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Abstract—Two versions of phasor transmission equations de-
rived using power wave theory are presented. These equations
aim at having similar structure as the well-known Friis’ trans-
mission equation and thus being easy to apply whenever the
phase shift in the wireless link cannot be omitted. All versions
are arranged so that they intuitively follow the flow of electro-
magnetic energy from the transmitter all the way to the receiver.
In addition, two versions of phasor scattering equations using
the same path loss and antenna quantities are introduced. These
are intended to help with simplified analysis of communication
channels with unintentional or intentional scatterers such as the
reconfigurable intelligent surfaces.

Index Terms—Antenna theory, Radiowave propagation

I. INTRODUCTION

Friis’ transmission equation [1] is without doubt one of the
most essential pieces of knowledge in wireless communication
engineering. Its popularity is largely due to its structure, which
naturally follows the flow of electromagnetic energy along
the communication channel. Factors of the formula may be
identified with distinct parts of the wireless link, and several
useful quantities, such as the total radiated power, equivalent
isotropic radiated power, or power density can be obtained as
sub-expressions of the equation.

The drawback of the original Friis’ equation is that it
operates with power quantities, which do not satisfy the super-
position principle. Therefore, it is not suitable for analyzing
wireless links with multiple transmitters or receivers (including
electrically large arrays for massive MIMO), or with multipath
propagation, where different paths contribute with different
phase shifts. Moreover, it is not applicable to wireless links
with ultrawideband pulses that require time domain analysis,
and for which various versions of time-domain transmission
equations have been proposed. The need for phase in the trans-
mission equation has been addressed by various alternatives
to Friis’ equation using phasors, with antennas described by
either a transfer function or a complex effective length [2].
An interesting finding followed, namely that transmitting and
receiving antennas contribute differently to the wireless link,
as a consequence of the Lorentz’ reciprocity theorem, resulting
in an asymmetric transmission equation [3].
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Fig. 1. Phasor transmission equation (top) and Friis’ equation (bottom) where
antennas are characterized by complex transfer functions and realized effective
areas, respectively.

In our recent paper, we have proposed phasor alternatives
to Friis’ transmission equation that preserve the symmetry and
modularity of the original [4]. The equations employ complex
effective length vectors, both original and normalized, and a
newly proposed field gain, serving as a phasor counterpart
to the commonly used power gain. Voltage and field waves
are used as sub-expressions of the equations and intermediate
quantities along the communication channel.

In this paper, which is a contribution to the Electromagnetic
Education session, we propose a symmetric phasor transmis-
sion equation that is further simplified by using power wave
theory [5]. We demonstrate that the proposed equation is
structured in a similar way as the Friis’ original, i.e. it is
symmetric and modular (see Fig. 1), and its application to
practical problems is thus very intuitive, which is of great
help when teaching new generations of wireless engineers.
Both transfer function and field gain versions of the equation
have been derived.

In addition, two versions of phasor scattering equations
are proposed, following the same symmetric and modular ap-
proach. These should help analyzing wireless communication
channels with scatterers, either unintentional or intentional
such as the reconfigurable intelligent surfaces (RIS) [6].

II. TRANSMISSION EQUATION

Let us assume that all field and circuit quantities are
rms phasors with the ejωt convention, with frequency f in
ω = 2πf , and wavelength λ. Also, the transmitting (TX) and
receiving (RX) antennas separated by distance r are placed in
free space described by propagation constant k, both are fed



with single mode transmission lines (such as coaxial cables),
and there is a polarization match between them.

Although the original paper of Friis [1] does not display it in
this form, the classical version of Friis’ transmission equation
can be written as

P1 ·A1 ·
(

1

λr

)2

·A2 = P2 (1)

The arrangement of terms in (1) has the advantage that it
visually follows the flow of electromagnetic energy through
the wireless link from left to right. Input power P1 feeds
the TX antenna with effective area A1, which radiates the
electromagnetic energy through free space with path loss
(1/λr)2, until it arrives at the RX antenna with effective area
A2, which then produces power P2 at its output. The effective
areas are considered as realized, i.e. containing any mismatch
effects between the antenna and its feeder. In addition, the
subexpression of (1) to the left of A2 is equal to the power
density of the propagating plane wave at distance r from the
TX antenna, right before it arrives at the RX antenna.

In many situations, however, it is necessary to know also the
phase of the involved signals, such as in multipath propagation
or with multiple TX and RX. This can be solved by using a
phasor transmission equation, of which one possible form can
be [4]

P̃+
1 · h̃1 ·

je−jkr

λr
· h̃2 = P̃−

2 (2)

Here, P̃+
1 is the power wave incoming (+) from TX to the

terminals of the TX antenna and P̃−
2 is the power wave

outgoing (−) from the RX antenna terminals to RX. The TX
and RX antennas are characterized by complex values h̃1 and
h̃2, respectively. This value can be called a transfer function
of an antenna [7], or, alternatively, a normalized effective
length [4], since its dimension is meters and it is proportional
to the traditional effective length h by

h̃ =
h

2

√
η0
Z0

(3)

where η0 is the free-space wave impedance and Z0 is the
reference impedance for the power waves at the antenna
terminals. Just like the effective areas in (1), also the transfer
function contains the mismatch effects of the antenna and its
feeder.

The elegance of (2) lies in its one-to-one relationship with
the Friis’ equation (1) as shown in Fig. 1. Each term of the
Friis’ equation can be obtained simply as a square of the
magnitude of its counterpart in the phasor equation, and the
wireless link is again intuitively traversed from left to right
following the multiplication.

Furthermore, similarly to (1), the subexpression of (2) to
the left of h̃2 is equal to the normalized electric field of
the plane wave incident on the RX antenna Ẽ2 = E2/

√
η0,

where E2 is the incident plane wave electric field. From
Fig. 1 it follows that the power wave-like quantity Ẽ2 has the
familiar simple relation to the power density S2 = |Ẽ2|2. The
mentioned subexpression can, for example, be conveniently

Fig. 2. Phasor transmission equation (top) and Friis’ equation (bottom) where
antennas are characterized by field gains and realized gains, respectively.

Fig. 3. Phasor scattering equation (top) and symmetrized radar equation
(bottom) where the scatterer is characterized by the complex scattering field
gain and RCS, respectively.

used to determine the transfer function h̃1 from measured
electric field when the input power wave is known.

Another form of Friis’ equation is also common in practice,
using realized power gains G1 and G2 instead of realized ef-
fective areas [8]. Also this form can have a phasor version with
one-by-one counterparts to each of the terms, as demonstrated
in Fig. 2. The counterpart to the realized power gain G is the
field gain g̃ defined in [4] and equivalent to another form of
transfer function introduced in [9].

III. SCATTERING EQUATION

If the wireless link contains a scatterer, as in the case of a
radar target or RIS, the power received at RX is expressed
using the radar range equation [8], in its simplest form
omitting the polarization mismatch and reshuffling the terms
to again follow the signal path:

P1 ·G1 ·
1

4πr21
· σ ·

(
λ

4πr2

)2

·G2 = P2 (4)

Here, r1 and r2 are the distances of TX and RX from the
scatterer, respectively, and σ is the radar cross section (RCS)
of the scatterer. What is not very satisfying on (4) is the
asymmetry of the equation, in that it uses two different types of
path loss: the spherical power spreading for the first segment
from TX to the scatterer and the path loss term from Friis’
equation in Fig. 2 for the second segment from the scatterer
to RX.

Figure 3 presents a symmetrized radar equation in the same
style as Fig. 2 together with the proposed phasor version. To
ensure a simple conversion, the scatterer is characterized by a
complex scattering field gain g̃S. This dimensionless quantity



Fig. 4. Phasor scattering equation (top) and symmetrized radar equation
(bottom) where the scatterer is characterized by the complex scattering area
and RCS, respectively.

is equivalent to a product of two field gains, as if the scatterer
consisted of two interconnected antennas characterized by
these field gains.

Another version of the scattering equation is also possible,
with path loss and antenna characterization as in Fig. 1. This
version is shown in Fig. 4 and features a complex scattering
area ãS as the phasor counterpart to RCS. This quantity has a
dimension of square meters and is equivalent to a product of
two transfer functions (or normalized effective lengths), again
as if the scatterer consisted of two interconnected antennas
characterized by the respective transfer functions.

IV. DISCUSSION AND CONCLUSION

Two versions of phasor transmission equations and two ver-
sions of phasor scattering equations have been introduced. The
equations are intentionally arranged in a structured way that
allows to visually follow the flow of electromagnetic energy
through distinct parts of the communication channel. Unlike
the recently proposed antenna equation [10], the present
approach aims at symmetric arrangement with the TX and

RX antennas characterized by the same quantity, in the best
tradition of the well-established Friis’ transmission equation.
Besides, the notation of the involved phasor quantities utilizes
a simple accent, the tilde (˜ ), which, thanks to its shape
(“wave”), gives a hint that the particular quantity is based
on power wave theory. Overall, these properties should help
with simplified analysis of wireless links, where phase cannot
be omitted from the calculations, such as in fading scenarios
both with or without scatterers.
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