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Summary

This thesis considers the modeling of the traveling wave piezoelectric motor. The main
objective of this PhD project is to derive a suitable model for investigating some non-
linear control strategies in a simulated environment. Most of the existing modeling ap-
proaches are inappropriate for the control community due to their many drawbacks. The
established analytical methods have high computational demands, whereas the equiva-
lent circuit method lacks the ability to capture some of the important dynamics such as
the frictional behavior of the contact mechanism driving this type of motors.

In order to overcome some of the drawbacks of the existing methods, and thereby meet
the needs of the control community, three main approaches are considered in this mod-
eling task.

First, the equivalent circuit method is investigated in order to derive a lumped model
of an ultrasonic traveling wave rotary piezoelectric motor. This approach is carried
out on the basis of the experimental investigation combined with the electrical network
method. Consequently, an insight in the analysis of the electromechanical coupling
force factor, which is responsible for the electrical to mechanical energy conversion, is
obtained. Thereby, the difference between the effective force factor and the modal force
factor is highlighted, and how these parameters should be integrated in the equivalent
circuit model is emphasized. Furthermore, the effect of temperature on the mechanical
resonance frequency is considered and thereby integrated in the final equivalent circuit
model for long term operations.

Second, the laws of physics based on the energy balance method are used for the pur-
pose of predicting, a priori, the performance of the motor as a function of the design
parameters and thereby a theoretical model is derived. Since the dynamic characteristics
of the real motor are difficult to capture in an analytical model, and the parameters of
the motor are time varying and highly nonlinear, then some assumptions are required in
order to simplify the modeling task and thus provide a suitable model for control pur-
poses. Consequently, a general state space model is derived on the basis of the special
design of the motor of interest, which is a two phase symmetrical system. Furthermore,
a simplified model is derived within the framework of various assumptions on the be-
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havior of the stator, which makes it possible to decouple the assumed excited modes and
thereby predict the performance of the stator by a single second order system. The fric-
tional behavior at the interface contact between the stator and the rotor constitutes the
main problem in the modeling approach and therefore its modeling is treated with care
in order to avoid large discrepancies with the physical plant. Consequently, the stick-slip
behavior of the driving mechanism is integrated in the time varying parameters of the
model. This makes it possible to predict most of the behavior and performance charac-
teristics of the motor as a function of the external loading parameters. The outcome of
this modeling approach is a less computationally demanding model suitable for control
investigation purposes.

Finally, a hybrid model which combines the strength of the equivalent circuit method
and the analytical method is derived. The analogy between the equivalent circuit model
and the analytically reduced model of the unforced stator, which models the behavior of
one phase of the stator, is highlighted. This makes it possible to substitute the parameters
of the equivalent circuit model in the framework of the simplified analytical model. Con-
sequently, the large uncertainties on the values of the dielectrical and electromechanical
constants are avoided. The simplified hybrid model of the complete motor is thereby
derived in terms of the forced stator model, the spinning motion model and the vertical
motion model. Finally the effect of temperature on the mechanical resonance frequency
is considered and thereby integrated in the final hybrid model for long term operations.
The validity of the model has been established by simulations and comparison to the
performance characteristics of the real system.

The results achieved by the different approaches are compared and a final conclusion is
drawn.



Synopsis

Denne afhandling omhandler modellering af en vandre-bølge piezoelektrisk motor.
Hovedformålet med dette PhD arbejde er at lave en simplificeret model som er veleg-
net til ikke lineær kontrol undersøgelse i et simuleret miljø. De fleste af de eksisterende
modeller er uegnede til reguleringsbrug på grund af deres mange ulemper. De etablerede
analytiske metoder kræver mange beregninger, hvorimod ækvivalent kredsløbsmetoden
har en manglende evne til at fange nogle vigtige dynamiske forhold, såsom friktion-
sopførsel i den kontakt mekanisme der driver motoren.

For at overvinde nogle ulemper ved disse eksisterende metoder, og derved opfylde be-
hovene i reguleringsøjemed, bliver tre væsentlige fremgangsmåder betragtet i denne
modelleringsopgave.

Først undersøges ækvivalent kredsløbsmetoden for at opstille/udlede en god model af
en ultralyds vandre-bølge roterende piezoelektrisk motor. Denne fremgangsmåde er ud-
ført på basis af den eksperimentelle metode kombineret med den elektriske netværksme-
tode. Altså opnås et indblik i analysen af den elektromekaniske koblingskraftfaktor, som
er ansvarlig for den elektromekaniske energiforvandling. Derved fremhæves forskellen
mellem den effektive kraftfaktor og den modale kraftfaktor, og det understreges hvor-
dan disse parametre skal integreres i den ækvivalente kredsløbsmodel. Endvidere un-
dersøges temperaturens indvirkning på den mekaniske resonans frekvens. Herved bliver
temperaturen integreret i den endelige ækvivalente kredsløbsmodel for langtidspåvirkn-
ing.

Dernæst anvendes de fysiske love baseret på energibalancemetoden med henblik på a
priori at forudsige motorens præstation/ydeevne som funktion af designparametrene, og
derved etableres den teoretiske model. Eftersom den virkelige motors dynamiske karak-
teristika er svære at fange i en analytisk model, og motorens parametre er tidsvarierende
og stærkt ulineære, så er nogle antagelser nødvendige for at simplificere modellering-
sopgaven og derved etablere en passende model for reguleringsformål. Altså udledes en
generel tilstandsmodel på basis af motorens specifikke design, som er et to fase sym-
metrisk system. Endvidere etableres en simplificeret model på grundlag af en række
antagelser, som gør det muligt at afkoble de antagne stimulerede modes og derved
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forudsige statorens ydeevne med en enkelt anden orden model. Friktionsopførslen på
kontakt grænsefladen mellem stator og rotor udgør et væsentligt problem i modeller-
ingsfremgangsmåden, og derved bliver dens modellering behandlet med omhyggelighed
for at undgå for stor afvigelser fra det fysiske system. Altså integreres den drivende
mekanismes stick-slip opførsel i modellens tidsvarierende parametre. Dette gør det
muligt at forudsige motorens ydeevne som funktion af de ydre belastningers parame-
tre. Udfaldet af denne modellerings fremgangsmåde er en mindre beregningskrævende
model som er passende for reguleringsformål.

Tilsidst etableres en hybrid model, som kombinerer styrken af den ækvivalente kred-
sløbsmetode med styrken af den analytiske metode. Analogien mellem den ækvivalente
kredsløbsmodel og den simplificerede analytiske model, som modellerer en enkelt fase
af den fri stator, fremhæves. Dette gør det muligt at substituere den ækvivalente kred-
sløbsmodels parametre ind i den simplificerede analytiske model. Altså undgås den
store usikkerhed på de dielektriske og de eleKtromekaniske konstanter. En simplificeret
hybrid model af den komplette motor er derved etableret i form af den belastede stators
model, rotors omdrejningsmodel og rotors vertikale bevægelsesmodel. Tilsidst betragtes
temperaturens indvirkning på den mekaniske resonans frekvens, som derved bliver in-
tegreret i den endelige hybride model for langtidsbetjening. Modellens gyldighed er
blevet påvist med simulering og sammenligning med motorens virkelige karakteristika.

De resultater som opnås med de forskellige fremgangsmåder sammenlignes og derved
udledes en endelig konklusion.
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Chapter 1

Introduction

This thesis considers the modeling of the rotary type piezoelectric motor driven by the
dynamical friction mechanism at the rotor-stator interface contact (Sashida and Kenjo
(1993)). The driving friction is generated by the excitation of a traveling wave within the
body of the stator. This excitation is normally achieved through a proper power supply.

The general concept of all solid state motors is to generate gross mechan-
ical motion through the amplification and repetition of micro-deformations
of active materials, in this case piezoceramics. The key principles that gov-
ern this type of motors are first the orbital motion of the stator at the rotor
contact points, which can be achieved through proper control of the active
material, second the frictional interface between the rotor and the stator
must rectify the micro-motion to produce macro-motion of the rotor.

The thesis focuses on three main issues: 1) Improving the existing equivalent circuit
modeling approaches (Nogarede and Piecourt (1994); Sashida and Kenjo (1993)) for
better prediction of the performance characteristics of the motor. 2) Improving the ex-
isting theoretical modeling approaches (Hagood and Andrew (1995);Hagedornet al.
(1998)) by reducing the complexity of the model and thereby making it suitable for con-
trol purposes. 3) Making a comparison and thereafter fusion of the two derived models
in order to overcome some of the drawbacks inherent in each model and thereby achieve
a better performance objective.

1.1 Background and motivation

Industrial requirements have in the past focused mainly on improving the quality and
quantity of electromagnetic motors. This has resulted in the huge amount of motors
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found in almost all areas of applications. Recently, the advance in the field of smart
structures and active materials has led to new kinds of motors. Consequently, there exist
numerous examples from different area of application, where piezoelectric motors de-
veloped recently have shown to be superior to their electromagnetic counterparts. These
new devices are already used in Aerospace, Aviation, Shipping, Cars and Camera.

For instance, the traveling wave Piezo Electric Motor (PEM) has excellent performance
and many useful features such as high holding torque, high torque at low speed, quiet
operation (ultrasonic), simple structure, compactness in size and no electromagnetic
interferences. However, the mathematical model of the PEM is complex and difficult to
derive due to its driving principle based on high-frequency mechanical vibrations and
frictional force, (Sashida and Kenjo (1993)). Despite many attempts a lumped motor
model of the PEM is unavailable so far. The dynamical characteristics of the PEM
are complicated, highly nonlinear, and the motor parameters are time varying due to
temperature rise and changes in motor drive operating conditions. Therefore it is difficult
to predict the performance characteristics of the PEM under various working conditions.

Most of the existing work in the field of Piezoelectricity has been carried out by sci-
entists in order to establish linear relationships between different parameters that de-
scribe piezoelectric phenomena (Ikeda (1996); Holland and EerNisse (1969) and Mason
(1964)). The theoretical approach provides linear equations which describe the elec-
tromechanical behavior in any piezoelectric transducer by applying the basic laws of
physics. The empirical approach is, however, based on the measurement of the elec-
tromechanical constants in terms of admittance and equivalent circuit information. This
approach, which is referred to by Equivalent Circuit Modeling (ECM), is a powerful al-
ternative to the theoretical approach (Ikeda (1996)) for solving the practical problems in
question. Consequently, the complexity and the large discrepancy between linear theory
and the real nonlinear physical piezoelectric transducer is avoided.

Equivalent circuit modeling of the traveling wave UltraSonic Motor (USM) "Shinsei
type USR60" has been the subject of extensive research all over the world and important
contributions have been established in (Sashida and Kenjo (1993)). In (Nogarede and
Piecourt (1994)) a systematic modeling approach has been reported. The complexity
of the conversion process of the electromechanical energy within this device is daunt-
ing. The increase of temperature during operation strongly affects the performance of
the motor. Despite many reported attempts, the modeling of this device is still a chal-
lenging problem. Therefore, an insight is needed in order to understand how the elec-
tromechanical coupling factor, which guarantees the effective energy conversion, can
be incorporated in the ECM in order for the simulated model to match the performance
characteristics of the physical system in a better way.

Analytical modeling of the traveling wave piezoelectric motor has also been the subject
of extensive research all over the world and important contribution has been reported
in (Hagood and Andrew (1995)). Due to the complexity of the conversion process of
the electromechanical energy within this type of motors and the increase of temperature
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during operation an insight is needed in order to understand how to capture most features
of the motor in a lower order analytical model. The symmetrical nature of the stator, de-
coupling the correlated excited modes, the effect of the stick-slip behavior of the driving
mechanism on the mechanical resonance frequency of the motor: are the main topics
considered for deriving a simple analytical model of the PEM presented in this thesis.

It has been observed in practice that the mechanical resonance frequency of the motor
shifts towards lower frequencies during the operation of the motor due to the temperature
increase within the body of the stator. In order to overcome this problem a tracking
facility which will update the temperature sensitive parameters is integrated in the ECM
and the hybrid analytical models presented in this thesis.

This thesis reports on the attempt to solve the highly demanding problem of performance
prediction of the PEM. The rotary traveling wave ultrasonic motor "Shinsei type USR60"
is the case study considered in this work. Consequently the objective is to derive a
simple and a low computationally demanding model of the PEM providing the ability
to predict most of the performance characteristics of the motor under various working
conditions. The emphasis is on the combination of the electrical network method, the
physics underlying piezoelectric phenomena, the variational work and elasticity theory
(Hamilton’s principle), besides contact mechanics (friction) and finally the basic laws of
dynamics.

1.2 Previous work

Concerning piezoelectric motors, there is a substantial body of literature. This is a result
of the past three decades significant but scattered activity in different research areas.

Most of the research activity has been concentrated on the design, modeling, power
supply and control of these devices. Piezoelectric transducers are a fairly new field but
with already several powerful quantitative and qualitative modeling methods and tools.
Key references in this work can be found in (Uchino (1997); Ikeda (1996); Ragulskis
et al. (1988); Holland and EerNisse (1969); Mason (1964)). A summary on different
approaches for modeling and coping with these new kinds of devices can be found in
(Ueha and Tomikawa (1993)) (see also Sashida and Kenjo (1993)). The existing model-
ing approaches are mainly based on the equivalent circuit method, the analytical method
based on the variational work by applying Hamilton’s principle and the finite element
modeling (FEM) approach. Among other interesting approaches the fuzzy approach
(Izuno and Nakaoka (1994)) can be mentioned.

Frequency control is the widely used technique for controlling these devices (Ueha and
Tomikawa (1993)). Pioneering work in incorporating the findings of suitable power sup-
ply for these devices has been the forte of the Japanese. This extension of conventional
control strategy has become known asfrequency control.
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1.2.1 Motor design

Toshi Sashida is regarded by many to be the inventor of the piezoelectric motor. He
indirectly caused the development of the Shinsei motor shown in figure 1.1, which has
spurred much interest all over the world ever since. Consequently, their simple mechan-

Figure 1.1: The Shinsei motor. 1: Cover, 2: bearing, 3: spring, 4: stator, 5: piezoce-
ramic, 6: friction material, 7: rotor.

ical construction, efficiency, and high power density have encouraged the development
of many different classes of piezoelectric motors. They typically use one or several
piezoelectric ceramic crystals as the energy source. In Japan (Sashida (1985)), (Kumada
(1987)), (Kumadaet al. (1991)) and many other Japanese researchers have developed
high performance piezoelectric motors for a variety of applications. In Europe and the
USA a strong interest has been shown and considerable effort on development has been
made in the last decade on PEM development, especially in the USA.

In order to establish the design method for a particular motor, a model is convenient for
understanding the operational mechanism of the motor. The design of the motor is the
specifications of the motor which are determined from the required characteristics of the
motor, such as the maximum torque and the maximum speed of rotation. The approach
adopted by researchers is to provide a general framework for modeling these motors
as well as to provide design tool for optimizing prototypes with the added flexibility
of allowing for a wide variety of geometries and materials. In particular, the design of
dynamic systems for precise rotary and linear motion devices has been a significant re-
search topic all over the world. In Japan, (Hirata and Ueha (1995)) proposed a method of
design for a traveling wave type ultrasonic motor. This method is based on two models
of the ultrasonic motor. A two dimensional elastic contact model is used for estimating
the friction drive between the rotor and the stator of the motor. Moreover, an electrical
equivalent circuit is used to estimate the interaction between the electrical and the me-
chanical parts of the motor. The proposed method is applied to the design of a prototype
motor which was validated by the experiments. In Europe and the USA, more advanced
methods for modeling and analyzing these devices in the design phase are used. In the
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USA, (Hagood and Andrew (1995)) proposed a general framework analytical model of
a piezoelectric rotary ultrasonic motor. This model is derived for the purpose of pre-
dicting, a priori, motor performance as a function of the design parameters. The model
presented by Hagood lays the foundations of a general framework capable of represent-
ing numerous existing motors.

1.2.2 Control system design

While simpler in general, the complexity of piezoelectric motor controllers is still fright-
ening. Contribution to literature in this area is dominated by the Japanese. Like the tradi-
tional electromagnetic motors, the control system of the piezoelectric motors is designed
around a certain model of the motor, and in the model it controls values analogous to
the velocity and torque of the motor. Thus, a simple model of the motor system would
be useful for initial experiments in designing the motor and its control system. A small
model of the ultrasonic motor can be found in (Sashida and Kenjo (1993)), where the
author claims that the linear "equivalent circuit" model matches the actual response rel-
atively well, making it useful for designing a control system without resorting to actual
experimentation. Likewise, (Nogarede and Piecourt (1994)) proposed a systematic mod-
eling approach by using the equivalent circuit method. By using this model the author
designed a simplified power driving system. It must be emphasized that much of the
literature covering new control designs of this kind of motors appears not only in aca-
demic journals but also in patents. In general these control systems are only designed as
driving circuits for the motor, and therefore suffer from their inability to cope with the
problems associated with the transient phases of the motor’s operation. The most im-
portant control problem with the motor is the influence of temperature on the resonance
frequency of the stator. Unfortunately, when the temperature of the motor changes, it
may not be able to start or it may shut down if it is running. To address these problems
associated with the unstable operation of piezoelectric motors during their operation,
and thereby achieve the performance objective despite the influences of temperature
fluctuations and changes in external loading on the motor, control systems are designed
for the motor supplied with its electronic drive in the post phase of the motor design.
Several innovative control systems for use with the piezoelectric motor are reported in
the literature. Adaptive control systems have been implemented successfully for con-
trolling both the position (Lin and Kuo (1997)) and the speed (Senjyuet al. (1997)) of
the motor. In (Izuno and Nakaoka (1994)) the authors designed a fuzzy-logic controller
for the piezoelectric motor. It is a simple approach but somewhat difficult to implement
in hardware. However, the system maintains the commanded speed of the motor with
little error despite large changes in torque or commanded speeds. The most important
contribution to the literature on the model based control system of the piezoelectric mo-
tor is reported in a series of three articles in (Maas and Grotstollen (1996a)), (Mass and
Grotstollen (1997)-Jun) and (Maaset al. (1997)-Oct). Despite the innovative results in
these contributions, the implementation in hardware is an expensive and difficult task.
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1.2.3 Vibrations, elasticity, contact mechanics and materials

The development of the piezoelectric motors has spurred an interest in the vibration
characteristics of plates laminated with piezoelectric materials. In particular, the an-
nular plate composed of one stainless steel lamina ("substrate") and either one or two
piezoelectric laminas, a common configuration for piezoelectric motors. (Hagedorn and
Wallashek (1992)) has demonstrated a simple model for the free vibration of the sta-
tor disk and (Hagedornet al. (1993)) an improved model, using finite element analysis
(FEA), for the free vibration of the disk with non uniform thickness. However, forcing
due to the piezoelectric elements and the laminated nature of the stator is ignored in
their studies. Including these factors into the model makes it more difficult to avoid fi-
nite element analysis, and, indeed, (Maenoet al. (1990)) studied a ring motor including
two-body contact mechanics using finite element analysis program. (Maeno and Bogy
(1992)) examined the motor again with contact mechanics and fluid interaction using a
combination of analytical and finite element analysis techniques.

While finite element analysis (FEA) is indispensable for many applications, particularly
with complex geometries, it is inconvenient for system design. Each design iteration
requires a new finite element mesh to be generated and a new numerical solution to be
obtained. This process, known as FEA parametric optimization, is computationally ex-
pensive, and it provides a compelling reason to seek analytical solutions. The ability
to predict the motion of the stator is essential for subsequent modeling of the interac-
tion between the stator and the rotor which is required to predict motor performance.
Therefore research in the vibrations and elasticity has been concentrated on refining
the modeling and the numerical methods, in order to develop better analytical tools for
the design of new PEMs. This problem, as well as questions concerning the excitation
mechanism and the contact between the stator and the rotor were addressed in order to
provide motors of higher efficiency and power, and thereby explore their full potential.

The most important questions related to piezoelectric ultrasonic motors are how much
force and power can be delivered and what form the torque-speed curve will take.
Among other important questions the tribological issues like wear, lifetime or the ef-
fect of surface asperities must be considered. The friction mechanism in the motor is
inefficient and not well understood. The type of energy transfer is believed to be a sig-
nificant contributor to the energy wasted in the motor, and the components involved have
largely been designed in an ad-hoc manner. These two problems are the primary motiva-
tors for the huge activity in the research community in improving the contact mechanism
responsible for much of the motor performance.

In the research on piezoelectric ultrasonic motors the mathematical modeling of the
contact mechanics and the optimization of lifetime and operational characteristics of the
motors by a proper choice of contact materials and design parameters have been sig-
nificant topics. Analytical, numerical and experimental methods have been employed
in the investigation. A survey of the literature on the contact mechanics of ultrasonic
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motors is given in (Wallaschek (1998)). The author claims that the survey is far from
complete since it is difficult to identify and include all relevant papers. The author has,
however, tried to give a comprehensive and representative survey. Furthermore, Wal-
laschek claims that a rigorous solution of the dynamic contact problem is very difficult
and has, to the best of his knowledge, not been found yet, even for the special case of
piezoelectric ultrasonic motors.

The contact mechanics of ultrasonic motors are rather complicated due to the fact that
many parameters should be taken into account. The operational characteristics depend
on the form, frequency and amplitude of the stator vibration, the stiffness and damp-
ing of the contact layer, the flexibility of the rotor, the normal preload force, the static
deflection of the stator and rotor and the frictional characteristics of the contact mate-
rials as well as their surface topology and microstructure. Furthermore, most material
properties strongly depend on temperature and manufacturing tolerance concerning flat-
ness, and alignment of the contact surface plays an important role. Obviously it is rather
difficult to include all these aspects in a single, general contact model. It is more promis-
ing instead to develop problem-oriented models for specific applications. Piezoelectric
ultrasonic motors are usually analyzed in two steps. First, the vibrating structure is
designed to achieve the the required vibration modes, operational frequency and the am-
plitude. Then the nonlinear contact mechanic is studied under the assumption that the
vibration characteristics of the vibrating structure are not affected by the contact process.
This assumption is not accurate due to the fact that the whole system, including the rotor
and the vibrating structure, is a coupled dynamic system. However, the separation of the
analysis process simplifies the investigations and often results in a good description of
the motor’s behavior.

Mathematical models of the contact mechanics of ultrasonic motors are useful for un-
derstanding the principles of energy transfer at the frictional interface, and they are also
used for the a priori calculation of motor characteristics such as no-load speed, staal
torque, efficiency or stationary torque-speed curves. They are needed for the simulation
of the overall system behavior as well as for the optimization of design parameters or
operational characteristics. The contact mechanics of piezoelectric ultrasonic motors
determine the operational characteristics, like rotational speed and torque or transmitted
mechanical power and efficiency. Wear properties and lifetime of piezoelectric ultra-
sonic motors are also determined by contact mechanics. A first attempt to classify mod-
els for the contact mechanics of traveling wave ultrasonic motors was made by (Flynn
(1995)), who started with a very simple contact model and then analyzed a series of
progressively more sofisticated contact mechanisms. A similar approach was chosen
by (Wallaschek (1998)) who gave a detailed discussion on different contact models at
various levels.

The selection of friction materials is a very important step in the design of ultrasonic mo-
tors. Good friction materials for traveling wave motors should have high wear resistance
and stable mechanical properties with respect to temperature and other environmental
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changes. Up to now, however, no general rules can be formulated for this process. Most
of the knowledge obtained so far is based on experimental results and is empirical. In
practice different polymer blends have been tested and the most detailed discussion of
this subject is given by (Ueha and Tomikawa (1993)).

1.3 Objectives and contributions

The main objective of this work is the derivation of a simplified and low computationally
demanding model of the rotary traveling wave piezoelectric motor. Many of the exist-
ing models are unsuitable for control design investigation purposes due to their huge
complexity and high computational demands. Therefore, an insight in the modeling
process is needed in order to meet the requirements of a flexible test bench suitable for
the control community. The modeling approaches that are addressed in this work are
the equivalent circuit modeling which uses the electrical network method, the analytical
modeling which uses the energy method based on Hamilton’s principle and finally the
hybrid modeling which is the combination of the strength of the two previously stated
modeling approaches.

The first contribution of this work is the derivation of an improved equivalent circuit
model of a rotary traveling wave piezoelectric ultrasonic motor "Shinsei type USR60".
The modeling is performed on the basis of an experimental approach combined with
the electrical network method and some simplification assumptions about the physical
behavior of the real system. The main contributions under this approach are that

� An insight in the analysis of the electromechanical coupling factor, which is re-
sponsible for the electrical to mechanical energy conversion, is obtained. Conse-
quently, the difference between the effective coupling force factor and the modal
coupling force factor is highlighted, and how these parameters can be integrated
in the equivalent circuit model is emphasized.

� The effect of the temperature on the mechanical resonance frequency is considered
and thereby integrated in the final model for long term operations.

The validity of the model has been established by comparing the performance charac-
teristics of the simulated model to the real performance characteristics of the system.

The second contribution of this work is the derivation of a general framework simpli-
fied analytical model by using the energy method based on Hamilton’s principle. Con-
sequently, the state space model of the complete traveling wave type rotary piezoelectric
motor is derived by applying the basic laws of variational work and elasticity theory
(Hamilton’s principle). The main contributions under this approach are that
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� A reduced general state space model is derived on the basis of the special design
of the motors of interest (i.e. two phase symmetrical systems).

� A further simplified model is given within the framework of various assumptions
on the behavior of the stator. Consequently, the assumed excited modes are de-
coupled and thereby the performance characteristics of the stator are predicted by
a single second order system.

� The stick-slip behavior of the driving mechanism is integrated in the time varying
parameters of the model. This makes it possible to predict most of the behavior
and performance characteristics of the motor as a function of the external loading
parameters.

� The outcome of this modeling approach is a less computationally demanding
model suitable for control investigation purposes.

The derived model does not integrate the effect of temperature. Consequently, the model
is assumed to be valid only for short term operation.

The third contribution of this work is the derivation of a hybrid model for predicting
the performance characteristics of an ultrasonic piezoelectric motor type USR60. In
this work the general framework model of the traveling wave type annular forced stator
is derived by applying the basic laws of variational work and elasticity theory (Hamil-
ton’s principle). The main contributions within the framework of the hybrid modeling
approach are that

� A reduced model is derived on the basis of the special design of the stator of
interest and various assumptions on its behavior.

� The analogy between the equivalent circuit model and the analytically reduced
model of the free stator, which both model the behavior of one phase of the stator,
is highlighted. This makes it possible to substitute the parameters of the equiv-
alent circuit model in the simplified analytical model. Consequently, the large
uncertainty on the dielectrical and electromechanical constants is avoided.

� The simplified hybrid model of the complete motor is thereby derived in terms of
the forced stator model, the spinning motion model and the vertical motion model.

� Finally the effect of temperature on the mechanical resonance frequency is con-
sidered and thereby integrated in the final model for long term operations.

The validity of the model has been established by simulation and comparison to the
performance characteristics of the real system.
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1.4 Structure of the thesis

The thesis is organized as follows

� Chapter 2 briefly outlines the piezoelectric transducers and their applications,
and also introduces the general background of Piezoelectricity.

� Chapter 3 presents the traveling wave motor USR60, which is used as a case
study in this thesis, and the experimental investigation of the performance charac-
teristics of this motor when operating under various working conditions.

� Chapter 4 presents the background of the equivalent circuit method and the model
derivation of the USR60 based on this method. The importance of the electrome-
chanical force factor is emphasized and the effect of temperature is considered.

� Chapter 5 is devoted to the analytical modeling of the motor based on the en-
ergy method which uses the variational work by applying Hamilton’s principle.
The complexity and the order of the model are addressed and the outcome is a
simplified and low computationally demanding model.

� Chapter 6 is devoted to the comparison and fusion of the equivalent circuit model
and the analytical model in one simple and robust hybrid model. The hybrid model
is mainly an improvement of the analytical model, where the parameters of the
model representing the stator are provided by the equivalent circuit method and
the remaining dynamics of the motor are modeled by the analytical method, and
where the effect of temperature is integrated in the final hybrid model for long
term operations.

� Chapter 7 finalizes this thesis by providing an overview of its contents, conclud-
ing remarks, perspectives and recommendations for future use of this work.



Chapter 2

Piezo-Electricity and
Applications

This chapter presents an overview of the piezoelectric transducers and their applications,
and finally some of the theoretical background that lays the foundations of piezoelec-
tricity.

2.1 Piezoelectric transducers

In this section an overview of the piezoelectric materials will be presented and thereafter
their use as actuators for solving some engineering problems will be discussed together
with their limitations and advantages compared to the traditional and well-established
electromagnetic devices. Finally the trends of these new devices will be discussed in the
framework of the more general class of smart structures.

2.1.1 The state of the art

Much of the revived interest in piezoceramic actuators comes from the trend towards
smart materials and structures. The chronological evolutionary step taken in the devel-
opment of such materials is going from trivial, to smart and finally to intelligent ma-
terials. In the area of electromechanical transducers/actuators, ferroelectrics are found
to be superior to other solid state materials in many applications. It is therefore impor-
tant to stress research and development which center on ferroelectrics in particular the
piezoelectric materials.

In contrast to magnetostriction and thermal dilatation which in general present a small

11
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induced strain, piezoelectric strain and electrostriction can be induced by an electrical
field, and relatively large strain can be obtained in various materials. Hence they are
considered most promising.

In the field of solid state motors where there is an increasing need for small scale motors,
the conventional electromagnetic motor proves to be inadequate, it is rather difficult to
produce a small size electromagnetic motor with sufficient energy-efficiency. On the
other hand piezoelectric motors whose, efficiency is insensitive to size and presents the
ability to cope with harsh environmental conditions, are superior in the mm-size motor
area and therefore present an alternative solution. Besides motors there are two other
categories of devices which need compact actuators such as positioners and vibration
suppressors. For the positioners, to miniaturize the actuator size, electrically-controlled
types are preferred in general and piezoelectric actuators in particular have proven to
be superior. For the vibration suppressors, active and passive vibration suppression in
space structures, military and commercial vehicles using piezoelectric micro-actuators,
have also proven to be a promising technology.

Solid state motors based on piezoelectric materials are widely known as ultrasonic mo-
tors. The reason behind that is that they often use mechanical vibrations with frequencies
above 20 kHz ( which the human ears can’t detect) as its drive source. The magnitude
of these vibrating oscillations is very small not exceeding the�m range, that is why the
resonance effect of the piezoceramic must be used in order to reach higher gain and thus
obtain high speeds, owing to the high frequencies.

There is basically a large class of ultrasonic motors which constitutes a subclass of the
even larger class of vibromotors (Ragulskiset al. (1988)). The invention by T. Sashida in
1982 of the first successful traveling wave ultrasonic motor has spurred many proposals,
especially in Japan, on the use of various modes of vibrations, e.g. longitudinal, flexural
or torsional, to obtain elliptical motion of the stator at the rotor contact points. The
methods for obtaining elliptical motion can be roughly divided into those using a single
vibration mode and those using multiple (two or more) vibration modes.

� The single vibration mode type can be classified into

– The standing wave type

– The traveling wave type

� The multiple vibration modes type can be divided into

– The modal conversion type, in which two vibrational modes are obtained
from a single source using modal conversion

– The multiple-mode type, in which different vibrational modes (including
coupled vibration) are produced, also using a single piezoelectric transducer



2.1 Piezoelectric transducers 13

– The mode-rotation type, in which the mode is rotated by driving the degen-
erate modes at different phases

– The hybrid transducer type, in which different piezoelectric transducers
with their respective power sources are used to produce different vibrational
modes

Many different shapes, including rods, rings, disks, bars and cylinders, etc., were tried
with the modes that were suitable for these shapes, and research was vigorously pursued
on the characteristics and application of these motors. This research is still going on
today. Theoretical evaluation of the conversion process, optimization of design, and
assessment of the possibility of a more powerful ultrasonic motor are also undertaken.
There are also studies on motors which have a gas or a liquid, for instance, interposed
between the rotor and the stator.

2.1.2 Limitations in piezoelectric materials

There are many shortcomings of piezoelectric materials, for instance

� Fatigue failure resulting from the alternating stress in the ceramic elements

� Looseness of the piezoelectric properties in the neighborhood of the Curie tem-
perature point (> 300oC)

� Weakening of the adhesive bond occurring below the Curie point

� Change in Young’s modulus with temperature causing a change in the resonant
frequency and thereby resulting in lowering the performance of the device

� Short life span owing to rapid wear and tear

� Large frictional losses due to the complex nature of vibrations which together
with other phenomena such as

– Sliding and deformation losses lead to lower efficiencies, for example at
most�50% in ultrasonic motor applications

In order to overcome these shortcomings and improve the efficiency, an in-depth study
of dielectric properties of the piezoceramic and their vibrational behavior together with
contact surface behavior has been undertaken.
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2.1.3 The trends in piezoelectric actuators

In many special applications, where flexibility in the choice of the shape is required
and the duration of operation is short, ultrasonic motors have proved to be more ade-
quate than the traditional electromagnetic motors; for instance, the ultrasonic motors are
suitable for the following applications

� Actuators for robots, where the requirement for a lightweight motor capable of
producing high torque ( tens of Nm ) can be easily fulfilled by an ultrasonic motor

� Actuators of devices for consumer goods, successful applications which make full
use of the flexibility of the shape, controllability and quiet operation of the mo-
tor, already exist in the car industry, in drive mechanisms for autofocus lenses in
cameras etc.

� Actuators for precise positioning devices, rapid positioning devices with accura-
cies of the order of nanometer are being used in the production of semiconductors,
moreover, linear and rotary ultrasonic motors and appropriate control methods are
being developed for various applications in positioning devices

� Actuators for miniaturized machines, research into the use of static electrical mo-
tors and bio-actuators as drives for micro-mechanisms is also being conducted but
has yet to produce some results

� Actuators for machines used in space, because ultrasonic motors do not require
any lubrification and they present high torque at low speed, they are well-suited
for operating in vacuum and in the absence of the gravity in space

� Actuators for material conveyors, because of their quiet operation ultrasonic mo-
tors are well-suited for the conveyance of parts
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2.2 The fundamental piezoelectric relations

In a piezoelectric media interaction processes take place between the thermal, mechan-
ical, and electrical systems. The variables in the piezoelectric system are mechanical
strainSij and stressTij tensors, electrical fieldEi and displacementDi (or the polar-
izationPi) and finally the temperature� and entropy� ( per unit volume) of the system.

For the mechanical system the elastic relation between intensive and extensive variables
is given by

Tij = cijklSkl or Sij = sijklTkl

For the electric system the constitutive relation is

Di = "ijEj or Ei = �ijDj

and for the thermal system the relation is expressed as

Æ� = (�C=�)Æ�

where the fourth-rank tensorscijkl andsijkl are the elastic stiffness and the elastic com-
pliance coefficient respectively, the second-rank tensors" ij and�ij are the dielectric
constant and dielectric permeability respectively,C is the specific heat per unit mass and
� is the density.

In the piezo-media intensive and extensive variables are not independent when inter-
action processes take place between thermal, mechanical and electrical systems (Ikeda
(1996)). The possible interactions are electromechanical, thermomechanical and finally
thermoelectrical. The derivation of the constitutive relation for the coupled piezoelectric
systems is based on thermodynamic functions such as Helmholz free energy, Gigbbs
free energy, Elastic Gibbs energy and Electric Gibbs energy. The choice of the ther-
modynamical function leads to different variable-type relations, thus for the electric
displacement scheme (D-scheme) with isotherm or adiabatic assumption (Ikeda (1996))
four different constitutive relations are obtained, they are referred to by (S,D)-Extensive
or h-form, (T,E)-Intensive or d-form, (T,D)-Mixed or g-form and (S,E)-Mixed or e-form.
An alternative derivation of formulae is merely a transformation from one type of rela-
tion to another, but some care must be taken in rearranging the terms.

2.2.1 Constitutive relation of (�; T; E)-Type.

The relevant thermodynamic function is the Gibbs free energyG(�; T; E) per unit vol-
ume, and the variablesÆ�; TandE are assumed to be intensive variables (Ikeda (1996)).
The Gibbs free energy is given by
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G = U(�; S;D)���� TijSij �EnDn (2.1)

whereU(�; S;D) is the internal energy of the system (constant) and the suffixes are

i; j; n = 1 to 3

From the exact differential

dG = ��d�� SijdTij �DndEn (2.2)

we obtain 8>>><
>>>:

� = � �@G
@�

�
T;E

Sij = �
h
@G
@Tij

i
�;E

Dn = �
h
@G
@En

i
T;�

(2.3)

Taking the total derivative

dSij =

�
@Sij
@Tij

�
�;E

dTij +

�
@Sij
@En

�
T;�

dEn +

�
@Sij
@�

�
T;E

d� (2.4)

Simularly

dDn =

�
@Dn

@Tij

�
�;E

dTij +

�
@Dn

@Ek

�
T;�

dEk +

�
@Dn
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�
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and

d� =

�
@�

@Tij

�
�;E

dTij +

�
@�

@En

�
T;�

dEn +

�
@�

@�

�
T;E

d� (2.6)

where the suffixes are

i; j; n; k = 1 to 3

SincedG is a perfect differential, the relationships below follow from (2.3), with the
partial derivatives identified as

� Elastic compliance

s�;Eijkl = �
�

@2G

@Tij@Tkl

�
�;E

=

�
@Sij
@Tkl

�
�;E
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� Dielectric constant
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When the functionG is differentiated and the above constants are used a set of three
equations is obtained8><

>:
Sij = �EijÆ�+ s�;Eijkl Tkl + d�mijEm

Dn = pTnÆ�+ d�nklTkl + "T;�nm Em

Æ� = �CT;E
� Æ�+ �EijTij + pTmEm

(2.7)

where the suffixes are

i; j; k; l;m; n = 1 to 3

and where according to custom, the differential symbols are removed fromS,D, T and
E (Mason (1964)) and the symbolÆ is used to indicate a small variation of� and�.
This set of equations is the constitutive relation in the coupled system, here called the
(�; T; E)-Type.
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2.2.2 Tensor index abbreviations and matrix representations

As interchangeable indices can be treated as a set, the tensor notation is turned into
simpler matrix expressions by index abbreviations (Ikeda (1996)). For instance, the
(�; T; E)-Type constitutive relation is considered. When using matrix expressions, the
following three equations are sufficient to give the constitutive relation

8<
:

S = �EÆ�+ s�;ET+ dt�E

D = pT Æ�+ d�T+ "T;�E

Æ� = �CT;E
� Æ�+ �tET+ ptTE

(2.8)

where

D =

2
4 D1

D2

D3

3
5 ;E =

2
4 E1

E2

E3

3
5 ;p =

2
4 p1
p2
p3

3
5 ; " =

2
4 "11 "12 "13
"21 "22 "23
"31 "32 "33

3
5 ;

S =

2
6666664

S1
S2
S3
S4
S5
S6

3
7777775
;T =

2
6666664

T1
T2
T3
T4
T5
T6

3
7777775
;� =

2
6666664

�1
�2
�3
�4
�5
�6

3
7777775
;

d =

2
4 d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36

3
5 ;

s =

2
6666664

s11 s12 s13 s14 s15 s16
s21 s22 s23 s24 s25 s26
s31 s32 s33 s34 s35 s36
s41 s42 s43 s44 s45 s46
s51 s52 s53 s54 s55 s56
s61 s62 s63 s64 s65 s66

3
7777775

Superscript t indicates the mathematical transpose of the matrix. Thus, formulae and
constants are easily transformed using matrix algebra.

In the case of an adiabatic and isotherm process the relation (2.8) reduces to the follow-
ing (T,E) relation

�
S = sET+ dtE

D = dT+ "TE
(2.9)
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This relation refers to a certain identification of the directions in the considered me-
dia as shown in figure 2.1. For convenience, the depolarizing field is oriented parallel
to the axis 3. The componentsS1; S2; S3 andT1; T2; T3 of S andT represent respec-
tively tensile strains and stresses parallel to the axes 1, 2 and 3, whereas the components
S4; S5; S6 andT4; T5; T6 respectively represent shear strains and stresses around these
same axes (1, 2 and 3).

1

2

3

T11

T12

T13 T21

T22

T23T31

T32

T33

1

�

3

Polarisation P is parallel to the axe 3

P

Figure 2.1: The motion

The subscript indices used for representing the stresses shown in figure 2.1 indicate axis
directions for cause and effect. For instanceT31 is the stress in the 1-direction caused
by a pressure or electrical field in the 3-direction. Due to the symmetry involved in this
interaction process the nine components of the stress tensor reduce to six components,
and the double indices are replaced by one index as shown in the following

T11 = T1

T22 = T2

T33 = T3

T23 = T32 = T4 (2.10)

T31 = T13 = T5

T12 = T21 = T6

In the particular case of the PZT ceramics used in piezomotors, the symmetrical nature
of the crystal structure induces further simplification. Consequently, the PZT ceramics
which belong to the crystal class "6mm" of the hexagonal system (Ikeda (1996)), have
their matricess, " andd reduced to
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s =

2
6666664

s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s66

3
7777775

(2.11)

" =

2
4 "11 0 0

0 "11 0
0 0 "33

3
5 (2.12)

d =

2
4 0 0 0 0 d15 0

0 0 0 d15 0 0
d31 d31 d33 0 0 0

3
5 (2.13)

Due to the fact that the components of the matrixd are reduced to three non zero ele-
mentsd33, d31 andd15, the electromechanical coupling in the piezoelectric ceramics is
achieved through three principal modes of vibrations. These modes are the longitudinal
mode (d33), the transversal mode (d31) and finally the shear mode (d15).

� Longitudinal mode (33): in the longitudinal effect the deformations take place
parallel to the electric axis as shown in figure 2.2

P

E

13

2

Polarization

Deformations
Electrical field

Longitudinal mode (33)

Figure 2.2: The longitudinal mode of vibration
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� Transversal mode (31): in the transverse effect the deformations take place per-
pendicular to the electric axis as shown in figure 2.3

P

E
1

3

2

Polarization

Deformations
Electrical field

Transversal mode (31)

Figure 2.3: The transversal mode of vibration

� Shear mode (15): in the shear effect the deformations take place around the axis
perpendicular to the plan containing the electrical field vector and the polarization
as shown in figure 2.4

P

E
13

2

Polarization

Deformations
Electrical field

Shear mode (15)

Figure 2.4: The shear mode of vibration

2.2.3 Fundamental relations for various independent variable sets

The following table 2.1 presents different piezoelectric relation forms related to inde-
pendent variable types under the adiabatic and isotherm assumptions (Ikeda (1996)).



22 Piezo-Electricity and Applications

Independent Variable Type Piezo-electric relation Form

S,D Extensive

�
T = cDS� htD
E = �hS+ �SD

h-form

T,E Intensive

�
S = sET + dtE

D = dT + "TE
d-form

T,D Mixed

�
S = sDT+ gtD

E = �gT+ �TD
g-form

S,E Mixed

�
T = cES� etE
D = eS+ "SE

e-form

Table 2.1: Different piezoelectric relation-types in matrix notation

2.2.4 Electromechanical coupling factor

The coupling factor is the parameter that guarantees the effective energy conversion in a
linear interaction system. For the piezoelectric transducers this factor is defined for the
respective mode of vibration at its static limit when! �! 0 . There are different ways
of defining this coupling factor and in most cases this coefficientK is measured in per-
centages, however, it is more meaningful to deal with its squareK 2 which corresponds
to the energy ratio.

The following definition is provided by (Mason (1964))

|
2 =

Stored electrical energy
Supplied electrical energy

or|2 =
Stored mechanical energy

Supplied mechanical energy

For the electromechanical interaction system this square factor is further defined by

|
2 =

U2
int

UelasUelec
(2.14)

whereUelas ; Uelec and2Uint denote respectively the increments of elastic, electric and
interaction energies, and where the total increment energy of the interaction system is
given byU = Uelec + 2Uint + Uelas .
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For the intensive type of the fundamental piezoelectric relation, the coupling factor, see
(Ikeda (1996)), is defined by

|
2 =

Coefficients square of the interaction term
Coefficients product of the diagonal terms

(2.15)

However this simple method does not apply to the extensive type of the fundamental
piezoelectric relation and therefore care should be taken in choosing the relevant funda-
mental relation.

For the piezoelectric transducer represented by a four terminal expression such that

�
I = %11(!)V + %12(!)F
_u = %21(!)V + %22(!)F

(2.16)

where%12 = %21, ! is the angular excitation frequency andI; V; _u, F are the electric
current, voltage, displacement velocity and force respectively, the coupling factor is
given by the low frequency limit of

|(!) =
%12(!)p

%11(!)%22(!)
(2.17)

such that

|= lim
!�!0

|(!): (2.18)

A more general definition of the square coupling factor is defined as the ratio between
the dissipated energyWd within the interaction system and the applied energyWa to the
system

|
2 =

Wd

Wa

(2.19)





Chapter 3

Experimental Approach

This chapter presents the Shinsei ultrasonic motor USR60 used as a case study in this
thesis. Thereafter the results of the experimental investigation conducted on this motor
when operating under various working condition are reported.

3.1 The objectives

The Rotary Piezo Electrical Motor (RPEM) investigated in this project is the Shinsei
traveling wave motor type USR60. The objectives of the experimental investigation are,
first to establish the physical understanding of the behavior of the motor when operating
under various working conditions. The emphasis is put on the nonlinearities and various
operating characteristics of the motor. Second the identification of the parameters and
their respective ranges which are necessary for the modeling task.

3.2 The ultrasonic motor

The traveling wave piezoelectric motor considered in this thesis consists of two parts, the
stator and the rotor. They are cylindrically shaped that mate together along their faces as
shown in figure 3.1. The stator has seventy-two teeth cut into it in a circular pattern on
one face on which the rotor rest upon. One thin cylindrical piezoceramic disk is bonded
to the opposite face of the stator. Entirely electroded on one side with silver material and
electroded on the opposite side in a pie-shaped pattern with eighteen slices as shown in
figure 3.1. Each pie-shaped section is polarized in the opposite direction to the adjacent
section except for the slice related to the ground and the slice used for sensing the feed-
back signal which remains neutral. By attaching wires to the electrodes, a voltage may

25
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Figure 3.1: The naked assembled motor and the piezoceramic ring

be induced across the piezoceramic plate, causing it to flex due to the electromechanical
coupling involved. The piezoceramic plate and its electrodes are thereafter bonded to
the elastic stainless steel (substrate) plate with an adhesive material to form the stator.
An exploded view of the parts that constitute the stator is shown in figure 3.2.

Figure 3.2: Exploded view of the complete stator

In the ultrasonic motor the oscillation energy generated at the surface of the stator must
effectively be transmitted to the rotor to create unidirectional motion. The rotor has a
structure consisting of a ring and a slider bonded to the ring as shown in figure 3.3. The
rotor is placed upon the teeth of the stator and has a central shaft which goes through a
hole in the stator which has a small bearing placed inside, see figure 3.5.
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Figure 3.3: An exploded view of the annular stator and the annular rotor

With nine sectors in the stator, nine circumferential waves are generated. This waveform
is a so called standing wave. SectorA is positionally shifted three quarters of wavelength
out of to sectorB as shown in figure 3.1. When two high frequency voltages90 o out
phase temporally are applied to sectorA andB separately and simultaneously, standing
waves generated by these two voltages are interfered mutually and results in a traveling
wave at the surface of the stator as shown figure 3.4 which can be viewed as a section of
the ring type rotary motor.

Figure 3.4: The operating principle of the traveling wave motor

The propagation of the acoustic traveling wave in the stator body makes the individual
particles of the stator move in an elliptical fashion. Consequently, the rotor placed on
the top of the vibrating stator would be rotated in a direction retrograde to the direction
of the traveling wave as shown in figure 3.4.



28 Experimental Approach

The specification of the traveling wave piezoelectric motor USR60 reported in the man-
ufacturer’s user’s manual (Shinsei Co.Ltd. USR60) are given in table 3.1.

Driving frequency 40 kHz
Rated voltage 100 Vrms
Rated Torque 0.32 N.m
Rated output 3 W
Rated speed 90 rpm
Rated current 53 mA X 2phase
Starting torque 3 Kg.cm
Holding torque 3.2 Kg.cm
Operating temperature -10 oC to +50oC
Weight 240 g

Table 3.1: Specification of the USR60

For the purpose of getting some knowledge of the complete hardware that constitutes the
Shinsei motor and how it is assembled, an exploded view of the traveling wave motor is
shown in figure 3.5.

Figure 3.5: The exploded view of the complete motor
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3.3 The experimental characteristics

The experimental investigation of the behavior of the motor is carried out by using the
test bench presented in appendix A. The influence of the excitation and load parameters
on the behavior of the motor is explored within the range of their limits. During the
whole process of investigation these parameters have been kept at values not exceeding
their nominal values, which are reported in the manufacturer’s user’s manual (Shinsei
Co.Ltd. USR60).

3.3.1 Outline of the experimental investigation methodology

As in the case of the traditional electromagnetic motors, the experimental investigation,
which will highlight the behavior of the piezoelectric motor considered in this thesis,
consists of the establishment of the operating characteristics of the motor under vari-
ous working conditions. However, the main objective of this thesis is the derivation
of a simplified model for predicting the performance characteristics of the motor. This
model is intended to fulfill the the needs of the control community in order to investi-
gate a variety of control methods when applied to the motor in a simulated environment.
Consequently, the interesting operating characteristics of the motor are those that are
closely related to the performance of the motor in terms of speed prediction. The fol-
lowing items give an overview of the experiments to be carried out on the motor and
their relevance for achieving the fixed objective.

� The traveling wave motor is a two phase symmetrical system powered by a two
phase power supply. Therefore it is important to investigate the influence of the
amplitude, frequency and phase of the power supply on the performance charac-
teristics of the motor. Consequently, the following characteristics are of interest

– The influence of the temporal phase shift on the rotary speed of the PEM at
different excitation frequencies.

– The influence of the excitation frequency and the amplitude voltage of the
power supply on the rotary speed under nominal conditions.

– The speed-torque characteristic of the motor under nominal conditions of
operation, when working in the neighborhood of the fundamental resonance
frequency

� The feedback electrode of the piezoelectric motor provides valuable information
about the traveling wave characteristics within the stator due to the piezoelectric
direct effect. Consequently, the following characteristics are of interest

– The amplitude of the feedback signal as a function of the excitation fre-
quency under various load torques
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– The speed of the motor as a function of the amplitude of the feedback signal
at various normal forcings

– The speed of the motor as a function of the amplitude of the feedback signal
at various load torques

� The thermomechanical interaction within the PEM cannot be ignored due to the
fast and huge heating process that takes place during the operation of the motor.
Consequently, the influence of the temperature changes on the motor is investi-
gated by monitoring the shift of the resonance frequency of the feedback signal
versus the temperature under nominal conditions of operation.

� The electromechanical behavior of the motor can be obtained in terms of admit-
tance measurements over a suitable span of frequencies. The objective is to high-
light the behavior of the free stator by providing its electrical admittance over
a large span of frequencies and thereby make some comparisons with other ap-
proaches which predict the behavior of the transducer by applying the basic laws
of physics.

� The piezoelectric motor exhibits a strong nonlinear behavior around the resonance
frequency. Consequently, the admittance measurement of the motor should be car-
ried out in sweep up and sweep down frequency condition around the fundamental
resonance in order to highlight this phenomenon.

� The admittance measurement of the motor is a constant voltage method, which
means that the voltage must be maintained at its constant value during the admit-
tance measurement. In contrast to the free stator, it is expected that the admittance
of the forced stator is dependent on the external conditions. Consequently, the
following characteristics are of interest

– The influence of the amplitude voltage of the power supply on the admittance
of the loaded motor

– The influence of the load torque variation on the admittance of the loaded
motor

It must be emphasized that when conducting the experiments on the free stator, lower
voltages (� 50 Vpp) are used in order to avoid the possible damages to the piezoceramic
of the stator.
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3.3.2 Speed-phase characteristics at various frequencies

The traveling wave motor USR60 has a two phase construction where one electrode
pattern provides the cosine spatial mode and the other pattern provides its orthogonal
sine spatial mode. By driving these two modes out of phase temporally, a traveling wave
is produced. Figure 3.6 shows the influence of the temporal phase shift on the rotary
speed of the PEM at different excitation frequencies.
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Figure 3.6: The rotary speed versus the phase shift at various frequencies

The results are obtained for the following nominal values of the remaining parameters

Amplitude voltage ( Vrms ) 100
Normal forcing ( N ) 160
Load torque ( Nm ) 0

From figure 3.6 it is clear that the highest speed is achieved for a temporal phase shift
of +90o or �90o, which indicates that the two phases fulfill the symmetry require-
ments for a perfect traveling wave generation. Furthermore the speed-phase character-
istics indicate that the phase shift has the influence on the motor speed only in intervals
[+90o � 30o;+90o] and[�90o;�90o + 30o], and that the characteristics in these inter-
vals are almost straight lines, whereas in the interval[�90o+30o;+90o�30o] the PEM
is out of work. Moreover, it can be noticed, from figure 3.6, that the speed is slightly
sensitive to the variation of the phase shift, in the working intervals, which suggests that
the phase shift alone is not a convenient parameter for controlling the PEM.
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3.3.3 Speed-frequency characteristics at various voltage amplitudes

The excitation of the PEM is normally carried out by a two phase power supply and due
to the symmetrical nature of its design a common voltage amplitude is used in order
to achieve high performance. Furthermore, the PEM is a piezo-electromechanical sys-
tem which has several resonance frequencies, and the performance of the PEM depends
highly on the excitation frequency of the power supply, and therefore there is a need to
investigate the behavior and the performance of the motor around the fundamental res-
onance frequency. The influence of the excitation frequency and the amplitude voltage
of the power supply on the rotary speed is investigated under nominal conditions.
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Figure 3.7: The rotary speed versus the excitation frequency at various voltage ampli-
tudes

The results are obtained for the following nominal values of the remaining parameters

Phase shift ( deg ) 90o

Normal forcing ( N ) 160
Load torque ( Nm ) 0

From figure 3.7 it can be noticed that the speed is slightly sensitive to the voltage ampli-
tude variations, but highly sensitive to the excitation frequency in the interval
[40 kHz ; 42 kHz]. This suggests that amplitude voltage alone is not a convenient pa-
rameter for controlling the PEM, whereas frequency alone can be a suitable parameter
for controlling the PEM.
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3.3.4 Speed-torque characteristics at various frequencies

The speed-torque characteristic is an important characteristic that measures the perfor-
mance of any motor. The investigation of the speed drop versus load torque is carried
out in the neighborhood of the fundamental resonance frequency where the efficiency of
the PEM is the highest possible according to data sheet of the motor in the user’s manual
provided by the manufacturer.
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Figure 3.8: The rotary speed versus the load torque at various frequencies

The results are obtained for the following nominal values of the remaining parameters

Phase shift ( deg ) 90o

Amplitude voltage ( Vrms ) 100
Normal forcing ( N ) 160

From figure 3.8 it can be noticed that the speed-torque characteristic is almost straight
line for each excitation frequency and that these characteristics are almost parallel for
the excitation frequencies in the interval[40 kHz ; 41:5 kHz] and load torques not
exceeding0:3Nm, which suggests that the effect of load torque can be accounted for by
a constant speed drop factor proportional to the load torque for all operating frequencies
in the range of[40 kHz ; 41:5 kHz].
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3.3.5 Feedback-frequency characteristics at various load torques

The traveling wave in the stator of USR60 is created by the superposition of two standing
waves provided by each excited phase of the stator according to the piezoelectric con-
verse effect (i.e.voltage! deformation ). The neutral part (i.e. feedback electrode)
of the piezoceramic lying between the two excited phases provides a voltage signal ac-
cording to the piezoelectric direct effect (i.e.deformation ! voltage ). By sensing
this neutral part valuable information about the traveling wave characteristics can be ob-
tained. Consequently, an intuitive understanding of the behavior of the motor is possible.
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Figure 3.9: The amplitude of the feedback signal versus the excitation frequency at
various load torques

The results are obtained for the following nominal values of the remaining parameters

Phase shift ( deg ) 90o

Amplitude voltage ( Vrms ) 100
Normal forcing ( N ) 160

From figure 3.9 it can be noticed that the feedback-frequency characteristics exhibit a
resonance behavior around the fundamental frequency(40kHz) of the PEM, and that
for frequencies in the interval[40 kHz ; 41:5 kHz] these characteristics are almost
linear for each load torque in the interval[0 Nm ; 0:3 Nm], which suggests a constant
drop in the amplitude voltage of the feedback signal proportional to the load torque for
each frequency in this interval.
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3.3.6 Speed-feedback characteristics at various normal forcings

The RPEM is a solid state motor driven by the dynamical friction at the interface contact
between the stator and the rotor. The performance of the motor is a function of the
nature of the contact layer and the intensity of pressure that maintains this contact under
various working conditions. The investigation of the influence of the normal pressure
on the performance of the PEM is carried out by monitoring the feedback signal and the
rotary speed of the motor under various normal forcings

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

Feedback Voltage Amplitude (Vrms)

R
ot

ar
y 

sp
ee

d 
(r

ad
/s

) 
The speed versus the amplitude of the feedback voltage at various normal forcings

100 N
160 N
200 N

Figure 3.10: The rotary speed versus the amplitude of the feedback signal at various
normal forcings

The results are obtained for the following nominal values of the remaining parameters

Phase shift ( deg ) 90o

Amplitude voltage ( Vrms ) � 100
Load torque ( Nm ) 0

From figure 3.10 it can be noticed that the speed-feedback characteristics are almost
linear for each normal forcing. Furthermore, figure 3.10 suggests that there is a con-
stant speed drop proportional to the variation of the normal forcing at each amplitude of
the feedback voltage. However, it must be noticed that the resonance frequency of the
feedback voltage varies during the changes of the normal forcing which suggests that
the normal forcing must be maintained at its nominal value during the whole process of
investigation.
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3.3.7 Speed-feedback characteristics at various load torques

The investigation of the influence of the torque on the performance of the PEM can be
carried out by monitoring the feedback signal and the rotary speed of the motor under
various load torques
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Figure 3.11: The rotary speed versus the amplitude of the feedback signal at various
load torques

The results are obtained for the following nominal values of the remaining parameters

Excitation frequency (kHz) 40 kHz
Phase shift ( deg ) 90o

Amplitude voltage ( Vrms ) � 100
Normal forcing (N) 160

From figure 3.11 it can be noticed that the speed-feedback characteristics are almost lin-
ear for each load torque. Moreover, figure 3.11 suggests that there is a constant speed
drop proportional to the variation of the load torque at each amplitude of the feedback
voltage. However, it must be noticed that, unfortunately, the frequency of the feedback
voltage varies during the changes of the load torque, which suggests that a tracking fa-
cility of the resonance frequency of the feedback signal must be integrated in the control
system design of the PEM.
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3.3.8 The resonance frequency of the feedback signal at various
temperatures of the motor

The PEM is a piezo-electromechanical system subject to at least three kinds of interac-
tion phenomena. The interaction process can be electromechanical, thermoelectrical and
thermomechanical. For the PEM under investigation it is assumed that the thermoelec-
trical interaction is negligible, but the thermomechanical interaction cannot be ignored
due to the fast and huge heating process that takes place during the operation of the mo-
tor. The investigation of the influence of temperature on the performance of the motor
is carried out by monitoring the shift of the resonance frequency of the feedback signal
versus the temperature changes of the PEM during operation at its nominal values.
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Figure 3.12: The resonance frequency of the feedback signal versus temperature

The results are obtained for the following nominal values of the parameters

Excitation frequency ( kHz ) 40 kHz
Phase shift ( deg ) 90o

Amplitude voltage ( Vrms ) 100
Normal forcing ( N ) 160
Load torque ( Nm ) 0

From figure 3.12 it can be noticed that the frequency-temperaturecharacteristic is almost
linear, which suggests that the resonance frequency of the feedback signal shifts towards
lower frequencies. Thus, it can be assumed that this shift is proportional to the tempera-
ture changes during the operation of the motor. This result is of crucial importance when
designing the control system of the PEM in order to achieve the performance objectives
despite the changes in temperature.
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3.3.9 The electrical admittance characteristic of the free stator

The electromechanical behavior of any transducer can be obtained in terms of admit-
tance measurements over a suitable span of frequencies. The span of frequencies that
is of interest is usually around the fundamental resonance frequency of the transducer.
However, it is important to explore a large span of frequencies in order to get a better
understanding of the behavior of the transducer, and thereby make some comparisons
with other approaches predicting the behavior of the transducer by applying the basic
laws of physics.
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Figure 3.13: The admittance of one phase of the RPEM over a large span of frequencies

The results of the admittance measurement of the PEM shown in figure 3.13 are obtained
for a free stator supplied by a constant voltage (50 V pp), figure 3.13 shows Bode mag-
nitude and phase plots over a frequency span of[25 kHz ; 55 kHz]. It can be noticed
that over the explored span of frequencies the stator exhibits three resonant frequencies,
where the fundamental frequency lies in the middle due to the sharpness of the amplitude
of the admittance at this point.

According to the elasticity theory of vibration applied to a free annular vibrating plate
see appendix B, the resonant frequencyfrn of the plate for then ’th mode is given by
(B.12) and reads (

frn =
�2n
2�

q
G
�h

where�n = n
Ro

andG = Jh3

12
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where the poisson ratio is neglected. By using the geometrical data of the investigated
stator, which are given in table 3.2, the theoretical prediction of the resonance frequen-
cies at different modes of vibration are reported in table 3.3.

h thickness of the bronze without teeth (m) 2e�3

� bronze density (kg m�3) 8780
J young modulus of the bronze (N m�2) 1.12e11

Ro middle radius of the annular stator (m) 26.25e�3

n the mode’s rank 8, 9, 10

Table 3.2: The geometrical data of the stator

mode n measured resonance freq (Hz)theoretical resonance freq (Hz)
8 31200 30480
9 38400 38580
10 46300 47690

Table 3.3: The resonance frequencies for different modes of vibration: Comparison
between the measurements and the theoretical predictions

From table 3.3 it can be noticed that there is almost an agreement between theoretical and
practical results. From figure 3.13 it can be noticed that the mode 9 exhibits the sharpest
magnitude around its resonance. The other two modes (8 and 10) exhibit a damped
magnitude compared to the fundamental mode 9 and their resonance frequencies are not
as well predicted by the theory as in the fundamental case. It must be emphasized that
the motor can operate in the neighborhood of these three resonance frequencies but the
best performance of the motor is achieved around the fundamental frequency, due to the
special design of the stator made for operating in this mode. These results suggest that
there is a need to identify the model of the motor only around the fundamental resonance
frequency.

3.3.10 The nonlinearities of the motor

The piezoelectric materials in general exhibit at least three kinds of nonlinearities which
are electrical hysteresis, mechanical hysteresis and thermal hysteresis. The overall hys-
teresis of any piezoelectrical transducer is difficult to define and therefore impossible to
model, but the admittance measurement of a piezoelectrical transducer can give an idea
of how this hysteresis can result in a nonlinear admittance of the system.



40 Experimental Approach

3.82 3.84 3.86 3.88 3.9 3.92 3.94 3.96 3.98 4

x 10
4

0

1

2

3

4

5

6

7

8
x 10

−3 Nonlinearity of the free stator in terms of admittance Y(f) 

Frequency (Hz)

 A
dm

itt
an

ce
 m

ag
ni

tu
de

 (S
) 

Sweep down freq
Sweep up freq  

Figure 3.14: Nonlinearity of the free stator around the fundamental frequency

The results of figure 3.14 are obtained for a free stator supplied by a constant voltage
(40 V pp). Figure 3.14 shows two admittance measurements of the same stator under the
same operating conditions except for the frequency span sweep condition. It can be no-
ticed that during the sweep up and sweep down frequency mode the admittance exhibits
a nonlinear (hysteresis) behavior around the resonance frequency, which suggests that
care must be taken to avoid the nonlinear zone from the frequency range when frequency
mode is selected for controlling the PEM.

3.3.11 The electrical admittance of the loaded motor at various am-
plitudes of the voltage supply

The admittance measurement of any electromechanical system is a constant voltage
method, which means that the voltage must be maintained at its constant value dur-
ing the whole process of admittance measurement. The foregoing results have been
carried out for a free stator which showed that the stator exhibits resonance frequencies
at locations predicted by the laws of physics applied to an unforced annular vibrating
plate. The stator of the complete motor (mainly composed by a rotor pressed against the
stator) should no longer obey the same laws with regard to resonance frequencies as the
free stator unless the external axial force to the stator (i.e. normal forcing) is balanced
by an internal forcing provided by the excited stator itself. The main source of generat-
ing force (strain-stress) within the stator is the applied voltage, therefore it is necessary
to investigate the effect of varying voltage on the frequency response of the complete
motor.
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Figure 3.15: The admittance of the RPEM at various voltage amplitudes of the power
supply

The results are obtained for the following nominal values of the remaining parameters

Phase shift (deg) 90o

Normal forcing (N) 160
Load torque (Nm) 0

From figure 3.15 it can be noticed that for lower voltages the admittance exhibits res-
onance frequencies which are both damped in magnitude and located far beyond those
of the free stator. This behavior can be explained by the imbalance existing between
the applied normal forcing and the generated piezoelectric forcing. For higher voltages
we can notice that the normal forcing is balanced by the piezoelectric forcing which
results in a frequency response similar to that of the free stator with resonance frequen-
cies located in the neighborhood of those predicted by the laws of physics applied to
the free vibrating annular plate. From figure 3.15 it can be concluded that the effect
of increasing the voltage results in a resonance frequency shift towards lower frequen-
cies, consequently the increase in normal forcing results in a resonance frequency shift
towards higher frequencies. Therefore, it is important to notice that for controlling the
PEM, the voltage and the normal forcing must be maintained at their nominal values
thereby avoiding this complexity. These results suggest that, for stability reasons, the
model identification should be carried out from the admittance measurement of the free
stator around the resonance frequency.
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3.3.12 The electrical admittance of the loaded motor at various load
torques

The previous results showed that the admittance of the RPEM is dependent on voltage
and normal forcing, but they can be fixed at their nominal values, which eases the iden-
tification of the model and simplifies the control strategies of the motor. The load torque
varies by nature, and the motor must be able to achieve the performance objectives in
terms of speed and position for any load torque in the range of its capability. Therefore,
the influence of the load torque on the behavior of the motor should be examined in
terms of admittance
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Figure 3.16: The admittance of the RPEM at various load torques

The results are obtained for the following nominal values of the remaining parameters

Phase shift ( deg ) 90o

Amplitude voltage ( Vrms ) 100
Normal forcing ( N ) 160

From figure 3.16 it can clearly be seen that the effect of increasing the load torque results
in the antiresonance frequency shift towards higher frequencies together with a certain
damping of the admittance magnitude around this frequency. This suggests that the
resonance frequency is subjected to the same law/phenomenon, which is partly hidden
by the nonlinear behavior of the PEM around this frequency. It is important to notice
that both the shift and the damping are roughly proportional to the torque changes. This
result suggests that for control purposes the effect of the load torque can be accounted
for by a tracking capability of the resonance frequency together with a correcting factor
for the amplitude drop of the feedback signal.



Chapter 4

Equivalent Circuit Model

In this chapter, the background of the equivalent circuit method is first exposed, second
the equivalent circuit model derivation is performed on the basis of the experimental
results combined with the electrical network method, and finally the validation of the
model is carried out by comparing the simulation results with the experimental results.

4.1 Background of the equivalent circuit method

Piezoelectricity is regarded by scientists as a linear interaction between electrical and
mechanical systems. Therefore most of the work in this field has been carried out in
order to establish linear relationships between different parameters that describe piezo-
electric phenomena. The theoretical approach provides linear equations which describe
the electromechanical behavior in any piezoelectric transducer by applying the basic
laws of physics. The empirical approach based on the measurement of the electrome-
chanical constants in terms of impedance or admittance and equivalent circuit informa-
tion constitutes a powerful alternative to the theoretical approach for solving practical
problems and thereby avoiding the complexity and the large discrepancy between linear
theory and the real nonlinear physical piezoelectric transducer.

4.1.1 The ring type transducer

The electromechanical constants of any piezoelectric material are determined by the
admittance measurements of a transducer with varying frequency. For practical purposes
it is sufficient to observe the admittance around its fundamental resonance frequency.

43



44 Equivalent Circuit Model

The admittanceY of any piezoelectric transducer is given by the sum of the dampedY d

and the motionalYm admittance

Y = Yd + Ym (4.1)

Where �
Yd = 1=Rd + j!Cd

Ym = 1=[R+ j(!L� 1=!C)]:
(4.2)

Figures 4.1 and 4.2 show the admittance locus and the frequency response respectively
for a transducer with a high mechanical quality factor Q, (Ikeda (1996)).
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Figure 4.1: Admittance locus ( Nyquist diagram ) of a piezoelectric transducer
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Figure 4.2: Frequency response ( Bode magnitude diagram ) of a piezoelectric trans-
ducer
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4.1.1.1 Equivalent circuit modeling of a ring type stator

The stator of the rotary traveling wave motor is an annular plate composed of two dif-
ferent layers undergoing bending deformations. These two layers are the piezoceramic
ring and the elastic substrate which are bonded together. To simplify the model, the
curvature of the undeformed ring is disregarded and the stator is therefore regarded as a
straight beam with infinite length as shown in figure 4.3

Figure 4.3: The stator of the traveling wave motor regarded as a straight beam

Mason’s equivalent circuit model for a T-effect bar transducer

Consider a beam of sectionA = be and lengthdx, lying betweenx andx+dx, subjected
to a bending deformation of a transverse type (T-effect) driven by an alternating voltage,
as shown in figure 4.4
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Figure 4.4: Elementary section of a piezoelectric beam subject to bending deformation
of transverse type
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The relevant fundamental relation is of the (T,E)-type given by�
S1 = sE11T1 + d31E3

D3 = d31T1 + "T33E3
(4.3)

a rearranged relation of the (S,E)-type is used(
T1 =

1
sE
11

S1 � d31
sE
11

E3

D3 =
d31
sE
11

S1 + "S33E3
(4.4)

The first fundamental law of dynamics applied to the forced vibrating beam reads

!
F ext= m

!
a (4.5)

where
!
F ext denotes the external forces acting on the body,m is the vibrating mass of

the beam and finally
!
a is the acceleration of the vibrating edge, which is given by

!
a=

@2
!
u

@t2
(4.6)

where
!
u is the displacement vector of the vibrating edge. By projecting this vector

equation along the x direction and rearranging the terms the following is obtained

@Fext
@x

= �A@
2u

@t2
(4.7)

where� is the mass density of the beam and�Adx is the mass of the elementary section
of the piezoelectric beam subjected to the external force@F ext given by

@Fext = F1(x+ dx) � F1(x) (4.8)

The stressT1 and the strainS1 terms at the edges of the piezoceramic beam are given by

T1 =
Fext
A (4.9)

S1 =
@u

@x
(4.10)

By substituting (4.9) and (4.10) in the first equation of the (S,E)-type relation (4.4) and
rearranging the terms the following is obtained

Fext =
A
sE11

@u

@x
� Ad31

sE11
E3 (4.11)

Furthermore, by substituting (4.11) in (4.7) and considering the electrical condition

@E3

@x
= 0 (4.12)
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i.e. E3 is harmonic only in time, and thereafter rearranging the terms the following
equation of motion is derived

@2u

@x2
= �sE11

@2u

@t2
(4.13)

where the phase velocityvph, the wave numberk, the wave length� and the angular
frequency! of the plane waveu(x; t) in the beam propagating inx direction, solution
of (4.13), are given by

vph =
1p
�sE11

(4.14)

k =
!

vph
(4.15)

� =
2�

k
(4.16)

For simplicity reasons only the non dissipative transducer case is considered (i.e. we
assume that no losses take place). Thus in this ideal case, the the solution for the equation
of motion (4.13) in complex notation reads

u
�
(x; t) = [p

�
sin(kx) + q

�
cos(kx)]ej!t (4.17)

where in complex notation the electric field readsE
�3

= E3e
j!t and the coefficientsp

�
andq

�
are given by

p
�

= [

:
u
�
(l; t)

j! sin(kl)
�

:
u
�
(0; t)

j! tan(kl)
]e�j!t (4.18)

q
�

=

:
u
�
(0; t)

j!
e�j!t (4.19)

Furthermore, the stressT
�1

, strainS
�1

and electrical fieldE
�3

for a piezoelectric beam of

lengthl powered by a voltageV
�
(t), see figure 4.5, are given in complex notation by

T
�1

=
�F
�1

A (4.20)

S
�1

=
@u�
@x

(4.21)

E
�3

=
V�(t)

e
(4.22)
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Figure 4.5: Piezoelectric straight beam of lenghtl subject to bending deformation of
transverse type powered by an AC voltage

By substituting (4.20), (4.21) and (4.22) in the (S,E)-type relation (4.4), the following
equation

T�1
=

1

sE11
S�1
� d31

sE11
E�3

(4.23)

leads, after rearranging the terms, to

F�1
(x; t) = �kA

sE11
[p
�
cos kx� q

�
sin kx]ej!t +

d31

sE11
bV�(t) (4.24)

By using the equations (4.14) and (4.15) the following is obtained

kA
!sE11

= �Avph (4.25)

By substituting (4.18), (4.19) and (4.25) in the above equation (4.24), and rearranging
the terms, the force produced at each point of the beam becomes

F
�1

(x; t) =
�Avph
j

[(sin kx+
cos kx

tan kl
)
:
u
�
(0; t)� cos kx

sin kl

:
u
�
(l; t)] +

d31

sE11
bV
�
(t) (4.26)

For each value ofx� f0; lg corresponding to the edges of the beam we get the following
equations for the force produced at these edges

F
�1

(0; t) =
�Avph
j

[
1

tan kl

:
u
�
(0; t)� 1

sin kl

:
u
�
(l; t)] +

d31
sE11

bV
�
(t) (4.27)

F
�1

(l; t) =
�Avph
j

[(sin kl+
cos kl

tan kl
)
:
u
�
(0; t)� 1

tan kl

:
u
�
(l; t)] +

d31

sE11
bV
�
(t) (4.28)
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where by observing that

�Avph
j

(sin kl+
cos kl

tan kl
) =

�Avph
j

1

sinkl
(4.29)

�Avph
j sinkl

+ j�Avph tan
kl

2
=

�Avph
j

1

tan kl
(4.30)

then (4.27) and (4.28) can be written in the following form8<
:

F�0
(t) = (Z� + Zo

�
)s�o

(t)� Z� s�l
(t) + �V�(t)

F
� l

(t) = Z
�
s
�o

(t)� (Z
�
+ Zo

�
) s
�l
(t) + �V

�
(t)

(4.31)

where 8<
:

s
�o

(t) =
:
u
�
(0; t) ands

�l
(t) =

:
u
�
(l; t)

F
�0

(t) = F
�1

(0; t) andF
� l

(t) = F
�1

(l; t)

and where 8>><
>>:

Z� =
�Avph
j sin kl

Zo
�

= j�Avph tan kl
2

� = bd31
sE
11

=
�
F
V

�u (4.32)

Z
�

andZo
�

are elastic impedances depending only on the design and the mechanical

parameters of the piezoelectric beam.� is the electromechanical force factor of the
piezoelectric beam produced under constant displacement (u = constant).

The electric current flowing into the piezoceramic powered by a voltageV
�
(t) reads

I
�
(t) =

Z b

0

Z l

0

j!D
�3
dxdy (4.33)

By substituting (4.21) and (4.22) in the (S,E)-type relation (4.4), then the following
equation

D� 3
=
d31

sE11
S�1

+ "S33E�3
(4.34)

writes

D
� 3

=
d31

sE11

@u
�
@x

+ "S33

V
�
(t)

e
(4.35)
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By inserting (4.35) in (4.33), and thereafter calculate the integral and rearrange the
terms, then the following relation is obtained

I
�
(t) =

d31b

sE11
(
:
u
�
(l; t)� :

u
�
(0; t)) + j!"S33

bl

e
V
�
(t) (4.36)

which is further written by

I�(t) = �� s
� o

(t) + � s�l
(t) + j!CdV�(t)

(4.37)

where 8><
>:

Cd = "S33
bl
e

"S33 = "T33(1�|231)
|31 =

d31p
sE
11
"T
33

(4.38)

and whereCd is the clamped capacitance of the piezoceramic and|31 is the electrome-
chanical coupling factor derived by using (2.15) when applied to the (T,E)-type relation
(4.3).

From the above analysis and the derived equations (4.31) and (4.37) the electromechan-
ical coupling in the piezoceramic beam is represented by the following relation

8>><
>>:

I
�
(t) = �� s

�o
(t) + � s

�l
(t) + j!Cd V�

(t)

F�0
(t) = (Z� + Zo

�
)s�o

(t)� Z� s�l
(t) + �V�(t)

F
� l

(t) = Z
�
s
�o

(t)� (Z
�
+ Zo

�
) s
�l
(t) + �V

�
(t)

(4.39)

This system is further represented by Mason in the form of a six terminal equivalent
circuit information as shown in figure 4.6.

Fo

��

�

��

� �:

CdV

I Fl

�� ��

Figure 4.6: Mason’s six input terminal ECM of the annular plate piezoelectric device
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The ring type stator in T-effect mode

In the case of the piezoelectric ring, which constitutes the active part combined with
a passive part of the stator in the ultrasonic motor USR60, the six terminal network is
further reduced to a four terminal network due to the fact that the ends of the beam,
shown in figure 4.3, are connected in a closed shape, therebyF

�0
(t) = F

� l

(t) = F
�
(t)

and the set of equation becomes8>><
>>:

I
�
(t) = �� s

�o
(t) + � s

�l
(t) + j!Cd V�

(t)

F
�
(t) = (Z

�
+ Zo

�
)s
�o

(t)� Z
�
s
�l
(t) + �V

�
(t)

F
�
(t) = Z

�
s
�o

(t)� (Z
�
+ Zo

�
) s
�l
(t) + �V

�
(t)

(4.40)

which leads to

I� =
2�2

Zo
�

+ 2Z
�

0
@V�(t)�

F
�
(t)

�

1
A+ j!CdV�(t) (4.41)

Furthermore, it can be assumed that the resulting force at each point of the stator is zero
due to the symmetry in transverse directions of the extension and contraction phases
underlying the traveling wave type design of the USR60. Consequently, The admittance
Y
�

of the stator reduces to

Y
�
=

I
�
V
�

= j!Cd +
2�2

Zo
�

+ 2Z
�

= Y
�d

+ Y
�m

(4.42)

� Y
�d

is the blocking (damping) admittance, i.e. when no vibrations take place in

the powered stator, and reads

Y
�d

= j!Cd (4.43)

� Y
�m

is the motional admittance representing the electromechanical behavior of the

vibrating stator seen from the electrical side, and reads

Y
�m

=
2�2

Zo
�

+ 2Z
�

= �2y
�m

(4.44)

where� is the electromechanical transformer known as the force factor, andy
�m

is the motional admittance representing the electromechanical behavior of the vi-
brating stator seen from the mechanical side.
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By substituting (4.32) and (4.38) in (4.44) and rearranging the terms the motional ad-
mittance becomes

Y
�m

= 2j
�2

�Avph tan(
kl

2
) = j!"T33|

2
31

lb

e

tan(kl2 )
kl
2

= j!Cd
|
2
31

1�|231
tan(lx)

lx
(4.45)

where

lx =
kl

2
=

!l

2vph

By varying the frequency under the constant voltage of the power supply, resonance
and antiresonance behavior is obtained for different angular frequencies of the stator.
This phenomenon can be mathematically accounted for by using the Mittag-Leffers’s
theorem to

Expand the function#x =
tan(lx)

lx
along its poles.

Thus, if�xn are the poles of#x then

#x =

1X
nodd

qn

1� ( lx
xn

)2
(4.46)

where

qn =
8

�2(2m� 1)2

By substituting (4.46) in (4.45) and rearranging the terms the motional admittance be-
comes

Y
�m

(!) =

1X
j!

nodd

�2

( 1
Cn

� !2$)
= �2y

�m
(!) (4.47)

where (
$ = 1

!2nCn

Cn = qn
�2

|
2

31

1�|2
31

Cd

In terms of the four terminal equivalent circuit information, the electromechanical mo-
tional branch of the admittance is expressed by an infinite number of($; C n)-series
circuits in parallel, thus the equivalent circuit of the non-dissipative stator is shown in
figure 4.7
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Figure 4.7: The electromechanical ECM for one phase of the ideal stator with no losses
over a large span of frequencies

The electromechanical coupling factor

By solving the system of equations in the relation (4.40) fors
�o

, s
�l

andI
�

the following

is obtained 8>>>><
>>>>:

s�o
= 1

Zo
�

+2Z
�

F� �
�

Zo
�

+2Z
�

V�
s
�l

= � 1
Zo
�

+2Z
�

F
�
+ �

Zo
�

+2Z
�

V
�

I
�
= �2�

Zo
�

+2Z
�

F
�
+ ( 2�2

Zo
�

+2Z
�

+ j!Cd)V�

(4.48)

By denoting the speed of vibration of the closed stator by
:
u
� such that

:
u
�
= s
�o
� s
�l

then the relation (4.48) can be rewritten in the following four terminal expression form8><
>:

:
u
�
= 2

Zo
�

+2Z
�

F
�
� 2�

Zo
�

+2Z
�

V
�

I
�
= �2�

Zo
�

+2Z
�

F
�
+ ( 2�2

Zo
�

+2Z
�

+ j!Cd)V�
(4.49)

By using the definition of the electromechanical coupling factor defined in section 2.2.4
and observing that (4.49) has the following four terminal expression form�

_u = %11F + %12V
I = %12F + %22V

(4.50)
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where

%11 =
2

Zo
�

+ 2Z�
(4.51)

%12 = � 2�

Zo
�

+ 2Z
�

(4.52)

%22 =
2�2

Zo
�

+ 2Z
�

+ j!Cd (4.53)

Then the electromechanical coupling factor is given by

|
2 = lim

!�!0

%212
%11%22

(4.54)

By substituting (4.51), (4.52) and (4.53) in (4.54) and rearranging the terms then the
coupling factor reads

|
2 = lim

!�!0

2�2

Zo
�

+2Z
�

2�2

Zo
�

+2Z
�

+ j!Cd
= lim

!�!0

Y
�m

Y�d

+ Y�m

(4.55)

By considering only the vibrating mode of rankn and substituting (4.43) and (4.44) in
(4.55) then the effective coupling factor of this mode is

|
2
31 = lim

!�!0

�2Cn
Cd +�2Cn �$CdCn!2 =

�2Cn
Cd +�2Cn

(4.56)

The overall intrinsic coupling factor of the piezomaterials|31int for all transverse modes
of vibration is further given by

|
2
31int =

�2Ceq
Cd +�2Ceq

(4.57)

where 8<
:

P
n

qn = 1

Ceq =
P
n

Cn

are used.
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4.1.2 The free stator around the fundamental resonance

In practice only the fundamental frequency is of interest, and therefore it is only neces-
sary to identify the admittance around this frequency and represent the motional admit-
tance with one($; C1)-series tank. When no load is considered the output terminal of
the motional admittance is a short circuit as shown in figure 4.8

L C1

CdV F�

UI

Figure 4.8: The electromechanical ECM for one phase of the ideal stator with no losses
around the fundamental resonance frequency

In order to take into account the dissipative sources in the real stator, it is necessary to
integrate the losses of energy within the system in terms of equivalent circuit information
both at the input terminal and the output terminal.This is done by adding a resistance
Rd, representing the dielectrical losses, in parallel with the blocking capacitance and
another resistanceR1, representing the electromechanical (conversion) losses, in series
with the motional($; C1)-series tank. To represent further disturbances and influences
such as temperature, friction and eventual load, a box referred to byLOAD is added in
series with the(R1;$; C1)-series tank of the dissipative motional admittance as shown
in figure 4.9

R1 L C1

Rd CdV F�

LO
A

D

UI

Figure 4.9: The electromechanical ECM for one phase of the real stator integrating the
losses around the fundamental resonance frequency
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The electromechanical transformer, which serves no useful function in the two terminal
equivalent circuit, is normally eliminated by transforming the mechanical elements$

andC1 across the electrical side. Consequently, the electromechanical elements seen as
their electrical equivalents become

R = R1

�2 ; L = $

�2 ; C = �2C1 (4.58)

and the electrical equivalent circuit model is shown in figure 4.10

Rd CdV

R L CI Im

LO
A

D

Figure 4.10: The ECM for one phase of the real stator integrating the losses, around
the fundamental resonance frequency, and where the mechanical parameters are seen as
their electrical equivalents

In general there is a one to one correlation between the mechanical and electrical pa-
rameters of the equivalent circuit information used for the analysis of any piezoelectric
transducer. Therefore, the use of the electrical equivalent of the mechanical parameters
is preferred when the electrical network method is to be used for extracting the param-
eters of the circuit. Consequently, the analysis of the behavior of any transducer in
various working conditions can be carried out by using only the electrical elements, and
reference to their mechanical equivalent is made when this is necessary. The correlation
between electrical and mechanical parameters for any piezoelectric transducer is shown
in the following table

Electrical Unit Mechanical Units
CurrentI
Chargeq
ResistanceR
InductanceL
CapacitanceC
Force factor�

A
C


H
F
C:m�1

Velocity _u
Displacementu
DampingD
MassM
ElasticityK
Force factor�

m:s�1

m
N:s:m�1

kg
N:m�1

N:V �1

Table 4.1: Correlation between the electrical and the mechanical parameters
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4.1.2.1 Identification of the parameters in the equivalent circuit model

The unloaded stator is accurately represented near its fundamental resonance by the two
terminal equivalent circuit model, where the electrical and the electromechanical param-
eters are represented by their electrical equivalents. The identification of the parameters
is carried out by using the electrical network method to extract the parameters from the
admittance locus (Nyquist diagram) of any electromechanical system.

� The global admittanceY of the system is the sum of the damping admittanceY d
and the motional admittanceYm

Y = Yd + Ym

where in terms of the equivalent circuit parameters

– The damping admittanceYd reads

Yd =
1

Rd

+ jwoCd

– The motional admittanceYm reads

Ym =
R

R2 + (L! � 1
C!

)2
+ j

( 1
C!

� L!)

R2 + (L! � 1
C!

)2

– The global admittanceY reads

Y =
1

Rd

+
R

R2 + (L! � 1
C!

)2
+ j(woCd +

( 1
C!

� L!)

R2 + (L! � 1
C!

)2
)

The following figure 4.11 represents the locus of the admittance in Nyquist plane where
the curve describes a vertical line with increasing frequency, except in the region around
the mechanical resonance and antiresonance where it describes a motional admittance
circle. The maximum and the minimum of the motional admittance occur at the mechan-
ical resonance (series)fs and antiresonance (parallel)fp respectively. The resonance
and the antiresonance of the whole system are given byf r andfa respectively whereas
the maximum and the minimum of the total admittance are given by the pairf h andfl
respectively. The admittance is capacitive over the whole range of frequencies except
for the narrow interval of frequencies lying betweenf r andfa where the admittance
is inductive. The three pairs of characteristic frequencies (f r,fa), (fs,fp) and (fh,fl)
are therefore the frequencies of principal interest in the process of identification of the
parameters of all two terminal equivalent circuit applications.
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f

f
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fl

fp

fr

fs

fh

Im(Y)

Re(Y)1/Rd 1/R +1/Rd

j C� o d

Figure 4.11: Nyquist diagram of the electromechanical transducer around its fundamen-
tal resonance and antiresonance frequencies

The electrical network method also uses the information provided by the frequency re-
sponse as a Bode magnitude diagram where the three pairs of characteristic frequencies
are identified in the neighborhood of the resonance and antiresonance sharpness of the
diagram as shown in figure 4.12

fa flfpfrfsfh

|Y|dB

f( )Hz

Figure 4.12: Bode magnitude diagram of the electromechanical transducer around its
fundamental resonance and antiresonance frequencies
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For convenience, definitions of characteristic parameters obtained from the admittance
diagram are listed in table 4.2

fs motional (series) resonance frequencyfs = 1
2�
p
LC

fp parallel resonance frequency fp =

q
(1+

Cd
C
)

2�
p
LC

fr resonance frequency Re(Y ) = 0
fa antiresonance frequency Re(Y ) = 0
fh frequency at maximum admittance
fl frequency at minimum admittance
Q mechanical quality factor Q = 2�fs

L
R

Cd

C
capacitance ratio Cd

C
=

f2s
f2p�f2s

Table 4.2: The characteristic parameters of the electrical network method

The characteristic frequencies which are commonly used in the evaluation of the equiv-
alent circuit parameters arefs andfp. It must be emphasized that in the lossless case the
three pairs of frequencies coincide (fs = fh = fr andfp = fl = fa) and these occur at
the minimum and the maximum of the impedance respectively, and when the losses are
small then the pair(fh; fl) can be used instead of the pair(fs; fp), and when the quality
factor is sufficiently high(Q > 100) then the pair(fs; fp) is obtained from the average
of the two other pairs

(fs; fp) =
(fh; fl) + (fr; fa)

2
(4.59)

The quality factorQ is determined from either the Nyquist diagram or the Bode diagram.
In the Bode case, the sharpness of the admittance around the resonance frequency as
shown in figure 4.13 is used to determineQ from the pass band at�3dB of the frequency
response

Q =
fs
�f �3dB

(4.60)
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|Y|dB

f( )Hzfsf1 f2

� f-3dB

Figure 4.13: Bode magnitude diagram of the electromechanical transducer around its
fundamental resonance frequency

From the Nyquist diagram the quality factor is

Q = 2�fs
L

R
=

1

2�fsRC
=

1

R

r
L

C
(4.61)

Finally, the following set of equations gives the evaluation formula for each parameter
in the two terminal equivalent circuit information (Nogarede and Piecourt (1994))8>>>>>>>>>>>>><

>>>>>>>>>>>>>:

fs =
fh+fr

2

fp =
fl+fa

2
Rd =

1
Re(Y (f)) for f � fs

Cd =
Im(Y (fs))

2�fs

R = 1
Re(Y (fs))� 1

R0

L = 1
4�2Cd(f2p�f2s )

C = Cd
f2p�f2s
f2s

Q = 2�fs
L
R
> 100 for verification

(4.62)

4.1.3 The complete motor around the fundamental resonance

The ultrasonic motor considered in this work is a two phase motor type USR60. The
design and the shape of the stator of the USR60 give rise to a traveling wave resulting
from the superposition of two standing waves provided by each excited phase of the
motor. The analysis in terms of equivalent circuit information leads to two four terminal
equivalent circuits to represent the complete motor (i.e. one circuit per excited phase).
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The equivalent circuit that represents the complete motor is shown in figure 4.14 where
the load box represents all the phenomena that intervene beyond the stator at the inter-
face contact between the stator and the rotor.

Rd Cd
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Figure 4.14: The ECM of the two phase complete RPEM

However, due to the symmetrical nature of the stator of the USR60 only one four termi-
nal equivalent circuit is necessary in order to represent the electromechanical behavior
of the stator. Consequently, the final equivalent circuit model of the complete motor can
be reduced to a mono-phase four terminal circuit, which provides the prediction of the
performance characteristics of the motor operating under various working conditions.

Figure 4.15 shows the mono-phase equivalent circuit model of the complete motor
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Figure 4.15: The ECM of the complete RPEM
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4.1.4 Speed and feedback signal relationship for the motor

The feedback electrode of the motor, which is a neutral part of length (�=4), is subjected
to bending deformations created by the traveling wave. According to the piezoelectric
direct effect the total currentI

�x
flowing out of this electrode is related to the tangential

vibration velocity#
�

of the particles of the stator in complex notation by a force factor

I
�x

= �x #�
(4.63)

It must be emphasized that the feedback electrode is a neutral part and therefore behaves
like a blocking capacitanceCx. The developed voltageVx within this electrode is related
to the currentIx flowing out of it by

V
�x

=
I�x

j!Cx
(4.64)

The maximum of the tangential velocity# of the particles of the stator, located at the
middle radiusRo of the annular plate, is related to the ideal rotary speed
 id of the
motor, when no sliding is assumed, by

# = Ro
id (4.65)

By substituting (4.65) in (4.63), and thereafter (4.63) in (4.64) and rearranging the terms

Vx =
�xRo

!Cx

id (4.66)

where�x is the direct modal force factor, it can be concluded from the equation (4.66)
that the feedback voltage is proportional to the ideal rotary speed of the motor at any
fixed frequency. Furthermore, the maximum tangential velocity of the particles of the
stator, see section 4.2.1.2, is given by

# =
kh

Ro

RrA! = Ro
id (4.67)

whereRr is the modal shape constant in radial direction,A and! are the amplitude and
angular frequency of the traveling wave, respectively. Finally, by substituting (4.67) in
(4.66) then the following is obtained

Vx =
�xkhRr

RoCx
A (4.68)

where it can be noticed that there is a proportionality between the amplitude of the
traveling wave and the amplitude of the feedback voltage. This result suggests that the
feedback voltage is a valuable parameter for predicting and controlling the motor.
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4.2 Equivalent circuit model derivation

The equivalent circuit modeling of the traveling wave motor USR60 is done stepwise by
first considering the free stator then the unloaded motor and finally the loaded motor.

4.2.1 The free stator

The identification of the parameters of the equivalent circuit model is carried out by
applying the electrical network method as stated in the previous section 4.1.2.1. The
stator of the USR60 is a two phase symmetrical system with each phase providing a
standing wave. Due to the special design of the stator these standing waves are combined
and create a traveling wave within the body of the stator. The admittance of each phase
of the stator was measured in the same conditions and their compared results are plotted
in figure 4.16

3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Frequency (Hz)

M
ag

ni
tu

de
 (S

)

Phase A
Phase B

Figure 4.16: Comparison between the admittance of phase A and the admittance of
phase B of the stator around the fundamental resonance frequency

From figure 4.16 it can be noticed that the two phases exhibit almost the same admit-
tance, consequently the stator can be assumed to be perfectly symmetrical and therefore
only one phase needs to be identified. The two terminal equivalent circuit representation
of one phase of the free stator, where the electromechanical parameters are seen as their
electrical equivalents, is shown in figure 4.17.
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Rd CdV

R L CI Im

Figure 4.17: The electrical equivalent circuit model of one phase of the free stator

The admittance of the free stator is provided for one phase around the fundamental
frequency, and the results are plotted in figure 4.18 in the form of Bode and Nyquist
diagrams.
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Figure 4.18: Bode magnitude and phase diagram of the electrical admittance of the stator
around the fundamental resonance frequency

From the Bode diagram it can easily be seen that the admittance exhibits resonance
and antiresonance behavior in the explored range of frequencies. The extraction of the
parameters is therefore possible by using the Nyquist diagram in figure 4.19 according
to the previously stated method in section 4.1.2.1.
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Figure 4.19: Nyquist diagram of the electrical admittance of the stator around the fun-
damental resonance frequency

The exploitation of the Nyquist diagram leads to the following values

fs = 3:862 104

fp = 3:920 104

Rd = 3:12 104

Cd = 5:4 10�9

R = 149.75
L = 0.102
C = 1:66 10�10

Q = 166

Table 4.3: The identified parameters of the electrical admittance

The quality factorQ which is over100 in this case enhances the validity of the approxi-
mation made to derive the parameters of the network.

The stator is by nature an electromechanical system with an electrical input terminal and
a mechanical output terminal. The admittance of the stator derived in the above gave the
mechanical parameters of the network in terms of their electrical equivalents, but it is
possible and also more convenient to derive these mechanical parameters directly by
measuring the ElectroMechanical (EM) admittance of the vibrating gain of the stator.
The EM admittance is the ratio between the speed of vibration at the surface of the
stator and the input voltage. It must be emphasised that the speed of vibration can be
measured only in normal direction.
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4.2.1.1 Normal and tangential force factors

Due to the elliptical motion of the particles at the surface of the stator it will be shown
that the speed of vibration in tangential direction can be obtained as a function of the
speed of vibration in normal direction. Hence, by assuming that the traveling wave at
the surface of the stator is given by (4.69), see sections 4.2.1.2 and 5.2.1

w(r; �; t) = RrA cos(!t� k�) (4.69)

and by applying Kirchhoff’s law, the displacementuP of a point P, in the(�; z)-plane,
at the surface of the stator, located at distanceh from the centerline is given by

uP = uz ~ez + u� ~e�

= w(r; �; t) ~ez � h

r

@w

@�
(r; �; t) ~e�

= RrA cos(!t� k�) ~ez +
kh

r
RrA sin(!t� k�) ~e� (4.70)

where~ez and~e� are unit vectors in vertical and circumferential direction respectively.
Consequently, the elliptical motion of the pointP in the(�; z)-plane is given by

(
uz
RrA

)2 + (
u�

kh
r
RrA

)2 = 1 (4.71)

By taking the derivative of equation (4.71) with respect to time the following is obtained

(
kh

r
)2uz _uz + u� _u� = 0 (4.72)

which leads to

_uz = �( r
kh

)2
u�
uz

_u� = � r

kh
tan(!t� k�) _u� (4.73)

This relation (4.73) shows that, for any point at the surface of the stator, the speed of
vibration in normal direction can be obtained from the speed of vibration in tangential
direction. Consequently, this result suggests that the equivalent circuit representation
presented in section 4.1.2 can be used for predicting the speed of vibration in normal
direction. Hence, by using (4.70) the speed of vibration in normal direction_u z and the
speed of vibration in tangential direction_u� read

_uz = �RrA! sin(!t� k�) = � _̂uz sin(!t� k�) (4.74)

_u� =
kh

r
RrA! cos(!t� k�) = _̂u� cos(!t� k�) (4.75)

where

_̂uz = RrA! (4.76)

_̂u� =
kh

r
RrA! (4.77)
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Furthermore, the maximumIm of the motional sinusoidal current, flowing into the mo-
tional branch of the equivalent circuit, is related to the maximum of the vibration velocity
in normal direction̂_uz and the maximum of the vibration velocity in tangential direction
_̂u� by respectively a normal force factor�n and a tangential force factor�t such that

Im = �n _̂uz = �t _̂u� (4.78)

where by using (4.76) and (4.77) leads to the following relationship between the normal
force factor�n and the tangential force factor�t such that

�n =
kh

r
�t (4.79)

For convenience, as only the speed of vibration in normal direction can be measured,
in the remaining developments the normal force factor will be denoted by� and will
be referred to by the force factor and the speed of vibration in normal direction will
be denoted by_u and will be referred to by the speed of vibration. Furthermore, the
maximum of the speed of vibration in normal direction will be denoted# and reads

# =
Im
�

(4.80)

Consequently, the two terminal equivalent circuit representation of one phase of the free
stator, to be identified, is shown in figure 4.20

r l c

Rd CdV �

UI

Figure 4.20: The electromechanical equivalent circuit model of the free stator

where the blocking admittanceYd, the motional admittanceym and the total admittance
Y are respectively given by

Yd = 1=Rd + j!Cd (4.81)

ym = 1=[r + j(!l � 1=!c)] (4.82)

Y = Yd +�2ym (4.83)
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and where the relationship between the electromechanical elements and their electrical
equivalents is given by

R =
r

�2
L =

l

�2
C = �2c (4.84)

The identification of the parameters is carried out by using the electrical network
method, see section 4.1.2.1. Figure 4.21 presents the Bode magnitude and the Nyquist
diagrams of the EM admittance.

3.8 3.82 3.84 3.86 3.88 3.9 3.92 3.94 3.96 3.98 4

x 10
4

0

5

10

15

20
Bode diagram for the vibrating gain magnitude

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
) 

−10 0 10 20 30 40 50 60
−30

−20

−10

0

10

20

30

40
Nyquist diagram for the vibrating gain 

EM Conductance

E
M

 S
uc

ep
ta

nc
e

Figure 4.21: Bode and Nyquist diagrams of the EM vibrating gain admittance of the
stator around the fundamental resonance frequency

The exploitation of the diagrams reported in figure 4.21 according to the sharpness of
the EM admittance around the resonance frequency and the derivation of the quality
factor from the pass band at -3dB of the frequency response together with the radius of
the Nyquist diagram lead to the following values

fr = 3:8644 104

�f�3dB = 242.19

Q = 159.55

r = 15.4
l = 0.0101
c = 1:68 10�9

Table 4.4: The identified parameters of the electromechanical motional admittance
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The quality factor which is slightly different from the previous case enhances both the
validity of the approximation and the compatibility of these two methods. The above
mechanical (r,l,c) values can be seen as their electrical equivalents and thereby, by using
(4.84), deduce the force factor

� = 0:32

The identified values are thereafter used in a simulated equivalent circuit model envi-
ronment, and for each case an admittance is provided over a certain range of frequencies
around the fundamental resonance and the results are then compared to the experimental
data.

3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

x 10
4

0

2

4

6

8
x 10

−3 Bode diagram for the admittance magnitude

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

S
) 

Experimental      
Equivalent Circuit

3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

x 10
4

−100

−50

0

50

100
Bode diagram for the admittance phase

Frequency (Hz)

P
h
a
s
e
 (

d
e
g
) 

Experimental      
Equivalent Circuit

Figure 4.22: Prediction of the electrical admittance of the stator around the fundamental
resonance frequency
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From figure 4.22 it can be noticed that the simulated model predicts most of the elec-
trical admittance characteristic especially in the range of frequencies located above the
fundamental resonance, however a small and harmless discrepancy can be observed for
the phase prediction which is caused by the nonlinear behavior of the stator between its
resonance and antiresonance behavior.

For control purposes the most important part of the equivalent circuit model is the me-
chanical output terminal, therefore it is important to compare the EM admittance pre-
diction to the experimental data.
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Figure 4.23: Prediction of the EM vibrating gain admittance of the stator around the
fundamental resonance frequency

From figure 4.23 it can be noticed that most of the performance of the stator in terms
of the EM admittance gain can be predicted fairly well in a simulated environment.
However, this is valid only in the range of frequencies lying above the fundamental
frequency.

The behavior of the stator over a large span of frequencies can also be predicted by
a simulated equivalent circuit model provided that each excited mode in this range is
identified and an electrical branch is allocated for it in the model. Figure 4.24 shows the
comparison between experimental data and model prediction over the span of frequen-
cies[20 kHz; 60 kHz] .
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Figure 4.24: Prediction of the admittance of the stator over a large span of frequencies

From figure 4.24 it can be noticed that a good prediction is achieved in the neighbor-
hood of the fundamental frequency whereas the quality of prediction deteriorates for the
other modes. The large discrepancies observed in the neighborhood of other resonance
frequencies than the fundamental resonance can be explained by the fact that the stator
is especially designed to operate in its fundamental resonance mode and even if the re-
maining modes can be excited they are maintained at a cost of a different stress-strain
relationship affecting the dielectric and electromechanical behavior of the whole struc-
ture, which results mainly in drastic changes of the blocking admittance. Therefore, a
better prediction for these modes requires the reidentification of the blocking admittance
for each mode.
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4.2.1.2 The modal force factor

The stator of USR60 is a two phase system in which a traveling wave is generated by
the superposition of two standing waves provided by two excited mechanical orthogonal
modescos k� andsin k�. The traveling wave can be mathematically expressed in terms
of a summation over the excited mechanical modes weighted by their respective modal
amplitudes�1 and�2 such that

w(r; �; t) = Rr(�1 cos k� + �2 sin k� ) = RrA cos(!t� k�) (4.85)

whereA is the maximum amplitude of the temporal modes andR r is the shape of the
traveling wave in radial direction. The speed of the traveling wave in normal direction
(i.e. the rate of vibration) can be expressed by

dw

dt
= �# sin(!t� k�) = Rr(

:

�1 cos k�+
:

�2 sin k� ) (4.86)

where 8<
:

�1 = A cos!t
�2 = A sin!t
# = RrA!

(4.87)

According to the piezoelectric direct effect the electrical charge that flows in each elec-
trode powering the electromechanical system is related to the generated displacement
by a force factor. Consequently, the modal amplitude of each excited mechanical mode
is related by a modal force factor to the charge flowing into the motional part of the
corresponding phase in the following way�

qAm = � �1
qBm = � �2

(4.88)

which leads to the useful relation for the current and the modal amplitude velocity(
IAm = �

:

�1
IBm = �

:

�2
(4.89)

Under the assumption that the two phases are symmetrical and powered by a common
voltage the currents flowing in the motional part of the electromechanical system exhibit
the same amplitude and therefore the following notation for the motional charge and
current can be used 8>><

>>:
qAm = qm cos!t
qBm = qm sin!t
IAm = �Im sin!t
IBm = Im cos!t

(4.90)
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by rewriting the foregoing equation in terms of modal force factor and motional current
the following is obtained(

w(r; �; t) = Rr(
qm
�
cos!t cosk� + qm

�
sin!t sink� )

dw
dt

= Rr

�
(�Im sin!t cosk� + Im cos!t sin k� ) = �Rr

Im
�
sin(!t� k�)

(4.91)

which leads to the following relation between the maximum of the vibration velocity
and the maximum of the motional current flowing into each phase of the stator

# = Rr

Im
�

(4.92)

According to the force factor derived from the electromechanical parameters of the
motional part seen as their electrical equivalents in the foregoing analysis, see section
4.2.1.1, the same relation is given by

# =
Im
�

(4.93)

which leads to the following relation between the modal force factor and the force factor
of the USR60

� = Rr � (4.94)

whereRr is a radial function depending on the design of the stator and the modal shape
of the traveling wave in the radial direction. In general this function is given by the
following relation

Rr = (
r � a

b� a
)
 (4.95)

wherea andb are the inner and outer radius of the stator annular plate respectively and

 is a constant depending on the modal shape of the deformation of the stator in the
radial direction. By assuming that the contact interface between the stator and the rotor
is mainly concentrated around the middle radius of the annular plate i.e.R o =

b�a
2 then

Rr becomes a constant depending only on the amplitude of the radial mode at the point
of contact. The choice of
 is, however, difficult but possible to derive from the motional
part seen as its electrical equivalent powered by only one source of power leading to the
same amplitude of vibration at the surface of the stator.

The total powerP needed to supply the two symmetrical phase USR60 is given by

P = VAIA + VBIB = 2V I (4.96)

which can be written as

P = (
p
2V )(

p
2I) = Vc Ic (4.97)
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This suggests that if only one power source (i.e. one phase) is used to supply the stator
of USR60 to obtain the same condition of vibration then the current that will flow in the
motional part of the electromechanical system is given by

Icm =
p
2 Im (4.98)

The relation between the motional current and the vibration velocity is then given by

# =
Icm
�

=

p
2 Im
�

(4.99)

The same amplitude of the vibration velocity could be achieved by the motional current
Im flowing through one phase of the stator by using the modal force factor� necessary
to create a standing wave within the stator such that

# =
Im
�

(4.100)

which leads to

� =
p
2� (4.101)

and consequently �

 = 1

2
Rr =

1p
2

(4.102)

4.2.2 The unloaded motor

The case of the unloaded motor with a rotor pressed against the stator with a normal
forcingF = 160N is the next step of the modeling process. Under the forcing process
the piezoelectric converse effect tends to balance the external forcing when sufficient
voltage is applied to the piezoceramic, and thereby achieves the same resonance behav-
ior within the stator around the fundamental resonance frequency. By assuming that
the blocking admittance (Rd; Cd) characterizing the dielectric behavior of the stator re-
mains constant under pressure and that the modal vibrating massl of the stator body is a
mechanical constant, then the only parameters subject to changes and therefore needing
adjustments are(r; c) parameters of the mechanical output terminal. Some extra resis-
tance needs to be added in parallel with the blocking admittance at the input terminal in
order to take into account the extra losses of power, which are needed to overcome the
external pressure and thereby meet the resonance of the stator.
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4.2.2.1 Modeling the applied pressure and the losses

The extra losses due to pressure conditions can be integrated in the ECM as a power
sourcePx represented by a resistanceRx. For the USR60 these quantities can be ap-
proximately defined by the following relation (Nogarede and Piecourt (1994))(

Px = F
80

Rx = V 2

Px
(4.103)

Under the nominal conditions of operationF = 160N andV = 100 V rms, the loss of
power isPx = 2W per phase which leads to a resistanceRx = 5 k
 to be integrated
in parallel with the blocking admittance at the input terminal.

Besides the losses of power the frictional phenomenon at the stator and rotor contact
points is responsible for more losses and also for performance deterioration in terms of
speed drop. The losses due to friction can be integrated in the model by readjusting
the value ofr at the mechanical output terminal and readjusting the output speed of the
model by subtracting from the motional current at the output terminal an amount image
of the speed drop seen as its electrical equivalent.

The readjustment of the mechanical resistance is done by simulation and by comparison
to the experimental data gathered in terms of admittance of the unloaded motor operating
under nominal conditions.
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Figure 4.25: Readjustment of the mechanical damping by simulation in terms of the
admittance prediction of the RPEM

Figure 4.25 shows that the mechanical resistance seen as an electrical equivalent should
be readjusted toR = 420 Ohms when the motor is operating under its nominal values
(100 V rms; 160N) in unloaded condition.
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The speed drop can be provided by sensing the amplitude of the feedback voltage at
different normal forcings under constant excitation frequency, which is maintained at
its nominal value of40 kHz. It is assumed that in the ideal case the contact between
the stator and the rotor is of a non sliding type. Consequently, the velocity of the rotor
is opposite and equal to the maximum of the tangential velocity of the particles at the
surface of the stator, see sections 4.2.1.2 and 4.2.1.1, and thereby the maximum of the
speed of vibration# in normal direction reads

# = RrA! =
Ro

kh
Ro
id (4.104)

whereA and! are the amplitude and the angular frequency of the traveling wave at the
surface of the stator,Rr is a mechanical constant depending only on the geometry of the
stator,Ro is the middle radius of the driving contact and finally
 id is the rotary ideal
speed of the shaft of the motor.

From figure 3.10, which shows the speed-feedback characteristics, it is clear that the
speed of the unloaded motor depends on the normal forcing which is responsible for
the sliding and the stick-slip behavior at the contact surface of the driving mechanism
(friction). The measured speed
o can be related to the ideal speed
id by


o = 
id ��
f (4.105)

where�
f is the speed drop due to the normal forcing. Figure 3.10 suggests that the
speed drop is almost proportional to the normal forcing, at any amplitude of the feedback
signal, and their relationship is given by

�
f
�= � F (4.106)

where for the USR60 the slope is� = 2 10�2 rad:s�1:N�1.

The measured speed, drop speed and ideal speed can all be seen as their electrical equiv-
alents and therefore integrated in the equivalent circuit model of the unloaded motor.
The speed relation leads to its current image relation for the current flowing into the
motional impedance of the motor (Nogarede and Piecourt (1994))�

Imo
= Iid � If

Arg(Imo
) = Arg(Iid) = Arg(If )

(4.107)

Furthermore the speed current relationship obeys the following relation


o

Imo

=

id

Iid
=

�
f

If
= @ (4.108)

The proportionality factor is easily derived from the ideal situation where by using (4.99)
and (4.104) the motional current is related to the tangential vibrating speed and the rotary
speed by

Iid
p
2 = �# = �

Ro

kh
Ro
id (4.109)
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which leads to

@ =
kh
p
2

�R2
o

(4.110)

For the USR60Ro = 26:75 mm,� = 0:32, k = 9, h = 1:5 mm, the proportionality
factor@ = 83 rad:s�1:A�1 andIf = 9:7mA.

Finally the rotary speed of the unloaded motor can be directly deduced from the motional
currentImo

by

�

o = @ Imo

for If 6 Imo


o = 0 for If > Imo

(4.111)

The equivalent circuit model of the unloaded motor can finally be represented by only a
two terminal electrical network as shown in figure 4.26 where all mechanical parameters
are seen as their electrical equivalent.

Rd CdV

R RfL C CfI Imi Imo

Rx If

Figure 4.26: The ECM of the unloaded RPEM

It must be emphasized that the capacitanceCf in the two terminal equivalent circuit
should be adjusted in order to match the mechanical resonance frequency of the un-
loaded motor under operation. The information on the mechanical resonance frequency
is obtained by sensing the feedback signal, see section 3.3.5. Figure 3.9 suggests that
the mechanical resonance frequency of the feedback signal isf r � 39:8kHz. Thereby,
the value ofCf is updated in the following way

Cf =
C

LC(2�fr)2 � 1
(4.112)

For the USR60:fr = 39:8 kHz, L = 102mH ,C = :166 nF andCf = 2:5866 nF
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4.2.3 The loaded motor

The speed of the loaded motor depends on the amount of the load torque at the output
shaft of the motor. The variational nature of the torque gives rise to nonlinear dynamical
changes affecting the sliding and stick-slip behavior at the contact surface of the driving
mechanism (friction). The measured speed
 can be related to the ideal speed
 id by


 = 
id ��
f ��
� (4.113)

where�
� is the speed drop due to the load torque. Figures 3.11 and 3.8, which
show the speed-feedback characteristics at various load torques and the speed-torque
characteristics at various excitation frequencies respectively, suggest that the speed drop
is almost proportional to the load torque in the range of frequencies that are of interest
i.e. [40kHz; 41:5kHz]. Consequently, the relationship between the speed drop and the
load torque can be represented by the following linear equation where the coefficient�
is the average slope of the speed-torque characteristics

�
�
�= � T (4.114)

where for the USR60 the slope is� = 6:7 rad:s�1:N�1:m�1.

The measured, drop and ideal speed can all be seen as their electrical equivalents and
therefore integrated in the equivalent circuit model of the unloaded motor. The speed
relation leads to its current image relation for the current flowing into the motional
impedance of the motor (Nogarede and Piecourt (1994))�

Im = Iid � If � I�
Arg(Im) = Arg(Iid) = Arg(If ) = Arg(I� )

(4.115)

Furthermore the speed current relationship obeys the following relation




Im
=


id

Iid
=

�
f

If
=

�
�

I�
= @ (4.116)

Finally the rotary speed of the loaded motor can be directly deduced from the motional
currentIm by

�

 = @ Im for If + I� 6 Im

 = 0 for If + I� > Im

(4.117)

The proportionality factor@ is easily derived from the ideal situation as shown in
(4.110). The equivalent circuit model of the loaded motor can finally be represented
by a two terminal electrical network where all the mechanical parameters are seen as
their electrical equivalents as shown in figure 4.27
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Rd CdV

R RfL C Cf C�I Imi Imo R� Im

If I�Rx

Figure 4.27: The ECM of the loaded RPEM

where the currentI� image of the speed drop is torque dependent and given by

I� =
�

@ T (4.118)

It must be emphasized that the (R� ; C� ) branch can be neglected in the simulation pro-
cess.

4.2.4 Temperature integration in the final equivalent circuit model

The resonance and antiresonance frequencies changes with the temperature which in
terms of equivalent circuit modeling can be represented by the same model as before but
with varying parameters as shown in figure 4.28

Rd CdV

R RfL C Cf C�I Imi Imo R� Im

If I�Rx

Figure 4.28: The complete ECM of the RPEM integrating the effect of temperature
changes
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The effect of the heating process that takes place within the body of the stator on the
performance of the PEM can be monitored by the feedback signal. By sensing this
signal as a function of the temperature of the PEM, see section 3.3.8, the characteristic
shown in figure 3.12 is obtained when operating under nominal conditions. It is clear
from figure 3.12 that the resonance frequency of the feedback signal shifts towards lower
frequencies as the temperature of the PEM increases during the operation process.

It must be emphasized that it is difficult to monitor the effect of temperature on the an-
tiresonance frequency, but fortunately, only the mechanical resonance frequency is of
crucial importance when the main target is the output performance in terms of speed
and position. Therefore it is only necessary to integrate a tracking capability of the me-
chanical resonance frequency in the model in order to maintain the output performance
of the motor despite the temperature changes. Given the fact that the modal mass is
a mechanical constant then the only parameters subject to variation under temperature
changes are the damping and the stiffness/elasticity of the motional part whereas the
changes of the blocking admittance exist but are overlooked in the modeling process.
The following relation represents the resonance behavior of the motional impedance as
a function of temperature 8>><

>>:
CT =

C Cf

C+Cf

LCT (2�fr)
2 = 1

LCTo(2�fro)
2 = 1

fr = fro � `��

(4.119)

wherefro andfr are resonance frequencies at the ambient and working temperature
respectively,�� is the temperature gradient during operation and` is the slope of the
resonance-temperature characteristic. In terms of equivalent circuit information the total
capacitanceCT should be updated during the temperature changes in the following way

CT =
1

L(2�fr)2
=

1

L[2�(fro � `��)]2

=
1

L(2�fro)
2(1� `

fro
��)2

� CTo (1 + 2
`

fro
��)

where (
CTo =

1
L(2�fro )

2

CT = CTo(1 + 2 `
fro

��)
(4.120)

For the USR60:̀ = 5Hz: deg�1 and2 `
fro

� 2:5 10�4.
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4.2.5 Simulation of the effect of varying temperature

The mechanical resonance frequency of the motor shifts towards lower frequencies dur-
ing the operation of the motor due to the temperature increase within the body of the
stator. In order to overcome this problem in a simulated environment and therefore pre-
dict the performance characteristics of the motor despite the changes in its temperature,
a tracking facility which updates the temperature sensitive parameters is introduced in
the equivalent circuit model. Figure 4.29 shows the prediction results achieved for the
speed of the motor subject to temperature variation.

3.8 3.9 4 4.1 4.2 4.3 4.4

x 10
4

0

2

4

6

8

10

12

14

16
Model prediction vesus temperature changes

Frequency (Hz)

M
ag

ni
tu

de
 (r

ad
/s

) 
Ambient tempeature       
 Ambient + 20 deg Celcius
 Ambient + 40 deg Celcius

Figure 4.29: Speed prediction under varying temperature of the RPEM

From figure 4.29 it can be noticed that the resonance frequency is a decreasing function
of temperature and consequently for a fixed frequency above the resonance frequency
the performance of the motor in terms of speed deteriorates. The main conclusion to be
drawn is that for speed control purposes the influence of temperature changes must be
integrated in model prediction for long term operations.

4.3 Simulation and model validation

The derived equivalent circuit model of the RPEM is implemented in Matlab-Simulink
environment using the power-system toolbox. The results achieved by the simulated
model are then compared to the measured characteristics in order to enhance the validity
of the model.
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4.3.1 The effect of the driving frequency on the motor

The performance of the simulated model is given in terms of the output speed perfor-
mance under varying frequency. The range of frequencies between 38 kHz and 44 kHz
is explored and the achieved results are given in figure 4.30
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Figure 4.30: Comparison of speed-frequency characteristics for the unloaded RPEM:
simulation, feedback prediction and measurement

It must be emphasized that the results reported in this figure are obtained for the free
motor (i.e. no load) operating under its nominal conditions. In the same figure 4.30
are reported the results achieved by feedback prediction based on the proportionality
between the feedback voltage amplitude and the output speed of the motor together with
the real speed measured directly on the motor. It can be noticed that there is agree-
ment between the simulated model, feedback prediction and the measured data, which
validates both the equivalent circuit modeling of the free motor and the proportionality
relationship between the amplitude of the feedback voltage and the rotary speed of the
motor.

4.3.2 The effect of the varying torque on the loaded motor

The speed-torque relationship is the most important characteristic of any electrome-
chanical motor and therefore model validation should respect this criterion. Figure 4.31
represents speed-frequency characteristics under different load torques obtained from
direct measurement and feedback prediction when working under nominal conditions.
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Figure 4.31: Speed-frequency characteristics of the RPEM under different load torques:
measurement and feedback prediction

The range of torques between 0 Nm and 0.32 Nm is explored and the results achieved
by the simulated model are given in figure 4.32 for the load torques 0.1 Nm and 0.2 Nm
respectively.

It can be noticed from the compared results that there is agreement between the simu-
lated results, feedback prediction results and the measured results, which validates the
model in the range of torques[0 Nm; 0:32 Nm] and frequencies of interest i.e. in the
neighborhood above the fundamental resonance frequency.
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Figure 4.32: Comparison of speed-frequency characteristics for the RPEM subject to
different load torques: simulation, feedback prediction and measurement

4.4 Conclusion and perspectives

In this chapter the modeling of the traveling wave motor USR60 has been addressed
on the basis of the experimental investigation of the behavior of the motor in various
working conditions and by observing the electromechanical admittance of the motor
around its fundamental frequency. The equivalent circuit model has been derived by
using the electrical network method together with various performance characteristics
of the motor gathered from the experimental setup. This has made it possible to identify
the electromechanical parameters of the motor. Thereafter, the derived model has been
simulated in a Matlab-Simulink environment by using the power-system toolbox and the
results achieved have been compared to the real performance of the motor and thereby
the validity of the model has been established.
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4.4.1 Advantages and performances

The main advantage of the ECM method is its simplicity compared to the highly de-
manding theoretical background necessary for understanding and modeling the piezo-
electric transducers due to the extremely high nonlinearities of these devices. Conse-
quently, by observing the admittance of any piezoelectric transducer in a narrow range
of frequencies around its fundamental resonance frequency makes it possible to capture
most of its features. This is necessary in order to predict the performance characteristics
of the transducer by a simulated ECM model. Moreover, the computational burden of
the ECM method is extremely low compared to other modeling methods such as FEM
(Finite Element Method) usually used for modeling and analyzing these kinds of de-
vices.

4.4.2 Drawbacks and limitations

There are many drawbacks of using the ECM method for modeling the RPEM, these
are mainly related to its inability to accurately model the mechanical contact between
the stator and the rotor and also the effect of temperature variation during long term
operation on the performance of the motor. The stick-slip behavior at the contact surface
of the driving mechanism has been simplified in the ECM model which hides some of
the nonlinear behaviors of the real RPEM especially in the loaded case.

4.4.3 The alternatives

The results achieved by the ECM method can be used with benefit for modeling the
stator part of the RPEM, whereas for modeling the contact mechanism other more suit-
able methods are necessary in order to take into account the nonlinearities of the real
RPEM. The stick-slip behavior of the contact surface should be modeled by using the
fundamental laws of dynamics and the theory of analytical contact mechanics. The ob-
jective is then to combine the strength of the ECM method with the fundamental laws
of physics in order to overcome this highly demanding problem. The most appropriate
method to be compared and then combined with the ECM modeling seems to be the ana-
lytical method which uses the energy method based on the variational work by applying
Hamilton’s principle.





Chapter 5

Analytical Model

In this chapter the necessary theoretical background of the electromechanical behavior
in the rotary piezoelectric motor is first given, next, the state space model of the com-
plete Rotary Piezo-Electrical Motor (RPEM) is derived by applying the basic laws of
variational work and elasticity theory (Hamilton’s principle). Thereafter, a reduced state
space model is derived on the basis of the special design of the motor of interest (i.e.
two phase symmetrical system). Finally, a further simplified model of the motor is given
within the framework of various assumptions on the behavior of the stator. This makes
it possible to predict the performance of the stator by a single second order system.
Consequently, the complexity of the model is reduced.

5.1 The general framework model of the traveling wave
piezoelectric motor

In this section the general framework mathematical model of the rotary piezoelectric
motor will be introduced. The formulation of the problem is based on the energy method
which uses Hamilton’s principle.

5.1.1 The background of the general framework model derivation

The derivation begins by applying Hamilton’s principle modified for general electrome-
chanical systems (Hagood and Andrew (1995))

Æ

Z t2

t1

L dt+

Z t2

t1

ÆW dt = 0 (5.1)
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whereL is the Lagrangian of the system andÆW is the variational work done by the
external forces. The Lagrangian is given by

L = Ek �Ep +Ee (5.2)

whereEk is the kinetic energy,Ep is the potential energy andEe is the electrical energy
of the piezoelectric transducer. For the ring type piezoelectric stator shown in figure 5.1
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Figure 5.1: The ring type stator
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where the superscript"t" denotes the mathematical transpose.
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Figure 5.2: Section of the ring type stator undergoing bending deformations
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where
:
uo represents the three dimensional centerline velocity, which is the time deriva-

tive of the centerline displacementuo, in ther; � andz directions, see figure 5.2, such
that

:
uo (r; �; z; t) =

d

dt

0
@ uo(r; �; z; t)

vo(r; �; z; t)
wo(r; �; z; t)

1
A (5.6)

and where�s andVs are the mass density and the volume of the substrate respectively,� p
andVp are the mass density and the volume of the piezo plate respectively,S represents
the strain vector,T the stress vector,D is the electrical displacement vector and finally
E is the electrical field vector.

Within the substrate, the strain-stress normal constitutive relation holds true

T = csS (5.7)

wherecs denotes the plane stress stiffness matrix within the substrate.

� Hooke’s law: According to the generalized Hooke’s law applied to an isotropic
elastic thin layer the strain-stress relationship is given by the following stiffness
matrix

c =

0
@ c11 c12 0

c21 c22 0
0 0 c66

1
A (5.8)

where

c11 = c22 =
J

1� �2

c12 = c21 =
�J

1� �2

c66 = G

and whereJ is Young’s modulus,� is the Poisson ratio and finallyG is the shear
modulus.

Within the piezoelectric material, the relevant fundamental constitutive relation is of the
(S,E)-type given by �

D = "S E+ e S

T = �et E+ cE S
(5.9)

where the superscripts"S" and"E" refer to values taken at constant strain and constant
electric field respectively and the superscript"t" denotes the mathematical transpose.



90 Analytical Model

After the assumption that the depolarizing field is oriented parallel to axis 3 and also
that the electrical field is applied parallel to the same axis 3, see section 2.2.2, both the
electrical field and the electrical displacement vectors are reduced to one element�

D = D3

E = E3

i.e.

D1 = D2 = 0 and E1 = E2 = 0

Upon making the plane stress assumptions, the stress and the strain vectors are reduced
to three elements in cylindrical coordinates�

S = [S1 S2 S6]
t

T = [T1 T2 T6]
t

i.e.

S3 = S4 = S5 = 0 and T3 = T4 = T5 = 0

This leads to the following reduced constitutive relations given by0
BB@

D3

T1
T2
T6

1
CCA =

0
BB@

"S33 e31 e31 0
�e31 cE11 cE12 0
�e31 cE12 cE11 0
0 0 0 cE66

1
CCA
0
BB@

E3

S1
S2
S6

1
CCA (5.10)

The strain-displacement relationship

The strain-displacement relations must be developed in cylindrical coordinates. Accord-
ing to Kirchoff’s plate theory, which is valid only for thin plates

� Kirchoff’s statement: The displacement of any point in the plate is a function of
the plate’s

– Centerline displacements

(uo; vo; wo)

– Centerline slope

(
@wo
@r

;
1

r

@wo
@�

)

– and the offset of that point from the centerline (z).



5.1 The general framework model of the traveling wave piezoelectric motor 91

The displacement vector can then be written in cylindrical coordinates as

u(r; �; z; t) =

0
@ u(r; �; z; t)

v(r; �; z; t)
w(r; �; z; t)

1
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@ uo(r; �; z; t)� z @wo(r;�;z;t)

@r

vo(r; �; z; t)� z 1
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1
A (5.11)

Proceeding to the strain-displacement relationship in cylindrical coordinates, the strain
vector is defined by
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0
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r

1
CA (5.12)

The mid-plane deflectionsuo(r; �; t) can be defined in several assumed modes, and are
generally approximated via shape functions, (Hagood and Andrew (1995))

uo(r; �; t) = �m(r; �)�(t) (5.13)

where� is the mechanical modal amplitude vector dependent only on time and�m is the
assumed mechanical mode matrix (called deflection matrix) dependent only onr and�.
It must be emphasized that the solution remains general forn assumed modes.
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A

The relationship between the strainS and the centerline displacement is obtained by
substituting (5.11) in (5.12) and rearranging the terms as follows
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By gathering (5.14), (5.15) and (5.16 ) into a single matrix equation the strain shape
vectorS is then derived from the mid-plane deflectionsu o as follows

S = Lmuo (5.17)

where the (3x3)-matrix differential mapping operatorLm, which is known as the
Lazarus mapping operator, reads

Lm =

0
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furthermore by inserting (5.13) in (5.17) the following relationship between the strain
vectorS and the modal amplitude vector�(t) is obtained

S = Nm�(t) (5.19)

whereNm is the strain matrix function of the coordinates(r; �; z) and given by

Nm = Lm�m (5.20)

The deflection matrix can be written

�m =

0
@ �u

�v

�w

1
A (5.21)

where�u, �v and�w are n-dimensional row vector shape functions. In the remaining
developments, it is assumed that the mid-plane symmetric nature of the piezoceramics
implies that no extension will be present within the stator i.e.�

uo = 0 vo = 0
�u = 0 �v = 0

(5.22)

Thereby the deflection matrix reduces to

�m =

0
@ 0

0

�w

1
A = �w (5.23)
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The electrical field-voltage relationship

The assumed shapes on the electric potential' within the stator is defined by

' = �ev (5.24)

where�e is the electrical shape matrix andv the voltage vector at the electrodes of the
stator. Thereby the electrical field is given by

E = �grad ' = Le' (5.25)

where the operator matrixLe converts the assumed shapes on the potential at the elec-
trodes' to an electric field within the piezoelectric materials. The electric field is
assumed to be constant and present only through the thickness of the piezoceramics.
ConsequentlyLe is defined as a fraction

Le =
1

�p
(5.26)

where�p is the thickness of the piezoceramics. Furthermore, by substituting (5.24) in
(5.25), the electrical field and the applied voltage relationship reads

E = Nev (5.27)

whereNe is the electrical mapping operator given by

Ne = Le�e (5.28)

The work of external forces

The variational work due to the external forces on a piezoelectric body that has a volume
V bounded by a surfaceS is given by

ÆW = ÆWn + ÆWt � ÆWe (5.29)

whereÆWn is the variational normal work,ÆWt is the variational tangential work,ÆWe

is the variational electrical work energy. A sketch of a loaded section of the naked
complete motor is shown in figure 5.3.

� The variational electrical work energy due to the external charges reads

ÆWe = qtÆv (5.30)

whereq is the electrical charge vector on the electrodes of the stator which reads

q =

ZZ
S

� dS (5.31)

and where� is the electrical charge density vector on the surfaceS that bounds
the volume of the piezoelectric body.



94 Analytical Model

z

r

	

Piezoceramic

Substrate

Rotor

Applied

Pressure

Applied

Torque

Polarisation and the Electric

field are parallel to the z axe.

Po E

Friction interface

Traveling wave

Orbital motion of the

contact surface

Rotor
Rotor

Figure 5.3: Section of the loaded ring-type piezoelectric motor where the forced stator
is undergoing bending deformations

� The variational normal work reads

ÆWn = Æ�tF�n (5.32)

whereF�
n

is the resulting normal modal forcing vector at the contact surface be-
tween the stator and the rotor. This force is expressed, see (Hagood and Andrew
(1995)), by

F�n = �
ZZ

�t
wP (r; �; t)rdrd� (5.33)

whereP (r; �; t) is the pressure distribution at the interface contact between the
stator and the rotor.

� The variational tangential work reads

ÆWt = Æ�tF�t (5.34)

whereF�
t

is the resulting tangential modal forcing vector at the contact surface
between the stator and the rotor. This force vector is expressed, see (Hagood and
Andrew (1995)), by

F�t = ��
ZZ

(r�t
v + h

@�t
w

@�
)P (r; �; t) sign(vs; v�)drd�

= ��h
ZZ

@�t
w

@�
P (r; �; t) sign(vs; v�)drd� (5.35)
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whereh is half of the height of the stator,� is the Coulomb’s friction coefficient,
�t
v = 0 is assumed, see (5.22), and finallysign(vs; v�) is the sign function de-

pending on the relative velocity between the rotor and the surface of the stator.
The sign function is given by

sign(vs; v�) =

�
+1 if jvsj > jv�j
�1 if jvsj < jv�j (5.36)

wherevs is the velocity of the particles of the stator, which is a function of radius,
offset distance from the centerlineh and the modal amplitude time derivative and
reads

vs =
�h
r

@�w

@�

d�

dt
(5.37)

andv� is the rotor velocity in circumferential direction, which is a function of the
radius and angular velocity_� and reads

v� = r _� (5.38)

The dynamic of the rotor

The dynamic of the rotor is considered by deriving its equations of motion in vertical
and in spinning directions.

� The equation of the vertical motion reads

Mr
::
z +Dz

:
z= Fint � Fapp (5.39)

wherez is the displacement in the vertical direction,Mr is the mass of the rotor,
Dz is the damping in the vertical direction,Fapp is the applied axial load and
finally Fint is the force at the interface contact given by

Fint =

ZZ
P (r; �; t) rdrd� (5.40)

� The equation of the spinning motion reads

Jr
::

� +Dr

:

�= Tint � Tapp (5.41)

where� is the angular position of the rotor,Jr is the rotor inertia,Dr the damping
in the spinning direction,Tapp is the applied torque and finallyTint is the torque
at the interface contact given by

Tint = �

ZZ
sign(vs; v�)P (r; �; t)r

2drd� (5.42)
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Derivation of the equation of motion of the stator

It must be emphasized thatEk; Ep andEe are linear elements, whereasÆWn , ÆWt and
ÆWe are nonlinear and motion dependent. The equations of motion can be derived by
making the appropriate substitutions forEk; Ep; Ee; ÆWn , ÆWt andÆWe in (5.1) as
shown in the following development

� The kinetic energy: By substituting (5.13) in (5.3) and rearranging the terms

– The kinetic energy within the substrate reads
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whereMs is the modal mass matrix of the substrate

Ms =

Z
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�t
m�s�mdV (5.44)

– The kinetic energy within the piezoelectric plate reads
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whereMp is the modal mass matrix of the piezoelectric plate

Mp =

Z
Vp

�t
m�p�mdV (5.46)

– The total modal mass matrix of the stator

M =Ms +Mp (5.47)

Finally, by substituting (5.43), (5.45) and (5.47) in (5.3) the total kinetic energy
becomes
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� The potential energy: By substituting (5.7 ) and (5.9) in (5.4) the total potential
energy reads

Ep =
1

2

Z
Vs

StcsSdV +
1

2

Z
Vp

St(� etE+ cES)dV (5.49)

and by substituting (5.19) and (5.27) in (5.49) and rearranging the terms
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– The potential energy within the substrate reads

1

2

Z
Vs

StcsSdV =
1

2

Z
Vs

�tNt
mcsNm�dV =

1

2
�tKs� (5.50)

whereKs is the modal stiffness matrix of the substrate

Ks =

Z
Vs

Nt
mcsNmdV (5.51)

– The potential energy due to the electromechanical coupling within the piezo-
electric plate reads

1

2

Z
Vp

StetEdV =
1

2

Z
Vp

�tNt
me

tNevdV =
1

2
�tqv +

1

2
qtv (5.52)

whereq is the modal electromechanical coupling matrix

q =

Z
Vp

Nt
me

tNedV (5.53)

– The pure mechanical potential energy within the piezoelectric plate reads

1

2

Z
Vp

StcESdV =
1

2

Z
Vp

�tNt
mc

ENm�dV =
1

2
�tKp� (5.54)

whereKp is the modal stiffness matrix of the piezoelectric plate

Kp =

Z
Vp

Nt
mc

ENmdV (5.55)

– The total modal stiffness matrix of the stator

K = Ks +Kp (5.56)

Finally, by substituting (5.50), (5.52), (5.54) and (5.56) in (5.49) the total potential
energy becomes

Ep =
1

2
�tKs��1

2
�tqv +

1

2
�tKp� =

1

2
�tK��1

2
�tqv (5.57)

� The electrical energy: By substituting (5.9) in (5.5) the total electrical energy
reads

Ee =
1

2

Z
Vp

Et("SE+ eS)dV (5.58)

and by substituting (5.19) and (5.27) in (5.58) and rearranging the terms
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– The electrical energy due to the electromechanical coupling within the
piezoelectric plate reads

1

2

Z
Vp

EteSdV =
1

2

Z
Vp

vtNt
eeNm�dV =

1

2
vtqt� (5.59)

– The pure electrical energy within the piezoelectric plate reads

1

2

Z
Vp

Et"SEdV =
1

2

Z
Vp

vtNt
e"

SNevdV =
1

2
vtCpv (5.60)

whereCp is the modal piezoelectric capacitance matrix

Cp =

Z
Vp

Nt
e"
SNedV (5.61)

Finally, by substituting (5.59), (5.60) in (5.58) the total electrical energy becomes

Ee =
1

2
vtCpv+

1

2
vtqt� (5.62)

� The Lagrangian: By substituting (5.48), (5.57) and (5.62) in (5.2) the Lagrangian
becomes

L =
1

2

:

�
t

M
:

� �1

2
�tK�+

1

2
�tqv+1

2
vtCpv+

1

2
vtqt� (5.63)

By further observing that the following propriety holds true, due to the fact that
the transpose of a scalar is itself.

�tqv = vtqt� (5.64)

Then the Lagrangian reduces to

L =
1

2

:

�
t

M
:

� �1

2
�tK� + �tqv+1

2
vtCpv (5.65)

� The variation of the Lagrangian: A small variation of (5.65) is given by

ÆL = Æ(
1

2

:

�
t

M
:

�) �Æ(1
2
�tK�) + Æ(�tqv) + Æ(

1

2
vtCpv) (5.66)

Furthermore, the following derivation properties will be used

Æ(
1

2

:

�
t

M
:

�) = Æ
:

�
t

M
:

�=
:

�
t

M Æ
:

� (5.67)
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Æ(
1

2
�tK�) = Æ�t K � = �t K Æ� (5.68)

Æ(�
tqv) = Æ�

t qv + �tq Æv (5.69)

Æ(
1

2
vtCpv) = Ævt Cpv = vtCp Æv (5.70)

By substituting (5.67), (5.68), (5.69) and (5.70) in (5.66) and rearranging the terms
the variation of the Lagrangian becomes

ÆL =
:

�
t

M Æ
:

� �Æ�t K � + Æ�t qv + �tq Æv + vtCp Æv (5.71)

The kinetic energy term will be integrated by part. Thus the following derivation
property will be used

:

�
t

M Æ
:

�= Æ
:

�
t

M
:

�=
d

dt
(Æ�t M

:

�)� Æ�t M
::

� (5.72)

By substituting (5.72) in (5.71) the variation of the Lagrangian reads

ÆL =
d

dt
(Æ�t M

:

�)� Æ�t M
::

� �Æ�t K � + Æ�t qv + �tq Æv + vtCp Æv

After rearranging the terms the variation of the Lagrangian becomes

ÆL =
d

dt
(Æ�t M

:

�)� Æ�t (M
::

� +K � � qv ) + (�t q+ vt Cp)Æv (5.73)

� The variational work: By substituting (5.30), (5.32) and (5.34) in (5.29) the
variational work of the external forces becomes

ÆW = Æ�t F�n + Æ�t F�t � qt Æv (5.74)

� Model derivation: The equation of motion will be derived by substitution of
(5.73) and (5.74) in (5.1), which after rearranging the terms readsZ t2

t1

[
d

dt
(Æ�t M

:

�)� Æ�t (M
::

� +K � � qv �F�n �F�t ) +

(�t q+ vt Cp�qt) Æv] dt = 0 (5.75)

where the derivationsÆ� andÆv are independent of each other and arbitrary quan-
tities. By allowing arbitrary variation for� andv, two matrix equations of motion,
known as actuator equation and sensor equation respectively, are obtained

– The actuator equation

M
::

� +K � � qv �F�n �F�t= 0 (5.76)

– The sensor equation

qt � +Cpv = q (5.77)
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5.1.2 The general compact model representation

It must be noticed that in the non ideal case a damping matrixD must be added in the
actuator equation (5.76) such that

M
::

� +D
:

� +K � � qv � F�n �F�t= 0 (5.78)

The actuator equation of motion of the stator (5.78) together with the rotor model in
vertical (5.39) and spinning (5.41) directions constitute the following general model of
the complete motor 8<

:
M

::

� +D
:

� +K� = qv +F�
n
+F�

t

Jr
::

� +Dr

:

�= Tint � Tapp
Mr

::
z +Dz

:
z= Fint � Fapp

(5.79)

wherev is the applied voltage through electrodes,M is the total mass matrix,D is the
structural damping matrix assumed to be diagonal,K is the total stiffness matrix,q
is the electromechanical coupling matrix. The parameters of the general model of the
stator are recalled for convenience and reads

M =

Z
Vs

�t
m�s�mdV +

Z
Vp

�t
m�p�mdV (5.80)

K =

Z
Vs

Nt
mcsNmdV +

Z
Vp

Nt
mcpNmdV (5.81)

q =

Z
Vp

Nt
me

tNedV (5.82)

wherecp = cE denotes the plane stress stiffness matrix within the piezo plate,Nm is
the strain shape matrix derived from the deflection shape matrix�m by using Lazarus
mapping operator matrixLm, Ne is the electrical field shape matrix derived from the
electrical potential shape matrix�e by using the electrical mapping operator matrix
Le, e is the dielectric constant matrix,"S is the clamped dielectric constant matrix.
The matricescE , e and"S are respectively expressed in terms of the more commonly
available compliance matrixsE , dielectric constant matrixd and free dielectric constant
matrix"T as 8<

:
cE = (sE)�1

e = dcE

"S = "T � dcEdt
(5.83)
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Within the framework of the previously made assumptions, see section 2.2.2, the differ-
ent elements in (5.83) reduce to

d = [d31 d31 0]

cE =

0
@ sE11 sE12 0

sE12 sE11 0
0 0 sE66

1
A
�1

=

0
@ cE11 cE12 0

cE12 cE11 0
0 0 cE66

1
A

e = [e31 e31 0]

"S = "S33 and "T = "T33

where

cE11 =
sE11

(sE11)
2 � (sE12)

2
(5.84)

cE12 =
�sE12

(sE11)
2 � (sE12)

2
(5.85)

cE66 =
1

sE66
(5.86)

e31 = d31(c
E
11 + cE12) (5.87)

"S33 = "T33 � 2d231(c
E
11 + cE12) (5.88)

5.2 The state space model

Some necessary assumptions on the behavior of the stator will be stated in section 5.2.1.
Then the applied voltage and the electric shape functions for the nine wave piezoelectric
motor will be explicitly defined. Thereafter, in the framework of the made assumptions
it will be shown that the parametersM, K andq reduce to diagonal matrices. Finally,
a state space representation for the complete model of the motor will be given.

5.2.1 Assumptions

It is assumed that only two orthogonal mechanical modes�w1
and�w2

can be excited
within the piezoceramic plate. These modes reads

�w1
= Rr cos k� (5.89)

�w2
= Rr sink� (5.90)
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Their temporal modal amplitudes, which are also orthogonal, are denoted by� 1 and�2
respectively and reads

�1(t) = A cos!t (5.91)

�2(t) = A sin!t (5.92)

The superposition of their corresponding standing waves results in a traveling wave at
the surface of the stator expressed by

w(r; �; t) = �w1
�1(t) + �w2

�2(t)

= RrA cos(!t� k�) (5.93)

where

A =
q
�21 + �22 (5.94)

Rr = (
r � a

b� a
)
 (5.95)

k =
2�Ro

�
(5.96)

Ro =
b� a

2
(5.97)

whereA is the maximum temporal amplitude of the traveling wave,! is the angular
frequency,Rr is the shape of the traveling wave in radial direction,a and b are the
inner and outer radius of the annular plate of the stator respectively and
 is a constant
depending on the modal shape of the deformation of the stator in the radial direction,k
is the wave number which is also the number of nodal diameters,� is the wave length,
Ro is the middle radius of the annular plate where the contact interface between the
stator and the rotor is mainly concentrated. The geometrical parameters of the stator are
shown in figure 5.4

�p

a

b

Ro

2h

r

	

z

Substrate

Piezoceramic

Figure 5.4: The geometry of the stator

Under these assumptions the mechanical mode matrix reduces to

�m =

0
@ 0 0

0 0
�w1

�w2

1
A = �w (5.98)
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5.2.2 The applied voltage

The rotary PEM which is considered in this thesis is a nine wave two phase motor, where
the annular plate of the stator is divided into three sections see figure 5.5. One section is
the phaseA supplied by voltageVA, the second is phaseB supplied by voltageVB and the
third is phaseC connected to the ground. It must be emphasized that sectionC is made
of two separated parts, a small part of length (�=4) used as a feedback electrode and a
large part of length (3�=4) directly connected to the ground. The electrical potential' at
the free surface of the nine wave piezoceramic ring is the product of the electrical shape
functions and the applied voltage, which can be written in vector notation as follows

' = �ev = ( �A(�) �B(�))

�
VA(t)
VB(t)

�
(5.99)

where the components of the applied voltagev are explicitly given by�
VA(t) = V̂ cos!t

VB(t) = V̂ sin!t
(5.100)

and the electrical shape functions for the nine wave motor are explicitly defined by

�A(�) =

�
1 if �

18 + k� < � < 3�
18 + k�

�1 if 3�
18 + k� < � < 5�

18 + k�

�B(�) =

�
1 if � + k� < � < 10�

9 + k�
�1 if 10�

9 + k� < � < 11�
9 + k�

for k = 0; ::; 4:

(5.101)

Figure 5.5: The nine wave piezoceramic ring
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5.2.3 Calculation and diagonalization of the modal mass matrix

The modal mass matrixM of any vibrating plate of volume mass density� and total
volumeVt is a function of the mechanical deflection matrix�m and reads

M =

Z
Vt

�t
m��mdV (5.102)

Consequently, the total modal mass matrixM of the piezoelectric stator is constituted
by the modal mass matrixMs of the substrate and the modal mass matrixMp of the
piezoelectric plate, such that

M = Ms +Mp

= �s

Z
Vs

�t
m�mdV + �p

Z
Vp

�t
m�mdV

where�s andVs are the mass density and the volume of the substrate respectively,� p
andVp are the mass density and the volume of the piezo plate respectively, and where
by using (5.98), (5.89) and (5.90) the following reads

�t
m�m =

�
�2w1

�w1
�w2

�w1
�w2

�2w2

�

=

�
R2
r cos

2 k� R2
r cos k� sin k�

R2
r cos k� sin k� R2

r sin
2 k�

�

and finally the total modal mass matrix is given by

M = �s

Z 2h

�p

�
m11 m12

m21 m22

�
dz + �p

Z �p

0

�
m11 m12

m21 m22

�
dz (5.103)

where�p is the thickness of the piezoelectric plate and2h � �p is the thickness of the
substrate and where themij components are given by8>><

>>:
m11 =

RR
R2
r cos

2 k� rdrd�
m12 =

RR
R2
r cos k� sin k� rdrd�

m21 =
RR

R2
r cos k� sin k� rdrd�

m22 =
RR

R2
r sin

2 k� rdrd�

(5.104)

By further calculating the integrals in (5.104) , over the surface of contact between the
stator and the rotor, the following is obtained�

m11 = m22 = mz

m12 = m21 = 0

Finally, the modal mass matrix is diagonalized and reads

M =

�
M 0
0 M

�
(5.105)
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whereM is the modal mass of the stator.

M = �s

Z 2h

�p

mzdz + �p

Z �p

0

mzdz (5.106)

5.2.4 Calculation and diagonalization of the modal stiffness matrix

The modal stiffness matrixK of any vibrating plate of volume stiffness matrixc and
total volumeVt is a function of the strain shape matrixNm and reads

K =

Z
Vt

Nt
mcNmdV (5.107)

where the volume stiffness matrixc of the elastic plate is given in (5.8). The strain shape
matrixNm is derived from the deflection shape matrix�m by using Lazarus mapping
operator matrixLm given in (5.18) such that

Nm = Lm�m =

0
B@

@
@r

0 � z@2

@r2

1
r

@
r@�

� z@
r@r

� z@2

r2@�2

@
r@�

@
@r
� 1

r
� 2z@2

r@r@�
+ 2z@

r2@�

1
CA
0
@ 0 0

0 0
�w1

�w2

1
A

=

0
B@ � z@2(Rr cos k�)

@r2
� z@2(Rr sin k�)

@r2

� z@(Rr cos k�)
r@r

� z@2(Rr cos k�)
r2@�2

� z@(Rr sin k�)
r@r

� z@2(Rr sin k�)
r2@�2

� 2z@2(Rr cos k�)
r@r@�

+ 2z@(Rr cos k�)
r2@�

� 2z@2(Rr sin k�)
r@r@�

+ 2z@(Rr sin k�)
r2@�

1
CA

where it is assumed in section 5.2.1 thatRr =
�
r�a
b�a

�

is the shape of the traveling

wave in radial direction, with
 a rational number. The first and the second derivative of
Rr are given below (

@Rr

@r
= 


r�aRr

@2Rr

@r2
= 
(
�1)

(r�a)2 Rr
(5.108)

which leads to the following assumed strain shape matrix

Nm =

0
B@ � z
(
�1)

(r�a)2 Rr cos k� � z
(
�1)
(r�a)2 Rr sin k�

� z
r
[ 

r�a � k2

r
]Rr cos k� � z

r
[ 

r�a � k2

r
]Rr sin k�

2zk
r
[ 

r�a � 1

r
]Rr sin k� � 2zk

r
[ 

r�a � 1

r
]Rr cos k�

1
CA =

�
I J

�
(5.109)
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whereI andJ are vectors given by

I =

0
@ i1

i2
i3

1
A =

0
B@ � z
(
�1)

(r�a)2 Rr cos k�

� z
r
[ 

r�a � k2

r
]Rr cos k�

2zk
r
[ 

r�a � 1

r
]Rr sin k�

1
CA (5.110)

J =

0
@ j1

j2
j3

1
A =

0
B@ � z
(
�1)

(r�a)2 Rr sin k�

� z
r
[ 

r�a � k2

r
]Rr sink�

� 2zk
r
[ 

r�a � 1

r
]Rr cos k�

1
CA (5.111)

The stiffness matrix of a thin layer of the annular plate will be derived as follow

Nt
mcNm =

�
i1 i2 i3
j1 j2 j3

�0@ c11 c12 0
c12 c11 0
0 0 c66

1
A
0
@ i1 j1

i2 j2
i3 j3

1
A

=

�
n11 n12
n21 n22

�
(5.112)

where 8>><
>>:

n11 = (i21 + i22)c11 + 2i1i2c12 + i23c66
n22 = (j21 + j22)c11 + 2j1j2c12 + j23c66

n12 = (i1j1 + i2j2)c11 + (i1j2 + i2j1)c12 + i3j3c66
n12 = n21

(5.113)

and where by using the following functions8>><
>>:

�1(r; z) = [ z
2
2(
�1)2
(r�a)4 + z2

r2
( 

r�a � k2

r
)2]R2

r

�2(r; z) = 2 z
2
(
�1)
r(r�a)2 [ 


r�a � k2

r
]R2

r

�3(r; z) =
4z2k2

r2
[ 

r�a � 1

r
]2R2

r

hence, the coefficients in relation (5.113) are given by8>>>>>>>>>>>><
>>>>>>>>>>>>:

i21 + i22 = �1(r; z) cos
2 k�

2i1i2 = �2(r; z) cos
2 k�

i23 = �3(r; z) sin
2 k�

j21 + j22 = �1(r; z) sin
2 k�

2j1j2 = �2(r; z) sin
2 k�

j23 = �3(r; z) cos
2 k�

i1j1 + i2j2 = �1(r; z) sink� cos k�
i1j2 + i2j1 = �2(r; z) sink� cos k�

i3j3 = �3(r; z) sin k� cos k�
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which leads to8>><
>>:

n11 = [�1(r; z)c11 +�2(r; z)c12] cos
2 k� +�3(r; z)c66 sin

2 k�
n22 = [�1(r; z)c11 +�2(r; z)c12] sin

2 k� +�3(r; z)c66 cos
2 k�

n12 = [�1(r; z)c11 +�2(r; z)c12 +�3(r; z)c66] sin k� cos k�
n12 = n21

By using the following periodic properties of the cosine basis in calculating (5.107) and
(5.112) ( R 2�

0 cos2k�d� =
R 2�
0 sin2k�d�R 2�

0 sink� cos k�d� = 0

the following stiffness matrix is derived

K =

Z
Vt

�
n11 n12
n21 n22

�
dV =

�
Ki 0
0 Ki

�
(5.114)

where � R
Vt
n11dV =

R
Vt
n22dV = KiR

Vt
n12dV =

R
Vt
n21dV = 0

Thereby, the diagonalization of the stiffness matrix of an elastic plate is achieved. Con-
sequently, the total stiffness matrix of the stator which is the summation of the stiffness
matrix of the piezoelectric plate and the stiffness matrix of the substrate such that

K = Kp +Ks (5.115)

=

Z
Vp

Nt
mcpNmdV +

Z
Vs

Nt
mcsNmdV

leads to the following diagonal form

K =

�
Ko 0
0 Ko

�
(5.116)

where

Ko = Kp +Ks

is the total modal stiffness of the stator, which is the summation of the modal stiffness
of the piezo plate and the modal stiffness of the substrate.
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5.2.5 Calculation and diagonalization of the electromechanical cou-
pling matrix

The electromechanical coupling matrixq of any vibrating piezoelectric plate of dielec-
tric constant matrixe and volumeVp is a function of the electrical field shape matrixNe

and of the strain shape matrixNm and reads

q =

Z
Vp

Nt
me

tNedV (5.117)

Within the framework of the assumptions made in section 2.2.2 the dielectric constant
matrixe reduces to the following vector

et =
�
e31 e31 0

�t
(5.118)

where e31 is the dielectric constant defined in (5.87). The electrical field shape matrix
is given in (5.28) and reads

Ne = Le�e =
1

�p

�
�A �B

�
(5.119)

whereLe = 1
�p

is the electrical mapping operator,�p is the thickness of the piezo plate
and finally�A and�B are the assumed shapes of the electric potential within the stator
defined in (5.101).

Moreover by using (5.119), (5.118) and (5.109) the following matrix equation

Nt
me

tNe =
e31
�p

�
(i1 + i2)�A (i1 + i2)�B
(j1 + j2)�A (j1 + j2)�B

�

leads to the following matrix integral equation

q =
e31
�p

Z
Vp

�
(i1 + i2)�A (i1 + i2)�B
(j1 + j2)�A (j1 + j2)�B

�
dV

=

�
�11 �12
�21 �22

�
(5.120)

By using the following function in (5.120)

�(r; z) = �[z
(
 � 1)

(r � a)2
+
z

r
(




r � a
� k2

r
)]Rr

then, the following writes�
i1 + i2 = �(r; z) cos k�
j1 + j2 = �(r; z) sin k�

(5.121)
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which leads to the following components of the electromechanical coupling matrix8>>><
>>>:

�11 =
e31
�p

R
Vp
�(r; z) cos k� �AdV

�12 =
e31
�p

R
Vp
�(r; z) cos k� �BdV

�21 =
e31
�p

R
Vp
�(r; z) sink� �AdV

�22 =
e31
�p

R
Vp
�(r; z) sin k� �BdV

(5.122)

Furthermore, by using the potential functions defined in (5.101) and by proceeding to
further calculations of the integrals in (5.122), over the total volume of the piezoelectric
plate, the following is obtained�

�11 = �22 = �
�12 = �21 = 0

Finally, the electromechanical coupling matrix is diagonalized and reads

q =

�
� 0
0 �

�
(5.123)

where� is the modal electromechanical force factor.

5.2.6 The state space representation

After substituting (5.105), (5.116) and (5.123) in (5.79) and rearranging the terms, the
following general model of the complete motor is obtained8>>><

>>>:
M

::

�1 +Do

:

�1 +Ko�1 = �VA + Fn1 + Ft1

M
::

�2 +Do

:

�2 +Ko�2 = �VB + Fn2 + Ft2
Jr

::

� +Dr

:

�= Tint � Tapp
Mr

::
z +Dz

:
z= Fint � Fapp

(5.124)

where the assumed diagonal form of the damping matrixD, the components of the
normal force vectorF�n and the components of the tangential force vectorF �t , which are
respectively given by

D =

� Do 0
0 Do

�
(5.125)

F�n =

�
Fn1
Fn2

�
(5.126)

F�t =

�
Ft1
Ft2

�
(5.127)

are used.
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This analytical model is the state space description of the equation of motion of the
motor given by

:
x= A�x+B�u (5.128)

where the total state vector is composed by the state components of the stator and the
rotor respectively and is given by

x =
h
�1 �2

:

�1
:

�2 �
:

� z
:
z
it

(5.129)

and where the input components are

u =

0
BB@

�VA + Fn1 + Ft1
�VB + Fn2 + Ft2
Tint � Tapp
Fint � Fapp

1
CCA (5.130)

and finally the transfer matrices

A� =

0
BBBBBBBBBB@

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
�Ko

M
0 �Do

M
0 0 0 0 0

0 �Ko

M
0 �Do

M
0 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 �Dr

Jr
0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 �Dz

Mr

1
CCCCCCCCCCA

B� =

0
BBBBBBBBBB@

0 0 0 0
0 0 0 0
�
M

0 0 0
0 �

M
0 0

0 0 0 0
0 0 1

Jr
0

0 0 0 0
0 0 0 1

Mr

1
CCCCCCCCCCA

5.3 The explicit state space model

In this section the pressure distribution at the stator-rotor interface contact will first be
defined. Thereafter, the nonlinear elements in the state space model will be derived
explicitly as a function of the excited modes and load characteristics. Finally, an explicit
state space representation of the complete motor will be given.
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5.3.1 The pressure distribution at the stator-rotor interface contact

It is assumed that the stator is a rigid body along the contact interface, whereas the rotor
can be modeled as a linear spring (Hagood and Andrew (1995)). The overlap between
the stator and the rotor defines the compression of the spring, thereby the pressure dis-
tribution that acts on the stator at the interface contact with the rotor is given by

P (r; �; t) =

�
{rg(r; �; z; t) if g(r; �; z; t) > 0

0 if g(r; �; z; t) < 0
(5.131)

where

g(r; �; z; t) = w(r; �; t) + h� z(t)

= RrA cos(!t� k�) + h� z(t) (5.132)

and where{r is the rotor stiffness, which is essentially a stiffness per unit area of contact.
A sketch of the contact mechanism is shown in figure 5.6 wherew(r; �; t), h andz(t)
can be noticed.

h

[ (r, t)+h-z(t)]w 	


z(t)

w(r, t)	


w,z

v,	
u,r

Deformed
centerline

Undeformed
centerline

Substrate

Piezoceramic

Rotor

Stator

� stator

� rotor

.

P(r, t)	


Figure 5.6: Section of the loaded stator undergoing bending deformations

The pressure distribution is a function of time because it travels along with the wave
crests at the speed of the traveling wave, therefore it is more appropriate to introduce
a wave oriented coordinate system rotating with the traveling wave in which to write
the equations describing the mutual interaction between the stator and the rotor at the
interface contact, see figure 5.7 wherex is used instead of�.
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h
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Figure 5.7: Section of the loaded stator undergoing bending deformations in the moving
coordinate system

The pressure in this coordinate system along the contact region�x 0 6 x 6 x0 over one
wave length becomes

P (x) = {r[w(x) � w(xo)]

= {rRrA(cos kx� cos kx0) (5.133)

where 8<
:

w(x) = w(r; �; t) = RrA cos kx
w(xo) = h� z(t) = RrA cos kx0

kx = !t� k�

which leads to the following slip point expression of the half width of the contact zone

x0 =
1

k
arccos(

h� z(t)

RrA
) (5.134)
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5.3.2 The explicit normal modal forcing vector

The normal modal forcing vectorF�n is the frictional pressureP (r; �; t) at the interface
contact weighted by the vertical deflection vector�w and integrated over the whole area
of contact, see (5.33), and reads

F�n = �
ZZ

�t
wP (r; �; t)rdrd�

=

� � RR Rr cos k� P (r; �; t)rdrd�
� RR Rr sin k� P (r; �; t) rdrd�

�

=

�
Fn1
Fn2

�
(5.135)

where (5.98),(5.89) and (5.90) are used. By inserting (5.132) in (5.135) and using the
following variable changes

kx = !t� k� (5.136)

and thereafter, by using (5.91), (5.92), (5.94), (5.133) and the following approximating
formula

� =

Z R0+
�
2

R0� �
2

R2
rArdr � R2

rAR0� (5.137)

lead to �
Fn1 = �{r�k

R x0
�x0 cosk�(coskx� coskx0)dx

Fn2 = �{r�k
R x0
�x0 sink�(coskx� coskx0)dx

(5.138)

For the sake of easing the remaining developments, the following notations will be used

l1(x) = sin k� (cos kx� cos kx0)

= 
1(x) sin!t� 
2(x) cos!t (5.139)

l2(x) = cos k� (cos kx� cos kx0)

= 
1(x) cos!t+ 
2(x) sin!t (5.140)

where (5.136) and the following trigonometric relation is used�
sink� = cos kx sin!t� sinkx cos!t
cosk� = cos kx cos!t+ sinkx sin!t

(5.141)

and where the functions
1(x) and
2(x) are given by�

1(x) = cos2 kx� cos kx0 cos kx


2(x) = cos kx sin kx� cos kx0 sin kx
(5.142)
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This leads to rewrite (5.138) as follows�
Fn1 = �{r�k

R x0
�x0 l2(x)dx

Fn2 = �{r�k
R x0
�x0 l1(x)dx

(5.143)

and by substituting (5.139) and (5.140) in (5.143) the following is obtained�
Fn1 = �{r�k[cos!t

R x0
�x0 
1(x)dx + sin!t

R x0
�x0 
2(x)dx]

Fn2 = �{r�k[sin!t
R x0
�x0 
1(x)dx � cos!t

R x0
�x0 
2(x)dx]

(5.144)

By observing that Z x0

�x0

2(x)dx = 0

because the integrated function is odd over a symmetrical interval. This leads to rewrite
(5.144) as follows �

Fn1 = �{r�k cos!t
R x0
�x0 
1(x)dx

Fn2 = �{r�k sin!t
R x0
�x0 
1(x)dx

(5.145)

Thereby, after calculating and rearranging the terms the following is obtained�
Fn1 = �fn (xo)�1(t)
Fn2 = �fn (xo)�2(t) (5.146)

where

fn = R2
rR0"{r (5.147)

and

 (xo) = k

Z x0

�x0

1(x)dx

= kx0 � sin 2kx0
2

(5.148)

5.3.3 The explicit tangential modal forcing vector

The tangential modal forcing vectorF�t is the frictional pressureP (r; �; t) at the inter-
face contact weighted by respectively the tangent to the vertical deflection vector�w in
circumferential direction, the sign of the relative velocity� v between the particles of the
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stator and the rotor and the Coulomb’s friction coefficient� and finally integrated over
the whole area of contact, see (5.35). This forcing vector reads

F�t = ��
ZZ

h
@�t

w

@�
P (r; �; t) �vdrd�

=

�
�hk

RR
Rr sin k� P (r; �; t) �vdrd�

��hk RR Rr cos k� P (r; �; t) �vdrd�

�

=

�
Ft1
Ft2

�
(5.149)

where (5.98),(5.89) and (5.90) are used. The coefficient� is assumed to model only the
slip effects of Coulomb’s friction law and�v is the sign function given by

�v = sign(vs; v�) =

�
+1 if jvsj > jv�j
�1 if jvsj < jv�j (5.150)

wherevs is the velocity of the particles of the stator andv� is the rotor velocity in
circumferential direction. By using (5.91), (5.92), (5.94), (5.89), (5.90), (5.133), (5.136)
and the following approximating formula

�� =
Z R0+

�
2

R0� �
2

R2
rAdr � R2

rA� (5.151)

lead to the following tangential forcing vector given by�
Ft1
Ft2

�
= f�t

�
�1
��2

�
(5.152)

wheref�t is given by

f�t = �hk��{r (5.153)

and where�1 and�2 are given by�
�1 = k

R x0
�x0 �vsink� (cos kx� cos kx0) dx

�2 = k
R x0
�x0 �v cos k� (cos kx� cos kx0) dx

In the new coordinate systems the state where

jvsj = jv�j (5.154)

is defined by the stick pointxs which leads to the following

�1 = 2k

�Z xs

0

l1(x)dx �
Z x0

xs

l1(x)dx

�
(5.155)

�2 = 2k

�Z xs

0

l2(x)dx �
Z x0

xs

l2(x)dx

�
(5.156)
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where (5.139) and (5.140) are used. By using (5.38) and (5.37) the relation in (5.154)
becomesRo

_� = khRrR
�1
o A! cos kx, thereby, the stick point is derived and reads

xs =
1

k
arccos(

R2
o

:

�

khRrA!
) (5.157)

The equations (5.155) and (5.156) are further written as

�1 = 2k [L1(x) sin!t� L2(x) cos!t] (5.158)

�2 = 2k [L1(x) sin!t+ L2(x) cos!t] (5.159)

where �
L1(x) =

R xs
0

1(x)dx �

R x0
xs

1(x)dx

L2(x) =
R xs
0

2(x)dx �

R x0
xs

2(x)dx

(5.160)

Furthermore, by using (5.142) the following indefinite integrals

�1(x) = k

Z

1(x) dx (5.161)

=
kx

2
+

sin 2kx

4
� cos kx0 sin kx

�2(x) = k

Z

2(x) dx (5.162)

=
sin2 kx

2
+ cos kx0 cos kx

will be used in order to ease the writing of the remaining expressions and thus

�1 = [�v�1(x)]
x0
�x0 sin!t� [�v�2(x)]

x0
�x0 cos!t

= G1(x0; xs) sin!t�G2(x0; xs) cos!t (5.163)

�2 = [�v�1(x)]
x0
�x0 cos!t+ [�v�2(x)]

x0
�x0 sin!t

= G1(x0; xs) cos!t+G2(x0; xs) sin!t (5.164)

where 






�1(0) = 0 and�2(0) = 1

G1(x0; xs) = 2 (2�1(xs)��1(x0))
G2(x0; xs) = 2 (2�2(xs)��2(x0)� 1)

which finally, by substituting (5.163) and (5.164) in (5.152), leads to�
Ft1 = ft [G1(x0; xs)�2(t)�G2(x0; xs)�1(t)]
Ft2 = �ft [G1(x0; xs)�1(t) +G2(x0; xs)�2(t)]

(5.165)

where

ft = �hkR2
r�{r (5.166)



5.3 The explicit state space model 117

5.3.4 The explicit interface force

The force at the interface contactFint is the frictional pressureP (r; �; t) at the interface
integrated over the whole area of contact and reads

Fint =

ZZ
P (r; �; t) rdrd� (5.167)

= �0{r k

Z x0

�x0
(cos kx� cos kx0) dx

where (5.133) , (5.136) and the following approximation formulae

�0 =

Z R0+
�
2

R0� �
2

RrArdr � RrAR0� (5.168)

are used. By further using

�(x) = k

Z
(cos kx� cos kx0)dx

= sin kx� kx cos kx0 (5.169)

this leads to

Fint = fi�(x0) (5.170)

where

fi = 2�0{r = 2RrAR0�{r (5.171)

5.3.5 The explicit interface torque

The torqueTint at the interface contact is the frictional pressureP (r; �; t) at the interface
weighted by the radiusr and integrated over the whole area of contact and reads

Tint = �

ZZ
�vP (r; �; t)r

2drd� (5.172)

= ���0{r k
Z x0

�x0
�v(cos kx� cos kx0) dx

= 2���0{r
�
[�(x)]

xs
0 + [��(x)]x0xs

�
= 2���0{r (2�(xs)��(x0))

where (5.133) , (5.136), (5.150), (5.169) and the following capproximation formulae

��0 =
Z R0+

�
2

R0� �
2

RrAr
2dr � RrAR

2
0� (5.173)
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are used. For clarity reasons this is further written

Tint = �i�(x0; xs) (5.174)

where �
�i = 2���0{r = 2�RrAR

2
0�{r

�(x0; xs) = 2�(xs)��(x0)

5.3.6 The explicit state space representation

The explicit model representing the complete motor is derived by substituting (5.146),
(5.165), (5.170) and (5.174) in (5.124) and reads8>>><
>>>:

M
::

�1 +Do

:

�1 +Ko�1 = �VA � [fn (x0) + ftG2(x0; xs)]�1 + ftG1(x0; xs)�2

M
::

�2 +Do

:

�2 +Ko�2 = �VB � [fn (x0) + ftG2(x0; xs)]�2 � ftG1(x0; xs)�1
Jr

::

� +Dr

:

�= �i�(x0; xs)� Tapp
Mr

::
z +Dz

:
z= fi�(x0)� Fapp

(5.175)

Thereafter, by rearranging the terms the following compact explicit model is obtained8>>><
>>>:

M
::

�1 +Do

:

�1 +Kv�1 = �VA +D��2
M

::

�2 +Do

:

�2 +Kv�2 = �VB �D��1
Jr

::

� +Dr

:

�= �i�(x0; xs)� Tapp
Mr

::
z +Dz

:
z= fi�(x0)� Fapp

(5.176)

where the parameters of the state space model are summarized in table 5.1.

The derived model (5.176) can be expressed in state space model representation by
:
x= A�x+B�u (5.177)

The state vector is given by

x =
h
�1 �2

:

�1
:

�2 �
:

� z
:
z
it

(5.178)

The transfer matricesA�,B� are respectively given by

A� =

0
BBBBBBBBBB@

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
�Kv

M
D�
M

�Do

M
0 0 0 0 0

�D�
M

�Kv

M
0 �Do

M
0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 �Dr

Jr
0 0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 �Dz

Mr

1
CCCCCCCCCCA
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B� =

0
BBBBBBBBBB@

0 0 0 0
0 0 0 0
�
M

0 0 0
0 �

M
0 0

0 0 0 0
0 0 1

Jr
0

0 0 0 0
0 0 0 1

Mr

1
CCCCCCCCCCA

The input vectoru is given by

u =

0
BB@

VA
VB
�i�(x0; xs)� Tapp
fi�(x0)� Fapp

1
CCA

Finally, the explicit state space model and its parameters are recalled in table 5.1.

M
::

�1 +Do

:

�1 +Kv�1 = �VA +D��2
M

::

�2 +Do

:

�2 +Kv�2 = �VB �D��1
Jr

::

� +Dr

:

�= �i�(x0; xs)� Tapp
Mr

::
z +Dz

:
z= fi�(x0)� Fapp

A =
p
�21 + �22

x0 =
1
k
arccos( h�z

RrA
)

xs =
1
k
arccos(

R2

o

:

�
khRrA!

)

Kv = Ko +K(x0; xs)
D� = ftG1(x0; xs)
K(x0; xs) = fn (x0) + ftG2(x0; xs)
ft = �hkR2

r�{r , fn = R2
rR0�{r

 (xo) = kx0 � sin 2kx0
2

G1(x0; xs) = 2 (2�1(xs)��1(x0))
G2(x0; xs) = 2 (2�2(xs)��2(x0)� 1)
�1(x) =

kx
2 + sin 2kx

4 � cos kx0 sinkx

�2(x) =
sin2 kx

2 + cos kx0 cos kx
�(x0; xs) = 2�(xs)��(x0)
�(xs) = sinkxs � kxs cos kxo
�(x0) = sin kx0 � kx0 cos kx0
�i = 2�RrAR

2
0�{r, fi = 2RrAR0�{r

Kr = {rRo� , ��0 � RrAR
2
0�

Table 5.1: Summary of the explicit state space model and its parameters
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5.4 The simplified model

Due to the symmetrical nature of the stator design the dynamics of the rotary PEM can
be captured in a lower order model as stated below

5.4.1 The simplified model of the stator

It is possible to reduce the above state space model (5.176) by decoupling the modes and
thereby obtain a separate model for each phase of the stator. Under the assumption that
only two orthogonal temporal modes�1(t) = A cos!t and�2(t) = A sin!t are excited
within the body of the stator the following relation can be used( :

�1 (t) = �!�2(t)
:

�2 (t) = !�1(t)
(5.179)

after substitution of (5.179) in (5.176) and rearranging the terms the model of the stator
becomes (

M
::

�1 +Dv(x0; xs)
:

�1 +Kv(x0; xs)�1 = � VA

M
::

�2 +Dv(x0; xs)
:

�2 +Kv(x0; xs)�2 = � VB
(5.180)

where �
Dv(x0; xs) = Do +

D�(x0;xs)
!

Kv(x0; xs) = Ko +K(x0; xs)
(5.181)

The above relation (5.180) suggests that the behavior of the complete stator can be pre-
dicted by a single second order system with varying parameters. These parameters are
functions of the external conditions which are the pressure distribution at the contact
surface between the stator and the rotor and the load torque at the rotating shaft of the
motor. Consequently, the final model of the stator is given by

M
::

�i +Dv(x0; xs)
:

�i +Kv(x0; xs)�i = � Vi (5.182)

whereM (constant) is the modal mass,Dv(x0; xs) (varying) is the damping of the
modal amplitude in forced conditions,Kv(x0; xs) (varying) is the resulting stiffness of
the forced stator,� (constant) is the electromechanical modal force factor and finally the
voltage supplyVi and the modal amplitude�i are phase dependent.

5.4.2 Vertical motion model

The vertical motion of the rotor is given by the following second order system

Mr
::
z +Dz

:
z= Fint � Fapp (5.183)
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whereFapp is the applied force andFint is the interface force at the contact surface
given by

Fint =

ZZ
P (r; �; t)dS

= {r

ZZ
(w(r; �; t) + h� z(t))rdrd�

For simplicity reasons the following notations will be used






Kr = {rRo� ; K

�
r = 2�Kr

z = z � h

F (x0) = Kr

R 2�
0

w(r; �; t)d�

which leads to the following equation of motion in vertical direction

Mr

::
z +Dz

:
z +K�

rz = F (x0)� Fapp (5.184)

where

F (x0) = KrRrA(k

Z x0

�x0
cos kx dx)

= 2KrRrA sinkx0 (5.185)

Finally the slip point coordinate of the half width of the contact zone is given by

x0 =
1

k
arccos(

z

RrA
) (5.186)

5.4.3 Spinning motion model

The spinning motion of the rotor is given by the following first order system

Jr
:


 +Dr
 = T (x0; xs)� Tapp (5.187)

whereTapp is the applied torque andT (x0; xs) is the interface torque at the contact
surface given by

T (x0; xs) = �

ZZ
r�vP (r; �; t)dS

= 2���0{r (2�(xs)� �(x0)) (5.188)

where (5.133), (5.136), (5.150), (5.173) and (5.169) are used. The stick point condition
is achieved when the following equality is fulfilledjvsj = jv�j, wherevs is the velocity
of the particles of the stator at the interface contact given byv s = khRrR

�1
o A! cos kx

andv� is the rotary velocity of the rotor given byv� = Ro
. Thereby, the stick point is
given by

xs =
1

k
arccos(

R2
o


khRrA!
) (5.189)



122 Analytical Model

5.4.4 The complete simplified model

The following table gives the simplified analytical model to be implemented in the
Matlab-Simulink environment.

M
::

�1 +Dv(x0; xs)
:

�1 +Kv(x0; xs)�1 = � V̂ cos!t

M
::

�2 +Dv(x0; xs)
:

�2 +Kv(x0; xs)�2 = � V̂ sin!t
Mr

::
z +Dz

:
z +K�

rz = F (x0)� Fapp
Jr

:


 +Dr
 = T (x0; xs)� Tapp
A =

p
�21 + �22

x0 =
1
k
arccos( z

RrA
)

xs =
1
k
arccos(

R2

o

khRrA!

)

Dv(x0; xs) = Do +
D�(x0;xs)

!

Kv(x0; xs) = Ko +K(x0; xs)
D�(x0; xs) = ftG1(x0; xs)
K(x0; xs) = fn (x0) + ftG2(x0; xs)
ft = �hkR2

r�{r
fn = R2

rR0�{r
 (xo) = kx0 � sin 2kx0

2
G1(x0; xs) = 2 (2�1(xs)��1(x0))
G2(x0; xs) = 2 (2�2(xs)��2(x0)� 1)
�1(x) =

kx
2 + sin 2kx

4 � cos kx0 sin kx

�2(x) =
sin2 kx

2 + cos kx0 cos kx
F (x0) = 2KrRrA sin kx0
T (x0; xs) = 2���0{r (2�(xs)��(x0))
�(x) = sin kx� kx cos kx0
Kr = {rRo�
K�
r = 2�Kr

��0 � RrAR
2
0�

Table 5.2: Summary of the complete simplified analytical model

5.4.5 Prerequisites for simulation

The following table summarizes the parameters that must be known beforehand in order
to perform the simulation successfully. These parameters are given in appendix C for
the Shinsei motor USR60.
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sE11; s
E
12; s

E
66 : Compliances at constant electrical field

d31 : Dielectrical constant
"T33 : Electrical permitivity at constant stress
�s : Mass density of the substrate
�p : Mass density of the piezo plate
J : Young’s modulus of the substrate
� : Poisson ratio of the substrate
G : Shear modulus of the substrate
h : Half thickness of the stator
�p: Thickness of the piezoelectric plate
a : Outer radius of the stator
b : Inner radius of the stator
Rr : Radial shape constant of the traveling wave
� : Width of the contact surface
{r : Rotor stiffness per unit area
k : Number of wave length
Mr : Rotor mass
Jr : Rotor inertia
� : Coulomb’s friction coefficients

Table 5.3: Summary of the parameters that constitute the prerequisites for simulation

5.5 Conclusion and perspectives

In this chapter the necessary theoretical background for modeling the electromechanical
behavior of the rotary piezoelectric motor is first given. Thereafter, the state space model
of the complete traveling wave type rotary PEM is derived by applying the basic laws
of variational work and elasticity theory (Hamilton’s principle). Second, a reduced state
space model is derived on the basis of the special design of the motors of interest (i.e.
two phase symmetrical system). Third, a further simplified model is derived within
the framework of various assumptions on the behavior of the stator. Consequently, the
assumed excited modes are decoupled and thereby the performance characteristics of
the stator are predicted by a single second order system. Fourth, the stick-slip behavior
of the driving mechanism is integrated in the time varying parameters of the model.
This makes it possible to predict the essential features of the behavior and performance
characteristics of the motor as a function of the external loading parameters. The derived
complete simplified model is thereby a simplified model of the stator together with the
model of the rotor in spinning and vertical directions.
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5.5.1 Advantages and performances

The main advantage of the analytical method is that it provides a general framework
model for simulating different geometries of the motor. This model is not restricted to
the nine wave Shinsei motor USR60. The model can be extended to encompass any
n’th wave traveling wave piezomotor provided that the electrical potential at the surface
of the corresponding n’th wave piezocermics is appropriately defined. Furthermore, this
model constitutes a powerful and suitable test bench for the control community for inves-
tigating the usability of the existing linear and nonlinear control methods in a simulated
environment. Consequently, the existing control algorithms can be applied directly to
the the simulated model and thereby their degree of usability and performance can be
established without resorting to actual experiments. Moreover, this model provides the
opportunity for the control community to push forward their knowledge and thereby find
new methods more suitable for controlling this kind of devices.

5.5.2 Drawbacks and limitations

The main drawback of the analytical method is that the electromechanical constants of
the motor are usually not known with a sufficient accuracy. This results in a large dis-
crepancy between the theoretical model and the real system. The effect of temperature
has not been considered in the model derived in this chapter, thereby only the behavior
of the motor in short term operations can be predicted.

5.5.3 The alternatives

The analytical modeling of the stator of the piezoelectric motor constitutes the main
source of errors. This is generally due to the uncertainties on the available electrome-
chanical constants of the piezoceramics, and also to the many assumptions on the be-
havior of the stator in order to simplify the modeling task. Therefore, the modeling of
the stator should be carried out with another more suitable method, such as the equiv-
alent circuit method. Consequently, the main objective is to combine the strength of
the equivalent circuit method for modeling the stator with the strength of the analytical
method for modeling the remaining dynamics of the motor.



Chapter 6

Hybrid Model

In this chapter the derivation procedure of a hybrid model of a rotary traveling wave PEM
is presented. This model combines the strength of the equivalent circuit method with the
strength of the analytical method. For modeling the stator, Equivalent Circuit Modeling
(ECM) which is a powerful alternative to the analytical approach (Ikeda (1996)), is
used. However, the effect of the stick-slip behavior of the driving mechanism on the
performance of the motor is carried out analytically. Therefore the analogy between
the structure of the ECM and a simplified analytical model of the stator is emphasized.
Consequently a hybrid model is derived. Moreover a tracking facility which will update
the temperature sensitive parameters is integrated in the model presented in this chapter.

6.1 The general framework model of the forced stator

The derivation begins by applying Hamilton’s principle modified for general electrome-
chanical systems, see section 5.1

Æ

Z t2

t1

L dt+

Z t2

t1

ÆW dt = 0 (6.1)

whereL is the Lagrangian of the system andÆW is the variational work due to the
external forces. The equations of motion can be derived by making the appropriate
substitutions forL andÆW in (6.1). This leads to the following compact model of the
forced stator, represented by the actuator equation (6.2) and the sensor equation (6.3)

M
::

� +D
:

� +K� = qv +F�
n
+ F�

t
(6.2)

qt� +Cpv = q (6.3)
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wherev is the voltage vector, applied through electrodes, explicitly defined in (5.100),
q is the charge vector on the electrodes of the stator,M is the total modal mass matrix
defined in (5.80),D is the structural modal damping matrix assumed to be diagonal,K

is the total modal stiffness matrix defined in (5.81),q is the electromechanical coupling
matrix defined in (5.82) and finallyCp is the piezoelectric capacitance matrix given by

Cp =

Z
Vp

Nt
e"
SNedV (6.4)

whereNe, defined in (5.119), is the electrical field shape matrix, which is derived from
the electrical potential shape matrix�e by using the electrical mapping operator matrix
Le, "S is the clamped dielectric constant matrix, defined in (5.83), which within the
framework of the made assumptions in section 2.2.2 reduces to one element, see section
5.1.2

"S = "S33 = "T33 � 2d231(c
E
11 + cE12) (6.5)

6.1.1 The explicit general model of the forced stator

In this section the explicit general model of the stator is derived from the actuator and
sensor equations given in (6.2) and (6.3) respectively. The model derivation is performed
within the framework of the assumptions made in section 5.2.1

6.1.2 The explicit actuator equation

For convenience some of the main results in section 5.2 are briefly recalled and appro-
priate references are given for each item.

� It is assumed that only two orthogonal mechanical modes can be excited within
the piezoceramic plate, see section 5.2.1

� The two phase motor is powered by two high frequency voltages90 o out of phase
temporally, see section 5.2.2

� The parameters in the actuator equationM;K andq reduce to diagonal matri-
ces, as shown in sections 5.2.3, 5.2.4 and 5.2.5 respectively. Likewise the modal
damping matrix is assumed to be diagonal. For convenience these parameters are
recalled

– The modal mass matrixM is expressed by the following diagonal matrix

M =

�
M 0
0 M

�
(6.6)

whereM is the modal mass of the stator.
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– The modal damping matrixD is expressed by the following diagonal matrix

D =

� Do 0
0 Do

�
(6.7)

whereDo is the modal damping of the stator.

– The modal stiffness matrixK is expressed by the following diagonal matrix

K =

�
Ko 0
0 Ko

�
(6.8)

whereKo is the modal stiffness of the stator.

– The electromechanical coupling matrixq is expressed by the following di-
agonal matrix

q =

�
� 0
0 �

�
(6.9)

where� is the modal electromechanical force factor.

� The loaded stator is subject to normal and tangential forcing at the interface con-
tact. These forcing vectors are recalled below

– The normal forcing vectorF�n is expressed by the following two dimensional
vector

F�n =

�
Fn1
Fn2

�
(6.10)

– The tangential forcing vectorF�t is expressed by the following two dimen-
sional vector

F�t =
�
Ft1
Ft2

�
(6.11)

Consequently, by substituting (6.6), (6.7), (6.8), (6.9), (6.10) and (6.11) in (6.2) the
following actuator model is obtained(

M
::

�1 +Do

:

�1 +Ko�1 = �VA + Fn1 + Ft1

M
::

�2 +Do

:

�2 +Ko�2 = �VB + Fn2 + Ft2
(6.12)
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6.1.3 The explicit sensor equation

As in the case of the actuator equation, the parameters of the sensor equation will be
explicitly defined within the framework of the assumption stated in section 5.2.1. It
should be noticed that onlyq andCp must be defined, the other parameters are already
known from the previous analysis.

6.1.3.1 Calculation and diagonalization of the capacitance matrix

The piezoelectric capacitance matrixCp of any piezoelectric vibrating plate, of clamped
dielectric constant matrix"S and volumeVp, is a function of the electrical field shape
matrixNe and reads

Cp =

Z
Vp

Nt
e"
SNedV (6.13)

whereNe, defined in (5.119), is the electrical field shape matrix derived from the elec-
trical potential shape matrix�e by using the electrical mapping operator matrixL e, and
where"S is the clamped dielectric constant matrix defined in (5.83), which within the
framework of the made assumptions in section 5.2.1 reduces to one component defined
in (6.5) such that

"S = "S33 (6.14)

For convenience, the electrical shape matrix defined in (5.119) is recalled

Ne = Le�e =
1

�p

�
�A �B

�
whereLe = 1

�p
is the electrical mapping operator,�p is the thickness of the piezo plate

and finally�A and�B are the assumed shapes of the electric potential within the stator
defined in (5.101). Moreover by using (5.119) and (6.14) the following matrix equation

Nt
e"

SNe =
"S33
�2p

�
�2A �A�B
�A�B �2B

�

leads to the following matrix integral equation

Cp =
"S33
�2p

Z
Vp

�
�2A �A�B
�A�B �2B

�
dV

=

�
Cp11 Cp12
Cp21 Cp22

�
(6.15)
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where the components of the capacitance matrix read8>>><
>>>:

Cp11 =
"S
33

�2p

R
Vp
�2AdV

Cp12 = Cp21 =
"S
33

�2p

R
Vp
�A�BdV

Cp22 =
"S
33

�2p

R
Vp
�2BdV

(6.16)

Furthermore, by substituting (5.101) which defines the potential functions�A and�B in
(6.16) and by proceeding to further calculations over the total volume of the piezoelectric
plate the following is obtained�

Cp11 = Cp22 = Cp
Cp12 = Cp21 = 0

Finally, the capacitance matrix is diagonalized and reads

Cp =

�
Cp 0
0 Cp

�
(6.17)

whereCp is the modal capacitance of the stator.

6.1.3.2 The electrical charges flowing through the electrodes of the stator

The two phase stator of the PEM is powered by two high frequency voltages90 o out of
phase temporally see section 5.2.2. As there are only two effective electrodes (phase A
and phase B), the charge vectorq on the right side of the sensor equation (6.3), which
represents the charge on the electrodes of the stator, reduces to two elements

q =

�
qA
qB

�
(6.18)

Consequently, the sensor equation provides valuable insight into the complementary
electrical dynamics of the stator subsystem. For instance, the current on the electrodes
is the time derivative of the charges on the electrodes, and by taking the time derivative
of the sensor equation (6.3), the following current equation is obtained

I = _q = qt _� +Cp _v (6.19)

6.1.3.3 The model representation of the explicit sensor equation

By substituting (6.9) (6.17) and (6.18) in (6.3) the following explicit model of the sensor
equation is obtained �

��1 + CpVA = qA
��2 + CpVB = qB

(6.20)
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6.1.4 The model representation of the forced stator

The derived models in (6.12) and (6.20) together constitute the model representation of
the forced stator given below8>><

>>:
M

::

�1 +Do

:

�1 +Ko�1 = �VA + Fn1 + Ft1

M
::

�2 +Do

:

�2 +Ko�2 = �VB + Fn2 + Ft2
��1 + CpVA = qA
��2 + CpVB = qB

(6.21)

6.2 Modeling of the free stator

The relation (6.21) suggests that the behavior of the free stator, (i.e. no external forcing
is applied), can be predicted by the following monophase actuator and sensor equations,
which constitute the reduced model

M
::

� +Do

:

� +Ko� = �V (6.22)

�� + CpV = q (6.23)

where�; V andq are phase dependent. The sensor equation (6.23) can be written as
:
q= �

:

� +Cp
:

V (6.24)

By multiplying the left and right sides of the equation (6.23) withe j!t then the complex
notaion can be used. Consequently, in complex notation the modal amplitude is given
by �

�
= �ej!t, the charge and the voltage are given byq

�
= qej!t andV

�
= V ej!t

respectively, the current is given byI
�

=
:
q
�
= Iej!t. This leads to rewrite the current

equation (6.24) as

I
�
= j!��

�
+ j!CpV�

(6.25)

which is further written in terms of electrical admittance as

Y
�
= j!�

�
�
V
�
+ j!Cp (6.26)

By using the actuator equation (6.22) the equation (6.26) becomes

Y
�

=
�2j!

M(j!)2 +Doj! +Ko

+ j!Cp

=
�2

j!M +Do +
Ko

j!

+ j!Cp

= Y
�m

+ Y
�d

(6.27)
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whereY
�m

andY
�d

are the electrical motional admittance and the damped admittance,

respectively. The relation (6.27) suggests that the parametersM;D o;Ko; � andCp can
be identified by using the electrical network method as stated below.

6.2.1 Identification of the parameters M;Do; Ko and �

For practical purposes it is sufficient to observe the electrical admittance of the stator
around its fundamental resonance frequency see chapter 4. For convenience, the main
topics of the equivalent circuit modeling will be recalled. Furthermore, for simplicity
reasons and also for consistence with the notation used in section 4.1.2.1 the complex
notation will be omitted.

The electrical admittanceY of any piezoelectric transducer, which is the ratio between
the input currentI and the input voltageV , is given by the sum of the dampedY d and
the motionalYm admittance

Y = Yd + Ym (6.28)

Where �
Yd = 1=Rd + j!Cd

Ym = 1=[R+ j(!L� 1=!C)]
(6.29)

The motional admittance of the stator can also be provided by measuring the electrome-
chanical admittance of the stator. The electromechanical admittanceym is the ratio
between the rate of vibration_u and the input voltageV and is given by

ym = 1=[r + j(!l � 1=!c)] (6.30)

The electrical motional admittanceYm and the electromechanical admittanceym are
related by the electromechanical transformer� such that

ym =
Ym
�2

(6.31)

Consequently, the electromechanical parameters seen as their electrical equivalents be-
come

R = r
�2 ; L = l

�2 ; C = �2c (6.32)

The identification of the electrical admittance parameters (Rd; Cd; R; L; C) and the elec-
tromechanical admittance parameters (r; l; c) is carried out by using the electrical net-
work method based on the Nyquist and the Bode diagrams of the admittance, see section
4.1.2.1.
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It must be emphasized that for a monophase system the electromechnical transformer
identifies with the modal force factor. For a polyphase system, however, an insight is
needed in order to distinguish between the electromechanical transformer and the modal
force factor.

The stator of the PEM under identification is a two phase symmetrical system with each
phase providing a standing wave. Due to the special design of the stator these standing
waves are combined and create a traveling wave within the body of the stator. The
electrical admittance of each phase of the stator was measured in the same conditions
and then plotted for comparison see section 4.2. From figure 4.16 it can be noticed that
the two phases exhibit almost the same admittance, consequently the stator is assumed
to be perfectly symmetrical and therefore only one phase needs to be identified.

The electrical admittance of the free stator is provided for one phase around the funda-
mental frequency. The exploitation of the Bode diagram in figure 4.18 and the Nyquist
diagram in figure 4.19 by using the electrical network method leads to the following
values

Q = 160 Rd = 3:12 104 Cd = 5:4 10�9

R = 149:75 L = 0:102 C = 1:66 10�10

It must be noticed that the quality factorQ which is over100 in this case enhances the
validity of the approximation made to derive the parameters of the network.

Thereafter, the parameters of the motional admittance are directly derived by measuring
the electromechanical admittanceym of the vibrating gain of the stator. The exploitation
of the Bode magnitude and the Nyquist diagrams in figure 4.21, of the electromechanical
admittance, and the derivation of the quality factor from the pass band at -3dB of the
frequency response lead to the following values

Q = 159:55 r = 15:4 l = 0:0101 c = 1:68 10�9

The quality factor which is slightly different from the previous case enhances both the
validity of the approximation and the compatibility of these two methods. The above
mechanical(r; l; c) values can be seen as their electrical equivalents and thereby deduce
the electromechanical transformer

� = 0:32

The identified values are thereafter used in a simulated equivalent circuit model envi-
ronment, and for each case an admittance is provided over a certain range of frequencies
around the fundamental resonance and the results are then compared to the experimental
data. From figure 4.22 it can be noticed that the simulated model predicts most of the
characteristics of the electrical gain admittance, especially in the range of frequencies
located above the fundamental resonance. Furthermore, from figure 4.23 it can be no-
ticed that most of the characteristics of the vibrating gain can be predicted in a simulated
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environment. However, this is only valid in a narrow range of frequencies lying above
the fundamental frequency.

The identification of theM;Do;Ko parameters is carried out directly, by using (6.27),
(6.30), (6.31) and observing that

ym =
1

j!M +Do +
Ko

j!

=
1

j!l + r + 1
j!c

(6.33)

which leads to the following

M = l; D0 = r; K0 = 1=c (6.34)

whereas the identification of the modal force factor requires an insight into the physical
behavior of the stator under identification. The relation between the modal force factor
� and the electromechanical transformer� of the traveling wave piezoelectric motor
USR60, see section 4.2.1.2, is given by

� = Rr � (6.35)

whereRr is a radial function depending on the design of the stator and the modal shape
of the traveling wave in the radial direction given by equation (5.95). By assuming
that the contact interface between the stator and the rotor is mainly concentrated around
the middle radius of the annular plateRo given by equation (5.97) thenRr becomes a
constant depending only on the amplitude of the radial mode at the point of contact.

6.3 The explicit model of the complete motor

The model of the complete motor is identical to the modal derived in chapter 5, where
the parameters of the unforced stator are identified by the equivalent circuit method. For
convenience, the main topics of the modeling process will be recalled.

� The pressure distribution at the stator-rotor interface contact is explicitly defined
in the moving coordinate system, see section 5.3.1, where

– The stator is assumed to be a rigid body along the contact interface

– The rotor is modeled as a linear spring

� The normal modal forcing vector is explicitly defined in section 5.3.2

� The tangential modal forcing vector is explicitly defined in section 5.3.3

� The interface force is explicitly defined in section 5.3.4
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� The interface torque is explicitly defined in section 5.3.5

Finally, the explicit state space model representation is recalled for convenience. By
substituting (5.146), (5.165), (5.170) and (5.174) in (5.124) and in the spining and ver-
tical motion model and thereafter rearranging the terms, see section 5.3.6, the following
explicit model is obtained8>>><

>>>:
M

::

�1 +Do

:

�1 +[Ko +K(x0; xs)]�1 = �VA +D��2
M

::

�2 +Do

:

�2 +[Ko +K(x0; xs)]�2 = �VB �D��1
Jr

::

� +Dr

:

�= �i�(x0; xs)� Tapp
Mr

::
z +Dz

:
z= fi�(x0)� Fapp

(6.36)

6.4 The complete hybrid model

The simplified model derived in section 5.4 is valid only for short term operation. For
long term operation the effect of temperature must be integrated in the model.

6.4.1 The simplified model

For convenience, the simplified model will first be recalled.

� The model of the stator is predicted by a single second order system, with varying
parameters, see section 5.4.1, given by

M
::

�i +Dv(x0; xs)
:

�i +Kv(x0; xs)�i = � Vi (6.37)

where the varying parameters are given by

Dv(x0; xs) = Do +
D�(x0;xs)

!

Kv(x0; xs) = Ko +K(x0; xs)
(6.38)

� The vertical motion model of the rotor, see section 5.4.2, is given by

Mr
::
z +Dz

:
z +K�

rz = F (x0)� Fapp (6.39)

where

F (x0) = 2KrRrA sinkx0 (6.40)

and the slip point expression of the half width of the contact zone is given by

x0 =
1

k
arccos(

z

RrA
) (6.41)
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� The spinning motion model of the rotor, see section 5.4.3, is given by

Jr
:


 +Dr
 = T (x0; xs)� Tapp (6.42)

whereT (x0; xs) is the interface torque at the contact surface given by

T (x0; xs) = 2���0{r (2�(xs)��(x0)) (6.43)

and the stick point is given by

xs =
1

k
arccos(

R2
o


khRrA!
) (6.44)

6.4.2 Temperature integration in the hybrid model

The resonance and antiresonance frequencies of the PEM change with the temperature
which in terms of hybrid modeling can be represented by the same model as before
but with temperature sensitive parameters. The effect of the heating process that takes
place within the body of the stator on the performance of the PEM can be monitored
by the feedback signal. Consequently, it is possible to integrate a tracking capability
of the mechanical resonance frequency in the model in order to maintain the output
performance characteristics of the motor despite the temperature changes.

By sensing the feedback signal as a function of the temperature of the PEM the char-
acteristic shown in figure 3.12 is obtained when operating under nominal conditions. It
should be noticed from figure 3.12 that the resonance frequency of the feedback sig-
nal shifts towards lower frequencies as the temperature of the PEM increases during
the operation process. Consequently, given the fact that the modal mass is a mechan-
ical constant then the only parameters subject to variation under temperature changes
are the damping and the stiffness/elasticity of the motional part whereas the changes of
the piezoelectric capacitance exist but are overlooked in the modeling process. More-
over, the influence of the damping changes are assumed to be negligible. The following
relation represents the resonance behavior of the motional impedance as a function of
temperature 8<

:
M(2�fr)

2 = Kv

M(2�fro)
2 = Ko

v

fr = fro � `��
(6.45)

wherefro andfr are resonance frequencies at the ambient and working temperature
respectively,�� is the temperature gradient during operation and` is the slope of the
resonance-temperature characteristic. In terms of hybrid modeling information the stiff-
ness should be updated during the temperature changes as follows

Kv = M(2�fr)
2 =M [2�(fro � `��)]2

� Ko
v (1� 2

`

fro
��)
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where �
Ko
v =M(2�fro)

2

Kv = Ko
v(1� 2 `

fro
��)

(6.46)

For USR60:̀ = 5Hz: deg�1 and2 `
fro

� 2:5 10�4.

6.5 Summary of the complete hybrid model

The following table summarizes the simplified hybrid model to be implemented in the
Matlab-Simulink environment

M
::

�1 +Dv(x0; xs)
:

�1 +Kv(x0; xs)�1 = �V̂ cos!t

M
::

�2 +Dv(x0; xs)
:

�2 +Kv(x0; xs)�2 = �V̂ sin!t
Mr

::
z +Dz

:
z +K�

rz = F (x0)� Fapp
Jr

:


 +Dr
 = T (x0; xs)� Tapp
A =

p
�21 + �22

x0 =
1
k
arccos( z

RrA
)

xs =
1
k
arccos(

R2

o

khRrA!

)

Dv(x0; xs) = Do +
D�(x0;xs)

!

Ko
v(x0; xs) = Ko +K(x0; xs)

fro =
1
2�

q
Ko
v(x0;xs)
M

Kv(x0; xs) = Ko
v(x0; xs)(1� 2 `

fro
��)

D�(x0; xs) = ftG1(x0; xs)
K(x0; xs) = fn (x0) + ftG2(x0; xs)
ft = �hkR2

r�{r
fn = R2

rR0�{r
 (xo) = kx0 � sin 2kx0

2
G1(x0; xs) = 2 (2�1(xs)��1(x0))
G2(x0; xs) = 2 (2�2(xs)��2(x0)� 1)
�1(x) =

kx
2 + sin 2kx

4 � cos kx0 sin kx

�2(x) =
sin2 kx

2 + cos kx0 cos kx
F (x0) = 2KrRrA sin(kx0)
T (x0; xs) = 2���0{r (2�(xs)��(x0))
�(x) = sinkx� kx cos kx0
Kr = {rRo� , K�

r = 2�Kr , ��0 � RrAR
2
0�

Table 6.1: Summary of the complete hybrid model
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6.6 Simulation and model validation

The derived hybrid model of the RPEM is implemented in a Matlab-Simulink environ-
ment. The results achieved by the simulated model are then compared to the measured
characteristics in order to establish the validity of the model.

6.6.1 The effect of the driving frequency on the motor

The performance of the simulated model is given in terms of the output speed perfor-
mance under varying frequency. The range of frequencies between 40 kHz and 42 kHz
is explored and the achieved results are given in figure 6.1
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Figure 6.1: Comparison of the speed-frequency characteristics for the unloaded motor:
simulation and measurements

It must be emphasized that the results reported in this figure are obtained for the free
motor (i.e. no load) operating under its nominal conditions. In the same figure 6.1
are reported the results of the real speed measured directly on the motor. It can be
noticed that there is agreement between the simulated model and the measured data,
which validates the hybrid modeling of the free motor.
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6.6.2 The effect of varying torque on the motor

The speed-torque relationship is the most important characteristic of any electrome-
chanical motor and therefore model validation should respect this criterion. Figure 6.2
represents speed-frequency characteristics under different load torques obtained from
the simulated hybrid model.
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Figure 6.2: Prediction of the speed-frequency characteristics at various load torques

The range of torques between 0 Nm and 0.32 Nm is explored and the results achieved
by the simulated model when compared to the real measurements are reported in figure
6.3 for the load torques 0.1 Nm, 0.2 Nm and 0.3 Nm respectively.

It can be noticed from the compared results that there is agreement between the simu-
lated results and the measured results, which validates the model in the range of torques
[0Nm; 0:32Nm] and frequencies of interest i.e. in the neighborhood above the funda-
mental resonance frequency.
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Figure 6.3: Comparison of the speed-frequency characteristics for the loaded motor:
simulation and measurements, at load torques 0.1 Nm , 0.2 Nm and 0.3 Nm respectively

6.6.3 The effect of varying temperature on the motor

The mechanical resonance frequency of the motor shifts towards lower frequencies dur-
ing the operation of the motor due to the temperature increase within the body of the
stator. In order to overcome this problem in a simulated environment and therefore pre-
dict the performance characteristics of the motor despite the changes in its temperature,
a tracking facility which updates the temperature sensitive parameters is introduced in
the hybrid model. Figure 6.4 shows the prediction results achieved for the speed of the
unloaded motor subjected to temperature variation.
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Figure 6.4: Prediction of the speed-frequency characteristics at various temperatures

From figure 6.4 it can be noticed that the resonance frequency is a decreasing function
of temperature and consequently for a fixed frequency above the resonance frequency
the performance of the motor, in terms of speed, deteriorates. The main conclusion to
be drawn is that for speed control purposes the influence of temperature changes must
be integrated in the model prediction for long term operations.
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6.7 Conclusion and Perspectives

In this chapter the general framework model of the traveling wave type annular forced
stator is first recalled. This model is derived by applying the basic laws of variational
work and elasticity theory (Hamilton’s principle). Second, a reduced model is derived
on the basis of the special design of the stator of interest (i.e. two phase symmetri-
cal systems) and various assumptions on its behavior. Third, the analogy between the
equivalent circuit model and the derived analytically reduced model of the unforced sta-
tor, which models the behavior of one phase of the stator, is highlighted. This makes it
possible to substitute the parameters of the equivalent circuit model in the framework of
the simplified analytical model. Consequently, the large uncertainties on the dielectrical
and electromechanical constants are avoided. Fourth, the simplified hybrid model of
the complete motor is thereby derived in terms of the forced stator model, the spinning
motion model and the vertical motion model. Finally the effect of temperature on the
mechanical resonance frequency is considered and thereby integrated in the final model
for long term operations. The derived model has been simulated in a Matlab-Simulink
environment. The achieved results have shown an agreement between the simulated
results and the experimental results. The experiments have been conducted on a case
study: Shinsei motor "type USR60", in the range of torques[0� 0:32Nm] and frequen-
cies of interest (i.e. in the neighborhood above the fundamental resonance frequency).
Thereby the validity of the model has been established.

6.7.1 Advantages and performances

The main advantage of the hybrid method is that it provides a general framework model
for simulating a wide variety of traveling wave motors. Many different geometries of
the motor can be used provided that they fulfill the symmetry requirements of a perfect
traveling wave generation at the surface of the stator. This model is not restricted to
the nine wave Shinsei motor USR60. This model encompasses any n’th wave traveling
wave piezomotor provided that the electromechanical parameters of the free stator can
be identified by using the equivalent circuit method. The strength of this method makes
it possible to avoid the large source of errors due to the uncertainties on the available
electromechanical constants of the piezoceramics and the required simplifying assump-
tions on the behavior of the stator. Moreover, the use of the laws of physics for modeling
the contact mechanism and the dynamics of the rotor makes it possible to capture the
nonlinear behavior of the motor and thereby constitute a better alternative to the equiv-
alent circuit method.
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6.7.2 Drawbacks and limitations

The main drawback of the hybrid method is that it provides a solution oriented problem,
in the sense that an identification of the parameters is required at each time a new motor
has to be modeled. Consequently, this process is time consuming and requieres a fully
operational test bench.

6.7.3 Perspectives

The hybrid model constitutes a powerful and suitable test bench for the control commu-
nity for investigating the usability of the existing linear and nonlinear control methods in
a simulated environment. Consequently, the existing control algorithms can be applied
directly to the the simulated model and thereby their degree of usability and performance
can be established without resorting to actual experiments. Moreover, this model pro-
vides the opportunity for the control community to push forward their knowledge and
thereby find new methods more suitable for controlling this kind of devices.



Chapter 7

Conclusion and Perspectives

This thesis considers the modeling of a rotary traveling wave piezoelectric motor, with
the emphasis on the procedure of deriving a simplified model with low computational
demands. The objective of the modeling task is to fulfill the requirements of a flexible
test bench model suitable for control investigation purposes. This final chapter provides
an overview of the content of this thesis and thereafter summarizes the major achieve-
ments of the work and suggests some directions and perspectives for future use of this
work.

7.1 Overview of the content of this thesis

A brief summary of the content and utility of each part of this thesis is given in the
following items.

� The piezoelectric field and its applications: is addressed in order to stress the
state of the art in this field. The emphasis is put on the degree of innovation in this
field and its contribution to the industry and science by presenting an overview
of the piezoelectric materials and their use as actuators, for solving some engi-
neering problems, together with their limitations and advantages compared to the
traditional and well-established electromagnetic devices. Finally the trends of
these new devices are discussed in the framework of the more general class of
smart structures. Furthermore, some of the theoretical background that lays the
foundations of piezoelectricity is recalled. The emphasis is put on the interaction
processes that take place within the piezoelectric media and the necessary defini-
tions of their different constitutive relations in tensor notation. Consequently, the
fundamental relations that represent the behavior of any piezoelectric media for in-
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dependent variable sets are presented within the framework of the thermodynamic
field. Thereafter the matrix notation for the constitutive relation is addressed in
order to stress that, in contrast to the tensor algebra, formulae and constants are
easily transformed using matrix algebra. Moreover, the particular case of the PZT
ceramics used in piezomotors is addressed in order to stress that the symmetri-
cal nature of the crystal structure induces some simplification. Consequently, the
electromechanical coupling in the piezoelectric PZT ceramics is achieved through
three principal modes of vibrations. These modes are the longitudinal mode, the
transversal mode and finally the shear mode. Finally, the electromechanical cou-
pling factor which is the parameter that guarantees the effective energy conversion
in a linear interaction system is addressed. The emphasis is put on the different
ways of defining this coupling factor and thereby make it ready for use in the
subsequent chapter of this thesis.

� The experimental investigations: of the Shinsei ultrasonic motor USR60, which
is used as a case study in this thesis, is addressed. The different parts that con-
stitute the motor and how they are connected besides the working principle and
the specifications of this motor are introduced in order to make the reader familiar
with this piezoelectric device. Thereafter, the results of the investigations, which
consist of the establishment of the operating characteristics of the motor under
various working conditions, are reported. The objectives of the experimental ap-
proach are to establish the physical understanding of the behavior of the motor in
particular its nonlinearities and also identify some of the parameters of the motor
which are necessary for the modeling task.

Consequently, the influence of the excitation parameters, which are the relative
phase shift, frequency and the common amplitude voltage of the power supply,
on the output speed of the motor under various working conditions is investigated
and the corresponding characteristics are reported. Furthermore, the speed-torque
characteristic is measured under nominal conditions. Thereafter, the influence of
several parameters, such as the excitation frequency, the normal forcing, the load
torque and the output speed on the feedback signal is investigated and the corre-
sponding characteristics are reported. Furthermore, the influence of temperature
changes on the motor is investigated by monitoring the shift of the resonance fre-
quency of the feedback signal versus temperature under nominal conditions of
operation. Moreover, the measurement of the electrical admittance of the sta-
tor over a large span of frequencies is provided for the purpose of making some
comparisons with other approaches predicting the behavior of the transducer by
applying the basic laws of physics. Then, the measurement of the electrical ad-
mittance of the stator in sweep up and sweep down frequency conditions around
the fundamental resonance is addressed in order to highlight the nonlinearities of
this device. Finally, the influence of the common amplitude voltage and the load
torque on the admittance of the loaded motor is investigated and the correspond-
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ing characteristics are reported. The outcome of this experimental approach is that
the influence of the excitation and load parameters on the behavior of the motor is
explored within the range of their limits. This provides the necessary knowledge
for achieving the objective of this thesis.

� The equivalent circuit modeling: is addressed by first recalling the theoreti-
cal background of the equivalent circuit method. Thereafter, equivalent circuit
modeling of a ring type stator, regarded as a straight beam with infinite length
undergoing bending deformations of transverse type (T-effect) is addressed. Con-
sequently, Mason’s equivalent circuit model for a T-effect bar transducer is derived
by applying the basic laws of physics. This leads to a set of equations representing
the electromechanical coupling in the piezoceramic beam. This set of equations
are represented by Mason in the form of a six terminal equivalent circuit informa-
tion. This circuit is further reduced to a four terminal network which represents
the closed shape ring. Furthermore, it is shown mathematically that the output
terminal of this circuit, which represents the electromechanical motional branch
of the admittance, can be expressed by an infinite number of resonant serie cir-
cuits in parallel. Thereafter, the electromechanical coupling factor is expressed
as a function of the force factor and the admittance parameters. Furthermore, by
only considering the behavior of the ideal stator (i.e. no losses) around the fun-
damental resonance frequency and assuming that the output branch behaves like
a short circuit the two terminal representation is obtained. Finally, the equivalent
circuit model for one phase of the real stator integrating the losses around the
fundamental resonance frequency where the mechanical parameters are seen as
their electrical equivalent is emphasized. The identification method, which uses
the electrical network method to establish the parameters in the equivalent circuit
model, is addressed. Consequently, the definitions of the characteristic parame-
ters obtained from the different diagrams of the admittance are recalled and a final
set of equations that gives the evaluation formula for each parameter in the two-
terminal equivalent circuit model is emphasized. Thereafter, the analysis in terms
of equivalent circuit information provides the final representation of the complete
motor by two four-terminal equivalent circuits connected by a wave mixer and
ends by a load box that represents all the phenomena that intervene, beyond the
stator, at the interface contact with the rotor. Furthermore, it is stressed that due to
the symmetrical nature of the stator the final equivalent circuit model of the com-
plete motor can be reduced to a mono-phase four terminal circuit. Moreover, it is
shown that, according to the piezoelectric direct effect, valuable information about
the traveling wave characteristics within the stator can be obtained by sensing the
feedback electrode. Consequently, the proportionality between the amplitude of
the feedback voltage and the ideal rotary speed of the motor is highlighted, and
also the proportionality to the amplitude of the traveling wave is stressed. These
results suggests that the feedback voltage can be used for predicting and control-
ling the motor.
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The equivalent circuit modeling of the traveling wave motor USR60 is done step-
wise by first considering the free stator then the unloaded motor and finally the
loaded motor. It is shown by admittance measurement of the free stator that
this device can be assumed to be perfectly symmetrical and thereby only one
phase needs identification. The identification of parameters of the two terminal
equivalent circuit model is carried out by using the electrical network method.
Consequently, the extraction of respectively the parameters of the electrical and
electromechanical admittance of the stator makes it possible to derive the elec-
tromechanical force factor. Thereafter, the equivalent circuit model prediction of
the stator is validated by simulation and comparison to the real data. Further-
more, the prediction of the behavior of the stator over a large span of frequencies
by using the equivalent circuit model is stressed. Moreover, a thorough analysis
of the electromechanical force factor is carried out in which the emphasis is put
on the difference between the effective force factor and the modal force factor.
Consequently, the relationship between the modal force factor and the motional
current is emphasized and an explicit relationship between the modal force factor
and the effective force factor is highlighted. The unloaded motor is addressed by
integrating the losses due to the pressure and the friction in the equivalent circuit
model. The losses of power due to pressure conditions are represented by an extra
resistance at the input terminal. The frictional losses are integrated by adjusting
the motional resistance by simulation and by subtracting from the ideal motional
current an amount image of the speed drop seen as its electrical equivalent. Fur-
thermore, the capacitance of the motional admittance is adjusted by monitoring
the resonance frequency of the feedback signal of the unloaded motor under oper-
ation. The loaded motor is addressed by integrating the speed drop due to the load
torque in the equivalent circuit model. It must be emphasized that the changes
in damping and the capacitance of the motional admittance caused by the load
torque can be neglected in the simulation process.

Thereafter, it is emphasized that in terms of equivalent circuit modeling the ef-
fect of temperature can be represented by the same equivalent circuit model but
with varying parameters. Consequently, it is pointed out that for practical reasons
only the changes of the motional admittance with temperature must be integrated
in the final model. Thereby, a tracking facility which updates the temperature
sensitive parameters is derived and thereafter simulated. The results achieved by
simulations are then reported and commented. These results suggest that for speed
control purposes the influence of temperature changes must be integrated in model
prediction for long term operations. Finally, the derived equivalent circuit model
of the motor is simulated and thereby the effects of the excitation frequency and
the load torque are investigated. Consequently, the different results achieved by
the simulated model and the feedback predictions are compared to the measured
characteristics. Thereby the validity of these two methods is established in the
range of torques and frequencies of interest.
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� The analytical modeling: is addressed by first recalling the necessary theoretical
background of the energy method which uses Hamilton’s principle modified for
general electromechanical systems. The appropriate definitions of the constitutive
relations describing the behavior of any vibrating elastic substrate are recalled and
the relevant piezoelectric relation describing the stator in transverse mode of vi-
brations is stressed. Thereafter, the Lagrangian of the system and the variational
work done by the external forces are explicitly defined as a function of the pa-
rameters of the vibrating stator. Consequently, the general actuator and sensor
equations representing the behavior of the stator are derived. The dynamic of the
rotor is addressed and thereby the equations of motion of the rotor in vertical and
spinning direction together with the interface force and the interface torque are
stressed.

The general framework model of the motor is derived by using only the actuator
equation of the stator together with the vertical and spinning motion models of
the rotor. Thereafter, the different parameters of the model are addressed in the
framework of some necessary assumptions on the behavior of the stator in order to
simplify the modeling task. Consequently, the applied voltage is explicitly defined
for the nine wave motor and the parameters of the actuator equation, which are the
modal mass matrix, the modal stiffness matrix and the electromechanical coupling
matrix, are calculated and diagonalized. Thereby, a state space representation is
obtained.

The pressure distribution at the stator-rotor interface contact is addressed by in-
troducing a wave oriented coordinate system rotating with the traveling wave, in
which to write the equations describing the mutual interaction between the sta-
tor and the rotor. Thereafter, the nonlinear elements in the state space model are
addressed. Consequently, the normal modal forcing vector, the tangential modal
forcing vector, the interface force and interface torque are derived explicitly as
functions of the excited modes and the stick-slip behavior of the contact mech-
anism. Finally, an explicit state space representation of the complete motor is
derived.

Moreover, the complexity of the obtained model is addressed by considering the
symmetrical nature of the design of the stator. Thereby, a simplified model of the
motor is derived within the framework of various assumptions on the behavior
of the stator. This makes it possible to predict the performance of the stator by a
single second order system with varying parameters. These parameters are mainly
functions of the stick-slip coordinates of the contact mechanism and reflect the
external conditions, which are the pressure distribution at the interface contact and
the torque load on the motor. The derived complete and final simplified model is
thereby a simplified actuator model of the stator together with the model of the
rotor in spinning and vertical directions. Consequently, the complexity of the
model is reduced.



148 Conclusion and Perspectives

Finally, a summarizing table reports the final simplified analytical model derived
in this chapter. Thereafter, in order to implement this model in a simulated en-
vironment, a table summarizing the parameters that must be known beforehand
in order to perform the simulation successfully is given. Finally, a conclusion
is drawn, and thereafter the advantages and performance together with the draw-
backs and limitations of this modeling method are stressed and finally the alterna-
tive solution and its perspective is emphasized.

� The hybrid modeling: is addressed by first recalling the general framework ana-
lytical model of the stator. It is emphasized that both the actuator and the sensor
equations must be used for deriving the hybrid model. Thereby, the piezoelec-
tric capacitance matrix is defined. The different diagonal matrices representing
the parameters of the actuator model are recalled and thereafter the piezoelectric
capacitance matrix is calculated and diagonalized and the charge vector on the
electrodes of the stator is defined. Consequently, an explicit actuator model and
sensor model representing the dynamic of the stator are derived.

Moreover, a reduced model of the stator representing only one phase of the stator
is highlighted. From the sensor equation the electrical admittance of one phase of
the stator is derived. Thereby, the analogy between the equivalent circuit method
and the analytical method is emphasized. The actuator equation of the free stator
is used to derive the analytical electromechanical admittance of the stator, which
is the ratio between the temporal amplitude of vibration and the input voltage.
Thereafter, the substitution of this ratio in the analytical electrical admittance sug-
gests that the parameters of the actuator equation of the free stator can be identified
by using the electrical network method. Consequently, the identification of the pa-
rameters of the analytical model is provided by the equivalent circuit method and
thereby a hybrid model of the stator is obtained. Thereafter, the remaining parts
of the simplified analytical model are recalled and thereby the simplified hybrid
model of the complete motor is given for short term operations. For long term op-
eration the temperature effect is considered and thereby integrated in the complete
and final simplified hybrid model of the motor for long term operations.

Finally, a summarizing table reports the final simplified hybrid model derived in
this chapter, and a reference to the appropriate appendix containing the data of the
motor used in simulation is given.

Different experiments are done in order to establish the validity of the model.
For instance, the influence of the excitation frequency and the influence of the
load torque on the speed performance of the motor are tested. The results of the
simulations are compared to the real characteristics of the motor and thereby the
validity of the model is established. Finally, a conclusion is drawn.
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7.2 Final conclusion

Theoretical and experimental methods are used in this thesis. The main achievement
of this work is the combination of the strength of the equivalent circuit method and the
analytical method in a hybrid simplified model providing the ability to predict most of
the performance characteristics of the motor under various working conditions.

The following conclusions are drawn on the accomplishments and contributions of the
thesis

� The theoretical background of the equivalent circuit modeling method is ad-
dressed when applied to the ring-type stator. Thereafter, the electrical network
method is used to establish the parameters of the equivalent circuit model exper-
imentally. A special attention is paid to the integration of the appropriate elec-
tromechanical force factor in the equivalent circuit model. The emphasis is put
on the difference between the effective force factor and the modal force factor.
The final equivalent circuit model for short term operations is derived stepwise,
by first considering the free stator, then the unloaded motor and finally the loaded
motor. For long term operations, a tracking facility which updates the temperature
sensitive parameters is integrated in the final model.

� The theoretical background of the analytical model of the rotary piezoelectric mo-
tor is addressed. Thereafter a general state space model is derived. By making
some assumptions on the behavior of the stator a simplified model is obtained.
Consequently, the excited modes are decoupled and the dynamic of the stator is
captured in a single second order model. The stick-slip behavior is integrated in
the time varying parameters of the model. The final model is derived in terms
of the simplified stator model, the vertical motion model and finally the spinning
motion model.

� The equivalent circuit model suffers from its inability to cope with the frictional
behavior of the motor, whereas the electrical network method provides relatively
more accurate values of the parameters used in the equivalent circuit model. Be-
sides, the available electromechanical constants, of the piezoceramics used in
this kind of motors, are not accurate values. These uncertainties combined with
the calculus approximation generally result in a large discrepancy from the real
parameters of the motor. Therefore, the analogy between the equivalent circuit
model and the derived analytically reduced model of the free stator, which both
represents the behavior of one phase of the stator, is highlighted. This makes it
possible to substitute the parameters of the equivalent circuit model in the frame-
work of the simplified analytical model. Consequently, the large uncertainty on
the dielectrical and electromechanical constants is avoided. The simplified hy-
brid model of the complete motor is thereby derived in terms of the forced stator
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model, the spinning motion model and the vertical motion model. Finally, for
long term operations a tracking facility of the temperature sensitive parameters is
integrated in the final hybrid model.

7.3 Perspectives and recommendations

The modeling procedure presented in this thesis lays the foundations for a general frame-
work test bench for simulating a large variety of traveling wave motors, i.e. different
sizes, shapes and number of waves provided that the symmetry requirement for a perfect
traveling wave generation is fulfilled. The procedure of the equivalent circuit method
can easily be applied to any kind of piezoelectric motor, in particular the rotary stand-
ing wave motors. The analytical modeling procedure and thereby the hybrid case can
also be pushed further to encompass the rotary standing wave motors if an appropriate
model of the contact mechanism is defined. The contributions of this work can be used
with benefit at different levels of utility. The following items state some suggestions for
future use of the different achievements of this work.

� The power supply: of the motor is the cornerstone of this kind of device. There-
fore, the investigation of the new appropriate power supply strategies can be car-
ried out in a simulated environment by only using the equivalent circuit model due
to its simplicity.

� The design: of the motor is responsible for most of the output power performance
of the motor. Therefore, the investigation of the influence of the different geomet-
rical parameters of the motor on the output performance can be carried out in a
simulated environment by using the analytical model. Furthermore, the analytical
model can be used to investigate the performance of various types of piezoelectric
materials and also the influence of the materials used in the frictional layer of the
contact mechanism.

� The control: of the motor is the most important part in the final operational mo-
tor. Therefore, the investigation of suitable control strategies can be carried out
in a simulated environment by using either of the models derived in this thesis.
However, it must be emphasized that the hybrid model is the most appropriate
model for achieving realistic results. With this model many control strategies can
be investigated including linear and nonlinear control methods.

Perspectives and recommendations for solving the control problem

The hybrid model of the PEM no matter how much simplified is still highly nonlinear,
time varying and has load and temperature dependent parameters. Moreover, it must be
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emphasized that developing mathematical models for real systems is always problem-
atic; the models developed never completely describe the real system. This mismatch
between the behavior of the real system and that expected from the model is called uncer-
tainty. The quality ascribed to a particular model depends on the amount of uncertainty
in the model relative to the expected objective for using the model. Furthermore, the
control characteristic of the PEM is complicated, highly nonlinear, and the control char-
acteristic and motor parameters are time-varying due to temperature rise and changes in
motor drive operating conditions, such as drive frequency, source voltage, and load. The
control strategies have not yet been investigated thoroughly regarding the complexity of
the strongly nonlinear behaviour of the PEM. The objective of solving the control prob-
lem is to design a suitable control system to ensure that the proper response to the given
inputs occurs despite the influences of temperature fluctuations and external loading on
the motor. Therefore, an appropriate use of the PEM requires that a high-precision con-
trol system must be used.

It must be emphasized that, in light of the experimental investigations, frequency control
is the most appropriate method for controlling the PEM. Therefore, a simple model
representing the frequency-output relationship must be derived from the hybrid model
in order to design the control system for the simulated model. The following items
constitute some suggestions/directions for solving the control problem in a simulated
environment, without resorting to actual experiments on the real PEM.

� Adaptive and nonlinear robust control

Due to the time varying nature of the hybrid model representing the PEM, it is
believed that adaptive control constitutes an appropriate solution to the control
problem. Moreover, when using a model-based controller it is known that of-
ten the parameters in the model do not match the parameters of the real plant so
servo errors will result. These servo errors could be used to drive some adapta-
tion schemes which attempt to update the values of the model parameters until the
errors disappear.

An alternative solution to adaptive control is to use a robust controller. For in-
stance, a nonlinear robust control strategy combined with an appropriate model of
the friction mechanism driving the real system is believed to be the most appro-
priate solution to the control problem.

Robust control attempts to deliver controllers that make the very best use of avail-
able information about the system (i.e. given a linear model, a specified amount
of undermodeling uncertainty, assumptions on external forces, "noise", impact
behavior, a precise description of the performance objective, etc...). Nonlinear ro-
bust control, on the other hand, is a label that describes the development of robust
controllers for systems with nonlinear models.

The nonlinear behavior of the PEM cannot be linearly undermodeled in a way that
will meet the performance objective. Therefore, the objective behind the deriva-
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tion of a nonlinear robust controller to the PEM is to find a good set of constant
gains that despite the "motion" of the poles will guarantee that they remain in rea-
sonably favorable locations. Furthermore, the main problem in deriving a robust
controller to the PEM is to design the feedback loop and the feedforward model
so that the stability and performance are maintained in spite of process variations.
Finally, the objective of this method is to design a controller for the PEM which
is robust against its nonlinearities and adaptive to its environmental conditions.

� Fuzzy and neurofuzzy adaptive control

The fuzzy logic-based approach to solving problems in control has been found to
excel in systems which are very complex, highly nonlinear and with parameter
uncertainty. Fuzzy logic can be applied to the PEM if the previously mentioned
conventional model-based approache are difficult or not cost-effective to imple-
ment. However, as the complexity of the PEM is high, reliable fuzzy rules and
membership functions necessary to describe the behavior of the PEM could be
difficult to determine. Furthermore, due to the complexity and the dynamic nature
of the PEM, rules and membership functions must be adaptive to the changing
environment in order to continue to be useful. Therefore neurofuzzy, which is the
combination of fuzzy logic and neural networks, may be used in order to over-
come the drawbacks of either. Neural network learning provides a good way to
adjust the expert’s knowledge and automatically generates additional fuzzy rules
and membership functions in order to meet certain specifications and reduce de-
sign time and costs. On the other hand, fuzzy logic enhances the generalization
capability of a neural network system by providing more reliable output when
extrapolation is needed beyond the limits of the training data. The neurofuzzy
system consists of the various components of a traditional fuzzy system, except
that each stage is performed by a layer of hidden neurons, and neural network
learning capability is provided to enhance the system knowledge. Neurofuzzy
systems offer the precision and learning capability of neural networks, and yet
they are easy to understand like fuzzy systems. Explicit knowledge acquired from
experts can be easily incorporated into such a system, and implicit knowledge
can be learned from training samples to enhance the accuracy of the output. Fur-
thermore, the modified and new rules can be extracted from a properly trained
neurofuzzy system to explain how the results are derived. Finally, the objective
of this method is to design an adaptive neurofuzzy controller for the PEM which
is simple to implement, adaptive to its environmental conditions and fulfills the
stability requirement of an adaptive robust controller.

Finally, the applications of the findings of this work should lead to an assessment of the
tools developed for the PEM, identify gaps in the understanding of the modeling/control
process, and ask new questions based on the peculiarities of the real PEM system.
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Appendix A

Test Bench

This appendix presents the test bench used for conducting the experiments on the Shinsei
motor USR60 used as a case study in this thesis. The experiments have been carried out
during my four months stay, in the spring of 1999, at the LEEI, ENSEEIHT, Toulouse
in France under the supervision of Professor Bertrand Nogarede.

A.1 The experimental test bench

For conducting the experiments a test bench comprising two different but complemen-
tary test setups is used. These two setups referred to by the manual test setup and the
automatic test setup will be presented and discussed in the following sections.

A.1.1 The manual test setup

The a priori determination of the intrinsic characteristics of the motor, requires a suitable
and well defined power supply. The power supply should provide two orthogonal sinu-
soidal waves in order to avoid simultaneous excitation of several modes of vibrations
of the stator. Furthermore, It should provide the ability of varying freely the amplitude,
frequency and phase of the excitation waves.

For that purpose, a manual test setup have been developed at the LEEI, ENSEEIHT,
Toulouse in France. A sketch of the experimental setup, which contain the different ele-
ments that constitute the electromechanical system and the measurment tools, is shown
in figure A.1. The two electrodes of the motor are then connected to the two phase
power supply. It should be noticed that the two phase generator (HP 3326A) and the
linear power amplifier constitute the power supply. The linear power amplifier, which
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Figure A.1: The manual test setup

was designed and manifactured at the LEEI is able to provide sinusoidal voltages at up
to 300 Vpp under 1 App between 3 and 100 kHz.

Voltage and current probes together with a gain-phasemeter (HP 3575A) allow the mea-
surments of the electrical variables at different terminals of the motor

� Two inputs of the voltage supply(V1; V2)

� Two inputs of the absorbed current(I1; I2)

� Relative phase�� between the inputs of the voltage supply

� VoltageVa and currentIa of the feedback signal

The mechanichal part of the setup shows the motor loaded by a brake and an axial
loading. The brake device (Merobel EFAS 10) provides torques between 0 and 1 Nm
and the ability of varying the magnitude of the torques independently from the rotary
speed. The axial load can be adjusted by spring-knob regulator. This unit permits the
analysis of the influence of the axial force on the torque speed characteristics.

The resisting torque and the applied axial load are measured by constraint Gauge, (re-
spectively Sedeme XF 2daN and 20daN). The rotary speed
 is obtained by measuring
the frequency (Philips PM6665) of a triangular signal, image of the position, provided
by multi-round potentiometer. The temperature of the motor is measured by a thermo-
couple sensor.
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A.1.2 The automatic test setup

The main objective of the automatic test setup is to provide a mechanical and electrical
characterization of the electromechanical motor. Consequently, the main functions that
the setup should fulfill are stated below

� Generate polyphase signal over a large pass band, with the possibility of amplitude
and frequency calibration

� Measurement of the electrical quantities: current, voltage and phase

� Measurement of the mechanical quantities: displacement and vibration velocity

� Frequency analysis and data collection

For that purpose, an automatic test setup have been developed at the LEEI, ENSEEIHT,
Toulouse in France. A sketch of the experimental setup, which contain the different ele-
ments that constitute the electromechanical system and the measurment tools, is shown
in the figure A.2
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Piezo motor
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Figure A.2: The automatic test setup
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The automatic method is based principally on the Dynamic Signal Analyzer type (HP
3562A) which is a dual channel, fast Fourier network, spectrum, and wave form ana-
lyzer. The Signal Analyzer combined with the phase shifter and the linear power am-
plifier serves as the power supply for the electromechanical system under analysis. The
Signal Analyser provides an automatically controlled varying frequency. The main func-
tion of the Analyser is to perform data collection and identification of the admittance of
the electromechanical system.

Beside the Signal Analyser an other important measurment tool is the laser interferome-
ter, which is shown on the same figure A.2. The laser interferometer, which is controlled
by the computer, measures the displacement and the rate of vibration at the surface of
the stator. The main advantage of this measurement tool is its high precision which is
less than the wave length of the laser beam. Furthermore, the measurments which are
performed without contact, by using a reflecting beam, avoids the perturbation of the
system under characterization.

� Operating principle of the laser interferometer: The operting principle of this
tool is based on the interference phenomenon between two beams provided by
the same source. The Polytec interferometer used in this setup is based on the
Mach-zehnder configuration, see figure A.3.

Laser Beam Mirror

Detector

Detector

Mirror

BS1

BS2
D1

D2

Beam Splitter

Beam Splitter

Figure A.3: Operating principle of the Mach-Zehnder interferometer

The original laser beam is diveded by a beam splitter BS1 into two beams with
equal light intensity. Then, each beam is again splitted by the beam splitter BS2.
The beams obtained at the end of this operation are then the supperposition of
two beams each, with their light intensityI1 andI2 collected respectively on the
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photodetector D1 and D2 are given by the following equations

I1 = I2
2
[1 + cos('2 � '1)] (A.1)

I2 = I2
2
[1 + cos('2 � '1)] (A.2)

whereI is the light intensity and'i is the phase of the beami given by

'i =
2�di
�

for i = 1; 2 (A.3)

wheredi is the path lenght taken by the beami and finally� is the wave lenght of
the light source.

It can be noticed from (A.1), (A.2) and (A.3) that the knowledge of the light
intensity received byD1 andD2 alow the determination of the relative phase
between the beams. Consequently, it is possible to determine the lenght difference
between the paths taken by these two beams of light.

However, this design doesn’t allow the measurements of the displacement of ex-
ternal surfaces. The modified version shown in figure A.4, provide the possibility
for a beam to escape from the previous circuit. Consequently, one of the mirrors
in this case becomes a polarized beam splitter PBS, and the unit QWP introduce
a quarter of wave lenght phase shift. Hence, the incident beam from BS1 can
completely pass through PBS, whereas the reflected beam (in quadratic with the
original beam) is deviated towards BS2.
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BS1
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QWP
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D1

D2

Beam Splitter

Beam Splitter

Polarized

Beam

Splitter
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Wave

Polarizer

Target

Figure A.4: The modified Mach-Zehnder interferometer for external measures

Finally, the latest improvement must be added in order for the system to be ef-
fectively operational. For that reason the Bragg cell is used in order to introduce
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a controled frequncy shiftfB by a reference RF, see figure A.5. When the fre-
quencies detected onD1 andD2 are centered arroundfB then the detection of the
direction of the displacement is possible (heterodyne interferometer).

            

Figure A.5: Operating principle of the Polytec laser interferometer

The electrical measurements and their visualisations are obtained by an oscilloscope.
The current measurements are obtained by using a shunt, because in practice, the avail-
able currents are very low, which alter the precision when using the current probe. How-
ever, the use of shunt must be taken into account in order to avoid errors when sorting
through the measurments.

Finally, the use of a PC equipped by a GPIB interface, allows the development of a cer-
tain number of programs in Labview software environment, dedicated to the automation
of the acquisition sequences and data manipulation.

With this method, different admittance characteristics of the system can be obtained
by on the one hand programing different amplitude voltage of the power supply and
different spans of frequencies to be analyzed, and on the other hand by varying manually
the values of the external input parameters such as the normal forcingF and/or the load
torqueT .

The admittance of the electromechanical system identified by the signal analyzer is ob-
tained in the forms of Bode diagram and Nyquist diagram, which provides many valu-
able information on the electromechanical behavior of the system over the range of
excited frequencies.
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Vibration of an Annular Plate

The equation of transverse motion of an annular forced plate neglecting shear deforma-
tion and rotary inertia is given by

Jh3

12(1� �2)
54 u(s; t) + �h

@2u(s; t)

@t2
= F (s; t) (B.1)

whereJ , �, � andh are respectively the young modulus, the Poison ratio, the mass
density of the plate and finally the thickness of the plate. The termu(s; t) denotes the
displacement of the plate,F (s; t) denotes the general forcing acting on the plate and the
54 symbol is the biharmonic operator which in polar coordinates (s = (r; �)) takes the
form

54 = (
@2

@r2
+

1

r

@

@r
+

1

r2
@2

@�2
)2 (B.2)

For the case of the free vibrating plate (i.e. the unforced case:F (s; t) = 0) and assuming
that the vibration of the plate is harmonic in time (i.e. periodic behavior providing
resonant and antiresonance frequencies under certain conditions), the solution can be
obtained as a product of one time dependent function and one space dependent function

u(s; t) = U(s)ej!t (B.3)

The unforced plate solution provides a set of mutually orthogonal modes that describe all
possible motions of the plate. The forced plate’s solution is then obtained as a particular
case of the unforced one in the sense that only one or some of the modes are allowed to
take place. For the free plate the equation B.1 can after simplification be reduced to

Jh3

12(1� �2)
54 U(s)� �h!2U(s) = 0 (B.4)
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which can be further manipulated to become

(54 � �4)U(s) = 0 (B.5)

where

�4 =
12(1� �2)�!2

Jh2
(B.6)

The solution of B.5 can be provided by separating the spatial variables in a form

U(s) = R(r)	(�) (B.7)

after substitution and grouping the r dependent and� dependent terms the following
equations are obtained

d2	(�)

d�2
+ n2	(�) = 0 (B.8)

d2R(r)

dr2
+

1

r

dR(r)

dr
+ (�n

2

r2
� �2)R(r) = 0 (B.9)

The general solution to the transverse vibration of the annular plate is a summation of
the plate’s vibration over all the possible modes of vibration given by

u(s; t) =
1X
n=1

1X
m=1

�nm(t)Unm(s) (B.10)

where the indexes m and n denote respectively the m ’th radial and n ’th circumferential
modes. The resonant frequency!nm of the plate for the (n,m) ’th mode is obtained by
solving the eigenvalue problem for�, see (Friend and Stutts (1997)), and reads

!nm = �2nm

s
G
�h

(B.11)

where

G =
Jh3

12(1� �2)

If only the circumferential modes are considered then the resonant frequency! n of the
plate for the n ’th mode is given by

!n = �2n

s
G
�h

(B.12)

where

�n =
n

r



Appendix C

Motor Data

The following tables summarize the parameters that are required by the analytical model
and the hybrid model for the Shinsei motor USR60.

� The mechanical constants of the motor

Mass density of the substrate, (kg.m�3) �s = 8780

Mass density of the piezo plate, (kg.m�3) �p = 7650

Young’s modulus of the substrate, (GPa) J = 120

Poisson ratio of the substrate � = 0:3

Shear modulus of the substrate, (GPa) G = 44

Half thickness of the stator, (m) h = 1:5 10�3

Outer radius of the stator, (m) a = 23:5 10�3

Inner radius of the stator, (m) b = 30 10�3

Radial shape constant of the travelling waveRr = 0:7

Middle radius of the contact surface, (m) Ro = 26:75 10�3

Width of the contact surface, (m) � = 4:41 10�3

Rotor stiffness per unit area, (N.m�3) {r = 5:4 1011

Number of wave length k = 9

Rotor mass, (kg) Mr = 30 10�3

Rotor inertia, (kg.m�2) Jr = 7:2 10�6

Coulomb’s friction coefficients. � = 0:3
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� The electromechanical constantes of the piezo ceramic

Compliances at constant
electrical field, (m2.N�1)

sE11 = 10.66 10�12

sE12 = -3.34 10�12

sE66 = 28.07 10�12

Dielectrical constant, (C.N�1) d31 = -108 10�12

Electrical permitivity at
constant stress, (F.m�1)

"T33 = 1.02 10�8

� The remaining parameters

Rotor damping in spining direction Dr = 5%

Rotor damping in vertical direction Dz = 5%

The applied axial load, (N) Fapp = 160

The applied external torque, (Nm) Tapp = [0; 0:32]

� The identified parameters for the hybrid model

Modal mass of the stator (kg) M = 10:1 10�3

Modal damping of the stator, (Ns.m�1) Do = 15:4

Modal stiffness of the stator, (N.m�1) Ko = 5:9524 108

Modal coupling factor of the stator, (N.V�1) � = 0:2263


