleft references ale f t while incright, getright and getright2

references aright.

189

Paper G.

“Model Exchange”, we shall here focus only on co-simulation.
To conduct co-simulation using the FMI/FMU standard, one needs only

two components: (1) A master algorithm controlling the overview and co-
ordination of the composed simulation and (2) one or more FMUs for the
master-algorithm to coordinate and facilitate communication between. This
approach shows its strength by outsourcing the heavy computation of the
simulation to specialized tools while maintaining a global overview and co-
ordination of the composed system at any time. An example of such a com-
posed system, using Uppaal as a FMU for timed automata, was presented
by Bogolomov et. al [2]. In general the MA is imposed on top of the system,
enforcing a semantics particular to the given MA. In our work, we instead em-
bed the external FMUs as timed automata. This allows us to reuse standard,
well-defined, timed automata semantics, allowing us to construct a shallow
MA, ensuring only that the FMI/FMU communication protocol is respected.
In particular, from this approach, we adopt the so-called Interleaving Seman-
tics.

4.1 Master Algorithm and FMUs as Timed Automata

The TAs used for implementing the MA in Uppaal and importing FMUs into
Uppaal are shown in Figure G.3a and Figure G.3b respectively. Let us walk
through the computation of a single simulation step in the composed model.
Initially, observe that

• the state of each FMU is encoded in the comp variable,

• time is a variable tracking the time progressed since the beginning of
the simulation,

• x is a variable tracking the time since the last simulation step,

• step is an array containing all the proposed step-sizes and

• cnt is a variable tracking the number of FMUs that have completed a
given stage of the MA – initially set to zero.

Initially the MA (depicted in Figure G.3a) and each FMU (depicted in
Figure G.3b) is in the Negotiate and Initial-states. As the MA is waiting for
ready signals from the FMUs, all the FMUs will (in random order), call the
initialize-function, abbreviating the setup function calls specified in the FMU
standard. After initialization, each FMU will move from the OK location to
the Ready location – and while doing so, synchronize with the MA on the
ready channel. This forces the MA to wait until all FMUs have reached the
Ready-location. At this point, the MA is forced to move from Negotiate to Find-

Min, synchronizing with all FMUs at once, s.t. each FMU moves from Ready

190

4. FMI/FMU in Uppaal

to Delay. This makes each FMU propose the step-size (which could be com-
puted by more complex functions, such as proposed by Bogolomov et. al [2]),
after which it will wait for the MA to synchronize on either delay , won[id] or
get. The MA will now, stepping from FindMin to Waiting, choose the minimal
proposed step-size and let time progress by the given amount. Whenever
time has progressed exactly minstep time-units, the MA will with even prob-
ability determine a “winner” in between FMUs proposing exactly minstep

time-units as the delay. If the delay is non-zero, the MA will synchronize
on the delay channel, in which case all the FMUs will end up in the Delayed

location, ready to receive a synchronization on get. If the delay is zero, only
the winning FMU will progress to the Delayed location while the remaining
FMUs will await further synchronization. From the Delayed location, each
FMU, upon synchronization with the MA on get, will call the appropriate
getter-functions defined in the FMU-standard, synchronizing the data-arrays
in Uppaal with those in the external FMU. Notice here that if a zero-delay
occurred, some FMU will have won, and all the losing FMUs will at this point
in time move from the Delay to the ZeroDelay location – implying that data is
not fetched from the losing FMUs as it cannot have changed since the last
call to GetValues(). At this point in a simulation-step the MA has reached the
Transfer location while all the FMUs are in the Got location. Here each FMU
will, in random order according to a uniform distribution, transfer their local
values (synchronized with the external FMU) to other FMUs in the system.
The randomness here plays a key part in implementing interleaving seman-
tics, as two FMUs can write to the same variable in a third FMU, effectively
yielding a race-condition. Again, if we are in the special case of a zero-delay,
only the winning FMU will transfer its values. Until all FMUs have moved to
the Transferred location, the MA will wait in the Transfer location. Eventually
the MA will be able to move from Transfer to the Negotiate location, triggering
all the FMUs to move from Transferred to OK, pushing the updated values to
the individual FMUs. This completes the cycle of a single step in the total
simulation.

While our implementation here focuses on a specific MA, one can eas-
ily extend and test different MA algorithms within this framework. In [2],
the authors restrict their MA to impose an ordering of the value-transfers
between the FMUs – such a restriction could be implemented by imposing
an order on each FMU, and checking if this order is respected for each FMU
when synchronizing on dosync . In a similar manner, interoperability between
different versions of the FMU/FMI standard can be achieved by adapting the
general template in Figure G.3b.

191

Paper G.

(a) The MA as a TA.

(b) The template of a single FMU.

Fig. G.3: The TAs used for importing and simulating FMUs in Uppaal.

192

5. Case Study

5 Case Study

To demonstrate our approach we shall construct a model of three small
houses sharing a single heating unit. Each house is composed of two rooms
which each individually can be heated. Heat can be transferred between the
two rooms, but as the houses are placed apart, heat is not transferred between
the houses. The shared heating unit is only capable of heating a single room
at any point in time – furthermore, it takes some time for the heating unit to
be transferred from one house to another.

5.1 How to model one house

Each single house is modeled using OpenModelica and entirely composed
of standard components. The entire model of a house can be seen in Fig-
ure G.4. Here each of the rooms have a heat-capacity of 2649600 J

K and the
wall between the rooms have a thermal conductivity of 6.4 W

K . At the same
time, each of the rooms are affected by the outside temperature, here sepa-
rated by slightly better insulated walls but with a larger surface-area with a
thermal conductivity of 27.20 W

K in total. As it can be seen from Figure G.4,
the house receives three inputs; in_room1, in_room2, and in_outside for the
influence of the heater in either of the rooms and the influence of the (ever
changing) outside temperature. As outputs, the two temperature-converters
troom1 and troom2 give us the variables out_room1 and out_room2. We will
not consider the inner dynamics of the room, but simply view a room as a sin-
gle mass with a heat-capacity. OpenModelica supports the export of models
as Co-Simulation FMUs – in the case of our model from Figure G.4, we get
an FMU with three real-valued inputs in_room1, in_room2 and in_outside

(in Watts, Watts and degrees Celsius respectively) as well as the two outputs
in degrees Celsius out_room1 and out_room2.

5.2 A Controller as a Timed Automaton

The controller is implemented using Uppaal timed automata and can be
seen in Figure G.5. Let us informally introduce the notation used for Uppaal

timed automata; circles denote locations and arrows denote edges. The key fea-
ture of the timed automata is the clock construction; variables that all progress
at the same rate and track time. Each location can be labeled with an invari-
ant, colored purple – a predicate that must evaluate true when the TA is in the
given location. Locations can also be marked with U or C for urgency and com-
mitted urgency – forcing immediacy (and prioritized immediacy), implying
that time cannot elapse when the TA is in the given location. In Figure G.5 we
can see that the Heating location is marked by a double-circle, indicating that it

193

Paper G.

Fig. G.4: A single house with two rooms modeled using OpenModelica.

is the initial location. Edges can be labeled with select-statements (yel low),
guards (green), updates (blue) and synchronizations (turquoise) where

• select-labels duplicate the single edge into multiple instances, one for
each value possible in the declared type,

• guard-labels must evaluate to true for the edge to be admissible,

• update-labels can reset clocks and update variables declared using the
C-language,

• synchronization-labels allows two or more TAs in the same system to
move in unison when one is outputting (eg. a!) and multiple are in-
putting (a?) on the channel a.

Notice here that we only use the broadcast synchronization – for a given
channel a, any TA is free to output a! (if allowed by a guard), and all other
TAs which can receive a? must do so.

Aside from standard TA features, Uppaal supports a C-like language for
complex constructions – including variable-declarations, function-calls and
such.

The controller shown acts in a bang-bang manner; given a target tem-
perature for each room (the tgt array), it randomly assigns the heating unit
(the heat array) to any room with a temperature (the temp array) lower than
or equal the target-temperature (right edge). If all rooms have reached their
target-temperature, we can take the left edge, heating no room. When taking
the right edge, if the controller decides to change the house being heated, a
delay will incur between turning of the heater in one house and turning on
the heater in another house. This is controlled by the variable wt which forces
our controller to let time progress in the Wait-location (due to the combination
of the invariant t <= wt and the guard t == wt) – but only if the chosen house

194

5. Case Study

Fig. G.5: The bang-bang controller implemented in Uppaal. The controller samples the values
of the system each 60 time units and chooses at random to heat a room in a house where
the measured temperature is lower than the set-temperature of the given room (right-hand side
transition). If no such exist, no room is heated (left-hand side transition). Whenever a room and
house is chosen, if the house differs from previous choice, the controller will wait TRANSTIME

between heating one room and another.

differs, determined by the in-line if wt = (oh == h)?0 : TRANSTIME . Here
one can also see the select-statement in action; an edge is created for each
value in the type house_t (h ∈ {1, 2, 3}) and each value in room_t (r ∈ {1, 2})
– allowing for a concise description.

5.3 Composition of models

With the house and controller modeled, we can now focus on composing
the entire system. Our system, as illustrated by Figure G.6, aside from three
houses and the controller includes the weather – giving the outside tempera-
ture. For simulating the weather, we here assume a simple sinus-curve with
a frequency of 24 hours, oscillating between 4 and 20 degrees Celsius. We
can also see from Figure G.6 that the houses have no direct interaction with
each other, and are only indirectly communicating via the temperatures they
report and the choices of the controller.

Each of these individual components (even Uppaal models [2]) can be
exported as Co-Simulation FMU’s – and thus composed into our system from
Figure G.6 using existing tools. However, as our initial controller exhibits
randomness, we would like to answer the questions: What is the expected
minimal and maximal temperatures of any room? and: If a room becomes too cold,
will it become heated again within two hours?

These questions both contain probabilistic measures over continuous time
– and thus are not answerable by current tools. To remedy this, we below
propose an extension of the Statistical Modelchecker Uppaal SMC that allows
for dynamically linking and calling arbitrary C-functions from inside the tool
– a feature that facilitates Co-Simulation of FMU’s.

195

Paper G.

Controller

Weather

House1

House2

House3

Fig. G.6: An informal overview of the composed system. The arrows indicate the flow of infor-
mation.

6 experiments

This section presents the experiments that we perform on our case study
when using the controller presented in Figure G.5. In this example, all the
components are exported into FMUs and recomposed in Uppaal given the
framework presented in Section 4 – including the controller. We shall con-
sider the model presented in Section 5 and demonstrating three different
features of Uppaal SMC; Simulation, Estimation and Statistical Modelcheck-
ing.

The composed model, FMUs and extended version of Uppaal SMC for 64-
bit Linux-systems can be found at http://people.cs.aau.dk/~pgj/UPPAAL_
FMIFMU.zip. Notice that the extended version of Uppaal SMC includes func-
tionality to export timed automata as FMUs as presented by Bogolomov et
al. [2]. We also provide a prototype tool for embedding FMUs into a Uppaal-
importable timed automata for ease of use.

6.1 Simulation

In Figure G.7 one can observe the results of executing following query in
Uppaal

simulate 1 [<=3600∗24∗7]{h1_output[0], h1_output[1],

h2_output[0], h2_output[1],

h3_output[0], h3_output[1]}

This proposition monitors the temperatures of each house over a period
of seven days for a single simulation. As expected, initially our controller
rapidly heats the coldest rooms in all of the houses. We can also observe
that the temperature of the rooms after the first day is kept within a 19 to 22
degrees window in the current setting.

196

6. experiments

Fig. G.7: A single simulation of the system. Each color represents the temperature of a room.
The starting temperature for the first room in each house is 20 degrees Celcius and 4 degrees
Celsius for the second room.

6.2 Estimation

However, such a single simulation does not quantify over the probabilistic
behavior of our system – one might be interested in knowing the expected
maximal and minimal temperatures (disregarding the first day as our rooms
are in an abnormal state).

Such a measure can be achieved by the following propositions.

E[<=3600∗24∗7;100] (min: mintemp())

E[<=3600∗24∗7;100] (max: maxtemp())

Here mintemp and maxtemp are functions defined in Uppaal C comput-
ing the minimum and maximum of the temperatures of all the rooms. The
proposition computes the estimated minimal (resp. maximal) value of the ex-
pression over the course of a weeks simulation – and it does so on the basis
of 100 simulations.

As we can see in Figure G.8, the performance of our constructed controller
is fairly stable. Both the minimal and maximal temperature of any room stays
(on average) within 18.9 degrees and 21.3 degrees Celsius. However, while
the average peak temperature is stable at 21.3 degrees with less than a tenth
of a degree span on the observed values, the minimal temperature over a
week was observed to vary by more than a degree across all runs.

197

Paper G.

Fig. G.8: The super-imposed probability distributions of the expected minimal and maximal
temperatures over all the rooms, over a week, disregarding the first day, based on 100 samples.
The x-axis is given in degrees Celsius. Blue indicates minimal expectation while red indicates
maximal. The mean of the minimal expectation is 18.9 while the mean of the maximal expecta-
tion is 21.3.

6.3 Statistical Modelcheking

While the estimation and simulation propositions provide some quantitative
measure on different metrics of the system, we can use the statistical model
checking features of Uppaal SMC to reason on the probabilistic behavior of
our system.

Let us try to quantify the fairness of our controller; what is the probability
that the temperature difference between the coldest room and the hottest
room is greater than two degrees Celsius after the first day? This we can
express as follows.

Pr[<=3600∗24∗7] (<>time > 3600∗24 &&

(maxtemp() − mintemp()) >= 2)

As we can observe in Figure G.9, there is a fairly high chance (more than
50%) that the temperature difference between the coldest and hottest room
will grow beyond two degrees within a week.

We can also construct more complex propositions using the temporal
MITL-logic. As we already know, the set-temperature cannot be respected
in general in our example – however, we might be able to accept deviations
as long as they are not for extended periods of time. We therefore construct
the following proposition capturing: after the first day, can it ever happen that

198

7. Conclusion

Fig. G.9: The probability distribution of having only a two-degree difference between the coldest
and warmest room with the cumulative probability superimposed (black line). The measure is
obtained using the statistical parameters ǫ = 0.05 and α = 0.05 – yielding 398 samples needed
by Uppaal SMC. With a 95% confidence the true probability lies within [0.50, 0.60] of having a
greater than 2-degrees difference at any point within a week.

the second room of the first house has a temperature below 20 degrees for more than
two hours at a given time.

Pr (<> [86400,604800]([][0,7200] (h1_output[1] < 20)))

We can observe in Figure G.10 that this property is not surely satisfiable.
Already in the second day of the simulation there is more than 10% chance
that the controller will not be able to recover from a threshold-violation
within two hours. We can also observe that this tendency seems to be re-
peating every night of our simulation.

7 Conclusion

In this paper we demonstrated the ease with which FMI-FMU models ex-
ported from other tools can be integrated into the setting of Uppaal SMC.
We provide the flexibility of modeling different Master Algorithms (MAs) in
a sound semantical framework facilitating probabilistic and temporal reason-
ing.

We believe that the possibility of using already existing domain models is
essential in order to facilitate the use of formal methods in industrial systems,
as the correct re-modeling of entire systems is a very time consuming exer-
cise. The expressiveness of the modeling language available in Uppaal SMC
allows for the efficient modeling of real-world scenarios with inherently un-
certain and time-dependent behaviour – such as signal noise, human inter-
action and general natural phenomena. Thus this paper aims to make recent

199

References

Fig. G.10: The probability distribution of not recovering from a threshold violation. The statisti-
cal parameters are ǫ = 0.05 and α = 0.05 – yielding 738 samples needed by Uppaal SMC. With
a 95% confidence the true probability lies within [0.21, 0.31] of not recovering.

advances in statistical model checking and statistical validation of systems
available for use in an industrial setting.

8 Future Work

Adding the possibility of calling arbitrary C-libraries during statistical sim-
ulation opens up for a number of new applications. This is true both for
Uppaal SMC and the related tool Uppaal Stratego.

We consider the option of utilizing Uppaal Stratego to perform con-
troller synthesis for heterogeneous FMI-FMU systems as the most promising
direction. This would make it much easier to generate optimized controllers
using machine learning for systems being developed using other modeling
tools. With the current approach all components in the system must be re-
modeled in Uppaal Stratego.

Calling external C-libraries can also be applied within the domain of clas-
sical model checking in Uppaal. Here there is the added restriction that the
external calls can only be used to update the discrete variables and not the
clock variables. On top of statelessness we also require that the external FMUs
are strictly deterministic for the model checking to be semantically sound. For
application of this in a non FMI-FMU setting see [4].

References

[1] FMI Standard Orginization, “FMI support in tools,” http://fmi-
standard.org/tools/.

200

References

[2] S. Bogomolov, M. Greitschus, P. G. Jensen, K. G. Larsen, M. Mikučio-
nis, T. Strump, and S. Tripakis, “Co-simulation of hybrid systems with
SpaceEx and Uppaal,” in Proceedings of the 11th International Modelica
Conference, Versailles, France, September 21-23, 2015, no. 118. Linköping
University Electronic Press, 2015, pp. 159–169.

[3] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen,
“Uppaal SMC tutorial,” International Journal on Software Tools for Technol-
ogy Transfer, vol. 17, no. 4, p. 397, 2015.

[4] F. Cassez, P. G. de Aledo, and P. G. Jensen, WUPPAAL: Computation
of Worst-Case Execution-Time for Binary Programs with UPPAAL.
Cham: Springer International Publishing, 2017, pp. 560–577. [Online].
Available: https://doi.org/10.1007/978-3-319-63121-9_28

[5] D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin,
S. Tripakis, and M. Wetter, “Determinate composition of FMUs
for co-simulation,” in Proceedings of the Eleventh ACM International
Conference on Embedded Software, ser. EMSOFT ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 2:1–2:12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2555754.2555756

[6] F. Cremona, M. Lohstroh, D. Broman, M. D. Natale, E. A.
Lee, and S. Tripakis, “Step revision in hybrid co-simulation with
FMI,” in 2016 ACM/IEEE International Conference on Formal Methods
and Models for System Design, MEMOCODE 2016, Kanpur, India,
November 18-20, 2016. IEEE, 2016, pp. 173–183. [Online]. Available:
http://dx.doi.org/10.1109/MEMCOD.2016.7797762

[7] M. Pazold, S. Burhenne, J. Radon, S. Herkel, and F. Antretter, “Inte-
gration of Modelica models into an existing simulation software using
FMI for co-simulation,” in Proceedings of the 9th International MODELICA
Conference; September 3-5; 2012; Munich; Germany, no. 76. Linköping
University Electronic Press; Linköpings universitet, 2012, pp. 949–954.

[8] N. Pedersen, T. Bojsen, J. Madsen, and M. Vejlgaard-Laursen, “FMI for
co-simulation of embedded control software,” in The First Japanese Mod-
elica Conferences, May 23-24, Tokyo, Japan, no. 124. Linköping University
Electronic Press, Linköpings universitet, 2016, pp. 70–77.

[9] S. Guermazi, S. Dhouib, A. Cuccuru, C. Letavernier, and S. Gérard,
“Integration of UML models in FMI-based co-simulation,” in
Proceedings of the Symposium on Theory of Modeling & Simulation,
ser. TMS-DEVS ’16. San Diego, CA, USA: Society for Computer
Simulation International, 2016, pp. 7:1–7:8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2975389.2975396

201

References

[10] Object Management Group, “fUML,”
http://www.omg.org/spec/FUML/.

[11] P. Bulychev, A. David, K. G. Larsen, M. Mikučionis, D. B. Poulsen,
A. Legay, and Z. Wang, “UPPAAL-SMC: Statistical model checking for
priced timed automata,” arXiv preprint arXiv:1207.1272, 2012.

[12] A. David, D. Du, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen,
and S. Sedwards, “Statistical model checking for stochastic hybrid sys-
tems,” arXiv preprint arXiv:1208.3856, 2012.

[13] P. E. Bulychev, A. David, K. G. Larsen, A. Legay, G. Li, and D. B. Poulsen,
“Rewrite-based statistical model checking of WMTL.” RV, vol. 7687, pp.
260–275, 2012.

[14] O. Gadyatskaya, R. R. Hansen, K. G. Larsen, A. Legay, M. C. Olesen, and
D. B. Poulsen, “Modelling attack-defense trees using timed automata,”
in International Conference on Formal Modeling and Analysis of Timed Sys-
tems. Springer International Publishing, 2016, pp. 35–50.

[15] A. David, K. Larsen, A. Legay, M. Mikučionis, D. Poulsen, and S. Sed-
wards, “Runtime verification of biological systems,” Leveraging Applica-
tions of Formal Methods, Verification and Validation. Technologies for Master-
ing Change, pp. 388–404, 2012.

[16] J. H. Kim, A. Boudjadar, U. Nyman, M. Mikucionis, K. G. Larsen, and
I. Lee, “Quantitative schedulability analysis of continuous probability
tasks in a hierarchical context,” in Component-Based Software Engineering
(CBSE), 2015 18th International ACM SIGSOFT Symposium on. IEEE,
2015, pp. 91–100.

[17] D. Basile, F. Di Giandomenico, and S. Gnesi, “Statistical model checking
of an energy-saving cyber-physical system in the railway domain,”
in Proceedings of the Symposium on Applied Computing, ser. SAC ’17.
New York, NY, USA: ACM, 2017, pp. 1356–1363. [Online]. Available:
http://doi.acm.org/10.1145/3019612.3019824

[18] W. Ahmad, M. Jongerden, M. Stoelinga, and J. v. d. Pol, “Model check-
ing and evaluating QoS of batteries in MPSoC dataflow applications via
hybrid automata,” in 2016 16th International Conference on Application of
Concurrency to System Design (ACSD), June 2016, pp. 114–123.

[19] C. Jegourel, A. Legay, and S. Sedwards, “A platform for high perfor-
mance statistical model checking–PLASMA,” Tools and Algorithms for the
Construction and Analysis of Systems, pp. 498–503, 2012.

202

References

[20] A. Arnold, M. Baleani, A. Ferrari, M. Marazza, V. Senni, A. Legay,
J. Quilbeuf, and C. Etzien, “An application of SMC to continuous
validation of heterogeneous systems,” in Proceedings of the 9th
EAI International Conference on Simulation Tools and Techniques, ser.
SIMUTOOLS’16. ICST, Brussels, Belgium, Belgium: ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2016, pp. 76–85. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3021426.3021438

[21] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi,
and M. Hendriks, “UPPAAL 4.0,” in Quantitative Evaluation of Systems,
2006. QEST 2006. Third International Conference on. IEEE, 2006, pp. 125–
126.

[22] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski, “Timed
I/O automata: a complete specification theory for real-time systems,”
in Proceedings of the 13th ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010,
2010, pp. 91–100.

[23] A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, J. van
Vliet, and Z. Wang, “Statistical model checking for networks of priced
timed automata,” in FORMATS, ser. LNCS, vol. 6919, 2011, pp. 80–96.

[24] A. Pfeffer, “IBAL: A probabilistic rational programming language,” in In
Proc. 17th IJCAI. Morgan Kaufmann Publishers, 2001, pp. 733–740.

203

References

204

Paper H

WUPPAAL: Computation of Worst-Case
Execution-Time for Binary Programs with Uppaal

Franck Cassez, Pablo Gonzalez de Aledo and Peter Gjøl Jensen

The paper has been published in the
Proceedings of Models, Algorithms, Logics and Tools: Essays Dedicated to Kim
Guldstrand Larsen on the Occasion of His 60th Birthday, LNCS Vol. 10460,

pp. 560–570, 2017.

c© Springer International Publishing AG 2017
The layout has been revised.

1. Introduction

Abstract

We address the problem of computing the worst-case execution-time (WCET) of bi-
nary programs using a real-time model-checker. In our previous work, we introduced
a fully automated and modular methodology to build a model (network of timed au-
tomata) that combined a binary program and the hardware to run the program on.
Computing the WCET amounts to finding the longest path time-wise in this model,
which can be done using a real-time model checker like Uppaal.

In this work, we generalise the previous approach and we define a generic frame-
work to support arbitrary binary language and hardware.

We have implemented our new approach in an extended version of Uppaal,
called Wuppaal. Experimental results using some standard benchmarks suite for
WCET computation (from Mälardalen University) show that our technique is prac-
tical and promising.

1 Introduction

Embedded real-time systems (ERTS) are composed of a set of periodic tasks
(software) to run on a given architecture (hardware). The tasks are usually
released at periodic time intervals. For safety-critical ERTS, each task must
be completed by a deadline (relative to the release time). Checking whether
a set of periodic tasks can be scheduled on a processor such that they always
complete before their deadline is a schedulability analysis.

Tests for schedulability are based on the tasks’ parameters, among them
an upper bound for the execution time of each task. Over-estimating the ex-
ecution time of a task may be safe but can also result in a set of tasks being
declared non schedulable. This may lead to a choice of over-powered and
over-expensive hardware.

With the ever increasing connectivity of many devices, ERTS are also sub-
ject to malicious attacks. Some of them can make use of time measurements
to establish communication channels (timing covert channel): private informa-
tion can be communicated or leaked to attackers by controlling/observing
the time intervals between events (e.g., how long a computation takes).

It follows that tight bounds for the execution time of the tasks are instru-
mental to designing safe (schedulable), efficient and secure ERTS. Each task
in an ERTS executes a program. The execution time of the program may de-
pend on the input. The worst-case execution-time (WCET) of the program
is the supremum of the execution times of the program over all the input.
Computing the WCET for binary programs is a non-trivial task for at least
two reasons:

• the set of input data may be very big and simulating the program over a

207

Paper H.

subset of the input data only provides a lower bound of the worst-case
execution-time;

• the hardware that runs the program is complex (pipelined architecture,
caches) and it is effectively a timed concurrent system (e.g., the pipeline
runs in parallel with the caches and they both have timing specifica-
tions.)

The WCET problem. Given a binary program P, some input data d and the
hardware H, the execution time of P for the input d on H, denoted Xtime(P, d, H),
is measured as the number of processor cycles between the beginning and
end of P’s computation for d (we assume P always terminates.) The worst-case
execution time (WCET) of program P on hardware H, denoted WCET(P, H), is
the supremum of the Xtime(P, d, H) for d ranging over the input data domain
D:

WCET(P, H) = sup
d∈D

Xtime(P, d, H). (H.1)

The WCET problem asks the following:

“Given P and H, compute WCET(P, H)”.

In general, the WCET problem is undecidable because otherwise we could
solve the halting problem. However, for programs that always terminate
and have a bounded number of paths, it is computable. Indeed the possible
runs of the program can be represented by a finite tree (and there is a finite
number states for the program and the hardware). This does not mean that
the problem is tractable though: the (values of the) input data (e.g., an fixed-
size array to be sorted) are usually unknown and the number of program
paths to be explored may grow exponentially in the size of the program.

As mentioned before, programs run on increasingly complex architectures
featuring multi-stage pipelines and fast memory components like caches: they
both influence the WCET in a complicated manner. It is then a challenging
problem to determine a precise WCET even for relatively small programs
running on complex single-core architectures.

Computing a precise WCET for a given program is very hard and the
WCET problem is usually re-stated as:

“Given P and H, compute a tight upper bound of WCET(P, H)”.

Tightness can be measured (see [1]) by comparing actual WCET to the ones
computed using a particular method. In the sequel we use WCET(P, H) to
denote an upper bound of the WCET for a given program.

208

1. Introduction

Standard methods and tools for computing WCET. The survey article [2]
provides an exhaustive presentation of WCET computation techniques and
tools. A first set of methods based on simulations ([3–5]) are not suitable for
safety-critical ERTS as they only provide lower bounds for the WCET.

A second set of methods rely on the construction of a Control Flow
Graph (CFG) for the binary program to analyse, and the determination of
loop bounds. The CFG is then annotated with some timing information about
the cache misses/hits (some may/must analysis using abstract interpretation
based techniques) and pipeline stalls to build a finite model of the system.
A final paths analysis is carried out on this model e.g., using Integer Lin-
ear Programming (ILP). There are many implementations of this technique,
the most prominent one is probably aiT [6, 7] which combines static analysis
tools and ILP for computing WCET.

Real-time model checking based methods for computing WCET. Consid-
ering that (i) modern architectures are composed of concurrent components
(the units of the different stages of the pipeline, the caches) and (ii) the syn-
chronisation of these components depends on timing constraints (time to exe-
cute in one stage of the pipeline, time to fetch data from the cache), formal
models like timed automata [8] and state-of-the-art real-time model-checkers like
Uppaal [9, 10] appear well-suited to address the WCET problem.

The use of network of timed automata (NTA) and the model-checker
Uppaal for computing WCET on pipelined processors with caches was first
reported in [11, 12] where the METAMOC method is described. METAMOC
consists in: 1) computing the CFG of a program, 2) composing this CFG with
a (network of timed automata) model of the processor and the caches. Com-
puting the WCET is then reduced to computing the longest path (time-wise)
in a NTA.

The previous framework is very elegant yet has some shortcomings: (1)
METAMOC relies on a value analysis phase to compute the CFG but this
may not terminate, (2) some programs cannot be analysed (if they contain
register-indirect jumps), (3) manual annotations (loop bounds) is required on
the binary program, and (4) the unrolling of loops is not safe for some cache
replacement policies (FIFO). In our previous work [1, 13] we have reported
some results on the computation of WCET using NTA that overcome the lim-
itations of METAMOC: (1) we introduced an automatic method to compute
a CFG and a reduced abstract program equivalent WCET-wise to the origi-
nal program; (2) we designed detailed hardware formal models and (3) we
evaluated the accuracy of our technique (comparison of measured execution
times and the results of our analysis).

The technique we introduced in [1, 13] still has some drawbacks:

• the Uppaal model (NTA) contains the CFG of the program and the ma-

209

Paper H.

chinery that is needed to simulate some instructions (written as func-
tions in Uppaal); some instructions (e.g., setting the overflow flag) are
partially modelled because of the restricted expressiveness of the C-like
operators supported by Uppaal;

• the Uppaal model (NTA) also contains components to explicitly model
the caches as large arrays (of cache lines) which contributes a big part
of the state of the system;

• as a result, we rely on Uppaal to perform a lot of discrete computations
which is not effective; moreover, the discrete state of the Uppaal model
contains a large amount of information (e.g., the full state of the caches)
which also impacts the efficiency of the Uppaal analysis engine.

Our contribution. Based on our previous work [1, 13], we propose three
new contributions: (1) a generic framework for computing WCET which is
language agnostic; (2) a new implementation of our framework based on an
extended version Uppaal and (3) a tool chain that combines our extended
Uppaal and an off-the-shelf binary program simulator (based on gdb [14]).

Outline of the paper. In Section 2 we recall how the WCET can be com-
puted via model checking. The material in this section is based on [1, 13]. In
Section 3, we introduce our new generic technique to compute the WCET of
arbitrary programs. Examples are provided for an mono-processor pipelined
ARM architecture. Section 4 provides details of the implementation of our
technique, a tool chain architecture and some experimental results.

2 Computation of WCET via real-time model check-

ing

In this section we introduce the basic concepts of program runs together with
an abstract model of the hardware in order to compute the execution time of
a sequence of program instructions.

Hardware. The hardware usually consists of a finite set R of registers, a
multi-stage execution pipeline and caches (e.g., instruction and data caches).
It typically supports a finite set of instructions, I , e.g., mov r1,r2 is an in-
struction that copies the contents of register r2 into register r1. The main
memory component is a table of words of a given width 32-bit or 64-bit
words. M is the (finite) set of main memory cells and we denote D the mem-
ory domain (e.g., 32-bit or 64-bit words). A memory state is thus a map from

210

2. Computation of WCET via real-time model checking

Fig. H.1: Simplified ARM920T architecture

M to D. The caches and the pipeline are essential components of the hard-
ware performance-wise but they are not necessary to define the semantics of
the instructions. We omit them for now and will account for them later in
this section. A state of the hardware is fully determined by the contents of
the registers, the contents of the memory and the contents of the pipelines
and caches. The hardware has a designated register, the program counter that
points to the next instruction to process. An example of such an architecture,
the ARM920T, is given in Fig. H.1. The orange blocks are the blocks we need
to model to compute the execution time of program runs.

Program runs. A binary program is a map P : P → I , with P ⊆ M, that
associates with some memory locations ℓ ∈ P an instruction. P(ℓ) is the
instruction to be processed when the program counter of the hardware is at
ℓ.

Given a program P, we let LH(P) ⊆ P∗ be the set of valid executions
of P on H. Actually we only require LH(P) to over-approximate the set of
feasible executions of the program P. To define this set we need to take into
account the semantics of each instruction in I , and the values of the registers
of H and the memory state: this state is given by a valuation ν : R∪M → D.
There are usually many different possible initial states of the hardware (e.g., a
sorting program that sorts an array of k arbitrary elements, there are Dk initial
possible input data).

211

Paper H.

Listing H.1: Prog1

1 int c_entry(int a, int b){

2 int c=1,i;

3 for (i = 0; i < 10; i++) {

4 if(a < b){

5 c *= 10;

6 } else {

7 c += 10;

8 }

9 }

10 return c;

11 }

An example of a binary program compiled for the ARM920T is provided
in Fig. H.2.a. This program can be obtained by compiling the C program
Prog1 (Listing H.1). The Control Flow Graph (CFG) is given in Fig. H.2.b.
The semantics of the program does not depend on the pipeline architecture
nor on the caches: these components only impact the execution time of the
program runs. However, to ensure that the WCET of each program is well-
defined, we may assume that LH(P) is finite. Otherwise it contains arbitrary
long sequences (the alphabet P is finite) and the set of execution times is
unbounded and the WCET is +∞.

The set LH(P) of program runs is finite but may contain more than one
trace even if the program is deterministic. For instance in Prog1 (Listing H.1),
the values of a, b are arbitrary at the beginning of the program because they
are parameters of the function c_entry. This makes the test at line 4 a non-
deterministic choice in our program over-approximation because the values
of a and b are arbitrary (there are input parameters of the c_entry function).
We can over-approximate the set of runs of this program by assuming that
each time the test at line 4 is performed, the outcome is either true or false
and both cases should be taken into account to compute the WCET. Notice
that this is an over-approximation if a < b evaluates to True (resp. False) the
first time it must evaluate to True (resp. False) in the following iterations.
Using this strategy we generate a super set of the set feasible runs of Prog1.

Execution time of a run. The execution time of a run σ ∈ P∗ typically
depends on the following factors:

• the time it takes for the instructions in σ to flow into the pipeline stages.
This is usually non-trivial as the stages run in parallel. Moreover, the
flow of instructions in the successive stages of the pipeline is governed
by precedence rules: the execution of an instruction may require the
availability of the result of another instruction which may temporarily
block an instruction in a pipeline stage: this is known as a pipeline stall.

• the time it takes to fetch instructions and data from the caches and main

212

2. Computation of WCET via real-time model checking

10000 <_Reset>:

10000: e1a00000 nop

10004: e59fd004 ldr sp, [pc, #4]

10008: eb000001 bl 10014 <c_entry>

1000c: eafffffe b 1000c <_Reset+0xc>

10010: 00011090 .word 0x00011090

10014 <c_entry>:

10014: e24dd010 sub sp, sp, #16

10018: e3a03001 mov r3, #1

1001c: e58d300c str r3, [sp, #12]

10020: e3a03000 mov r3, #0

10024: e58d3008 str r3, [sp, #8]

10028: ea000010 b 10070 <c_entry+0x5c>

1002c: e59d2004 ldr r2, [sp, #4]

10030: e59d3000 ldr r3, [sp]

10034: e1520003 cmp r2, r3

10038: aa000006 bge 10058 <c_entry+0x44>

1003c: e59d200c ldr r2, [sp, #12]

10040: e1a03002 mov r3, r2

10044: e1a03103 lsl r3, r3, #2

10048: e0833002 add r3, r3, r2

1004c: e1a03083 lsl r3, r3, #1

10050: e58d300c str r3, [sp, #12]

10054: ea000002 b 10064 <c_entry+0x50>

10058: e59d300c ldr r3, [sp, #12]

1005c: e283300a add r3, r3, #10

10060: e58d300c str r3, [sp, #12]

10064: e59d3008 ldr r3, [sp, #8]

10068: e2833001 add r3, r3, #1

1006c: e58d3008 str r3, [sp, #8]

10070: e59d3008 ldr r3, [sp, #8]

10074: e3530009 cmp r3, #9

10078: daffffeb ble 1002c <c_entry+0x18>

1007c: e59d300c ldr r3, [sp, #12]

10080: e1a00003 mov r0, r3

10084: e28dd010 add sp, sp, #16

10088: e12fff1e bx lr

(a) ARM binary for Prog1

10000

10004

10008

10014

10018

1001c

10020

10024

10028

10070

10074

10078

1002c

10030

10034

10038

1007c

10080

10084

10088

10058

1005c

10060

10064

10068

1006c

1003c

10040

10044

10048

1004c

10050

10054

(b) CFG of the binary program

Fig. H.2: ARM binary and corresponding CFG for Prog1

213

Paper H.

memory.
These memory transactions are usually performed in different pipeline
stages and can be concurrent (e.g., an instruction in the fetch stage can
be fetched from the instruction cache while another instruction in the
memory stage performs some transactions with the data cache.)

In order to determine how long it takes for a run σ ∈ P∗ to execute on the
hardware H, it is sufficient to know:

• the processing time of each instruction in the different pipeline stages,

• the registers read from/written to by each instruction (to determine
pipeline stalls),

• the status of the memory transactions for the instructions in σ: cache
hits and misses.

Given a run ρ ∈ LH(P), we can build an annotated run ρ̃ that contains the in-
formation required to fully determine the execution time of ρ on H. This
extended run may capture the processing time of the instruction in each
pipeline stage, the registers read from/written and the cache hits and misses.
We let La

H(P) be the set of annotated runs associated with LH(P).

For example, the following run ρ = 10000.10004.10008.10014.10018 in
LH(P) can be annotated with the time it takes to process each corresponding
instruction in Prog1 (Fig. H.2.b), and whether fetching the instruction (from
the instruction cache) will result in cache Hit or a cache Miss. Hence La

H(P)
can be defined as sequences of pairs (k, b) ∈ N ×B with the following mean-
ing: k is the time it takes to process the instruction at p in the execution stage
(E stage) of the pipeline; if b is true, fetching the instruction from the instruc-
tion cache results in a Hit otherise it is a Miss. This transformation will give
an annotated run ρ̃ = (2, True).(1, False).(2, True).(2, False).(1, False).

As mentioned earlier, it is noticeable that the hardware model needed to
compute the execution time of a run is much simpler than the actual con-
crete hardware model: there is no need to model the actual processing unit
(e.g., registers, memory) nor to perform actual computations (e.g., execute
instructions).

Formal hardware model. As a sequence ρ̃ ∈ La
H(P) contains enough infor-

mation to compute the execution time of a program run ρ ∈ LH(P) we can
define an abstract model of the hardware as a timed automaton transducer,
Aut(H), that maps each ρ̃ ∈ La

H(P) to a positive natural number Aut(H)(ρ),
which is the execution time of ρ on H. Hence the WCET of a program P on
the hardware H is defined by:

WCET(P, H) = max
σ∈La

H(P)
Aut(H)(σ). (H.2)

214

2. Computation of WCET via real-time model checking

As La
H(P) over-approximates the set of program runs, we ensure that the

value of the WCET we compute (equation (H.2)) is an upper bound of the
actual WCET (this assumes that the hardware model Aut(H) correctly models
the timing behaviour of the hardware).

Modular computation of the WCET of a program. In practice to compute
WCET(P, H) we need to provide a generator for La

H(P) and the model of
the hardware Aut(H). La

H(P) can be generated by a finite state automaton
Aut(P) (see [1, 13]). In general La

H(P) is a finite set of runs and can be defined
by a finite computation tree.

Fig. H.3: Modular Computation of WCET

In [1, 13] the modular computation of the WCET depicted in Fig. H.3 is
fully implemented in Uppaal as follows:

• a Uppaal automaton, Aut(P), that generates La
H(P) is computed based

on the control flow graph of a program (for an ARM architecture.)

• the hardware model is provided for a given architecture (ARM920T).
It comprises of a model of the pipeline and a model for the caches
(complete model with the current state of the caches.) Notice that our
method is robust against the so-called timing anomalies [15].

• the WCET can be computed either using a binary search or using Uppaal

sup operator.

This implementation has several drawbacks:

• the automaton Aut(P) that generates La
H(P) is implemented using a

limited C-like language. This is sometimes cumbersome and the se-
mantics of some instructions had to be partially modelled (e.g., some
bit-wise operations on registers). The result is that the Uppaal model

215

Paper H.

of the program which is a finite automaton, is hard to encode using
Uppaal restricted set of C supported operations. This set was sufficient
to model a large set of instructions of the ARM920T processor but may
be too limited to model the semantics of more complex processors.

• the FIFO caches (instruction and data) are modelled precisely using an
array to model the lines in the caches. The hardware model Aut(H)
contains the full state of the caches. This makes the discrete part of
the state of the system Aut(P) × Aut(H) very large and impacts the
efficiency of the model checking algorithm.

In the next section we describe how to overcome the previous limitations by
having La

H(P) generated by a C-library outside Uppaal.

3 WUPPAAL

Program computation tree. In this section we assume that La
H(P) is avail-

able and represented as a finite tree Treea
H(P). This is based on the assump-

tion that the number of iterations in the loops do not depend on an (arbitrary)
input parameter. This is a usual assumption1 in the WCET methods [2]
as otherwise the WCET may be unbounded. Fig. H.4 shows a sub-tree of
Treea

H(Prog1). We use a sliced version of the binary program when we build
the tree. This sliced version is equivalent WCET-wise [1, 16] to the actual pro-
gram. The components Mi in Fig. H.4 provides the values of the variables
that are in the slice (some registers and other memory cells).
The following operations can be performed on Treea

H(P):

• get_init() returns the root of the tree Treea
H(P).

• get_next(n) returns the list of children of the node n (empty if n is a
leaf).

• hit_ins(n) is a Boolean that indicates whether the instruction to be exe-
cuted at n will result in a hit or a miss in the instruction cache.

• get_exec(n) returns the execution (in cycles) in the E stage of the pipeline
for the instruction at n.

We refer to these operations as the tree-API in the sequel. The implemen-
tations of the Tree-API operations live outside Uppaal in the library named
libgdb2uppaal (see Section 4 for the Wuppaal architecture). The Uppaal

template in Fig. H.5 implements a full search on Treea
H(P) given the get_init()

and get_next(n) functions; we assume each node of the tree has at most

1An exact test for this assumption does not exist as this problem is undecidable.

216

3. WUPPAAL

pc=10000,M pc=10078,M2 pc=1002c,M2

pc=10038,M3

pc=10058,M3

pc=10060,M4

pc=10064,M5

pc=10078,M6

...

pc=1003c,M3

pc=10054,M7

pc=10064,M8

pc=10078,M9

...

Fig. H.4: subtree of Tree
a
H(Prog1) where we let M be the memory tracked, and r3 = 10 in M2.

Dashed arrows indicate sequences of deterministic instructions omitted for brevity.

2 children for the sake of simplicity. The Uppaal version of get_init() is
get_init(succ) and fills in the vector succ with the pair (get_init(), ⊥) (⊥
denotes the absence of node). Similarly get_next(n) is implemented by the
function get_next(n,succ) and fills in the vector of integers succ with the
children of n where succ[0] (resp. succ[1]) is the first (resp. second) child
of n; the ⊥ value is represented by a negative integer. The non-deterministic
guarded choices in the template Program Automaton (Fig. H.5) push the
children nodes to be processed to the first stage of the pipeline (see hard-
ware model below). Each path through the template Program Automaton
from the initial location (double circle) to the END location represents an an-
notated trace of La

H(P). When we model-check a safety property on this
model, Uppaal generates all the traces in La

H(P).

Hardware specification. The hardware consists of a multi-stage execution
pipeline and the caches (e.g., instruction and data caches). As a case-study we
model an ARM920T 5-stage execution pipeline, the instruction cache and main
memory components. The pipeline can execute concurrently the different
stages (Fetch, Decode, Execute, Memory, Writeback) needed to fully process
an instruction. An instruction is fetched (from the instruction cache) in stage
F, decoding and operand register accesses occur in D, execution in E and
if there are load/store instructions the memory accesses happen in M. The

217

Paper H.

Fig. H.5: Program Automaton to enumerate La
H(P).

results are written back to registers in W. The (normal) flow of instructions
in the pipeline is shown in Fig. H.6. This optimal flow may be slowed down
when pipeline stalls occur: if the instruction i + 1 needs a register written to
by instruction i there will be a one cycle stall at cycle j + 3 for instruction
i + 1; when the W stage is finished for instruction i, the E stage can begin for
instruction i + 1.

�������

���������

��������	

������ ��� �����	 ��
 ��� ���

Fig. H.6: Pipeline of the ARM920T

Hardware abstract model. A formal model of the hardware for the ARM920T
can be specified by a network of timed automata [1]. We provide here simpler
models of the hardware because we factor out the actual state of the caches:
to compute the execution time of a sequence of instructions we only need to
know whether a transaction with a cache is a hit or a miss. This information
is provided by each node in Treea

H(P) (La
H(P)) for a given program P. It can

be computed by monitoring the addresses that are used on a given trace and
using a model of the caches (e.g., number of lines, ways and FIFO replace-
ment policy). In [17] we also proposed an abstraction/refinement scheme

218

3. WUPPAAL

F Stage

D stage

E Stage

M Stage W Stage

Fig. H.7: Timed Automata for F, D, E, M and W Stages (pipeline ARM920T).

219

Paper H.

to model the caches. For instance the 5-stage pipeline of the ARM920T can
be specified by a network of 5 timed automata (see Fig. H.7) each of them
modelling a single stage of the execution pipeline.

Each stage automaton has a unique identifier me (an integer). The values
of this identifier for the templates (F, D, E, M, W) are respectively (0,1,2,3,4).
This encodes the fact that the stages F, D, E, M, W are ordered: each node of
Treea

H(P) flows from one stage k to the next k + 1 when the pushTo[k] chan-
nels synchronise. For instance, the F-Stage template automaton is idle until
the Program Automaton (Fig. H.5) pushes a node via the pushTo[0]? transi-
tion. It updates the local state of this stage 0 (locState[0]=node) where node

is a (meta) variable used to retrieve the value sent by the Program Automaton
that issues the pushTo[0]! command. The F stage template automaton then
synchronises with the instruction cache (see Fig. H.7) to simulate the time it
takes to fetch the instruction from the instruction cache.

The memory stage (M stage) assumes a constant time to read data from
the data cache: each transaction takes MEM_SPEED cycles. We can easily model
the data cache but for the sake of simplicity we use a simple version here.
The other stages (D, E, M, W) are based on the same logic: they are idle until
the previous stage pushes some information to them. The copy(me,me+1)

commands transfers the information from stage me to stage me+1. When going
back to the IDLE (initial) location, the local information of the templates are
reset to the default value NO_STATE which indicates that the pipeline state is
empty.

Fig. H.8: Instruction cache template.

The instruction cache is specified by the template timed automaton in
Fig. H.8. The PMT variable holds the number of Pending Memory Trans-

220

4. Implementation and experimental results

actions. This number is determined by the hit_ins function that can be
retrieved from the annotated node in the tree.

Finally the main memory template simply simulates how long it takes to
perform a transaction (read or write) with the main memory.

Fig. H.9: Main memory template.

4 Implementation and experimental results

Tool chain. Let us dwell on the tool chain we have constructed to demon-
strate our methodology described in Section 3.

The tool-chain, visualized in Fig. H.10, is composed of five components:

• a pre-analysis module for constructing an annotated program that
can be used to generate the program traces LH(P); this step is devel-
oped in Scala and uses some powerful Grammar and Language Pro-
cessing packages Kiama [18] and Sbt-Rats! [19].

• qemu [20] to emulate the chosen hardware and enables us to compute
the next state after executing a program instruction. As an example of
usage, we set up the hardware to a given initial state (program counter
and values of registers and stack), and with qemu we can compute the

bin.elf

pre-analysis

bin.annotatedHW.xml

Uppaal libgdb2uppaal gdb qemu

Fig. H.10: The tool chain of Wuppaal. Orange blocks are the modules we implemented. Other
blocks are existing modules.

221

Paper H.

effect of an instruction. What is communicated back (using gdb) is the
next program counter and the next state of the registers and stack.

• gdb [14] for inspecting qemu,

• libgdb2uppaal to implement the tree-API given at the beginning of
Section 3.

• a Timed Automaton model of the hardware HW.xml (an example is pro-
vided on Fig. H.7, page 219 for the pipelines and Fig. H.8, page 220 and
Fig. H.9, page 221 for the main memory and instruction cache.)

• Uppaal for computing the worst-case execution time given a sequence
of nodes using the Program Automaton template Fig. H.5, page 218,
The Uppaal model uses an integer counter to identify the current state
of the program. The libgdb2uppaal maintains a table that maps inte-
gers to actual program states (program counter, values of the registers
and the stack). The get_next function in the Tree-API returns all the
possible successors of a state as integers and updates the table that
maps integers to program state (when a new state is encountered). The
Program Automaton (Fig. H.5) will explore all the successor states.

Computing the WCET for a given binary program bin.elf using our frame-
work is a two-stage process. In the first stage we compute an annotated
program (e.g., a CFG and the set of variables needed to generate the anno-
tated language La

H(P)) by using pre-analysis.) In the second stage we use
Uppaal to drive a search through the state-space, interfacing (by proxy of
gdb and libgdb2uppaal) with the emulator of the hardware as described in
Section 3. In the current model, we ignore the data cache but this is not a
restriction as the caches can be added to the program state and modeled in
the libgdb2uppaal library.

Support for other languages and hardware. The approach we propose is
general enough to accommodate other languages and hardware. For in-
stance, assume we want to use an x86 processor and the corresponding as-
sembly language. What needs to be provided is a new pre-analysis module
for this assembly language to construct the annotated program. The pre-
analysis we have developed for the ARM assembly language is easy to re-use
to build support for other languages.

We also need to provide an abstract model for the x86 hardware as a
network of timed automata. The widgets we have proposed in Section 2 for
the ARM920T pipeline can be adapted to build new formal models for an x86
platform (and of course new pipeline stages can be added if the architecture
requires it).

222

5. Conclusion

Program Loc |Treea
H(P)| Time WCET

duff 145 1750 4.51 61215
fibcall 48 553 2.91 19320
insertsort 84 7 2.09 210
janne_complex 67 360 3.21 12565
lcdnum 100 250 2.52 8715

Table H.1: The experimental results, time is given in seconds and includes startup overhead
from initializing gdb and qemu. The loc measure is the number of lines of assembly.

Finally we need qemu (or an equivalent program) to support the emulation
of the hardware. The general architecture we introduced in Fig. H.10 can be
re-used as well as the the modular method depicted in Fig. H.3 to compute
the WCET for programs running on the x86.

Results. We have experimented our technique using some of the standard
benchmarks [21] from Mälardalen University, for computing WCET. As we
can see in Table H.1, we are achieving a reasonable computation time (less
than 5 seconds for all experiments), demonstrating the feasibility of our ap-
proach. We can also see that for all of the test-cases, the constructed trees are
fairly small in size. In this paper we do not provide a thorough comparison
with the actual measured execution times because we use simple models for
the caches. The models used in [1] may be used in the future. The results
in [1] demonstrated that our approach provides very accurate WCET and the
new implementation should give similar results when precise models of the
caches are used.

5 Conclusion

We have presented a method, based on timed automata and real-time model
checking with Uppaal, to compute the WCET of binary programs. The
method we designed is generic and can accommodate arbitrary hardware.
The proposed tool chain allows us to achieve a modular approach to WCET-
computation, reducing the overhead needed to support new binaries, and
new architectures. To support different binaries we only have to provide
pre-analysis with a different input. To support different processors, it is
sufficient to provide a new hardware-model (HW.xml) and emulator (qemu).

Moreover, our technique does not rely on the computation of loop bounds
or the assumption that the hardware is free of timing anomalies: this is one
of the strengths of the model checking method. Another strength is that it
generates a witness program trace that produces the WCET. Other interesting

223

References

features of this approach includes its generality: we do not need to assume
that the initial state of the caches is known. The only requirement is that the
annotated language La

H(P) over-approximates the program behaviours.
Our technique is also general enough to be paired with program refinement

techniques. As mentioned in Section 3 for Prog1, some traces in LH(P) may
not be feasible: if the first choice for the test a < b is True (resp. False),
the following test of the same condition must be True (resp. False). In that
case we compute a refinement R1 ⊆ La

H(P) of the annotated program to rule
the spurious traces and analyse the refinement R1. This can de done using
the trace abstraction approach of [22, 23]. This enables us to define an iterative
method to compute better and better over-approximations of the WCET and
ensure that one witness trace exists.

Notice that this refinement also applies to the hardware model: we can
start with a very simple model of the caches where every transaction is either
a Hit or a Miss. Once a WCET is computed with Uppaal, we can check
whether the witness trace is feasible in the program and in the caches. If the
cache behaviour that is in the witness is spurious (infeasible) we can refine
it as well. We have implemented a cache refinement technique in [17]. This
enables us to get some control on the accuracy of the computation via model
checking.

On another note, we can use our technique as a simulation based tech-
nique: the bin.annotated component in the tool chain Fig. H.10 can be re-
placed by a generator of traces. In this case we can only compute a lower
bound for the WCET but we get access to the statistical model checking engine
of Uppaal. This opens a new avenue to compute some probabilistic distribu-
tions of the WCET.

In addition, outsourcing the semantics of a binary program to a trusted
emulation tool (qemu) eliminates errors that occurs when semantically trans-
lating binary programs into timed automata. As such a translation necessi-
tates a very high level of detail, it can easily result in a state-space-explosion
– even for simple architectures and programs. With our construction, knowl-
edge of the hardware and static-analysis and abstraction refinement methods
can be used to reduce the size of explored state-space.

References

[1] F. Cassez and J. Béchennec, “Timing analysis of binary programs with
UPPAAL,” in 13th International Conference on Application of Concurrency
to System Design, ACSD 2013. IEEE Computer Society, Jul. 2013, pp.
41–50.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,

224

References

I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström, “The Worst-Case
Execution-Time Problem - Overview of Methods and Survey of Tools,”
ACM Trans. Embedded Comput. Syst., vol. 7, no. 3, 2008.

[3] Rapita Systems Ltd., “Rapita Systems for timing analysis of real-time
embedded systems.” http://www.rapitasystems.com/.

[4] G. Bernat, A. Colin, and S. M. Petters, “pWCET a Toolset for auto-
matic Worst-Case Execution Time Analysis of Real-Time Embedded Pro-
grams,” in Proceedings of the 3rd Int. Workshop on WCET Analysis, Work-
shop of the Euromicro Conference on Real-Time Systems, Porto, Portugal,
2003.

[5] B. Rieder, P. Puschner, and I. Wenzel, “Using Model Checking to De-
rive Loop Bounds of General Loops within ANSI-C Applications for
Measurement Based WCET Analysis,” in 6th Int. Workshop on Intelligent
Solutions in Embedded Systems (WISES’08), Regensburg, Germany, 2008.

[6] AbsInt Angewandte Informatik, “aiT Worst-Case Execution Time Ana-
lyzers.” http://www.absint.com/ait/.

[7] C. Ferdinand, R. Heckmann, and R. Wilhelm, “Analyzing the worst-
case execution time by abstract interpretation of executable code,” in
ASWSD, ser. Lecture Notes in Computer Science, M. Broy, I. H. Krüger,
and M. Meisinger, Eds., vol. 4147. Springer, 2004, pp. 1–14.

[8] R. Alur and D. Dill, “A theory of timed automata,” TCS, vol. 126, no. 2,
pp. 183–235, 1994.

[9] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a Nutshell,” Journal of
Software Tools for Technology Transfer (STTT), vol. 1, no. 1-2, pp. 134–152,
1997.

[10] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi,
and M. Hendriks, “Uppaal 4.0,” in QEST. IEEE Computer Society, 2006,
pp. 125–126.

[11] A. E. Dalsgaard, M. C. Olesen, and M. Toft, “Modular execution time
analysis using model checking,” Master’s thesis, Dpt. of Computer Sci-
ence, Aalborg University, Denmark, 2009.

[12] A. E. Dalsgaard, M. C. Olesen, M. Toft, R. R. Hansen, and K. G. Larsen,
“Metamoc: Modular execution time analysis using model checking,” in
WCET, ser. OASICS, B. Lisper, Ed., vol. 15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2010, pp. 113–123.

225

References

[13] F. Cassez, “Timed Games for Computing WCET for Pipelined Processors
with Caches,” in 11th Int. Conf. on Application of Concurrency to System
Design (ACSD’11). IEEE Comp. Soc., Jun. 2011, pp. 195–204.

[14] R. Stallman, R. Pesch, S. Shebs et al., “Debugging with gdb,” Free Software
Foundation, vol. 51, pp. 02 110–1301, 2002.

[15] F. Cassez, R. R. Hansen, and M. C. Olesen, “What is a timing anomaly?”
in 12th International Workshop on Worst-Case Execution Time Analysis,
WCET 2012, July 10, 2012, Pisa, Italy, ser. OASICS, vol. 23. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012, pp. 1–12.

[16] F. Cassez, “Timed Games for Computing Worst-Case Execution-Times,”
National ICT Australia, Research Report, Jun. 2010, 31 pages. Available
from http://arxiv.org/abs/1006.1951.

[17] F. Cassez and P. G. de Aledo Marugán, “Timed automata for mod-
elling caches and pipelines,” in Proceedings Workshop on Models for Formal
Analysis of Real Systems, MARS 2015, Suva, Fiji, November 23, 2015., ser.
EPTCS, R. J. van Glabbeek, J. F. Groote, and P. Höfner, Eds., vol. 196,
2015, B - International Conferences, pp. 37–45.

[18] A. M. Sloane, “Lightweight Language Processing in Kiama,” in
Generative and Transformational Techniques in Software Engineering
III, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, Jan. 2011, no. 6491, pp. 408–425. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-642-18023-1_12

[19] A. Sloane, F. Cassez, and S. Buckley, “The Sbt-rats parser generator
plugin for scala (tool paper),” in Proceedings of the 2016 7th ACM
SIGPLAN Symposium on Scala, ser. SCALA 2016. New York, NY,
USA: ACM, 2016, B - International Conferences, pp. 110–113. [Online].
Available: http://doi.acm.org/10.1145/2998392.3001580

[20] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ser.
ATEC ’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 41–41.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1247360.1247401

[21] Mälardalen WCET Research Group, “WCET Project – Benchmarks.”
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[22] M. Heizmann, J. Hoenicke, and A. Podelski, “Refinement of trace ab-
straction,” in SAS, ser. Lecture Notes in Computer Science, J. Palsberg
and Z. Su, Eds., vol. 5673. Springer, 2009, pp. 69–85.

226

References

[23] ——, “Software model checking for people who love automata,” in CAV,
ser. Lecture Notes in Computer Science, N. Sharygina and H. Veith, Eds.,
vol. 8044. Springer, 2013, pp. 36–52.

227

EFFIC
IEN

T A
N

A
LYSIS A

N
D

 SYN
TH

ESIS O
F C

O
M

PLEX Q
U

A
N

TITATIVE SYSTEM
S

PETER
 G

JØ
L JEN

SENISSN (online): 2446-1628
ISBN (online): 978-87-7210-178-1

