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Abstract

This PhD covers work conducted from 2013 to 2018 within two overall themes:
multi-modal analysis and robust traffic analysis

Within multi-modal analysis, we investigated how to obtain synchronized
and registered imagery from visual, depth, and thermal sensors. We used our
tri-modal acquisition and registration platform to conduct research within
people re-identification and people segmentation. As part of this work, we
released a publicly available tri-modal dataset for people segmentation. We
developed and extended an annotation toolbox that has subsequently been
used for many other research projects in our laboratory. In traffic surveillance,
we have investigated how to combine information from visual and thermal
cameras using the related contextual information.

In the work within robust traffic analysis, we have studied the influence
of rainfall and snowfall on visual traffic surveillance. We surveyed the field
of rain removal algorithms and selected six algorithms to investigate if the
removal of rain from traffic surveillance video would increase the performance
of subsequent background subtraction, instance segmentation, and feature
tracking algorithms. We collected and annotated a new publicly available
dataset consisting of visual-thermal traffic surveillance video.

Furthermore, we have investigated the use of fully synthetic sequences
from a virtual world where rain is rendered in the entirety of the scene. On
the basis hereof, we trained a rain removal algorithm.

Traffic researchers are analyzing the behavior of road users in order to
understand the causation of accidents and improve road safety. To reduce
the amount of video for manual inspection by the traffic researchers, we have
developed the RUBA software tool. We have tested RUBA for detection and
counting of turning road user movements at urban intersections and compared
it against a more advanced, feature-based tracker. In extension of our work
within traffic surveillance, we investigated several options for establishing a
portable video acquisition platform, which led to the construction of a new
portable pole.

As part of the dissemination activities, we have authored an article on deep
learning for the Danish magazine on popular science, Aktuel Naturvidenskab.
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Resumé

Denne PhD-afhandling afdækker arbejder fra 2013 til 2018 indenfor to over-
ordnede temaer: multi-modal analyse og robust trafikanalyse.

Indenfor multi-modal analyse har vi undersøgt, hvordan man optager
synkroniserede og registrerede billeder fra visuelle, dybde-baserede og ter-
miske sensorer. Vi har brugt vores tri-modale optage- og registreringsplatform
til at foretage forskning indenfor re-identifikation og segmentering af per-
soner. Som en del af dette arbejde har vi udgivet et offentligt tilgængeligt
tri-modalt dataset til personsegmentering. Vi har udviklet og udbygget et
annoteringsværktøj, som sidenhen er blevet benyttet til mange andre forskn-
ingsprojekter i vores laboratorie. Indenfor trafikovervågning har vi undersøgt,
hvordan man kombinerer information fra visuelle og termiske kameraer ved
hjælp af kontekstuel information.

Vi har i vores arbejde med robust trafikanalyse studeret regn- og snevejrs
påvirkning på visuel trafikovervågning. Vi har undersøgt området indenfor
regnfjernelses-algoritmer og udvalgt seks af algoritmerne til at undersøge,
om fjernelse af regn fra trafikovervågningsvideoer vil øge ydeevnen af efter-
følgende baggrundssubtraktion-, instanssegmentering- og feature-tracking-
algoritmer. Vi indsamlede og annoterede et nyt datasæt indeholdende visuel-
termisk trafikovervågningsvideo. Derudover har vi undersøgt brugen af fuldt
syntetiske sekvenser fra en virtuel verden, hvor regn er renderet i hele scenen.
På baggrund af disse sekvenser har vi trænet en regnfjernelsesalgoritme.

Trafikforskere analyserer trafikanternes adfærd for at forstå ulykkesårsager
og forbedre trafiksikkerheden. For at reducere mængden af video, som
trafikforskerne manuelt skal analysere, har vi udviklet softwareværktøjet
RUBA. Vi har testet RUBA til detektion og optælling af drejende trafikanter
ved bynære trafikkryds og sammenlignet det med en mere avanceret, feature-
baseret tracker. I forlængelse af vores arbejde indenfor trafikovervågning
har vi undersøgt flere forskellige muligheder for at etablere en portabel
videooptagelsesplatform, hvilket førte til konstruktion af en ny portabel mast.

Som en del af formidlingsaktiviteterne har vi forfattet en artikel om deep
learning til det danske populærvidenskabelige magasin, Aktuel Naturviden-
skab.
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Chapter 1

Introduction

Detection, classification, and tracking of one or more physical objects is an
ability that we as humans take for granted. Using our visual cortex, we
have learned to interpret the world as seen through our eyes. We do this
subconsciously without further thought and effortlessly integrate the visual
sensations with our abilities to hear, feel, and smell.

The field of computer vision is based on the desire to equip machines
with similar capabilities of observing the world. First thought of as a sum-
mer project in artificial intelligence [3], computer vision has emerged as an
important field in its own.

Automated analysis of the visual world by computer vision algorithms en-
ables numerous purposes such as self-driving cars, industrial quality control,
and automated surveillance of people or property. Combined with appropriate
hardware and application-specific tailoring, computer vision algorithms will
replace human workers in mundane, repetitive tasks and enable these workers
to focus on higher-value, more creative and flexible tasks. The deployment of
computer vision algorithms for continuous monitoring on a societal and indus-
trial scale produces vast amounts of data, enabling insights of unprecedented
scale and granularity.

The work presented in this PhD reflects research into two subareas of
computer vision: multi-modal analysis and robust traffic analysis. Within
these areas, we have shed light on specific problems that we have analyzed in
greater depth. As with many other aspects of life, taking a closer look reveals
subtle details that cannot be seen with the naked eye.

1 Multi-Modal Analysis

Analysis of people from images or video is a vast field with numerous pur-
poses. Automated analysis opens the door for large-scale surveillance and
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Chapter 1. Introduction

behavioral studies used by authorities, companies, and researchers. In this
thesis, we have conducted work within multi-modal people detection and
re-identification which covers the identification of people from two or more
cameras for which the views do not overlap. In airports and amusements
parks, re-identification of people may be used to estimate queue lengths and
how people move between facilities. In department stores and malls, the
movement of people between shops is instrumental in maximizing the profits
of the owners.

Traditionally, surveillance has relied on cameras that capture the visible
light. Images from such cameras are easily interpretable for human inspectors
but requires that the scene is sufficiently lit. In this thesis, we have explored
the use of other imaging sensors to complement the traditional camera, such
as thermal infrared and active stereo cameras. Thermal cameras capture the
infrared radiation emitted from bodies. Two objects can be distinguished
based on their difference in temperature and thus in the context of analysis
of people, the temperature of the background must be significantly different
from the persons of interest. Active stereo cameras, or depth cameras, actively
emit light onto the scene and measure the distance from objects to the camera
based on the reflected light. The promise of combining visible light, thermal,
and depth cameras is increased redundancy and robustness to changes in
lighting conditions, scene geometry, and temperature. Because the cameras
rely on three disparate phenomena, challenges in one imaging domain may
not necessarily affect the two other domains. An example of an indoor scene
captured with visible light, thermal, and depth cameras is illustrated in Figure
1.1.

Besides looking at people from multi-modal sensors, we have also utilized
multi-modal cameras in traffic surveillance, where the promise of continuous
and robust monitoring of the road are challenged under bad weather and
non-optimal lighting conditions.

2 Robust Traffic Analysis

The monitoring of road traffic serves many purposes. From a traffic security
standpoint, observation of road users and their behavior is an essential tool
for understanding the causation of accidents and eventually improve road
safety [2, 5]. From a traffic management standpoint, understanding of road
user behavior might be used to re-route traffic or optimize traffic flow.

Traditionally, monitoring of road traffic required that the traffic researcher
was physically present at the observation site, manually taking notes of the
traffic [4]. As one can imagine, this is a tedious task when conducted over
several hours and the observation is a subjective, non-reversible process.
The observer might miss some road users while watching others, and the
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2. Robust Traffic Analysis

Fig. 1.1: Sample image from the AAU VAP Trimodal People Segmentation Dataset where an
indoor scene is captured by a conventional camera, a depth camera, and a thermal camera.

preference on what to report or not might vary between observers.
Recording the traffic with a video camera allows the traffic researcher to

study the details of interesting situations at her own pace and ensures the
reproducibility of the research. However, the observation of hours and weeks
of road user behavior remains a tiresome and tedious task. This is where
automated traffic surveillance, enabled by computer vision, comes into the
picture [1].

Automated traffic surveillance is a solved problem when the traffic is
organized and there is a clear separation between road users, such as free-
flowing traffic on highways. In urban traffic, however, complex intersections
and multiple road user types leaves several challenges to computer vision
algorithms. Furthermore, when the observability of the scene is impaired by
low illumination and challenging weather conditions, it is increasingly hard
for conventional vision algorithms to cope with the task of persistent traffic
monitoring. An example of a traffic scene impaired by low illumination and
reflections is shown in Figure 1.2.

A truly robust, automatic traffic monitoring system should be capable of
solving the aforementioned challenges in a broad variety of road configu-
rations and between varying road user types. There are several promising
approaches to solving the problems: strengthening the core computer vision
algorithms, pre-processing the raw images from the cameras, or using multi-
ple, multi-modal sensors. A robust traffic monitoring system should possibly
integrate elements from all three approaches.

Eventually, a traffic monitoring system must be usable for a general audi-
ence that does not necessarily has a background in computer vision. In this
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(a) RGB (b) Thermal

Fig. 1.2: Traffic surveillance images from the AAU RainSnow dataset. The scene is captured by
both a conventional visible light (RGB) camera and a thermal camera.

Multi-Modal Analysis

TrafficPeople

EA B C D

Fig. 1.3: Overview of the papers in this thesis covering multi-modal analysis. A box refers to a
paper and a letter to the corresponding position in the appendix.

thesis, we describe this requirement as robustness of use.

3 Thesis Structure

In the following chapters, we will give an introduction to multi-modal analysis
and robust traffic analysis, followed by a description of the state-of-the-art
and our contributions to the respective fields.

This introduction will be followed by an appendix of three parts, each
containing a collection of papers within a certain topic. Part II covers the work
conducted in this thesis on Multi-Modal Analysis. As illustrated in Figure 1.3,
this includes four papers on multi-modal analysis of people and one paper on
multi-modal analysis of traffic.

Part III covers the work on Robust Traffic Analysis, containing three main

6



References

Robust Traffic Analysis

Robustness to 
rain and snow

F G

Collecting 
video data

Robustness to 
users: RUBA

MH I J K L

Fig. 1.4: Overview of the papers in this thesis covering robust traffic analysis. A box refers to a
paper and a letter to the corresponding position in the appendix.

bodies of work:

• Robustness of computer vision algorithms to bad weather, more notably
rain and snow.

• Robustness of use to traffic practitioners.

• Collecting video data using a portable system.

In Figure 1.4, these categories are linked to the respective papers.
Part IV covers the dissemination activities, more specifically an introduc-

tion to deep learning for the general public, published in the Danish magazine
Aktuel Naturvidenskab.
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Chapter 2

Multi-Modal Analysis

1 Introduction

Traditionally, vision-based analysis has relied on conventional cameras to
capture the world. These cameras capture the light visible to the human eye,
i.e. light with wavelengths between 390 and 700 nm [51]. Seeing the world
from one camera alone comes with some disadvantages, however. With only
one view, it is impossible to estimate the absolute size of objects or the distance
from objects to the camera.

1.1 Depth cameras

The addition of a second camera enables the computation of scale and depth
through the underlying two-view geometry [19]. The computation of depth
through two cameras is denoted passive stereo vision with the passive term
stemming from the fact that the cameras are passively looking at the scene.
Passive stereo relies on the texture of objects to compute disparity maps
between the two views of the scene. The limitation of this approach is that
the computation of depth is difficult with non-textured uniform surfaces and
highly reflective objects.

Active stereo sensors circumvent these limitations by actively emitting light
into the world and measuring the properties of the returned signal. However,
the widespread usage of these sensors has been limited by high cost and low
spatial resolution. This was changed by the introduction of the Microsoft
Kinect sensor in 2010 [60]. The Kinect sensor combined a traditional visual
camera with an emitter that projected near-infrared structured light onto a
scene. An infrared camera observes the geometry of the projected pattern
and calculates the depth on the basis of the observations. The Kinect sensor
quickly became popular among researchers due to its low cost and ease-of-
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Chapter 2. Multi-Modal Analysis

use. The second generation of the Kinect, Kinect v2, replaced the infrared
projector with a time-of-flight camera, enabling higher spatial resolution and
accuracy [55].

Since the early days of the Kinect, active stereo sensors have been commodi-
tized and integrated into several end-user applications. In user authentication,
active stereo sensors are integrated into phones and computers to verify the
user identify based on the three-dimensional face profile. In virtual and
augmented reality, depth sensors such as the Microsoft Hololens and Intel
PrimeSense [23] enable reliable and accurate tracking of users and objects.

1.2 Thermal cameras

Visual cameras require that the scene is sufficiently lit by an external light
source. Whenever this requirement is violated, the cameras provide low-
quality images and in total darkness, they will not be able to see anything.
Thermal cameras, on the other hand, capture the infrared radiation of objects
with a temperature above absolute zero and may thus operate in total darkness
and non-optimal illumination conditions. In the scope of this thesis, we will
use thermal cameras that capture radiation in the long-wavelength infrared
(LWIR) spectrum, covering wavelengths from 8 to 15 µm [16]. As opposed to
the visible spectrum, infrared radiation does not travel through glass. Objects
with the same temperature as the background will be largely invisible on the
thermal image whereas they might be immediately recognized from a visual
image by their texture and shape.

Thermal cameras are a compelling choice for the observation of people. Hu-
mans and animals are easily recognizable if their temperature is significantly
different from the background, which most often is the case in temperate and
sub-tropical climates. Because objects in thermal images carry fewer discrim-
inative features than visual images, it is harder to identify people based on
their thermal signature. With increasing concerns for privacy, thermal cameras
are a favorable choice.

1.3 Combining the sensors

As described in the above, visual, thermal, and depth cameras sense the world
using disparate sensors, each sensitive to different conditions. Because of
the disparate nature of the sensors, a combination of them would increase
the robustness of the system. A detrimental condition in one modality, such
as bad lighting in the visual domain, will not impair the thermal and depth
domains whereas inanimate objects that are hard to recognize in the thermal
domain might be easier to detect in the visual and depth domains.

Before one can harvest the benefits of multi-modal sensors, at least two
issues must be dealt with:
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2. State-of-the-art

• The multi-modal images must be registered, i.e. one should know how
to transfer a spatial location from one modality to another. The levels
of granularity might vary depending on the application: it might be
enough to roughly align the position of an object based on its contours
or it might be necessary to perform a pixel-wise registration of any
position in the scene.

• Once registered, the information of the modalities should be combined,
either by low-level fusion of the image streams, mid-level fusion at
algorithmic level, or by late decision-level fusion.

2 State-of-the-art

In the following, we will provide an overview of recent research within multi-
modal analysis. We will limit ourselves to works that relate to the issues
mentioned in the section above, i.e. registration and information fusion of
multi-modal images. However, any research on the mentioned issues rely on
the acquisition of multi-modal data. The widespread adoption of the Kinect
and related hardware has led to an increase in the availability of visual and
depth datasets. Registration of visual-depth imagery is eased by the fact that
the visual and depth cameras are built into the same hardware, and the sensors
are typically calibrated from the factory. With the availability of accurate
calibration, the additional depth data makes it possible to transfer points from
two-dimensional image coordinates in one domain to three dimensional world
coordinates and back to two-dimensional image coordinates in the second
domain.

In datasets without any depth information, such as visual-thermal datasets,
it is not possible to transfer a position from one domain to another without
any further assumptions. In the following subsection, we will describe the
most commonly used assumptions in visual-thermal registration.

In Table 2.1, we have listed the publicly available datasets containing
images and videos from both the visual and thermal domains. An overview of
available datasets containing visual and depth information is available in [34].
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2. State-of-the-art

It is apparent from Table 2.1 that the availability of visual-thermal image
pairs is limited compared with the abundance of databases containing visual
images. The lack of data is even more noticeable when looking for annotated
imagery in the visual-thermal domain. Because such datasets are very sparse
compared to the millions of annotated visual images in ImageNet [47] and
COCO [30], researchers have started to investigate how to transfer annotated
visual imagery into the thermal domain and vice versa.

In [8], Berg et al. used a convolutional neural network (CNN) with a U-
Net structure to generate visual images from input images in the thermal
domain. Inspired by the recent success of generative adversarial networks for
image-to-image translation [21], Zhang et al. [59] trained a generative network
on available, not necessarily annotated, visual-thermal image pairs. The
generative network is used to synthesize the corresponding thermal images
from annotated images in the visual domain. The extended, synthetic dataset
is used to train a deep convolutional neural network from scratch. Their results
show that training the network on the synthetic and real thermal images gives
a significant increase in performance when compared with training on the
limited amount of real thermal images.

2.1 Registration

The most commonly used technique for registering the thermal and visible
domains is by using a single homography, a two-dimensional image trans-
formation applied on images in one domain to spatially align them into the
second domain. It is easy to compute the homography as it only requires four
corresponding point pairs. However, its usage relies on the assumption that
objects of interest in a scene are lying on the same virtual plane. In many
surveillance scenarios, this is often the case when the cameras are observing
the scene from a considerable height and the objects of interest are moving on
the ground.

However, the assumption breaks down if the distance from the camera to
the virtual plane is not at least an order of magnitude larger than the distance
from the objects to the virtual plane. Notable use cases that violates the planar
assumption are vehicle-mounted sensors and indoor surveillance scenarios.
In such situations, one must use other clues to search for correspondence.
Krotosky and Trivedi [25] provide an excellent overview of the available
registration and alignment techniques, and we refer the reader to their work
for an overview of the geometrical concepts of multi-modal image registration.

The same authors provided in [26] a dual stereo setup containing two
visual and two thermal sensors for pedestrian detection in vehicles. The
authors calibrated the setup using a heated calibration board and used the
trifocal tensor to register pixels from one modality to another. Detection of
pedestrians was performed via Histograms of Oriented Gradients (HOG) [12]
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Chapter 2. Multi-Modal Analysis

and classified using a Support Vector Machine (SVM).
In [49], Shibata et al. propose a novel calibration target for visual-thermal

calibration that consists of a checkerboard where the white squares are raised
from the black backdrop.

Torabi et al. [52] align the thermal and visual images using an affine trans-
formation and fuse information from the two modalities using a silhouette
matching approach. In subsequent work from the same research group, St.
Charles et al. [50] use the epipolar constraint to restrict the search for corre-
sponding points in the visible and thermal modalities. A sliding window
approach is used to restrict the correspondence search and a match is found
based on the appearance and shape of the windows. Evaluation is performed
on the VAP Trimodal People Segmentation [42] and Bilodeau [9] datasets. The
registered data is used to segment the foreground based on color, contour,
smoothness, and temporal properties.

Chen et al. [10] use Speeded-Up Robust Features (SURF) [7] descriptors
on both modalities to register the detected points by using graph matching.
However, this only holds when the visual and thermal signatures of the objects
of interest are largely similar.

Registration might be avoided if the light enters the sensors at the same
location. This is possible by using a beam-splitter to reflect the incoming light
into the visual and thermal sensors. Such a setup is used for the acquisition of
the KAIST datasets [20] which produces an almost perfect spatial alignment
between the visual and thermal images. However, Berg et al. [8] discovered
in a recent study that the alignment was slightly inaccurate, resulting in
displacement errors of up to four pixels in the vertical direction and up to 16
pixels in the horizontal direction.

2.2 Data fusion

When the registration is accomplished and the images from the sensors are
both spatially and temporally aligned, one should decide how to combine the
information from the two sensors.

The authors behind the CVC-15 dataset [5] use a combination of HOG
and Local Binary Patterns (LBP) [40], trained using either a SVM classifier, a
Random Forest classifier, or a Deformable Part Model [15]. Registration of
the two modalities is performed on a bounding-box level and descriptors are
computed using the combined imagery. The authors found that the fused
detector improved the overall results on the daytime images whereas the
detector trained solely on thermal images outperformed the corresponding
fused and visual detectors at nighttime.

In [46], the authors experiment with feature descriptors on the thermal and
visual domains and find that the Scale-Invariant Feature Transform (SIFT) [31]
descriptor provide good results in the thermal domain. Image fusion is
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performed in [54] by the use of a Guided filter under the assumption that the
images are already aligned. The authors of [6] use a similar assumption and
fuse the modalities using a saliency rule on filtered images.

Li et al. [29] experiment with six fusion schemes on the KAIST2015 data [20]
by using a Faster R-CNN model [45]. The fusion schemes range from input
fusion to late fusion after the FC7 layer [24] and the experimental results
suggest that mid-level and late FC7-level fusion provide the best overall
results. However, at nighttime with low illumination, the authors found that
the stand-alone thermal modality outperformed all fusion schemes. This is
similar to the findings from [5] and suggests that the information from visual
images should be largely disregarded under bad illumination conditions.

Multi-Modal Re-Identification

Until recently, the research community has shown little interest in using
thermal cameras for person re-identification. However, two recent datasets
containing each 491 and 412 persons has sparked interest within the field
[38, 57]. In the former dataset, Wu et al. [57] perform experiments on how to
effectively fuse the visual and thermal images using a CNN. They propose an
architecture where the visual image is converted to a one-channel grayscale
image. The thermal image is added as the second channel whereas the third
channel is filled with zeros. This setup permits the use of CNNs that are pre-
trained on three-channel color images. In the latter dataset, Nguyen et al. [38]
extract CNN and HOG features separately for each modality and concatenate
them in a late fusion step. Ye et al. [58] build upon the two datasets and
perform late fusion of thermal and visual imagery by training two separate
CNNs and fusing the two streams after the FC7 layer.

The use of depth information is more widespread within person re-
identification. One traditional approach to describing the information in
a depth image is to convert popular feature representations in the visual
domain to the depth domain. For instance, HOG features are used in [33] to
match people in a depth-only re-identification setup. Another approach is
to describe the depth information as point clouds. The authors behind [56]
propose new shape descriptors in the depth domain based on the co-variance
of depth voxes. The depth features are subsequently fused with conventional
HOG and LBP features in the visual domain to perform re-identification. One
may also infer the position of the body joints from the depth signature. The
joints can be used for calculating anthropometric measures which is used
in [41] to perform re-identification.

More recently, the use of CNNs has also gained traction within depth-
based person re-identification. In the work of Ren et al. [44], two CNNs are
used to extract features separately from visual and depth images. The latent
variables of the two CNNs, comparable to the FC7 features used in [58], are

15



Chapter 2. Multi-Modal Analysis

subsequently concatenated into a joint feature vector. However, when the
visibility of one modality is impaired, a fused system will lose information
in half of the feature vector, severely affecting the performance. A way to
mitigate this is to create a shared embedding between the depth and visual
modalities which means that a person should ultimately be represented by the
same feature vector, regardless of whether the person is imaged by a visual or
a depth camera. Such cross-modal feature embeddings have been proposed
in [18] to re-identify persons from depth images even though they have only
been observed previously by a visual camera.

3 Contributions

Our interest in multi-modal imagery stems from a desire to combine the
ongoing work within thermal imaging with conventional visual cameras and
recent advantages in depth sensing technologies, most notably the Kinect. We
initially estimated that it would take a few months to acquire synchronized
data from the three modalities and register the data accordingly. It eventually
turned out much more difficult to acquire a synchronized dataset from such
disparate sensors, leaving many iterations of trial-and-error before the final
datasets were successfully captured. The synchronization process was solved
by saving time stamps for each frame of every modality and matching the
frames in a post-processing step.

The calibration and registration of the sensors were an integral part of the
acquisition process due to the following observations:

1. Conventional calibration checkerboards may not be used as-is due to
low contrast in the thermal domain.

2. Because the objects were near the imaging sensors, a planar homography
would fail to accurately register the modalities. Thus, we had to rely
on a dense cluster of point-pairs in the three modalities to estimate the
calibration and registration parameters.

The acquisition process is described in more detail in my master’s thesis [3].
The acquisition platform was used to capture a dataset for tri-modal people
re-identification published in [35]. To the best of our knowledge, the work was
the first to integrate visual, thermal, and depth imagery in re-identification.
The corresponding paper is included in Appendix A. Our acquisition platform
was also used to record a dataset for multi-modal face recognition [39].

Our efforts on tri-modal image acquisition and registration resulted in a
joint work with Universitat de Barcelona on segmentation of people [42]. The
work was based on the AAU VAP Trimodal People Segmentation Dataset
which consisted of three indoor scenes captured with visible, depth, and
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thermal cameras. The dataset is publicly available on Kaggle1 and is, to the
best of our knowledge, one of the first publicly available tri-modal datasets
containing people. See Appendix B for further details.

Because the dataset should be used for people detection and segmentation,
is was a necessity to annotate each individual image frame on a pixel level.
A former PhD student in our lab, Andreas Møgelmose, built an annotation
toolbox specifically designed for annotating the tri-modal imagery. I adopted
the toolboxes for pixel-wise annotation and bounding box annotation from
Andreas and made them available as open source tools to the general public.
Since then, I have extended the annotation toolboxes to handle a large range
of different use cases and datasets, ranging from single-modal to multi-modal
applications. Within our laboratory, the toolboxes have been used for annotat-
ing chicken entrails [43], road users [2, 4], pigs, material defects, fish [22], and
basketball players [48]. The annotation toolboxes are described in more detail
in Appendix D.

The work within person re-identification has been further developed in
the visual and depth domains [36]. The work is an extension of [37] with two
new datasets and a more robust method for handling the depth data from the
Kinect. Find more details in Appendix C.

I was also co-supervising a master’s student who was investigating how
to combine visual and thermal imagery for traffic surveillance [2]. We investi-
gated the use of several metrics for judging the quality of the visual-thermal
images, both internal metrics such as the image entropy but also contextual
metrics such as the position of the sun and the current weather condition. Our
joint article is included in Appendix E.

An overview of the work conducted within multi-modal analysis is given in
Figure 2.1. The illustration shows the relationships between the published arti-
cles, datasets, and programs developed during my PhD. A similar illustration
for the work within robust traffic analysis is found in Figure 3.3.

4 Sub-conclusion

Our main contributions within multi modal analysis have been the following:

• Our work within acquisition, registration, and synchronization of visual,
depth, and thermal video which has been applied in three papers of this
thesis.

• The publicly available AAU VAP Trimodal People Segmentation Dataset
consisting of three indoor scenes captured with visible, depth, and
thermal cameras.

1https://www.kaggle.com/aalborguniversity/trimodal-people-segmentation
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C
Comparison of Multi-Shot 
Models for Short-Term Re-

Identification of People Using 
RGB-D Sensors.

E
Context-Aware Fusion of RGB 
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AAU Multimodal 
Annotation Toolboxes

Multi-Modal Analysis
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and Thermal Features
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Thermal Human Body 
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Annotating Objects in Images 
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D

Fig. 2.1: The structure of the work within multi-modal analysis of this thesis. Boxes represents
papers and reports. The letters within the boxes refer to the corresponding position in the
appendix of this thesis.
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• The work on estimating quality metrics for combining visual and thermal
images for traffic surveillance.

• The extension and development of the annotation toolboxes which have
been useful for other researchers in our laboratory.
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Chapter 3

Robust Traffic Analysis

1 Introduction

In 2015, 26.000 people were killed in road accidents in the European Union,
accounting for 0.5 % of all deaths in the member states [20]. In order to reduce
these numbers, it is instrumental to understand the causation of the accidents.
Observing the road through video analysis is one way of gaining insight into
the behavior of road users and their interactions. The insights may ultimately
lead to improvements in infrastructure layout and vehicle design and could
suggest changes in legislation and policies.

In the following, we will describe the challenges concerning observation
of the road and analysis of the road users. We focus on infrastructure-side
monitoring of the road, i.e. observing the road with a stationary camera
that might be placed on a mast, building, or similar existing infrastructure.
The development of autonomous vehicles has sparked a huge interest in
vehicle-side monitoring of the road. The two fields share many of the same
methods and techniques and may share information in the future via vehicle-
to-infrastructure communication.

1.1 Observing the road

There are several issues to consider when designing a system for road traffic
observation. The layout of the road to observe, the types of road users to
detect, and the reliability requirements of the overall system. A robust system
for observing the road should feature a high reliability and resilience to
phenomena such as occlusion and the effects of varying illumination and
weather conditions. One of the focal points of this thesis is to study the
effects of the weather and how detrimental effects might be mitigated. Sample
observations under rainfall and snowfall are shown in Figure 3.1.
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(a) Snow (b) Heavy rain

(c) Raindrops on the lens (d) Reflections

Fig. 3.1: Examples of different weather phenomena in traffic surveillance as observed by visual
and thermal cameras. Images are from the AAU RainSnow dataset [15].

In Table 3.1, we list the effects of weather on surveillance conducted with
either a visual or a thermal long-wavelength infrared (LWIR) camera. In
general, the concentration of water in the air leads to reduced visibility in both
the visual and thermal domains, regardless of whether the water comes as
precipitation such as snow or rain or by the quasi-static appearance of fog and
haze. In general, both domains are affected by the scattering and absorption of
light from particles, with subtle differences in how the modalities are affected
by the specific phenomena. Light haze has almost no impact on the visibility
from thermal cameras whereas the attenuation from rain is the same in both
the visible and LWIR domains [17]. The attenuation due to falling snow in
the visual domain is 5 to 20 times larger than raindrops for the same mass
precipitation rate [43]. However, the attenuation due to falling snow is 30− 50
% higher in the LWIR than the visual domain, due to the relatively large snow
crystals and larger wavelengths in the LWIR domain [43].

1.2 Analyzing the traffic

Once a reliable observation of the road has been established, one should
decide how to use the observations. If the goal is to improve the safety of
the road, it makes sense to analyze the situations in which accidents occur.
However, because accidents are sparse events that happen very infrequently,
it is unfeasible to wait several years for the accidents to happen. Should an
accident happen, the situation might even occur at a position not covered by a
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Table 3.1: Weather effects on traffic observation with visual and thermal sensors. Adapted
from [15] and based on [17, 43, 48].

Phenomena Effect in the visual domain Effect in the thermal domain

Raindrops on lens Blur, diffuse scattering of light, es-
pecially from headlights

Blur, reduced visibility, not suscep-
tible to scattering from headlights

Dense rain Spatio-temporal streaks affecting
visibility, reduction in visible
range

Streaks not visible, reduction in
visible range

Dense snow Spatio-temporal streaks affecting
visibility, reduction in visible
range

Streaks not visible, severe reduc-
tion in visible range

Water on the road Visible signature reflected Heat signature reflected
Shadows Differences in illumination Persistent shadows visible due to

differences in temperature
Light haze Reduced visibility Almost no effect
Light fog Reduced visibility Slightly reduced visibility
Heavy fog Severely reduced visibility Severely reduced visibility

surveillance camera.
In order to understand the causation of accidents without waiting for them

to happen, traffic researchers study the dangerous situations in the traffic,
known as conflicts. Conflicts are defined as events that would have resulted
in an accident if at least one of the road users did not perform an evasive
action [25]. Researchers from Lund University has shown that the severity
and volume of these conflicts are correlated with the number and severity of
accidents [25, 46] and such conflicts can therefore be used as surrogate safety
indicators.

Besides safety and behavioral analysis, there are numerous other applica-
tions for traffic analysis such as automated tolling [3], speed enforcement [2],
congestion detection [13], congestion prediction [47], and occupancy analysis
of parking spaces [10].

2 State-of-the-art

In the following section, we will give an overview of the state-of-the-art within
robust observation of the road, covering computer vision and signal processing
approaches for improving the observability of the road. Hereafter, we will
give an introduction to robust methods for traffic analysis, covering tools and
solutions that can be useful for practitioners within traffic research and traffic
management.

An overview of methods for data collection is available in Appendix L.
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2.1 Robust observation of the road

As described in the introduction in Chapter 1, there are several approaches to
solving the problem of robust traffic analysis:

• Pre-processing the input images and video to improve the signal-to-noise
ratio.

• Strengthening the core vision algorithms in an integrated manner.

• Obtaining robustness by redundancy, for instance by using multiple,
multi-modal sensors.

We have given an introduction to the latter in Chapter 2 on multi-modal
analysis. The two remaining approaches are described below.

Pre-processing the input by de-weathering

In general, pre-processing algorithms aim to remove unwanted noise and
artefacts in images and videos such that:

1. The output image is more pleasing to a human observer.

2. The signal-to-noise ratio is increased such that the performance of sub-
sequent computer vision algorithms improve.

In traffic surveillance, one might want to mitigate the detrimental effects
of bad weather. We denote such pre-processing algorithms as de-weathering
algorithms. If we look at the phenomena described in Table 3.1, we can define
two sub-fields within de-weathering algorithms:

• Dehazing and defogging
Haze, fog, and mist are quasi-static phenomena that remain largely
unchanged for seconds and minutes. The visibility of a scene is degraded
by the accumulation of water and other particles in the air that scatter
and attenuate the incident light. Far-away objects are more affected by
haze and fog than objects close to the camera. An effective method for
the removal of haze and fog might thus be guided by the depth of a
scene. We refer to the reviews by Li et al. [34] and Lee et al. [32] for an
overview of dehazing and defogging algorithms.

• Rain and snow removal
Rain and snow streaks are visible as spatio-temporal fluctuations that
temporarily occlude parts of the scene. The accumulation of dense rain
and snow may also lead to degradation of the overall visibility of a scene,
comparable to the effects of fog and haze. We review the techniques for
rain and snow removal in [15] which is included in Appendix F.
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In addition to the mitigation of the atmospheric conditions listed above,
there exists many other approaches for removing unwanted artefacts. Some
examples are the detection and removal of shadows [42] and reflections [21]
as well as the detection of headlights from oncoming vehicles [33].

If the aforementioned pre-processing methods shall be effective, one should
know when and where to apply them. For instance, algorithms for detection
and removal of shadows might be useless under overcast weather conditions
where there are no shadows. Thus, one would need to assess the current state
of the weather, either by analyzing the image [14, 24, 35] or by incorporating
information from external sources [11, 29]. Furthermore, it is useful to assess
the influence of the weather on computer vision methods. In the work by
Duthon et al. [19], the performance of eight commonly used image features
are compared under different levels of natural and simulated rain. The results
showed that some features, such as edge-based features and CNN-based
features [44], breaks down under the presence of heavy rainfall.

Strengthening the core vision algorithms

An excellent overview of computer vision based methods for urban traffic is
found in the work of Buch et al. [16]. A more recent overview of vision-based
analysis at traffic in intersections is given by Datondji et al. [18] who list
approaches for the detection and tracking of objects. The authors categorize
object detection methods into four sub-domains:

• Background subtraction which contains approaches that maintains a model
of the quasi-static scene background and the moving foreground objects.

• Feature-based segmentation, building on spatial features to obtain an object
model. Datondji et al. only list approaches that use hand-crafted features,
but more recent methods using CNNs fit into this category as well.

• Model-based segmentation which uses the calibrated three-dimensional
geometry of the scene to search for objects that fit into pre-defined
volumes.

• Motion-based segmentation, based on the optical flow between consecutive
frames to distinguish moving objects from the background.

All of the mentioned approaches for object detection may be coupled with
a tracking scheme for consistent spatio-temporal trajectories. A thorough
overview of the state-of-the-art within the above-mentioned sub-domains
and the promising directions to strengthen the methods are considered to be
out of scope of this thesis. However, we notice that many advancements in
computer vision within the last decade is based on the availability of large-
scale public datasets and competitions. A list of datasets for urban traffic
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surveillance is found in both surveys [16, 18]. Recent datasets not included
in the two surveys are ChangeDetection.net [49], UA-DETRAC [39], MIO-
TCD [38], and the NVIDIA AI City Challenge [40]. Efforts to strengthen the
algorithms should be validated through standardized testing through such
datasets, which hopefully will contain an increasingly large subspace of real
world variation.

2.2 Robust methods for traffic analysis

In this subsection, we will focus on systems for automated traffic surveillance
which provide useful metrics for practitioners within traffic management and
traffic safety analysis. The focal point of this overview is on the interdisci-
plinary approaches that couple expertise within computer vision with the
field of applied traffic analysis.

As mentioned in the introduction, a good framework for traffic analysis
should feature both a robust system for detection, classification, and tracking
of road users as well as being accessible for practitioners without a background
in computer vision. Below, we will give a non-exhaustive overview of existing
frameworks for automated analysis of road traffic. We will list both academic
and commercial frameworks:

• TrafficIntelligence [26] is a collection of command-line tools for detection,
classification, and tracking of road users. Objects are detected using
Lukas-Kanade features [37] that are grouped based on distance criteria.
The software is maintained by Polytechnique Montréal and contains a
vast number of tools for detailed behavioral studies.

• Urban Tracker [28] is a joint-venture between the authors of TrafficIntelli-
gence and the LITIV laboratory at Polytechnique Montréal. The system
consists of a graphical user interface that allows the user to configure the
parameters for object detection and tracking. Background subtraction
is used to maintain a model of the moving objects in the scene which
are subsequently grouped and tracked. The system is unable to classify
objects and the reliance on background subtraction means that some
objects are either detected as several road users or that two or more
adjacent road users are detected as one. The purpose of Urban Tracker
is to function as a watch-dog, guiding an practitioner to situations of
interest.

• RUBA [9] is an academic tool for practitioners that serves as a watch-
dog for situations of interest. Based on relatively simple computer
vision tools, the system features four detectors that register either object
presence, object motion, stationary objects, and states of a traffic light.
Practitioners might combine these detectors to look out for interesting
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situations such as red-running vehicles or potential conflicts between
road users.

• T-analyst from Lund University [8] is a software tool for the manual
creation of road user trajectories. For obtaining reliable metrics, the
surface of the road is registered to real-world metric coordinates. Then,
the user may adjust wire-frame boxes to fit the road user for every
n frames. The obtained trajectories may be used for surrogate safety
analysis.

• STRUDL [27] is an emerging framework from Lund University that uses
CNNs for object detection and an Hungarian algorithm for tracking
of the detected objects. The tool is currently command-line based and
relies on GPUs to obtain real-time performance.

• Pedtrax & SmartCycle are two commercial products from Iteris [1] that
detect and count pedestrians and bicyclists at intersections. The prod-
ucts are integrated in the camera surveillance services of the company,
offering a plug-and-play solution.

• Traffic Analytics from Microsoft [12] is a cloud-based solution for pro-
viding directional counts of road users at intersections. Background
subtraction is used to guide a CNN-based object detector that classifies
road users into vehicles, pedestrians, and cyclists which are tracked by
a unspecified method. The system provides a web-based interface for
visualizing the results.

• OTUS3D from Viscando [7] provides traffic counts, classification, and
flow analysis. The system is based on a stereo camera and coupled with
a web-based interface for presenting the data.

• DataFromSky [4] uses aerial video from a drone to obtain an excellent
top-view of the road with very few inter-object occlusions. The drone
videos are analyzed off-line, providing detections, trajectories, and clas-
sifications of road users. The end user may inspect the data by using a
desktop interface. Because of the physical limitations of the drone, the
observational period is limited to four hours.

We have placed the frameworks listed above on a two-dimensional coordi-
nate system shown in Figure 3.2 where each framework is placed accordingly
to the relative accessibility and level of automation of the system. We define
the accessibility as the ease of use for traffic practitioners without any prior
knowledge in computer vision or data science. The level of automation is
defined as the sophistication of the system, i.e. how close the framework is to
the overall goal of fully automated traffic surveillance, including automatic
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Commercial
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Detections
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Legend
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Urban
Tracker

Fig. 3.2: Existing solutions for video-based traffic analysis. Solutions are positioned in the graph
according to the position of the black circle. The period for which an observation might be
conducted continuously is divided into two groups: short-term and long-term. Short-term
observations are defined as lesser than one day whereas long-term observations consequently last
more than one day.

detection, classification, and tracking of objects. As seen in the Figure, both
DataFromSky and STRUDL have high scores on the level of automation. How-
ever, both tools need some manual supervision to function. STRUDL requires
the annotation of 300-400 objects for each scene whereas DataFromSky uses
an undisclosed process which might also include manual annotation and
corrections to the final detections and tracks. It is also apparent from the
diagram that all commercial solutions have high scores on the accessibility
parameter whereas the academic approaches have relatively lower scores. This
is a consequence of the fact that the commercial services hide the complexity
of their solutions and that the fine-tuning of parameters is included in the
services as well. The academic solutions provide a much higher level of
configurability and are delivered as-is, leaving the required adjustments to
the end user.

Other commercial services worth mentioning are Gridsmart [5] which
provides detection of road users based on virtual boxes placed on the road,
similar to the services from Iteris. Miovision [6] provides detection from static
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cameras but also sells a portable solution for short-term observations. They
provide a CNN-based object detection and classification scheme similar to the
offering from Microsoft.

3 Contributions

The research within robust traffic analysis has been conducted as part of a
greater research project sponsored by the European Union1. The research
project is named In-Depth Understanding of Accident Causation for Vulnerable Road
Users (InDeV) and involves traffic researchers, computer vision researchers,
and traffic management consultants. The daily life within this project involved
interdisciplinary and inter-institutional collaboration on work packages, deliv-
erables, deadlines, and status meetings. The articles included on robust traffic
analysis in this thesis reflect the diverse range of tasks conducted within the
InDeV project.

We have grouped the work into three subcategories: pre-processing the
data, post-processing the data, and collecting the data. The categorization is
illustrated in Figure 3.3 which also shows the relationship between datasets,
articles, and the programs developed within this thesis. Below, we will
describe our contributions within the subcategories.

3.1 Pre-processing: The influence of the weather

In the work within pre-processing, we have investigated the influence of the
weather on automated traffic surveillance and more specifically, how bad
weather affects the ability of computer vision algorithms to detect road users
from surveillance video. We have narrowed down our focus to the influence
of rainfall and snowfall and investigated the use of pre-processing to correct
for those phenomena such that the road users are easier to detect, classify, and
track. When it comes to rain and snow, such pre-processing algorithms are
known as rain removal or snow removal algorithms which are designed to
artificially remove the apparent rain or snow in an image or video.

We have surveyed the existing rain removal algorithms and made our
findings available in what we believe is the largest and most comprehensive
survey on rain removal algorithms currently available. Of the surveyed rain
removal algorithms, we have selected six algorithms for evaluation on the AAU
RainSnow dataset. This dataset contains 21 five-minute sequences and one
four-minute sequence on seven different traffic intersections. The sequences
contain synchronized footage from both a visual camera and a thermal camera.
For each sequence, 100 frames are randomly selected and every road user

1This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 635895.
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Fig. 3.3: The structure of the work within robust traffic analysis of this thesis. Boxes represents
papers and reports. The letters within the boxes refer to the corresponding position in the
appendix of this thesis.
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within these frames is manually annotated on a pixel level. The dataset is
publicly available on Kaggle2 and is to our knowledge the world’s largest
publicly available dataset for thermal-visible traffic surveillance.

The six rain removal algorithms are applied on every image in the AAU
RainSnow dataset and we have investigated if these rain-removed images will
improve the performance of subsequent background subtraction algorithms,
feature-tracking algorithms, and instance segmentation algorithms when
compared to the original input images. In Figure 3.4, a sample image is
de-rained using the six evaluated rain removal algorithms. For background
subtraction, we applied the classical Mixture of Gaussians method [51] as
well as a state-of-the-art method based on LBP and spatial diffusion [45].
For instance segmentation, we applied two methods based on the results of
the COCO Detection Challenge [36]. The performance of the background
subtraction and instance segmentation algorithms were evaluated relatively to
the annotations of the AAU RainSnow dataset. For evaluating feature tracking
performance, we tracked Lukas-Kanade features [37] for 12 seconds and then
reversed the playback such that the video stopped at the point in time when
the features were instantiated. If the feature-tracking was confused by the
spatio-temporal raindrops or other phenomena in the videos, the feature
points tracked forwards and backwards may not return to their original
position. We evaluated if the forward-backward tracking was improved on
the rain-removed video. The survey of rain removal algorithms, the AAU
RainSnow dataset, and the evaluation described above is included in Appendix
F.

Our research into rain removal algorithm led to the finding that the training
of these algorithms was based on image pairs where synthetic rain was
overlaid on rain-free images. The rain-free images included both outdoor
and indoor images, and the visual result resembled that the rain was only
falling in front of the camera. As real rain falls in the entirety of the scene,
our hypothesis was that the lack of suitable training data was restraining the
capabilities of the rain removal algorithms.

In 2017, I was a visiting student at the Advanced Driver Assistance Systems
research group at Universitat Autònoma de Barcelona who were creating a
virtual world [41] for teaching self-driving cars how to drive. In such a
virtual world, it is possible to simulate two scenes where the only difference
is the addition of virtual rain. Contrary to the addition of synthetic rain
on real images, synthetic rain on synthetic images fall in the entirety of the
scene, resembling real rain. With the kind assistance of the research group
in Barcelona, we created video sequences from four different scenes in the
virtual world. We used the image pairs of rain free and rain affected images
to train a CNN to convert rain images into rain-free images.

2https://www.kaggle.com/aalborguniversity/aau-rainsnow
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(a) Original (b) Median (c) Garg2007 [23] (d) Kang2012 [30]

(e) Kim2015 [31] (f) Fu2017 [22] (g) Zhang2017 [50]

Fig. 3.4: Sample results from the evaluated rain removal algorithms on the AAU RainSnow
dataset.

The performance of our proposed rain removal algorithm was both evalu-
ated on the traditional signal processing metrics such as Peak Signal-to-Noise
Ratio but also on the ability to improve the subsequent performance of an
object detection algorithm on the AAU RainSnow dataset. The results showed
that it is indeed difficult to provide an efficient training set for rain removal
algorithms. However, given that we were the first to use a fully synthetic
dataset for training rain removal algorithms, we have given directions for
others to improve on. The work on synthetic rain removal is included in
Appendix G.

3.2 Post-processing: Robustness of use

When we started the work on robust traffic analysis in late 2013, there was a
disconnection between the video analysis tools that were available to experts
with a background in computer science and the tools that were available to
the traffic researchers. If we relate to the diagram of Figure 3.2, the only
academic frameworks available at the time were TrafficIntelligence [26] and
T-Analyst [8]. TrafficIntelligence is a command-line tool that requires a basic
understanding of computer vision whereas T-Analyst requires that the traffic
researcher manually inspects the video for events of interest.

At the time, we decided to build a tool that could bridge the gap between
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Fig. 3.5: A sample use-case of the RUBA software. Two detectors are defined to find possible
encounters between cyclists and right-turning vehicles.

manual video analysis and the command-line tools that are available to
computer scientists. We aimed for a watch-dog that would look for situations
of interest in the traffic videos and that the tool should be accessible to traffic
researchers and practitioners. The result was RUBA, a program that combined
off-the-shelf computer vision algorithms with a graphical user interface. A
traffic researcher may use RUBA to detect encounters between different road
users, for instance between vehicles and vulnerable road users. Once RUBA
has finished processing, the researcher will look at the events that RUBA
has marked as interesting and decide if they should be discarded or looked
further into, for instance in T-Analyst. A sample detection is shown in Figure
3.5. RUBA is currently used for research and teaching purposes at the traffic
research group at AAU and has been used by other universities as well.

RUBA is open-souce and publicly available for Windows and MacOS on
Bitbucket3 where a comprehensive user manual is available. This manual
is included in Appendix M. The preliminary version of RUBA, denoted
as TrafficDetector, was presented at a workshop for traffic researchers and
practitioners in 2014 and summarized in the abstract located in Appendix J.
The applications of a more recent version of RUBA were presented in 2017.
This work is included in Appendix K.

We have also experimented with RUBA for counting road user actions at
intersections. In the work presented in Appendix H, we selected a number
of pre-defined paths that defined the actions of road users turning right
and left and cyclists going straight in an intersection. If a road user enters
the pre-defined zones in a certain order, we incremented the corresponding
counter. Detection was performed separately using visual and thermal video

3https://bitbucket.org/aauvap/ruba/
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and fused at decision-level. We later expanded the evaluation to 16 hours of
visual and thermal video captured under different weather and illumination
conditions and compared the results to the feature-based TrafficIntelligence
framework [26]. The results showed that the TrafficIntelligence gave higher
precision but similar recall when compared to RUBA. The extended evaluation
is included in Appendix I.

3.3 Collecting data

At the beginning of the InDeV project, we were gathering knowledge on how
to collect video data from urban roads. We surveyed a range of existing
options for temporary installations, ranging from lightweight solutions carried
by a human to a heavyweight installation that could only be moved by a truck.
The work, which is included in Appendix L, also describes the development
of a portable platform for temporary video recording that was developed by
my colleagues based on the findings of our survey.

4 Sub-conclusion

Our main contributions within robust traffic analysis have been the following:

• A detailed study and evaluation of the influence of rain and snow in
traffic surveillance.

• A comprehensive survey on rain removal algorithms.

• The publicly available AAU RainSnow dataset containing traffic surveil-
lance video captured by visual and thermal cameras.

• A rain removal algorithm trained on fully synthetic data.

• The development of the RUBA software that enables the use of computer-
vision-aided traffic analysis to traffic researchers with no prior knowl-
edge of computer science.
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Chapter 4

Conclusion

This PhD covers work conducted from 2013 to 2018 within two overall themes:
multi-modal analysis and robust traffic analysis

Within multi-modal analysis, we investigated how to obtain synchronized
imagery from visual, depth, and thermal sensors and how to effectively
register a spatial position in one modality to another. We used our tri-modal
acquisition and registration platform to conduct research within people re-
identification and people segmentation where we experimented with different
detection and description methods. As part of this work, we released a
publicly available tri-modal dataset for people segmentation. The dataset
contains annotations of people on a pixel level and the disparate nature of the
three modalities meant that a new tool was required. This annotation tool has
been extended as part of this PhD and has subsequently been used for many
other research projects in our laboratory. When the modalities are registered,
one should know how to use the information from the sensors. In traffic
surveillance, we have investigated how to combine information from visual
and thermal cameras using both the quality of the images and the related
contextual information.

In the work within robust traffic analysis, we have studied the influence
of the weather on the visual domain. More specifically, we have investigated
the influence of rainfall and snowfall on visual traffic surveillance conducted
in urban areas. We surveyed the field of rain removal algorithms, whose
promise is to mitigate the visual influence of the spatio-temporal streaks by
pre-processing the input image or video. Six rain removal algorithms were
selected in order to investigate if the removal of rain from traffic surveillance
video would increase the performance of subsequent background subtraction,
instance segmentation, and feature tracking algorithms. For evaluation, we
collected and annotated a new dataset consisting of visual-thermal video
from seven Danish intersections, all featuring rain or snow. The dataset
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is so far the world’s largest publicly available collection of visual-thermal
images for surveillance. Results showed improvements in feature tracking
and background subtraction but did not provide improvements in instance
segmentation.

The survey revealed that many rain removal algorithms were trained on
rain-free images overlaid with synthetic rain streaks. These images do well in
simulating the rain in front of the camera but fails to model the presence of rain
anywhere else in the scene. In order to account for this, we investigated the
use of fully synthetic sequences from a virtual world where rain is rendered
in the entirety of the scene. Using these data, we trained a rain removal
algorithm and compared it with the state-of-the-art. The results showed that
it is indeed difficult to find a proper procedure for training rain removal
algorithms.

In traffic safety analysis, traffic researchers are analyzing the behavior of
road users in order to understand the causation of accidents. Traditionally,
this has been accomplished by filming the road and manually traversing the
video for interesting situations. However, this is very time-consuming when
the situations of interest are sparse. In order to reduce the amount of video
for manual inspection, we have developed the RUBA software tool. The traffic
researchers use RUBA to automatically detect interactions between road users
that are subsequently selected for manual review. The traffic researchers
at AAU as well as other institutions have picked up the use of RUBA for
long-term video analysis.

We have tested RUBA for detection and counting of turning road user
movements at urban intersections and compared it against a more advanced,
feature-based tracker. The results showed that the feature-based tracker was
more precise but that both systems produced similar recall rates, which is
important for a watch-dog system. In extension of our work within traffic
surveillance, we investigated several options for establishing a portable video
acquisition platform, which led to the construction of a new portable pole.

As part of the dissemination activities, we have authored an article on deep
learning for the Danish magazine on popular science, Aktuel Naturvidenskab.

The research conducted within this PhD leaves several directions for others
to follow. In multi-modal analysis, there are still open questions on how to
combine and use information from multi-modal sensors. In traffic analysis,
the advent of deep learning has made detection and tracking of road users a
commodity under the premise of few occlusions and good weather conditions.
However, in complex scenes, bad weather, or insufficient lighting, the current
techniques break down. In order to combat this, we must gather new insights,
new datasets, and novel ways to automatically adapt to changing conditions.
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1. Introduction

Abstract

Person re-identification is about recognizing people who have passed by a sensor earlier.
Previous work is mainly based on RGB data, but in this work we for the first time
present a system where we combine RGB, depth, and thermal data for re-identification
purposes. First, from each of the three modalities, we obtain some particular features:
from RGB data, we model color information from different regions of the body; from
depth data, we compute different soft body biometrics; and from thermal data, we
extract local structural information. Then, the three information types are combined
in a joined classifier. The tri-modal system is evaluated on a new RGB-D-T dataset,
showing successful results in re-identification scenarios.

1 Introduction

Person re-identification is about recognizing people who have passed by a
sensor earlier. It is useful in many places where it is desirable to obtain
knowledge of the flow of people: airports, transit centers, shopping malls,
amusement parks, etc. It can either be knowledge of a single person’s move-
ment, or movement patterns in general by combining the patterns of many
people. In some cases it is possible to set up a system, which is able to view
the entire scene, as in [16,19]. However, in indoor scenes it is often not feasible
to place one camera with a full overview. This is where re-identification enters
play. It allows the system designer to place sensors at certain bottlenecks and
identify people when they pass these.

Re-identification has the specific distinction from e.g. biometric access
control systems that it must be able to enroll new people on-the-fly and
without their specific collaboration. On the other hand, the recognition
performance does not necessarily have to be as strong as in access control
systems, since re-identification systems are more concerned with the general
trend of movement as opposed to the movement of each individual.

Re-identification has been an active research area for the past decade, but
almost exclusively focused on standard RGB-data. This makes sense since
many venues have a large network of already installed RGB surveillance
cameras. However, as new and more advanced sensor types become cheaply
available, we believe it is time to extend the work to multiple modalities.
This is the exact focus of this work, where we present a novel approach that
integrates RGB, depth, and thermal data in a re-identification system. An
example of RGB, depth, and thermal images for a subject in our dataset is
shown in Figure A.5.

This paper is structured as follows: Section 2 briefly covers the existing
work done on the topic of re-identification, with special focus on the few
multi-modal and/or non-RGB-based contributions. Section 3 describes how
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the inputs from the three modalities are aligned. In sections 4 and 5, the
features and re-identification methods are presented. Section 6 shows the
dataset and covers the results our system achieves on it. Finally, section 7
concludes the paper.

2 Related work

In [6] soft-biometrics based on RGB data are used to track people across
different cameras. Both body and facial soft biometrics are extracted and
combined in the final system. The body soft biometrics are all related to
color: hair, skin, upper, and lower body clothing. In [7] the notion of tracking
people across a multi-camera setup is also followed. Different soft biometric
features are reviewed and discussed in the context of re-identification. A part-
based appearance approach is found to perform the best, but being sensitive
to how the object is divided into parts. In [8] each person is also divided
into parts from which features are extracted. The division is here based on
finding symmetry axes and the soft biometric features are color histograms,
stable color regions and highly structured patches that reoccur. A division
is also applied in [10] using similar features. A boosting approach is then
introduced to select the most discriminative features. In [1] a similar idea is
proposed, i.e., a more reliable classification can be obtained if only the most
discriminative features are used for each image region. Moreover they model
the uncertainties (covariances) of each feature to improve their results. In [22]
a person is divided into six horizontal stripes where each is described in
terms of color and texture. The novelty of the work if the formulation of the
re-identification problem as a matter of learning the optimal distance measure
that minimizes the probability of miss-classification.

All of the above approaches are based on RGB data. Using multi-modal
sensing in re-identification is a very new concept and so far only a few works
have been reported. In [20] a two-stage recognition approach is followed. First
soft-biometrics based on depth data are extracted and secondly RGB data
are used in the final classification step. The depth-based soft biometrics are
anthropometric measurements and estimated manually. The key finding is
that soft biometrics can be used as a pruning step in a recognition system.
While this is very interesting, the introduction of manual measurements is not
desirable for an automatic re-identification system. In [2] a re-identification
method based solely on depth features is presented. The work uses several
normalized measures of body parts, calculated from joint positions. Measures
of the body’s "roundness", which roughly estimates the volume of the torso,
are included. High depth resolution is required for this to work and hence it is
only suitable when subjects are close to the sensor. The paper is focused solely
on the re-identification step and does not treat identification or extraction of
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joints. In [13] thermal data are used in a re-identification system. The work
expands the work reported in [12] where SIFT features are used to model
each person. They work on gait data from a side view and can thou track
each body part reliably. From each of these a codebook signature is learned
over time and combined with the spatial feature distribution found using an
Implicit Shape Model.

As opposed to the works described above, in this paper we introduce a
truly multi-modal approach based on RGB, depth and thermal data. Moreover,
our system is fully automated both in terms of feature extraction, but also
when it comes to enrollment.

3 Registration

Since no sensor is able to capture all three modalities at once, a registration of
the inputs must take place allowing to map a specific point from one modality
to the others. In this work, the Microsoft R© Kinect

TM
for XBOX360 has been

used to capture RGB and depth data. A thermal camera (AXIS Q1922) was
mounted straight over the Kinect’s RGB camera lens with a distance between
the lens centers of 70 mm. For registering the tri-modal imagery of this work,
we need only to register images from the thermal and visual modalities, as the
Kinect provides a factory calibrated registration between the RGB and depth
data.

Traditional image registration techniques used for spatially aligning stereo
imagery cannot be directly applied to the thermal-visible domain due to
the fundamental physical differences of the two modalities, thus rendering
the process of finding corresponding features in both imagery is unfeasible.
In our setup, objects appear at distances between 1 and 4 meters from the
cameras, which makes methods like infinite homography and stereo geometric
unusable [14]. Instead we first use stereo rectification to transform the epipolar
lines to lines parallel with either the x or y axis [9]. This reduces the search
for corresponding points to one dimension. Next we apply the notion that
the distance between corresponding points in the two images is inversely
proportional to the depth of the points if the cameras are only translated
with respect to each other [9]. Since the epipolar lines are transformed to lie
along the image scanlines, the disparity between corresponding points will
lie mainly either on the x or y axes, and we may thus find the relationship
between the inverted depth and the induced disparity and use this property
for rectifying the images.

The stereo calibration requires the knowledge of the intrinsic and extrinsic
camera parameters of both cameras. In order to determine these, we use the
calibration board proposed by [21] with an A3-sized cut-out checkerboard
and a heated plate as a viable backdrop. By using standard camera calibration
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and stereo geometric tools we are able to rectify both images as seen in Figure
A.1.

(a) (b)

Fig. A.1: Stereo rectified multimodal imagery in the (a) RGB and (b) thermal domains.

We used 34 image pairs of the calibration board distributed throughout the
entire scene for the calibration of the cameras. For each corner of the chess-
board in each image, we extract the corresponding depth. The configuration of
cameras placed vertically implies that the disparity of the points in the rectified
image lies mainly on the x-axis. Therefore, we use a robust curve fitting tool
to find a linear regression that fits the disparity in the x-direction as a function
of the inverted distance in the z-direction. The regression is computed off-line
for all calibration points and stored for online lookup of the displacement.
The result of this procedure is a direct pixel-to-pixel correspondence between
the different images.

4 Multi-modal features

The proposed system uses a combination of RGB, depth, and thermal features
to perform the re-identification task. This section explains how the feature
extraction is performed for each modality. Before the extraction, the subject
must first be located at pixel level. The foreground segmentation of the subject
is performed on the depth image by means of Random Forest [18]. This
process is performed computing random offsets of depth features as follows:

fθ(D, x) = D(x+ u
Dx )
−D(x+ v

Dx )
, (A.1)

where θ = (u, v), and u, v ∈ R2 is a pair of offsets, depth invariant. Thus,
each θ determines two new pixels relative to x, the depth difference of which
accounts for the value of fθ(D, x). Using this set of random depth features,
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Fig. A.2: Pipeline of the proposed tri-modal re-identification system.

Random Forest is trained for a set of trees, where each tree consists of split
and leaf nodes (the root is also a split node). Finally, a final pixel probability
of body part membership li is obtained as follows:

P (li|D, x) =
1
τ

τ

∑
j=1

Pj (li|D, x) , (A.2)

where P (li|D, x) is the PDF stored at the leaf, reached by the pixel for clas-
sification (D, x) and traced through the tree j, j ∈ τ. After this process, the
foreground segmentation mask of the subject is transformed to the coordinate
system in the two other modalities, and the features are extracted.

The system uses multi-shot person models. Thus, a person is not modeled
based on only one frame, but on all frames in a pass. A pass is defined as
the act of entering the frame, walking by the camera, and exiting it. In our
dataset only one person is present at a time, so no tracking is necessary. Next,
we describe how the features from each modality are described and fused in
order to perform the on-line re-identification task. Figure A.2 summarizes
the main modules, modalities and strategies considered in the proposed
re-identification system.

4.1 RGB features

After foreground segmentation is performed, the features that are used for the
RGB modality are color histograms in two parts, as shown in Figure A.3(a).
One histogram HRGB

U is derived from the upper body, one HRGB
L from the
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(a) (b)

Fig. A.3: (a) Histograms of RGB color distributions for upper body HRGB
U and lower body HRGB

L
parts of the subject. (b) Detected SURF keypoints on the thermal modality.

lower. This is done for each frame in which the subject is detected. A
histogram of 20 bins is created for each channel, for a total of 60 bins per body
part. Thus, in total the RGB feature vector has 120 dimensions, and one is
created per frame. After a pass ends, the histograms are averaged, and the
final feature vector is the mean across the frames.

4.2 Depth features

Given an input depth frame containing a subject (Figure A.4(a)), and once
the pixel-ground segmentation of the subject into body parts is performed,
the skeleton is also extracted applying Mean Shift [18] (Figure A.4(b)). Since
our dataset contains only raw images, the built-in skeleton-extraction from
the Kinect could not be used. Then, the subject point cloud is spatially
transformed in order to align the skeleton with the camera frame coordinate
system by means of an affine three-dimensional transformation of the point
cloud (Figure A.4(c)). Note that because of the 3D transformation we loose
some information of the body surface due to the lack of information inherent
to the viewpoint. Thus, the noisy subject’s surface is smoothed (Moving
Least Squares surface reconstruction method) and up-sampled to fill the holes
(Figure A.4(d)). Now we can compute soft biometrics from the corrected 3D
skeleton and the 3D surface of the aligned body, which can be then inversely
transformed to return to the original space and estimate real measurements of
the body. From a given depth frame Di, information invariant to the rotation
of the subject with respect to the camera viewpoint can now be extracted. In
particular, we have estimated three sets of soft biometrics:
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Frontal curve model: The model encodes the distances from the points in
subject’s surface (transformed and smoothed, as seen in Figure A.4(d)) to their
corresponding projection line, either head-to-neck or neck-to-torso line. These
distances in millimeters are encoded in a real-valued vector fi, resampled to
size 150 and equalized for normalization purposes (Figure A.4(e)).

Thoracic geodesic distances: Corresponds to the vector gi. It contains the
length of lines on the body surface from one side of the body to the other. The
area in which these are found is the trapezoid defined by left shoulder, right
shoulder, right hip, and left hip, and each entry of gi contains the geodesic
distance in millimeters of a horizontal line in the trapezoid projected to the
surface of the torso. gi is resampled to size 90 (Figure A.4(f)).

Anthropometric relations: Given the extracted body skeleton, the lengths of
7 inter-joint segments connecting the body parts, as shown in Figure A.4(c),
are computed and stored as ai.

Thus, the vector representing the set of depth features for a subject in the
scene at a particular depth frame Di is defined as:

δi = {fi, gi, ai},

where |δi| = 247. Finally, the vector describing the subject pass D =
{F, G, A} is computed by averaging the set of the standardized frame-level
depth feature vectors {δ1, ..., δN} as:

D =
1
N ∑

j∈N

δj − δ̄

σδ
, (A.3)

where |D| = 247, and δ̄ and σδ correspond to the mean depth vector and
the vector of the standard deviations, respectively. Moreover, as a previous
step to this computation and due to the noisy nature of the captured depth
data (clothes deformation, waving arms in front of the torso, and so forth), the
possible outliers are detected and discarded in each δi. This step consists also
in standardizing the set of depth feature vectors but to a modified Z-score [11]
and discarding those values higher than 3.5 in absolute value.

4.3 Thermal features

Since the thermal images contain no color information, the color histogram
approach does not work here. Instead, SURF [3] is employed. Within the
contour supplied by the detection stage, SURF-descriptors are extracted. There
is no fixed number of descriptors, all that are above a certain quality threshold
are extracted. A typical number is around 150 descriptors per subject per
frame, depending on the contour’s size and quality. As opposed to the RGB
histograms there is no direct way to average the descriptors, so the model for
people in the thermal modality is all SURF descriptors of the subject extracted
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(a) (b) (c)

(d) (e) (f)

Fig. A.4: (a) The raw depth data. (b) The pixel-ground segmentation of the subject and the
skeleton. (c) After aligning the skeleton with the camera frame. (d) Smoothed data. (e) Vertical
projection lines. (f) Geodesic distances.
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over all frames in a pass. We define the set of detected and described SURF
points as S, see Figure A.3(b).

5 Re-identification

In order to perform the re-identification task, previously computed feature
vectors for the three modalities have to be fused and analyzed to classify each
subject. The process has two steps:

1. Determine whether the subject is a new or an already known person.
2. Do one of the following two tasks:

(a) If known, determine the ID of the person.
(b) If new, enroll the person.

In step 1, a comparison of the current subject with the list of known subjects
is done. Taking into account that the set of known persons is built on-the-fly,
for the first evaluations only a few comparisons have to be performed.

To estimate whether the subject has to be considered new or re-identified,
we compute the following confidence score based on the combination of the
three modalities scores:

C(U1, U2) = α · dRGB(H1, H2) + β · 1
ddepth(D1, D2)

+

+γ · 1
dthermal(S1, S2)

,

where U1 = {H1, D1, S1} is the set of three modality descriptors (H1 color
histograms, D1 depth feature vectors, and S1 SURF descriptors on the thermal
data) for a user in the dataset, and U2 = {H2, D2, S2} are the three sets of
descriptors for a new test subject. Coefficients α, β, and γ assigns a proper
weight to each of the three modalities scores in a late fusion fashion so that
α + β + γ = 1. The weights are static and were set based on experimentation,
but for future work, and especially larger datasets, a learning approach for the
weights would have to be investigated. The higher the output of C(U1, U2),
the more reliable re-identification. Because ddepth(D1, D2) and dthermal(S1, S2)
returns low values in case of good identifications, the reciprocal is used when
fused.

For comparing two subjects in the RGB-modality, the Bhattacharyya dis-
tance [5] is used:

dRGB(H1, H2) =

√
1−∑

I

√
H1(I)H2(I)√

∑I H1(I) ·∑I H2(I)
, (A.4)

where dRGB(H1, H2) describes the distance between histograms H1 and H2,
and H(I) is the value of bin I in the histogram H. The distance is a number
between 0 and 1, where 0 is a perfect match.
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For comparing across subjects in the depth modality D = {F, G, A}, the
following similarity measure is computed:

ddepth(D1, D2) = WF(1− exp−∑i wi(Fi
1−Fi

2)
2
)+

+WG(1− exp−∑j wj(G
j
1−Gj

2)
2
)+

+ WA(1− exp−∑k wk(Ak
1−Ak

2)
2
). (A.5)

One distance is computed for each of the three depth features, which is in
the range [0..1], the lower the distance, the higher the similarity. Coefficients
WF, WG, and WA assigns a proper weight to each of the three types of depth
feature sets so that WF + WG + WA = 1. Moreover, individual feature weights
w assign a weight to each particular depth feature value, pre-computed based
on a training stage applying ReliefF [17]. In out case the variables were set to
WF = 0.8, WG = 0.1, and WA = 0.1.

In the thermal domain, the SURF-descriptors are matched against each
other with no spatial information resolved. Each matched feature contributes
a vote. Thus the metric is the number of votes for a specific known person
across all the frames in the model:

dthermal(S1, S2) = ∑
NS2

H(nvotes(S1, S2)), (A.6)

where nvotes(S1, S2) computes the number of matches between SURF de-
scriptors S1 on the reference image and SURF descriptors S2 on the test image
based on Euclidean distance criterion. H refers to the Heaviside step function,
ensuring that each frame in a pass can only contribute one vote, and N are
the frames in the model for S2.

5.1 Determine if new

In order to determine if a person is new, once values for α, β, and γ are
established based on a cross-validation of a training stage, two thresholds, TN
and TR are also experimentally computed. If C < TN , the subject is considered
new. If C > TR the subject is assigned a known ID (re-identified). Since a false
positive is more serious than a false negative in re-identification, we have a
buffer zone when TN ≤ C ≤ TR where the system ignores the subject because
we are uncertain whether it is a new person or just a bad match to an existing
one. In our system we used TN = 6 and TR = 10, but the exact value of the
thresholds seemed to be relatively flexible.

5.2 ID determination

The assignment of an ID to an already existing user for re-identification is
straightforward using the confidence score C obtained from the previous step.
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(a) (b) (c)

(d) (e) (f)

Fig. A.5: Sample images from the tri-modal dataset. left, middle, and right are RGB, depth, and
thermal, respectively.

If the user has been determined as already known, it means that the majority
of votes are given to a particular user ID which is the one assigned in the
re-identification task.

6 Evaluation

Several re-identification datasets with RGB [10, 15] and RGB-D data [2] exist,
but to the best of our knowledge no dataset containing all three modalities
exists. We have therefore recorded a novel re-identification tri-modal dataset.

The dataset consists of 35 people passing by the sensors twice for 70 passes
in total. The vantage point is up and slightly off to the side to mimic a classic
surveillance camera setup. All images are 640×480 pixel. Some sample images
from each modality are shown in Figure A.5.

The tests were conducted by first extracting the aforementioned features
from all passes. As this system is a re-identification system with online
enrollment, there is no explicit training phase. Instead, the persons are
enrolled if they are very different from previous seen persons.

Since the order of passing will influence the re-identification performance,
the system was tested in a random 5-cross validation. We tried the different
sets of modalities as input features and found that the best combination of
features is the late fusion considering the three sets of modalities with weights:
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Fig. A.6: CMC-curve performance.

α = 1
3 , β = 1

3 , and γ = 1
3 to fit the tri-modal scheme. The results are presented

both individually and averaged in terms of: A) passes correctly classified as
a new person, B) passes wrongly classified as a new person, C) the number
of correctly re-identified persons, D) the number of wrongly re-identified
persons, and E) the number of persons ignored, see Table A.1.

If an application requires every single person to be re-identified, then it
can be inferred from the table that the performance of our system is 39.4%.
In most cases, however, re-identification is used to measure the overall flow
and the important issue is therefore to have an acceptable number of true
positives and a low number of false positives, where especially the latter is
clearly obtained in our system. For comparison a commercial re-identification
system based on Wi-Fi signals from smartphones operates with a performance
of approximately 50% [4].

A B C D E

Run 1 35 10 16 0 9
Run 2 34 12 12 1 11
Run 3 33 13 13 1 10
Run 4 34 12 15 1 8
Run 5 34 10 13 2 11

Average 34 11.4 13.8 1 11
Percentage 93.2% 6.8%

Table A.1: Re-identification results.

Similar to others working on re-identification we also compute the CMC-
curve to show the recognition performance for different rank values, see
Figure A.6. Each of the dashed lines is a CMC-curve for a single run. The
thick black line is the mean CMC of the 5 runs.

Since this is the first work on tri-modal re-identification we cannot compare
our results directly with those of others. Instead in Table A.2 we list the rank-1
results of previous works. Please note that very different datasets and setting
were used in these works and that no final conclusions therefore can be drawn.
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The results, however, seem to indicate the quality of our tri-modal approach,
especially since we do not have a training phase as most others do.

Work [1] [2] [6] [7] [8] [10] [13] [20] [22] Our

Data RGB Depth RGB RGB RGB RGB Thermal RGB-D RGB RGB-D-T
Rank-1 51% 12% N/A 82% 67% 43% 98% 78% 26% 82%

Table A.2: Data types and rank-1 results of recent re-identification works. Note that
several works test on a number of different settings and different datasets. In such
cases the table contains the average of the best results.

7 Concluding remarks

We proposed a tri-modal re-identification system based on RGB, depth, and
thermal descriptors. Three modalities were aligned, and robust discrimina-
tive features codifying soft biometrics were computed. The modalities were
combined in a late fusion fashion, being able to predict a new user in the
scene as well as to recognize previous users based on a combined rule cost.
We tested our tri-modal re-identification system on anovel tri-modal dataset.
Our results showed that the combination of all three modalities is the one
that achieved better performance. A place to improve the system is in the
determination of new persons. Nearly all new persons are detected as such,
but there is a substantial amount of wrong New Persons. That is not a big
issue with regards to re-identification performance, as presumably they will
also be difficult to re-identify (they are only detected as new because they are
not similar to the known persons), and in many applications it is not critical
to be able to re-identify each and every subject. However, fewer wrong New
Persons will result in a lower absolute re-identification rate.
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1. Introduction

Abstract

This work addresses the problem of human body segmentation from multi-modal
visual cues as a first stage of automatic human behavior analysis. We propose a
novel RGB-Depth-Thermal dataset along with a multi-modal segmentation baseline.
The several modalities are registered using a calibration device and a registration
algorithm. Our baseline extracts regions of interest using background subtraction,
defines a partitioning of the foreground regions into cells, computes a set of image
features on those cells using different state-of-the-art feature extractions, and models
the distribution of the descriptors per cell using probabilistic models. A supervised
learning algorithm then fuses the output likelihoods over cells in a stacked feature
vector representation. The baseline, using Gaussian Mixture Models for the prob-
abilistic modeling and Random Forest for the stacked learning, is superior to other
state-of-the-art methods, obtaining an overlap above 75% on the novel dataset when
compared to the manually annotated ground-truth of human segmentations.

1 Introduction

Human body segmentation is the first step used by most human activity
recognition systems [71]. Indeed, an accurate segmentation of the human
body and correct person identification are key to successful posture recovery
and behavior analysis tasks, and they benefit the development of a new generation
of potential applications in health, leisure, and security [19].

Despite these advantages, segmentation of people in images poses a chal-
lenge to computer vision. The main difficulties arise from the articulated
nature of the human body, changes in appearance, lighting conditions, par-
tial occlusions, and the presence of background clutter. Although extensive
research has been done on the subject, some constraints must be considered.
The researcher must often make assumptions about the scenario where the segmen-
tation task is to be applied, such as static versus moving camera and indoor versus
outdoor location, among other factors. Ideally, it should be tackled in an automatic
fashion rather than rely on user intervention, which makes such tasks even more
challenging. [19]

Most state-of-the-art methods that deal with such task use color images
recorded by RGB cameras as the main cue for further analysis, although they present
several widely known intrinsic problems, such as similarities in the intensity of
background and foreground. More recently, the release of RGB-Depth devices such as
Microsoft Kinect R© and the new Kinect 2 for Windows R© has allowed the community to
use RGB images along with per-pixel depth information [19]. Furthermore, thermal
imagery is becoming a complementary and affordable visual modality. Indeed,
having different modalities and descriptions allow us to fuse them to have a more
informative and richer representation of the scene. In particular, color modality
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adds contour and texture information and depth data provides the geometry of the
scene [19], while thermal imaging adds temperature information.

In this paper we present a novel dataset of RGB-Depth-Thermal video
sequences that contains up to three individuals who appear concurrently in
three indoor scenarios, performing diverse actions that involve interaction with
objects. Sample imagery of the three recorded scenes is depicted in Fig. B.1.
The dataset is presented along with an algorithm that performs the calibration
and registration among modalities. In addition, we propose a baseline methodology
to automatically segment human subjects appearing in multi-modal video sequences
[19]. We start reducing the search space by learning a model of the scene
to subsequently perform background subtraction, thus segmenting subject
candidate regions in all available and registered modalities. Such regions
are then described using simple but reliable uni-modal feature descriptors.
These descriptors are used to learn probabilistic models so as to predict the [19]
candidate region that actually belongs to people. In particular, likelihoods
obtained from a set of Gaussian Mixture Models (GMMs) are fused in a
higher level representation and modeled using a Random Forest classifier. We
compare results from applying segmentation to the different modalities separately to
results obtained by fusing features from all modalities [19]. In our experiments,
we demonstrate the effectiveness of the proposed algorithms to perform
registration among modalities and to segment human subjects. To the best
of our knowledge, this is the first publicly available dataset and work that combines
color, depth, and thermal modalities to perform the people segmentation task in
videos, aiming to bring further benefits towards developing new – and more robust –
solutions [19].

The remainder of this paper is organized as follows: Section 2 reviews the different
approaches for human body segmentation that appear in the recent literature [19].
Section 3 presents the new dataset, including acquisition details, the calibration
device, the registration algorithm, and the ground-truth annotation. Section 4
presents the proposed baseline methodology for multi-modal human body
segmentation, which is experimentally evaluated in Section 5 along with the
registration algorithm. We present our conclusions in Section 6.

2 Related work

Multi-modal fusion strategies have gained attention lately due to the decreas-
ing price of sensors. They are usually based on existing modality-specific
methods that, once combined, enrich the representation of the scene in such
a way that the weaknesses of one modality are offset by the strengths of
another. Such strategies have been successfully applied to the human body
segmentation task, which is one of the most widely studied problems in computer
vision [19].
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Fig. B.1: Three views of each of the three scenes shown in the RGB, thermal, and depth modalities,
respectively.

In this section we focus on the most recent and relevant studies, techniques
and methods of individual and multi-modal human body segmentation. We
also review the existing multi-modal datasets devoted to such task.

Color methods. Background subtraction is one of the most applied tech-
niques when dealing with image segmentation in videos. The parametric
model that [83] proposed, which models the background using a mixture of gaus-
sians (MoG), has been widely used, and many variations based on it have been
suggested. [10] thoroughly reviewed more advanced statistical background modeling
techniques. Nonetheless, after obtaining the moving object contours one still needs
a way to assess whether they belong to a human entity. Human detection methods
are strongly related to the task of human body segmentation because they allow us to
discriminate better among other objects. They usually produce a bounding box that
indicates where the person is, which in turn may be useful as a prior for pixel-based
or bottom-up approaches to refine the final human body silhouette. In the category of
holistic body detectors, one of the most successful representations is the Histogram of
Oriented Gradients (HOG) [26], which is the basis of many current detectors. Used
along with a discriminative classifier – e.g. Support Vector Machines (SVM) – it is
able to accurately predict the presence of human subjects. Example-based methods [5]
have also been proposed to address human detection, utilizing templates to compare
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the incoming image and locate the person but limiting the pose variability [19].
In terms of descriptors, other possible representations, apart from the already

commented HOG, are those that try to fit the human body into silhouettes [60], those
that model color or texture such as Haar-like wavelets [90], optical flow quantized in
Histograms of Optical Flow (HOF) [27], and, more recently, descriptors including
logical relations, e.g. Grouplets [99], which enable observers to recognize human-object
interactions [19].

Instead of whole body detection, some approaches have been built on the assumption
that the human body consists of an ensemble of body parts [69, 74]. Some of these are
based on pictorial structures [4, 97]. In particular, [97], [98], and [33] outperform
other existing methods using a Deformable Part-based Model (DPM). This model
consists of a root HOG-like filter and different part-filters that define a score map of
an object hypothesis, using latent SVM as a classifier. Another well-known part-based
detector is Poselets [9, 93], which trains different homonymous parts to fire at a given
part of the object at a given pose and viewpoint. More recently, [91] have proposed
Motionlets for human motion recognition. Grammar models [40] and AND-OR
graphs [102] have been also used in this context [19].

Other approaches model objects as an ensemble of local features. This category
includes methods such as Implicit Shape Models (ISM) [52], which consist of visual
words combined with location information. These are also used in works that estimate
the class-specific segmentation based on the detection result after a training stage [53]
[19].

Conversely, generative classifiers deal directly with the person segmentation prob-
lem. They function in a bottom-up manner, learning a model from an initial prior
in the form of bounding boxes or seeds, and using it to yield an estimate for the
background and target distributions, normally applying Expectation Maximization
(EM) [20, 80]. One of the most popular is GrabCut [42, 75], an interactive seg-
mentation method based on Graph Cuts [12] and Conditional Random Fields (CRF)
that combines pixel appearance information with neighborhood relations to refine
silhouettes, using a bounding box as an initialization region [19].

Having considered the properties of each of the aforementioned segmentation
categories, it is understandable that a combination of several approaches would be
proposed, namely top-down and bottom-up segmentation [36, 51, 54, 57, 63]. To name
just a few, ObjCut [50] combines pictorial structures and Markov Random Fields
(MRF) to obtain the final segmentation. PoseCut [14] is also based on MRF and
Graph Cuts but has the added ability to deal with 3D pose estimation from multiple
views [19].

Depth methods. Most of the aforementioned contributions use RGB as
the principal cue to extract the corresponding descriptors. The recent release
of affordable RGB-Depth devices such as Microsoft R©Kinect R© [19] has encouraged
the community to start using depth maps as a new source of information. [81]
was one of the first contributions, which used depth images to extract the
human body pose, an approach that is also the core of the Kinect R© human
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recognition framework.
A number of standard computer vision methods already mentioned for

color cues have been applied to depth maps. For example, a combination
of Graph Cuts and Random Forest has been applied to part-based human
segmentation [44]. [46] proposed the use of Poselets as a representation that
combines part-based and example-based estimation aspects for human pose
estimation. Generative models have also been considered, such as in [21],
where they are used to learn limb shape models from depth, silhouette and 3D
pose data. Active Shape Models (ASM), Gabor filters [73], template matching,
geodesic distances [77], and linear programming [94] have also been employed
in this context.

Notwithstanding the former, the emergence of the depth modality has lead
to the design of novel descriptors. [70], for example, proposed a key-point
detector based on the saliency of depth maps for identifying body parts. Point
feature histograms, based on the orientations of surface normal vectors and
taking advantage of a 3D point cloud representation, have also been proposed
for local body shapes representation [43]. [96] applied a 2D Chamfer match
over silhouettes for human detection and segmentation based on contouring
depth images. A more recent contribution is the Histogram of Oriented
4D Normals (HON4D) [67], which proposes a histogram that captures the
distribution of the surface normal orientations in the 4D space of depth, time,
and spatial coordinates. Recently, [58] presented a method that describes hand
poses by a 3D spherical descriptor of cloud density distributions.

Thermal methods. In contrast to color or depth cues, thermal infrared imagery
has not been used widely for segmentation purposes, although it is attracting growing
interest by the research community. Several specific descriptors have been proposed.
For example, HOG and SVM are used in [85] [19], while [100] extended such
combination with Edgelets and AdaBoost. Other examples include joint shape
and appearance cues [25], probabilistic models [7], Shape Context Descriptor
(SCD) with AdaBoost [92], and descriptors invariant to scale, brightness
and contrast [66]. Background subtraction has also been adapted to deal with this
kind of imagery [28]. In that study, the authors presented a statistical contour-
based technique that eliminates typical halo artifacts produced by infrared sensors by
combining foreground and background gradient information into a contour saliency
map in order to find the strongest salient contours [19]. An example of human
segmentation is found in [34], which applies thresholding and shape analysis
methods to perform such task.

Most of the cited contributions focus on pedestrian detection applications.
Indeed, thermal imaging has attracted the most attention for occupancy
analysis [37] and pedestrian detection applications, due to the cameras’ ability
to see without visible illumination and the fact that people cannot be identified
in thermal images, which eliminates privacy issues. In addition to these, a key
advantage of thermal imaging for detecting people is its discriminative power,
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due to the big difference in heat intensity where a human is present.
For more, we refer the reader to [38], an extensive survey of thermal cameras

and more applications, including technological aspects and the nature of thermal
radiation [19].

Combining modalities. Given the increasing popularity of depth im-
agery, it is not surprising that a number of algorithms that combine both
depth and RGB cues have appeared to benefit from multi-modal data rep-
resentation [2, 23, 43, 76, 78, 79, 84, 87]. A recent example is PoseField [89], a
filter-based mean-field inference method that jointly estimates human segmen-
tation poses, per-pixel body parts, and depth, given stereo pairs of images.
Indeed, disparity computation from stereo images is another widely-used
approach for obtaining depth maps without range and outdoor limitations.
Even background subtraction approaches can profit from such a fusion, since
it is possible to reduce those misdetections that cannot be tackled by each
modality individually [18, 35, 39, 41].

Similar to the RGB-Depth combination, thermal imaging has also been
fused with color cues to enrich data representation. Such combinations have
been applied to pedestrian tracking [55, 56], in which the authors apply a
codeword-based background subtraction model and a Kalman filter to track
pedestrian candidates. The pedestrian classification is handled by a symmetry
analysis based on a Double Helical Signature. In [29], Contour Saliency Maps
are used to improve a single-Gaussian background subtraction. RGB-Thermal
human body segmentation is tackled by [101] and, unlike the previously
described approaches, the authors’ dataset contains objects in close range of
the cameras. This means that one cannot rely on a fixed transformation to
register the modalities. Instead, the geometric registration is performed at a
blob level between visual objects corresponding to human subjects.

Only a few scholars have considered the fusion of RGB, depth, and thermal
features (RGB-D-T) to improve detection and classification capabilities. The lat-
est contributions include people following, human tracking, re-identification,
and face recognition. [86] used a laser scanner, along with the RGB-D-T sen-
sors, for people detection and people following. The detection is performed
separately on each modality and fused on a decision level. [22] performed
RGB-D-T human motion tracking to determine the 2D position and orientation
of people in a constrained, indoor scenario. In [62], features extracted on
the three modalities are combined to perform person re-identification. More
recently, [65] performed RGB-D-T face recognition based on Local Binary
Patterns, HOG, and HAAR-features. [48] provide an interesting approach by
using spatiotemporal features and combining the three modalities to estimate
pain level from facial images. However, little attention has been paid to human
segmentation applications combining such cues.

Existing datasets. Up to this point we have extensively reviewed methods
related to multi-modal human body segmentation. Such task is often a first
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step towards further sophisticated pose and behavior analysis approaches.
To advance research in this area, it is necessary to have the right means to compare
methods so as to measure improvements. There are several static and continuous
image-based human-labeled datasets that can be used for that purpose [61], which try
to provide realistic settings and environmental conditions. The best known of these is
the Berkeley Segmentation Dataset and Benchmark [59], which consists of 12,000
segmented items of 1,000 Corel dataset color images containing people or different
objects. It also includes figure-ground labelings for a subset of the images. [3] also
made available a database containing 200 gray level images along with ground-truth
segmentations. This dataset was specially designed to avoid potential ambiguities by
incorporating only those images that clearly depict one or two objects in the foreground
that differ from their surroundings in terms of texture, intensity, or other low level
cues. However, the dataset does not represent uncontrolled scenarios. The well known
PASCAL Visual Object Classes Challenge [30] tended to include a subset of the color
images annotated in a pixel-wise fashion for the segmentation competition. Although
not considered to be benchmarks, Kinect-based datasets are also available, and this
device is widely used in human pose related works. [42] presented a novel dataset
consisting of 3,386 images of segmented humans and ground-truth automatically
created by Kinect R©, which consists of different human subjects across four different
locations. Unfortunately, depth map images are not included in the public dataset [19].

Despite this large body of work, little attention has been given to multi-
modal video datasets. We underline the collective datasets of Project ETISEO [64],
owing to the fact that for some of the scenes the authors include an additional imaging
modality, such as infrared footage, in addition to color images. It consists of indoor
and outdoor scenes of public places such as an airport apron or a subway station, as
well as a frame-based annotated ground-truth. Depth maps computed from stereo pairs
of images are used in INRIA 3D Movie dataset [2], which contains sequences from
3D movies. Such sequences show people performing a broad variety of activities from
a range of orientations and with different levels of occlusions [19]. A comparison of
existing multi-modal datasets focused on human body related approaches is
provided in Table B.1. As one can see, there is a lack of datasets that combine
RGB, depth, and thermal modalities focused on the human body segmentation
task, like the one we propose in this paper.

3 The RGB-Depth-Thermal dataset

The proposed dataset features a total of 11,537 frames divided into three
indoor scenes, of which 5,724 are annotated. Having pictured sample imagery
of the three scenes in Fig. B.1, we also show their corresponding number of
annotated frames and depth range in Table B.2. Activity in scene 1 and 3
uses the full depth range of the Kinect R© sensor, whereas activity in scene
2 is constrained to a depth range of ±0.250 meters in order to suppress the
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parallax between the two physical sensors. Scenes 1 and 2 are situated in a
closed meeting room with little natural light to disturb the sense of depth,
while scene 3 is situated in an area with wide windows and a substantial
amount of sunlight. The human subjects are walking, reading, using their
phones, and, in some cases, interacting with each other. In all scenes, at least
one of the humans interacts with a heated object in order to complicate the
extraction of humans in the thermal domain. Examples of heated objects in
the scene are radiator pipes, boilers, toasters, and mugs.

Scene Frames Annotated frames Depth range
1 4693 1767 1-4 m
2 2216 2016 1.4-1.9 m
3 4628 1941 1-4 m

Table B.2: Annotated number of frames and spatial constraints of the scenes in meters (m).

3.1 Acquisition

The RGB-D-T data stream is recorded using a Microsoft R© Kinect R© for XBOX360,
which captures the RGB and depth image streams, and an AXIS Q1922 thermal
camera. The resolution of the imagery is fixed at 640 × 480 pixels. As seen
in Fig. B.2, the cameras are vertically aligned in order to reduce perspective
distortion.

Fig. B.2: Camera configuration. The RGB and thermal sensor are vertically aligned.

The image streams are captured using custom recording software that
invokes the Kinect for Windows R© and AXIS Media Control SDKs. The
integration of the two SDKs enables the cameras to be calibrated against the
same system clock, which enables the post-capture temporal alignment of the
image streams. Both cameras are able to record at 30 FPS. However, the dataset
is recorded at 15 FPS due to recording software performance constraints.
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3.2 Multi-modal calibration

The calibration of the thermal and RGB cameras was accomplished using
a thermal-visible calibration device inspired by [88]. The calibration device
consists of two parts: we use an A3-sized 10 mm polystyrene foam board
as a backdrop and a board of the same size with cut-out squares as the
checkerboard. Before using the calibration device, we heat the backdrop
and keep the checkerboard plate at room temperature, thus maintaining a
suitable thermal contrast when joined, as seen in Fig. B.3. Using the Camera
Calibration Toolbox of [8], we are able to extract corresponding points in
the thermal and RGB modalities. The sets of corresponding points are used
to undistort both image streams and for the subsequent registration of the
modalities.

6 Cristina Palmero et al.

Fig. 1: Two views of each of the three scenes shown in the
RGB, thermal, and depth modalities, respectively.

Fig. 2: Camera configuration. The RGB and thermal sensor
are vertically aligned.

(a) (b)

x

z

y

(c)

Fig. 3: The calibration device as seen by the (a) RGB and
(b) thermal camera. The corresponding points in world co-
ordinates and the plane, which induces an homography, is
overlayed in (c). Noise in the depth information accounts
for the outliers in (c).

tained from the SDK. The registration is static and might
thus be saved in two look-up-tables for RGB⇔ depth.

The registration from RGB ⇒ thermal, x ⇒ x′, is han-
dled using a weighted set of multiple homographies based
on the approximate distance in space to the view that the ho-
mography represents. By using multiple homographies, we
are allowed to compensate for parallax at different depths.
However, the spatial dependency of the registration implies
that no fixed, global registration or look-up-table is possible,
thus inducing a unique mapping for each pixel at different
depths.

Homographies relating RGB and thermal modalities are
generated from minimum 50 views of the calibration device
scattered throughout each scene. One view of the calibration

Fig. B.3: The calibration device as seen by the (a) RGB and (b) thermal camera. The corresponding
points in world coordinates and the plane, which induces a homography, are overlayed in (c).
Noise in the depth information accounts for the outliers in (c).
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3.3 Registration

The depth sensor of the Kinect R© is factory registered to the RGB camera and
a point-to-point correspondence is obtained from the SDK. The registration is
static and might therefore be saved in two look-up-tables for RGB⇔ depth.

The registration from RGB⇒ thermal, x⇒ x′, is handled using a weighted
set of multiple homographies based on the approximate distance to the view
that the homography represents. By using multiple homographies, we can
compensate for parallax at different depths. However, the spatial dependency
of the registration implies that no fixed, global registration or look-up-table is
possible, thus inducing a unique mapping for each pixel at different depths.

Homographies relating RGB and thermal modalities are generated from
a minimum of 50 views of the calibration device scattered throughout each
scene. One view of the calibration device induces 96 sets of corresponding
points in the RGB and thermal modality (Fig. B.3c), from which a homography
is computed using a RANSAC-based method. The acquired homography and
the registration it establishes are only accurate for points on the plane that
are spanned by the particular view of the calibration device. To register an
arbitrary point of the scene, x⇒ x′, the 8 closest homographies are weighted
according to this scheme:

1. For all J views of the calibration device, calculate the 3D centre of the K
extracted points in the image plane:

Xj =
∑K

k=1 Xkj

K
=

∑K
k=1 P+xkj

K
. (B.1)

The depth coordinate of X is estimated from the registered point in the
depth image. P+ is the pseudoinverse of the projection matrix.

2. Find the distance from the reprojected point X to the homography
centres:

ω(j) = |X− Xj|. (B.2)

3. Centre a 3D coordinate system around the reprojected point X and find
min ω(j) for each octant of the coordinate system. Set ω(j) = 0 for all
other weights. Normalize the weights:

ω∗(j) =
ω(j)

∑J
j=1 ω(j)

. (B.3)

4. Perform the registration x⇒ x′ by using a weighted sum of the homo-
graphies:

x′ =
J

∑
j=1

ω∗(j) Hjx, (B.4)
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Fig. B.4: Average registration error, RGB (a) ⇒ thermal (b), of the three dataset sequences,
averaged over the depth range of the Kinect. The errors are shown in image coordinates and are
computed from multiple views of the calibration device. Registrations errors are more prominent
in the boundaries of the images.

where Hj is the homography induced by the jth view of the calibration
device.

For registering thermal points, the absence of depth information means
that points are reprojected at a fixed distance, inducing parallax for points at
different depths. Thus, the registration framework may be written:

depth⇔ RGB⇒ thermal (B.5)

The accuracy of the registration of RGB⇒ thermal is mainly dependent
on:

1. The distance in space to the nearest homography.

2. The synchronization of thermal and RGB cameras. At 15 FPS, the
maximal theoretical temporal misalignment between frames is thus 34
ms.

3. The accuracy of the depth estimate.

A quantitative view of the registration accuracy is provided in Fig. B.4. An
example of the registration for Scene 3 is seen in Fig. B.5.

3.4 Annotation

The acquired videos were manually annotated frame by frame in a custom
annotation program called Pixel Annotator. The dataset contains a large
number of frames spread over a number of different sequences. All sequences
have three modalities: RGB, depth, and thermal. The focus of the annotation
is on the people in the scene and a mask-based annotation philosophy was
employed. This means that each person is covered by a mask and each
mask (person) has a unique ID that is consistent over all frames. In this
way the dataset can be used not only for subject segmentation, but also for
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Fig. B.5: Example of RGB (a)⇒ thermal (b) registration.

tracking and re-identification purposes. Since the main purpose of the dataset
is segmentation, it was necessary to use a pixel-level annotation scheme.
Examples of the annotation and registered annotated masks are shown in
Fig. B.7.

Pixel Annotator provides a view of each modality with the current mask
overlaid, as well as a raw view of the mask (see Fig. B.6). It implements
the registration algorithm described above so that the annotator can judge
whether the mask fits in all modalities. Because the modalities are registered
to each other, there are not specific masks for any given modality but rather a
single mask for all.

Fig. B.6: Pixel Annotator showing the RGB masks and the corresponding, registered masks in the
other views.

Each annotation can be initialized with an automatic segmentation using
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Fig. B.7: Examples of the annotated imagery for two views in each of the three scenes. The
RGB modality is manually annotated and the corresponding mask is registered to the depth and
thermal modalities. The causes of registration misalignment of the masks are motion blur and
noisy depth information, which induce parallax in the thermal modality.

the GrabCut algorithm [75] to get it quickly off the ground. Pixel Annotator
then provides pixel-wise editing functions to further refine the mask. Each
annotation is associated with a numerical ID and can have an arbitrary number
of property fields associated with it. They can be boolean or contain strings so
that advanced annotation can take place, from simple occluded/not occluded
fields to fields describing the current activity. Pixel Annotator is written in
C++ on the Qt framework and is fully cross-platform compatible.

The dataset and the registration algorithm is freely available at http:
//www.vap.aau.dk/. Since we subdivided the several scenes into 10 variable-
length sequences in order to carry out our baseline experiments, we also
provide the partitionings in a file along with the dataset. We refer the reader
to Section 5 for more details about the evaluation of the baseline.

4 Multi-modal human body segmentation

We propose a baseline methodology to segment human subjects automatically
in multi-modal video sequences. The first step of our method focuses on
reducing the spatial search space by estimating the scene background to
extract the foreground regions of interest in each one of the modalities. Note
that such regions may belong to human or non-human entities, so in order to
perform an accurate classification we describe them using modality-specific
state-of-the-art feature descriptors. The obtained features are then used to learn
probabilistic models in order to predict which foreground regions actually belong to
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Fig. B.8: The main steps of the proposed baseline method, before reaching the fusion step.
Adaption of [19].

human subjects [19]. Predictions obtained from the different models are then
fused using a learning-based approach. Fig. B.8 depicts the different stages of
the method.

4.1 Extraction of masks and regions of interest

The first step of our baseline is to reduce the search space [19]. For this task, we
learn a model of the background and perform background subtraction.

Background subtraction

A widely used approach for background modeling in this context is Gaussian Mixture
Models (GMM), which assigns a mixture of gaussians per pixel with a fixed number

81



Paper B.

of components [11]. Sometimes the background presents periodically moving parts
such as noise or sudden and gradual illumination changes. Such problems are often
tackled with adaptive algorithms that keep learning the pixel’s intensity distribution
after the learning stage with a decreased learning rate. However, this also causes
intruding objects that stand still for a period of time to vanish, so a non-adaptive
approach is more convenient in our case [19].

Although this background subtraction technique performs fairly well, it has to deal
with the intrinsic problems of the different image modalities. For instance, color-based
algorithms may fail due to shadows, similarities in color between foreground and
background, highlighted regions, and sudden lighting changes. Thermal imagery may
also have this kind of problems, in addition to the inconvenience of temperature changes
in objects. A halo effect can also be observed around warm items. Regarding depth-
based approaches, they may produce misdetections due to the presence of foreground
objects at a depth similar to that of the background. Depth data is quite noisy and
many pixels in the image may have no depth due to multiple reflections, transparent
objects, or scattering in certain surfaces such as human tissue and hair. Furthermore, a
halo effect around humans or objects is usually perceived due to parallax issues caused
by the separation of the infrared emitter and sensor of the Kinect R© device. However,
they are more robust when it comes to lighting artifacts and shadows. A comparison is
shown in Fig. B.9, where the actual foreground objects are the humans and the objects
on the table. As one can see, RGB fails at extracting the human legs because they are
of a similar color to the chair in the back. The thermal cue segments the human body
more accurately, but it includes some undesired reflections and illuminates the jar and
mugs with a surrounding halo. The pipe tube is also extracted as foreground due to
temperature changes over time [19].

Despite its drawbacks, depth-based background subtraction is the one that seems
to give the most accurate result. Therefore, the binary foreground masks of our
proposed baseline are computed applying background subtraction to the depth modality
previously registered to the RGB one, thereby allowing us to use the same masks
for both modalities. Let us consider the depth value of a pixel at frame i as z(i).
The background model p(z(i)|B) – where B represents the background – is estimated
from a training set of depth images represented by Z using the T first frames of a
sequence such that Z = {z(i)1 , . . . , z(i)T }. This way, the estimated model is denoted
by p̂(z(i)|Z , B), modeled as a mixture of gaussians. We use the method presented
in [103], which uses an on-line clustering algorithm that constantly adapts the number
of components of the mixture for each pixel during the learning stage [19].

Extraction of regions of interest

Once the binary foreground masks are obtained, a 2D connected component analysis is
performed using basic mathematical morphological operators. We also set a minimum
value for each connected component area – except in left and rightmost sides of the
image, which may be caused by a new incoming item – to clean the noisy output
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Fig. B.9: Background subtraction for different visual modalities of the same scene (RGB, depth,
and thermal respectively). First appeared in [19].

mask [19].
A region of interest should contain a separated person or object. However, different

subjects or objects may overlap in space, resulting in a bigger component that contains
more than one item. For this reason, each component has to be analyzed to find each
item separately in order to obtain the correct bounding boxes that surround them [19].

One of the advantages of the depth cue is that we can use the depth value in each
pixel to know whether an item is farther than another. We can assume that a given
connected component denotes just one item if there is no rapid change in the disparity
distribution and it has a low standard deviation. For those components that do have
a greater standard deviation, and assuming a bimodal distribution – two items in
that connected component –, Otsu’s method [68] can be used to split the blob in two
classes such that their intra-class variance is minimal [19].

For such purposes, we define c as a vector containing the depth range values that
correspond to a given connected component, with mean µc and standard deviation σc,
and σotsu as a parameter that defines the maximum σc allowed to not apply Otsu. Note
that erroneous or out-of-range pixels do not have to be taken into account in c when
finding the Otsu’s threshold because they would change the disparity distribution,
thus leading to incorrect divisions. Hence, if σc > σotsu, Otsu is applied. However,
the assumption of bimodal distribution may not hold, so to take into account the
possibility of more than two overlapping items the process is applied recursively to the
divided regions in order to extract all of them [19].

Once the different items are found, the regions belonging to them are labeled
using a different ID per item. In addition, rectangular bounding boxes are generated
encapsulating such items individually over time, whose function is to denote the
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regions of interest of a given foreground mask [19].

Correspondence to other modalities

As stated in Section 4.1, depth and color cues use the same foreground masks, so we
can take advantage of the same bounding boxes for both modalities. Foreground masks
for the thermal modality are computed using the provided registration algorithm
with the depth/color foreground masks as input [19]. For each frame, each item
is registered individually to the thermal modality and then merged into one
mask, thus preserving the same item ID for the depth/color foreground masks.
In this way, we achieve a one-to-one straightforward correspondence between
items of all modalities, and the constraint of having the same number of items
in all the modalities is fulfilled. Bounding boxes are generated in the same
way depth modality is, which, although they do not have the same coordinates,
denote the same regions of interest. Henceforth, we use R to refer to such regions and
F = {Fcolor, Fdepth, Fthermal} to refer to the set of foreground masks [19].

Tagging regions of interest

The extracted regions of interest are further analyzed to decide whether
they belong to objects or subjects. In order to train and test the models and
determine final accuracy results, we need to have a ground-truth labeling of
the bounding boxes in addition to the ground-truth masks.

This labeling is done in a semiautomatic manner. First, we extract bounding
boxes from regions of interest of ground-truth masks, compare them to those
extracted previously from the foreground masks F, and compute the overlap
between them. Defining yr as the label applied to the r region of interest, the
automatic labeling is therefore applied as follows:

yr =


0 (Object) if overlap ≤ λ1
−1 (Unknown) if λ1 < overlap < λ2
1 (Subject) if overlap ≥ λ2

(B.6)

In this way, regions with low overlap are considered to be objects, whereas
those with high overlap are classified as subjects. A special category named
unknown has been added to denote those regions that do not lend themselves
to direct classification, such as regions with subjects holding objects, multiple
overlapping subjects, and so on.

However, such conditions may not always hold, since some regions whose
overlap value is lower than λ1 compared to the ground-truth masks could
actually be part of human beings. For this reason we reviewed the applied
labels manually to check for possible mislabelling.

84



4. Multi-modal human body segmentation

4.2 Grid partitioning

Given the accuracy of the registration, particularly because of the depth-to-thermal
transformation, we are not able to make an exact pixel-to-pixel correspondence. Instead,
the association is made among greater information units: grid cells. In the context of
this work, a grid cell is the unit of information processed in the feature extraction and
classification procedures [19].

Each region of interest r ∈ R associated with either a segmented subject or object
is partitioned in a grid of n×m cells. Let Gr denote a grid, which in turn is a set
of cells, corresponding to the region of interest r. Hence, we write Grij to refer to the
position (i, j) in the r-th region, such that i ∈ {1, ..., n} and j ∈ {1, ..., m} [19].

Furthermore, a grid cell Grij consists of a set of multi-channel images {G(c)
rij | ∀c ∈

C}, corresponding to the set of cues [19]:

C = {“color′′, “motion′′, “depth′′, “thermal′′} (B.7)

Accordingly, {G(c)
rij | ∀r ∈ R}, i.e. the set of (i, j)-cells in the c cue, is indicated

by G(c)
ij [19].

The next section provides the details about the feature extraction processes on the
different visual modalities at cell level [19].

4.3 Feature extraction

Each cue in C involves its own specific feature extraction/ description processes. For
this purpose, we define the feature extraction function f such that f : Rn×m →
R

δ. Accordingly, G Rn×m
−−−→ d, where d is a δ-dimensional vector, representing

the description of G in a certain feature space (the output space of f ). For the
color modality two kinds of descriptions are extracted for each cell – Histogram
of Oriented Gradients (HOG) and Histogram of Optical Flows (HOF) –, whereas
in the depth and thermal modality the Histogram of Oriented Normals (HON)
and Histogram of Intensities and Oriented Gradients (HIOG) are used respectively
[19]. Hence, we define a set of four different kinds of descriptions D =
{HOG, HOF, HON, HIOG}. In this way, for a particular cell Grij, we extract the

set of descriptions Drij = { fd(G
(c)
rij ) | c = v(d) , ∀d ∈ D} = {d(d)

rij | ∀d ∈ D}.
The function v(·) simply returns the cue corresponding to a given description.

Color modality

The color imagery is the most popular modality and has been extensively used to
extract a range of different feature descriptions [19].

Histogram of oriented gradients (HOG). For the color cue, we make the
most of the original implementation of HOG but with a lower descriptor
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Fig. B.10: Example of descriptors computed in a frame for the different modalities: (a) represents
the motion vectors using a forward scheme; that is, the optical flow orientation gives insight into
where the person is going in the next frame; (b) the computed surface normal vectors; and (c) the
thermal intensities and thermal gradients’ orientations. Adapted from [19].

dimension than the original by not overlapping the HOG blocks. For the
gradient computations, we use RGB color space with no gamma correction and the
Sobel kernel [19].

The gradient orientation is therefore determined for each pixel by con-
sidering the pixel’s dominant channel and quantized in a histogram over
each HOG-cell (note that we are not referring to our cells), evenly spacing
orientation values in the range [0◦, 180◦]. HOG-cells’ histograms in each HOG-
block are concatenated and L2-normalized. Finally, normalized HOG-block
histograms are concatenated in the κ-bin histogram that we use for our cell
classification.

Histogram of Optical Flow (HOF). The color cue also allows us to obtain mo-
tion information by computing the dense optical flow and describing the distribution
of the resultant vectors. The optical-flow vectors of the whole image can be computed
using the luminance information of image pairs with the Gunnar Farnebäck’s algo-
rithm [32]. In particular, we use the available implementation in OpenCV1, which
is based on modeling the neighborhoods of each pixel of two consecutive frames by
quadratic polynomials. This implementation allows a wide range of parameterizations,
which are specified in Section 5 [19].

The resulting motion vectors, which are shown in Fig. B.10, are masked and
quantized to produce weighted votes for local motion based on their magnitude, taking
into account only those motion vectors that fall inside the Gcolor grids. Such votes are
locally accumulated into a ν-bin histogram over each grid cell according to the signed
(0◦ - 360◦) vector orientations. In contrast to HOG, HOF uses signed optical flow

1This is an implementation of the work of [13], which can be found at http://code.opencv.
org.
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since the orientation information provides more discriminative power [19].

Depth modality

The grid cells in the depth modality Gdepth are depth dense maps represented as planar
images of pixels that measure depth values in millimeters. From this depth representa-
tion (projective coordinates) it is possible to obtain the “real world” coordinates by
using the intrinsic parameters of the depth sensor. This new representation, which
can be seen as a 3D point cloud structure P , offers the possibility of measuring actual
euclidean distances – those that can be measured in the real world [19].

After completing the former conversion, we propose to compute the surface normals
for each particular point cloud Prij (representing an arbitrary grid cell Gdepth

rij ) and
their distribution of angles summarized in a δ-bin histogram that describes the cell
from the depth modality point of view [19].

Histogram of oriented depth normals (HON). In order to describe an arbi-
trary point cloud Prij, the surface normal vector for each 3D point must be computed
first. The normal 3D vector at a given point p = (px, py, pz) ∈ P can be seen as a
problem of determining the normal of a 3D plane tangent to p. A plane is represented
by the origin point q and the normal vector n. From the neighboring points K of
p ∈ P , we first set q to be the average of those points [19]:

q , p̄ =
1
|K| ∑

p∈K
p. (B.8)

The solution of n can be then approximated as the smallest eigenvector of the
covariance matrix C ∈ R3×3 of the points in PKp [19].

The sign of n can be either positive or negative, and it cannot be disambiguated
from the calculations. We adopt the convention of consistently re-orienting all com-
puted normal vectors towards the depth sensor’s viewpoint direction z. Moreover, a
neighborhood radius parameter determines the cardinality of K, i.e. the number of
points used to compute the normal vector in each of the points in P . The computed
normal vectors over a human body region is shown in Fig. B.10. Points are illustrated
in white, whereas normal vectors are red lines (instead of arrows to ease the visualiza-
tion). The next step is to build the histogram describing the distribution of the normal
vectors’ orientations [19].

A normal vector is expressed in spherical coordinates using three parameters: the
radius, the inclination θ, and the azimuth ϕ. In our case, the radius is a constant
value, so this parameter can be omitted. Regarding θ and ϕ, the cartesian-to-spherical
coordinate transformation is calculated as: [19]

θ = arctan
(

nz

ny

)
, ϕ = arccos

√
(n2

y + n2
z)

nx
. (B.9)
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Therefore, a 3D normal vector can be characterized by a pair (θ, ϕ) and the
depth description of a cell consists of a pair of δθ-bin and δϕ-bin histograms (such
that δ = δθ + δϕ), L1-normalized and concatenated, describing the two angular
distributions of the body surface normals within the cell [19].

Thermal modality

Whereas neither raw values of color intensity nor depth values of a pixel
provide especially meaningful information for the human detection task, raw
values of thermal intensity on their own are much more informative.

Histogram of thermal intensities and oriented gradients (HIOG). The
descriptor obtained from a cell in the thermal cue Gthermal

rij is the concatenation of two
histograms. The first one is a histogram summarizing the thermal intensities, which
spread across the interval [0, 255]. The second histogram summarizes the orientations
of thermal gradients. Such gradients, computed by convolving a first derivative kernel
in both directions, are binned in a histogram weighted by their magnitude. Finally,
the two histograms are L1-normalized and concatenated. We used αi bins for the
intensities and αg bins for the gradients’ orientations [19].

4.4 Uni-modal (description-level) classification

Since we wish to segment human body regions, we need to distinguish those from the
other foreground regions segmented by the background subtraction algorithm. One
way to tackle this task is from an uni-modal perspective [19].

From the previous step, each grid cell has been described using each and every
description in D. For the purpose of classification, we train a Gaussian Mixture Model
for every cell (i, j) and description in D. For a particular description d, we thereby
obtain the set of GMM modelsM(d) = {M(d)

ij | ∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., m}}
[19].

For predicting a new unseen region r to be either a subject or an object
according to d, it is first partitioned into Gr, the cells’ contents {Gv(d)

rij }∀i,j

are described, and the n×m feature vectors representing the region in the
d-space, {d(d)

rij }∀i,j, are evaluated in the corresponding mixtures’ PDFs. The

log-likelihood value associated with the (i, j)-th feature vector, d(d)
rij , is thus the

one in the most probable component in the mixtureM(d)
ij . Formally, we denote

this log-likelihood value as `
(d)
rij . Eventually, the category – either subject or

object – of the (i, j) cell according to d can be predicted by comparing the
standardized log-likelihood ˆ̀(d)

rij with an experimentally selected threshold

value τ
(d)
ij .

However, given that we can have a different category prediction for each
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cell, we first need to reach a consensus among cells. In order to do this,
we convert the standardized log-likelihoods to confidence-like terms. This
transformation consists of centering { ˆ̀(d)

rij | ∀r ∈ R} to τ
(d)
ij and scaling the

centered values by a deviation-like term that is simply the mean squared
difference in the sample with respect to τ

(d)
ij . This way, we eventually come

up with the confidence-like terms {$(d)rij | ∀r ∈ R} that conveniently differ in
their sign depending on the category label: a negative sign for objects and a
positive one for subjects; thus, the more negative (or positive) the value is, the
more confidently we can categorize it as an object (or a subject).

Finally, the consensus among the cells of a certain region r can be attained
by a voting scheme. For this purpose, we define the grid consensus function
g(r; d) as follows:

v(d,−)
r = ∑

i,j
1{$(d)rij < 0} , v(d,+)

r = ∑
i,j
1{$(d)rij > 0} (B.10)

$̄
(d,−)
r =

1

v(d,−)
r

∑
(i,j) | $(d)rij <0

$
(d)
rij , (B.11)

$̄
(d,+)
r =

1

v(d,+)
r

∑
(i,j) | $(d)rij >0

$
(d)
rij (B.12)

g(r; d) =


0 if v(d,−)

r > v(d,+)
r

1

{
|$̄(d,−)

r | < |$̄(d,+)
r |

}
if v(d,−)

r = v(d,+)
r

1 if v(d,−)
r < v(d,+)

r

, (B.13)

where v(d,−)
r and v(d,+)

r keep count of the votes of the r grid cells for object
(negative confidence) and subject (positive confidence), respectively. $̄

(d,−)
r

and $̄
(d,+)
r are the averages of negative and positive confidences, respectively.

In the case of a draw, the magnitude of the mean confidences obtained for
both categories are compared. Since confidence values $ are centered at the
decision threshold τ, these can be interpreted as a margin distance. From
these calculations, the cells’ decisions can be aggregated and the category of a
grid r determined from each of the descriptions’ point of view.

4.5 Multi-modal fusion

Our hypothesis is that the fusion of different modalities and descriptors, potentially
providing a more informative and richer representation of the scenario, can improve
the final segmentation result [19].

89



Paper B.

Learning-based fusion approach

As before, the category of a grid r should be predicted. However, instead of
just relying on individual descriptions, we exploit the confidences $ provided
by the GMMs in the different cells and types of description altogether. This
approach follows the Stacked Learning scheme [24, 72], which involves training a new
learning algorithm by combining previous predictions obtained with other learning
algorithms [19]. More precisely, each grid r is represented by a vector vr of
confidences:

vr = ($
(1)
r11, ..., $

(1)
rNM, ..., $

(|D|)
r11 , ..., $

(|D|)
rNM , yr), (B.14)

where yr is the actual category of the r grid. Using such representation of the
confidences in the different grid cells and modalities, we build a data sample
containing the R feature vectors of this kind. In this way, any supervised
learning algorithm can be used to learn from these data and infer more reliable
predictions than using individual descriptions and defined voting scheme for
cells’ consensus. For this purpose, we use a Random Forest classifier [15] after
an experimental evaluation of different state-of-the-art classifiers.

5 Evaluation

We test our approach in the novel RGB-D-T dataset and compare it to other
state-of-the-art approaches. First we detail the experimental methodology
and evaluation parameters and then provide the experiments’ results and a
discussion about them.

5.1 Experimental methodology and validation measures

We divided the dataset into 10 continuous sequences, as listed in Table B.3,
and performed a leave-one-sequence-out cross-validation so as to compute
the out-of-sample segmentation overlap. The unequal length of the sequences
stems from the posture variability criterion followed: to ensure that very
similar postures are not repeated in the different folds (i.e. sequences).

In addition, we performed a model selection in each training partition in
order to find the optimal values for the GMMs’ experimental parameters: k
(number of components in the mixture), τ (decision threshold), and ε (stopping
criterion for fitting the mixtures). We provide more detailed information about
their values in Section 5.2. Although we used the leave-one-sequence-out
cross-validation strategy again, we applied it this time to the remaining N − 1
training sequences. In each inner fold, a grid search was carried out to measure
the performance of each combination (k, τ, ε). The optimal combination, i.e.,
the one that showed the best average across the 10 × 9 model selections, was
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Sequence id. Scene id. No. frames Start-end frame
1

1
134 00001-00134

2 905 00135-01638
3 762 01639-02400
4

2

247 00001-00247
5 816 00248-01063
6 463 01064-01526
7 690 01527-02216
8

3
142 00001-00142

9 848 00143-01449
10 951 01450-02400

Table B.3: Division of the scenes into 10 sequences (or partitions) of different length.

used to train the final model eventually validated in the corresponding test
sequence.

The parameters of the supervised classifiers in the learning-based fusions
were selected following the same validation procedure as above but considered
the vectors of stacked confidences instead of the original descriptors. While
the selection of k, τ, and ε was sufficiently exhaustive, given their nature, the
parameters involved in these supervised learning algorithms often require
more exhaustive searches to fine-tune their values. In order to find the
best parameters while keeping the number of combinations manageable, we
performed a two-level grid search, which consisted of a first coarse grid search
followed by a second narrow grid search around the coarse optimal values.

As previously mentioned, we computed an overlap measure in order to
evaluate the performance of our baseline. The overlap was first computed
per person-ID and frame, and then averaged across all IDs in that frame.
For the computation, we used intersection-over-union |A∩B|

|A∪B| , where A is a
ground-truth region with a certain person-ID and B the region of prediction
with its pixels coinciding with those of A. Having computed the overlaps at
frame-level, the overlap of a sequence is thereby calculated as the mean overlap of all
those frames containing at least one blob, whether it be in the ground-truth or in the
prediction mask [19].

As stated in Section 4.1, the depth cue suffers from a halo effect around people or
objects, thus complicating an accurate pixel-level segmentation at blob contours when
applying background subtraction. This lack of accuracy is also caused by possible
distortions, noise, or other problems, and decreases the final overlap. To tackle this
problem, a do not care region (DCR) is often used [19]. A DCR simply defines a
border region of pixels over the silhouette contours in both the prediction and
contour masks that are not taken into account for the overlap computation. In
this way, we can compare the effect of using a growing DCR to the actual overlap [19].
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5.2 Parameters and settings

We experimentally set λ1 = 0.1 and λ2 = 0.6 for the automatic tagging of
regions of interest. We also set σotsu = 8.3 for a connected component area of at
least 0.1% of the image and σotsu = 12 for other cases [19]. These settings were
established in order to maintain a trade-off between finding the maximum
number of overlapping people situations without dividing a subject in different
regions, depending on the variation of depth of the body parts.

Since it is not possible to have a pixel-to-pixel correspondence among modalities,
we define the correspondence at a grid cell level. The grids have been partitioned in
m× n cells, with m = 2 and n = 2 [19].

For the HOG descriptor, each grid cell was resized to 64× 128 pixels and divided
in rectangular blocks of 32× 32 pixels, which were, in turn, divided into rectangular
local spatial regions of 16× 16 pixels. We also set κ = 9. The information of each local
spatial region is concatenated, resulting in a vector of 36 values per HOG-block. This
brings the final vector size of a grid cell to 4 HOG-blocks vertically × 2 HOG-blocks
horizontally × 4 HOG-cells per block × 9 bins per HOG-cell, making a total of 288
components/dimensions [19]. To further reduce the vector length and avoid the
curse of dimensionality, we applied PCA to such vector, retaining 95% of the
information. This way, the number of components of the feature vectors from
all descriptions do not differ greatly.

In order to compute optical flow, we fixed the parameters of the given
implementation based on the best-performing ones from the tests performed
in [16]. Specifically, we set the average window size to 2, the size of the pixel
neighborhood considered when finding polynomial expansion in each pixel to 5, and
the standard deviation of the Gaussian that is used to smooth derivatives used as a
basis for the polynomial expansion to 1.1. The remaining parameters were set to their
default values. For the motion descriptor (HOF), we defined ν = 8 to produce an
8-dimensional feature vector [19].

For the depth descriptors (HON), we defined δθ = 8 and δϕ = 8, whereas for the
thermal descriptors (HIOG), we defined υi = 8 and υg = 8, as they are standard
values often used in the literature [19].

In the GMM-related experiments, we set k = {2, 4, 6, 8, 10, 12} and τ =
{−3,−2.5,−2,−1.5,−1.25,−1,−0.75,−0.5,−0.4, . . . , 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3}.
In order to avoid overfitting problems, we also optimized the termination
criterion of the Expectation-Maximization algorithm used for training the
GMMs, ε = {1e− 2, 1e− 3, 1e− 4, 1e− 5}.

Among many existing state-of-the-art supervised learning algorithms able
to perform the fusion, we tested the following: Adaptive Boosting, Multi-Layer
Perceptron (with both sigmoidal and radial basis activation functions), Support
Vector Machines (linear and radial basis function kernels), and Random
Forest. In the AdaBoost experiment, we selected the number of possible weak
classifiers and the weight trimming rates among {10, 20, 50, 100, 200, 500, 1000}
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Fig. B.11: Results obtained from the different individual descriptions (HOG, HOF, HON, and
HIOG) in terms of overlap.

and {0, 0.7, 0.75, 0.8, . . . , 1}, respectively; in the MLP, we chose the number
of neurons of the hidden layer among {2, 5, 10, 15, . . . , 50, 60, 70, . . . , 100}; in
the SVM, we tested the regularization and the gamma parameters within
{1e − 7, 1e − 6, . . . , 1e4} and in {1e − 7, 1e − 6, . . . , 1e2}; and finally, in the
RF we selected the maximum depth of the trees from {2, 4, 8, 16, 32, 64}, the
maximum number of trees from {1, 2, 4, 8, 16, 32, 64, 128}, and the proportion
of random variables to consider in node split from {0.05, 0.1, 0.2, 0.4, 0.8, 1}.

Regarding the DCR size, we tested several values (number of pixels) in the
interval [2 · 0 + 1, . . . , 2 · 8 + 1].

In addition, and to better capture the posture variability, we augmented
the training data by including the mirrored versions of the regions of interest
along the vertical axis, as well as the original ones. Nonetheless, at the test
stage, we considered only original regions of interest.

5.3 Experiments

In this section, we illustrate the performance of our baseline in terms of
overlap after carrying out an extensive experiment. First, we illustrate the
performance of the different descriptions (HON, HOF, HON, and HIOG).
Second, we compare the best description to the learning-based fusions. Third,
we show the performance of the baseline in the different sequences (test
partitions). Fourth, we compare the evaluation of the baseline using the
color/depth ground-truth masks vs. the thermal ones. And fifth, we compare
our baseline to two standard techniques of the state of the art performing
segmentation in the different modalities. In all cases we measure the overlap
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Fig. B.12: Results obtained from the best individual descriptions (HON), a naive fusion, and
different learning-based fusions, in terms of overlap.

in function of the DCR size and compare it to color/depth ground-truth
masks, unless otherwise stated.

Experiment: HOG, HOF, HON, and HIOG descriptions

We evaluated the performance of the proposed descriptions (HOG, HOF,
HON, and HIOG) when predicting on their own. The overlap results shown in
Fig. B.11, where each descriptor overlap index is computed with respect
to their specific modality ground-truth masks, demonstrate the superior
performance of the HON descriptor computed in the depth modality, which
reach 67.5% of overlap and improve by 14% (on average for the different DCR
sizes) the results of the worst performing description. The HOG description in
the color modality came in a close second (65%), achieving 2.5% less overlap
than HON (in average). The worst results were obtained by the motion cue
in this case, probably because they were uninformative when dealing with
static postures, which are abundant in our data. Despite this, it is able to
segment people while achieving more than 50% of such a pessimistic measure
as overlap. Note, also, the different upward trend of HIOG in the thermal
modality. We discuss this phenomenon, which is due to the color-to-thermal
registration, in Section 5.4.

Experiment: learning-based fusion

In the second experiment, we compared the learning-based fusion with differ-
ent classifiers against both the best performing description (HON) and a naive
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Fig. B.13: Results obtained from the RF-based fusion (the best learning-based fusion) in terms of
overlap for the different sequences.

fusion we designed in order to give more credit to the better performance
of the learning-based fusions. The naive fusion simply averages the cells
confidences along the different modalities and then aggregates the averaged
cell confidences as described in Section 4.4.

Fig. B.12 shows that the better performing method was the Random Forest
classifier (up to 78.6% of overlap), which thus became our choice for the
baseline. This supposed an improvement over HON of 10% (on average). On
the other hand, the worst performing fusion (MLP with gaussian activation
function) also presented an improvement over HON, but only of 5% (on
average).

The naive fusion resulted in an overlap of 63.9%, which was substantially
lower than both HON and HOG.

Once the best classifier for the learning-based fusion was determined,
we measured separately the performance of our baseline on the different
sequences. Fig. B.13 depicts the performance in the sequences. Notice that
there is a large difference in performance across the evaluated sequences. Four
of them – Seq.1, Seq.4, Seq.5, and Seq.6 – exhibit saturation on the improvement
of performance around 90% at DCR of 11-13 pixels. Four others – Seq.2, Seq.3,
Seq.7, and Seq.8 – are closer to the mean performance Mean seqs. And two of
them – Seq.9 and Seq.10 – suffer a more severe drop in performance, especially
Seq.10. We discuss plausible reasons for this further on in the paper.
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Fig. B.14: Comparison of performance measuring the overlap in the thermal registered masks
against the manually annotated masks from color/depth.

Experiment: evaluation on thermal ground-truth masks

In addition, we measured the performance of our most successful approach
on the thermal masks in order to quantitatively measure the decrease in
performance caused by the misalignment in the thermal-to-color registration.
Fig. B.14 reveals a relatively small decrease in performance. This fact somehow
justifies the slightly poorer performance of HIOG in respect to HON and HOG,
as previously depicted in Section 5.3, and why any thermal-related descriptors
would pay a price when evaluated in the thermal ground-truth.

Experiment: comparison to state-of-the-art approaches

Since there is no approach that uses the three modalities for human body
segmentation, we compared our baseline with two successful state-of-the-art
approaches for such task performing in either the color or the depth cue.

One was the work of [17], which performs solely on the depth modality.
This work, based on that of [81], describes depth pixels by a set of depth-
invariant features generated from the normalized depth differences at pairs
of random offsets in respect to the evaluated pixel. From this description, a
Random Forest classifier is able to classify each pixel as a body part. In our
experiments, we used the open-source implementation made available as part
of the Point Cloud Library2 along with a set of pre-trained trees3. In this way
we were able to ensure that the method was not relying on tracking techniques

2http://pointclouds.org/documentation/tutorials/gpu_people.php
3https://github.com/PointCloudLibrary/data/tree/master/people/results
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Fig. B.15: Comparison of our baseline (using RF-based fusion) with other state-of-the-art ap-
proaches that perform human body segmentation from color imagery (HOG+SVM+GC) and
depth maps [17].

– for a fairer comparison to our approach – as would have been the case with
the implementation of [81] found in the Kinect SDK4. Furthermore, we took
advantage of the extracted foreground masks from Section 4.1 in order to
apply the body part detector only to foreground pixels; this way, we avoided
the apparition of false body part detections all around the scene.

We also compared our approach with that of HOG + SVM + GC (GrabCut)
for people segmentation in the color modality. We used the OpenCV available
implementations, which are based on the original algorithms [26, 75]. The
HOG + SVM combination, in particular, detects people as bounding boxes,
and the inner dense silhouettes are then segmented by means of GC. The
latter is applied in an automatic fashion, learning the GMMs of 70% of the
bounding box as Probably Foreground and the rest as Probably Background.

Both approaches were trained in independent but larger datasets that
ensured more variation than if they had been trained in our dataset. As shown
in Fig. B.15, our approach outperformed the other baselines when applied to
our dataset.

Our baseline largely improved the HOG + SVM + GC approach. However,
[17] achieved a result comparable to ours, with a maximum overlap of 67.1%.
Despite that, our approach also improved this one by more than 10%.

4 [81] specified in the “Acknowledgements” section that the tracking system of Kinect SDK
was built based on the research they presented in the paper.
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5.4 Discussion

The results we obtained showed that fusing different descriptions enhances the repre-
sentation of the scene, thus increasing the final overlap when segmenting subjects and
discriminating from other artifacts present in the scene [19].

Among the modalities included in our approach, we considered the ther-
mal modality to be of great importance. One cannot guarantee human pres-
ence just because of large thermal intensity readings, since many non-human
entities such as animals or unanimated objects can emit a considerable amount
of heat. However, relatively low thermal intensities are, indeed, highly likely
to imply the absence of human presence. This leads, in our case, to the
classification of that region as a background category. Hence, in the context of
human-background classification, we can consider this “human heat” prior a
valuable piece of information that, used together with the thermal gradients
and later fused with other cues, enhances the overall performance of our
method. In Fig. B.16, we illustrated some situations in which the thermal
contribution was of great importance to a proper segmentation. Nonetheless,
we found the use of the modalities altogether to be very important for the
segmentation task.

The set of simple yet reliable descriptions extracted from the multiple cues
produced errors somehow uncorrelated. This could be seen in the qualitative
results5. Our initial assumption was that the learning-based fusion should be
able to take advantage of this lack of correlation and thus improve individual
results. The quantitative results illustrated in Section 5.3 confirmed the validity
of our initial assumption. The RF-based fusion, in particular, improved the
individual descriptions by 25% on average when compared to HOF (the
worst description) and 10% when comparing to HON (the best description).
Moreover, the importance of the learning process in the fusion step was also
assessed comparing the results of the learning-based approach to a more naive
fusion of confidences.

The selection of the best classifier also proved to be crucial, doubling the
improvement of performance with respect to HON when choosing RF over
a MLP with gaussian activation function (from 5% to 10%). In fact, a SVM
classifier with linear kernel performed surprisingly well, demonstrating the
stacked vectors of confidences to be linearly separable features. Yet the RF
classifier increased the overlap results 2.5% (on average) with respect to the
linear SVM, showing that there was still room for improvement.

We also studied the performance of each of the sequences. In 7 out of
10 sequences, results were above the mean. The poor performance in one of
them, Seq. 10, reduced the Mean seqs overlaps by almost 5% (on average). After
checking the predicted masks, we noticed a false positive on a chair’s back

5Check the video included as supplementary material in which some qualitative results are
shown, named trimodal_seg_results.mp4.
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Prediction Groundtruth

Fig. B.16: Qualitative results illustrating the importance of the thermal cue, with each row
representing a frame. For each frame, we show the human prediction masks obtained from
the different descriptions separately, in addition to the prediction from the fusion approach
using a Random Forest classifier. From left to right, the predictions using: Color (HOG), Depth
(HON), Thermal (HIOG), Motion (HOF), and RF-based fusion. The last column corresponds
to the segmentation ground-truth mask. On top of each binary image, we indicate “sequence
name”/“modality name” (or GT if ground-truth)/“frame ID”.

99



Paper B.

region, which appeared quite static during the whole sequence and was a
relatively big image region – because it was close to the camera. The difficulty
level of this sequence can be better seen qualitatively in the last two rows of
Fig. B.1. As mentioned before, this scenario contains wide windows with a
large amount of sunlight, which may disturb the depth data. Moreover, the
color of the subject’s jumper is extremely similar to the color of the couch,
making it difficult for the color modality. Another interesting effect is the heat
mark that the subject bodies left on the couch in the thermal modality, which
may be mistaken for a real subject.

Accurate pixel-level segmentation is a complex task in state-of-the-art techniques
[19]. In these scenarios, a DCR is often considered. In our case, experiments
showed marginal improvements for DCR sizes greater than 11 pixels, except
for the case of thermal modality, which exhibited a particular upward trend.
It is important to note that thermal descriptions cannot reach overlap values as good
as the other descriptions. The reason for this is that the binary masks Fthermal were
created from Fdepth using the registration algorithm, which cannot be accurate up to
pixel level, in such a way that the ground-truth and registered masks differ slightly,
especially on the left and right sides of the image [19]. As one can observe, this
misalignment caused by the registration algorithm introduced an additional
error to the depth’s halo effect, which kept being palliated with the biggest
DCR sizes.

It is also worth discussing the causes of some misclassifications that we noticed.
One of the problems originates at the beginning of the chain. Since background
subtraction reduces the search space, it may reject some actual person parts. This
happens mainly when a person is situated at the same depth as something that belongs
to the background model. This could be improved by combining the different modalities
in order to learn the background model. Furthermore, the contours of the foreground
binary masks may not be perfect, either. One possible solution would be to apply
GrabCut or other post-segmentation approaches to refine and smooth the contours,
which in turn would improve segmentation accuracy. Another issue is that some
regions considered unknown – mostly those generated when one person overlaps
other – differ considerably from those that are used to train the different models. Hence,
the classification of such regions is not a trivial task [19].

6 Conclusions

We first introduced a novel RGB-Depth-Thermal dataset of video sequences, which
contains several subjects interacting with everyday objects [19], along with a reg-
istration algorithm and the manual pixel-level annotations of human masks.
Second, we proposed a multi-modal human body segmentation approach
using the registered RGB-Depth-Thermal data as a preprocessing step for
human activity recognition tasks.

100



References

The registration algorithm registered the different data modalities using
multiple homographies generated from several views of the proposed cali-
bration device. The segmentation baseline segmented the people appearing
in a set of 10 trimmed video sequences out of the three recorded scenes. It
consisted of, first, a non-adaptive background subtraction approach in order to extract
the regions of interest [19] that deviate from the depth-background model previ-
ously learned. The regions from the different modalities were partitioned in
a grid of cells. The cell were then described in the corresponding modalities
using state-of-the-art image feature descriptors. HOG and HOF were computed
on RGB color imagery, a histogram of intensity gradients on thermal, and histograms
of normal vectors’ orientations on depth [19]. For each cell and modality, we
modeled the distribution of descriptions using a GMM. During the prediction
phase, cells were evaluated in the corresponding GMMs and the obtained
likelihoods turned into confidence-like terms and stacked in a feature vector
representation. A supervised learning algorithm, such as Random Forest,
learned to categorize such representation into human or non-human regions.

In the end, we found notable performance improvements with the pro-
posed learning-based fusion strategies in comparison to each isolated modality,
and Random Forest obtained the best results. Furthermore, our baseline out-
performed different state-of-the-art uni-modal segmentation methods, hence
demonstrating the power of multi-modal fusion.
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1. Introduction

Abstract

This work explores different types of multi-shot descriptors for re-identification in
an on-the-fly enrolled environment using RGB-D sensors. We present a full re-
identification pipeline complete with detection, segmentation, feature extraction, and
re-identification, which expands on previous work by using multi-shot descriptors
modeling people over a full camera pass instead of single frames with no temporal
linking. We compare two different multi-shot models; mean histogram and histogram
series, and test them each in 3 different color spaces. Both histogram descriptors
are assisted by a depth-based pruning step where unlikely candidates are filtered
away. Tests are run on 3 sequences captured in different circumstances and lighting
situations to ensure proper generalization and lighting/environment invariance.

1 Introduction

The task of person re-identification is about recognizing people that have been
captured earlier by a camera in a surveillance network. The network may
consist of one or more cameras, and can be placed in traditional surveillance
contexts or more narrowly scoped areas, such as keeping track of a single
queue of people. The objective is simple: When a person enters the field
of view of a camera in the system, it must be determined whether or not
this person has been seen before. Person re-identification is closely related
to person tracking and person recognition. However, is has several extra
challenges, that makes it less straight-forward [8]:

• There is no fully known gallery dataset. As opposed to traditional person
recognition, the system must enroll new people on-the-fly, without them
taking any action.

• Methods must be robust to pose changes. Since subjects are not required
to participate actively, there are only weak constraints on pose and
viewing angles.

• Sensor resolution is a big challenge. People simply passing by at various
distances are to be re-identified, so it is not reasonable to use hard
biometrics like fingerprints or face recognition.

• The database of known people must be continually cleaned up - when a
person has not been seen for some period of time, they have most likely
left the area and should be removed from the database.

There are two fundamentally different approaches to re-identification:
Single-shot and multi-shot. Single-shot performs the re-identification on
stand-alone frames. This is useful in situations where only a single probe
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image is available. However, very often the subject has been captured on
video, and thus has several frames describing her. Multi-shot combines a full
pass across the field of view into a single model, which is the used as probe
in a gallery of similarly collected multi-shot models. Multi-shot gives the
option of capturing more information about the subject than a single frame
contains, and has the potential to make the system more robust to occlusions
and sudden changes in lighting.

Person re-identification has been in active research for a while, but multi-
modal systems have only recently come into play. The reason for this is
twofold: 1) Algorithms have so far mostly been developed for use in existing
surveillance infrastructure and 2) more advanced sensor capabilities, such as
depth and thermal, have not been readily available. We believe that as sensor
technology progresses, more modalities will show up in regular surveillance
cameras, making the development of new multi-modal algorithms highly
relevant.

This work builds on the method presented in [8] and is a full RGB-D
based re-identification system covering all parts of the pipeline from detection
through re-identification to database maintenance. The main contributions
are:

• While the earlier work was single-shot based, the method has been
updated to a multi-shot approach. This work compares several different
multi-shot person models.

• The earlier work relied on RGB-color histograms. This work presents a
comparison of three different color spaces: RGB, HSV, and XYZ.

• More thorough testing. On top of testing on the original dataset from [8],
two more datasets have been captured to test the performance in different
circumstances.

• The system is now free of arbitrary thresholds in the re-identification
stage, as every threshold is learned from training data in a cross-
validation scheme.

• In the original work, the height of subjects only had little influence on the
re-id performance. We introduce a more thorough pruning step based
on depth-adjusted height of subjects which increases re-id performance
significantly.

The remainder of this paper is structured as follows: Section 2 gives an
overview of related work in the field of re-identification. It also contains a
description of existing datasets, as well as the ones captured and used in this
work. Section 3 explains the algorithms used and goes through detection and
segmentation, multi-shot person modeling, and re-identification. In section
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4 the person database is explained, and in section 5 the various methods
presented are evaluated against each other. Section 6 concludes the paper.

2 Related work

Person re-identification as described above has been an active research area
for about a decade and truly gained speed in the latter half of the 2000s. A
relatively recent survey on person re-identification can be found in [6], and
in this section we highlight notable recent papers. As mentioned previously,
re-identification approaches can be divided into single-shot and multi-shot.
Furthermore, we distinguish whether multi-modal methods are used.

Zheng et. al. [12] and Zhao et. al. [11] both use single shot algorithms.
The first use color and texture histograms, whereas the latter uses dense color
histograms and SIFT descriptors with the addition of using a saliency map to
decide which parts of the person are the most descriptive.

Multi-shot is championed by Bak et. al. in [1] and Demirkus et. al. [5]. Bak
uses a large pool of features and the best one to describe a particular person is
selected. Demirkus uses a set of more directly understandable soft biometrics,
such as gender, hair color, and clothing color.

Moving away from the traditional visible light modality, Jüngling and
Arens [7], presents a full single-shot re-identification pipeline based on in-
frared images. It detects candidates, then tracks and re-identifies them using
SIFT-features. In the depth modality, Barbosa et. al. [2] re-identifies by
comparing various physical body measurements (anthropometrics) obtained
from the depth image. Velardo and Dugelay [10] uses manually measured
anthropometrics to prune the set of candidates for face recognition.

Finally, two papers combine several modalities. In [8] RGB is used for
detection and re-identification, and depth for segmentation and pruning of
re-id candidates. This is the same basic approach as in this work. In [9],
thermal images and anthropometric measurements are added and the re-
identification is performed in a truly multi-modal way with a combination
of color histograms, SIFT features on thermal images, and anthropometric
measurements obtained from depth images.

2.1 Datasets

Several public datasets exist, though mostly sets captured with traditional
visible light sensors.

In other modalities, not many exist. For depth, the RGB-D Person Re-
identification Dataset [2] is one option. It contains 79 people in 4 different
scenarios: Walking slowly with outstretched arms, two instances of walking
from a frontal viewpoint, and walking from a rear viewpoint.
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Novi Basement Hallway

Number of per-
sons

22 35 10

Number of frames 7800 7231 4492
Contains image
sequences

Yes Yes Yes

Available modali-
ties

RGB, depth RGB, depth,
thermal

RGB, depth,
thermal

Table C.1: Statistics on the three data sequences used in this work.

(a) (b) (c)

Fig. C.1: Example images from our own (a) Novi, (b) Basement, and (c) Hallway sequences.

For this work, we use our own dataset with a surveillance-like camera
setup. We have three sequences: Novi, Basement, and Hallway. They all
contain sequences of persons walking diagonally towards and past the sensor
twice. Novi, which was also used in [8], contains 22 persons over 7800 frames
(passes have varying lengths). Basement contains 35 persons over 7231 frames,
and Hallway contains 10 persons over 4492 frames. Stats about the public as
well as our own datasets can be seen in table C.1. The sequences were captured
with Microsoft Kinect for Xbox. Example pictures from each sequence can be
seen in fig. C.1.

3 Algorithm overview

This paper describes a full re-identification system which takes a raw RGB-D
feed as input and outputs whether or not a passing person has been seen
before, and if so, what the previous ID was. This is different from many other
re-identification papers which most often describe a core algorithm without
much focus on all the other system parts that must be in place to have an
actual working system. The process requires several steps: Persons must be
detected and segmented, they must be modeled, and finally re-identified. On
top of the re-identification process comes the process of keeping tabs on the
person database. A flowchart is shown in fig. C.2.
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Fig. C.2: Illustration of the flow through the system.

3.1 Detection and segmentation

The detection is done with a standard HOG-detector as first proposed by
Dalal and Triggs [4]. The detector is trained on the INRIA Person Dataset
introduced by the same paper. The detector runs on the RGB images and
returns person bounding boxes.

The detected persons need to be segmented in further detail. The bounding
box is not sufficient, since we do not want to capture features from the back-
ground. Segmentation is achieved with a flood fill in the depth image. Persons
not crawling on the floor are conveniently separated from the background in
the depth modality, so a flood fill to similar pixels starting at the points

X =



2/5 1/4
2/5 1/3
2/5 2/5
1/2 1/4
1/2 1/3
1/2 2/5
3/5 1/4
3/5 1/3
3/5 2/5



[
bw 0
0 bh

]
+

bx by
...

...
bx by


9x2

(C.1)

where X is a 9x2 matrix containing the x and y coordinates of the flood fill
points, b is the bounding box with subscript x, y, w, and h meaning top-left
x-coordinate, top-left y-coordinate, width, and height respectively. The flood
fill is performed at multiple positions to ensure that we have a stable object in
the depth modality. A person is classified as stable if at least four of the depth
points converge, i.e. the flood fill of these points fill out the same volume.

Ground plane estimation

One problem with the flood fill is that at the feet of the subject, the fill is likely
to spill onto the floor. To counter this, ground plane pixels on the depth image
are removed. When the system is started initially, a ground plane is defined in
the depth image. This is done by marking a number of points on the ground
and performing a least squares solution of the bivariate polynomial:

zpoly = a00 + a01x + a02x2 + a10y + a20y2 + a11xy (C.2)
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Fig. C.3: The left image illustrates a detection. On the right, the person has been segmented in
the depth image, and the blue boxes illustrates the boxes which are used as basis for the color
histograms.

Although the floor is planar, the measurements of the floor from the Kinect
depth sensor are representing the plane as a hyperbolic plane, thus stating the
need for a bivariate polynomial. When the coefficients are determined, any
pixel in the depth image close to the ground plane is colored black. Those
pixels are the ones fulfilling the inequality in equation (C.3), where p is the
pixel in question and tdepth defines the distance from the theoretical ground
plane that is still considered part of that plane.

|zpoly − pz| < tdepth (C.3)

3.2 Person model

One of the objectives of this paper is to compare two types of multi-shot person
models. They are both based on the two-part color histogram used in [8]:
After a person is segmented, a color histogram is computed for the upper
part of the body and the lower part of the body (as illustrated by the blue
boxes in fig. C.3). Each color channel is divided into 20 bins, the individual
channel histograms are concatenated, and finally the two part histograms are
concatenated for a feature vector of 20 · 3 · 2 = 120 dimensions in the case
of a 3 channel color space. In addition to the two modeling paradigms, 3
different color spaces were tested: RGB, HSV, and XYZ. For HSV and XYZ the
luminance channels were removed to enhance lighting invariance, so in those
cases the final histogram would be 80-dimensional and contain just the HS-
and XZ-channels, respectively.

Two multi-shot schemes have been tested:

1. Mean histogram of all frames in a pass.

2. All frame-histograms saved individually.
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3. Algorithm overview

Fig. C.4: Curves depicting height-to-border versus distance for all tracks in a sequence. The
curves are colored in pairs, such that two tracks of the same color are two passes by the same
person. It can be seen that most lines are close to their partner of the same color, showing that the
height measurement is stable across passes.

In 1) the mean histogram is computed when a pass is over. Each bin is
simply averaged:

mi =
1
n

n

∑
j=0

hi,j for 0 ≤ i < k (C.4)

where m is the mean histogram, n is the number of frames in the pass, k is the
number of bins in the histograms and hi,j is the value of bin i in histogram j.

In 2) no averaging takes place. Instead a pass is modeled after each
histogram in it. See the following section on how each model is matched
against the person database.

Both of the color-based models are augmented with a measure of the
person’s height. We use normalized height-to-border. This is the distance in
pixels from the top of the person in the image, to the bottom of the frame,
normalized by the depth of the observation. This reduces noise, as only one
of the bounds of the height is now determined from the noisy depth sensor. It
also allows for clipping.

In fig. C.4 height-to-border versus depth is plotted. Because the surface
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and field-of-view is the same for all who pass by the camera, the only change
that will happen to the curve for people of different heights is a shift in its
y-axis intercept. Instead of approximating the full curve, we go for the less
computationally heavy option of modelling each pass with the mean of the
depth-normalized height-to-border, designated γ, for all instances in the pass:

γ =
1
n

n

∑
i=0

gi · di (C.5)

where gi is the height-to-border for observation i in the pass, and di is the
distance to the person in that observation. While the person is not completely
flat, for the purpose of this normalization, we use the depth of the seed point
described in equation C.1.

3.3 Re-identification

A pruning stage based on the height measurement is used before the re-
identification. The height of the probe is compared to the gallery by means
of the absolute difference in their heights. If the mean normalized height-to-
border is more than th away from a candidate, the candidate is not considered a
match for this subject. th is found from analyzing training data before running
the system. The threshold th is set to the mean of the height difference between
wrong matches in the training set.

When re-identifying, the model of the current pass is compared to those
of the persons in the database, which is initially empty, but will be built as
time progresses. Both the mean histogram and the histogram series model
use the Bhattachariyya distance [3]:

d(H1, H2) =

√
1−∑

I

√
H1(I)H2(I)√

∑I H1(I) ·∑I H2(I)
(C.6)

where d(H1, H2) is the distance between the histograms H1 and H2, and H(I)
is the value of bin I in the histogram H. The result is a number between 0 and
1, where 0 is a perfect match.

With mean histograms, where only two histograms - probe and gallery -
are involved, the distance itself is used, and the subject is either re-identified,
ignored, or added to the database. With histogram series, the model comprise
a series of histograms. In this case, each histogram in the probe model is
compared to each histogram in the database. The probe then casts a vote for
the ID of the gallery-model which contains the histogram it is closest to, if
that is within a separately trained ignore threshold. The gallery-model with
the most votes is selected as the best candidate, provided is has the majority
(more than 50%) of the possible votes.
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3. Algorithm overview

3.4 Mean histogram

The re-identification process is governed by two thresholds:

tn: New threshold: Subjects with d(H1, H2) > tn

are added as new persons (C.7)

ti: Ignore threshold: Subjects with d(H1, H2) <= ti

are re-identified (C.8)

This implicates that subjects with ti < d(H1, H2) <= tn are ignored, because
they are too similar to other subjects, without being similar enough to trust
the identification.

The thresholds are learned beforehand by observing a training set. The
distances between all mean histograms in the training set are computed and
stored in the set D and divided into two sets Dc and Dw where Dc contains
distances between different observations of the same person and Dw contains
distances between histograms of different persons:

Dc = {D|id(H1) = id(H2) in d(H1, H2)} (C.9)

Dw = {D|id(H1) 6= id(H2) in d(H1, H2)} (C.10)

where id(•) is the person id connected with a histogram. The thresholds
are then computed as:

tn = Dw − 2 · σ(Dw) (C.11)

ti = Dc + σ(Dc) (C.12)

where • denotes mean and σ(•) denotes standard deviation.

3.5 Histogram series

The re-identification for the histogram series model uses many of the same
principles of the mean histogram model, but is adapted to use many more
histograms for each subject to encompass variations in lighting and pose. A
histogram is computed for each frame in the pass of a subject and they are
then compared to all histograms already in the database. When the shortest
distance ds to any gallery-histogram is less than ti, the associated person id,
ps receives a vote. Thus, each subject histogram contributes with up to 1 vote,
for a theoretical total of len(H) votes: the number of histograms in the current
pass. If there are no histograms in the pass, the subject is ignored. If any
person in the gallery has received more than half the theoretical maximum, the
subject is re-identified as him. If no gallery person satisfies this requirement,
the subject is added as a new person.

It is worth noting that this method has no explicit option of ignoring the
subject in case it is uncertain, other than in the case where no histograms exist.
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4 Transient database

A crucial part of real-world re-identification is that the gallery database in not
known beforehand, but must be built and updated continuously. Furthermore,
in a short-term re-identification system, it can be expected that a person who
has not been seen for some amount of time has left the area the system is
concerned with and should be removed.

5 Evaluation

6 permutations of the system have been tested on 3 different sequences (see
section 2.1). The 2 different multi-shot models have both been tested in 3
different color spaces: RGB, HSV, and XYZ. To counter variations in lighting,
only HS and XZ were used for HSV and XYZ.

The performance of the system varies with the order the persons are
passing by the camera. If a person that is very hard to re-identify passes by the
camera in the first two passes without any other entries in the database, odds
are that he will be correctly re-identified. However, if a similar person enters
the database before the second pass of person 1, they might be confused with
each other and thus lower the performance. To even out this effect, all results
presented below are averages of 100 runs where the subjects enters the system
in random order. That should sufficiently even out any “lucky” or “unlucky”
orderings and provide accurate results. For each run, all thresholds have been
trained on a random subset of 20% of the sequence, which is then excluded
from the rest of the run. The effect of the training set selection should also
average out.

The re-identification performance can be characterized with 5 parameters:

1. Correct new

2. Wrong new

3. Correct ID

4. Wrong ID

5. Ignored

The first two describes how well the system distinguishes between known
persons and new persons. Ideally, there should be no wrong new, as they are
persons that are already in the database and should have been re-identified.
Correct ID and wrong ID comprises the subjects that are neither ignored,
correct new, nor wrong new, but are re-identified. Finally, ignored are the
ones that are not handled because they are neither close enough to an existing
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5. Evaluation

Basement seq. Hallway seq. Novi seq.

Mean observation length: 11.8 4.0 23.1
Median observation length: 12 3 23
Minimum observation length: 0 0 5
Maximum observation length: 22 10 40

Table C.2: Statistics on the amount of observations of captured persons for each sequence. The
numbers are based on the amount of times a single person was detected and modeled in a single
pass.

person to be re-identified, nor different enough from the existing persons to
be added to the database.

The results of the tests can be seen in table C.3. Sequence length and
detection performance varies greatly between sequences, as seen in table C.2.
Especially the Hallway sequence contains many shorter tracks, meaning that
generalization, as well as the benefit from the multi-shot approach, declines
heavily.

Generally, the mean histogram approach performs better than histogram
series. The histogram series has comparable or better re-id performance
percentage-wise in some cases, but in absolute numbers, the performance
is worse, with significantly more wrong new and significantly lower re-id
numbers. The number of wrong identifications is low across the board, so
the weak spots are the wrong new- and ignored-counts which are rather
high. Most new passes are correctly classified as such, at around 30 of 35 in
the basement sequence, 8/10 and 21/22 in the Hallway and Novi sequences
respectively.

The benefit of the ignore-functionality in the mean histogram model is
illustrated in fig. C.5. Blue columns are a histogram of distances between
mean histograms of the same person, while red columns are a histogram of
distances between different persons. The overlap between these shows that is
it not possible to achieve perfect classification with a 1d decision boundary in
this case. To counter this, an ignore zone is introduced - the space between the
green and the yellow line, the thresholds, which can to some extent mitigate
the effects of this overlap. In reality, when training on a subset of the data,
the ignore zones are generally wider than in this example. It is possible that
a classification in a higher dimensional space would work better and allow
discarding the ignore zone.

Table C.4 shows how the height-based pruning step improves the re-id
rates across all methods. By discarding obviously wrong candidates based on
height, the correct re-id rate goes up by 4.53 percentage points on average.

We have been unable to compare our results to the work of others, as they
do not present full-flow systems, but rely on tightly pre-cropped images of
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5. Evaluation

Without height With height Difference
% correct % wrong % correct % wrong % correct % wrong

Basement Mean histogram 82.17 % 17.83 % 90.67 % 9.33 % 8.50 % -8.50 %
Histogram series 87.28 % 12.72 % 94.21 % 5.79 % 6.93 % -6.93 %

Hallway Mean histogram 64.64 % 35.36 % 69.14 % 30.86 % 4.50 % -4.50 %
Histogram series 67.34 % 32.66 % 68.47 % 31.53 % 1.10 % -1.10 %

Novi Mean histogram 92.03 % 7.97 % 96.59 % 3.41 % 4.56 % -4.56 %
Histogram series 96.50 % 3.51 % 98.11 % 1.89 % 1.61 % -1.61 %

Average 81,66 % 18,34 % 86,20 % 13,80 % 4,53 % -4.53 %

Table C.4: Comparison of re-identification performance with and without the height-based
candidate pruning step.

Fig. C.5: Distribution of distances between histograms in the full basement sequence. There is a
clear overlap of distances between histograms from the same person and histograms from different
persons. When using a distance threshold to classify, this will result in wrong identifications. The
ignore-threshold allows to remove the distances that are the most affected by this overlap.
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persons. Furthermore, our system needs depth images as well as RGB, so no
existing dataset has been compatible. We also do not present CMC-curves as
that ranking system works poorly for on-the-fly enrollment systems, where,
in many cases, there are simply not enough entries in the database to do a
proper ranking.

We can, however, compare some of our results to the work previously
presented in [8]. Not all stats are directly comparable, but the correct and
wrong ID rates are. In that work, they are 68% and 0%, with an ignore rate of
24%. The system presented here has a much higher correct ID rate, but at the
cost of a somewhat higher wrong ID rate.

6 Conclusion

This work presented a re-identification system using RGB-D data and com-
pared several model and color space configurations. It introduces 3 new,
different re-identification sequences for testing, and goes through all stages
from candidate detection to identification. Furthermore, it investigates how
to handle online enrollment of subjects, a subject few previous works have
touched. Future work includes more sophisticated multi-shot models, and
enhancing the system to cope with multiple, co-occluding subjects in crowded
environments.
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1. Introduction

Abstract

This tech report gives an introduction to two annotation toolboxes that enable the
creation of pixel and polygon-based masks as well as bounding boxes around objects of
interest. Both toolboxes support the annotation of sequential images in the RGB and
thermal modalities. Each annotated object is assigned a classification tag, a unique
ID, and one or more optional meta data tags. The toolboxes are written in C++ with
the OpenCV and Qt libraries and are operated by using the visual interface and the
extensive range of keyboard shortcuts. Pre-built binaries are available for Windows
and MacOS and the tools can be built from source under Linux as well. So far, tens of
thousands of frames have been annotated using the toolboxes.

1 Introduction

The main driver behind modern computer vision systems is annotated data
- and lots of if. If one wants to train, test, benchmark or verify any vision
algorithm that addresses a real-world problem, you need real-world annotated
data. You might be lucky that a suitable dataset for your problem exists but
often you will need new annotated data that suits your domain. For many
years, this has been the case for most of our work at the Visual Analysis of
People Laboratory at Aalborg University. Through a collaborative effort at our
lab, we have created two separate annotation tools that can be compiled to
run under Windows, MacOS, and Linux.

The AAU VAP Multimodal Pixel Annotator may be used to annotate pixel-
based masks of object instances whereas the AAU VAP Bounding Box Annotator
may be used to annotate bounding boxes around objects of interest. Both
annotation tools support annotation tags such that an annotated object may
be associated with a predefined class name. Example annotations, both
pixel-based and bounding box-based, are shown in Figure D.1.

In this text, we will give an overview of the two annotation tools and the
features they provide. An updated list of all annotation tools offered by our
laboratory is found at Bitbucket1. The source code and binaries of the two
annotation tools are available under the MIT license.

The annotation tools have been used to annotate humans [2, 14], road
users [1], road signs [9], chicken entrails [11], pigs, fish [6], material defects,
and more. The number of annotated frames in the examples above vary from
a few hundred to tens of thousands. In the next section, we will describe the
common features of the two annotation tools. Section 3 describes the specific
features of the Bounding Box Annotator whereas Section 4 gives a description
of the Multimodal Pixel Annotator. Section 5 concludes the work so far and
gives insights on the future development of the toolboxes.

1 https://bitbucket.org/account/user/aauvap/projects/AN
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(a) Bounding box annotation in RGB (b) Corresponding bounding box annotation
in thermal

(c) Pixel annotation in RGB (d) Corresponding pixel annotation in ther-
mal

Fig. D.1: Bounding box and pixel-based samples of the same objects annotated in both RGB and
thermal modalities. Every annotation is associated with a corresponding tag.

2 Common Features

The annotation tools are developed in C++ with Qt and OpenCV [3] as the
main libraries. Both tools have been developed in parallel and thus share
many features and much of the code base. The shared features are described
below.

2.1 Object Properties

Every annotated object is associated with a unique identification number (ID),
a class tag, and optionally one or more meta data tags. An example hereof is
shown in Figure D.2.

We will go through the object properties below. Properties shown in bold
are mandatory whereas properties shown in italics are optional.

• Tag The class name of an object. The class name may be freely chosen or
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Fig. D.2: Object properties of an annotation. The "Occluded", "Moving North", and "Moving
South" entries are meta data tags that may be either true or false.

limited to a pre-defined list if the setting Limit annotation tags to
suggested list is checked. The suggested list is populated from the
existing annotation tags in the dataset and from the user-editable list
available in File→ Edit suggested tags.

• ID The identification number of the object. In Bounding Box Annotator,
this number is defined in the range [0, inf] and is unique for the entire
annotation sequence. In Multimodal Pixel Annotator, the ID is encoded
into the mask image which limits the range to the interval from [0, 255].
However, the ID’s in the range from [0,10] are reserved for internal
operations of the program whereas ID 170 is reserved for don’t care
borders.

• Meta data tags The meta data tags are binary object attributes. The meta
data names themselves may be specified before creating an annotation
sequence in File→ Edit meta data fields or retrospectively applied
by manually editing the csv-file containing the annotations. Three meta
data names have been set in Figure D.2: the "Occluded", "Moving North",
and "Moving South" tags. These tags may be either true or false for an
object and are defined for every frame.

• Status When annotating video data as described in Section 2.2, one
might choose to copy existing annotations to temporally adjacent frames.
However, an object might be moving out of the image frame and as a
result, the annotated mask belonging to this object should not be copied
to the next frame. This might be changed by setting the object status
from Active to Last frame reached.
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Fig. D.3: Buttons from left to right: (1) Retain image when loading previous frame, (2) Retain
image when loading next frame, (3) Interpolate between annotations when stepping > 1 frames.

2.2 Annotation of Sequential Data

The annotation toolboxes assume that the source images are in the same folder.
The toolboxes do not directly support video files, mainly because OpenCV
does not provide efficient and accurate temporal search for videos. Instead,
videos may be converted to a collection of single frames by an FFMPEG script2.
One may configure the annotation toolboxes such that they only load frames
that adhere to a specific file pattern. The option is set in Settings → File
patterns and supports regular expressions. For simple use cases such as
including all .png-files, the string *.png is sufficient.

Retaining annotations in adjacent frames When annotating frames that are
temporally consistent, i.e. the same objects are moving slowly from frame to
frame, it might be useful to copy the annotations from frame n to frame n + 1
or n− 1. This functionality is found in the Retain when loading previous
and Retain when loading next buttons illustrated in Figure D.3.

2.3 Multi-Modal Annotation

Both annotation tools support the annotation of objects in two views and given
the preference in our lab for multi-modal approaches [8], we refer to view
1 as RGB and view 2 as thermal. The RGB modality is the master modality
and all annotations are by default stored in a coordinate system relative to
the RGB image coordinates. For compatibility with the AAU Trimodal People
Segmentation Dataset3, the Multimodal Pixel Annotator also enables a depth
modality which is currently in legacy support.

Registration from RGB ↔ Thermal can be performed using a single ho-
mography which may be sufficient if the objects of interest in the scene are
lying in close proximity to the same plane. The homographies should be
stored in a yml-file using the OpenCV FileStorage method in the homRgbToT
and homTToRgb variables. Example homographies are found from the sample
annotations provided at the Bitbucket project pages.

If the planar constraint is violated and a single homography is not suffi-
ciently accurate, one may use a combination of multiple homographies. More
details about this approach are found in the work by Palmero et al. [10].

2ffmpeg -i file.mpg -r 1/1 %05d.png
3https://www.kaggle.com/aalborguniversity/trimodal-people-segmentation
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Fig. D.4: The don’t care mask of the image is overlaid in yellow. The colour and opacity of the
mask may be defined by the user.

2.4 Don’t Care Masks

It might be beneficial to use a don’t care mask that visualizes the region-
of-interest in which objects should be annotated. If this option is enabled
in settings, a binary mask image should be placed in the root folder of the
annotations or the directory above. If the don’t care mask is placed here under
the name mask.png, the mask will be loaded automatically when opening an
annotated sequence. An example of a don’t care mask is shown in Figure D.4.

2.5 Shortcut-driven Annotations

Maximizing the use of the keyboard is one of the better ways of speeding
up the annotation process. Besides the mouse-driven drawing functionality,
almost every other aspect of the annotation tools may be operated by using
the keyboard. The respective shortcuts are revealed by hovering the mouse
on top of each button. Alternatively, the wiki pages4,5 of the annotation tools
provide a great overview of the available shortcuts.

3 Bounding Box Annotator

The Bounding Box Annotator provides an interface for drawing bounding
boxes around objects of interest. It provides additional features for working

4https://bitbucket.org/aauvap/bounding-box-annotator/wiki/Home
5https://bitbucket.org/aauvap/multimodal-pixel-annotator/wiki/Home
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Fig. D.5: The annotation history window of the Bounding Box Annotator. The selected annotation
of the current frame (Image 12) is shown in the middle, surrounded by annotations containing
the same ID in the previous and next five frames. Image 7 is empty, indicating that the object ID
does not exist in this frame.

with image sequences such as interpolation and extended annotation deletion
and merging functionality.

3.1 Temporal Interpolation

When working with image sequences with high frame-rate and slow-moving
objects, annotating every single frame is usually a very tedious task. The
Bounding Box Annotator attempts to ease the annotation process by:

• Providing an overview of annotations with the same ID in the neigh-
bouring frames, illustrated in Figure D.5.

• Interpolating between annotations. If the user annotates an object in
frame 1 and frame 6, the program optionally interpolates between these
annotations to create corresponding annotations for frame 2, 3, 4, and 5.
Best results are achieved when the motion of the object is nearly linear.

3.2 Deleting and Merging Annotations

When using the ’retain image’ buttons illustrated in Figure D.3, one might
forget to set the Last frame reached flag, leading to several duplicate an-
notations once the object of interest has left the frame. The button Delete
selected annotations in current and future frames comes to the res-
cue, effectively deleting annotations with the selected ID(s) in all future
annotations. The program will inform the user about the affected annotations,
hopefully minimizing the risk of deleting a bunch of annotations by accident.
A sample prompt is shown in Figure D.6.

Two annotations might be merged by using the Merge selected annotation
and another annotation in current and future frames button, which will
do just that. After merging, the original ’other’ annotation will be deleted as
described in Figure D.7.
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Fig. D.6: Deleting annotations with ID 211 in the current and subsequent frames. The user is
asked to acknowledge the severity of this action before deletion.

Fig. D.7: Merging an annotation ID with the currently selected annotation ID in the current and
subsequent frames.
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3.3 Automatic Backup

The .csv-file containing the annotations is automatically copied to a backup
folder whenever an annotation folder is opened with the Bounding Box
Annotator. The backup file is timestamped such that the user may easily
revert to an older revision if the current annotations are deleted by accident.

3.4 Exporting Annotations

The Bounding Box Annotator saves the annotations in a single file, by default
named annotations.csv. Each annotated object represents a line in the csv-
file and the bounding box is encoded by saving the pixel coordinates of the
upper left corner and the lower right corner. However, it is unlikely that this
is the format of your favourite machine learning algorithm.

Currently, the Bounding Box Annotator is capable of exporting the annota-
tions to the format used by the YOLO network running on Darknet [12]. When
training a network on Darknet, every image should have a corresponding
annotation file where each line indicates the category ID, centre point (X,Y),
width, and height of an annotated object, all in normalized image coordinates6.
The tag of an annotated object is translated to the corresponding category
ID by selecting an appropriate category list. Out of the box, the tool comes
with category lists for MSCOCO [7], ImageNet-1000 [4], YOLO-9000 [12], and
PASCAL VOC [5]. If one wants to use his own list, it can be added in the
categoryLists folder in the root directory of the program.

4 Multimodal Pixel Annotator

The Multimodal Pixel Annotator allows fine-grained pixel-level annotations.
The specific functionality of the annotation tools is described below.

4.1 Drawing the mask

The user has three options for drawing a mask using the pixel annotation tool:

1. Initializing the mask and refining it using GrabCut [13].

2. Using paint-style brush tools.

3. Defining a contour around the object of interest using the polygon tool.

The graphical buttons for drawing the mask are shown in Figure D.8.

136



4. Multimodal Pixel Annotator

11 12101 2 3 4 5 6 7 8 9

Fig. D.8: Drawing tools in Multimodal Pixel Annotator. The numbers refer to the following:
1) Removing noise from the mask.
2) Filling holes in the mask.
3) Selecting an annotation.
4) Initializing GrabCut.
5-6) Adding true positive/negative brushes to the GrabCut mask.
7-8) Manually add to/remove from mask.
9) Define brush size of tools 5-8.
10-12) Add/remove/move point from polygon mask.

(a) Initializing GrabCut (b) Adding true positives (red) (c) The resulting GrabCut
mask

Fig. D.9: Example use of the GrabCut tools. Steps b)-c) are performed iteratively until the mask
covers the object of interest.

Using GrabCut

When using GrabCut, the user should initialize a bounding box around the
object of interest. If the appearance of the object is significantly different from
the background, chance is that the initial GrabCut segmentation may be good
enough. If that is not the case, the user may supply ground truth positive
and negative brushes to guide the GrabCut segmentation. An example is
shown in Figure D.9. Please keep in mind that GrabCut segmentation is an
iterative process and the entire mask may change whenever true positive
and negative brushes are drawn. If one wants to apply final touches to an
otherwise finished mask, the manual brush tools should be used.

6Curiously, the output format of YOLO/Darknet is not the same as the input format.
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Fig. D.10: Drawing a polygon around the annotated object.

Manually Painting the Mask

If the segmentation results of the GrabCut approach are not satisfactory, the
manual brush tools may be used instead. A variety of different brush sizes
are provided to fit the size of the object of interest.

Drawing Polygons

If the objects to be annotated are rigid, with well-defined borders and without
holes, it might be beneficial to draw the points defining the outer contour of
the object. This is made possible by using the polygon tools and placing points
around the outline of the object. A sample annotation using the polygon-based
tools is shown in Figure D.10.

Don’t Care Borders

To allow for ambiguous segmentation results around the border of objects, one
can add a don’t care border around the object masks. This option is available
as "annotation borders" in File → Settings → Annotations. The width of
the don’t care border is also configurable from these settings. The don’t care
border is encoded in the masks with grey-scale value 170.

Filtering the Mask

The annotated mask might contain unwanted noise in the form of isolated
pixels or small holes in the mask. These two problems are often encountered
when using the GrabCut tools and can be easily resolved using the Remove
noise and Fill holes functions depicted in Figure D.8.
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4.2 Exporting Annotations

The Multimodal Pixel Annotator maintains a list of the annotations in a single
csv-file, with every annotated object containing one line in the annotation.
If only the polygon tools are used, the file is self-contained. On the other
hand, annotated masks created using the GrabCut or brush tools are saved
as grey-scale images where the annotation ID determines the shade of grey
of the mask. In this case, the csv-file keeps track of the image files, the tag
names, and the meta data tags.

There are currently two options for exporting the annotations:

• Converting the annotations in a bounding box-format supported by the
Bounding Box Annotator.

• Exporting the annotations to a format compatible with the COCO API [7].
This creates a single json-file containing a list of all annotated images,
a list of object classes, and a list of annotations either represented as
polygons or compressed using run-length encoding.

5 Conclusion and Future work

This concludes the brief tour of our image annotation tools. The tools have
been valuable for many different purposes in our laboratory and we sincerely
hope that they will be useful for future annotation projects as well. Our
laboratory have annotated tens of thousands of frames using the annotation
tools and it is our experience that once one gets acquainted with the work-flow
and the shortcuts, these tools provide a good environment for hours, weeks,
and months of annotation work. Since the annotation tools are developed as
side-line projects during our PhD’s, there might be some occasional rough
edges when using the programs. If the reader encounters any unexpected
behaviour during the use of the programs, he or she is more than welcome to
open an issue on Bitbucket.

In the future, we expect to merge the code base of the two annotation
programs such that a bounding box annotation is a special case of a polygon-
based annotation which again is a special case of a pixel-based annotation. If
resources and time allow, we might even investigate semi-supervised annota-
tion methods that could speed up the annotation process.

Acknowledgements

We greatly appreciate the work of our student annotators during the years
and the many hours that they have spent using the programs. Their continued

139



References

work has uncovered numerous bugs which is critical in developing annotation
tools that work as intended.
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1. Introduction

Abstract

In order to enable a robust 24-h monitoring of traffic under changing environmental
conditions, it is beneficial to observe the traffic scene using several sensors, preferably
from different modalities. To fully benefit from multi-modal sensor output, however,
one must fuse the data. This paper introduces a new approach for fusing color RGB and
thermal video streams by using not only the information from the videos themselves,
but also the available contextual information of a scene. The contextual information
is used to judge the quality of a particular modality and guides the fusion of two
parallel segmentation pipelines of the RGB and thermal video streams. The potential
of the proposed context-aware fusion is demonstrated by extensive tests of quantitative
and qualitative characteristics on existing and novel video datasets and benchmarked
against competing approaches to multi-modal fusion.

1 Introduction

In order to increase road safety or address the problems of road congestion,
one must obtain a thorough understanding of road user behavior. Such an
understanding may be derived from detailed, accurate information of the
traffic. Video surveillance offers a rich view of a traffic scene and enables 24-h
monitoring at a fairly low cost [15]. Manual observation of the traffic scene
is a tedious and time-consuming task, however, and automated techniques
are thus desired. Computer vision techniques enable the automatic extraction
of relevant information from the surveillance video, such as the position and
speed of the traffic and the classification of the road user types [3].

The use of cameras for monitoring purposes, however, introduces a sig-
nificant drawback. As the functional principle of a camera builds on the
visual range of light, the quality of the data is highly dependent on environ-
mental conditions, such as rain, fog and the day and night cycle. As a result,
many applications work only during the daytime in decent weather conditions,
and a persistent monitoring of the scene is often desired. Although custom
methods have been proposed for specialized scenarios [5, 21, 24, 29, 33, 34], a
standard method for different purposes and under arbitrary conditions is yet
to be presented.

To overcome this problem, both sensors and algorithms must be designed
for long-term persistence under varying, real-world conditions. On the sensor
side, one solution is to supplement the traditional visible light camera with
other sensor types. Such multi-sensor systems are more persistent to changes
in the environment; if the output of one sensor is impaired due to sub-optimal
conditions, other sensor types are not necessarily affected.

Consequently, a special interest in thermal infrared cameras has recently
developed. Thermal cameras cannot capture visible light, but only pick up the
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(a) (b)

(c) (d)

Fig. E.1: RGB and thermal images of two scenes. In the top scene, the RGB image (a) provides a
detailed view of the road users. The thermal image (b) shows fewer details, but gives a better
view of the pedestrian behind the tree on the pavement. In the bottom scene, the headlights of
the approaching vehicles blurs parts of the RGB image (c) and introduces glare by the raindrops
on the lens. Fortunately, the corresponding thermal image (d) is unaffected by the headlights.

infrared radiation emitted by objects [8]. The infrared radiation depends on
the temperature of the object, thus making the imaging system independent of
illumination and less dependent on visual obstructions caused by, e.g., fog or
rain. As seen in Figure E.1, the downside is that thermal images are less
detailed and provide an unfamiliar visual impression to a human observer.
When combined, traditional visible light (RGB) cameras and thermal cameras
enables 24-h surveillance under arbitrary lighting conditions and improve the
observability under challenging environmental conditions.

In order to utilize the information from the various sensors, one should
fuse the information at some point in the data processing chain. However,
how is the data fusion actually performed? When fusing the data streams,
how should the different streams be weighted against each other? In the ideal
case, the weights are dependent on the information quality of the data stream
of a particular sensor, e.g., how objects of interest are distinguished from other
parts of a scene. The information quality of a data stream is dependent on
the sensor attributes, the object nature, scene geometry and environmental
conditions, but also on the purpose and nature of the subsequent analysis of
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the data.
In this paper, we present a novel method for the context-based fusion of

video from thermal and RGB video streams. The context-based fusion is inte-
grated with the segmentation of the scene, which is the first and crucial step of
bottom-up processing pipelines [3] commonly used in real-time surveillance
systems. We integrate the contextual information of the scene to assess the
quality of the video data, which we use to fuse the output of two parallel
segmentation pipelines.

The methodology of image fusion and related work is discussed in Sec-
tion 2. In Section 3, we deduce context-based quality parameters based on
environmental conditions and the appearance of the video data. These param-
eters are used to design a context-adaptive fusion pipeline, which is described
in Section 4. This pipeline is exemplified using an image segmentation algo-
rithm in Section 5 to create a fused, segmented image, which is common to
both the thermal and RGB video streams. Subsequently, we present extensions for
the application of traffic monitoring in Section 6 [2]. In Section 7, we evaluate the
context-based fusion on our own and two commonly-used datasets against
competing approaches to image fusion. Finally, our conclusions are presented
in Section 8.

2 Related Work

Different sensors have advantages and disadvantages in terms of further
processing. To overcome the individual downsides of different sensors, multimodal
systems have been developed. These systems use information from multiple sensors
and information sources to combine and enrich the available data [2]. The potential
of these methods, especially for traffic surveillance, has been emphasized by
Buch et al. [3]. In this section, different fusion approaches will be presented
and discussed. The main focus will thus be on the fusion of video data from thermal
and RGB cameras [2].

Fusion approaches are generally divided into three levels: pixel-level fusion, feature-
level fusion and decision-level fusion, depending on the stage at which the fusion takes
place [10] [2].

Decision-level fusion combines the output from two or more parallel processing
pipelines. The results are merged by Boolean operators or the weighted average.
Serrano et al. [25] perform parallel segmenting of thermal and RGB data and select
the representative output on the basis of confidence heuristics [2].

Feature-level fusion takes place one step earlier in the processing pipeline. Features
from all input images are extracted individually and then fused into a joint feature
space. Kwon et al. [17] used this technique for automatic target recognition [2].

Pixel-level fusion is the most common approach. In this type of fusion, the input
images are merged into one. Details that might not be present in one image are hereby
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added by the other modality. Common examples are structures occluded through dark
shadows or smoke in RGB images that are revealed with the help of a thermal image.
Pixel-level fusion requires all input images to be spatially and temporally aligned.
This alignment, also called registration, is a challenge. Automatic image registration
approaches often fail as there is no correlation between the intensity values of the
modalities [6]. A common approach is to manually select corresponding points in both
modalities and compute a homography. However, special-case automatic methods exist;
these use features that are most likely present in both modalities, e.g., contours [12],
Harris corners [13] or Hough lines [14] [2].

Shah et al. [26] perform the fusion after different wavelet transforms of the images.
This allows a fusion rule based on frequencies rather than pixels [2]. The approach
preserves the details while still reducing artifacts. Chen and Leung followed a
statistical approach in [4] by using an expectation-maximization algorithm.

Lallier and Farooq [18] perform the fusion through adaptive weight av-
eraging. The weight per pixel is hereby defined by the number of equations
that express the interest in the specific pixel. In the context of this work, these
are the degree to which an object is warmer or colder in the thermal domain,
the occurrence of contrast differences and large spatial and temporal intensity
variations in the visual domain [2].

Instead of fusing the images to a new image, which can be represented in RGB,
other methods simply combine the inputs into a new format. St-Laurent et al. [27]
adapt a Gaussian Mixture Model (GMM) algorithm for extracting moving objects
to work with “Red-Green-Blue-Thermal” (RGBT) videos [2]. In this way, impor-
tant information is automatically revealed by the object extraction algorithm.

3 Context-Based Image Quality Parameters

In this work, we use a pixel-level fusion approach. However, unlike usual
pixel-level approaches, the RGB and thermal images are not fused immediately.
Instead, we use the soft segmentation results from individual processing of
the thermal and RGB video streams. The quality of the video streams is
used to fuse the soft segmentation results and, thus, forms a context-aware,
quality-based fusion.

In the following, we discuss the conditions that effect the image quality
for surveillance scenarios and how those conditions may be predicted by data
from different sources. The aim is to construct context-sensitive indicators,
qRGB and qthermal, that express the usefulness of each modality.

When assessing the relative qualities of the thermal and RGB images,
we distinguish between predictable and unpredictable conditions. The pre-
dictable conditions are considered “static” under short time spans, but may
change gradually over several hours, such as the position of the sun or the
general weather conditions. The unpredictable conditions cannot be measured
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(a) (b) (c) (d)

Fig. E.2: Thermal images of the same scene with different entropy values. (a) H = 4.23; (b)
H = 5.04; (c) H = 6.65; (d) H = 7.67. Adapted from [2].

beforehand and may change rapidly in a few seconds, for example when a
cloud temporarily blocks the Sun. In the following, we start by discussing
the predictable conditions in terms of the thermal and RGB images, which is
followed by a discussion of the unpredictable conditions.

3.1 Predictable Thermal Image Quality Characteristics

Thermal cameras measure the infrared radiation emitted by all objects. The energy
of the radiation mainly depends on the object temperature [2]. A constant factor,
referred to as emissivity, scales the radiation for different materials [8]. If the
emissivity is known, the temperature of objects obtained in thermal images
can be calculated using the Stefan–Boltzmann law [30]. However, Automatic
Gain Control (AGC) often forms part of many of the thermal cameras that are built
for surveillance, and this implies that the exact relation between radiation energy and
intensity values is often unknown [2].

Objects consisting of different materials have different intensity values in a thermal
image, even if they have almost the same temperature [8]. Typical scenes consist of
several different materials, and we therefore expect a certain amount of information
in the thermal image; also for scenes without foreground objects. If no objects can be
distinguished, the information content is low. Consequently, the image entropy can be
used as a quality indicator for thermal images. The entropy, H, is defined as [2]:

H = −
255

∑
i=0

p(Ii)
log(p(Ii))

log(2)
(E.1)

where p(Ii) is the percentage of pixels with intensity i in the thermal image I.
Figure E.2 shows a side-by-side comparison of the same location at different times.

The right images appear much more detailed and, therefore, of higher quality. The
corresponding entropy values correlate with this impression [2].

Experiments have been conducted and have shown that a linear function
enforces a too strong down-rating of low entropy values. Thus, a sigmoid
function is found to be a better approximation of the mapping function between the
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Fig. E.3: Shape of the qentropy quality function relative to the entropy of the thermal image.
From [2].

entropy and quality of the thermal image [2]. Thus, the entropy quality parameter
is defined as:

qentropy =
1

1 + e(3.5−H)·2 (E.2)

The shape of qentropy is shown in Figure E.3.

3.2 Predictable RGB Image Quality Characteristics

The predictable image quality of an RGB image is closely correlated with the
amount of light in the scene. When working with outdoor scenes, the amount
of light in the scene is strongly dependent on the available sunlight. The more
sunlight, the higher the image quality. However, in full sunlight, shadows will
appear, which might be the cause of false positives when segmenting the
image. The state of the weather in a scene is pivotal when estimating the
general observability of the scene. Phenomena such as mist and fog reduce the
visibility. Rain and snowfall introduce spatio-temporal streaks in the image,
which further impedes the view.

In the following, we will discuss the effect of these phenomena on the RGB
image quality.

Illumination

Figure E.4 shows the same scene in the afternoon and at dusk. While a
human being can easily label the cars in the scene, segmentation algorithms would
be highly disturbed by the large shadows and reflections. Although several shadow
suppression algorithms exist nowadays [22], shadows still disturb the detection
process [2]. The handling of reflections, as imposed by moisture and shiny
surfaces, is still an unsolved problem. In conclusion, both images presented
in Figure E.4 should be rated as low quality, although the reasons for the low
quality are different and so may the quality rating be.
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(a) (b)

Fig. E.4: RGB images with common challenging conditions. (a) Shadows; (b) Reflections and
halos. From [2].

Consequently, images with low light conditions, such as twilight and night, should
be rated as low quality [2]. The elevation angle of the Sun, as illustrated in
Figure E.5, can be used as an input parameter. The solar elevation angle,
αsun, is defined as the angle between the ground plane and the Sun’s position
vector; see Figure E.5b. It is dependent on the longitude and latitude of the
scene, as well as the date and time of the recording [19]. The Sun is visible
for angles ≥ 0◦. In practice, however, noticeable illumination is not present
before −6◦, known as civil twilight [23]. Additionally, as soon as the Sun is
visible, the illumination condition is not perfect. Therefore, in this work, we
require the altitude of the Sun to increment an additional 6◦ before we define
good illumination and, thus, set qsun = 1. If the altitude of the Sun is below
−6◦, the Sun does not contribute to the light in the scene, and we set qsun = 0.
However, there might be other light sources that contribute to the illumination
of the scene, for example street lights. Thus, we define a non-zero minimum
quality parameter, qsmin. This leads to the following formula:

qsun =


1.0 if αsun ≥ 6◦

max
(

αsun+6◦
12◦ , qsmin

)
if − 6◦ ≤ αsun < 6◦

qsmin if αsun < −6◦
(E.3)

with the solar elevation angle αsun and a minimum quality parameter qsmin,
which is set according to the amount of artificial light available in the scene.
The resulting function is displayed in Figure E.6 with qsmin = 0.2.

Shadows

Two external factors specify the occurrence of the shadows. First of all,
shadows may appear only on sunny days. Sunny days may be detected by
integrating a weather station next to the setup or by accessing a weather
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Fig. E.5: Solar altitude over a day in the summer and winter (a); the solar altitude is defined by
the angle between the ground plane and the Sun’s position vector (b). From [2].
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Fig. E.6: Development of the qsun quality indicator over a winter and summer day. The corre-
sponding altitude of the Sun is shown in Figure E.5a.

150



3. Context-Based Image Quality Parameters

0 4 8 12 16 20 24

0

0.2

0.4

0.6

0.8

1

Summer
Winter

q sh
ad

ow
s

Hour

Fig. E.7: Development of the qshadows quality indicator over a day during summer and winter.
The corresponding altitude of the Sun is shown in Figure E.5a.

database. The length of these shadows is determined by the Sun’s position. Therefore,
both weather data and the solar elevation angle must be considered to present a model
showing to what extent cast shadows might be present in the scene. The length of
shadows can be calculated through: [2]

L = h/tan(α) (E.4)

with h being the object height [2]. With unit object height, Equation (E.5) can
serve as a quality function, where ψ is a scaling factor, qweather is the weather
quality indicator defined in Section 3.2 and qshmin is the minimum required
quality.

qshadows =

{
max(1− ψL, qshmin) if αsun > 0∧ qweather = 1
1.0 otherwise

(E.5)

The resulting function is plotted in Figure E.7 with qshmin = 0.3 and
ψ = 50.

Weather Conditions

Different weather conditions may harm segmentation algorithms through
various phenomena, such as mist, fog, rain and snow. The long-term effects of
rain are visible as reflections in puddles and moisture on the road. A quantita-
tive rating, however, is not so easily derived. For this work, we have grouped
weather conditions obtained from [20] into five broad categories, as seen in
Table E.1. A clear sky is defined as optimal conditions with a quality rating
of one. Clouds and light mist reduce the amount of light available in the
scene and are as such assigned a lower quality rating of 0.8. The occurrence of
rain and snow induces spatio-temporal noise and reduces the visibility of the
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Weather Condition [20] Category qweather

Clear Good conditions 1.0

Overcast
Low/varying illumination 0.8Cloudy

Light mist, drizzle

Heavy drizzle, mist
Reflections/moisture 0.6

Light rain

Snow

Particle occlusion/precipitation 0.3
Hail

Heavy rain
Thunderstorm

Fog, haze
Reduced visibility 0.3

Dust, sand, smoke

Table E.1: Weather conditions and their corresponding category and quality indicator, qweather.
Adapted from [2].

scene. We distinguish between light and heavy rain and all other types of pre-
cipitation. The spatio-temporal effects of light rain are barely visible, whereas
raindrops may be visible during heavy rain, snow and hail [9]. Fog and haze
do not occur as spatio-temporal effects, but greatly reduce the visibility and
are thus grouped with heavy rain and snow.

3.3 Unpredictable Image Quality Characteristics

We define unpredictable conditions as rapidly changing, dynamic conditions
that may not be predicted by the sensors or the available contextual knowledge.
In the RGB image, this includes rapidly changing illumination, for instance
caused by clouds that temporarily blocks the Sun. In the thermal image, the
most prominent, dynamic change is caused by the auto-gain mechanism of
the thermal camera. The auto-gain automatically maximizes the contrast of
the thermal image by adjusting the gain of the camera, which means that the
appearance of a scene may change suddenly when cold or warm objects enter
the scene.

Because the rapidly-changing conditions may not be predicted before-
hand, we will rate them by their effect on the subsequent image segmen-
tation process. Typically, most segmentation algorithms will respond to
rapidly-changing conditions with abrupt changes in the ratio of Foreground
(FG) and Background (BG) pixels. Over time, the segmentation algorithm
will incorporate the changes, and the ratio of FG and BG pixels stabilizes.

We can incorporate this characteristic in a quality indicator, such that
rapid changes in the FG/BG ratio are penalized. This indicator, qfg, is
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defined in Equation (E.6), where τ defines the average foreground ratio and
γ is a weight controlling the foreground deviation:

qfg = max(1− γ(rfg − τ), 0) (E.6)

where the current foreground ratio, rfg, is defined as:

rfg =
1

XY

X

∑
x=1

Y

∑
y=1

1 (E.7)

where 1 denotes an indicator function that returns one if the image at position
(x,y) is foreground, otherwise zero, and (X, Y) are the image dimensions.

The qfg indicator is computed separately for the RGB and thermal image
streams.

3.4 Combined Quality Characteristics

At this stage, we have developed several indicators for the image quality of
both modalities, which should be combined into one quality indicator for each
modality. We start by combining the indicators that correspond to the static
predictable conditions. In the thermal domain, this is easy, as there is only one
indicator, qentropy, to consider. In the RGB domain, the quality indicators are
closely interrelated. However, the exact nature of these relations is unknown,
and a study of this is beyond the scope of this work. Therefore, we here
assume decorrelation and hence combine the indicators by multiplication:

qstaticRGB = qsun · qshadows · qweather (E.8)

qstaticThermal = qentropy (E.9)

The predictable and unpredictable quality indicators are combined for
each modality by taking the minimum value:

qRGB = min(qfgRGB
, qstaticRGB) (E.10)

qThermal = min(qfgThermal
, qstaticThermal) (E.11)

To prevent artifacts, the quality indicators are gradually updated:

qt =

{
qt if qt ≤ qt−1

αqt + (1− α)qt−1 otherwise
(E.12)

where α is the update rate of the segmentation model. The calculation is
performed independently in the RGB and thermal domain.
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4 Context-Based Fusion

The following section presents a new approach to fusing the image streams by
integrating the quality indicators into a segmentation pipeline. As opposed to
other works, we do not fuse the input data directly. Rather, we have used the
intermediary results of two parallel segmentation algorithms. The results are
weighted in accordance with the quality indicators described before to ensure
that the system is context-aware. Figure E.8 illustrates the basic principle of
this work. The core contribution is illustrated in Part II, object identification,
of Figure E.8. The images of the thermal camera are registered into the
coordinate system of the RGB image by using a planar homography [11]
such that positions on the road plane in the thermal image correspond to
the same positions in the RGB image. The registered images are fed into
two parallel segmentation algorithms from which we get the intermediate,
soft segmentation results that represent, for each pixel, the degree of belief that
the pixel is considered to be in the foreground. In this work, we denote this
as the distance maps. The fusion of these maps is discussed in the following.
The details of Part III, distance modulation, of Figure E.8 are explained in
Section 6.

We normalize the quality indicators qRGB and qThermal to add up to one and
use the normalized values as weights for the adaptive fusion of the distance
maps. The weights are calculated as follows:

wRGB =
qRGB

qRGB + qThermal
wThermal =

qThermal
qRGB + qThermal

(E.13)

The distance map of each modality is multiplied by its corresponding
weight, and the results are summed to create a unified, fused distance map:

DF = wRGBDRGB + wThermalDThermal (E.14)

At this stage, small inaccuracies in the spatial and temporal registration can be
compensated. A simple mean filter applied on the fused distance map dissolves the
pixel grid and therefore fuses information from neighboring pixels [2].

The final step in the segmentation is the decision as to whether a pixel is
defined as foreground or background. We threshold the fused distance map
on a per-pixel level:

FG =

{
1 if DF ≥ T
0 otherwise

(E.15)

where T is the segmentation threshold, usually set to one.
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Fig. E.8: System design overview: The three main phases of the fusion algorithm are illustrated.
Two registered input streams are processed by two parallel segmentation algorithms. The soft
segmentation results from these algorithms, denoted as distance maps, are fused by using the
quality indicators of each stream. Distance modulation functions may improve the algorithm
for the purpose of traffic monitoring by using constraints derived from scene geometry, shadow
detection and object (blob) detection; see Section 6. Adapted from [2].

5 Segmentation Algorithm

In the framework presented in the previous section, we fused the intermediate
output of two segmentation algorithms. Any image segmentation algorithm
may be used, as long as it generates a soft-decision pixel map that may be
used as the distance map of Figure E.8. In the rest of this paper, we apply a
particular segmentation method in order to be able to quantify the benefits
of the proposed fusion strategy. We use the classic Gaussian Mixture Model
(GMM) [28] to exemplify our context-fusion framework.

The GMM is widely used within the domain of traffic surveillance [3] and
represents a well-known platform to showcase the context-based fusion. A
brief introduction to the GMM is given in the following.

During the calculation of the background distance based on the GMM, each pixel
is tested against each component of the GMM’s background model. The Mahalanobis
distance of the sample value from the background model is hereby the determining
factor for acceptance [2]. A pixel x at time t is defined to match the background
component if it falls within λ standard deviations:

Mi,t =

( |xt − µi,t−1|
λσi,t−1

< 1
)

(E.16)

where Mi,t is the i-th background model at time t + 1, µi,t−1 and σi,t−1 is the
mean value and standard deviation of Mi,t−1, respectively.
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The mean and standard deviation of the background models are constantly
updated as follows:

µi,t = (1− β)µi,t−1 + βxt (E.17)

σ2
i,t = (1− β)σ2

i,t−1 + β(xt − µi,t−1)
2 (E.18)

where β is defined as:

β = αN (xt, µi,t−1, σ2
i,t−1) (E.19)

and α is a constant update rate.
The acceptance distance of the sample as the foreground in Equation (E.16) is

normalized by the specific variance σi,t and the threshold value λ. Large distance values
indicate a high probability of the pixel being in the foreground, whilst small values
show high conformity with the component. With this in mind, an approximation of
the general conformity of a pixel in the model can be expressed by computing the
distance value, Dt: [2]

Dt ≈



d0,t if M0,t

d1,t if M1,t

. . .
db,t if Mb,t

min(d0,t, d1,t, . . . , db,t) otherwise

(E.20)

with:

di,t =
|xt − µi,t−1|

λσi,t−1
(E.21)

where b denotes the total number of background models.
If a match Mi,t is found, the corresponding value of di,t is used to express the

distance. Otherwise, the distance to the closest component is used. The resulting
values of all pixels form a map expressing the deviation of image regions from the
background, and this is fed into the context-based fusion framework as the distance
map [2]. Figure E.9 displays the distance maps, their fusion and the effect on
the resulting mask.

6 Application to Traffic Monitoring

The preceding sections described the main contribution of this work. In the
following, we will present specific extensions for traffic surveillance to show
the modularity of the proposed algorithm. In Figure E.8, these extensions are
categorized as III, distance modulation.
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(a) (b) (c)

Fig. E.9: Distance maps of the different modalities and results after thresholding. The intensity
of a pixel corresponds to the distance to the background model of each parallel segmentation
algorithm. Bright pixels indicate a high probability for foreground objects. (a) Thermal; (b) RGB;
(c) fused. Adapted from [2].

6.1 Shadow Detection

A common extension of background modeling techniques is shadow detection. Shadows
of intruding objects do not match the background model; they appear as darker
formerly-illuminated areas and are, therefore, defined as foreground. Depending
on the purpose of the system, the labeling of shadow areas as foreground is a false
positive error. In most surveillance scenarios, only the objects (not their shadow) are
of interest [22] [2].

Prati et al. [22] distinguish between deterministic approaches to shadow
detection, which use an “on/off decision process”, and statistical approaches,
which “use probabilistic functions to describe the class membership”. How-
ever, both methods can fail and lead to false negatives, just as false positives
may also occur. If the main task is to identify all foreground objects, as in the case of
traffic surveillance, especially false positives may harm the results. Whole objects may
be classified as shadows. To address this issue, shadow areas have been pruned rather
than completely removed in this work [2].

State-of-the-art methods perform a labeling function in the resulting foreground
mask. Instead of making this hard decision, the distance related to the areas marked as
shadows is scaled down. In this work, a fixed scaling method has been used. A scaling
based on the shadow certainty may be a possible extension. As the background distance
correlates with the certainty of a pixel being in the foreground, the downscaling may be
considered as bringing uncertainty to the decision [2]. Consequently, the decision
of whether a pixel is defined as shadow is only made indirectly when deciding
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whether the pixel is categorized as either foreground or background.
The subsequent fusion of the modalities is the important step for this method to

work. Objects that have also been found in the thermal image are most likely found
anyway, and shadows are voted further down as they are not present in the thermal
domain. Especially small areas of false positives can be recovered as being a foreground
object using this technique. The mean filter subsequent after the fusion helps the
process of removing outliers. Additionally, the quality indicators allow prediction of
scenes with shadows. Therefore, the process can be triggered to be context aware [2].

6.2 Blob Prediction

A successful segmentation algorithm for traffic surveillance must handle the
different speeds of the traffic, which implies that all objects must be handled as
foreground even when staying in the scene for a longer time. For this purpose, the
blob prediction method proposed by Yao and Ling [31] has been integrated in this
work [2]. The position of foreground blobs is predicted for each frame, and
the update rate α of the segmentation algorithm is significantly lowered for
these areas. Consequently, objects must stay for a very long time before merging into
the background [2].

To predict blob positions for the current frame, t, blobs from t and t − 1 are
matched. Subsequently, the displacements between t and t− 1 are applied on t. The
matching is done with a nearest neighbor search of the blob’s centroids. If no neighbor
within range ρ is found, the blob is supposed to be stationary as no prediction about
the movement can be made [2].

We extend the method by Yao and Ling [31] by dilating the predicted blobs
and smoothing out edges. This is done to prevent artifacts in the background model
caused by inaccuracies in the blob prediction. The update rate α of the segmentation
algorithm is thus calculated as: [2]

α = Dpredictαfg + (1− Dpredict)αbg (E.22)

where 0 ≤ Dpredict ≤ 1 indicates the value in the blob prediction image and αfg and
αbg are the update rates for foreground and background regions, respectively [2].

Another purpose of the blob prediction is presented in this work. As the boundary
of foreground objects changes only gradually, the predicted blobs provide a very
good estimate of the foreground of the next frame. This can help the segmentation,
as it is more likely to locate an object where predicted than elsewhere in the scene.
Objects follow a trajectory and generally do not appear unexpectedly [2]. To express
this characteristic, another modification of the distance map is performed.
Analogous to the shadow suppression, the predicted areas are up-scaled in
the distance map. Figure E.10 demonstrates the effect. The right image of
Figure E.10 shows the distance map after the blob prediction. Compared to
the distance map before the prediction, as shown on the left of Figure E.10,
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(a) (b)

Fig. E.10: Distance map before (a) and after blob prediction-based modulation (b). From [2].

one sees that objects appear brighter in the right image and thus have a higher
likelihood of being declared foreground.

6.3 Scene Geometry-Based Knowledge

The principle presented in the last sections can be used for another constraint. By
looking at the scene geometry, one can easily divide the image into three classes. The
first class of pixels is areas where no foreground is expected under any circumstances,
for example trees or the sky. The second class of pixels denotes the areas into which
objects may move. A sudden appearance of objects is unlikely or even excluded, but
objects may move to these areas from other parts of the image. These areas are referred
to as neutral zones. The last class describes the areas in which we expect foreground
objects to appear. These areas are called entrance areas in the following. Entrance
areas can normally be found at the borders of the image as objects enter the scene,
normally from outside the viewport of the camera. Objects may, however, also reappear
after occlusion or enter from occluded areas. Based on this classification, a mask can
be drawn as seen in Figure E.11 [2].

Firstly, excluded areas cannot be categorized as foreground when the
corresponding values in the distance map are set at zero. Secondly, the distance
values for neutral zones are scaled down by sneutral to make it less likely to find
foreground pixels in these areas. This is possible because the blob positions have
been predicted and uprated beforehand [2]. Areas to which we expect objects to
move are untouched afterwards or even uprated, whereas unpredicted regions
are down-rated. This helps remove noise, and found objects are considered
more reliable.
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Fig. E.11: Scene area classes. Green: entrance areas; red: excluded areas; rest: neutral. From [2].

7 Experiments

A series of experiments has been conducted to evaluate both the quantitative
and the qualitative performance of the proposed algorithm. This section begins
with an elaboration about the datasets that have been used in this work, followed by
a description of the performance metrics and the results of the experiments. Finally,
an in-depth analysis of the qualitative performance is presented [2].

7.1 The Datasets

The main dataset used in this work contains a large number of thermal-RGB recordings
of intersections in Northern Jutland, Denmark, recorded during 2013. The videos are
undistorted using the line-based parameter estimation by Alemán-Flores et al. [1] [2].
To be able to benchmark the proposed algorithm, we include two commonly-
used datasets. The Ohio State University (OSU) Color-Thermal Database [7]
of the Object Tracking and Classification Beyond the Visible Spectrum (OTCBVS)
Benchmark Dataset Collection contains RGB and thermal data of two surveillance
scenarios. The videos contain pedestrians recorded on the campus of Ohio State
University. The National Optics Institute (INO) Video Analytics Dataset (http:
// www. ino. ca/ en/ video-analytics-dataset/ ) contains a set of multimodal
recordings of parking lot situations, including data on cars, cyclists and pedestrians
[2].

As we know the exact location and time of our own datasets, we can
compute the altitude of the Sun directly and retrieve weather information
from a nearby weather station. As this contextual information is not known for
the external datasets, we derive the contextual information from manual scene
observations. Weather conditions are grouped into the categories introduced
in Table E.1. All scenes tested during the experiments are listed in Tables E.2
and E.3. The contextual information for each scene is listed in Table E.4.
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Day Night Auto Gain Heavy Rain Snowing

Table E.2: Test scenes from our own dataset. The videos are rectified using a line-based parameter
estimation method [1]. From [2].

INO INO INO INO OTCBVS 3 OTCBVS 4
ParkingEvening ParkingSnow CoatDeposit TreesAndRunner

Table E.3: Test scenes from the benchmark datasets. From [2].
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7. Experiments

7.2 Performance Metrics

We evaluate the experiments by the quantitative performance metrics used
in [16]. These metrics are the Detection Rate (DR) and the False Alarm Rate
(FAR), defined as:

DR =
TP

TP + FN
(E.23)

FAR =
FP

TP + FP
(E.24)

with True Positives (TP), False Positives (FP) and False Negatives (FN). The DR is
also known as recall or the true positive rate and describes the sensitivity of a detector.
The FAR corresponds to 1− p, where p is the detector’s precision or specificity [2].

In order to evaluate the performance metrics, access to the true data, commonly
referred as the Ground Truth (GT), is needed. GT must be created manually and is a
laborious task. Thus, only a small sample of the results can be tested. In this work,
70 successive frames have been annotated for each test set with the exception of 180
annotated frames of the Auto Gain set [2]. In our own dataset, this amounts to ap-
proximately 3 and 7 s of video, respectively. The GT has been annotated using
the Aalborg University Visual Analysis of People (AAU VAP) Pixel Annotator
(https://bitbucket.org/aauvap/multimodal-pixel-annotator) where the
boundary of each object has been traced manually by a mouse. The average
number of objects per frame is shown for each sequence in Table E.4.

7.3 Quantitative Results

In order to evaluate the performance of the proposed method, extensive experiments
have been performed and evaluated with the described performance metrics. Besides
the algorithm itself, each dataset has been processed by applying four alternative
strategies, presented below: [2]

• RGB: individual processing of the RGB modality by the proposed
method.

• Thermal: individual processing of the thermal modality by the proposed
method.

• RGBT: pixel-wise, naive (not context-aware) fusion of RGB and thermal
streams.

• Select: confidence-based selection as presented by Serrano-Cuerda et
al. [25]

All strategies are based on the GMM background segmentation algorithm
presented by Stauffer and Grimson [28] and improved by Zivkovic [32] and
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differ only in the ways the data fusion is performed. This allows us to
measure the contribution of our context-aware fusion approach compared
to other fusion approaches or single-modality processing. As mentioned in
Section 5, other segmentation algorithms may be used in combination with
the proposed method. By using a well-known approach, such as the GMM,
however, we believe that the comparison reveals interesting insights on the
strengths and weaknesses of the proposed method.

This work aspires to create a system that works without requiring the
manual tuning of its parameters for different conditions. Therefore, only the
learning time for each scene has been adjusted to match the specific situation. For
example, scenes with much traffic need more time to learn a stable background
model. For the case of the presented algorithm, background models have been learned
individually before the described adjustments were made [2]. This procedure is
necessary because the predicted foreground regions are learned slowly, and
false positives are very likely to appear during the learning phase.

The update rate α of the segmentation algorithm has been set to be slower for the
alternative strategies. As the GMM background modeling does not differ between
foreground and background in the update step, a quick update rate would result in
foreground objects merging into the background. This is also the case in the learning
phase of the proposed method. Consequently, the same α has been used here. All
important experimental parameters are listed in Table E.5, where the parameters below
the line apply only for the proposed method [2].

Shadow detection has been performed for all experiments containing RGB data
[2]. Pixels that have been categorized as shadow have been classified as
background in the reference methods. Furthermore, the scene area classes
have been applied on the resulting data. This approach ensures that equal
conditions have been created for all strategies, and identified differences in the results
of the proposed algorithm in contrast to the alternative strategies can be explained by
its core contributions [2].

The results of the experiments are displayed in Table E.6. The general performance
of the proposed algorithm can be considered very good due to a average DR and
FAR of 0.95 and 0.35, respectively. The table clearly shows that the goal of creating
a robust method for a wide bandwidth of conditions has been achieved. Only the
proposed method shows good performance for every test sequence, which is expressed
in the average FAR and DR rates, which are significantly better than the alternative
strategies. These strategies fail in different scenarios, but show better performance
than the proposed method for some scenarios. The reasons for this are manifold and
will be discussed in Section 7.4 [2].

As expected, all fusion approaches generally tend to demonstrate better performance
than single-modality methods. The method presented by Serrano-Cuerda et al. [25]
also seems to perform well at first glance. However, when analyzing the results
in detail, it becomes clear that the results are, at best, as good as one of the single
modalities. This is related to the design of the algorithm; it is designed to select one
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Parameter Value Description

α 0.0005 GMM update rate
K 5 Number of components for GMM
λ 4 Number of standard deviations for back-

ground acceptance for GMM
T 1 Segmentation threshold of the distance

map

αBG 0.0033 Background update rate for blob-based pre-
diction

αFG 0.000033 Foreground update rate for blob-based pre-
diction

τ 0.1 Foreground ratio
γ 5.0 Foreground deviation weight
ρ 17 Blob match radius (px)
sshadow 0.3 Distance scaling factor for shadow regions
spredict 1.5 Distance scaling factor for predicted regions
sneutral 0.5 Distance scaling factor for neutral regions
qsmin 0.2 Minimum quality of qsun
qshmin 0.3 Minimum quality of qshadow

Table E.5: Parameters used in the experiments. The parameters below the line apply only for the
proposed method. Adapted from [2].

result of two parallel pipelines. One important characteristic of fusion algorithms is
neglected by this design choice. Fused data or fused results generally differ from the
original inputs and may, therefore, contain new features and novel information. A
simple selection obviously makes this impossible [2].

The FAR of both the proposed method and the RGBT approach mirror the weaker
modality. The reason is that high evidence of foreground objects in one modality may
still be present after fusion of the data. Only false positives based on weak evidence
are successfully smoothed out. In the worst case, false positives from both modalities
are present in the result [2].

A good example of the superiority of fusion approaches in terms of DR is given
by the sequence INO TreesAndRunner. Obviously, both fusion approaches, i.e.,
the proposed method and the RGBT approach, perform much better than the single
modalities. This better performance is seen because both RGB and thermal contain
frames that are very hard to segment. The runner, for example, will pass trees and
other objects. Nevertheless, the fusion approaches can still rely on the second modality
when the information content of the first is low [2].
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Proposed RGB Thermal RGBT Select

Day
0.99 0.93 0.95 0.97 0.93
0.30 0.09 0.31 0.29 0.09

Night
0.84 0.78 0.48 0.89 0.78
0.31 0.69 0.32 0.66 0.69

Auto Gain
0.94 0.86 0.73 0.91 0.81
0.25 0.09 0.76 0.40 0.58

Heavy Rain
0.92 0.46 0.69 0.48 0.69
0.22 0.26 0.11 0.27 0.11

Snowing
0.96 0.79 0.21 0.92 0.21
0.52 0.52 0.25 0.55 0.25

INO ParkingEvening
0.95 0.93 0.91 0.95 0.91
0.26 0.27 0.18 0.29 0.18

INO ParkingSnow
0.98 0.86 0.99 0.96 0.99
0.32 0.78 0.40 0.35 0.40

INO CoatDeposit
0.97 0.10 0.10 0.10 0.10
0.19 0.12 0.30 0.16 0.12

INO TreesAndRunner
0.94 0.88 0.84 0.93 0.84
0.44 0.65 0.36 0.70 0.36

OTCBVS 3
0.95 0.75 0.94 0.90 0.78
0.56 0.96 0.74 0.96 0.93

OTCBVS 4
1.00 0.94 0.78 0.99 0.78
0.55 0.15 0.68 0.48 0.68

Average
0.95 0.76 0.70 0.83 0.72
0.35 0.39 0.39 0.46 0.41

Table E.6: Experimental results; first line, Detection Rate (DR), and the second line, False Alarm
Rate (FAR). The best DR and FAR values of each set are marked in bold. The proposed method is
compared to individual processing of RGB and thermal (RGBT) frames, naive fusion of RGBT
frames and “select”, which indicates result selection based on quality heuristics [25]. From [2].
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7.4 Special Situation Performance

In the following, the results of the specific test sequences are elaborated in detail. It is
shown how the performance of the proposed algorithm is affected by different details of
the design. Four different problems that tend to arise during outdoor surveillance are
discussed. Emphasis has been put on the adaptive modality weighting of the proposed
algorithm and its effect on the segmentation results. This context awareness is initially
discussed below [2].

Context Awareness

One of the core contributions of this work is the context awareness of the fusion. It is
based on a set of quality indicators that have been defined in Section 3. The goal is to
evaluate the usefulness of each modality. Instead of using information from the images
themselves, contextual information from outside sources has been consulted. Solely
the thermal domain has been rated by its own information content. For the tested
sequences, the weights calculated by the indicators are more or less fixed. The time
frames are simply too short to see an effect based on, for example, the quality indicator
covering the altitude of the Sun. The overall concept, however, has been tested by
selecting scenes with various conditions [2].

In Figure E.12a,b, quality functions covering a full day are plotted. The plotted
day was a summer day with rather good weather. Because of an overcast sky, no cast
shadows were detected for this particular morning [2]. Around noon time, the
temperature was so high that the thermal camera was overexposed. Figure
E.12c shows the entropy-based quality indicator for a full day, which includes
the ‘snowing’ sequence. The sequence starts at 13:17, and one may identify
sharp drops in the quality indicators related to the snowfall.

Parameter Sensitivity

The experimental results have been obtained using the quality indicators
listed in Table E.4. In the following, we will perform a sensitivity analysis
to judge the effect of changing the parameters that guide the context-aware
fusion. We use the Snowing and INO ParkingEvening scenes and vary the
parameters qsun and qweather in the interval [0.1, 1.0]. When both qsun and
qweather are low, the resulting weight of the RGB image, wRGB, will be low
and the distance map of the thermal image will dominate the fusion process.
When both indicators are set to one, the resulting weights will depend on the
thermal entropy and the unpredictable quality indicators for both modalities.
However, the resulting value of wRGB will be relatively higher.

The DR and FAR rates of the two scenes for varying values of qsun and
qweather are shown in Figure E.13. The values used by the general experiments
listed in Table E.6 are enclosed by a rectangle.
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Fig. E.12: RGB and thermal quality indicators and resulting weights of a full day. (a,b) have been
computed on the same sequence, whereas (c) shows the thermal quality indicator for the day that
includes the “snowing” sequence. The snowfall starts at 13:17 and severely effects the quality of
the thermal image. (a) Predictable RGB quality indicators and resulting RGB quality, qstaticRGB ,
over a full day; (b) weights of the RGB and thermal modalities, wRGB and wThermal, over a full
day; (c) entropy-based quality indicator, qentropy, for the thermal domain. (a),(b) from [2].
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Fig. E.13: Experimental results on the Snowing and INO ParkingEvening sequences. DR and FAR
are shown with varying values of the quality indicators qsun and qweather. (a) DR, Snowing; (b)
FAR, Snowing; (c) DR, INO ParkingEvening; (d) FAR, INO ParkingEvening.

The figures reveal differences on the reliance on the RGB and thermal
modalities for the two scenes. The Snowing scene is more reliant on the
RGB image than INO ParkingEvening, which shows comparatively little
improvement in DR rates when integrating the RGB image into the fusion.
By setting qsun = qweather = 0.1, the Snowing sequence returns a DR below
0.4, whereas the INO ParkingEvening sequence holds a relatively high DR of
0.92. In general, the results show the importance of integrating context-aware
quality indicators; a naive fusion, as exemplified by qsun = qweather = 1, does
not always give the best compromise of DR and FAR.

Automatic Gain Control

When large or hot objects enter the scenery, the camera automatically adjusts its gain
in order to preserve a high level of detail. This behavior, however, seriously disturbs the
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(a) (b) (c) (d)

Fig. E.14: Automatic Gain Control (AGC) of the IR camera triggered by a big truck coming into
the scenery. (a) Frame 170; (b) Frame 200; (c) Frame 230; (d) Frame 260. From [2].

segmentation algorithm, which results in a high number of false positive foreground
pixels. Figure E.14 displays the described phenomena. The main challenge is thus
the short time frame for adjustment. When the objects leave the scene, the camera
re-adjusts the gain. Therefore, the problem often persists only for 100–200 frames, and
yet, it highly affects the segmentation results [2].

As seen in Table E.6, the proposed algorithm handles the described problem well.
No segmentation quality reduction can be detected from the raw numbers. The
reason for this is the adaptive weighting performed in the fusion step. Through the
foreground ratio evaluation, which was described in Section 3.3, it can be detected
that the background model of the thermal domain is invalid. As a result, the thermal
weight function drops to zero, and the segmentation relies on the RGB domain only.
Figure E.15 displays this behavior. It can clearly be seen that the quality function
drops parallel to the weight of the thermal domain. When the truck has left the scene,
the camera adjusts back to normal, and the quality function instantly rises. The
weight, however, increases only gradually. This delay is necessary in order to give the
background model sufficient time to relearn the background model [2].

Changing Illumination

A very similar problem, which is commonly seen in outdoor surveillance, is
changing illumination conditions. The segmentation algorithm is designed to
adapt only to slow changes, e.g., shadows moving during daytime, whereas fast
changes in the scenery will cause false detection of foreground objects.

Similar to the problem of automatic gain control, which was discussed
above, the foreground ratio of the RGB domain will rise because the back-
ground model does not adapt fast enough for these changes. Consequently, a
weight shift to the thermal domain will be performed by the algorithm, which
contributes to the comparatively low FAR of 0.56 in the OTCBVS 3 sequence.

Artifact Reduction

Another contribution of the proposed algorithm can be seen in the results of OTCBVS
3. With 0.56, the FAR is even lower than the results found for the thermal background
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Fig. E.15: The entropy quality indicator, qentropy, and the quality indicators of the unpredictable
conditions, qfgRGB

and qfgThermal
, for the Auto Gain test sequence. The qfgThermal

drops rapidly when
a truck enters the scene around Frame 230. The corresponding frames are seen from Figure E.14.

subtraction. This can be reasoned with the adjustments made to the fused distance map
on the basis of the scene geometry. Artifacts are unlikely to appear since unpredicted
foreground regions are reduced in the distance map. The effect on the foreground mask
can clearly be seen in Figure E.16, particularly when compared to the approach using
solely the thermal domain [2].

Long-Staying Objects

The GMM background subtraction presented by Stauffer and Grimson [28] assumes
that foreground objects are constantly in motion, but this is obviously not the case
for all traffic. This issue has been addressed by Yao and Ling [31], and the proposed
method has been integrated in our work. The original algorithm causes long-staying
objects to gradually merge into the background. This problem is very visible in the
INO CoatDeposit test set. The car entering the scene merges into the background
within a few frames as seen in Figure E.17. This merging is stopped by prediction
of foreground regions and lowering of their update speed, resulting in a significantly
better DR of the proposed method [2].

8 Conclusions and Future Perspectives

This paper presented a new approach to multi-modal image fusion. The
proposed algorithm fuses the soft segmentation results of two parallel seg-
mentation pipelines based on the RGB and thermal video streams. The fusion
is guided by quality indicators for each modality. The quality indicators are
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(a) (b)

Fig. E.16: Distance map before (a) and after scene geometry-based modulation (b). From [2].

(a) (b) (c)

Fig. E.17: The parked car gradually merges into the background by using a standard GMM
segmentation method (foreground marked green). (a) Car arrives; (b) Car has stopped for several
frames; (c) Driver got out the car. The proposed method mitigates this issue by predicting
foreground regions and lowers the update rate α correspondingly. From [2].
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based on both image structure and external sources of information. These
include the entropy of the thermal image, the altitude of the Sun, the weather
conditions of the scene and rapid changes in the resulting output of the paral-
lel segmentation pipelines. To match the requirements derived from the purpose of
traffic monitoring, extensions to the core contribution have been introduced [2].

The proposed method has been thoroughly tested [2]. The results show that
the proposed method performs significantly better than naive fusion of both
modalities and consistently better than utilizing a single modality alone.
The evaluated performance suggests that the strategy of including image
quality indicators in the segmentation process has great potential in future
applications.

A common problem of image fusion techniques can be seen from the experimental
results. Although the algorithm features a suppression of false positives, a propagation
to the fused mask can still be noticed. This is especially the case when the quality rating
of the two modalities is similar and information therefore fuses in equal proportions.
Based on this observation, further development of the proposed method can be derived.
Serrano-Cuerda et al. [25] perform a switch based on image quality indicators, whereas
this work performs an adaptive fusion. The next logical step would be to perform the
fusion adaptive per image region. By specifying quality indicators for image samples,
information about shadows and different lighting conditions within the scene could be
considered [2].

The work has been limited to the usage of RGB and thermal imagery. However,
the algorithm can easily be adapted to work with different imaging sensors. A setup of
the proposed system in combination with sensors helping to estimate the image quality
would also be an interesting extension. Weather stations and street temperature
sensors would enable the indicators to work much more accurately [2].
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1. Introduction

Abstract

Varying weather conditions, including rainfall and snowfall, are generally regarded as
a challenge for computer vision algorithms. One proposed solution to the challenges
induced by rain and snowfall is to artificially remove the rain from images or video
using rain removal algorithms. It is the promise of these algorithms that the rain-
removed image frames will improve the performance of subsequent segmentation and
tracking algorithms. However, rain removal algorithms are typically evaluated on
their ability to remove synthetic rain on a small subset of images. Currently, their
behavior is unknown on real-world videos when integrated with a typical computer
vision pipeline. In this work, we review the existing rain removal algorithms and
propose a new dataset that consists of 22 traffic surveillance sequences under a broad
variety of weather conditions that all include either rain or snowfall. We propose a
new evaluation protocol that evaluates the rain removal algorithms on their ability
to improve the performance of subsequent segmentation, instance segmentation, and
feature tracking algorithms under rain and snow. If successful, the de-rained frames
of a rain removal algorithm should improve segmentation performance and increase
the number of accurately tracked features. The results show that a recent single-frame
based rain removal algorithm increases the segmentation performance by 19.7% on
our proposed dataset, but it eventually decreases the feature tracking performance and
showed mixed results with recent instance segmentation methods. However, the best
video-based rain removal algorithm improves the feature tracking accuracy by 7.72%.

1 Introduction

Monitoring of road traffic is usually performed manually by human operators
who observe multiple video streams simultaneously. However, the manual
monitoring is both tiresome and does not scale with the growing number
of cameras and an increased appetite for a deeper understanding of road
user behavior. Thus, there is a clear-cut case for computer vision methods to
step in and automate the process. If successful, vision methods in road user
detection, classification, and tracking could give valuable insights into and
analysis of road user behavior and accident causation, which could ultimately
help reduce the number of accidents.

However, most computer vision systems are designed to work under
optimal conditions such as clear skies, low reflections, and few occlusions.
Whenever one of these constraints is violated, the performance of the vision
system rapidly deteriorates, and so does the promise of automated traffic
analysis.

Non-optimal conditions are caused by several phenomena, but most promi-
nently by bad weather conditions. We may divide bad weather into two main
groups: steady and dynamic conditions [24]. Steady weather conditions in-
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clude fog, mist, and haze, which degrade the contrast and reduce the visibility
of the scene. Dynamic weather conditions include rainfall and snowfall, which
appear as spatio-temporal streaks in the surveillance video, which may tem-
porarily occlude objects with close proximity to the camera. Objects at greater
distance from the camera are affected by the accumulation of rain and snow
streaks, which reduces the visibility of the scene much like fog, mist, and
haze.

We differentiate between three different approaches to cope with the
challenges of bad weather in automated video surveillance: to mitigate the
effects by pre-processing the video, to strengthen the robustness of the core
vision algorithms, or to augment the sensing system by the use of multiple
multi-modal sensors.

In this work, we will study the implications of pre-processing the input
video signal by algorithms that mitigate the dynamic effects of rainfall and
snowfall. Many authors of such rain or snow removal algorithms note that
these algorithms could help improve the robustness of traditional vision
methods such as segmentation, classification, and tracking. We will investigate
this claim through quantitative analysis and hereby provide valuable insights
into this field for the benefit of the entire research community.

Current evaluations of rain removal algorithms are based on short video
sequences or a collection of still images, typically provided by the authors
themselves. Quantitative results are obtained by removing rain on synthetic
datasets, where rain streaks are overlaid on rain-free images [75]. Is is common
to see indoor images with synthetic rain as part of training [79] and testing [81]
of rain removal algorithms. The performance of rain removal algorithms is
usually measured by calculating the Structural Similarity Index (SSIM) [71]
and the Peak Signal-to-Noise-Ratio (PSNR) between the de-rained and the rain-
free images. However, a good SSIM or PSNR score on a synthetic dataset does
not necessarily translate into performance when the rain removal algorithms
are used on real-world footage. Such evaluation is typically performed by
inspection of a limited selection of real-world rainy images.

We are curious how rain removal algorithms will work on traffic surveil-
lance video under real-world conditions that include rainfall and snowfall,
and how they affect a traditional computer vision pipeline. In this work, we
want to measure the effectiveness of a rain removal algorithm, not by using
the raw properties of the produced rain-removed images but by using the
performance of the subsequent segmentation, instance segmentation, and
feature tracking algorithms that run on top of the rain-removed imagery. If
effective, a rain removal algorithm should improve the performance of the
subsequent algorithms.

Our contributions are the following:

1. We provide a comprehensive overview of rain removal algorithms, using
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both single-image and video-based algorithms.

2. We provide a new publicly available dataset of 22 real-world sequences
from 7 urban intersections in various degrees of bad weather involving
rain or snowfall. Each sequence has a duration of 4-5 minutes and is
recorded with both a color camera and a thermal camera.

3. We use this dataset and the BadWeather training sequences of the
Change Detection 2014 challenge [69] to assess the performance of
classic segmentation methods and recent instance segmentation meth-
ods on the raw and rain-removed imagery. Furthermore, we use the
forward-backward feature tracking accuracy to investigate if feature-
based methods perform better under rain-removed imagery.

4. The entire evaluation protocol and our implementation of the rain re-
moval algorithm of Garg and Nayar [24] is publicly available as open-
source1,2 to enable others to build upon our results.

The rest of the paper is organized as follows: Section 2 describes how rain
and snowfall impair the visual surveillance footage in traffic scenes. Section 3
gives a comprehensive overview of rain removal algorithms and their general
characteristics. Our new dataset is presented in Section 4. The evaluation
protocol of selected rain removal algorithms on this dataset is presented in
Section 5, and the results hereof are treated in Section 6. Section 7 concludes
our work.

2 The Impact of Rain and Snow

Bad weather, including rain and snow, is generally acknowledged as a chal-
lenge in computer vision [9], but little work has been undertaken to identify
the severity of this problem. In this section, we will shed light on the impact
of rain and snow in traffic surveillance, and how it might affect the vision
systems that are built on top of the video streams.

Rainfall and snowfall will have a negative effect on the visibility of the
scene due to the atmospheric scattering and absorption from raindrops and
snowflakes. In the atmospheric sciences, the combined impact of scattering
and absorption from a particle is called extinction [64]. For wavelengths in the
visible and infrared range, the extinction from raindrops can be approximated
as [58]:

βextrain = A · RB (F.1)

1https://bitbucket.org/aauvap/aau-rainsnow-eval
2https://bitbucket.org/aauvap/rainremoval/
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Fig. F.1: Degradation of visibility due to extinction from rainfall and snowfall. Parameters as
reported in [48, 58].

where βextrain is the rain extinction coefficient, A and B are model parameters,
and R is the rain rate in mm/hr.

The exact values of the parameters A and B vary according to the pre-
cipitation type. Shettle [58] reports five different models for rain. We leave
out the oldest rain model and plot the remaining four in Figure F.1a. The
approximation used in Equation F.1 builds on the notion that the physical size
of the raindrops is much greater than the wavelength in consideration. For
radiation of longer wavelengths, a wavelength-dependent correction must be
added [58].

The extinction caused by falling snowflakes in the visible range uses a
model similar to Equation F.1. However, one must convert the snow depth to
equivalent liquid water. For wet snow, 1 mm of snow corresponds to 5 mm
of rain, whereas for dry snow, the conversion range is greater than 1 to 20.
For our calculations, we use the ’rule-of-thumb’ approximation by Shettle [58]
with a ratio of 1 to 10. When converted, the model is defined as:

βextsnow = A(1/10)B · SB (F.2)

where βextrain is the snow extinction coefficient, S is the rate of snow accumu-
lation, and other parameters are defined in Equation F.1.

In Figure F.1b, we plot the six different sets of model parameters reported
by Mason [48]. Depending on the chosen model, one can see that the extinction
from snow is a half-magnitude greater than the equivalent amount of rainfall.
Thus, the visibility of a scene is reduced more under snow than under rain.

The properties of rainfall as they are observed by a typical surveillance
camera have been studied extensively by K. Garg and S.K. Nayar, who, in
their seminal work [24], laid out the theoretical framework for the physical
and practical implications of rain in vision. They provided a physical model
of a falling raindrop and constructed an appearance model for the raindrop
as viewed by a camera. We will summarize the relevant findings of this work
below:
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Table F.1: The Visual Effects of Rain and Snow

Phenomena Visual effect
Raindrop Spatio-temporal streaks, duration approx. 1

frame per streak
Snowflake Spatio-temporal streaks, duration approx. 1

frame per streak
Dense rain and snow Reduced visibility, depth of field
Raindrops on lens Blur, diffuse scattering of light
Puddles Surroundings reflected by puddles and

splashes from road users

1. Raindrops are transparent, and most drops are less than 1 mm in size.

2. The motion of a raindrop can be modeled as a straight line.

3. A raindrop appears brighter than its background. The change in intensi-
ties caused by a falling rain streak is linearly related to the background
intensities that are occluded by the rain streak.

These observations, especially the notion that raindrops are brighter than
the background, have had a major impact on all subsequent works on video-
based rain removal. We will revisit these observations in our survey of
rain removal algorithms in Section 3. The implications of rain and snow on
visual surveillance are not limited to the characteristics of a raindrop alone.
The accumulation of rain on surfaces eventually leads to puddles when the
drainage of the road is insufficient. When vehicles or other road users drive
through these puddles, water will splash from the wheels. Raindrops may
also attach to the lens or even freeze to ice if the camera is not installed inside
a protective outdoor housing or the wind is too strong.

Table F.1 provides an overview of how these phenomena affect the observed
images in a surveillance setting, whereas Figure F.2 shows examples of footage
impaired by snow, heavy rain, raindrops on the lens, and reflections on the
road.

It is apparent from Figure F.2 that these phenomena degrade the visibility
of the road users as observed by the human eye. The degradation on visibility
will inevitably affect vision algorithms due to a reduced signal-to-noise ratio. A
detailed treatment on how vision-based segmentation and tracking algorithms
are affected by the effects of rain and snow is given in Table F.2.

The concrete effects on a state-of-the-art unsupervised segmentation algo-
rithm [60] is shown in Figure F.3.

We may also infer the impact of rain and snow from the results of existing
challenges and datasets. The most prominent dataset on background seg-
mentation, ChangeDetection.net [69], features a ’BadWeather’ category that
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(a) Snow (b) Heavy rain

(c) Raindrops on the lens (d) Reflections

Fig. F.2: Visual examples of rain and snow in traffic surveillance. In (a) and (d), bad lighting
conditions further deteriorate the visibility of the scene.

Table F.2: The Effects of Rain and Snow on Segmentation and Tracking

Phenomena Segmentation Tracking
Raindrop Non-constant background,

false detections
False features, disturbances
in tracking

Snowflake Non-constant background,
false detections

False features, disturbances
in tracking

Dense rain
and snow

Missing detections of far-
away objects

Fewer salient features of far-
away objects

Raindrops
on lens

Missed detections in area of
raindrop

No features in area of rain-
drop

Puddles False detections due to reflec-
tions

False features due to reflec-
tions

contains a total of 20,900 video frames distributed in four different scenes.
Snow and snowfall are the common denominators for the ’BadWeather’ se-
quences, but the exact nature of the scenes varies. In Table F.3, we have
summarized the latest results of the ChangeDetection.net challenge for the
BadWeather sequence, a trivial ’Baseline’ sequence, and a weighted average
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(a) Snow (b) Heavy rain

(c) Raindrops on the lens (d) Reflections

Fig. F.3: Segmentation results of a state-of-the-art segmentation algorithm [60] on the sequences
shown in Figure F.2. The segmented masks are overlaid in blue. In (a) and (b), some snowflakes or
rain streaks are detected as foreground. In (c), the raindrops on the lens lead to missing detections
of parts of the red vehicle. In (d), reflections from the tail lights are detected as foreground,
whereas most of the car is not.

Table F.3: Average F-measure of the Best Segmentation Algorithm on the ChangeDetection.net [69]
Database

Method BadWeather Baseline Overall
Best supervised 0.98 0.99 0.97
Best unsupervised 0.87 0.96 0.79

of all sequences in the database. We distinguish between supervised change
detection methods, which use the training samples of each sequence, and
unsupervised change detection methods, which use default parameters for all
sequences.

The comparison between the BadWeather and Baseline sequences suggests
that especially unsupervised change detection methods face difficulties when
the video sequences are captured under bad weather conditions. However, the
overall performance of the entire database is even lower than the BadWeather
sequences. The best results on nighttime videos and the dynamic pan-tilt
camera footage are dramatically lower with best f-measures of 0.76 for unsu-
pervised change detection methods [69]. This suggests that a combination
of rain or snow on nighttime videos may be increasingly difficult. It should
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be noted, however, that an extensive comparison of weather phenomena in
surveillance requires that one can change only one parameter at the time,
which is hardly the case with real-life surveillance footage.

3 Rain Removal Algorithms

The work within rain removal may be divided into two main categories: video-
based rain removal, where the temporal information of a video stream is used
to detect and remove the rain streaks, and single-image based rain removal,
where such temporal information is not provided or used. We also make the
distinction between rain streaks and rain drops. A rain streak is defined as a
spatio-temporal effect with the approximate duration of one frame, whereas
a rain drop is attached to the lens of the camera and remains stationary
for seconds or even minutes. The published work on rain drop removal is
significantly smaller than the corresponding work on rain streak removal.
When temporal information is available, we consider rain drop removal to
be considerably easier than rain streak removal. In this work, we will focus
on the removal of rain streaks. However, the detection and removal of rain
drops could be added as an additional pre-processing step, either before or
after rain streak removal. Notable efforts on rain drop removal include the
work of [16], [76], and [53].

Rain removal can also be seen as a special case of image denoising. A
good overview of general image denoising techniques is given in [55]. Image
dehazing [37] and defogging [73] are also closely related fields that mitigate
the effects of steady bad weather conditions. An overview of rain streak
removal techniques is available in Table F.4. In the overview table, we note if
the high-frequency (HF) parts of the image or video are explicitly computed
as part of the rain streak removal. If so, we note the name of the used filter.
Furthermore, we categorize the algorithms on the basis of how they learn
from data and use the following criteria:

Manual: Requires manual hand-tuning of the algorithm for each particular
sequence.

Fixed: The algorithm does not contain any adjustable parameters or param-
eters are provided ’as-is’ by the original authors. Parameter tuning by
the original authors is performed by hand and is based on empirical
observations.

Online: One or more parameters are learned from the current input image or
video. Contains no offline learning.

Offline: One or more parameters are learned from an offline database. The
algorithm may also contain online learning.
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The notion of snow removal is tightly coupled with the work within rain
streak removal. In fact, the earliest rain removal technique of Table F.4 deals
with noise elimination from snowfall [25]. Most authors of rain streak removal
algorithms evaluate their rain removal algorithms solely on images of rainfall,
but some also include images or videos of snowfall [5, 6, 36]. As summarized
in Table F.1, the impact of rain and snow is similar in the visible spectrum, so
it is natural to make a joint study of the two phenomenons. In the remainder
of this article, we will refer to rain streak and snow removal jointly as rain
removal.
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3.1 Single-Image Based Rain Removal

Rain removal from a single image is hard. Rain is a spatio-temporal phenom-
ena and, without temporal information, one must make an informed guess on
the temporal effects. Successful single-image based rain removal algorithms
must effectively model the spatial influences of the rain streak and compensate
accordingly.

We divide the published methods into four categories: filtering, matrix
decomposition, dictionary learning, and convolutional neural networks.

Filtering

Applying one or more filters is a straightforward method to reduce the amount
of rain in the image. A guided filter [27] is used in [72] to suppress the rain,
where the minimum and maximum RGB values are used as the guidance
image of the filter. In the work of Zheng et al. [81], the guided filter is used to
split the image into low-frequency (LF) and high-frequency (HF) parts. The
pixel-wise minimum of the LF image and of the input image is used as the
input of an additional guided filter, which produces the rain-removed image.

Although effective in suppressing the rain, the filter-based methods will
also effectively blur textured and detailed parts of the image. In order to
improve this, one needs to model the rain streaks.

Matrix Decomposition

A rain streak model is obtained in matrix decomposition techniques by adding
additional constraints on the removal process. The rain removal problem is
formalized as an exercise in decomposing the input image I into the rain-free
image B and the rain image R, such that they add up to comprise the original
image:

I = B + R (F.3)

In order to guide the decomposition, one has to make certain assumptions on
the properties of B and R. A common assumption is that B should have low
total variation (TV), i.e. the recovered image should be smooth:

TVB =
M

∑
i=1

N

∑
j=1
‖∆bi,j‖2 (F.4)

where M and N are the dimensions of the image, and ∆bi,j is the gradient of
B at position i, j.

With the exception of dense rain, rain streaks appear relatively infrequently
compared to the total number of pixels in an image. Thus, it makes sense to
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impose sparsity on R via the squared Frobenius norm [39]:

arg min
R

= ‖R‖2
F =

M

∑
i=1

N

∑
j=1
|ri,j|2 (F.5)

where ri,j is the pixel value of R at position i, j.
Other methods utilize different norms to induce sparsity. In [78], the

1-norm is used to induce sparsity on B:

arg min
B

= ‖B‖1 =
M

∑
i=1

N

∑
j=1
|bi,j| (F.6)

where bi,j is the pixel value of B at position i, j.
Some methods ([1, 52]) use the nuclear norm to enforce low rank on B:

arg min
B

= ‖Bi,j‖∗ = tr(
√

B∗B) (F.7)

Solvers Different methods have been proposed to solve the constrained
matrix decomposition problem, e.g. the Alternating Direction Method of
Multipliers (ADMM) [7], (Robust) Principal Component Analysis (PCA), or
the Inexact Augmented Lagrange Multiplier (IALM) [41]. Other solvers are
typically used in combination with dictionary learning, which is described in
the following. When the decomposition is converging, the background image
B is used as the rain-removed image.

The rain removal methods that use a matrix decomposition scheme based
on Equation F.3 or variants of it are listed in Table F.5, which shows that
the community does not agree on the constraints for R and B. Some works
demand sparsity on R [1], while others demand it on B [78]. The same holds
for the low rank requirement of R and B. The disagreement sheds light
on the general problem of matrix composition techniques: neither the rain
nor the background is guaranteed to adhere to the imposed mathematical
constraints on the image structure. Thus, there might be high-frequency
textures ’trapped’ within the segmented rain image and rain streaks ’trapped’
within the segmented background image.

Dictionary Learning

Based on the observation that rain streaks fall in the same direction and share
similar patterns, one can formulate the rain removal problem as segmenting
the image into patches. These patches are classified into rain and non-rain
patches by one or more dictionaries. The dictionaries may be learned online
from the input image or from a offline bank of (generated) rain streaks.
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3. Rain Removal Algorithms

Dictionaries were introduced in rain removal by Fu et al. in 2011 [21]
and improved by Kang et al. in 2012 [34]. The authors applied a variant of
the Morphological Component Analysis (MCA) technique [17] on the HF
component of the input image to decompose the image into B and R. A sparse
coding algorithm [46] is used to learn a dictionary of atoms from patches of
the HF image. The Histogram of Oriented Gradients (HOG) is computed for
each atom, and the output hereof is used as input to a two-cluster K-means
algorithm. The cluster with the smallest gradient variance is selected as the
rain atoms. Once the dictionary is classified, Orthogonal Matching Pursuit
(OMP) [47] is used to sparsely reconstruct the HF image:

min
θk

HF

= ‖bk
HF − DHF · θk

HF‖2
2 s.t. ‖θk

HF‖0 ≤ L (F.8)

where DHF is the dictionary containing both rain and non-rain atoms of the
HF image, bk

HF is the k’th patch of the HF image, θk
HF is a matrix containing

the sparse coefficients for reconstructing the k’th patch, and L is the maximum
number of non-zero elements in α. In [34], L = 10.

The dictionary components of DHF, which corresponds to the previously
classified non-rain atoms, are used to reconstruct the HF part of the rain-
removed image. Finally, this image is added to the low frequency (LF) image,
and a rain-removed image is obtained. In our experiments, we have expe-
rienced that the sparse reconstruction may be entirely composed of what is
classified as rain atoms. In this case, the rain-removed image is completely
empty.

Huang et al. [30] used the same rain removal framework as [34] but
changed the selection of rain and non-rain atoms. Instead of using K-means
on the HOG-computed gradient, they used Principal Component Analysis
(PCA) to find the dominant directions of intensity change. The most similar
and dissimilar atoms are assigned as rain and non-rain atoms, respectively.
The remaining atoms are classified by a Support Vector Machine (SVM).

A different variant hereof is presented in [29]. The HOG- and PCA-based
approaches are still used to find the discriminative features of the dictionary
components, but the grouping of atoms is performed by the use of affinity
propagation [18]. A greedy scheme is performed on top hereof to select
K <= 16 clusters. The variance of the atoms in each cluster is computed, and
the cluster with the lowest variance is regarded as the one containing the rain
atoms. The remaining clusters are then used to reconstruct the rain-removed
image.

Another augmentation of [34] is provided by Chen et al. [11], who intro-
duced a depth of field measure on the atom components. Pixels with a low
depth of field are regarded as rain. Furthermore, the work uses chromacity
information of the atoms to restore details that might otherwise be regarded
as rain atoms. In the independent work of Wang et al. [70], the authors use
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the color variance of an atom to refined the HF rain image from [34].
The main shortcoming of the above family of dictionary learning tech-

niques ([11,21,30,34]) is the unilateral dependence on the input image for both
the rain and non-rain dictionaries. Even when augmented with additional
constraints by Huang [30] and Chen [11], HF details may be integrated into the
rain dictionaries and thus be removed from the rain-removed image. In order
to combat this problem, it seems that one should resort to offline techniques
for dictionary training.

A combination of offline and online training is used by Li et al. [39], who
utilize Gaussian Mixture Models (GMM) to learn two dictionaries of rain
and non-rain patterns. The non-rain dictionary is learned offline, while the
rain streak dictionary is learned using relatively flat regions of the image.
The generation of the background and rain image is formulated as an image
decomposition problem:

min
B,R
‖I − B− R‖2

F + α‖∆B‖1 − β‖R‖2
F − γG(B, R) (F.9)

where I, B, and R are the input, background, and rain image respectively. α,
β, and γ, are scalars estimated heuristically, and G(B, R) is the reconstruction
of the background and rain image based on the respective dictionaries.

One sees from Equation F.9 that further constraints are put on the recon-
structed background and rain image; the background must have low total
variation as defined in Equation F.4, and the rain image must be sparse as
defined by the Frobenius norm. The decomposition problem is solved by the
L-BFGS algorithm [42].

The rain removal algorithms that use dictionary learning are listed in Table
F.5.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were introduced to rain streak re-
moval almost simultaneously in [19, 20, 75, 79]. We summarize the work on
CNN-based rain removal in Table F.6.

A classical CNN approach was proposed by Fu et al. in [19]. Just like
prior work in dictionary learning, the rain removal is performed on the HF
components of the input image, which is produced by the guided filter. The
network uses three convolutional layers to de-rain the HF image, which is
subsequently added to the LF image. Training is performed on synthesized
rain images using rain streaks generated in Adobe Photoshop. Subsequent
work by the same author [20] used a much deeper network with residual
connections [28] and an increased number of training samples (9100).

Yang et al. [75] used dilated convolutions on three different scales [77] to
aggregate multi-scale information due to the variable-size receptive field of
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the dilated convolutions. This helps the network to incorporate contextual
information, which might help when learning to remove the rain.

Inspired by the success of generative networks, Zhang et al. [79] used a
generative adversarial network (GAN) that is conditioned on the input image.
They used the Pix2Pix framework [31] to create a generator network that
de-rains an input image whereto artificial rain streaks have been added. Based
on appearance, it is the role of an additional discriminator network to judge
whether a de-rained image is the output of the generator network or is the
original rain-free image.

A dedicated CNN-framework for snow removal is proposed by Liu et
al. [44]. The snow removal network consists of a translucency and residual
recovery module that handles the restoration of the snow-free image from
semi-transparent and fully opaque snow streaks, respectively. The architecture
is inherited from Inception-v4 [63] and enhanced by using the atrous spatial
pyramid pooling from DeepLab [13].

3.2 Video-Based Rain Removal

The first attempts of removing rain in video sequences took advantage of the
short duration of a rain streak, i.e. that a single streak is visible to the camera
in one frame and then disappears. This means that the rain removal problem
may be formalized as a low-pass filtering problem in which the rain streaks
are unwanted high-frequency fluctuations. As such, the rain will be removed
by applying a temporal median filter on the entire image [25,61]. The problem
with this approach is that all other temporal motion will be blurred too.

Photometric Constraint

In order to prevent blurring of the non-rain image, it is therefore beneficial
to detect the individual rain streaks. Such detection was introduced by K.
Garg and S.K. Nayar in 2004 [22] when they studied the photometry of falling
raindrops. As we described in Section 2, they introduced a method to find
candidate rain pixels based on the observation that a raindrop appears brighter
than the background and that each rain streak only appears in a single frame.
Thus, under the assumption that the background remains stationary, the
candidate pixels that may contain a rain streak should satisfy the following
condition:

∆I = In − In−1 = In + In+1 ≥ c (F.10)

where In denotes the image at frame n, and c is the minimum intensity change
to distinguish rain drops, fixed to c = 3. For each frame, the candidate streaks
are refined by the requirement that the intensity change of pixels on the same
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streak should be linearly related to the background intensities, Ib, at time
n− 1 and n + 1:

∆I = −βIb + α (F.11)

This should hold for all pixels within a single streak as imaged by a single
frame if β is within the range [0; 0.039] [22]. The step performed in Equation
F.11 is denoted as the photometric constraint. However, in subsequent work
on video-based rain removal, also the constraint of Equation F.10 is denoted
as the photometric constraint. In our overview of rain removal methods in
Table F.4, we use the term ’photometric constraint’ if either Equation F.10 or
F.11 have been applied. In the work by Garg and Nayar, the binary output of
the photometric constraint is correlated for a temporal window of 30 frames.
Spatio-temporal streaks that have a strong directional component are regarded
as the detected rain streaks. In Table F.4, we refer to this, and variants hereof,
as the streak orientation constraint. Streaks that consist of only a few pixels
will be filtered out during this selection as their Binary Large OBjects (BLOBs)
will not impose a strict directional structure.

The detected rain streaks are removed by using the two-frame average
of frame n− 1 and n + 1, i.e. the temporal mean. Rain removal algorithms
that use the photometric constraint, for example, are summarized in Table
F.7. These algorithms typically include a separate detection and removal step,
where detected rain pixels are smoothed out by using either a temporal or
spatial filter. We denote this as the ’removal method’ in Table F.7.

Chromatic Constraint

The intensity-based temporal constraint of Equation F.10 is usually applied
on gray-scale images. In [80], the constraint is extended to color images
by assuming that the temporal differences of the three color channels are
approximately similar when the background is occluded by a rain streak,
otherwise not.

Streak Orientation

A background subtraction algorithm is used in [6] to generate candidate
streaks, which are refined by the selection rule of Equation F.10 and the
removal of large BLOBs. The orientation of the remaining streak candidates is
modeled by a Gaussian-uniform mixture distribution. By the assumption of
the similar orientation of rain streaks, rain streaks are detected if the Gaussian
part of the mixture distribution is dominant relative to the uniform part.

Barnum et al. [5] analyzed the properties of rain streaks in frequency space
and found that the rain streaks impose a strong directional component in the
Fourier-transformed image. By thresholding the rotation and magnitude of
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the Fourier-transformed videos, they are capable of detecting most of the rain.
As the rotation of rain streaks is dependent on the wind, one has to manually
tune the ratios for each rainfall.

Matrix Decomposition

The intensity fluctuations with respect to a background model are used as an
initial estimate of sparse rain streaks and the foreground in [52]. These are
used as the initial estimates of a matrix decomposition problem, where the
image is decomposed into background, foreground, dense streaks, and sparse
streaks:

I = B + F + Rs + Rd (F.12)

where I is the input image, B is the background, F is the foreground, and Rs,
Rd are the sparse and dense rain streaks, respectively.

The decomposition is enabled by a Markov Random Field (MRF), which
uses optical flow from adjacent frames to detect moving objects from which
rain removal is performed by using similar patches in adjacent frames.

Jiang et al. [32] expanded the matrix decomposition problem into a tensor
decomposition problem by integrating the adjacent frames in the decompo-
sition. They assumed that rain streaks are vertical and thus proposed to
minimize the l0 and l1 norm of the total variation on the x and y axes, re-
spectively. It is, furthermore, assumed that the temporal difference between
the rain-removed frames is minimal. These constraints are solved using the
Alternating Direction Method of Multipliers (ADMM) [7].

Dictionary Learning

Instead of using the candidate pixel selection of Equation F.10, Kim et al. [36]
used two-frame optical flow to generate the frame difference, which is used
as the initial rain map. The rain map is decomposed into sparse basis vectors
corresponding to patches of size 16× 16 pixels. A pre-trained SVM classier is
used to filter the rain streaks from noise based on the orientation of the patch.
The rain-removed image is restored using rain-free patches from adjacent
frames in an Expectation-Maximization (EM) scheme.

3.3 Rain Removal Benchmarks

As mentioned in the introduction, existing evaluations of rain removal algo-
rithms are based on short video sequences or a collection of images from the
authors. Quantitative evaluation is typically performed on a set of rain-free
images, where synthetic rain is overlaid. The synthetic rain is either produced
in Adobe Photoshop3 [19], reused from the work of Garg and Nayar [23],

3http://www.photoshopessentials.com/photo-effects/rain/
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Table F.7: Rain Removal Algorithms That do Not Include Decomposition, Dictionary Learning,
or Neural Networks. I: Image, V: Video.

Paper Year Detection method Removal method
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[54] 2015 V X X X Temporal blending
[51] 2014 I X X Inpainting
[12] 2014 V X X Spatio-temporal mean
[35] 2013 I X Nonlocal means filter
[67] 2013 V X X Temporal mean
[81] 2013 I Guided filter
[72] 2012 I Guided filter
[74] 2012 V X Inpainting
[68] 2012 V X Temporal mean
[66] 2011 V X X Temporal mean
[57] 2011 V X Spatio-temporal mean
[6] 2011 V X X None
[82] 2011 V X X Blending
[5] 2010 V X Temporal mean
[43] 2009 V X X Kalman filter
[8] 2008 V X X Temporal mean
[50] 2008 V X X Temporal mean
[24] 2007 V X X Temporal mean
[80] 2006 V X X Temporal blended mean
[61] 2003 V Temporal median
[25] 1999 V Temporal median

which considers the photo-realistic rendering of single rain streaks, or pro-
duced by using own methods [5,65]. For videos, the synthetic rain is produced
in Adobe After Effects [36].

The two most popular metrics for comparing the rain-removed image and
the original rain-free image are the Structural Similarity Index (SSIM) [71]
and the Peak Signal-to-Noise-Ratio (PSNR). Other common metrics include
the Visual Information Fidelity (VIF) [56] and the Blind Image Quality Index
(BIQI) [49]. BIQI is a no-reference algorithm for assessing the quality of an
image, meaning that it does not require the rain-free image for comparison.
Other metrics include the forward-backward feature tracking accuracy [5],
the measurement of image variance [68], and the comparison of face detec-
tion scores on original and rain-removed images [54]. An overview of how
the existing rain removal algorithms are evaluated is listed in Table F.8. It
should be noted that we have only included comparisons with dedicated rain
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Table F.8: Existing Evaluations of Rain Removal Algorithms. I: Image, V: Video.

Paper Year Comparison metrics Compared methods

In
pu

t

SS
IM

PS
N

R

V
IF

O
th

er

[79] 2017 I X X X X [14, 19, 34, 45, 78]
[78] 2017 I X X [14, 19, 34, 45]
[19] 2017 I X X [29, 39, 45]
[20] 2017 I X [39, 45]
[32] 2017 V X X X [36, 39, 45]
[52] 2017 V X [24, 36, 68, 80]
[75] 2017 I X X [34, 39, 45]
[44] 2017 I X X [19]
[10] 2017 I X X X X [29, 34]
[70] 2017 I X X X [11, 39, 45]
[39] 2016 I X [14, 34]
[36] 2015 V X [5, 24, 34, 80]
[45] 2015 I X X [34, 36]
[54] 2015 V X [24, 80]
[11] 2014 I X [24, 34]
[29] 2014 I
[62] 2014 I X X [29]
[51] 2014 I [34]
[1] 2014 V [24]
[12] 2014 V [24, 68, 80]
[35] 2013 I [34]
[67] 2013 V X [5, 24, 43, 66, 68]
[14] 2013 V X [5, 34, 72]
[81] 2013 I [72]
[30] 2012 V X [34]
[34] 2012 I X
[72] 2012 I
[74] 2012 V [24]
[68] 2012 V X [24, 43, 66, 80]
[21] 2011 I
[66] 2011 V X [24, 43, 80]
[57] 2011 V [24]
[6] 2011 V
[82] 2011 V
[5] 2010 V X [24, 80]
[43] 2009 V [24, 80]
[8] 2008 V [24]
[50] 2008 V [24, 80]
[24] 2007 V
[80] 2006 V [24]
[61] 2003 V
[25] 1999 V

removal algorithms and thus excluded comparisons with general-purpose
noise removal or image filtering algorithms.

It is observed from Table F.8 that only a few competing rain removal al-
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gorithms are evaluated for each proposed method, thus hindering a general
comparison of the entire field. Fortunately, recent works on rain removal
include a more thorough evaluation on competing algorithms. On average,
the rain removal algorithms published in 2017 have been evaluated on ap-
proximately three competing algorithms. However, a true overview of the
performance across algorithms remains a challenge. This is caused by the
following:

1. Few authors have made their implementations publicly available.

2. There is limited availability of public datasets for validation.

The implementations of [20, 29, 30, 34, 36, 79] are available to the general
public. If one wants to compare other methods, they must be re-implemented
manually, which does not guarantee comparable performance nor comparable
results.

A few public datasets have recently emerged. Li et al. [39] introduced
a dataset with 12 images4, all with and without artificial rain. Along with
their open-source implementation of their proposed rain removal algorithm,
Zhang et al. [79] also made their training and test sets available; these consist
of a total of 800 images5. For video-based rain removal, unfortunately, no
such dataset exists. Thus, any application-based evaluation of rain removal
algorithms are hindered due to lack of appropriate datasets.

3.4 Common Challenges of Rain Removal Algorithms

In Table F.9, we summarize the underlying assumptions and the main chal-
lenges of the reviewed rain removal algorithms. It is interesting to note that
even the sophisticated algorithmic methods of matrix decomposition and
sparse dictionary are governed by heuristic assumptions that not necessarily
translate to real-world conditions. The recent advent of CNNs in rain removal
is promising but relies on a collection of synthetic images for training. The
generation of more realistic, synthetic rain as well as the introduction of syn-
thetic rain in longer video sequences could help move the frontiers in image
and especially video-based rain removal.

4 New Dataset

In order to thoroughly evaluate the performance of rain removal algorithms
under real-world conditions, we introduce the AAU RainSnow dataset6 that
includes 22 challenging sequences captured from traffic intersections in the

4http://yu-li.github.io/
5https://github.com/hezhangsprinter/ID-CGAN/
6https://www.kaggle.com/aalborguniversity/aau-rainsnow
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Danish cities of Aalborg and Viborg. The sequences of the dataset are captured
from seven different locations with both a conventional RGB camera and a
thermal camera, each with a resolution of 640 x 480 pixels at 20 frames per
second. We provide color information for the conventional RGB camera as
some rain removal algorithms are explicitly created for color images and some
segmentation algorithms produce better results with color than gray-scale
images [33].

Rain and snow are the common denominators of the sequences. In some
sequences, the rain is very light and mostly visible as temporal noise. In other
sequences, the rain streaks are clearly visible spatial objects. The illumination
conditions vary from broad daylight to twilight and night. When combined
with rain, snow, moist, and occasional puddles on the road, the variations in
lighting create several challenging conditions, such as reflections, raindrops
on the camera lens, and glare from headlights of oncoming cars at night.

The characteristics of each scene in our dataset are listed in Table F.10. The
weather conditions and the temperature for each scene have been estimated by
correlating the observed weather with publicly available weather station data7.
The distance from the weather station to the scene is 25 km for the Ringvej
sequences and a maximum of 13 km for all other sequences. We also include
key characteristics of the BadWeather sequences in the ChangeDetection.net
dataset, as shown in Table F.10, to enable a comparison of the two datasets.

One observes from Table F.10 that our dataset comprises of more objects
per frame and that the observed objects are significantly smaller than the
BadWeather sequences. Falling snow is present in all of the BadWeather
sequences, but the lighting conditions are fine, with all areas of the scene
being sufficiently lit. Thus, we believe that the detection and segmentation of
objects pose a significant challenge in our proposed dataset. Image samples
for every traffic intersection in our dataset are shown in Figure F.4.

4.1 Annotations

All frames of the BadWeather sequences are annotated at pixel level by the
ChangeDetection.net initiative. For our dataset, the manual pixel-level an-
notation is complicated by the smaller size of apparent objects and many
reflections. Thus, in order to make the annotations feasible, we have randomly
selected 100 frames for each sequence from a uniform distribution. In a five-
minute sequence at 20 frames per second, this means that, on average, an
annotated frame is available every three seconds. We believe that the strong
correlation between subsequent frames and the smooth motion of the road
users enables us to achieve a good approximation of the entire sequence by
annotating only a small subset of the frames. Consequently, we would rather

7https://www.wunderground.com/
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Table F.10: Key Characteristics of the AAU RainSnow and The BadWeather (BW) ChangeDetec-
tion.net Datasets. The Approximate Duration of the BadWeather Sequences are Calculated with 20
Frames/Second. An ’L’ in Rain or Thunderstorm indicates Light Rain and Light Thunderstorms,
respectively.

Sequence Ti
m

e
of

da
y

(2
4

H
)

D
ur

at
io

n
(m

in
ut

es
)

A
ve

ra
ge

nu
m

be
r

of
ob

je
ct

s
pe

r
fr

am
e

A
ve

ra
ge

ob
je

ct
si

ze
(p

ix
el

s)

R
ai

n

Sn
ow

(X
),

(F
)o

g

Th
un

de
rs

to
rm

Es
ti

m
at

ed
te

m
p.

(◦
C

)

Egensevej-1 18:00 5.0 3.10 636 L 5
Egensevej-2 13:03 5.0 3.21 304 L X 2
Egensevej-3 17:00 5.0 4.43 409 X 2
Egensevej-4 18:00 5.0 4.83 448 X 1
Egensevej-5 03:00 5.0 0.28 687 X 3
Hadsundvej-1 20:06 4.0 6.69 795 X 19
Hadsundvej-2 15:23 5.0 16.8 1293 X L 13
Hjorringvej-1 06:04 5.0 3.48 1451 X 12
Hjorringvej-2 16:00 5.0 13.7 1589 L 12
Hjorringvej-3 19:12 5.0 6.62 1317 X 11
Hjorringvej-4 07:00 5.0 6.49 1926 L 8
Hobrovej-1 05:00 5.0 1.63 2438 L 14
Ringvej-1 20:05 5.0 3.5 1033 L 12
Ringvej-2 05:05 4.0 0.86 4533 F 5
Ringvej-3 17:54 5.0 3.88 983 L 14
Hasserisvej-1 13:12 5.0 4.85 560 X 11
Hasserisvej-2 10:00 5.0 5.75 703 L 19
Hasserisvej-3 13:00 5.0 7.58 616 L 19
Ostre-1 06:10 5.0 2.50 771 X 15
Ostre-2 10:00 5.0 10.7 896 L 10
Ostre-3 18:00 5.0 4.98 514 X X 11
Ostre-4 19:20 5.0 3.10 672 X 10
BW/blizzard - 5.8 0.73 2391 X -
BW/skating - 3.3 0.58 6522 X
BW/snowFall - 5.4 0.15 7803 X -
BW/wetSnow - 2.9 0.53 3261 X -

spend time annotating more scenes that can capture a variety of challenging
weather conditions than annotating a single sequence in its entirety. The anno-
tation of our dataset is usually performed on the RGB images and mapped to
the thermal images via a planar homography. In the case of severe reflections,
the thermal image is used to guide the annnotations instead. We use the
AAU VAP Multimodal Pixel Annotator [2] for drawing the annotations. We
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(a) Egensevej (b) Hadsundvej

(c) Hjorringvej (d) Hobrovej

(e) Ringvej (f) Hasserisvej

(g) Ostre

Fig. F.4: Samples of each of the seven traffic intersections of the AAU RainSnow dataset. One
sample is shown for each sequence with corresponding RGB and thermal image. For improved
visibility, contrast is adjusted for all thermal images, except for the Hadsundvej sequence.

have marked ’do not care’ care zones in areas without road users and when
all objects are very small in a particular region, for instance the top of the
surveillance video. Examples hereof are shown in Figure F.13b.

5 Evaluation Protocol

We will evaluate whether the rain removal algorithms introduced in Section 3
make a difference when used in a traditional computer vision pipeline that
includes segmentation, tracking, and instance segmentation. In other words, a
successful rain removal algorithm should improve the ability of subsequent
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algorithms to segment objects and perform feature tracking. In the context of
traffic surveillance, the objects are road users. As such, the visual quality of
the rain removed images or videos is not a concern as long as the subsequent
traffic surveillance algorithms improves.

If one wants to assess the visual quality of the rain removed images, the
mean opinion score from multiple human assessments could be used. A user
study is conducted in [70] to consider the most favorable result of several rain
removal algorithms.

We use the AAU RainSnow dataset and the BadWeather sequences de-
scribed in Section 4 as the evaluation dataset. In order to run the rain removal
algorithms on the datasets, the implementation should be available. However,
for most of the algorithms listed in Table F.4, the implementation is not pub-
licly available. Additionally, in most cases, it is not possible to re-implement
the algorithms due to missing details in the original papers. Fortunately, the
implementations of:

• Zhang et al. [79]

• Fu et al. [20]

• Kim et al. [36]

• Kang et al. [34]

are publicly available and will be used for comparison. Furthermore, we have
implemented the rain removal algorithm by Garg and Nayar [24] as their work
is generally considered the cornerstone from which many video-based rain
removal algorithms are built. Our implementation is publicly available8 and
also provides links to the implementations listed above.

As the baseline for rain removal, we have added a spatial 3× 3 pixels mean
filter, which makes the image more smooth and may reduce the amount of
rain. The evaluated rain removal algorithms are listed in Table F.11. We use
the default parameters from the original papers and list the average image
processing time for every algorithm.

It should be noted that, although the dataset consists of video sequences,
we have included both single-image and video-based rain removal algo-
rithms. Although it is the general impression that video-based rain removal
is significantly easier than single-image based rain removal, it has not been
experimentally verified whether video-based algorithms use this advantage to
outperform single-image based methods. Thus, we would like to find out by
including algorithms from both categories.

The rain removal algorithms of Table F.11 undergo a two-tied evaluation
on a segmentation, instance segmentation, and feature tracking pipeline. In
the following, we will describe the protocol of the three evaluation pipelines.

8https://bitbucket.org/aauvap/rainremoval
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Table F.11: Evaluated Rain Removal Algorithms. The Processing Time Per Image is Measured
on an Intel Core i7-3770 CPU with NVIDIA 1080Ti Graphics. *The Method from Zhang2017 is
GPU-bound, all Other Methods are CPU-bound.

Paper AuthorYear Input Main detection
method

Learning Processing
time per
image

[79] Zhang2017 Image Conditional Genera-
tive Adversarial Net-
work (DCGAN)

Offline 0.40 s*

[20] Fu2017 Image Convolutional Neural
Network

Offline 0.69 s

[36] Kim2015 Video Sparse dictionary Offline 31.12 s
[34] Kang2012 Image Sparse dictionary Online 78.72 s
[24] Garg2007 Video Photometric con-

straint, streak orienta-
tion, size

Fixed 0.81 s

- ’Median’ Image Spatial 3 × 3 pixels
mean filter

Fixes 0.06 s

5.1 Segmentation

We evaluate the performance of rain removal algorithms under a traditional
segmentation pipeline by running the rain removal algorithms in a separate
pass and then running the segmentation algorithms on top of the rain-removed
imagery. In order to select a segmentation algorithm that is representative
of the state-of-the-art, we look to the results of the ChangeDetection.net
challenge [69]. Although recent advantages in convolutional neural networks
have led to superior performance of supervised segmentation methods as seen
in Table F.3, we turn to the unsupervised methods instead. We believe that,
in order for a segmentation method to be applicable in a real-world traffic
surveillance context, the method should work out-of-the-box for non-experts
and not require hand tuning in the form of parameters or training samples.

A representative of a top 3 unsupervised segmentation method is the
’SuBSENSE’ algorithm [60]. SuBSENSE is a method that builds on the spatial
diffusion step introduced in ViBE [4]. Instead of relying only on color infor-
mation for the pixel description, SuBSENSE includes information of the local
neighbors by computing Local Binary Similarity Patterns (LBSP) for every
pixel. Based on a majority vote of the LBSP and local pixel values, the pixel is
classified as either foreground or background.

Furthermore, we include the Mixture of Gaussians (MoG) method as
modified by Zivkovic [83] as this is a classic segmentation method that is well
understood and often used as a baseline for comparisons.

We use the F-measure to measure and compare the performance of the rain
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removal algorithms in the segmentation context. The F-measure is a widely
used metric for evaluating change detection algorithms and has been found to
agree well with the overall ranking computed from several metrics [69]. The
F-measure is computed as:

F = 2 · Pr · Re
Pr + Re

(F.13)

where Pr (precision) is defined as:

Pr =
TP

TP + FP
(F.14)

and Re (recall) is defined as:

Re =
TP

TP + FN
(F.15)

where TP is the number of true positives, FP is the number of false positives,
and FN is the number of false negative classified pixels in a sequence. The
balance between recall and precision might be fine-tuned by adjusting the
intrinsic parameters of the segmentation methods. For these experiments, we
use the settings of the original authors. The evaluation of segmentation is
performed as follows:

for Every video sequence in Table F.10 do
Run the segmentation algorithms on the unmodified, original frames of
the video
Compute the F-measure of the segmented frame and the ground truth
for Every rain removal algorithm in Table F.11 do

Run the rain removal algorithm on each frame and save the rain-
removed frame
Run the segmentation algorithms on the rain-removed frames and save
the result
Compute the F-measure of the segmented frame and the ground truth

end for
end for

The results hereof are presented in Section 6.1.

5.2 Instance Segmentation

The traditional segmentation challenge handles the separation of foreground
objects from the background. In instance segmentation, one also needs to
differentiate between every single instance of an object and assign the correct
class label.

For evaluation, we follow the philosophy that algorithms should run out-
of-the-box with no fine-tuning on our dataset. We use the popular Microsoft
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COCO API [40] and report results in the main COCO competition metric,
average precision (AP) measured over intersection over union ratios in the
range from 0.50 to 0.95 with intervals of 0.05. We have selected two instance
segmentation algorithms for evaluation: Fully Convolutional Instance Seg-
mentation (FCIS) [38] which won the 2016 COCO segmentation challenge and
Mask R-CNN [26] which outperformed the FCIS network and ranked 3rd in
the 2017 COCO segmentation challenge. Both algorithms are trained on the
ImageNet [15] and COCO [40] datasets. Experimental results showed that
the assigned class labels from both instance segmentation algorithms did not
agree well with the ground truth of our RainSnow dataset. For instance, most
cars were classified as trucks. Therefore, we decided to measure the precision
of the class-agnostic instance segmentation by setting the ’useCats’ parameter
of the COCO API to ’false’. The evaluation is only performed on the AAU
RainSnow dataset, as the ChangeDetection.net dataset is incompatible with
the COCO evaluation format.

5.3 Feature Tracking

We adopt the forward-backward feature-point tracking method used by Bar-
num et al. [5]. For every n frames in a sequence, we select the 200 strongest
features [59] and track them in the next m frames using the Lucas-Kanade
tracker [3]. After m frames, the features are tracked when the sequence is
played backwards to the point in time where the features were instantiated.
We calculate the tracking accuracy by measuring the distance between the
start and end positions of the tracked features. Similar to [5], we report the
number of successfully tracked features within an error margin of 1 and 5
pixels.

Inspired by [5], we have chosen the forward-backward tracking point
accuracy for the following reasons:

• The tracking accuracy is correlated to the ability of the rain removal
algorithms to preserve non-rain high-frequency components.

• The measure does not require ground truth and thus scales with the
length of the sequence.

• If the tracking of a feature point is confused by the spatio-temporal
fluctuations of a rain streak, the tracking accuracy should improve on
rain-removed imagery.

Barnum et al. evaluate the tracking accuracy once on the entire sequence,
i.e. n = l and m = l, where l is the length of the video sequence, approximately
five seconds [5]. As our sequences are much longer, we need many separate
instances of the forward-backward feature tracking. We have empirically
found n = 1.5 s and m = 12 s, meaning that for every 1.5 seconds, we select
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the 200 strongest features which are tracked for 12 seconds forwards, then
backwards. In our experience, different values of n and m only change the
magnitude of the results.

The results of the feature tracking are presented in Section 6.3.

6 Results

As described in Section 5, we evaluate the rain removal algorithms of Table
F.11 with respect to the performance of segmentation, instance segmentation,
and feature tracking algorithms on the rain-removed sequences of Table F.10.

6.1 Segmentation

The segmentation results, as indicated by the F-measure for the Mixture of
Gaussians (MoG) and the SuBSENSE (SuB) segmentation algorithms, are listed
in Table F.12 and plotted in Figure F.5b. If we take a look at the segmentation
results on the unmodified video, i.e. the non-rain-removed frames, we may
note that he proposed AAU RainSnow dataset imposes a significant challenge
to segmentation algorithms. The F-measure of our dataset varies from 0.11 to
0.66, even for the state-of-the-art SubSENSE method. The MoG method fare
even worse, with F-measures in the range from 0.13 to 0.34. Segmentation
results are much better on the BadWeather sequences, where the F-measure is
in the range of 0.80 to 0.89 for the SuBSENSE method.

When looking at the segmentation results of the rain-removed images, we
should take note of the aforementioned differences in segmentation perfor-
mance and the inherent differences between the AAU RainSnow and Bad-
Weather datasets as described in Section 4. On the AAU RainSnow dataset,
we see from Table F.12 that the GAN-based convolutional neural network
by Zhang et al. [79] gives an average increase of 28.5% in the segmentation
performance of the SuBSENSE algorithm, whereas the same algorithm results
in an average decrease of 38.6% on the BadWeather sequences. Except for
the combination of MoG on the rain-removed videos in the method by Kim
et al. [36], all rain removal algorithms reduce the performance of segmenta-
tion algorithms on the BadWeather dataset. Nevertheless, all rain removal
algorithms give a performance increase when using the SuBSSENSE method
based on the AAU RainSnow dataset. Examples of the visual segmentation
results on the AAU Rainsnow database are shown in Figure F.13.

It is difficult to give an unequivocal explanation of the cause of the great
difference seen in results between the two datasets. This variance may be
caused by a combination several factors:

• The segmentation of the BadWeather sequences already produced good
results, rendering it difficult to improve.

212



6. Results

Ta
bl

e
F.

12
:E

va
lu

at
io

n
of

Se
gm

en
ta

tio
n

Pe
rf

or
m

an
ce

on
Ea

ch
Se

qu
en

ce
.

Th
e

ab
so

lu
te

F-
m

ea
su

re
is

re
po

rt
ed

fo
r

th
e

or
ig

in
al

,n
on

-r
ai

n-
re

m
ov

ed
fr

am
es

.O
th

er
re

su
lts

ar
e

re
la

tiv
e

to
th

e
or

ig
in

al
re

su
lts

of
ea

ch
se

qu
en

ce
,i

n
pe

rc
en

ta
ge

s.
M

oG
:M

ix
tu

re
of

G
au

ss
ia

ns
[8

3]
.

Su
B

:S
uB

SE
N

SE
[6

0]
.

B
es

t
re

su
lt

of
a

se
qu

en
ce

is
in

d
ic

at
ed

in
bo

ld
.

C
at

eg
or

y
av

er
ag

es
ar

e
co

m
pu

te
d

fr
om

th
e

su
m

of
ab

so
lu

te
F-

m
ea

su
re

s.

Se
qu

en
ce

O
ri

gi
na

l
M

ed
ia

n
G

ar
g2

00
7

[2
4]

K
an

g2
01

2
[3

4]
K

im
20

15
[3

6]
Fu

20
17

[2
0]

Z
ha

ng
20

17
[7

9]
M

oG
Su

B
M

oG
Su

B
M

oG
Su

B
M

oG
Su

B
M

oG
Su

B
M

oG
Su

B
M

oG
Su

B
Eg

en
se

ve
j-1

-5
0.

13
0.

11
-5

.7
7

13
.9

-1
.5

0
26

.2
-2

1.
4

12
.0

8.
69

17
.4

-0
.2

9
18

.4
-4

.2
0

37
.9

H
ad

su
nd

ve
j-1

-2
0.

19
0.

66
-1

0.
8

4.
48

-7
.6

7
2.

50
-2

7.
1

-9
.4

6
1.

41
3.

78
-4

.1
5

6.
92

14
.8

21
.4

H
as

se
ri

sv
ej

-1
-3

0.
34

0.
61

-4
.1

6
10

.6
-1

.4
1

12
.7

-4
.3

8
11

.4
-4

.1
7

12
.1

0.
44

18
.6

10
.7

24
.4

H
jo

rr
in

gv
ej

-1
-4

0.
21

0.
52

-1
.5

7
7.

73
-1

.5
7

6.
19

-2
0.

2
5.

48
-1

.5
8

6.
64

1.
86

9.
54

14
.7

22
.1

H
ob

ro
ve

j-1
0.

28
0.

36
1.

61
-1

.9
3

4.
52

9.
02

-3
6.

8
42

.7
8.

75
21

.8
10

.8
0.

63
3.

93
-2

3.
8

O
st

re
-1

-4
0.

26
0.

49
10

.5
10

.9
10

.8
13

.2
-2

7.
4

-9
.8

7
11

.3
12

.3
14

.6
14

.8
28

.4
23

.2
R

in
gv

ej
-1

-3
0.

23
0.

19
16

.1
5.

40
14

.6
13

.9
-0

.3
9

76
.0

10
.7

25
.0

16
.9

8.
89

23
.7

5.
51

Ba
dW

ea
th

er
/b

liz
za

rd
0.

25
0.

85
-9

8.
6

-9
9.

7
-9

9.
0

-9
9.

7
-9

0.
5

-9
1.

1
-5

.0
3

-1
.4

3
-7

.1
7

-1
.4

7
15

.5
0.

53
Ba

dW
ea

th
er

/s
ka

ti
ng

0.
28

0.
89

-3
.5

7
-7

.3
9

7.
33

-1
1.

9
-7

6.
7

-8
7.

2
9.

22
-7

.3
0

-6
.8

4
-7

.7
5

-7
9.

3
-9

1.
4

Ba
dW

ea
th

er
/s

no
w

Fa
ll

0.
18

0.
88

0.
57

-1
8.

3
5.

87
-1

8.
1

-7
4.

8
-9

0.
1

32
.4

-1
5.

8
12

.2
-1

7.
3

38
.2

-1
8.

9
Ba

dW
ea

th
er

/w
et

Sn
ow

0.
25

0.
80

-0
.2

3
-2

0.
3

2.
96

-2
6.

3
-8

7.
7

-9
5.

3
16

.7
-1

9.
9

5.
11

-1
8.

5
-3

7.
4

-4
7.

9
A

A
U

R
ai

nS
no

w
av

g.
0.

22
0.

40
-0

.1
6

6.
36

1.
31

9.
28

-1
8.

6
10

.5
4.

55
3.

42
4.

29
10

.5
14

.0
28

.5
Ba

dW
ea

th
er

av
g.

0.
25

0.
87

-3
1.

5
-3

7.
0

-2
4.

4
-3

9.
4

-8
2.

4
-8

9.
5

9.
88

-8
.7

5
-2

.3
3

-9
.1

5
-1

8.
7

-3
8.

6

213



Paper F.

(a
)

R
G

B
(b

)
G

ro
u

nd
Tr

ut
h

(c
)

O
ri

gi
na

l
(d

)
M

ed
ia

n
(e

)
G

ar
g2

00
7

(f
)

K
an

g2
01

2
(g

)
K

im
20

15
(h

)
Fu

20
17

(i
)

Z
ha

ng
20

17

Ta
bl

e
F.

13
:S

eg
m

en
ta

tio
n

re
su

lts
on

th
e

A
A

U
R

ai
nS

no
w

da
ta

se
tb

y
th

e
Su

BS
EN

SE
al

go
ri

th
m

[6
0]

.E
ac

h
ro

w
re

pr
es

en
ts

th
e

re
su

lts
of

di
ff

er
en

tr
ai

n
re

m
ov

al
al

go
ri

th
m

s
on

a
si

ng
le

fr
am

e.
Se

qu
en

ce
s

fr
om

to
p

to
bo

tt
om

:
E

ge
ns

ev
ej

-5
,H

ad
su

nd
ve

j-1
,H

jo
rr

in
gv

ej
-4

,a
nd

R
in

gv
ej

-2
.

G
ra

y
ar

ea
s

in
d

ic
at

e
d

on
’t

ca
re

zo
ne

s.

214



6. Results

• The average object size of the BadWeather sequences is 3.5 times larger
than the average object size of the AAU RainSnow dataset. This dif-
ference may occur because the segmentation of smaller objects benefits
from the removal of rain streaks, whereas the segmentation of larger ob-
jects is more resilient to the fluctuations from rain and snow. In this case,
the spatio-temporal low-pass filtering of the rain removal algorithms
may eventually harm the segmentation performance.

It should be noted that further experimentation on other datasets is needed
in order to fully understand the underlying causes.

The visual results of Figure F.13 based on the AAU RainSnow dataset con-
firm that raindrops on the lens and reflections on the road pose a challenge to
the segmentation process. However, even under these challenging conditions,
the results from Table F.12 show that the evaluated rain removal algorithms
improve the segmentation. Two notable exceptions are the Egensevej-5 and
Ringvej-2 sequences, which are shown in the top and bottom rows of Figure
F.13, respectively. On the Egensevej-5 sequence, the best rain removal algo-
rithm decreases the segmentation performance of the SuBSENSE algorithm by
44%, whereas the remaining algorithms perform even worse. On the Ringvej-2
sequence, the otherwise top performing rain removal methods of Fu [20]
and Zhang [79] fail to improve the segmentation results at all. One possible
explanation could be that the segmentation performance of the two original
sequences is quite poor, with F-measures of 0.05 and 0.14 for the SuBSENSE
method on the Egensevej-5 and Ringvej-2 sequences, respectively. If the under-
lying phenomena responsible for the degradation of the visual quality are not
related to rainfall and snowfall, the corrections from rain removal algorithms
may be ill-behaved and degrade the results.

However, the remaining sequences of the AAU RainSnow dataset show
decent increases in segmentation performance for most rain removal algo-
rithms, even for sequences in which the segmentation is relatively hard. The
improvement in segmentation results from relatively ’good’ sequences with
good illumination and few shadows, such as the Hadsundvej sequences, indi-
cates that rain removal algorithms could be a suitable preprocessing step for
traffic surveillance scenes under rain and snow when improved performance
of subsequent traditional segmentation algorithms is required.

6.2 Instance Segmentation

The average precision of the instance segmentation methods Mask R-CNN [26]
and FCIS [38] are shown in Table F.14 and visualized with box plots in Figure
F.5c. It is evident from the results of the original sequences that the Mask
R-CNN method outperforms the FCIS method by a large margin, resulting in
a AP of 0.33 and 0.07 on the entire AAU RainSnow dataset, respectively. If
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we compare the instance segmentation results with the traditional segmen-
tation results of Table F.12, both segmentation approaches struggle with the
Egensevej sequences. On the Hobrovej sequence, the traditional segmentation
methods fares well whereas the instance segmentation methods breaks down.
One should note, however, that the instance segmentation methods does
not take temporal information into account, which makes the segmentation
increasingly harder under difficult weather.

All evaluated rain removal algorithms fail to improve the instance segmen-
tation results of the Mask R-CNN. The best performing algorithm of Zhang
et al. [79] degrades the AP by 3.45% while the worst performing method by
Kang et al. [34] degrades the result by 36.3%.

On the contrary, all rain removal algorithms but the method by Kang et
al. improves the instance segmentation results of the FCIS method. The best
rain removal algorithm on the FCIS method is the 3x3 spatial mean filter and
the CNN-based method by Zhang et al. which improves the result by 27.6%
and 25.2%, respectively. However, even with these improvements, the FCIS
method is inferior to Mask R-CNN.

It is remarkable that the simple median filter outperforms the dedicated
rain removal algorithms with the FCIS method and lies close to other algo-
rithms with the Mask R-CNN. Both instance segmentation methods have been
trained on the ImageNet and COCO datasets and are thus designed to respond
to images that resemble these training sets. Our AAU RainSnow dataset is
a different, surveillance-type dataset with many small objects that does not
necessarily resemble these training datasets. Given a dissimilar dataset, the
noise and alterations by the applied rain removal algorithms might push the
images out of the visual manifold that the instance segmentation methods
have been trained on.

6.3 Feature Tracking

The results of the forward-backward feature point tracking are shown in Table
F.15 and the box plots of Figure F.5d. If we look at the average results on
both datasets, it is observed that the rain removal algorithm by Zhang et
al. [79], which was superior when evaluated on the segmentation pipeline,
consistently deteriorates the feature tracking performance. It should be noted
that the algorithm by Zhang et al. is a single-frame based method and does
not incorporate the temporal information when removing the rain. In fact, all
the evaluated single-frame rain removal algorithms deteriorate the feature-
tracking results (Median, Kang et al. [34], Fu et al. [20], Zhang et al. [79]).

If we look at the results of the video-based rain removal methods by
Garg and Nayar [24] and Kim et al. [36], we observe a general increase in
feature tracking performance. The relatively simple method by Garg and
Nayar contributes to an average increase in the number of successfully tracked
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Fig. F.5: Box and whiskers plot of the relative improvement as a result of the pre-processing by
rain removal algorithms.

feature points with a margin of error of 1 pixel of 5.72% and 69.3% on the
AAU RainSnow and BadWeather datasets, respectively. Comparatively, the
rain removal algorithm by Kim et al. [36] results in a modest improvement
of 7.72% on the AAU RainSnow dataset. On the BadWeather dataset, the
improvement is more pronounced with a corresponding performance increase
of 192%. If we look at the average processing times per image listed in Table
F.11, the method by Garg and Nayar is 38 times faster than the method by
Kim et al. and should thus be preferred due to superior speed.

As opposed to the segmentation results, which did not agree on the AAU
RainSnow and BadWeather datasets, the feature tracking results on the AAU
RainSnow and BadWeather datasets differ only by an order of magnitude.

In general, the results indicate that feature-point tracking on traffic surveil-
lance videos benefits from the spatial low-pass filtering of the video-based
rain removal algorithms.

7 Conclusion

We have studied the effects of rain and snow in the context of traffic surveil-
lance and reviewed single-frame and video-based algorithms that artificially
remove rain and snow from images and video sequences. The study shows
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that most of these algorithms are evaluated on synthetic rain and short se-
quences with real rain and their behaviour in a realistic traffic surveillance
context are undefined and not experimentally validated. In order to inves-
tigate how they behave in the aforementioned context, we have presented
the AAU RainSnow dataset that features traffic surveillance scenes captured
under rainfall or snowfall and challenging illumination conditions. We have
provided annotated ground truth for randomly selected image frames of
these sequences in order to evaluate how the preprocessing of the input
video by rain removal algorithms will affect the performance of subsequent
segmentation, instance segmentation, and feature tracking algorithms.

Based on their dominance in the field and their public availability, we
selected six rain removal algorithms for evaluation, two video-based methods
and four single-frame based methods. The results presented in Table F.12
show that the single-frame based rain removal method of Zhang et al. [79]
improves the segmentation by 19.7% on average on the AAU RainSnow dataset.
However, it deteriorates the performance on the BadWeather sequences of the
public ChangeDetection.net dataset [69] and is not successful on a classical
feature tracking pipeline. As a result, we achieve lower accuracy on forward-
backward feature tracking on the rain-removed frames by Zhang et al. than
running the feature tracking on the unmodified original input frames. On the
contrary, all video-based rain removal algorithms consistently improve the
feature tracking results on the AAU RainSnow and BadWeather datasets. We
received mixed results from the evaluation of instance segmentation methods.
On a state-of-the-art method, the pre-processing by the evaluated rain removal
algorithms decreased the segmentation performance. However, with the
exception of the rain removal algorithm of Kang et. al. [34], all rain removal
algorithms improved the performance on a slightly older, less capable instance
segmentation method.

If we look at the overall improvement across the three evaluation metrics
as shown in Figure F.5a, we observe a large variability in the performance of
the rain removal algorithms. The simplest method, the spatial median filter,
shows the lowest variability whereas the method from Kang et al. [34] shows
the greatest variability and worst performance with a median improvement
of −20%. The CNN-based methods of Fu et al. [20] and Zhang et al. [79]
both show a median improvement around 0%, with lower variability of the
former method. The video-based methods of Garg and Nayar [24] and Kim et
al. [36] show similar performance with a median improvement at 3.3 and 2.5%,
respectively. When considering the processing time required by the method
of Kim et al., the well-established method from Garg and Nayar is considered
to be the best general-purpose rain removal algorithm.

In this paper, we aimed to answer the initial research question: Does
rain removal in traffic surveillance matter? We must conclude that, as with
other aspects of computer vision, this really depends on the application.
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Our experiments show that some applications benefit from rain removal,
whereas other applications see their performance significantly reduced. Thus,
rain removal algorithms should not be used as a general pre-processing
tool in traffic surveillance, but they could be considered depending on the
experimental results of the desired application. It should be noted that we
have only tested the rain removal algorithms on video sequences in which
it was actually raining or snowing. The behaviour of these algorithms on
non-rain sequences is still undefined. Further investigations could go into an
intelligent switching system that enables such pre-processing systems based
on the available contextual information.

In our experiments, we have chosen to evaluate the performance on three
computer vision methods: segmentation, instance segmentation, and feature
tracking. However, it is still an open question how rain removal algorithms
perform when evaluated on other methods, such as classification, object
tracking, and 3D reconstruction.
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Fig. G.1: Proposed system-at-a-glance. As opposed to traditional methods, we use fully synthetic
data for training rain removal algorithms. We validate on real-world images with real rain for
which ground truth rain-free images do not exist, and we are thus unable to use traditional
metrics such as SSIM or PSNR. Instead, we measure the accuracy of an object detection algorithm
on both the original and rain-removed images. An effective rain removal algorithm should
improve the visibility of foreground objects and thus increase the object detection accuracy.

Abstract

Rainfall is a problem in automated traffic surveillance. Rain streaks occlude the
road users and degrade the overall visibility which in turn decrease object detection
performance. One way of alleviating this is by artificially removing the rain from
the images. This requires knowledge of corresponding rainy and rain-free images.
Such images are often produced by overlaying synthetic rain on top of rain-free
images. However, this method fails to incorporate the fact that rain fall in the entire
three-dimensional volume of the scene. To overcome this, we introduce training data
from the SYNTHIA virtual world that models rain streaks in the entirety of a scene.
We train a conditional GAN for rain removal and apply it on traffic surveillance
images from SYNTHIA and the RainSnow datasets. To measure the applicability
of the rain-removed images in a traffic surveillance context, we run the YOLOv2
object detection algorithm on the original and rain-removed frames. The results on
SYNTHIA show an 8% increase in detection accuracy compared to the original rain
image. Interestingly, we find that high PSNR or SSIM scores do not imply good
object detection performance.
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1 Introduction

In computer vision-enabled traffic surveillance, one would hope for optimal
conditions such as high visibility, few reflections, and good lighting conditions.
This might be the case under daylight and overcast weather but is hardly
representative of most real-life weather conditions. To name an example, the
visibility of a scene might be impaired by the occurrence of precipitation such
as rainfall and snowfall. The rain and snowfall are present in the images and
videos as spatio-temporal streaks that might occlude foreground objects of
interest. The accumulation of rain and snow streaks ultimately degrades the
visibility of a scene [20] which render far-away objects hard to distinguish
from the background. These rain and snow streaks may even adhere to
the camera lens as quasi-static rain drops that remain for several seconds,
effectively blurring a region of the image. The above mentioned properties
of rain and snowfall have a detrimental effect on computer vision algorithms
and the research community has therefore shown great interest to mitigate
these effects. Since the first work by Hase et al. [8], many subsequent authors
have proposed algorithms that tries to produce a realistic rain-removed image
from a real-world rainy image.

When constructing an algorithm that artificially removes rain in an image
or video, one would typically optimize for creating rain-removed images that
resemble real-world images as much as possible. Typically, this is assessed by
computing the Peak Signal-to-Noise-Ratio (PSNR) and the Structural Similarity
Index (SSIM) [25] between the rain-removed image and the ground truth rain-
free image. A high PSNR or SSIM score indicates that the source and target
images are largely similar. The computation of these metrics, however, requires
corresponding image pairs of rainy and rain-free images. For single-image rain
removal, this requirement is usually met by overlaying artificial rain streaks
on real-world images, typically by generating them in Adobe Photoshop or by
using a collection of pre-rendered rain streaks [7]. A sample image is visible
from the left part of Figure G.1.

Although the individual rain streaks may look realistic, the visual im-
pression of the artificially produced rain image is less pleasing. Because the
generated rain streaks are layered on top of the rain-free image, all rain streaks
appear to be in the immediate foreground of the image. However, this fails to
take into account that rain may fall in the entire three-dimensional volume
of the scene and does not model the visibility degradation caused by the
accumulation of rain drops.

The aim of this work is to create a single-image based rain removal al-
gorithm that takes both the partial occlusions and the accumulation of rain
into account. We accomplish this by introducing a new training dataset that
consists of images from a purely synthetic, 3D-generated world. By using a
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computer-generated 3D world, we can simulate raindrops in the entirety of
the scene and not just in front of the camera. This enables us to mimic the
rain streaks, the accumulation of rain, and the adhering of rain drops to the
virtual camera lens. The concept is illustrated in Figure G.1.

Our contributions are the following:

1. To the best of our knowledge, we are the first to introduce fully synthetic
training data for training and testing single-image based rain removal
algorithms.

2. We train a rain removal algorithm using the data from above and com-
pare with traditional approaches that use synthetic rain on top of real-
world images. In order to assess the performance on real-world traffic
surveillance images with real rain, we propose a new evaluation metric
that assesses the performance of an object detection algorithm on the
original and rain-removed frames. If effective, the rain-removed images
should improve object detection performance.

3. The proposed evaluation metric is compared with the traditional PSNR
and SSIM metrics to evaluate their usefulness in application-based rain
removal.

2 Related Work

The first single-image based rain removal algorithm was proposed by Fu et
al. [6] in 2011 and treated rain removal as a dictionary learning problem where
the challenge is to decide if image patches belong to the rain component, R,
or the background component, B. Relying on the assumption that rain drops
are high-frequency (HF) oscillations occurring on top of a low-frequency (LF)
background image, the bilateral filter is applied to the input image to separate
it into a HF and a LF component. The Morphological Component Analysis
technique [3] learns a dictionary of image patches from the HF image and rain
streak patches are identified based on the assumption that they are brighter
than other patches. The dictionary composition approach to rain removal was
refined in subsequent works [1, 10, 14, 24].

An alternative approach was proposed by Chen et al. [2] that treats the
separation of the rain image R from the background image B as a matrix
decomposition problem. It is assumed that B has low total variation and
that R patches are linearly dependent. Based on these assumptions, the
Inexact Augmented Lagrange Multiplier is used to solve the constrained matrix
decomposition problem. Subsequent works on matrix decomposition [12, 17]
have imposed additional requirements on B and R such as low rank, sparsity,
or mutual exclusivity.
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Fig. G.2: Synthetic images generated from SYNTHIA at four different locations in the virtual
world. From top to bottom: rain image, no-rain image, ground truth segmented image. The
images are cropped for viewing.

The Achilles heel of the mentioned dictionary component and matrix de-
composition methods is that they solely rely on heuristically defined statistical
properties to detect and remove the apparent rain. Real-world textures might
not adhere to these statistical properties, however, and as a result, non-rain
textures might be ’trapped’ inside the rain component.

This problem is overcome by learning the appearance of rain streaks in
an offline process that uses a collection of rain-free images overlaid with
synthetic rain. Recent approaches use such images to train convolutional
neural networks (CNNs) to remove rain from single images.

Fu et al. [4] combined a guided filter with a three-layer CNN to produce
rain-free images. In the work to follow, the same author replaced the three-
layer CNN with a much larger network containing residual connections [5].

A CNN containing dilated convolutions were used in [26] whereas Liu
et al. [16] used a network based on the Inception V4 architecture [22]. As
opposed to the works of Fu et al., both methods operate directly on the input
image and may as such capture rain drops that are not included in the filtered
HF image.

Conditional Generative Adversarial Networks The recent advent of gener-
ative adversarial networks (GANs) that are conditioned on the input image
have made major breakthroughs in image-to-image translation [11]. A con-
ditional GAN may be used to transfer an image in a specific domain to a
corresponding image in another domain, for instance from rainy to rain-free
images. Zhang et al. [27] modified the Pix2Pix framework by Isola et al. [11]
by including the perceptual loss function by Johnson et al. [13] and trained the
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conditional GAN on corresponding image pairs with and without synthetic
rain.

3 Rain Removal Using Entirely Synthetic Data

In this section, we will describe our proposed rain removal framework. Like
most other authors of rain removal algorithms, we want our network to be
able to remove rain from real-world images with real rain, including the
effects of rain streak occlusion and rain streak accumulation. The occluding
effects of rain streaks might be modelled by imposing synthetic rain on real-
world images but this approach cannot capture the effects arising from the
accumulation of rain. In order to capture these effects, we propose to use fully
synthetic training data generated from a computer-generated 3D world.

More specifically, we use renderings from the SYNTHIA virtual world [19]
that capture four different road intersections as seen from an infrastructure-
side traffic camera. The virtual world enables us to render two instances of
the same sequence with the only difference that rain is falling in one instance
but not in the other. Samples from the four sequences are shown in Figure
G.2. In total, the four sequences comprise of 9572 frames.

A benefit of the SYNTHIA virtual world is that it enables the generation
of corresponding segmented images that may be used directly as ground
truth for semantic segmentation and object detection purposes. Footage
from SYNTHIA has previously been used to successfully transfer images
from summer to winter [9] or to transfer from SYNTHIA to the real-world
Cityscapes dataset [28]. Based on these works, we therefore find it reasonable
to learn the translation from rain images to no-rain images with the use of
SYNTHIA.

Inspired by the recent work in image-to-image translation and domain
adaption [9, 21], we use the conditional GAN architecture as the backbone of
our rain removal framework.

3.1 Training the Conditional GAN-network

As point of departure, we take the rain removal algorithm from Zhang et
al. [27], which consists of a conditional GAN-network, denoted as IDCGAN.
We compare the IDCGAN with the state-of-the-art image-to-image translation
framework Pix2PixHD [23].

The discriminator of the IDCGAN-network uses a five-layer convolutional
structure similar to the original Pix2Pix-network [11] whereas the generator
uses a fully convolutional network with skip connections, the U-net. The
generator architecture is different from the Pix2Pix-network in two ways:

1. The depth of the U-net is down from eight to six convolutional layers.
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Name Training data
IDCGAN-Real-Syn Real images with synthetic rain
IDCGAN-Syn-Syn SYNTHIA rain images, SYNTHIA no-rain im-

ages
Pix2PixHD-Real-Syn Real images with synthetic rain
Pix2PixHD-Syn-Syn SYNTHIA rain images, SYNTHIA no-rain im-

ages
Pix2PixHD-Combined SYNTHIA rain images, SYNTHIA no-rain im-

ages + real images with synthetic rain

Table G.1: Overview of the trained conditional GANs for rain removal. The training of IDCGAN-
Real-Synth is equivalent to the original work of Zhang et al. [27].

2. The skip-connections are adding the tensors instead of concatenating
(joining) them.

The Pix2PixHD network is an improved version of Pix2Pix that enables
the generation of more realistic, high-resolution images.

As training set, we use the aforementioned SYNTHIA dataset with 9572
corresponding image pairs. As representative of a dataset with real images
and synthetic rain, the 700 training images from Zhang et al. [27] are used. The
IDCGAN and Pix2PixHD networks are trained separately with the images
of Zhang et al. and the SYNTHIA training images. Furthermore, we use a
combination of the two datasets to train the Pix2PixHD network. An overview
of the resulting five trained networks is found in Table G.1. In order to make
the training feasible on a 11 GB GPU, the training images are scaled down
to a maximum resolution of 720 x 480 pixels. Otherwise, we use the default
parameter settings for training the networks.

4 Assessing The Rain Removal Quality

As mentioned in the introduction, the classical approach of measuring the
quality of the rain-removed image is to apply a rain removal algorithm on
a rain-free image with overlaid synthetic rain and calculate the PSNR and
SSIM between the resulting image with the corresponding rain free-image.
In a traffic surveillance context, it appears that the overlaid synthetic rain
hardly resembles real-world rain. As such, there is no guarantee that a rain
removal algorithm receiving high PSNR and SSIM scores on synthetic rain
will translate well to real-world rain in a traffic surveillance image.

We therefore propose a new evaluation metric that measures the ability
of an object detection algorithm to detect objects in the original and the rain-
removed frames. If the rain removal algorithm has succeeded, it has created a
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rain-removed image that resembles a true rain-free image. This means that the
occlusion and visibility degradation originating from the rain streaks should
be largely eliminated, creating an image in which objects are easier to detect.
Instead of requiring the overlay of synthetic rain on rain-free images, this
metric requires the annotation of bounding boxes around objects of interest.
We find such sequences in the RainSnow dataset1 that contains 2200 annotated
frames in a traffic surveillance context, taken from seven different traffic
intersections. The dataset features a variety of challenging conditions such as
rain, snow, low light, and reflections.

As object detection benchmark, we choose the state-of-the-art You Only
Look Once algorithm (YOLOv2) [18]. YOLOv2 is chosen due to good detection
performance and superior speed which is especially important in real-time
traffic surveillance. The improvement in detection performance is assessed by:

1. Running pre-trained YOLOv2 on the original, rainy images of the SYN-
THIA dataset.

2. Removing rain with the networks listed in Table G.1 and running pre-
trained YOLOv2 on the rain-removed images.

3. Measuring the detection accuracy of 1) and 2) by using the COCO
API [15] and calculating the relative difference.

We also measure the improvement in detection performance on the Rain-
Snow dataset by following the above steps, replacing SYNTHIA with Rain-
Snow.

5 Experimental Results

We have experimented with several hyper-parameter settings for YOLOv2 and
found the best results by setting the detection threshold, hierarchical threshold,
and the non-maximum suppression threshold to 0.1, 0.1, and 0.3, respectively.
As detection metric, we use average precision (AP) over intersection-over-
union (IOU) ratios from .5 to .95 with intervals of .05, denoted as AP[.5:.05:.95],
and average precision at IOU=0.5, denoted as AP[.5].

5.1 Removing Rain From SYNTHIA Training Data

We start by measuring the ability to remove rain from the SYNTHIA data.
This is a peculiar case as the Syn-Syn networks have seen the data during
the training phase and we are thus unable to judge whether these algorithms
generalize well. It does, however, give the opportunity to assess feasibility of

1The dataset will be publicly available with the camera-ready version of this paper.
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Rain removal method SSIM PSNR YOLOv2
Original rain image - - .025 .072
Original no-rain image - - 38.4 23.6
IDCGAN-Real-Syn .610 65.3 8.78 2.02
IDCGAN-Syn-Syn .873 80.8 1.51 -7.15
Pix2PixHD-Real-Syn .646 69.3 -32.0 -36.2
Pix2PixHD-Syn-Syn .767 75.9 8.07 7.35
Pix2PixHD-Combined .640 70.4 -32.7 -34.5

Table G.2: Results on the SYNTHIA dataset. YOLOv2 results in AP[.5:.05:.95], AP[.5]. Absolute
values are reported for the original rain image in italics, whereas other YOLOv2 results are
relative to this baseline, shown in percentages. The original no-rain images are used as reference
for computing SSIM and PSNR scores.

the rain removal algorithms in a best-case scenario and relate SSIM/PSNR
scores and object detection performance, reported in Table G.2.

The detection results of Table G.2 show that only two rain removal al-
gorithms, IDCGAN-Real-Syn and Pix2PixHD-Syn-Syn, improve detection
performance compared to the original rain images, but neither of two algo-
rithms come close at the detection performance of the ground truth no-rain
images. This is remarkable given the fact that Pix2PixHD-Syn-Syn has seen
these images during training.

Interestingly, the SSIM scores of the two rain removal algorithms show little
correspondence with the detection results. The IDCGAN-Real-Syn network
is receiving the lowest SSIM score but shows good detection performance
whereas the IDCGAN-Syn-Syn network is receiving the highest SSIM score
but fails to consistently improve the detection results.

Example images from the SYNTHIA data are shown in Figure G.3. The
networks trained solely on the SYNTHIA data are able to remove the majority
of rain from the image with IDCGAN-Syn-Syn leaving the best visual im-
pression, whereas the Pix2PixHD-Syn-Syn network suffers from checkerboard
artifacts in the reconstructed textures.

5.2 Removing Rain From RainSnow sequences

Sample images from running the rain removal algorithms on the RainSnow
dataset are shown in Figure G.4 whereas detection results from running
YOLOv2 on the rain-removed images are found in Table G.3. The detection
results show marginal improvements on the networks trained on real images
with synthetic rain (Real-Syn and Combined), whereas networks trained on
only synthetic data (Syn-Syn) deteriorate the detection results. If we look at
the visual examples from Figure G.4, the rain-removed images of IDCGAN-
Syn-Syn have strange artifacts and do not seem to lie within the domain of
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(a) Original
rain

image

(b) Original
no-rain image

(c) IDCGAN-
Real-Syn

(d) IDCGAN-
Synth-Syn

(e)
Pix2PixHD-

Real-Syn

(f)
Pix2PixHD-
Synth-Syn

(g)
Pix2PixHD-
Combined

Fig. G.3: Rain-removal results on the SYNTHIA dataset. Each column represents the results of a
rain removal algorithm on the original rain image.

Rain removal method YOLOv2
Original rain image .034 .070
IDCGAN-Real-Syn 1.17 0.54
IDCGAN-Syn-Syn -47.9 -42.9
Pix2PixHD-Real-Syn -1.08 3.87
Pix2PixHD-Syn-Syn -14.5 -5.05
Pix2PixHD-Combined -2.43 3.19

Table G.3: Detection results on the RainSnow dataset. Results in AP[.5:.05:.95], AP[.5]. Absolute
values are reported for the original rain image in italics, whereas other YOLOv2 results are
relative to this baseline, shown in percentages.

visual images, whereas the images from the Pix2PixHD-Syn-Syn network
appear to lie closer to the visual domain. The latter network even attempts to
remove the rain drops from the lower image at Figure G.4 and removes both
the large rain streak and the reflections from the cars from the top image.

In general, however, the visual results also reveal plenty of room for
improvement for all rain removal algorithms. As an example, the rain streaks
on the top image and the rain drops on the lower image are not efficiently
removed by any algorithm.
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(a) Original rain
image

(b) IDCGAN-
Real-Syn

(c) IDCGAN-
Synth-Syn

(d) Pix2PixHD-
Real-Syn

(e) Pix2PixHD-
Synth-Syn

(f) Pix2PixHD-
Combined

Fig. G.4: Rain-removal results on RainSnow dataset. Each column represents the results of a rain
removal algorithm on the original rain image.

5.3 Domain Transfer Results

We find that the IDCGAN and Pix2PixHD networks behave inconsistently
when tested on sequences that are dissimilar from their training data. On SYN-
THIA, IDCGAN-Real-Syn improves the detection results, whereas Pix2PixHD-
Real-Syn fails to do so, even if providing a higher SSIM score. The results are
reversed on RainSnow sequences, with IDCGAN-Syn-Syn providing much
worse detection results that Pix2PixHD-Syn-Syn. No obvious explanation of
this behaviour exists and further experiments are needed in order to find and
understand the most suitable network for domain transfer in rain removal.

6 Conclusions

We have investigated the use of fully synthetic data from the SYNTHIA virtual
world to train a GAN-based, single-image rain removal algorithm. Using
the fully synthetic data, we find that there is a considerable gap between
detection scores on the rain-removed images from the best-performing rain
removal algorithm and detection scores on the ground truth images with no
rain. Furthermore, we found no correlation between SSIM or PSNR scores
and detection performance, questioning the usefulness of these metrics for
application-based rain removal.

Removing rain on real-world traffic surveillance imagery is hard and the
evaluated rain-removal only results in marginal improvements in detection
performance, if any. Using fully synthetic data for training allows the removal
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of some rain streaks that were not captured by networks trained with only
synthetic rain. There exists, however, a domain gap between the synthetic data
and the real-world sequences. Future work should address this by including
more diverse synthetic data and more variability in real-world synthetic rain.
One could also investigate the use of recurrent neural networks to incorporate
temporal information from the SYNTHIA dataset. In traffic surveillance where
the rain removal could be an intermediate step in achieving good detection
performance, it might even be beneficial to use the synthetic rain images for
training a classifier and skip the rain removal step altogether.
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1. Introduction

Abstract

This paper investigates the development of a watch-dog system that detects a subset
of road user actions in traffic intersections. Footage of the intersections is captured
with RGB and thermal cameras to ensure that the road is visible round-the-clock even
in difficult weather conditions. The watch-dog system consists of several, cascaded
detectors which are capable of detecting specific road user actions, such as Right
Turning Vehicles, Left Turning Vehicles, and Straight Going Cyclists. Experimental
results on 4 hours of video from 3 different intersections show good performance and
a precision above 0.93 when detecting turning vehicles. The use of both RGB and
thermal video generally results in better performance, providing overall stability when
observing the road.

1 Introduction

It is the goal of the European Commission to cut the number of road deaths
by 50 % in 2020 and diminish the number almost entirely by 2050 [3]. In order
to reach these goals, not only the security of the vehicles must be enhanced
but also the layout of the roads must change to enhance safety. Historically,
road layouts have been changed to the better based on previous knowledge of
road fatalities and deaths. This means that traffic researches and designers
must wait for accidents to happen in order to improve the layout of the road.

In surrogate safety analysis, however, it is sufficient to measure the number
of accidents that almost happened. The foundation behind surrogate analysis
is the existence of a continuous relationship between the levels of severity of
an accident and their corresponding frequencies. For instance, it is assumed
that slight injuries occur more frequently than severe injuries and thus one
may form a safety pyramid [6] where the fatal injuries resist at the very
upper parts of the pyramid (severe, low frequency) and normal traffic fill
up the bottom parts of the pyramid (normal, high frequency). By counting
the number of near-accidents where a critical interaction between road users
nearly happened, one achieves a surrogate measure of the number of more
severe, fatal interactions [14]. Recently, this rationale has been taken even
further by indicating that less-severe, normal traffic interactions enables traffic
researches to monitor the safety level [11], [15]. This enables a rapid safety
analysis of roads from data over weeks instead of years.

Special attention is needed in improving the safety of vulnerable road users
(VRU). VRUs is defined as pedestrians, elderly, disabled persons, cyclists, and
riders of powered two-wheelers (mopeds and motorcycles). Compared to the
total number of traffic accidents, VRUs account for a disproportionately high
number of road fatalities and injuries. In 2013, according to the European
Commission [3] more than 14.000 VRUs were killed in the European Union. It
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is the long-time goal of this project to enable traffic researches to improve the
safety of VRUs by gaining knowledge of the accident causations. In this work,
we are laying the foundation by studying specific movements of selected road
users at intersections.

1.1 Monitoring road users

We have to study the roads in order to understand the frequency and nature
of accidents and near-accidents. Manually monitoring the roads is tedious and
inflexible and does not allow for a larger understanding of accident causation.
A more flexible approach is to record the roads with a camera and watch the
footage off-line. This allows for the reconstruction of critical events but still
presents the user with a tremendous amount of data. The optimal solution to
this problem is to design a system that automatically detects and tracks the
road users from the recorded video data. From these tracks, traffic analysts
can define heuristics that determine the interactions between the road users
and on a higher level, the safety of a particular road.

However, the detection and tracking of objects in unconstrained scenes
is still an unsolved problem. State-of-the art tracking systems are usually
evaluated at 2-minute intervals under static weather conditions and does
not perform well under occlusion, clutter, and illumination changes. No
tracker is currently capable of detecting and tracking objects round-the-clock
in unconstrained scenarios. Smeulders et al [13] provides a good review and
performance evaluation of recent trackers.

Jackson et al [7] have developed an open-source toolbox for traffic video
analysis which forms the base line for surrogate traffic analysis such as the
work of [12]. However, as with general tracking algorithms, the length of the
dataset is short and the video data is captured under good weather conditions
[10]. The toolbox builds upon the popular KLT-tracker [1] which needs an
additional grouping of tracked features to convert a number of tracked points
to a number of tracked objects. The grouping is often ambiguous - is it a
single bicycle or a cluster of cyclists waiting at the stop line? Is it a truck with
a trailer - or two separate vehicles?

1.2 Reducing the amount of video

Because tracking still remains an unsolved problem, we acknowledge that
there is a need for a human-in-the-loop to assess the nature and severity of the
events between road users. However, we may design a system that reduces
the amount of video data to manually assess. Such a watch dog should not
necessary track all road users at all times but instead detect whenever there
are situations that need further investigation - and whether there are periods
of time when nothing of interest occurs. In this work, we will refrain from
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detecting interactions between road users but instead study the individual
actions of the road users and obtain a reliable detection. Once these detections
are achieved, one may obtain interactions by combining the detections. We
build upon the ideas introduced by Madsen et al [9]. In this work, we introduce
a thorough evaluation of the individual detectors on novel datasets in both
the RGB and thermal domains. Furthermore, we explain the algorithmic
framework behind the detectors and how they are enhanced to work in both
domains.

The issue of observing the road through a camera is treated in Section
2. The proposed watch dog that operates on the video data is presented in
Section 3. Experiments are discussed in Section 4 and concluding remarks are
presented in Section 5.

2 Observing the road

Even the best tracking systems are only as good as the data they process.
We want to detect the road users round-the-clock in all weather conditions
which means that the road should be observable in almost any condition by
looking at the recordings provided. Traditional surveying techniques employ
one or multiple visible light (RGB) cameras to monitor the intersection [8].
While this works well under good weather conditions, the video data still
stuffer from varying shadows and very sparse information during the night.
Thermal cameras, on the other hand, capture the radiated heat from objects
and are thus not sensitive to changes in the environment as long as the object
of interest has a different temperature from the background. For a survey
of thermal cameras, refer to [5]. However, the thermal modality is poor on
features which makes it much harder to discriminate between objects, recover
identities after occlusion, or classify road users. Together though, RGB and
thermal cameras supplement each other and extend the visibility of the road.
In this work, we use a joint configuration of a RGB and thermal camera
to monitor road intersections. See Figure H.1 for a comparison of the two
modalities.

3 Watch-dog system

Because our system should be able to function as a watch-dog to a human
operator, robustness to changes in the environment is more important than
the ability to perfectly detect and track road users. In order to make the
watch-dog robust, we tailor the system to perform a number of specific tasks
in certain areas of interest. We use the geometry of the intersection to infer
specific patterns that road users must take to complete an action. For instance,
if we want to analyse a vehicle doing a right-turn at an intersection we know
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(a) RGB (b) Thermal

(c) RGB (d) Thermal

Fig. H.1: (a), (b): RGB and thermal images of an intersection at dusk. In the RGB modality, the
headlights of the cars passing by dominates most of the road. In the thermal modality, the cars
are fully visible. (c), (d): RGB and thermal images of an intersection in full sunlight. In the
thermal image, the car on the right is barely visible due to the heated asphalt whereas the biker
on the upper pedestrian crossing stands out. The RGB image is fully visible.
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that the vehicle must (1) enter the intersection, (2) perform a right turn, and
(3) exit the intersection. These tasks may be solved in succession:

1. Detect presence: Detect if an object is present at the chosen entry point
of the intersection. If the size of the object fulfils the criteria of the
vehicle type, proceed to step 2. Otherwise, discard the object.

2. Detect movement: Detect if the object of interest is turning right, e.g.
if there is movement in a certain direction in a predefined area of the
intersection. If the movement is sufficient, proceed to step 3.

3. Detect presence: Detect if the object is present at the chosen exit point
of the intersection by applying the method of step 1.

We assume that a vehicle has made a right turn if the three tasks are completed
in succession. If not, the vehicle is doing something else - which another
detector may detect.

In this specific context, we create the foundation to detect near-conflicts
between vehicles and cyclists at urban signalized traffic intersections. In
order to do so, we want to detect right turning vehicles, left turning vehicles,
and straight going cyclists. The three detectors all consists of a chained
combination of the two basic tasks; detecting presence and detecting movement
which are further described in the following.

3.1 Detecting presence

When detecting presence, we want to detect if a road user is present or not
at a given region of interest in the image. This is obtained via a background
subtraction technique applied to the specific region of interest (ROI). We use
a background subtraction technique based on reference images which are
updated according to the routine described below:

1. Perform Canny edge detection [2] on current image and obtain edge
image.

2. Subtract edge image from background edge image.

3. Filter noise.

4. Find pixel sum of remaining edges. If sum is above threshold, the
detector is triggered.

5. Update background if the following criteria are satisfied:

(a) Motion between current and previous frame is below 10 % of
threshold for τ1 concurrent frames.
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(b) Pixel sum is below 80 % of threshold, and background has not been
updated for τ2 consecutive frames.

The routine above is applied independently on both the RGB and thermal
modality. The threshold is found experimentally for each intersection and
modality and is higher when detecting vehicles than detecting bicycles due to
the difference in size of these road users.

3.2 Detecting movement

Estimation of the movement in a ROI of the video is obtained by using
the two-frame dense motion estimation of Farneback [4] with the following
procedure:

1. Calculate the dense optical flow of the ROI.

2. Count number of flow vectors of certain magnitude inside a chosen flow
range.

3. Threshold vector count and update confidence measure.

The flow range mentioned in step 2 is chosen to only detect movement in
the preferred range of the detector. For instance, we only want do detect
movement from left to right when detecting right turning vehicles.

3.3 Chaining actions

It is of special interest of the traffic researchers to know whenever a road user
is stationary in certain areas of the intersection. Therefore, we combine the
tasks of detecting presence and movement into a third detector, the stationary
object detector. The stationary object detector is triggered whenever something
is present within the ROI and there is no or little movement, or flow, inside
the ROI.

As described at the beginning of Section 3 we define events inside the
intersection by chaining sequential actions. By tailoring the detectors for
specific needs we focus the overall generic tracking problem to solve a very
constrained problem at hand. Other problems, for instance right turning
cyclists, might be solved by building another chained set of detectors. The task
of detecting right turning vehicles is performed by the use of five detectors;
two presence detectors, abbreviated E, two movement detectors (F), and one
stationary detector (S). The number of detectors used for detecting left and
right turning vehicles, and straight going cyclists is listed in Table H.1.

A vehicle is detected as a right turning candidate whenever it enters the
entry point of the intersection which is laid out in the ROI of detector E1
(Figure H.2a). Whenever detector E1 is triggered, the movement detector
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RTV LTV SGC

Detecting presence (E) 2 2 3
Detecting movement (F) 2 4 1
Stationary object (S) 1 0 0

Table H.1: Detector types, and their shorthand notation, used when detecting Right Turning
Vehicles (RTV), Left Turning Vehicles (LTV), and Straight Going Cyclists (SGC).

F1 and the stationary detector S1 are activated. The detector F1 looks for
movement in the direction of the arrow (see Fig. H.2a) and detector S1 detects
if the vehicle has stopped. If F1 has detected that the vehicle is turning, the
detector E2 is activated to judge if the vehicle enters the conflict zone which
concludes the detection. If S1 is activated, we assume that the vehicle has
stopped in the middle of the intersection and is possibly awaiting clearance
to turn. In this case, we let the other detectors stay open a little longer to
detect an eventual turn of the vehicle. If no action occur in the detectors E2,
F2, and S1, they are deactivated after a short duration of time. The detector
F2 is used to filter out false positives, for instance vehicles going from left
to right in the intersection. An activity diagram explaining the work-flow of
the Right Turning Vehicle (RTV) detector is shown in Figure H.3. The RTV
detector is shown on an intersection prototype in Figure H.2a and in an actual
configuration in Figure H.2b.

The Left Turning Vehicle (LTV) detectors and Straight Going Cyclist (SGC)
detectors work similarly to the RTV detector. In the LTV detector, the sta-
tionary detector is discarded and the area of the presence detector (E1) is
moved further into the intersection. Two movement detectors (F3, F4) have
been added to filter out false detections from vehicles from other directions,
complementing the F2 of the RTV detector. The proposed layout of the LTV
detector is shown in Figure H.2c. The SGC detector adds one presence detector
to help filter pedestrians and cars from cyclists. It discards the detectors F2,
F3, and F4 as they have shown to be of little use in this specific case. The SGC
detector prototype is seen in Figure H.2d. A straight going cyclist is detected
if the detector E3 is activated in a chain of actions.

3.4 Fusing modalities

The video data of the intersections is captured by both a conventional RGB and
a thermal camera. In this experiment, we synchronize the two modalities and
run the detectors on each modality concurrently. Each underlying detector, i.e.
the presence and movement detector, operates on both a RGB and a thermal
image. For each modality, the detector outputs a confidence value between 0
and 1. An individual detector is triggered if the confidence is above 0.5. A
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(a) Right Turning Vehicle (RTV) (b) RTV on intersection C(1)

(c) Left Turning Vehicle (LTV) (d) Straight Going Cyclist (SGC)

Fig. H.2: RTV, LTV, and SGC detectors on intersection prototypes
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[E1 is not triggered]

[S1 is triggered]

Skip frames for x minutesRead new frame

Set F1 active for x minSet S1 active for x min F2 is always active

[E1 is triggered]

[S1 is not triggered]

[F2 is triggered]

Set E2 active for x min

[F2 is not triggered]

Right turning vehicle detected!

[E2 is triggered]

[E2 is not triggered]

Fig. H.3: Activity diagram of the Right Turning Vehicle (RTV) detector.

multi-modal detector must have an averaged confidence value above 0.5 to be
triggered.

4 Experimental results

The RTV, LTV, and SGC detectors are evaluated at three different intersections
located in the Danish cities of Aalborg (A, B) and Viborg (C). The duration
of the evaluated video data is four hours in total. The data is captured in the
morning peak hour to capture as much traffic as possible and thus challenge
the algorithms. The conditions of the evaluated intersections are listed in
Table H.2. Samples from the intersections are shown in Figure H.4.

Intersection Time Weather Temperature

A(1) 07:00 - 08:00 Sunny 13 ◦C
A(2) 07:00 - 08:00 Overcast 15 ◦C
B(1) 07:00 - 08:00 Rain 12 ◦C
C(1) 07:00 - 08:00 Overcast 13 ◦C

Table H.2: Conditions of the evaluated video data. Video A(2) is showing the same intersection
as A(1), four days later.

For each of the locations, right turning vehicles, left turning vehicles, and
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Fig. H.4: Snapshots of the intersections used in the experiments. For each intersection, two frames
are shown in both the RGB and thermal modalities. From top to bottom; A(1), A(2), B(1), C(1).

straight going cyclists have been annotated manually and assigned a time
stamp which corresponds to the entry of the vehicle or cyclist in the final
presence detector (E2/E3) of the RTV, LTV, and SGC detectors. The detectors
are fitted to each of the intersections using the first ten minutes of video. For
sequence A(1) and A(2), the same settings are used. A detection is considered
a true positive if its time stamp is within ±2 seconds of the nearest ground
truth time stamp. Detections and the corresponding ground truths can only
be associated once, i.e. only one of multiple detections may be marked as
a true positive if they all correspond to the same ground truth label. The
results of the experimental evaluation are listed in Table H.3. The detectors are
evaluated on the RGB and thermal modalities both separately and combined.

Overall, the results show good performance of the RTV and LTV detectors,
resulting in a precision of 0.94–1.00 and a recall of 0.80–0.97 when combining
both modalities (RGBT). The SGC detector performs poorer than the RTV and
SGC in the four sequences, most notably in the RGB modality. The poorer
performance of the cyclist detection is possibly due to occlusion and the
case that cyclists riding side-by-side are detected as a single cyclist. Cyclists
are more distinguished in the thermal modality which is reflected by higher
precision rates than the corresponding RGB detections.

In 15 out of 24 cases (precision+recall), the detectors operating on RGBT
perform better than or equal to the best performing single modality. In the
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remaining 9, the performance is better in a single modality. However, in these
cases, the RGBT is trailing behind the best performing modality by typically
0.01–0.03, even if the other single modality performs considerably worse.

5 Conclusions

This work presented a system that detects right and left turning vehicles,
and straight going cyclists in signalized intersections by using RGB and
thermal video data. It does so by chaining the output of two fundamental
detectors which detects presence and movement. The spatial constraints of the
intersections are used to create chains of actions that classifies a road user. The
detectors are evaluated on a total of four hours of data from three different
intersections. The results are promising and shows that the combination of
RGB and thermal video may lead to a more stable detection of the road users
in real-life, long-term traffic video.

Future work includes a more sophisticated fusion of the modalities by
using contextual information to create a confidence measure reflecting the
reliability of a modality. Furthermore, the detections will be combined to
produce an estimate of the interactions between road users at the selected
intersections.
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1. Introduction

Abstract

This paper compares the performance of a watch-dog system that detects road user
actions in urban intersections to a KLT-based tracking system used in traffic surveil-
lance. The two approaches are evaluated on 16 hours of video data captured by RGB
and thermal cameras under challenging light and weather conditions. On this dataset,
the detection performance of right turning vehicles, left turning vehicles, and straight
going cyclists are evaluated. Results from both systems show good performance when
detecting turning vehicles with a precision of 0.90 and above depending on environ-
mental conditions. The detection performance of cyclists shows that further work on
both systems is needed in order to obtain acceptable recall rates.

1 Introduction

Road safety is a subject of high interest amongst governments and the research
community. In the European Union, for instance, it is the goal of the European
Commission to halve the number of road deaths by 2020 [7]. One of the ways
to increase the passive safety of a road is to improve the layout of the road
based on historical data of traffic events such as police and hospital records.
However, not all accidents are reported and when conflict data is sparse, it
might be difficult to assess the safety of a particular road. Video data, on the
other hand, allows the generation of detailed information about the road users
such as trajectories, speed profiles, and road user types.

However, when conflict data is sparse, one must look through thousands
of hours of video to extract events of interest. Another approach is surrogate
safety analysis which studies potential conflicts as a surrogate for real conflicts.
The foundation of surrogate safety analysis is the existence of a continuous
relationship between the severity of the interactions and the volume which
forms a so-called conflict pyramid [10]. The fatal injuries reside on the top
of the pyramid and resembles a low volume of the traffic data while normal
traffic with no conflicts make up the majority of the traffic and resides in the
lower part of the pyramid. Surrogate safety analysis builds on the claim that
the analysis of near-conflicts gives a surrogate measure of the number of fatal
interactions between road users [22].

The long-time goal of this work is to obtain a surrogate measure of the
safety of bicyclists, pedestrians, and other vulnerable road users at urban
intersections. In order to do this, one must reliably detect and track all
road users in intersections by automatic analysis of video data. This paper
presents a thorough evaluation of the block-based road user action detection
technique presented in [2] on 16 hours of thermal and RGB video in three
urban intersections. The data set includes a variety of sub-optimal conditions
for visual algorithms, including rain, hard shadows, reflections, low lighting,
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and occlusion. We compare the mentioned approach to a feature-based
Kanade-Lucas-Tomasi (KLT) tracker for traffic analysis presented by Saunier
et al. [20] which is made available through the open-source trafficintelligence
project [19]. To the best of our knowledge, this is the first cross-evaluation
of tracking algorithms for infrastructure-side monitoring on real-world, non-
optimal thermal-visible video data.

The following section of this paper contains an overview of related work
in infrastructure-side traffic surveillance. Section 3 outlines the main methods
used for the block-based road user action detection system used in [2] and
Section 4 explains the KLT-based feature tracker used for comparison. In
Section 5, the thermal-visible dataset is described, including context and
weather information of the data. Section 6 contains the experimental results of
using the mentioned algorithms for cyclist and vehicle detection and Section 7
concludes the work.

2 Related Work

Traditional computer-vision based methods on traffic surveillance concerns the
monitoring of motorized vehicles at highways [4]. In highways, the detection
and tracking of vehicles is easier because they are usually well separated, run
in separate lanes, and follow certain routes. A comprehensive survey of traffic
surveillance in highway applications is found in [12].

In the past decade, researchers have explored the more complex task of
monitoring vehicles at urban areas which includes monitoring of intersections
[23], [20] and pedestrians and two-wheelers such as mopeds and cyclists [15],
[16], [24]. Monitoring urban traffic is challenging due to the density of the
traffic, variable types of road users, and lower camera orientations which
aggravates occlusion. Due to the vast amount of challenges, the field of traffic
analysis in computer vision is very diverse and includes a broad range of
approaches. In their extensive review of urban traffic analysis with computer
vision, Buch et al. divides the field into two main approaches; top-down
and bottom-up surveillance systems which eventually are combined with a
tracking system [5].

The foundation of top-down surveillance is the segmentation of the fore-
ground which is accomplished by using a variety of classic techniques, in-
cluding frame differencing, background averaging, Kalman filtering, and the
Gaussian mixture model (GMM). Foreground segmentation is followed by
grouping and vehicle classification which includes region- and contour-based
features, and advanced machine learning. Examples of top-down approaches
are found in [1], [23], and [11] where the authors use a background model to
detect vehicles and [14] which is based on frame differencing.

In bottom-up surveillance, the foreground segmentation is replaced by patch
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detectors and classifiers. Examples in traffic surveillance include Hessian
corners [20], SIFT [25], and boosting [13].

Tracking is used to connect observations of road users in consecutive frames
into spatio-temporal trajectories. The classic Kalman filter is used in a variety
of applications, including [15]. Trackers based on the Kalman filter assumes a
Gaussian process and measurement noise, which is not fulfilled in the general
case of tracking urban traffic. The Particle Filter removes these assumptions
at the cost of computational simplicity and is used for tracking motorcycles
in [18]. Saunier and Sayed use the KLT tracker to track keypoints of vehicles
in intersections [20]. Tracked features are grouped over time according to the
spatial distance of the tracks. The work of Saunier and Sayed has been used
in [21] to predict collision amongst vehicles in intersections and extended
in [24] to include the classification of road users, including pedestrians and
bicycles.

3 Watch-Dog Detection of Road User Actions

Detection, tracking, and classification of urban traffic in unconstrained sce-
narios pose a substantial challenge to computer vision algorithms. Existing
methods are typically evaluated either at short intervals or under ideal con-
ditions. An automated system which is able to accomplish these tasks in
unconstrained scenarios does currently not exist [5]. On the other hand, man-
ual monitoring of vast amounts of video is an expensive and tedious task
which indeed does not scale well to analysis of complex transport networks.
In the recent work of [2], the authors take steps to close the gap between
automated and manual analysis by introducing a semi-automated watch-dog
system, whose aim is to reduce the amount of video data for inspection by the
traffic analysts. This semi-automated system is specialized for the detection
of interactions between Right Turning Vehicles (RTV), Left Turning Vehicles
(LTV), and Straight Going Cyclists (SGC) at intersections. The goal of the
watch-dog is not to perform perfect tracking of road users but to obtain a
reasonable data reduction.

The watch-dog system contains a cascade of two fundamental detector
types that registers either presence or movement in a region of interest (ROI).
Each fundamental detector is laid out in a predefined ROI where the road
users of interest may be observed. In the watch-dog system, a detector is
either triggered or non-triggered, and it is a combination of this binary logic
that lays out the RTV, LTV, and SGC detectors.

The presence detector uses a background subtraction technique based on
reference images. The reference images are compared to the current frame
by computing the Canny edges [6] in the ROI of the frame. If the difference
of the two edge images is greater than a specified threshold, the detector is
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(a) RTV (b) LTV (c) SGC

Fig. I.1: Prototype layouts for detecting road user actions. The arrows of the F detectors indicates
the direction of movement for which the detector is configured

marked as triggered. If the difference of the edge images is below 80 % of
the threshold, and the background has not been updated for τ consecutive
frames, the background image is updated with the current image.

The movement detector estimates the movement in a certain ROI of the
intersection by computing the dense optical flow [8] between two frames.
Only the flow vectors within a desired direction of movement and above a
certain magnitude are kept. If the number of remaining flow vectors surpass
a threshold, the detector is triggered. A detailed description of the movement
and presence detectors is found in [2].

The movement and presence detectors are overlaid on specific parts of
the intersection and several detectors are chained to detect RTV, LTV, or SGC.
For instance, if we want to detect RTV, we know that vehicles of interest
must enter the intersection, perform a right turn in a designated area, and
eventually exit the intersection. In the watch-dog framework, this translates
to three sequential detections; detecting presence, detecting movement, and
detecting presence. Prototype layouts of the RTV, LTV and SGC detectors
are shown in Figure I.1. The presence detector is abbreviated E (edge), the
movement detector F (flow), and a new S (stationary) detector is introduced
which detects if something is present, but not moving. The stationary detector
is a combination of the presence and movement detectors configured on the
same ROI. Activity diagrams which describe the sequential logic of the RTV
and SGC detectors, are shown in Figure I.2. The LTV and RTV detectors
contain one or more modules (F2, F3, F4) which are used to prevent the
detection of road users from other directions.
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[E1 is not triggered]

[S1 is triggered]

Skip frames for x minutesRead new frame

Set F1 active for x minSet S1 active for x min F2 is always active

[E1 is triggered]

[S1 is not triggered]

[F2 is triggered, else]

Set E2 active for x min

[F1 is triggered and F2 is not triggered]

Right turning vehicle detected!

[E2 is triggered]

[E2 is not triggered]

(a) RTV detector

[E1 is not triggered]

[E2 is not triggered]

Read new frame

Set E2 active for x min

[E1 is triggered]

[E2 is triggered]

[F1 is not triggered]

Set F1 active for x min

[F1 is triggered in correct flow range]

Straight going cyclist detected!

(b) SGC detector

Fig. I.2: Activity diagrams of RTV and SGC watch-dog detectors. The LTV detector is similar to
the RTV detector. In the LTV detector, F3 and F4 shares the behaviour of F2 in the RTV detector

3.1 Fusing Modalities

The watch-dog operates on RGB, thermal, and combined RGBT video data. In
RGBT mode, the fundamental detectors of the watch-dog run in parallel on
the synchronized RGB and thermal video data. The fundamental detectors
output a confidence value between 0 and 1 and a value ≥ 0.5 indicates that
the detector is triggered. If the averaged confidence value of the RGB and
thermal detectors is above 0.5, the multi-modal detector is triggered.

4 Feature-Based Tracking of Road Users

We use the feature-based tracker of Saunier et al. [20] to compare the results
of the watch-dog and assess the method in less-than-ideal weather conditions.
The feature-based tracking algorithm is an extension of the method by Beymer
et al. [4] which was used to track vehicles at highways. The cornerstone of the
tracking algorithm is the KLT-tracker [3]. The extracted features are tracked
over time and in order to mimic the physical constraints of the movement of
the road users, the features are kept only if the spatio-temporal displacement
is small and the averaged motion of the features is smooth. The displacement
and motion constraints also entail that only objects in motion are tracked, i.e.
if road users stop at any point in the intersection, the tracking of the road user
is suspended and will be initiated under a different ID once the road user
starts moving.
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The features from the tracking stage are grouped in a subsequent, offline
step. The grouping algorithm operates in world coordinates and groups
feature tracks with similar motion. A feature is grouped to nearby features
if the distance is below the maximum distance threshold, Dconnection. A new
feature is easily grouped to several feature groups through this connection
stage. However, new features are only added to existing groups if the feature
and the group are similar for a minimum number of frames.

For each frame, it is checked if the available pairs of connected features
are still belonging together. The distance di,j between the connected features
is computed and it is checked if the relative motion between the two feature
tracks is within a segmentation threshold, Dsegmentation. If their relative motion
is above dsegmentation, the features are disconnected.

The Dconnection and Dsegmentation thresholds are tuned to obtain a balance
between overgrouping and oversegmentation. If the thresholds are set too low,
road users will be oversegmented, i.e. a single road user will be represented
as multiple tracks. If the thresholds are set too high, adjacent road users are
detected as one. Finding the right thresholds is a challenge, however, and
one has to choose the road user type for which the thresholds should be
optimized. For instance, the algorithm might correctly detect car-sized objects
while smaller road user types, such as cyclists, are prone to overgrouping and
larger objects, such as lorries, are oversegmented.

4.1 Fusing modalities

Although the feature-based tracker of [20] is built to operate on RGB video,
it also translates well to video in the thermal domain. As described in the
following section, objects in thermal video generally contain less information
than their RGB representation. This is taken into account by adjusting the
KLT-tracking parameters and allowing the formation of trajectory groups
with fewer trajectories. Additional grouping parameters need not be changed
because the grouping is performed in world coordinates in both domains.
In RGBT mode, features are extracted separately in the RGB and thermal
modality and mapped to a common world coordinate system. Grouping is
then performed on the combined RGB and thermal trajectories to produce
one single output.

In order to compare the performance of the watch-dog and feature-based
tracking, we need to obtain measures of RTV, LTV, and SGC from the latter.
Because the entry and exit points of these road users are well-defined in
intersections, we define entry and exit masks for each road user action type.
We thus define a RTV from an object trajectory if the trajectory passes through
entry and exit masks defined for the intersection in question.
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5 Thermal-Visible Intersection Data Set

In order to track road users in a diverse range of weather and environmental
conditions, the road users themselves must be visible to the algorithms. This
is difficult during the night if artificial illumination is sparse. Vehicles might
be detected by their headlights - but what about pedestrians and bicyclists?

Thermal cameras are independent of the availability of visible light and
only depends on the emitted radiation from objects. Thus, thermal cameras
allows to see objects through the night, as long as the temperature of the
objects is different from the temperature of the surroundings. Contrary to
RGB cameras, thermal cameras are not susceptible to shadows. However,
features are sparse in thermal images, and it might thus be more difficult to
determine identities or distinguish between objects. An extensive review of
thermal cameras in computer vision is found in [9]. When combined, RGB
and thermal cameras extend the visibility of the road users and improves the
robustness of traffic surveillance algorithms.

The proposed data set is an extension of the data set used in [2]. We extend
the original four hours of video data to 16 hours and include a broader variety
of weather and lighting conditions such as rain, wind, twilight, overcast, and
full daylight. Further details regarding the contextual information of the data
set is found in Table I.1. Samples of each of the three locations are shown
in Figure I.3. For each of the three locations, RTV, LTV, and SGC have been
manually annotated and assigned a time stamp whenever the desired road
user type enters the area of the intersection corresponding to the E2 or E3
module of the watch-dog detectors shown in Figure H.2.

6 Experimental Results

The watch-dog and the feature-based tracker are applied on the 16 hours of
video described in Table I.1. In order to mitigate the oversegmentation of
vehicles caused by the feature-based tracker, duplicate tracks are filtered in a
post-processing step. Only one object trajectory per second is allowed to pass
through what corresponds to the E2 and E3 module of the watch-dog detectors
and other tracks within the second are filtered out. Because oversegmentation
is not a problem amongst cyclists, the 1 second filter is only applied to the
detection of RTV and LTV. For detection of SGC, the threshold is relaxed to
0.3 seconds. A detection is marked as a true positive if is within ± 2 seconds
of the ground truth.

The results of the test are shown in Table I.2. It is seen that the watch-dog
based detection of RTV and LTV generally is robust with precision and recall
rates above 0.90 in several sequences. The RGBT mode of the watch-dog is
shown to be stable whenever each individual modality gives acceptable results.
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Table I.1: Environmental conditions of the proposed data set. The sequences are distributed over
three days for each intersection

Location Seq. Time of day Weather Temp. Lighting

A 1 07:00 - 08:00 Partly cloudy 12 ◦C Full daylight
A 2 07:00 - 08:00 Light rain 17 ◦C Overcast
A 3 07:00 - 08:00 Mostly Cloudy 15 ◦C Overcast
A 4 12:00 - 13:00 Clear 19 ◦C Full daylight
A 5 15:00 - 16:00 Light rain 19 ◦C Overcast
A 6 16:00 - 17:00 Mostly Cloudy 19 ◦C Full daylight
B 1 06:00 - 07:00 Rain 12 ◦C Twilight
B 2 07:00 - 08:00 Rain 12 ◦C Overcast
B 3 07:00 - 08:00 Shallow Fog, Partly

Cloudy
6 ◦C Overcast

B 4 12:00 - 13:00 Mostly Cloudy 13 ◦C Full daylight
B 5 16:00 - 17:00 Partly Cloudy 17 ◦C Full daylight
C 1 07:00 - 08:00 Light Rain Showers 13 ◦C Overcast
C 2 07:00 - 08:00 Mostly Cloudy 13 ◦C Overcast
C 3 12:00 - 13:00 Mostly Cloudy 16 ◦C Overcast
C 4 16:00 - 17:00 Light Rain Showers 14 ◦C Overcast
C 5 21:00 - 22:00 Rain Showers 12 ◦C Deep twilight

Fig. I.3: Sample images of intersection A (top), B (middle), and C (bottom). The appearance of
the intersections in both modalities vary greatly due to changing environmental conditions
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7. Conclusion

Whenever the watch-dog fail to detect road users in a single modality, the
RGBT results will suffer accordingly. Whenever results are stable, the RGBT
mode performs best or trails behind the best performing modality by few
percentage points. The results of the feature-based tracker shows remarkable
precision with few or none false positives. Recall of RTV and LTV shows to
be comparable or slightly better than the watch-dog performance. However,
the detection of SGC by either the watch-dog or feature-based approaches
shows considerable room for improvement. The smaller size and the irregular
motion of the SGC are still challenges that need to be solved.

7 Conclusion

This work evaluates the detection performance of left and right turning
vehicles and straight going cyclists at urban intersections. Two detection
approaches are evaluated at 16 hours of RGB and thermal video data featur-
ing challenging weather and light levels. The first approach, the watch-dog,
detects road user actions by using a chained set of basic detectors and spatial
constraints of the intersection. The second approach, the feature-based detec-
tor, uses a KLT-tracker and additional grouping to track moving objects in the
intersection. Both approaches show promising results when detecting vehicles
while the detection of cyclists shows room for further improvement. The use of
RGB and thermal modalities generally results in more stable performance for
both detection approaches. However, more sophisticated weighting of modal-
ities is needed to filter out false negatives whenever a detection algorithm
breaks down in one modality.

Future work includes more persistent tracking of road users at all speeds
in the intersection and further road user classification. Once full trajectories
are found, trajectory classification techniques will be investigated to gather
more detailed information of the road user actions [17].
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Table I.2: RTV, LTV, and SGC detection performance of the watch-dog and feature-based trackers.
The number of manually annotated SGC, RTV, and LTV road user actions is marked in italics in
the right side of the table

Seq. Block-based Watch-dog Feature-based tracker GT

Precision Recall Precision Recall
SGC RTV LTV SGC RTV LTV SGC RTV LTV SGC RTV LTV

A1
RGB 0.20 0.52 0.93 0.71 0.50 0.84 0.48 0.72 0.91 0.27 0.80 0.62 146
T 0.77 0.98 0.94 0.70 0.75 0.65 0.96 0.96 0.77 0.32 0.79 0.97 122
RGBT 0.80 0.97 0.96 0.71 0.80 0.92 0.57 0.74 0.86 0.24 0.75 0.92 77

A2
RGB 0.29 0.98 0.99 0.64 0.78 0.99 0.95 0.96 0.88 0.43 0.81 0.96 131
T 0.57 0.99 0.91 0.56 0.61 0.55 1.00 0.99 0.93 0.19 0.69 0.96 130
RGBT 0.76 0.97 0.97 0.60 0.84 0.89 0.95 0.95 0.94 0.44 0.82 0.97 74

A3
RGB 0.68 0.98 0.91 0.65 0.90 0.97 0.93 0.99 0.87 0.47 0.88 0.87 141
T 0.85 0.98 0.94 0.65 0.85 0.16 0.96 0.99 0.83 0.33 0.70 0.95 120
RGBT 0.90 1.00 0.97 0.69 0.90 0.89 0.95 0.97 0.85 0.52 0.87 0.94 93

A4
RGB 0.11 1.00 0.91 0.90 0.50 0.87 0.75 0.98 0.93 0.10 0.88 0.68 29
T 0.73 0.97 0.90 0.55 0.83 0.87 1.00 1.00 0.84 0.10 0.77 0.99 101
RGBT 0.77 0.99 0.90 0.79 0.79 0.96 0.83 0.99 0.91 0.17 0.87 0.99 82

A5
RGB 0.54 0.98 0.95 0.70 0.78 0.91 0.95 0.98 0.93 0.41 0.88 0.85 44
T 0.63 0.94 0.90 0.70 0.78 0.27 1.00 0.96 0.91 0.07 0.51 0.90 156
RGBT 0.66 0.97 0.99 0.70 0.91 0.73 0.92 0.96 0.91 0.27 0.77 0.88 139

A6
RGB 1.00 0.96 0.98 0.08 0.80 0.88 1.00 0.97 0.91 0.18 0.90 0.86 39
T 0.27 0.73 0.96 0.90 0.27 0.88 1.00 0.98 0.89 0.15 0.82 0.99 137
RGBT 1.00 0.95 0.97 0.00 0.42 0.96 1.00 0.98 0.89 0.15 0.82 0.99 155

B1
RGB 0.19 0.97 0.98 0.82 0.55 0.48 1.00 0.94 0.92 0.71 0.85 1.00 28
T 0.78 0.91 0.97 0.89 0.71 0.69 1.00 0.93 0.95 0.64 0.67 0.70 195
RGBT 0.63 0.94 0.96 0.86 0.78 0.82 0.96 0.92 0.62 0.79 0.81 0.65 89

B2
RGB 0.34 0.97 0.99 0.73 0.67 0.83 1.00 0.97 0.93 0.72 0.88 0.97 71
T 0.65 0.84 0.98 0.68 0.78 0.69 0.98 0.97 0.92 0.61 0.75 0.91 353
RGBT 0.67 0.95 0.98 0.68 0.85 0.95 1.00 0.97 0.83 0.69 0.83 0.79 210

B3
RGB 0.43 0.99 0.92 0.65 0.89 0.93 1.00 1.00 0.90 0.63 0.84 0.98 92
T 0.19 0.94 0.92 0.64 0.80 0.83 0.98 0.99 0.71 0.68 0.87 0.81 377
RGBT 0.49 0.99 0.93 0.63 0.90 0.99 1.00 1.00 0.91 0.61 0.81 0.88 177

B4
RGB 0.08 0.98 0.96 0.82 0.67 0.89 1.00 0.96 0.93 0.71 0.81 0.99 28
T 0.03 1.00 1.00 0.79 0.00 0.02 1.00 0.99 0.86 0.64 0.78 0.99 205
RGBT 0.04 1.00 1.00 0.79 0.00 0.05 1.00 0.98 0.95 0.71 0.75 0.99 87

B5
RGB 0.09 0.99 0.97 0.83 0.88 0.94 0.83 0.99 0.95 0.60 0.83 0.99 48
T 0.26 0.99 1.00 0.60 0.91 0.87 0.95 0.96 0.87 0.77 0.89 0.91 347
RGBT 0.07 0.99 0.99 0.81 0.93 0.94 0.86 0.99 0.98 0.63 0.80 0.95 102

C1
RGB 0.90 0.94 0.97 0.73 0.94 0.95 1.00 0.96 0.96 0.51 0.94 0.69 74
T 0.89 0.88 0.96 0.66 0.91 0.81 1.00 0.93 0.93 0.54 0.97 0.96 116
RGBT 0.96 0.94 0.96 0.70 0.93 0.94 1.00 0.97 0.97 0.53 0.97 0.70 99

C2
RGB 0.80 0.97 0.94 0.75 0.94 0.81 0.98 0.97 0.98 0.52 0.97 0.72 88
T 0.93 0.42 0.97 0.74 0.96 0.88 0.98 0.94 0.94 0.51 1.00 0.96 120
RGBT 0.94 0.98 0.95 0.75 0.97 0.92 0.98 0.99 0.99 0.52 0.97 0.73 113

C3
RGB 0.79 0.99 0.94 0.92 0.94 0.94 0.91 1.00 0.98 0.83 0.97 0.82 12
T 0.03 0.55 0.81 1.00 0.46 0.48 1.00 0.98 0.98 0.83 1.00 0.91 128
RGBT 0.14 0.98 0.94 0.75 0.48 0.61 0.91 1.00 0.99 0.83 0.99 0.77 109

C4
RGB 0.84 0.98 0.99 0.79 0.35 0.93 1.00 1.00 0.99 0.56 0.96 0.82 34
T 0.31 0.93 0.88 0.79 0.74 0.81 1.00 0.97 0.98 0.65 0.98 0.93 155
RGBT 0.33 0.96 0.99 0.76 0.61 0.81 1.00 0.99 0.99 0.62 0.97 0.80 103

C5
RGB 0.01 0.53 1.00 0.67 0.24 0.16 1.00 0.97 1.00 0.67 0.94 0.84 3
T 0.67 0.94 1.00 0.67 0.88 0.68 0.67 0.92 1.00 0.67 1.00 0.95 33
RGBT 0.67 1.00 0.93 0.67 1.00 0.74 1.00 1.00 1.00 0.67 1.00 0.95 19
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1. Background and purpose

1 Background and purpose

The Swedish Conflict Technique [3] is a well-known way of assessing the
safety of a particular road design. In recent years the application of automatic
image analysis instead of human observers has been exam-ined, e.g. in [5].

The scope of this work is to develop a method for automatic image analysis
using a double input from RGB and thermal cameras to provide time stamps
of potential conflicts and traffic counts. Subsequently, an in-depth analysis of
the potential conflicts is performed manually.

Studies have shown that the construction of bike paths results in a higher
number of accidents with cyclists in intersections and in particular in those
controlled by traffic lights [1], [4]. Through the years different designs of bike
paths in signalized intersections have been established in order to improve the
safety of cyclists. However, there is no clear evidence of when the different
bike path solutions should be used and whether the best bike path solution
differs with varying traffic volumes. In this work the assessment of the safety
of cyclists is based on the number of near-collisions between cyclists and
left/right turning cars. To facilitate the detection of potential near-collisions,
video analysis techniques have been applied in this work. Concretely, a
comprehensive case study compares five different designs of bike paths in
signalized intersections.

2 The method

Two situations are of special interest to detect:

1. The time gap between a car and a cyclist with crossing trajectories is
small

2. One or both of the road users stops near the intersection point between
their trajectories in order to avoid a potential collision between the two
road users

A tool using multi-modal imagery for automatic detection of interactions,
and thus potential conflicts, has been developed. The tool utilizes a combina-
tion of RGB and thermal imagery. Whereas the RGB camera is able to capture
a higher level of detail of the road users, the thermal camera might detect road
users which would be invisible to the RGB camera due to shadows or result in
false positives, see Figure J.1. A full utilization of the thermal camera requires
a synchronization of the RGB and thermal recordings, which is solved in a
post-processing step.

The tool measures the post-encroachment time of cars and cyclists in the
conflict area, which is manually defined for each intersection. The detection
of potential conflicts is split into the subtasks of detecting:
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Fig. J.1: Shadows complicates the detection of a cyclist in the RGB recordings, whereas the cyclist
is easily distinguished from the background in the thermal recording.

(a) Left Turning Cars (b) Right Turning Cars (c) Straight Going Cyclists

Fig. J.2: (a) Detection of left turning cars. Consists of three edge detectors and two flow detectors.
(b) Detection of right turning cars. Consists of three edge detectors and two flow detectors. (c)
Detection of straight going cyclists. Consists of two edge detectors and one flow detector.

• Straight going cyclists (SGC)

• Right turning cars (RTC)

• Left turning cars (LTC)

The output of these subtasks is used for the detection of potential con-
flicts and the computation of the time gap between the car and the cyclist.
The detection of these subtasks is handled by module-based program logic
that consists of two blocks; flow detectors (F) and edge detectors (E). The
configuration of each subtask is seen from Figure J.2 below.

The flow detectors compute the dense optical flow of the predefined areas
by using the algorithm of [2].
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2. The method

Left turning car Right turning car Straight going cyclist
E1 On On On
E2 On On On
E3 On On On
F1 On On -
F2 Off Off -

Table J.1: Relationship between detection subtasks and their corresponding detector blocs. A
detection subtask is triggered when the individual detector blocs (E1-E3, F1-F2) are triggered in
the order shown above.

The flow vectors of the algorithm are filtered such that only vectors within
a specific angle range are counted. The flow detector is triggered whenever
the number of vectors inside this range exceeds a predefined threshold. The
average flow vector is of each region is illustrated by a red arrow in Figure
J.2. Whereas the flow detectors determine if something is moving in a certain
direction, the edge detectors determine if something is present within its
region. The edge detectors rely on a background subtraction algorithm that
uses the edge detection of [6]. Whenever the amount of edges becomes
significant, the detector is triggered. If the amount of edges is not significant,
the background is updated.

In order to detect a specific road user action, the blocks must be triggered
in a pre-determined order that is specific to each detection subtask. The
subtask of detecting left and right turning cars is distributed upon three edge
detectors (E1, E2, E3) and two flow detectors (F1, F2). In order to detect a
left or right turning car, the blocks E1, F1, E2, and E3 must be triggered in
succession. If any activity in F2 is detected, the before mentioned blocks are
deactivated for an interval of time to prevent false positives.

The subtask of detecting straight going cyclists is accomplished using two
edge detectors (E1, E2) and one flow detector (F1). The detectors E1, F1, and
E2 are activated in succession. If E2 is triggered, a straight going cyclist is
detected. The logic of the three detection subtasks is listed in Table J.1.

A potential conflict is detected if:

1. A cyclist enters the conflict zone less than 2.5 seconds after a car has left
the zone

2. A cyclist leaves the conflict zone less than 1.0 seconds before a car enters
the zone

3. A car stops near the conflict area while a cyclist is present in the conflict
area

In the detection subtasks of Figure J.2a and J.2b, the conflict zone is the
edge detector block E3. In the detection subtask of Figure J.2c, the conflict
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zone is E2. The specific layout of the masks is dependent of the properties
of the intersection. The conflict zones of the car and cyclist detectors should
overlap but not necessarily be identical.

3 Application of the method

The method described is expected to be capable of detecting the presence
of road users on predetermined boundaries; however, it is still under devel-
opment and needs to be validated. In the validation the results from the
developed software will be compared to a manual detection of the potential
conflicts. Then the method will be used in the comparison of the number of
conflicts in intersections with different designs of the bike path across the
intersection. At the workshop we will present preliminary results for these
phases of the project.
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1. Background for the software development

Abstract

To a large extent, traffic safety improvements rely on reliable and full-covering accident
registration. This is difficult to obtain in practice. Hence, surrogate measures as traffic
conflict studies can contribute with more information. To make these studies more
efficient, a software called RUBA has been developed. It works as a watchdog – if a
passing road user affects defined part(s) of the video frame, RUBA records the time of
the activity. It operates with three type of detectors (defined parts of the video frame):
1) if a road user passes the detector independent of the direction, 2) if a road user passes
the area in one pre-adjusted specific direction and 3) if a road user is standing still
in the detector area. Also, RUBA can be adjusted so it registers massive entities (e.g.
cars) while less massive ones (e.g. cyclists) are not registered. The software has been
used for various analyses of traffic behaviour: traffic counts with and without removal
of different modes of transportation, traffic conflicts, traffic behaviour for specific traffic
flows and modes and comparisons of speeds in rebuilt road areas. While there is still
space for improvement regarding data treatment speed and user-friendliness, it is the
conclusion that, at present, the RUBA software assists a number of traffic behaviour
studies more efficiently and reliably than what is obtainable by human observers.

1 Background for the software development

Traffic accidents are one of the main killers in the societies. More than 1.25
million fatalities and 50 million injured are registered each year [15]. Most
countries in the industrial world have experienced significant reductions in
the number of fatalities since the 1970s (2). Also, a specific marked reduction
has been recognised since the initiation of the financial crisis in 2007-8 [13].
However, as the crisis fades, the number of fatalities has started to rise
again [2, 13], and the societies are still far from the ideal situation regarding
traffic safety as described most thoroughly by the Swedish Vision 0 [14].

As focus on traffic safety increased, it also became clear that not all traffic
safety problems could be identified and quantified proper from traditional
traffic accident registrations [17]. This is partly because of the skewness
of registration depending of accident and road user type and the general
dark figures in traffic accident registration [3, 17], but also due to the limited
information available in traditional traffic accident data. Therefore, surrogate
measures might show a truer pattern than traditional accident data. One of
the most well-reputed surrogate methods is the traffic conflict study (TCS) as
thoroughly described by Hydén [6] and elaborated further on in many cases,
see e.g. [11, 12, 17].

A TCS is normally made for individual locations, often intersecting ones,
and the basic idea is to register any activities where absence of an avoidance
activity would have resulted in an accident. This is termed ‘conflict’. The time
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between the avoidance activity and the accident if no avoidance was made
defines if the conflict is serious or not [6, 17].

Originally, the TCS registration was made by reporters, i.e. persons who
monitored the traffic activities manually. The work load was high as it required
one person per traffic flow to study [9]. Later, video registration took over.
Cameras placed with overview on relevant parts of the location recorded the
traffic behaviour. Subsequently, analyses were made based on the recorded
videos. However, even though the analysis work moved to an office space,
it was still very time-consuming [9]. Therefore, with the upcoming video
analysis tool, more of the analysis work can be made automatically or semi-
automatically. One of these software systems developed for video analyses
is the ‘Road User Behaviour Analysis (RUBA), which will be elaborated on
here. The remaining part of this paper consists of a brief introduction to some
of the available on-the-shelf products, presentation of RUBA, how it works,
selected case studies and a discussion on the possibilities and shortcomings
with the RUBA software as it is now.

2 An overview of on-the-shelf products

Most available products for traffic analysis come as an integrated solution
for both hardware and software. There is a range of products, but the ones
mentioned cover the most relevant issues. PedTrax and Smart Cycle from Iteris
have their own hardware and can count and measure speed bi-directionally [7].
Traffic Flow from Viscando Traffic Systems counts different road users and can
detect how road users use the recorded space [18]. DataFromSky [5] and Cowi
A/S [4] use drone recordings, and can detect speed of individual vehicles
and provide trajectories for the beneficiary. A few products and initiatives
are available that enable end-users to analyse video recordings on their own
computers, i.e. platform independent. The Traffic Intelligence project [8]
allows for tracking and classification of road users from video. Recently,
the functionality has been extended by the tvaLib library [16] allowing for
further analysis and visualisation of the tracking results. Both of the two
last-mentioned projects are primarily utilized from the command line and are
thus not accessible for most end-users.

3 What is RUBA?

RUBA is a computer-based video analysis tool for Windows, Linux and MacOS.
The analysis is applied to the recorded video files and is thus independent of
the hardware used for the video acquisition. RUBA is developed in collabora-
tion between the Division of Transportation Engineering and Visual Analysis
of People Laboratory at Aalborg University as a part of the ongoing H2020
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Fig. K.1: The user interface of RUBA.

project InDeV [1]. The program can be used to analyse videos recorded at
a specific location where traffic-related problems need to be studied. RUBA
works as a watchdog, which means that RUBA can be used for identifying
events of relevance in recorded videos and make a time-stamp of the event, so
the interesting events can be processed manually afterwards [10].

The advantage of RUBA compared to manual registration is the absence of
time-consuming screening of video frames – especially in case of detection of
rare events as e.g. traffic conflicts or red-light driving. As most studied cases
are somehow unique, it has so far not been possible to estimate the reduction
of time use for the video analyses, but it is significant.

RUBA is available for research work via contact to Aalborg University. It is
the aim to share the software with partners in collaborative projects with the
aim to use, test and develop the program. Furthermore, academia can access
the program – but not the source code – to specific agreed projects. In order
to gain further experiences with the software, The Division of Transportation
Engineering at Aalborg University is also keen to carry out consultancy
services of relevance to RUBA. In the long term, it is expected to make the
software freely available to municipalities and consultants.

Figure K.1 shows the user interface of RUBA. RUBA allows a user to draw
one or more fields on top of the video in the area or areas where analyses are
requested. These fields are called detectors and can register whenever a road
user passes the detector. RUBA makes these detections of road user(s) on the
basis of colour changes in the videos pixels within the drawn detectors. Every
time the colour changes in the detector field, it is assumed that a road user
passes the detector, and RUBA makes a time-stamp of the event.
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Fig. K.2: The three types of detectors in RUBA.

RUBA has three types of detectors: Presence (Blue), Movement (Red) and
Stationary (Green). The Presence detector registers if a road user passes the
detector area independent of the direction, the Movement detector registers
if a road user passes the area in one pre-adjusted specific direction and the
Stationary detector registers if a road user is standing still in the detector field.
Figure K.2 shows the three types of detectors. The parameters to calibrate
the detectors depend on the detector type, e.g. the parameters to calibrate
a Movement detector are minimum speed, trigger threshold and movement
direction, but the only parameter to calibrate a Presence or a Stationary
detector is minimum occupation percentage. The minimum speed is the
speed which the road user at minimum has to move to be detected, trigger
threshold is the sensitivity of the detector, movement direction is the direction
in which the road users should be driving to be detected and the minimum
occupation percentage is the minimum coverage of the detector to activate
it. The sensitivity of the detectors can be calibrated so only road users are
activating the detector while movements of the camera view or branches and
leaves will not affect the detection.

The detectors in RUBA can also be combined even if it is not the same type
of detectors. A combination of two detectors is called a double module (One
detector is called a single module). These double modules could, for example,
be used to find events with same time arrival of two road users. RUBA allows
the user to create more than one double module or single module in an
analysis, but the amount and sizes of the detectors are crucial for how long an
analysis will take. This is because it requires more pixel treatment and hence
computer capacity. Figure K.3 shows an example of a double module with
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Fig. K.3: Double module to detect same time arrival between a straight going bicycle and a right
turning car and a straight going bicycle and a left turning car.

two Movement detectors to register cases with identical time of arrival of a
straight-going bike and a right-turning car.

RUBA can be used in a lot of different analysis of traffic-related problems,
and at Aalborg University so far RUBA has been used for TCS, counting traffic
flows, registration of vehicle speeds and driving behaviour studies [19].

As RUBA is under development despite significant use and ongoing im-
provements, there are still some challenges to take into account. One is that
the colour of the videos pixels in a detector field can change without a road
user passes through, e.g. if the weather changes, the light in video changes or
shadows from example trees or lamppost interferes. In such cases can RUBA
in some cases make a time-stamp of a false-positive event regardless of the
actual situation.

4 RUBA use cases

RUBA can be used for different traffic analyses, and three examples of how
RUBA can be used is counting traffic flows, registration of same time arrival
between road users and registration of the speed of vehicles.

4.1 Counting traffic flow – Case study in Aarhus

RUBA can count traffic flows and volumes. Traffic flows were counted in
the City of Aarhus, Denmark through a zebra crossing near the central train
station. The study included the cars, buses and trucks, but in this area, there
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Fig. K.4: The two movement-detectors in the Aarhus project.

are many bicycles too, which means that the calibration of the detector needs
to be done carefully or the detector will detect all the crossing bicycles as well.

Studies counting road users in a specific direction often use the Movement
detector, because it is possible to sort out road users going in a different
direction. If e.g. the straight-going cars should be counted, but the right-
turning and straight-going cars share lane, the Movement detector can be
used to sort out right-turning cars. To count the three types of road user,
mentioned before, in this study the Movement detector is used cf. figure K.4.

The detectors are placed after the zebra crossings in the two directions so
road users yielding for the pedestrians can still obtain the minimum speed to
activate the detectors. In Aarhus, it was needed to be sure that the detector
did not count bicycles. It was done with the parameters, minimum speed and
trigger threshold, as car drivers usually drive faster and the detectors would
have to be less sensitive. Figure K.5 shows an example where a car but not a
bicycle is detected.

4.2 Registration of same time arrival of road users – Case
study of crossroads solutions for bicycles

Another project in which RUBA was used was Road crossing for bicycles. The
project focused on bicycle safety in road crossing and the effects from different
kinds of bicycle lanes/paths [11, 12].

Specific modules for RUBA were developed to decrease the numbers of
false-positive registrations in this study. These modules were as follows:
1: one for straight-going bicycles, 2: for right-turning cars and 3: for left-
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Fig. K.5: Demonstration of the ability to only detect cars, trucks and buses, and not bicycles.

turning cars. Each of the three modules contains of at least four detectors.
Figure K.6 shows an example of the use the three modules. The module
for straight-going cycles has four detectors: three Presence detectors (blue)
and one Movement detector (red). The module for right-turning cars has
five detectors: three Presence detectors (blue), two Movement detectors (red).
There is one Stationary detector, which detects when a car is stationary in
the detector (green). The module for left-turning cars has six detectors: two
Presence detectors and four Movement detectors.

The combination of detectors used in this analysis were rather advanced
and could be done more simply if more false-positives were allowed. The
simpler version to detect same arrival time between a straight-going bicycle
and a right-turning car would be to use a double module of two Movement
detectors and a double module of a Movement detector and a Stationary
detector, so it would also detect if the car yields for the bicycles. For straight-
going bicycles and left-turning cars, the simpler version would be a double
module of two Movement detectors. Figure 3 illustrates the principle behind
the simpler version.

4.3 Registration of a vehicles speed – Case study of speed
through a roundabout

A third study examined how rebuilding of rural single-lane roundabouts to
road trains affects driving speed in the roundabouts [19]. The study focused
on the speed of private cars and was formed as a before-after study. The
rebuilding of roundabouts was made to ensure sufficient space for road trains
and was mainly made from a reduction of the central island, and the reduced
area was added to the driving area due to an increasing width of the lane.
Hence the turning radius became bigger. A bigger turning radius could
allow road users, especially private cars, to increase their speed through the
roundabout. The speed through the roundabouts was estimated in RUBA
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Fig. K.6: Examples of how to use the three modules.
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Fig. K.7: Detectors from the vehicle speed study, before the rebuilding.

with two Single modules. The detectors registered when the car enters and
leaves the detectors. With the known distance between the detectors, the
speed was calculated. The overall result was that the average speed in the
studied roundabout went up with 9 km/h [19]. Figure K.7 shows the detectors
from one of the roundabouts. It has to be mentioned that while the actual
speed registered with this method is rather uncertain, the calculated speed
changes are more reliably as the same uncertainties in the before and after
situation are present. The challenge regarding absolute speeds is connected
with the inclined angel of recording. It is difficult to define the exact position
of the detector areas and the various shapes of different cars etc. can further
contribute to this uncertainty.

5 Summary and concluding remarks

Traffic safety problems are mainly concentrated where there is interaction
between road users, i.e. intersections of various types. Consequently, signifi-
cant parts of the focus have been on the traffic safety of these intersections.
Over time it has become clear that traditional accident records are rarely
comprehensive and also ethically problematic to use due to the amount of
time it takes from data collection about an identified safety problems until a
response. Therefore, surrogate measures are developed to react on the basis of
a more comprehensive data set and in a short time. One of these measures is
the Traffic Conflict Study (TCS). However, TCS requires a significant amount
of video recordings to ensure coherent and reliable data samples. Analyses of
this video data are very time-consuming without any software to reduce the
manual work load, and it is preferable to do it more unambiguously than a
human observer can do. Most available tools for these analyses are connected
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to the recording camera hardware.
In order to open up for more coherent analyses and increased knowledge

of the effect of various road designs on road user behaviour, a platform-
independent software can contribute positively in these directions. The RUBA
software offers this and can be used to analyse in TCS. Also, it has proved
useful to other types of traffic behaviour studies and registrations. RUBA
works as a watchdog and basically it registers when the colour pattern in a
part of the video frame changes more than a defined threshold. Furthermore,
it operates with three type of detectors: Presence, Movement and Stationary.
The first detector records if a road user passes the detector independent of the
direction, the second detector if a road user passes the area in one pre-adjusted
specific direction and the third detector if a road user is standing still in the
detector area.

The RUBA software has been used for various analyses of traffic behaviour:
traffic counts with and without removal of different modes of transportation,
traffic conflicts, traffic behaviour for specific traffic flows and modes and
comparisons of speeds on rebuilt road locations. With further development
of the software and the associated expected increase in server capacity and
computing power, it is expected that RUBA will be an even more efficient tool
than it is at present. At the time of writing, automatic detection of red-light
driving is being tested. Also, at present, the first test on drone recordings has
shown promising results.

There is still room for further improvement, and there is a range of chal-
lenges which should be dealt with in order to increase the benefit from RUBA
or similar watchdog-based software. Some of the main challenges are the
following: 1) to deal with inevitable noise from shadows, changing light con-
ditions, unstable camera installation and other movable objects such as leaves
or even birds, 2) to distinguish a detailed movement pattern, as especially
for cyclists’ body language and eye contact play important roles and 3) to
further streamline the working procedure to reduce manual time use. These
challenges could be partly met by bigger computing power. It allows, all
things being equal, for the use of more detectors without using too much
computer time. Also, elements of machine learning would be able to solve
some of the raised issues.

Regardless of the mentioned shortcomings from such software tool, RUBA
is still more unambiguous and cheaper than if a human observer is to identify
various problems in the transport system. Hence, it is a highly relevant tool to
contribute to applied field research and, as such, to a cleaner, safer and more
efficient road transport system in the future.
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1. Introduction

Abstract

Several initiatives have been launched to help prevention of traffic accidents and near-
accidents across the European Union. To aid the overall goal of reducing deaths and
injuries related to traffic, one must understand the causation of the traffic accidents
in order to prevent them. Rather than deploying a person to physically monitor a
location, the task is eased by camera equipment installed in existing infrastructure, e.g.
poles, and buildings, etc. In rural areas there is however a very limited infrastructure
available which complicates the data acquisition. But even if there is infrastructure
available in either the rural area or the urban area, this might not serve as an ideal
position to capture video data from. In this work, we survey and provide an overview
of available and relevant portable poles setups with respect to capturing data in both
urban areas and rural areas. The conclusion of the survey shows a lack of a mobile,
lightweight, compact, and easy deployable portable pole. We therefore design and
develop a new portable pole meeting these requirements. The new proposed portable
pole can be deployed by 2 persons in 2 hours in both rural areas as well as urban
areas due to its compactness. The deployment and usage of the new portable pole
is a complimentary tool, which may improve the camera capturing angle in case
existing infrastructure is insufficient. This ultimately improves the traffic monitoring
opportunities. Further, the survey of selected portable poles provides an excellent
overview and can aid multiple applications within road traffic.

1 Introduction

Preventing traffic accidents and near-accidents remains a major and interesting
challenge to address for academic partners as well as public organizations. In
2017 alone, the European Union (EU) reported that 25,000 people lost their
lives and 135,000 people were injured on the roads across the EU [5]. In 2009
the EU estimated that the deaths and injuries across Europe costed the society
approximately 130 billion Euro [4]. As a result, the EU set out a 2010-2020 goal
with an overall objective of halving road deaths across Europe. To achieve
this, several initiatives have been started covering increased enforcement of
road rules, improved education and training of road users, safer road infras-
tructure, promote the use of modern technology to increase road safety (ITS),
and protection of vulnerable road users (VRU). All of which are important to
analysis and address to meet the overall objective in 2020.

Understanding accidents causes in the traffic requires a lot of data, which
can be collected with different purposes. Naturalistic Driving Study (NDS)
such as the "100-Car Naturalistic Driving Study" [16] and the "SHRP2 Natural-
istic Driving Study" [3], collects all sorts of data from within the participating
vehicles such as GPS, accelerometer and similar vehicle network data, but the
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vehicles are also equipped with multiple different sensors, e.g. RGB cameras,
thermal cameras, stereo cameras [18] or radars. Though these studies generate
a lot of interesting data, a major drawback of this approach is the large invest-
ments needed to reach a large participant pool and then afterwards installing
expensive equipment inside the car whilst keeping the car naturalistic.

A less expensive approach of capturing data that helps understanding
accidents causes is simply to monitor and observe a critical location, e.g.
traffic intersection. This manually task is however quite error-prone as the
assigned person must be aware of everything happening in area of interest
whilst continuously documenting the observations over a longer period of
time. So rather than deploying a person to physically monitor a point of
interest, the task is eased by mounting a camera-based system in existing
infrastructure, e.g. poles, and buildings, etc. The captured video data can
then be post-processed and analyzed with the purpose of understanding the
scene and ultimately making adjustments that ideally prevents accidents and
near-accidents. The main challenge of the camera-based system is that often
there is no or very limited existing infrastructure available at the scene, thus
directly impacting the quality of the analysis. This has spawned the use and
interest in portable setups that can be moved around, which allows for a more
optimal data collection in both urban areas but in particularly also in rural
areas where there is often no proper infrastructure to mount cameras in.

In this paper, we make an analysis of relevant portable setups, where we
discuss the pros and cons of different portable types and solutions, thorough
overview of available setups. The result of the overview shows a lack of a
mobile, lightweight, and easy deployable portable pole, thus we design and
develop a new portable pole meeting these requirements.

The contributions of this paper are thus twofold:

1. Providing a thorough analysis and overview of available portable camera-
based capturing setups.

2. Design and development of a new mobile, lightweight, and easy deploy-
able portable pole to ease camera-based data collection.

The paper is organized as follows: Section 2 describes the minimum
requirements for the portable pole as well as the general definitions used. All
of the requirements and definitions are then used examining various solutions
ultimately providing an overview of available portable pole solutions in
Section 3. In Section 4, the design and development of the new portable pole
is presented. Usage and applications of new portable pole is presented in
Section 5. In Section 6 we perform a discussion of our work. Finally, we
present our conclusions in Section 7.
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2 Portable Pole Analysis

Portable poles can serve multiple purposes and can be used for various
applications. As briefly mentioned and introduced in Section 1, this survey
will only consider portable pole solutions that could be relevant as a camera-
based recording platform in the field of traffic surveillance and monitoring.

2.1 Minimum Setup Requirements

The relevant portable pole solutions are derived based on 4 minimum require-
ments that are considered essential for a portable pole to function as a proper
camera-based recording platform, which can be utilized in both urban and
rural traffic environments.

Recording Time

The video recordings are the basis for the entire analysis, so besides having
a great view-angle provided by either the infrastructure or a portable pole,
the video recordings must contain a sufficient amount of accidents or near-
accidents in order to make some concluding remarks of a given location. In [7],
the frequency of traffic accidents is described as a pyramid, where the pyramid
base contains normal traffic encounters that are non-critical and rather safe,
but very frequent. The pyramid apex contains the fatal and very severe events,
e.g. fatal injuries, these are however occurring more infrequent compared to
accidents in the lower part of the pyramid. Previous studies from Scandinavia
show that at a particular site, the number of near-accidents tends to be as low
as 1-2 per day [6] [11] [20]. So in order to get video recordings containing some
infrequent events, the portable pole and camera-based setup must robust and
stable enough to record continuously throughout a longer period of time. In
this analysis we consider a period of 3 weeks to be the minimum requirement.

Capturing Height

A major issue to take into account when installing camera equipment at
a point of interest is occlusion. Occlusion is in this case defined as when
two objects are overlapping each other from the view-angle of the camera
equipment, which makes the objects completely or partly occluded. In Figure
L.1 an example of this is shown, where the red car is clearly not visible from
the specific camera-view mounted in existing infrastructure.

To reach the most accurate conclusion in a traffic analysis, the data needs
to be as accurate as possible, thus we want as little occlusion as possible in the
data collection. There are multiple ways of reducing occlusion, e.g. having
multiple cameras from different view-angles or simply just by increasing
the capturing height similar to the Figure L.1b. In this analysis, we define
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(a) (b)

Fig. L.1: Objects can overlap each other in the camera-view as seen in (a) where the the large
cement truck clearly occludes the lane behind it. (b) clearly shows that a red car is in fact driving
side-by-side of the cement truck.

a minimum capturing height of 7 meters for the portable pole, which is 3
meters higher than the maximum height limit for vehicles in most countries
in Europe [21] [8].

Ground Area Occupation

To make sure, that the data collection is done in an as naturalistic and un-
obtrusive environment as possible, we need to make sure that the base does
not cause any major impact on the behavior of the drivers on the road or the
pedestrians on the sidewalk. Naturally, placing a new "intruder" in an existing
environment may attract some attention and thus result in changed driver
behavior, but the point of this demand is to keep it at a minimum by defining
the maximum ground area occupation of the portable base to be 1.5 meters in
the width. This should enable deployment of the portable pole in rural areas
and in most urban environments as it can be deployed on the sidewalk whilst
pedestrian should be able to easily walk around it. The maximum ground
area occupation is only defined for the width, as this is the strictest one in
terms of occupying the sidewalk. The length is less critical as people are still
able to use the sidewalk, however it should preferably be under 2.5 meters.

Payload Weight

The portable pole setup must be able to handle the payload weight from the
capturing devices mounted in the top. In this analysis, we suggest using both
a RGB camera and thermal camera as capturing devices. Using multi-modal
visual cues provides a solid data foundation for a later accident causation
analysis as accidents and near-accidents do not solely happen in daylight
[19]. Doing periods with a limited amount of light and challenging weather
conditions, e.g. night, winter, rain. Thermal cameras are quite useful as
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illustrated in Figure L.2, where both modalities are seen showing the same
scene.

(a) (b)

Fig. L.2: Data collection at 02:00 in the night using two modalities: (a) RGB camera (b) Thermal
camera.

The RGB camera is having a hard time coping with the headlights from
the car and the low-light in the reminder of the scene. Furthermore, the RGB
camera seen in Figure L.2a is challenged by the weather conditions, i.e. rain.
The thermal camera on the other hand do not rely on light to produce its
output but infrared radiation, which clearly produce a more accessible output
as seen in Figure L.2b, where the car is clearly visible. The pole must therefore
be able to handle a setup with two capturing devices. The capturing devices in
this analysis are seen in Table L.1, which defines a minimum payload weight
requirement of 5.7 kg.

Table L.1: Derivation of the minimum payload weight requirement using AXIS RGB camera and
thermal camera.

Type Manufacturer Model Weight [kg]
RGB Axis Q1615-E 3.5
Thermal Axis Q1932-E 2.2

Below are the requirements for a portable pole listed, if nothing else is
stated, these are minimum requirements.

1. Solution must be able to record continuously in 3 weeks.

2. Capturing height: 7 m.

3. Maximum ground area occupation(Width): 1.5 meters.

4. Payload weight: 5.7 kg.
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2.2 Portable Pole Types

In this analysis, we have divided portable poles into 4 different types, which
will also form the structure for the reminder of the portable pole analysis
and overview, namely: 1) Lightweight and compact portable pole with low
payload; 2) compact portable pole with high payload; 3) trailer portable pole
with high payload; and 4) heavyweight portable pole with high payload.

The payload is the capacity which the portable pole is able to lift in the
top during operation. The stability in the top of the pole, hence the recording
usage quality, is dependent on the payload. Common for all of the portable
pole types are that they all must comply with the minimum requirements
defined in Section 2.1.

Type-1 Lightweight and compact portable pole with low payload: The
main goal of this type is that they are very easily moved and transported
between locations. The efforts needed for setting up this type of portable pole
is very low. The setup and transportation of this type of portable pole is a
one-person job, requiring it to be lightweight and compact. The stability and
payload scales accordingly, resulting in a low payload to keep the pole stable
in the top.

Type-2 Compact portable pole with high payload: Rather than being able
to transport the portable pole by yourselves, this type consider more heavy-
weight equipped that can be assembled on-location by one or two persons.
The equipment will remain compact while dissembled such it can be easily
transported from location to location by use of a van or pick-up truck. When
assembled the equip-ment is more robust compared to type-1, but at the cost
of easy mobility.

Type-3 Trailer portable pole with high payload: This type utilizes a trailer
or small wagon which can be attached to a vehicle’s hitch ball. All the
equipment is installed upon this trailer, such that one or two persons can
drive to a location and set up the portable pole without too much assembling
and more lenient requirements for the level of the ground base. This provides
a rather stable portable pole with some degree of mobility.

Type-4 Heavyweight portable pole with high payload: By using a large
platform of e.g. concrete, all the equipment can be installed on this providing
a robust platform for the portable pole. However, this require a large truck
with a crane for transportation, but provides a good pre-assembled portable
pole.

This division will form the structure for the portable pole overview section
when surveying the corresponding available portable poles.
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3 Overview of Relevant Portable Poles

The overview is divided into 6 parts. The first part introduces a general base
framework that complies with the battery and storage requirements and is
applicable for most of the portable poles presented. This is followed by 4
parts, one for each of the 4 portable pole types presented in Section 2.2. The
final part presents an overview that summarizes all of the presented portable
poles.

3.1 Base framework

Regardless of the portable pole choice, the data recording capacity, the power
supply and underlying video acquisition framework must fulfill the minimum
requirements. Using aforementioned minimum requirements, we will in this
subsection define a common framework that can be used together with the
portable poles.

Video acquisition

The Axis cameras defined in Table L.1 are capable of operating by Power
over Ethernet (PoE) which means it is only necessary to supply one cable per
camera in the mast. The cameras are by the use of a network switch connected
to a Synology DS215j Network Allocated Storage (NAS) server, where the
acquired video data must be properly stored. The storage capacity required is
heuristically derived to be no less than 6 TB in order to keep 3-weeks of data
using H.264 compression.

Power supply and enclosure

The video acquisition hardware presented above must be powered throughout
the 3-week acquisition period. The power supply and some of the video
acquisition hardware must also be placed in an enclosure which is resistant to
tampering.

The video acquisition hardware consumes approximately 30 watts in
operation, which make a self-contained setup unfeasible due to 3-weeks video
acquisition requirement. Instead we use 3 heavy-duty 12 volt 180 Ah batteries,
which provides the setup with an approximately replacement cycle of 4-6 days
depending on the overhead and wear out of the batteries. The entire system
is finally installed in an IP65-certified Eurobox 40705, which can be seen in
Figure L.3.
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Fig. L.3: The Eurobox 40705 containing 3 batteries, a 230V power inverter, a PoE switch, and a
NAS server.

3.2 Type-1: Lightweight and compact portable pole with low
payload

The first type of poles, is as introduced in Section 2.2, the most compact and
lightweight ones, and should ideally be deployable for a single person.

Miovision Scout

Scout is a portable and expanded pole developed by Miovision, and is, ac-
cording to their own documentation, "designed specifically with the users in
mind" [15]. This has resulted in a portable pole with a weight of only 19.1
kg and a set up time of 10 minutes. The Miovision Scout do not meet the
requirements for this analysis, defined in Section 2.1, as it is not configurable
for the two cameras defined in Table L.1. It is however still included as it is a
very popular solution for traffic monitoring, and might be usable in pilot tests
or as a second view-angle.

The Miovision Scout has a battery life of 7 days when buying the additional
power pack and can be set up on existing infrastructure using an included pole
mount. The simplicity of the product can easily be deducted by examining
Figure L.4. In case deployment is needed in places without street poles, a
separately sold Scout Tripod can be used. The Scout Tripod weights 14 kg,
but can reach 68 kg with additional security weights. The Miovision Scout is
equipped with a wide lux camera with 120◦horizontal view capturing with a
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(a) (b)

Fig. L.4: The lightweight and compact, but non-configurable, portable pole from Miovision. (a)
Miovision Scout with the extendable pole [15] (b) Miovision Scout Video Collection Unit. [15]

resolution of 720x480 pixels @ 30 FPS. As mentioned in the introduction, this
camera setup is not configurable. The operational height can be adjusted to
be between 1.32-6.4 meters, which do meet the requirements either. In Table
L.2 an overview of the required equipment is seen.

Table L.2: Required equipment for the Miovision Scout.

Product Weight
Scout Video Collection Unit 10.89 kg
Scout Pole Mount 8.16 kg
Scout Power pack 14.0 kg
Scout Tripod 14.0 kg

The Miovision Scout can be mounted to existing infrastructure, such as a
pole, defining some requirements to how poles or similar objects are located at
an intersection. Otherwise the Scout Tripod can be used to deploy the Scout.
For both of the solutions no major equipment is needed, and one person
should be able to set this up in an hour.

Custom lightweight portable pole

This portable pole is a proposal on how a lightweight portable pole could
be manufactured. The portable pole must meet the requirements defined in
Section 2.1, while being a lightweight solution easily transported around.
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(a) (b)

Fig. L.5: Parts for a custom lightweight portable pole (a) Clark Mast FT mast. (b) Clark Mast FT
carrying bag. [12]

The portable pole utilizes the Clark Masts SFT9-6 mast, which can be
extended to 8.8 meters using a hand pump, and remains at 2.05 meters in
retracted mode. An image of a FT series mast from Clark masts is seen in
Figure L.5a. On top of this there must be created a rig which cameras can
be mounted in. The mast comes with a carrying bag, seen in Figure L.5b
for easier transportation. In addition to the bag, equipment such as spikes
and radius lines are also included. This solution must also utilize the base
framework presented in Section 3.1. In addition to the base framework, Table
L.3 summarizes the additional required equipment to manufacture this type
of pole.

Table L.3: Equipment needed for custom lightweight portable pole. An unknown weight is
marked with a “-“.

Type Model Weight
Telescopic
mast

Clark Masts FT series, SFT9-6/HP 10 kg
headload, 8.80 m extended height, 2.05 m
retracted height, w. tripod

-

Carrying bag Clark carrying bag, SFT9-6/HP Bag -

A van must be used to transport the equipment from location to location
as the mast is 2.05 meters long, but setting up the equipment should be doable
for one person. Using the radius line to make a guying system is however
not really feasible in urban places, requiring the wind speed to be low for the
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setup to remain usable.

Discussion

The Miovision Scout do not meet the configurable requirements defined in
Section 2.1 and can therefore not be used in the final setup. It might, however,
be a useful solution for some minor pilots tests or be used a second view-
angle at a complex environment. The custom made portable pole is not as
lightweight as the Miovision Scout as one needs to bring more equipment to
meet the requirements of capturing data continuously in 3 weeks. The custom
made portable pole can be configured to have 2 cameras installed, but it is
however considered necessary to utilize a guying system in order to stabilize
the portable pole sufficiently, even in low wind conditions, such the video
recordings are stable and usable for a traffic analysis.

3.3 Type-2: Compact portable pole with high payload

We divide possible solutions for systems using a compact portable pole with
high payload into three proposals based on the estimated total weight of the
system: lightweight, middleweight, and heavyweight. All of them utilize the
base framework presented in Section 3.1.

Lightweight: Mast with tripod

The lightweight portable solution consists of a telescopic, 5-section mast with
a corresponding tripod. The extended mast is usually secured by a guying
system to assure stability under heavy payload and wind speeds. However, as
guying is not applicable in urban areas, we include a tripod to ensure stability.
The tripod furthermore ensures independence of existing infrastructure and
comes in a variety of sizes for different mast heights. An image of such a pole
is seen in Figure L.6.

We choose the largest mobile tripod available to provide stability and ac-
commodate the requirements even under moderate wind speeds and payloads.
The base diameter of the tripod is 2 m, which have a recommend maximum
mast height of 10m. When the mast is not guyed, the maximum wind speed is
13.8 m/s for stable operation. A wind speed of 13.8 m/s translates to ’Strong
Breeze’ on the Beaufort scale.

The necessary equipments for the lightweight mast with tripod are listed
in Table L.4.

The transportation of the equipment requires a medium-to-large sized car
or van to accommodate the length of the retracted mast and the total weight
of the equipment. The telescopic mast is extended by an integrated hand
pump, and the extended section is subsequently locked manually by using the
provided screws. The ground area required for the base is 0.5 m larger than
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Fig. L.6: Clark QT Mast on tripod [14].

Table L.4: Required equipment for compact, lightweight portable pole with high payload. Maxi-
mum wind speed 13.8 m/s. An unknown weight is marked with a “-“.

Product Model Weight
Telescopic
mast

Clark QT Series, SQT9-5, 5 section mast 18 kg
payload, 9.00 m extended height, 2.25 m retracted
height

-

Tripod Clark MK VI, MK6 2000MM 18.0 kg
Tripod
adapter

Clark -

specified in the setup requirements. The extra space is however necessary for
the stability of the portable pole.

Middleweight: Mast with tripod

The lightweight setup, described in Section 3.3, is used as a point of departure
for the middleweight portable setup where the telescopic mast and tripod
remain key components. The Clark QT mast from the lightweight setup is
replaced by the heavier and sturdier NT series and features only 4 sections
compared to the 5 section QT mast. The heavier mast calls for a heavier and
larger tripod which is found in the Clark MK IV Tripod. The tripod weighs
27 kg and features a base diameter of 2.6 m. As with the light-weight mast
with tripod, the un-guyed mast is stable up to wind speeds of 13.8 m/s. The
equipment of the middleweight mast with tripod is listed in Table L.5.

Due to the larger retracted height of the telescopic mast (2.82 m) it might be
impossible to fit inside an ordinary car, and thus a larger van is recommended.
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Table L.5: Required equipment for compact, middleweight portable pole with high payload.
Maximum wind speed 13.8 m/s. An unknown weight is marked with a “-“.

Product Model Weight
Telescopic
mast

Clark NT Series, NT 90-4, 4-section mast, 15 kg
payload, 9.00 m extended height, 2.82 m retracted
height

41.0 kg

Tripod Clark MK IV 27.0 kg
Tripod
Adapter

Clark -

The telescopic mast is extended by the use of a hand pump and the sections
are secured by screws similarly to the lightweight setup. The ground area
required is even larger than for the lightweight scenario; however, this is
needed in order to provide stability for the heavier mast.

Heavyweight: Flyintower

The heavyweight compact portable pole solution uses a Flyintower, or sound
tower, as the camera mast. The Flyintower is a well-known object at large
concerts or festivals where it is used for the lifting of loudspeakers as depicted
in Figure L.7. The V-shaped basement, the metal grid, and the heavy weight
of the construction improve the sturdiness and stability of the setup.

Fig. L.7: Litec 7.5-500 Flyintower [10].

We choose the smallest possible Flyintower from Litec to minimize the
ground occupation area required for the basement of the tower. The extended
height of the tower is 7.75 m and due to the V-shaped basement, the footprint
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is 4.1 × 3.6 m. The maximum lifting load capacity of the tower is 500 kg
which requires additional ballast at the base for stability. For the much lighter
loads required in this setup, the required ballast weight is reduced. Due to the
studier nature of the setup, the maximum wind speed is increased compared
to the lightweight and middleweight setups. A list of the equipment is found
in Table L.6.

Table L.6: Required equipment for compact, heavyweight portable pole with high payload.
Maximum wind speed 70 km/h. An unknown weight is marked with a “-“.

Product Model Weight
Flyintower Litec 7.5-500, 500 kg max load capacity, 7.75 m

extended height
160 kg

Ballast Required ballast for Flyintower -

The Flyintower is considerably heavier than the mast-based solutions
listed above. However, the tower might be taken apart and assembled on-site
which greatly reduces the space needed for storage and transportation. We
therefore estimate that a larger van is needed for the transportation, just as in
the middleweight scenario. Compared to the lightweight and middleweight
scenarios, the Flyintower requires a larger, planar surface for the base to stand.
This might exclude the deployment in tight urban spaces where such space is
not available.

Discussion

For both the light portable poles and middleweight portable poles, issues
arise when dealing with higher wind speeds as the equipment is mounted
in the top making the setup unstable. To cope with this, a guying system
can be installed to stabilize the mast, this is however not feasible in urban
places. For most scenarios in urban environments, both portable pole setups
are considered usable in terms of wind speeds. The heavyweight solution is
therefore a better overall option due to increased stability, but significantly
comprising the compactness and weight compared to the lightweight and
middleweight solutions. Generally, all of the solutions can possibly be dis-
assembled and be somehow compact and then be used in rural areas where
there are more open space, it is however not ideal that none of the proposals
meet the maximum ground occupation area requirement. Deploying any of
the introduced solutions in this section in an urban environment will most
likely be considered unnaturalistic and obtrusive.
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3.4 Type-3: Trailer portable pole with high payload

The third type of portable poles differs from the both type-1 and type-2 in
the sense that the equipment used comes in a more wrapped up and easy-
deployable way. As mentioned in Section 2.2, type-3 relies on equipment
installed either in a trailer or in a small wagon resulting in less assembling
on-site.

UTRaCar

The Urban Traffic Research CAR is developed for the national aeronautics
and space research center of the Federal Republic of Germany (DLR) [1] and
is equipped with a large set of sensors and systems to be used for traffic
surveillance and data acquisition in the field. The car is seen in Figure L.8a in
transportation mode and in Figure L.8b where the left image show an image
of the car in operation [9]. The UTRaCar does not meet the requirement of
the maximum ground occupation area, but is included as it provides some
interesting solution ideas.

(a) (b)

Fig. L.8: (a) The DLR UTRaCar with retracted telescopic mast. (b) The DLR UTRaCar with
extracted telescopic mast. [9]

The car is equipped with multiple sensors as seen from the images in
Figure L.8b. For this analysis, the telescopic mast seen in the left image is
the most interesting one. A telescopic mast is mounted in the back of the car,
and can extend to 13 meters. In the top of the telescopic mast various sensors
can be installed, as seen in the upper right image in Figure L.8b. According
to [14], the power supply unit in the car is self-sufficient. It is unclear what
this covers, but from the lower image in Figure L.8b, it is clear that a lot of
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equipment can be installed in the of the car. In Table L.7 an estimate of the
equipment needed for a minimum requirement solution are seen.

Table L.7: Estimated equipment needed for a minimum requirement version of the UTRaCar. An
unknown weight is marked with a “-“.

Type Model Weight
Van VW Crafter 35 with medium wheelbase and high

roof
-

Telescopic
mast

Clark WT Series, WT100-4, 4 Section mast, 140 kg
headload, 10.0 m extended height, 3.32 m
retracted

-

The size of the car can be a challenge at a lot of intersections, so there must
be some open areas around the intersection for deploying this system. But if
the area suffices, a solution like this allows a rather fast deployment without
any external actors.

Trivector Mobile Mast

The Swedish based company Trivector has developed the TMV1, which is a
mobile mast installed in a trailer with the scope of capturing traffic situations.
When extracted the height can reach up to 15 meters. In Figure L.9a an image
of the setup is shown, and in Figure L.9b it is visible that the setup utilizes
two cameras in operation meeting the requirements for this analysis.

The setup consists of a trailer equipped with a custom made telescopic
mast. Inside the trailer all the equipment can be stored, and given from the
image seen in Figure L.9a, it is clear that box is rather large, providing good
possibilities to put all equipment inside. There exists no technical data sheet
available to the public, hence it is hard to estimate the equipment used to
create the Trivector mobile mast. From examining the figures the minimum
requirements are a cargo trailer and a telescopic mast. As for the UTRaCar, the
setup occupies a rather large area on the ground, making it difficult to place
in some urban areas. The installation complexity is low as it all equipment
are inside the trailer, so the deployment is straightforward with a minimum
of external actors. Finally, a car is needed to tow this setup from point A to
point B.

Custom made trailer

With inspiration of the previously solutions in type-3, we look into to assem-
bling a trailer portable pole. The main idea is to utilize a trailer solution with
a pole mounted on it. In Figure L.10a and Figure L.10b the main component
in the setup is seen. It consists of an already existing product which needs to
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(a) (b)

Fig. L.9: (a) The Trivector Mobile mast setup in operation. (b) The Trivector Mobile mast with
two installed cameras. Images provided by Aliaksei Laureshyn, Lund University.

be customized to accommodate the minimum requirements. Though there
are some boxes and containers mounted in the original Clark Mast 804-15-6,
additional room is considered necessitated to meet the capacity requirements.
The 6 section XT Series mast mounted on the trailer has an extracted height of
15 meters. [13]

(a) (b)

Fig. L.10: Specifications and overview of Clark Mast 804-15-6. [13]

A vehicle is needed to tow the trailer from location to location. A regular
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van is considered to be sufficient to tow the trailer and the remaining equip-
ment The length of the trailer is 6.3 meters, making it quite large and difficult
to deploy in tight urban spaces.

Discussion

For all of the trailer solutions the main advantages are the easy and rather fast
deployment as a very limited amount of external actors are needed. Other
advantages of the type-3 solutions are a "all-in-one" solution in the sense
that room for batteries, HDD and other equipment is included in the setup.
The disadvantages are that they can rather fast become quite expensive, and
they do not scale very well in the sense of transportation from point A to
point B might require multiple cars or a large truck. The weight and size
of the solutions also occupies a large ground area which challenges one of
the requirements defined for this analysis. Furthermore, a regular driver’s
license might not be sufficient for all of the solutions. The UTRaCar solution
is considered to become quite expensive to build, so the best option in type-3
is to use a solution similar to the Trivector mobile mast or the custom made
trailer, even though it is also expected to become expensive.

3.5 Type-4: Heavyweight portable pole with high payload

The last type of portable poles takes it starting point in a large platform of e.g.
concrete, where all equipment can be installed upon. This complicates the
transportation phase but should have advantages in operation compared to
the previous types.

DLR Platform

The National Aeronautics and Space Research Centre of the Federal Republic
of Germany (DLR) have used a portable platform for data capturing. The
development of the technical aspects of the portable platform was carried out
by Jenoptik. One of the usages of it has been to monitor railroads crossings
as seen in Figure L.11a. The camera equipment used in the DLR portable
pole setup consist of 4 cameras, 2 IR-flashes, 2 radars, and an aluminium
frame, totaling a payload weight of 25.4 kg. In operation mode, the camera
fixed to an operational height of approximately 4-5 meters. [17] As seen from
Figure L.11 it is clear that the entire portable pole consists of a cabinet and a
port that is split into two pieces, and is mounted onto a large concrete block.
In operation mode, the pole is angled in vertical position, opposite to the
horizontal transportation angle seen in Figure L.11b. The equipment needed
for creating a portable pole for meeting the minimum requirements are seen
in Table L.8. The mast could however be changed to a telescopic mast.

312



3. Overview of Relevant Portable Poles

(a) (b)

Fig. L.11: (a) DLR Setup in operation mode. (b) DLR Setup in transportation mode. [17]

Table L.8: Required equipment for heavyweight portable pole with high payload mounted on a
concrete block. An unknown weight or model is marked with a “-“.

Type Model Weight
Custom mast Mast divided into two parts: Transportation

and operation mode
-

Cement block - -
Vandalism-
proofed
cabinet

- -

According to an interview with Kay Gimm and Sascha Knake-Langhorst
from DLR, it can require up to a whole day to setup and calibrate the sensors
for the specific application. As the current system requires power supply
access from the current infrastructure. Due to that concrete block, the setup is
quite heavy requiring a truck and crane to move it around.

Discussion

Only one solution is presented for the type-4, which is the DLR setup. This
setup provides a good and solid platform for data capturing. Installed on
the concrete block is all the equipment needed making it a "all-in-one" solu-
tion. However, the setup is heavy meaning a truck and crane is needed for
transportation and deployment.

3.6 Overview

Creating a setup that is lightweight, robust, and as mobile as possible is a
hard problem to satisfy. It might become easier to record traffic data at certain
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intersections if using a small and lightweight setup. One can, however, not be
certain of the quality of the recordings as lightweight usually correlates with
instability during varying weather conditions; especially when considering
that the setup has a relatively heavy camera rig mounted in the top. All of the
surveyed options are seen in Table L.9.

The main parameter to satisfy is considered to be the recording quality,
as the quality of the data is essential for performing a good traffic analysis.
Taking this into account, the proposed solutions from both type-1 and type-
2 are not good options as they require guying systems in order to reach
stability for prolonged periods of time. Guying systems are not ideal in urban
environments, and the lightweight and compact pole solutions examined in
this analysis does therefore not pose an ideal fit for the requirements.

For both type-3 and type-4, the solutions presented will provide some
more stable recording platforms however they are considered quite expensive
to produce, and does therefore not scale very well. Furthermore, the solutions
of type-3 are in most cases wider than the specified maximum of 1.5 meters,
hampering the deployment on the sidewalk without interrupting the pedestri-
ans. The type-3 solutions are, however, more mobile compared to the type-4
solution, but in both cases a regular driver’s license might not be sufficient.
Additionally, the trailer option does not scale well as multiple trailers requires
multiple towing vehicles.

This leads to the conclusion that for capturing the most stable and useful
data, the setup must comprise the lightweight and easy mobility requirements.
For type-1 and type-2 solutions to work, various guying system must be
installed on existing infrastructure to fixate the pole. If one involves the
existing infrastructure, a better result would be reached if the capturing rig is
mounted on the infrastructure rather than using a light-weight or compact
portable pole with guying installation. The type-4 solution from DLR requires
both a truck and a crane to deploy, which satisfies most of the requirements for
this analysis, but remains, however, the less mobile solution in this analysis.

4 Design & Development of TRG-Pole

In this section, we will present a pole which is hybrid between a type-2
and type-4 portable pole solution designed specifically to contain the same
advantages as the DLR solution while being mobile.

4.1 The designed pole

We present a portable pole design that accommodates the overall portable
pole goal while being in operation mode. It is, however, desirable to keep the
weight down during transportation. To reach this, we propose creating the
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pole as a hybrid between a type-2 and type-4, meaning that the pole is compact
and has a reduced weight during transportation, but which in operation mode
remains robust and stable. One of the main weight contributors in the DLR
setup is the concrete base which the entire pole is installed on. Naturally, a
proper frame is needed to keep the base stable, however, all additional weight
needed should be configurable. In Figure L.12 the proposed base design of
the portable pole is seen.

Fig. L.12: The ground base of the portable pole is equipped with tiles, adjustable feet, and a
swivel bracket to ease the raising of the lattice mast.

The entire square platform consists of a steel frame containing 4 slots for
mounting standard tiles in a vertical rack. The tiles can be acquired in most
construction and hardware stores around the world, i.e. 30x60x6cm tiles with
a weight of 25kg each. Depending of the required base weight, one of the tiles
slot could be used for the equipment cabinet rather than placing it next to the
base. Finally, the base platform has 4 adjustable feet for levelling its height on
site in case the pavement is not well levelled.

The swivel bracket installed in the middle of the base platform will be
used for raising the lattice mast as seen in Figure L.13. The deployment of the
portable pole is done by in-stalling tiles in 3 of tiles slots on the base platform
leaving 1 slot open. The lattice mast is connected to the swivel bracket in the
center of the base platform and put horizontally on the ground in the open
tiles slot direction. Our portable pole consists of 5 lattice mast sections, which
are 2 meters each providing a 10 meters long lattice mast. The lattice mast
and base can be completely separated to ease transportation.

To raise the assembled lattice mast, a steel wire is attached to the mast and
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(a) (b)

Fig. L.13: The portable pole can be raised using a swivel bracket installed in the middle of the
base platform. The pole is raised using a steel wire connected to a manual winch system.

Fig. L.14: The portable pole can be equipped with a camera rig containing two cameras, e.g. RGB
and Thermal camera, and a pan-tilt motor to ease view-angle adjustments.

directed towards a temporary installed vertical steel mast on the base platform.
On this temporary installed steel mast, a manual winch system is installed,
which by the use of hand-power can lift the lattice mast to its operational
position where it is locked. Afterwards the temporary equipment is removed,
and the last tiles slot is equipped with tiles finalized the deployment of the
portable pole. When deployed, 11 tiles are installed in each slot, providing a
total weight of 1100 kg in the base framework.

The cameras used to derive the payload for this proposal are defined in
the requirements seen in Table L.1. In addition to those cameras, we propose
to include the Axis YP3040 Pan-Tilt Motor, as remote camera control has been
found desirable for the setup. This, however, increases the minimum required
payload weight for the portable pole with 4.2kg.

The Axis YP3040 has a maximum load of 8kg meaning that a custom
mounting rig needs to be created to hold both cameras whilst being mounted.
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Fig. L.15: The portable pole deployed at traffic intersection. The pan-tilt motor with one RGB
camera is installed on the top of the pole, which makes the RGB camera adjustable remotely.

Table L.10: Summary of technical parameters of the TRG-pole.
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The custom mounting rig is seen in Figure L.14. The overall weight of the
camera setup, including a buffer, is therefore estimated to be 12 kg.

The final proposal of the TRG-pole in operation mode can be seen in Figure
L.15, where you could install your equipment on, e.g. the custom mounting
rig. The deployment of the portable pole is 2 hours for 2 persons and requires
a van and a trailer. A visual introduction and description of the portable pole
can be seen at https://www.youtube.com/watch?v=SjZlWb3hmBo. In Table
L.10 the specifications of the TRG-pole are summarized.
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5 Traffic Analysis using TRG-Pole

The TRG-pole can be deployed in rural areas, which can be of particular use
as there in some scenarios are no to limited existing infrastructure (light poles,
balconies, trees, etc.) to mount the camera equipment in. For instance, it has
been used for a traffic safety analysis as seen in Figure L.16, where there were
otherwise limited options besides deploying the TRG-pole.

Fig. L.16: The TRG-pole is deployed at a traffic intersection with limited existing infrastructure.

But what really makes the TRG-pole a great tool, is that the very compact
base frame-work allows it to be deployed in most urban areas as well. Though
there might exists multiple options in most urban areas, it is however not
guaranteed that it provides an ideal capturing angle for the camera equipment.
A limited or bad camera view-angle will impact the overall quality of the
traffic analysis. An example of this is shown in Figure L.17, where a traffic
intersection in Aalborg is used for a traffic analysis study. The left red circle
marks a camera mounted in the existing infrastructure, i.e. lighting pole, and
the right red circle marks the camera installed in the TRG-pole.

The corresponding output camera feeds are seen in Figure L.18, where the
existing infrastructure clearly captures the same objects as the TRG-pole does.
The camera installed in the existing infrastructure do however not capture the
entire cycling box and the camera’s view of field do only allow a limited area
of the cycling road after the cyclists begin turning right. Though the TRG-pole
is deployed only a few meters away from the lighting pole, the TRG-pole
provides a better capturing view for examining the potential conflicts between
a cyclist and a right-turning vehicle.

Using semi-automated image processing tools, e.g. RUBA [2], you can
use the TRG-pole to conduct traffic analysis with a large variety of scopes,
e.g. traffic counts, speed estimations, conflicts, etc. The 10 meters high pole
makes a great platform for doing traffic counts as video from such a height is
less occlusion prone compared to most existing infrastructure. An example
of traffic counts done using the TRG-pole together with RUBA is seen in
Figure L.19 , where two detectors were made to register the traffic volumes
for respectively one of the entrances to the intersection (A) and one of the
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Fig. L.17: The existing infrastructure does not already provide ideal capturing positions for a
traffic analysis. The usage of TRG-pole provides more ideal options due to its compactness.

(a) (b)

Fig. L.18: Video feed from the camera installed in (A) the existing infrastructure (B) the TRG-pole.

left-turning streams from the main road to the side road (B).

6 Discussion

The presented portable poles types and corresponding solution have been
heavily compared and discussed in Section 3.6 in a structured manner given
a set of minimum requirements. The requirements have been heuristically
derived and the essential requirements defined are thus biased. The remarks
made for each of the surveyed solutions is therefore application depended and
might still serve beneficial for other application. Most of the type-1 solution,
e.g. the Miovision Scout, might be ideal to make a preliminary study at a point
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6. Discussion

Fig. L.19: Two movement detectors registered the traffic flows through the detectors.

of interest prior to deploying a larger solution. To ensure that the final traffic
analysis of the point of interest remains of high quality, the captured data must
be of equally good and stable quality. A larger solution is thus necessary to
ensure this during longer capturing periods due to various real-life challenges,
e.g. weather, vandalism, etc.

The proposed portable pole design is not as easy deployable as most of
the type-1 solutions and type-2 solutions, but do not require any guying
system for maintaining and ensuring stability. In this proposal it is at most
needed as a safety precaution during deployment. The main drawback of the
type-4 solution is the transportation weight, which in this hybrid version of
type-2 solutions and type-4 solution is reduced while remaining stable during
operation. Even though the transportation weight is reduced significantly
by removing the tiles from the portable pole base, the frame remains large
and made out of steel, meaning that 2 persons and some deployment equip-
ment are still required. An additional drawback of the type-4 solution, and
possibly portable poles in general, is the fact they might ruin the naturalistic
environment for the drivers, and therefore ruin the desired naturalistic data.
The portable pole proposed in this paper do still struggle with this issue, as a
portable pole looking similar to the illustration seen in Figure L.15 might still
be considered obtrusive in a traffic intersection. But compared to most of the
other solution, it is however considered less obtrusive.

The proposed portable pole does to some extent get inspiration and some
ideas from the Trivector mobile mast, UTRaCAR, and the DLR platform so-
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lutions. These are however all considered to be quite expensive solutions,
especially the Trivector mobile mast and UTRaCAR is considered expensive
due to the large acquiring and remodeling price of a trailer and a car, respec-
tively. The proposed portable pole is considered a lot cheaper to manufacture
due to its simple structure and base framework.

7 Conclusion

This paper presents a survey, proposal, and analysis of portable poles in
relation to capturing data in traffic intersection. The surveyed portable pole
solutions were split into 4 general types. The type-4 solution appears to fit
the defined minimum requirements most, however with a major shortcoming
as it is also the lesser mobile and portable pole solution. This leads to the
conclusion that for capturing the most stable and useful data, the setup must
comprise the lightweight and easy mobility requirements. For the type-1 and
type-2 solutions to work, various guying system must be installed on existing
infrastructure to fixate the pole. If one involves the existing infrastructure, a
better result would be reached if the capturing rig is mounted on the infras-
tructure rather than using a lightweight or compact portable pole with guying
installation. The DLR solution in type-4 is considered to be the best portable
pole solution based on vandalism prevention, robustness, stability, and still
somehow transportable.

The DLR solution does however not completely fulfill the overall portable
pole goal defined in this journal due to the limited mobility. We therefore
propose a new portable pole design which combines elements from the type-2
solutions and the type-4 solution so the overall portable pole goal is reached.
The proposed portable pole will get the mobility from the type-2 solutions
and get the robustness and stability from the type-4 solution. The proposed
design is inspired by the type-4 solution from DLR as we also propose to split
usage of the portable pole into a transportation stage and an operation stage.
The weight of the entire setup can dynamically and with ease be adjusted
allowing a more lightweight solution and easier transportation stage. The
weight during operation is, however, still intact, such the stability is kept. The
proposed portable pole can be deployed by 2 persons in 2 hours in both rural
areas as well as urban areas due to its compactness.
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1. Introduction

Fig. M.1: The RUBA logo.

1 Introduction

The Road User Behaviour Analysis (RUBA) project is a watch-dog tool for
computer-based analysis of traffic videos. The program can be used on
Windows, MacOS, and Linux computers.

RUBA is developed by the Visual Analysis of People Lab at Aalborg
University, Denmark, in collaboration with the Traffic Safety Research Group
at Aalborg University.

RUBA allows the user to draw fields (detectors) on the video image by
using a simple click-based drawing tool. The sensitivity of the detector,
regarding movement in the image, is adjusted by different parameters in the
program.

How to contribute

Please feel free to use RUBA and see if it fits your use case and research needs.
If you encounter a bug by doing so, or if you have any suggestions on the
further improvement of RUBA, please report it in our issue tracker.

License

RUBA is licensed under the MIT License.

2 Analysis in RUBA

The procedure when conducting an analysis in RUBA is as follows:

1. Import video(s)

2. Create module(s) for the analysis

3. Calibrate parameters to ensure that the right movements/road users are
registered

4. Run the analysis
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2.1 Import of videos

RUBA handles videos of most file types and resolutions. The program offers
two different approaches for handling the synchronisation and time manage-
ment for every frame of a video file:

1. If the frame rate of the video is constant, the start time of the video
might be encoded into the file name of the video. The exact time of a
frame will be computed based on the start time, the frame rate of the
video, and the current frame number.

2. If the frame rate of the video is varying, you may put the exact date
and time of each frame in a separate log file. The log file should be
placed in the same directory as the corresponding video file and share
the same file name except for the extension. As default, RUBA looks for
corresponding files with the ‘.log’ extension.

For more information on the video synchronisation options, refer to Section
4.2. Once you have selected a suitable way to ensure the synchronisation of
the video, you have two options to import video files into RUBA, illustrated
in Figure M.2 and listed below:

1. Use File -> Load Video Files or click the button at the menu bar (CTRL
+ O). This option will clear the current list of video files and import the
new files that you have selected.

2. Use the ‘Add videos to list (CTRL + INS)’ button in the ‘Video files’
pane. This option will add the selected videos files to the bottom of the
current list of video files.

2.2 Creation of modules for the analysis

After the videos have been imported the first video is shown in the window
pane. A module for the analysis is created by pressing the button for the
desired module. This is illustrated in Figure M.3.

Choose the desired detector type as illustrated in Figure M.4. Then press
OK. A description of the different detectors is given in Section 5.

2.3 Drawing the mask

After the desired detector have been chosen a new window opens, shown in
Figure M.5. This window contains the settings of the detector and lets the
user draw the detector. Via Configure detectors the detector is chosen, after
which drawing tools to create the detector and a number of detector settings
appears. The settings depend on the chosen detector type.
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Fig. M.2: Import of videos is done via either of the two buttons marked in red.

Fig. M.3: Creation of modules
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Fig. M.4: Choice of detector type in single module

Fig. M.5: Creation of detectors.
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(a) Tools for drawing the mask (b) Load an existing detector mask or create
images and detector masks to reuse the masks

Fig. M.6: Mask manipulation tools in RUBA.

Table M.1: Functionality of the drawing tools in RUBA.

Button Description

Remove the last corner point.

Add a point between the current and the previous
corner.

Switch between corners. The current point is marked
with a circle.

Move the corner up/down/left/right.

To draw the outline of the detector, click on the pencil. The detector is
drawn by clicking in the image. Straight lines are created between the points.
The latest point can be deleted by right clicking.

Drawing tips

Use the drawing tools illustrated in Figure M.6a to modify your detector. The
functionality of the tools is explained in Table M.1.

You can use keyboard shortcuts in RUBA. Hold your mouse over the
buttons to find the keyboard shortcut.

Move points: When drawing your detector, you can click on the points and
drag them to where you want them to be.

If you have an existing detector mask or want to save the mask area as
an image or RUBA file, you can use the functionalities in the Load and save
panel shown in Figure M.6b.
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Fig. M.7: Creation of detector using the drawing tool

• Mask image loads (left) or saves (right) an image of the detector where
the detector is white and the background is black.

• Mask points can be used to save a RUBA configuration file with infor-
mation on the size and position of the detector.

• Background image imports and exports a screen shot of the background.

Once the detector has been drawn (i.e. it only needs to be closed), double
click or press the green tick mark, marked in red on Figure M.7. After this,
the parameters can be adjusted, and it can be chosen if logs should be created.
See Section 7.3 for detailed information on the log system of RUBA.

The detector is saved via the Save-button before the window is closed
via the OK-button. Configuration files that have previously been saved can
similarly be imported in this window.

2.4 Calibration of parameters

To ensure that the right objects are detected the parameters must be calibrated.
This is done via a number of tools, marked in red in Figure M.8, which let the
user gain insight into what is detected by the algorithms.

332



2. Analysis in RUBA

Fig. M.8: Tools for calibration of the detectors. From left: 1) edit the detector. Editing can also be
done by right clicking on the detector in the Active detectors; window. 2) delete the marked
detector. If the detector has not been saved, it is deleted completely and cannot be imported. 3)
histograms. 4) Overlay of the detector in the image. 5) information about activity in the detector.
6) extended information about the detector.

2.5 Histograms

The most important tool for the calibration is the histograms of the activity in
each detector.

Histograms are used to adjust the detectors. If the amount of activity is
sufficiently high so that the software recognizes it as a road user, the activity
is marked with a bright colour, illustrated in Figure M.9. If the parameters
of the detector are not adjusted correctly, then the road user will either be
missed or only partly detected, as seen in Figure M.9a. After the adjustments
of the parameters the road user will be clearly detected.

The histograms of the movement detector, the stationary detector, and the
traffic light detector are described in more details in Section 5.

When adjusting the detectors, change a few parameters at a time and
validate experimentally if the change has any effect. The most important
parameters of the detectors are listed below:

• Presence detector: Minimum occupation percentage

• Movement detector: Trigger threshold, movement range, and minimum
speed

• Stationary detector: Minimum occupation percentage, minimum speed,
and max vector count

• Traffic light detector: The position of the annotated traffic light positions
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(a) Before calibration (b) After calibration

Fig. M.9: Calibrating the trigger threshold of the presence detector.

A detailed description of all detector parameters is given in Section 5.
Detailed information on how to set up the logger is given in Section 7.3. There,
you will also find information on the timing options of the different detector
modules.

2.6 Run the analysis

When the detectors have been calibrated the analysis can be performed. If
it has not yet been specified which log files should be created during the
analysis, this is done by double clicking the detector in active detectors. Run
the analysis by pressing the play button which is marked in red on Figure
M.10.

2.7 Inspecting the log files

If log every event or log sum of events have been marked when config-
uring the detector, a number of log files (.csv-files) will be generated. The
log files may be inspected by a text editor or a spreadsheet program such as
Microsoft Excel. More details on the log system are provided in Section 7.3.

2.8 Multi-threaded processing

It takes time to process long videos in RUBA, especially if the resolution of the
video frames is high. In order to help with this problem, RUBA has an option
to split the analysis such that it runs on multiple threads. Once the videos are
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Fig. M.10: Running a traffic analysis. Double click on the first video to scroll back to the beginning
of the video, and then press the play button to run the analysis. The analysis is complete when
the time stops in the end of the last video. Please note, that the time and date must be specified
in the beginning of each video if the user defined time format is used.

Fig. M.11: Opening the Multi-threaded processing dialogue.

loaded and the detectors are initialised, press the Perform multi-threaded
processing button in the main menu, marked in red in Figure M.11.

Once you have opened the multi-threaded processing dialogue, you may
select the desired number of threads to perform the analysis. The maximum
number of threads is dependent on the number of physical CPU-cores on your
machine. Furthermore, in order to create a number of threads, each tread
needs at least one unique video.

In the example in Figure M.12, RUBA has detected that the machine
has eight CPU-cores, but RUBA only allows the creation of four threads
because only four video files are loaded. In order to increase the number
of threads, more video files should be provided and the multi-threaded
processing dialogue should be reopened.

The optimal number of processing threads

The maximum number of threads is computed as the number of CPU-cores,
minus 1. If the computer has four CPU-cores, three will be selected for running
the analysis - and the last will be spared for showing the progress in RUBA
and for running other tasks.
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Fig. M.12: The initial window in the Multi-threaded processing dialogue.

As a general rule, the processing speed is proportional to the number of
processing threads. However, if your CPU features hyper-threading technol-
ogy, RUBA will typically see one physical CPU-core as two CPU-cores. On a
machine that has four physical CPU-cores with hyper-threading, RUBA will
report the maximum number of threads to 4 * 2 - 1 = 7, seven threads. In
this case, the addition of more threads than physical CPU-cores will have little
impact on performance.

Running the multi-threaded analysis

Once you have selected the desired number of processing threads, press
the Apply button. Behind the scenes, RUBA will save the detectors and
reload them for every thread. This might take some seconds depending on
the number of threads and the size of the detectors. After this process has
finished, the window will be resized and the desired number of threads are
shown. A sample screen with four threads is shown in Figure M.13. Press the
Play button in the upper left corner to start processing.

The Video Files window shows the progress of the analysis. As opposed
to normal analysis, it is not possible to jump to a specific video by double-
clicking.

The Detectors window allows you to inspect the progress by expanding
the arrows, similar to a normal analysis. However, the following features are
not supported when the multi-processing window is opened:

1. Reconfiguring detectors

2. Showing the detector masks

3. Showing the detector histograms

4. Overlaying debug information on the videos

Because the analysis now runs in parallel, you will find that RUBA creates
temporary log files, one for each thread. Once all the threads has finished
processing, RUBA will automatically combine the temporary log files into a
single log file.
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Fig. M.13: The multi-threaded processing is started.

3 User interface

Figure M.14 illustrates the main window of RUBA, after a video has been
imported. Until then, most buttons are inactive. In the following, the function
of each button is described. Keyboard short cuts are defined in square brackets.

1. Main menu. In the tabs, the same functions that are accessible via
buttons in the main window can be found, as well as a number of
program settings to use before conducting the analysis.

2. Import video(s) [Ctrl + O].

3. Take a screenshot of the video pane (20) [F9].

4. Record a video of the video pane. Clicking the red dot [F10] starts the
recording. It is possible to pause the recording by clicking the button
again. The recording can be resumed by clicking the red button again.
When clicking the square button [ctrl + F10] the recording is finished.
All overlays (detectors, etc.) which are shown in the video pane (20) will
appear in the recording.

5. Enable/disable that the video is shown in the video pane (20) [F3].
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Fig. M.14: User interface shown when one or several videos have been imported.

6. Add/remove overlay which shows a timestamp (13) in the video [F4].

7. Flexible analysis tool (detector) consisting of a single module (left)
[Ctrl+1], a double module (middle) [Ctrl+2] and an exclusive module
(right) [ctrl+2].

8. Annotate Ground Truth. Opens the Ground Truth Annotator panel
which can be used to manually detect activity. These detections can be
used to calibrate detectors.

9. Review Log Files. Opens the Log File Reviewer panel which can be
used to review events from a log file and create a new log file with
selected events.

10. Multi-Threaded Processing. Press this button to open the Multi-Threaded
Processing panel and analyse the videos in multiple thread simultane-
ously to speed up the analysis.

11. Start/pause analysis [space].

12. Jump to a specific frame in the video.

13. Date and time for the video.

14. Navigate through the video. Use these four buttons to respectively jump
five frames previous [A], one frame previous [S], one frame forward [D]
and five frames forward [F].
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Fig. M.15: The settings panel in RUBA. The Debug panel is only shown when running a develop-
ment version of RUBA.

15. Adjust video speed. When the slider is placed to the far left the video is
paused. When the slider is placed to the far right the video is sped to
the maximum.

16. Imported videos. The video that is currently played is marked with a
pause symbol.

17. Respectively add videos [Ctrl+insert], delete imported videos [Ctrl+del],
change the order of the videos [ctrl+arrow up] and [ctrl+arrow down]
and show the video properties. The button to the far right contains
properties for the video (start/end time, frame rate, file name and
resolution).

18. Inserted/created detectors.

19. Support tools for creating and calibrating of detectors. From left: 1) edit
the detector [ctrl+R]. 2) delete the marked detector [Del]. 3) reset the
detector. 4) histograms [F5]. 5) Overlay of the detector in the image
[F6]. 6) information about activity in the detector [F7]. 7) extended
information about the detector [F8].

20. Video pane.

4 Settings

Access the settings under File -> Settings and a settings panel similar to Figure
M.15 will be shown.

4.1 General

The general settings pane is shown in Figure M.16.
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Fig. M.16: The general settings in RUBA.

• Restore previous configuration when the program starts: When you
open RUBA it will try to load the videos that you imported the last time
you were running RUBA. You can change this behaviour or choose to
also load the detectors from the last time you were running RUBA.

• An alternative is to use the Load configuration and Save current
configuration buttons in the File menu. A configuration file is, similar
to the detector files, an .yml-file, but contains references to the videos and
detectors that are currently loaded into RUBA. By using this functionality,
you can quickly switch between different combinations of videos and
detectors.

4.2 Video synchronisation

The video synchronization pane is shown in Figure M.16.

• Start time of each video is encoded in the file name: If the frame rate
of the video is constant, the start time of the video might be encoded into
the file name of the video. The exact time of a frame will be computed
based on the start time, the frame rate of the video, and the current
frame number.

– Frame rate: Used to define the frame rate. The value should match
the frame rate of which the video is recorded. It is recommended
to let RUBA auto-detect the frame rate (default).

– Date and time: Used to define the date and time of which the
video is recorded. This can be encoded in the file name, so that the
information can be imported automatically. The format is chosen
as either:

∗ MM-dd-HH (month-day-hour). The year must be specified manu-
ally when playing the video.

∗ yyyy-MM-dd (year-month-day)
∗ yyyyMMdd-HH (year-month-day-hour)
∗ yyyy-MM-dd-HH (year-month-day-hour)
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∗ yyyyMMdd-HH-mm-ss (year month day-hour-minute-second)
∗ yyyyMMdd-HH-mm-ss.zzz

(year month day-hour-minute-second.millisecond)
∗ user defined in which the date and time is specified manually

every time the video is played from the beginning.

• Time stamps of each video frame are provided in a separate log file:
If the frame rate of the video is varying, you may put the exact date and
time of each frame in a separate log file. The log file should be placed in
the same directory as the corresponding video file and share the same
file name except for the extension.

– As default, RUBA looks for corresponding files with the ‘.log’
extension. You may change this if necessary.

– Each line of the log file should be contain the frame number and
the frame time in the following format: frameNbr yyyy MM dd
hh:mm:ss.zzz. An example is shown in Figure M.17c.

4.3 Processing

The video processing pane is shown in Figure M.17b.

• Playback speed: Used to decide the speed of which the video will be
analysed. The speed can be altered later on.

• Skip frames: In order to speed up processing, RUBA may skip every
n’th frame. Beware, however, that this may affect the accuracy of the
detectors.

• Resolution: Used to create a warning if the imported video is recorded
at a low resolution. The width and height of when the warning is created
can be set manually.

4.4 Recording

The behaviour of the built-in video recording may be altered from the settings
pane shown in Figure M.17d. As default, RUBA records to a single file when
the Record video to file button is pressed. However, when log files are
played back with the Log File Reviewer, it might be beneficial to create a
separate recording for each event.

If the option Create a new recording for each jump of at least is
selected, a new recording will be created when the jump to frame function-
ality is used, either directly or indirectly from the Log File Reviewer. If this
option is unchecked, a single video file will be created that contains the same
‘jumps’ as the original playback from RUBA.
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(a) The synchronisation settings in
RUBA.

(b) The processing settings in RUBA.

00000 2016 08 25 12:02:16.215
00001 2016 08 25 12:02:16.248
00002 2016 08 25 12:02:16.282
00003 2016 08 25 12:02:16.315
00004 2016 08 25 12:02:16.348
00005 2016 08 25 12:02:16.382
00006 2016 08 25 12:02:16.415
00007 2016 08 25 12:02:16.448
00008 2016 08 25 12:02:16.481
00009 2016 08 25 12:02:16.514
00010 2016 08 25 12:02:16.548
00011 2016 08 25 12:02:16.581

(c) A sample log file containing
time stamps for every individual
frame.

(d) The recording settings in RUBA.

Fig. M.17: Settings panels in RUBA.
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Table M.2: Applications of the detector types in RUBA.

Detector Description

Presence Simple analysis and traffic counts. Traffic counts in sec-
tions. NB! The highest accuracy is obtained if the traffic
streams are separated.

Movement Analysis and traffic counts in areas shared by road users
from different directions (e.g. in intersections). Road users
driving in the opposite direction of travel.

Stationary Analysis of road users that do not move. Detection of
parked cars.

Traffic light Analysis of the phases of one or several traffic lights. Com-
bined with other detectors, analysis of red light running.

Table M.3: Adjustable parameters in the detector modules.

Presence Movement Stationary

Trigger threshold x
Minimum occupation percentage x x
Minimum speed x x
Movement direction x
Max vector count x
Max triggered duration x x x

5 Detector Types

The algorithm behind the software consists of four detector types (presence,
movement, stationary, and traffic light) with different attributes. Examples of
the application of the four detector types are shown in Table M.2.

Combinations of the detectors are introduced on the description of the
detector modules in Section 6.

An overview of the adjustable parameters for each detector type is given in
Table M.3. A detailed description of the parameters is given with the overall
description of each detector type.

5.1 Presence Detector

The presence detector checks if there is an object in a specific area of the video.
With this method objects (vehicles, road users) that are not a part of the
background (the road, the surroundings) are extracted. This is done by
converting the image to a gray scale image and finding presences (continuous
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(a) Histogram of the presence detector. X-
axis: time Y-axis: registered occupation
percentage, in the range from 0 to 100.

(b) Movement detector histogram. X-
axis: time. Y-axis: activity through the
detector (the higher red lines, the more
activity was registered

Fig. M.18: Histograms of the movement and presence detectors.

lines), where large variations in the contrast appear. In this way the algorithm
finds road markings, changes in the pavement, and road users. This is done
for all the frames of the video. For two consecutive frames, vectors between
the lines are created and summed up. In this way we get a measure for the
activity which is based partly on the size of the object, partly on the speed
of the object moving across the area. In order to take noise in the image into
consideration; i.e. from small changes in the contract, birds, movement of
leaves, or shadows, the sensitivity of the presence detector is controlled by
some parameters. The background is updated regularly to extract elements
that are consistent in the image for a long time, or elements that occur due to
changes in the light conditions and the creation of shadows.

Presence detector histogram

The lower white, horizontal line of the presence detector histogram of Figure
M.18a shows if the size of the object that is present inside the detector is lower
or higher than the Minimum occupation percentage.

To be detected as a road user, the blue lines must go higher than the
horizontal line and the width of the blue lines above the threshold must
be above the time interval which is defined in Delete events smaller than
(standard setting: 200 ms). Only the dark blue lines counts in the time that
it should be above the threshold to be detected as a road user. The width of
the dark blue part should be approx. 0.5 cm when using the standard setting
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Fig. M.19: The movement detector (red). The movement detector detects activity (movement) in a
specific direction through the detector.

of 200 ms. If the activity for one road user results in two tops with a small
gap in between (meaning that it will be registered twice), you can adjust the
value for Collate events within (standard setting: 300 ms). In this way you
can influence how large the gap between two tops can be before they should
be registered as two separate road users. NB! Be careful if changing this value.
If too big, two cars with a small gap between them will be registered as one.

Presence detector parameters

Minimum occupation percentage Fraction of the defined mask that must be
occupied by a road user or a temporary object in the scene. Use this value to
filter out noise or small road users, for instance pedestrians and bicyclists.

5.2 Movement Detector

The movement detector checks if there is activity in a specific direction in a
certain area of the video by means of the Farnebäck dense optical movement
estimation(Farnebäck, 2003). In the movement detector points in two consecu-
tive frames are identified and matched. Objects moving across the detector
will result in vectors that are dependent on the direction and speed of the
object. Higher speeds will result in larger vectors. The amount of vectors per
direction (in terms of degrees) is summed up for those vectors that are higher
than a predefined value of the speed of the object. Vectors below this value
are omitted.
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Movement detector histogram

The histogram of the movement detector is illustrated in Figure M.18b. The red,
vertical lines of the histogram indicate that something has moved faster than
the Minimum speed in the specified direction. The unit is not comparable
to known speed units (e.g. m/s or km/h) but low values means that slow
road users will be detected, high values that only fast objects will be detected.
Choosing a narrow range of direction will result in limited activity and hence
few/short red lines.

The white, horizontal line shows the Trigger threshold, i.e. how much ac-
tivity is required to be identified as a road user (above the line) and what
is considered as noise (below the line). To be detected as a road user, the
red lines must go higher than the horizontal line and the width of the red
lines above the threshold must be above the time interval which is defined
in Delete events smaller than (standard setting: 200 ms). Only the dark red
lines counts in the time that it should be above the threshold to be detected as
a road user. The width of the dark red part should be approx. 0.5 cm when
using the standard setting of 200 ms. If the activity for one road user results
in two tops with a small gap in between (meaning that it will be registered
twice), you can adjust the value for Collate events within (standard setting:
300 ms). In this way you can influence how large the gap between two tops
can be before they should be registered as two separate road users. NB! Be
careful if changing this value. If too big, two cars with a small gap between
them will be registered as one.

Movement detector parameters

Trigger threshold Limit for when an activity will be registered. The param-
eter is used to sort out noise in the video. In the histogram of Figure M.20a,
the trigger threshold is shown as a horizontal line. To filter out noise, the red
line must be above the horizontal line in four out of the last ten frames. This
is visible from the histogram below; the red line is above the horizontal line
in a short duration (three frames) before the detector is finally triggered and
turns dark red.

Minimum speed Measure for how fast an object must move to be registered
in the movement detector. The higher value, the faster it has to move. The
minimum speed is measured in pixels.

Flow range Defines in which direction the vectors must go if the activity
should be registered as an event. The range can be chosen on a circle (0-360
degrees), illustrated in Figure M.20b. The range is chosen by either inserting
the range in the fields or by dragging in the dots on the circles.
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(a) Trigger threshold (b) Flow range

Fig. M.20: Histogram and flow range of the movement detector.

5.3 Stationary Detector

The stationary detector, depicted in Figure M.21, detects if an object is idling
or moves very slowly through a specific area of the video by means of a
combination of the presence and movement detectors. To detect an object
(a road user) the presence detector must be triggered, while the movement
detector must not be triggered. This indicates that an object is present in the
area but is moving very slowly or not moving at all.

Stationary detector histogram

The histogram of the stationary detector, shown in Figure M.22, is a bit
different than the histograms of the other detectors, as the detector is a
combination of the presence (blue) and movement (red) detectors.

The lower white, horizontal line of the histogram shows if the size of the
object that is present inside the detector is lower or higher than the Minimum
occupation percentage.

The upper white, horizontal line shows the limit of how much the object
can move and still be registered as standing still. The height of the red line
shows the amount of activity in any direction with a speed higher than the
Minimum speed. To be detected as a road user standing still, the blue lines
must reach the lower white, horizontal line and the red lines must not exceed
the upper white, horizontal line. If both of these criteria are met, the blue
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Fig. M.21: The stationary detector (green). The stationary detector detects if something is idling
or moves slowly through the area covered by the detector

Fig. M.22: Stationary detector histogram. X-axis: time Y-axis: activity through the detector (the
higher lines, the more activity was registered))
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and red lines will turn into a brighter colour. If the width of bright coloured
lines is above the time interval which is defined in Delete events smaller than
(standard setting: 200 ms), a road user is detected. The width of the dark red
part should be approx. 0.5 cm when using the standard setting of 200 ms. If
there is a small gaps in the bright coloured lines, it will still be registered as
one road user if the gap is smaller than the value for Collate events within
(standard setting: 300 ms). NB! Be careful if changing this value.

Stationary detector parameters

Minimum occupation percentage See the description of the equivalent pa-
rameter for the presence detector.

Minimum speed See the description of the equivalent parameter for the
movement detector.

Max vector count The maximum amount of vectors that is allowed to be
above the defined minimum speed to result in an event. In other words; the
maximum allowed amount of ‘movement’ in the mask. If the movement is
larger than this, we do not consider the mask to be stationary.

5.4 Traffic Light Detector

The traffic light detector, illustrated in Figure M.23, detects the different phases
(red, yellow, red-yellow, and green) of a traffic light. The detector mask is to
be defined in a small region around the traffic light and is used to perform
image stabilisation. Image stabilisation is performed in order to make sure
that the annotated traffic light positions follows the actual positions of the
traffic light in case of small movements (oscillations) of the camera.

The traffic light positions should be annotated in the centre of the traffic
light. An overview of the detected states of a traffic light is given in Table M.4.

Traffic light detector histogram

The histogram of the traffic light detector visualises the detected state of the
traffic light. Two examples are shown in Figure M.24.

The five states of the traffic light are displayed in different colours that
may be seen from the annotated histogram of Figure M.24b.

6 Detector Modules

The four detectors can be combined in detector modules. The modules manage
logic between one or two detectors. Furthermore, the modules define when a
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Fig. M.23: The traffic light detector (yellow). The traffic light detector detects the colour of the
traffic signal

Table M.4: Overview of the possible states of the traffic light and the corresponding detections as
defined by the colour trigger. The ambiguous state is activated if the detector is unsure of the
state of the traffic light.

Traffic light state Colour trigger

Red Yellow Green

Red x
Red-yellow x x
Yellow x
Green x
Ambiguous
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(a) X-axis: time. Y-axis: detected state
of the traffic light

(b) Detected states in order of appear-
ance (left to right): (1) Green. (2) Yellow.
(3) Red-yellow. (4) Red. (5) Ambiguous
(blank). (6) Green

Fig. M.24: Histograms of the traffic light detector.

detector takes on one of three states:

1. Activated: When a detector is activated, movement in the field can be
registered.

2. Triggered: The detector has registered activity of the right type (e.g. the
right direction) and in an extent that indicates that the movement comes
from a road user (and not just noise in the image).

3. Flagged (results in the detection of an event) When the detector has been
triggered for a number of consecutive frames, an event is registered and
saved in a log file.

RUBA consists of a single module (one detector), a double module (two
detectors), and an exclusive module (two detectors).

6.1 Single

The single module consists of one detector type (presence/movement/stationary-
/traffic light). An event is saved in a log file when the criteria are met according
to the specifications of the chosen detector. An example is shown in Figure
M.25.
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Fig. M.25: Example of a single module. The single module lets the user create one detector of
one’s own choice per module.

6.2 Double

Consists of two optional detectors. An event is detected and saved in the log
file when both detectors have been triggered within a specific time distance
defined by the user. An example is shown in Figure M.26.

The timewise relation between the two individual detectors can be defined
in two ways. Interval timing can be used to define the maximum time gap
between the two detectors are triggered or stop being triggered. For instance,
the time can be defined as the the interval from a vehicle enters one detector
and another vehicle enters the other detector. Overlap timing is used when the
two detectors should be activated simultaneously. It is possible to define a
buffer so that events can be registered if the detectors are activated almost at
the same time. Detailed information on the timing options is given in Section
7.3.

6.3 Exclusive

Similar to the double module, the exclusive module consists of two optional
detectors. An event is detected and saved in the log file only when the main
detector is triggered and the excluding detector is not. If both detectors are
triggered, an event is not created. A timing example is shown in Figure M.27.

7 Setting up the logger

To set up the logger, two aspects should be considered; timing settings and the
type of output we get from RUBA. The common timing settings are related to
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Fig. M.26: Example of a double module. The double module lets the user create two detectors of
one’s own choice per module.

Fig. M.27: The Exclusive module is triggered when the main detector is triggered and the
excluding detector is not.
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Fig. M.28: Common timing settings.

each individual detector. Furthermore, there are additional timing settings for
double modules to define when an event should be detected.

7.1 Common timing settings

The common timing settings are used to adjust when an event should be
written to the log. The fields for defining the common timing settings are
marked in red on Figure M.28.

Delete events smaller than

Deletes events that are only detected briefly, which often indicates noise in
the image. Events with duration less than Delete events smaller than
milliseconds will be omitted from the log. An example is shown in Figure
M.29a.

Collate events within

Combines separate events into one event if the time gap between them is less
than XX milliseconds. This protects against multiple detections of the same
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(a) The two dark blue tops in the centre of
the histogram will not be detected as an
event if Delete events smaller than is
greater than zero.

(b) The dark blue tops in the centre and
the right of the image might be grouped as
one event if the Collate events within
setting is greater than the time difference
between the two detections.

Fig. M.29: The common timing settings in RUBA.

355



Paper M.

Fig. M.30: The Double Module offers two timing modes; interval timing and overlap timing.

object. If chosen too high, multiple road users driving close to each other will
be registered as one road user. See Figure M.29b for an example.

Maximum triggered duration

Defines the maximum allowed duration (in milliseconds) of an event. If an
event is longer than the specified maximum duration, it will be cut off after the
max triggered duration has gone, and a new event will be created immediately
thereafter.

7.2 Double module timing settings

Timing between the two individual detectors of a double module can be
defined using either interval timing or overlap timing, marked in red on Figure
M.30.

Interval timing

The interval timing, illustrated in Figure M.31a, denotes the maximum ac-
cepted time gap (in milliseconds) from the detection of activity in one detector
to the detection of activity in the other detector. The point for measuring the
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(a) Illustration of interval timing. In this ex-
ample, Entering is selected for both the First
triggered detector and the Last triggered
detector.

(b) Illustration of overlap timing.

Fig. M.31: Timing settings of the Double Module.

time gap can be either when the detector is activated (i.e. when the detector
registers a that a road user enters the detector) or when the detector is left
(i.e. when the road user has just left the detector).

Overlap timing

The overlap timing, illustrated in Figure M.31b, detects an event if both
detectors are activated simultaneously. A buffer (in milliseconds) can be used
to also log events where the two detectors are activated at almost the same
time.

7.3 Logs

Three types of output can be created:

• Log every event: creates a .csv file with one line for each detection.

• Save frame of every event: saves an image of what triggered the detector.
For double modules, the saved image contains a screenshot of what
triggered each detector, put side by side.

• Log sum of events: creates a .csv file with the total number of detections
per log interval(in minutes).

The log settings pane is shown in Figure M.32. The content of the log file
depends on the detector module. Table M.5 gives an overview of the content
of the log files.

Log Examples

Sample every event logs are shown in Figure M.33 and M.34. A sample of a
sum of event log is shown in Figure M.35.
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Fig. M.32: The log files settings pane.

Fig. M.33: Every event log from a Single Module Detector. The Duration column lists the time
difference in milliseconds between the Entering Detector 1 and Leaving Detector 1.

Fig. M.34: Every event log from a Double Module Detector. In the First Triggered column, we
see that the Movement Detector 1 (M1) always is triggered first in this sample. The Frame column
shows the file name of the corresponding snapshot image for each event. If this column is empty,
the Save frame of every event checkbox has not been ticket in the log settings.

Fig. M.35: Sum of event log. All detector modules produce sum logs in this format.
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Table M.5: Contents in the log files. The files Analytics are created when marking Log every
event in the settings/drawing window of the detector, while Counts will be created when
marking Log sum of events. In the latter, the desired time interval can be specified (in minutes),
e.g. 15 minutes. Legend: Single Module = SM, Double Module = DM, Exclusive Module = XM.

Log every event Log sum
of events

Description

SM,
XM

DM All mod-
ules

File x x x File name of the video
Date x x x Date for video recording
Entering x x Time stamp for arrival to the

detector (i.e. there is activity in
the detector)

Leaving x x Time stamp for when the detec-
tor has been left (i.e. is empty
again)

Timegap 1-2 x Time difference between an ob-
ject has triggered detector 1 and
an object has triggered detector
2

Timegap Detec-
torX

x Time from one object arrives to
detector X (trigger the detector)
to the road user has left the de-
tector

FirstTriggered x Which of the two detectors was
triggered first?

TimeStart x Time for the beginning of the
time interval

TimeEnd x Time for the end of the time in-
terval

Object x Number of objects that have
been detected within a specific
time interval
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(a) Opening the Ground Truth Annotator

(b) Save log files automatically in Ground Truth Annotator
by pressing the Auto-save button.

Fig. M.36: Ground Truth Annotator

8 Ground Truth Annotator

RUBA features a built-in option to perform manual event-based annotation
based on timestamps. For example, we might want to annotate whenever a car
turns right in an intersection or whenever a pedestrian passes a specific line
in a zebra crossing. In the example below, we will set up the Ground Truth
Annotator to perform annotation of different road users at an intersection.

Click on Ground Truth Annotator in the main RUBA menu, marked with
red on Figure M.36a.

A new window opens. Click on Save log file as, shown in Figure
M.36b, and specify the name of the file and where to save the log file. Put a
check mark next to Auto-save to save the log automatically.

Click on Edit event types to specify the types of road users to register.
Double click on the name to change, and press Finish editing to include the
event types in the Event panel. This process is also illustrated in Figure M.37.

Adjust the window and column sizes to get it to look more clear and place
the window as shown in Figure M.38 so that you can see the window and the
main window of RUBA at the same time.

Click in the Ground Truth Annotator (GTA) window and press space to
start. Press space again to pause playback. Click on the corresponding button
in the GTA window or press the number on the keyboard every time a road
user of that particular type passes. Make sure that you register all road users
at the same spot every time. All road users must be counted individually in
the tool, so if there is a group of 2 pedestrians, press twice to register the road
users.
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(a) (b)

Fig. M.37: Editing the event types of the Ground Truth Annotator

Fig. M.38: The Ground Truth Annotator should be placed beside the video window in RUBA to
make the annotation process feasible.
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Fig. M.39: Opening the Log File Reviewer.

Fig. M.40: Setting the file path of the filtered log file.

8.1 Reviewing annotations

You may continue the annotation process or review the previous annotations
by loading them into the Ground Truth Annotator. Either start the video from
the beginning or double-click on an annotated time stamp to jump to this
particular point in the video.

If you tick the Enable validation mode button during playback, the most
recent annotated time stamp will be selected in the Events pane. If the Show
masks button is also enabled in the main RUBA window, the annotated event
information will be overlayed on the video when it takes place.

9 Log File Reviewer

The Log File Reviewer is a tool to review and validate the log files as output
by the detector modules of RUBA. Open the Log File Reviewer by pressing
the button on the toolbar, illustrated in Figure M.39, or press F11.

Open the log file that you want to inspect by clicking the folder icon in
the Original log file window, shown on the left of Figure M.40. Hereafter,
click on the save button in the Filtered log file window and specify where
to save the (validated) log file for further processing. Tick off the check box
Auto-save.

Define how many seconds should be played before and after the time
stamp, e.g. 15 sec before the Entering and 10 sec after the Leaving timestamps
in the log files. An example is shown in Figure M.41.

Adjust the size of the RUBA windows as illustrated in Figure M.42 so that
the normal window and the log file reviewer are both visible and placed next
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9. Log File Reviewer

Fig. M.41: Setting the video playback properties.

Fig. M.42: The Log File Reviewer next to the main RUBA window.

to each other.
Double click on the first video in the list, then click the playback button,

marked in red on Figure M.43a. All events will be played one by one without
break. Press the pause button to pause the playback (keyboard shortcut: space)
and press again to start the playback (keyboard shortcut: space). You can
double click on any of the events in the list to go to that event.

Adjust the speed on the sliding bar (Figure M.43b) if it goes too fast/slow.
Do the following to insert and delete events in the filtered log file:

1. Click on the blue arrow pointing right (keyboard shortcut: INS) to put
an event from the original when there is a potential conflict. It is possible
to select more events at once.

2. Click on the blue arrow pointing left (keyboard shortcut: DEL) to remove
an event from the filtered log file. These arrows are marked in red on
Figure M.44.

Please note that only the filtered log file is altered during this process. The
original log file is read-only.
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(a) Starting the playback based on the events of the log
file.

(b) Adjusting the playback speed in the
main RUBA window.

Fig. M.43: Playback in the Log File Reviewer

Fig. M.44: Inserting and deleting events into the filtered log file.
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1. Introduction

I løbet af de seneste 10 år er kunstige, neurale netværk gået fra at være en støvet,
udstødt teknologi til at spille en hovedrolle i udviklingen af kunstig intelligens. Dette
fænomen kaldes deep learning og er inspireret af hjernens opbygning.

1 Introduction

Hvordan kan en computer vinde over verdensme- steren i GO, hvor der er
flere mulige kombinationer på spillepladen end atomer i universet? Hvordan
kan en bil forstå, at der er en fodgænger foran den og selv bremse?

Svaret på denne type spørgsmål er intelligente computersystemer, der
lærer ved at analysere data – rigtig meget data. Den nyeste metode indenfor
dette forskningsområde kaldes deep learning. Metoden har på få år revolu-
tioneret store dele af forskningsverdenen og er nu på vej ud i alle grene af
samfundet, hvor den forventes at få afgørende betydning.

Et gammelt ordsprog siger, at viden er magt! Måske er data et af de vigtig-
ste elementer i dannelsen af viden, men hvordan man styrer og udnytter data,
er endnu vigtigere. Derfor har forskere altid forsøgt at udvikle avancerede
måder til indsamling af data for derefter at udnytte det bedst muligt. For at
finde inspiration til at udvikle bedre databehandlingsteknikker har forskere
kigget på hjernens opbygning og opførsel i håb om at kunne opnå en forståelse,
der efterfølgende kan implementeres i computere. Dette forskningsområde
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kendes også som kunstig intelligens. På grund af hjernens komplekse struktur
har det altid været meget udfordrende at forstå hjernens grundlæggende
funktionalitet for derefter at opbygge et hjerne-lignende system. På trods af,
at ingeniører længe har formået at konstruere systemer, der kan ef- terligne
hjernen ved simple opgaver, så har forskere stødt hovedet mod muren, når
det kom til at konstruere systemer, der er i stand til at løse mere udfordrende
opgaver, for eksempel genkendelse af objekter.

Imidlertid har nylige fremskridt inden for dataindsamling og rå processer-
ingskraft gjort det muligt at bygge systemer baseret på kunstig intelli- gens,
der kan løse komplekse problemer som objektdetektion, genkendelse og track-
ing. Systemerne er nu så gode, at de i nogle tilfælde klarer sig bedre end
menneskelige eksperter.

Disse systemer bliver trænet ved hjælp af massive datamængder gennem
matematiske algoritmer, der er bedre kendt under paraplybetegnelsen deep
learning. Før vi kommer nærmere ind på det, må vi en tur omkring hjernen
for at få en grundlæggende forståelse af disse systemer.

2 Hjernen

Hjernen er en af de mest komplekse strukturer, vi kender. Den er opbygget af
100 milliarder celler kaldet neuroner, og der er cirka samme antal neuroner
i hjernen, som der er stjerner i Mælkevejen. I figur N.1 ses en illustration af
et neuron. Hvert neuron har: Et cellelegeme, indeholdende kernen, som er
neuronets behandlingscenter. Et sæt indgangsforbindelser, dendritter, som
bringer signaler fra de andre neuroner til kernen i det nuværende neuron.
En axon, som overfører resultaterne af behandlingen af indgangssignalerne
i kernen til de neuroner, der er forbundet til det aktuelle neuron via sine
udgangsforbindelser (axonterminaler).

En gruppe af disse små hjerneneuroner, der er internt forbundet med
hinanden, er ansvarlige for at udføre en specifik opgave. For eksempel
udføres matematiske operationer i en bestemt del af hjernen, mens følelser
opfattes af en anden gruppe neuroner. Ved løsning af specifikke opgaver
viser de ansvarlige grupper af neuroner mere elektrisk aktivitet end resten
af hjernen. Disse elektriske aktiviteter skyldes frigivelse af kemiske stoffer
mellem neuronerne, der er internt forbundet med hinanden. Hvis summen af
kemiske stoffer ved neuronet er større end et bestemt niveau, bliver neuronet
aktiveret. I modsat fald forbliver det passivt.

Når vi som menneske prøver at lære en bestemt opgave, for eksempel
når en baby lærer at gå, gennemføres denne læring gennem adskillige forsøg.
Under disse forsøg lærer hjernen, eller rettere: En specifik gruppe neuroner
lærer, hvordan de skal aktiveres for at udføre den specifikke opgave. Mængden
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2. Hjernen

Fig. N.1: Illustration af et neuron, som er hjernens byggesten.

af de kemiske stoffer, der frigives mellem neuronerne, definerer graden af
forbindelse, også kaldet vægtningen, mellem de tilsluttede neuroner.
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Fig. N.2: Princippet i en kunstig neuron.

Man kan simulere det biologiske neuron med en matematisk funktion, der
består af en lineær kombination af alle inputs til neuronet. Den lineære kom-
bination styres af vægtene af de enkelte inputs. Denne sum af vægtede input
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svarer til mængden af de kemiske stoffer, der kommer til et neuron. Derefter
bestemmer en såkaldt aktiveringsfunktion, om neuronet skal aktiveres eller
forblive passivt. Hvis den vægtede sum er større end en given grænseværdi,
aktiveres neuronet. Dette princip er illustreret i figur N.2.

Et kunstigt neuralt netværk består af en kombination af disse kunstige
neuroner i forskellige lag, der er internt forbundet med hinanden gennem
vægtede forbindelser. Antallet af lag beskriver dybden af netværket. Man
betegner et neuralt netværk som dybt, hvis det indeholdertre eller flere lag.

Aktiveringsfunktioner spiller en nøglerolle i kunstige neurale netværk.
Hvis aktiveringsfunktionen udelukkende består af lineære funktioner, kan
det kunstige neurale netværk udelukkende beskrive lineære fænomener, og
dets samlede funktion kan grundlæggende beskrives af én stor matrix. Hvis
aktiveringsfunktionen derimod ikke kan beskrives som en lineær kombina-
tion af dens input, er det kun dybden af det kunstige neurale netværk, der
begrænser kompleksiteten af de funktioner, som netværket kan beskrive.

3 Læring

For at lære et kunstigt neuralt netværk at udføre en specifik opgave kræves en
læringsalgoritme, hvis formål er at finde de rette vægte mellem netværkets
neuroner. Vægtene læres gennem adskillige iterationer, hvor det neurale
netværk præsenteres for store mængder træningsdata. Hver enkelt stykke
data er annoteret, det vil sige, at det er parret med den ønskede respons
fra det neurale netværk – for eksempel at et billede af en hund hører til
kategorien “hund”, hvis formålet med det neurale netværk er at genkende
objekter i billeder. Når billedet er kørt igennem det neurale netværk, giver
netværket dets bud på hvilken kategori, billedet tilhører. Herefter udregnes
forskellen mellem det beregnede og det ønskede resultat, hvilket kaldes
krydsentropitabet. Det beregnede krydsentropitab fødes herefter baglæns ind
i det neurale netværk og opdaterer vægtene i retning af det ønskede resultat.

I starten resulterer det neurale netværk ikke i andet end støj. Men ganske
langsomt, iteration for iteration, lærer netværket at tilpasse sig det pågældende
træningsdata. Når det beregnede resultat konvergerer mod det ønskede re-
sultat, er træningen afsluttet og netværket er nu specialiseret i at klassifi-
cere datasættet. Hvis datasættet indeholder tilstrækkeligt mange annoterede
billeder og er repræsentativt for de ønskede kategorier, for eksempel hunde
og katte, har man nu en udmærket hunde- og kattedetektor.

Et netværk trænes ved at udregne dets respons for en række billeder
(grønne pile i figur N.3), hvor vi på forhånd har defineret det ønskede resultat
(annoteret data). Forskellen mellem det ønskede resultat og det beregnede
resultat beregnes i det såkaldte krydsentropitab, som føres baglæns gennem
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3. Læring

Fig. N.3: Træningsprocess af et kunstigt neuralt netværk.

netværket for at opdatere dets vægte (røde pile i figur N.3).
To af nøgleordene bag denne læringsalgoritme er differentiabilitet og

kædereglen for diffentiering af sammensatte funktioner. Alle de neuroner,
som et kunstigt neuralt netværk er sammensat af, er grundlæggende (stykvist)
differentierbare funktioner. Det betyder, at vi kan flytte det samlede netværks
opførsel ved, neuron for neuron, at finde gradienten for den partielt differ-
entierede funktion, opdatere funktionens vægte på baggrund heraf, og føre
gradienten videre til de neuroner, som funktionen er forbundet til. Denne
proces gentages for hver iteration, indtil alle neuroner er opdateret.

Fig. N.4: Iterativ læring af et kunstigt neuralt netværk. I starten resulterer netværket ikke i andet
end støj, men jo flere annoterede billeder, der køres igennem netværket, jo bedre bliver det til at
klassificere billeder af hunde som ”hund”.
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4 Hvorfor først nu?

Kunstige neurale netværk går tilbage til 1940’erne. Disse netværk var imi-
dlertid ikke særlig populære i samtiden på grund af den beregningsmæssige
kompleksitet og manglende træningsdata.

Den beregningsmæssige kompleksitet skyldes, at et netværk, der kan løse
praktiske problemer, indeholder mindst tre lag med mange neuroner i hvert
lag, der er internt forbundet med hinanden. Denne type netværk er kendt
som en Multi-Layer Perceptron (MLP). I en MLP er hvert neuron i et lag
forbundet til alle neuroner i det næste lag af netværket, som set i figur N.5.
Dette fænomen, der er kendt som fuldt forbundne netværk, resulterer i store
matricer, der beskriver vægtningen af neuronernes forbindelser. De store
matricer fører igen til beregningsmæssigt krævende læringsalgoritmer, der i
mange år var for store til, at computere kunne håndtere dem. Dette ændrede
sig dog med introduktionen af såkaldte Graphics Processing Units (GPU) i
1990’erne, som tilbød hurtig og parallel databehandling. Brugen af GPU’er
har gjort det muligt at implementere neurale netværk i praksis, hvorefter
deres popularitet kun er steget. Faktisk er neurale netværk nu blandt de
allerbedste værktøjer, der er i stand til at løse meget komplicerede problemer
som billedbaseret objektgenkendelse. Denne succes skyldes imidlertid ikke
kun udviklingen af bedre GPU’er, men også tilgængeligheden af enorme
mængder data.

Input

Lag 1 Lag 2

ΣXi∙Wi
i=1

n

Output

Lag n

Fig. N.5: I et Multi-Layer Perceptron (MLP) netværk er alle neuroner forbundet til hinanden
imellem lagene.

374



5. Fra machine learning til deep learning

Da kunstige neurale netværk udelukkende kan lære på baggrund af ek-
sempler, er tilgængeligheden af eksempeldata kritisk. Jo mere data, jo bedre er
læringsprocessen. Imidlertid var store databaser ikke så almindelige for blot
10 år siden. Men siden 2010 er enorme databaser gradvist blevet opbygget. Et
eksempel er ImageNet, der består af cirka 14 millioner annoterede billeder,
inddelt i mere end 20.000 forskellige kategorier.

Fig. N.6: Overlejrede annoteringer af objekter i trafikken, hvor hver farve indikerer en kategori.
Denne type data er fx vigtig for træningen af selvkørende biler.

De fleste billeder i ImageNet indeholder kun én annotering, det vil sige
at hele billedet tilhører én kategori. En anden og mere omfattende måde at
annotere billederne på er at definere det specifikke område i billedet, der
indeholder et givent objekt – for eksempel fodgængere, cyklister, biler og
trafikskilte, som ses i figur N.6.

5 Fra machine learning til deep learning

Traditionelle machine learning-teknikker er baseret på at udvikle og udvælge
specifikke karaktertræk, også kaldet features, ved de objekter, man ønsker
at finde og genkende. Det har betydet, at forskere tidligere har brugt tid på
manuelt at definere features, som efter deres vurdering var unikke og gav en
god repræsentation af de ønskede objekter.

Til detektion af trafikskilte vil man i traditionel machine learning udvælge
features, der kan beskrive skiltets cirkulære form og dets karakteristiske
røde kant. Herefter udvælger man manuelt en eller flere metoder, der kan
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konvertere de ønskede features til en matematisk repræsentation. Disse
features bruges til at træne en machine learning-algoritme, som benytter de
udregnede features til at skelne mellem trafikskilte og ikke-trafikskilte.

Til trods for, at det i sidste ende er computerens algoritmer, der udregner
det endelige resultat, indebærer traditionel machine learning en del manuelt
arbejde med at definere hvilke features, der er relevante. Deep learning har
til forskel fra machine learning ingen behov for menneskelig indblanding
i forbindelse med udvælgelse og udformning af features. Sammenhængen
mellem kunstig intelligens, machine learning og deep learning ses illustreret i
figur N.7.

Kunstig Intelligens

Machine Learning

Deep
Learning

Enhver teknik, der gør det muligt for 
computeren at efterligne menneskelig adfærd. 

Kunstig intelligens refereres ofte til som AI 
(artificial intelligence).

En del af AI, som ved brug af statistiske 
metoder kan forbedre maskinens evne til 
at udføre en opgave gennem læring fra 

annoteret data.

En undergruppe af ML, 
som ved eksponering af 

store mængder 
annoteret data til multi-

lags neurale netværk 
kan udføre en opgave. 

Fig. N.7: Sammenhæng mellem kunstig intelligens, machine learning og deep learning.

Det kræver dog stadig menneskelig indblanding, når deep learning-netværkene
skal designes. Det gøres for eksempel ved at definere netværkets størrelse,
det vil sige hvor mange lag, netværket skal bestå af. Workflowet fra mellem
machine learning og deep learning er illustreret i figur N.8.

Et lag består af en række funktioner. Den vigtigste funktion i moderne
neurale netværk er en såkaldt convolution (på dansk en foldning), og der-
for kaldes disse netværk også Convolutional Neural Networks (CNN’er).
Convolution er en matematisk operation, der benytter sig af et filter. Fil-
trenes overordnede funktion er at trække features ud af inputbilledet, og et
moderne neuralt netværk indeholder rigtig mange filtre, der er grupperet i
flere convolution-lag. Populære deep learning-netværk som AlexNet, VGG,
GoogLeNet og Microsoft ResNet er alle CNN’er, og de indeholder henholdsvis
8, 19, 22 og 152 lag. Et eksempel på en convolution ses til venstre i figur N.9,
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algoritme til 
klassifikation
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Fig. N.8: Sammenligning af workflowet for traditionel machine learning og deep learning. I
modsætning til traditionel machine learning kræver deep learning ikke manuel udvælgelse af
features.

hvor der benyttes et filter af størrelsen 3x3 pixels med udgangspunkt i den
pixel, der er markeret med rød ring. Convolution består i, at man anvender
3x3 filteret på den “røde” centerpixel samt dets nabopixels, illustreret med det
grå område i input- matricen. Den resulterende pixelværdi i outputmatricen
opnås ved at gange filterets vægte på de tilhørende pladser i inputmatricen
for derefter at summere resultatet. Herefter rykker vi vores 3x3 filter én gang
til højre og gentager udregningen.
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Fig. N.9: De vigtigste funktioner i moderne neurale netværk er convolution og pooling.

Outputtet fra convolution kaldes et feature map, og det er udgangspunktet
for et andet meget anvendt lag i neurale netværk kaldet pooling, som ses til
højre i figur N.9. I eksemplet på pooling bruges her et såkaldt max pooling-
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filter med en størrelse på 2x2 pixels og en stride på 2 pixels. En stride på
2 pixels betyder, at vi flytter filteret 2 pixels til højre efter hver operation.
Maxfilteret undersøger alle værdierne i et 2x2 område, tager den højeste værdi
heri og smider de øvrige værdier væk. Den højeste værdi udgør nu den
nye pixelværdi i outputmatricen. Denne funktion reducerer størrelsen på de
feature maps, der genereres fra convolution-laget, således at man opnår en
mere kompakt repræsentation.

En af årsagerne til, at CNN fungerer så godt, er, at netværkene selv kan
lære at sammensætte både simple og komplekse features i deres convolution-
lag – uden at man som operatør specifikt beder dem om at gøre sådan.
Eksempel på både simple såvel som komplekse features ses i figur N.10.

Inputbillede

227x227x3 55x55x96 27x27x96 27x27x96

5 x 5
s = 1

13x13x256 13x13x256 13x13x256 13x13x256

Conv1 Pool1 Conv2 Pool2 Conv3 Conv4 Conv5

Conv1 Conv2 Conv3 Conv4 Conv5 

Fig. N.10: Eksempel på et AlexNet-inspireret neuralt netværk med 5 convolution-lag og 2 pooling-
lag samt dertil hørende lærte features for hvert convolution-lag (øverst). Conv-lagene ændrer
sig gradvis fra at være ret genkendelige omrids af bilen i conv1 til mere komplekse strukturer
i conv5, som knap nok er genkendelige for det menneskelige øje. Den nederste del af figuren
visualiserer, hvad 1 tilfældigt udvalgt feature-map i hvert af de 5 convolution-lag reagerer på i
billedet. Conv1-features repræsenterer kanter og farveforskelle i forskellige retninger, mens de
senere convolution-lag repræsenterer komplekse, specialiserede mønstre.

6 Ikke begrænset af menneskelige sanser

Det ser i store træk ud til, at deep learning og kunstige neurale netværk virker
som hjernen ved løsning af bestemte opgaver. Det betyder, at kunstig intelli-
gens i princippet vil kunne klare det samme som et menneske. Potentialet er
dog endnu større for den kunstige intelligens, da dets input ikke er begrænset
til de menneskelige sanser, men vil kunne opfatte verden gennem et utal af
sensorer og have adgang til ufattelige mængder information. For at nå så langt
kræves der dog betydelige fremskridt indenfor udvikling af læringsalgoritmer
og håndtering af information. På vejen dertil vil deep learning ændre fremti-
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den i mange forskellige applikationer og sektorer, fra sikkerhed og finans
til medicin og transport. Vi er glade for at være en del af dette spændende
eventyr.
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