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AUTHENTICATION OF PAINTINGS USING HIDDEN MARKOV
MODELLING OF CONTOURLET COEFFICIENTS

C. ROBERT JACOBSEN AND MORTEN NIELSEN

Abstract. In this paper we present a method for determining the authenticity of a
painting by modelling the contourlet transform of digital photographs of the painting.
Specifically, we model the contourlet transform by a hidden Markov model and use
these models for classification by various means.

We have tested our methods on different artists and the results are promising.

1. Introduction

The task of authenticating paintings – that is, determining whether a painting is
indeed painted by the claimed artist – has traditionally been performed by art experts
and connoisseurs. This is a time consuming task where the conclusion is also subjective.
It is of interest to assist the authentication by automatic methods, that can provide an
unbiased opinion in a fast and reliable way. In addition to the authentication, it is also
possible that we gain insight into the development of the artistic style of a painter by
finding a quantitative description of his/hers paintings.
A very distinctive characteristic of an artist is the brushstrokes in a painting. Brush-

strokes are typically consistent throughout a painters work, independent of the contents.
Forgeries are often characterized by more hesitant brushstrokes, when the forger tries to
imitate the style of another painter [4].
There have been previous attempts to perform automatic authentication of paintings

by training the methods to be able to detect paintings that are known forgeries. All au-
tomatic authentication methods works on digital reproductions of the paintings and the
fundamental idea is to extract a limited number of features from the digitized paintings
that are sufficiently expressive to distinguish the styles of different artists.
The authentication task have been tried most thoroughly on paintings by van Gogh

[4, 2, 3, 19] and Pieter Bruegel the Elder [17, 15]. Several of the before mentioned
methods employ multiresolution analysis to extract relevant features from the paintings.
Both wavelets [4, 17, 19, 16] and curvelets [15] have been applied for this task. The
reason for applying these signal processing tools is that they are (hopefully) able to
detect subtle differences in the brushstrokes between authentic paintings and forgeries.
In this paper we work with the contourlet transform [10] of the digital photographs.

The reason for this choice of multiresolution analysis is that the atoms of the contourlet
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AUTHENTICATION OF PAINTINGS 2

transform resemble brushstrokes well. Hence it is likely to obtain very sparse represen-
tations of the paintings which in turn gives better parameters for distinguishing subtle
differences between paintings made by different artists.
The contourlet transform of the paintings is modelled by a hidden Markov model [18]

and by exploiting the differences between the hidden Markov models of different artists,
we are able to predict the affiliation of new images. Our method is a development
of the Princeton approach in [4], where complex wavelets are used in the multiscale
decomposition.
The rest of the paper is organized as follows: In Section 2 we present the data used

in the experiments. Section 3 describes how we apply the hidden Markov models of
the contourlet transform to distinguish between authentic paintings and forgeries. In
Section 4 we present the most important results of our experiments, Section 5 discusses
the interpretation of the presented results and Section 6 contains our conclusions.

2. Artists used in our experiments

We have worked with paintings attributed to three different artists, as described later
in this section. All paintings have been digitised into colour images, but the method for
obtaining the digital images have varied. For the data we have gathered ourselves this
is a deliberate choice since we want to test the robustness of out method and avoid the
problems elaborated in Section 2.3.
Each colour image with Red, Green and Blue (RGB) components is converted to

grayscale (gray = 0.2989 R + 0.5870 G + 0.1140 B) as in [17, 15] in an attempt to
reduce our models dependency of color variations in the images.
Before applying the contourlet transformation we divided each image into non-overlapping,

square patches with a side length of 1024 pixels. The patches were taken from the largest
possible central area of the image. We have also used smaller patches, but the results
obtained were not nearly as good here. The number of patches varied between 2 and 6,
depending on the size of the image.

2.1. Candido Portinari. Candido Portinari (1903 - 1962) was one of the most impor-
tant Brazilian cultural personalities of the last century. In 1979 his son initiated The
Portinari Project [1] to document the work of his father and provide a view of Brazilian
culture during the lifetime of Candido Portinari. An important part of this project is to
detect forgeries amongst the paintings attributed to Portinari.
The dataset that initiated the work for this paper was provided courtesy of The Porti-

nari Project. The data includes both authentic Portinari paintings and known forgeries.
The digital versions of the paintings have been obtained by scanning photographic nega-
tives from an analog camera. We have not had access to information about the details in
the data collection and the data is far from homogeneous, as the distance to the camera,
illumination and angle of the camera varies considerably. As a consequence we have
ended up deselecting this data material from our final investigations.

2.2. Asger Jorn. We expanded our dataset by photographing pictures of the Danish
painter Asger Jorn (1914 - 1973) and of pictures made by his apprentices (that are stylis-
tically similar to Jorn’s paintings). The images by Asger Jorn were provided courtesy of
Museum Jorn, Silkeborg, Denmark. We photographed the paintings of Asger Jorn with
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two different cameras that had very different technical specifications to see how this
influenced our method; a Canon Powershot G2 and a Nikon D90 with a AF-S Nikkor
50mm f/1.4G lens. The Nikon camera records pictures in the raw format, which we then
exported to lossless tiff format. The Canon camera records pictures directly to a lossy
jpeg format.
With the Canon camera all photographs were taken with the same distance to the

painting. With the Nikon camera the distance to the photographs varied, but this
camera records the distance to its focus point, we are able to correct the digital images
to have the same number of pixels per area.
Naturally, we need to standardize the images before comparing them, but it turns out

that there are several things to note about the data material. First of all we need to
find the right zoom level – if the number of pixels per area is too high, we get unwanted
details in the digital reproductions. For instance, the canvas might be too visible at a
high resolution. If the canvas is coarse – as can be seen on the edges of Figure 1a – this
can present a problem, since we might model this texture instead of characteristics of
the artist. Secondly, on older paintings the paint often cracks, which again can interfere
with the modelling.
If the number of pixels per area is too low we do not get enough details to distinguish

the subtle differences between the paintings.
The images of Asger Jorn’s paintings have been the primary dataset used in our

experiments. Figure 1 presents an example of a painting by Asger Jorn and of a painting
by one of his collaborators.

(a) Asger Jorn, Hoved
[Head], 1958, oil on
canvas pasted on lami-
nate, 35.5 cm × 26 cm.
c© Museum Jorn, Silke-
borg.

(b) Helmut Sturm, Uden
Titel [No Title], 1961,
oil on canvas, 75.5 cm ×
80.5 cm. c© Museum Jorn,
Silkeborg.

Figure 1. Examples of the paintings used in our experiments. Helmut
Sturm was a collaborator of Asger Jorn.

2.3. Charlotte Caspers. In [19] the authors concluded that the primary reason for
their success in [4] was because the authentic van Gogh paintings and the known forgeries
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had been photographed by different cameras. This is an important observation; if an
authentication method requires paintings to be digitized in exactly the same way it is
not that useful.
To have access to paintings that had been produced in the same manner and pho-

tographed by the same camera, the authors of [19] asked the conservator Charlotte
Caspers to paint a series of small paintings and then copy these paintings herself. The
digitized versions of these paintings can be found online [7]. Since both the originals and
copies are made by the same artist, it should be very challenging to separate the two
categories, hence this can be thought of as a benchmark dataset.
Moreover, the authentication is also complicated by the fact that the paintings have

been made with different kinds of paint and on different canvas.

3. Methods

In the first part of this section we go through the motivation for our choice of model
and how we fit the models to our painting data. The last part of the section is concerned
with how we utilize our models in detecting forgeries.
The training part of our authentication method works in basically three steps:

(1) Make a contourlet transform of (a part of) the digital images. The contourlet
transform is briefly described in Section 3.1.

(2) Model the contourlet coefficients by a hidden Markov model. Hidden Markov
models are very rich models that have proved to be very useful in recognition
tasks, see e.g. [20, 8, 18]. In Section 3.2 we describe how to model multiscale
decompositions with hidden Markov models.

(3) Construct a classifier from the hidden Markov models of each image.

The classification rule established can then be used to judge the category of new
images.

3.1. The contourlet transform. In this section we briefly introduce the ideas of the
contourlet transform and our motivation for working with this transform. The reader is
referred to the original article [10] for a more detailed description.
For many types of one dimensional signals, an efficient tool for obtaining sparse rep-

resentations is the wavelet transform. Wavelets can also be used in higher dimensions
by applying the one-dimensional transform separately in each dimension. Unfortunately
this approach only captures the one-dimensional singularities in higher dimensional sig-
nals which are often of limited interest. In images the significant changes in the content
occurs along the contours, but the wavelet transform only detects isolated pixels along
contours in three directions (horizontal, vertical and diagonal) on each level of the trans-
form. In most images the contours are not composed of lines with only three different
orientations, so the wavelet transform is suboptimal when it comes to capturing the two
dimensional nature of images.
To overcome the limitations of the wavelet transform, Do & Vetterli developed the

contourlet transform which enjoys the same features as wavelets, but are made for ef-
ficient representation of two-dimensional images. The contourlet transform works by
finding the point discontinuities of an image and linking these discontinuities into linear
structures that resemble the contours of the image, hence the name contourlets.
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Attractive features of contourlets that are similar to the attractive features of wavelets
is that we can obtain a multiscale decomposition of an image by recursively working on
the lowpass subband from the contourlet transformation and that the basis functions
of the contourlet transform are localized in both time and frequency domain. But con-
tourlets offer more than wavelets: We can specify the number of directional highpass
subbands and at every other level the number of directions can double. Additionally,
the support of the basis functions of the contourlet transform are rectangular and spans a
user specified number of directions and therefore contains directional information about
the contours they describe. This is opposed to the square support of the wavelet basis
functions that are parallel to the axes.
By providing a multiscale decomposition that captures the shapes of the contours in

the image it is our hope that we get a better representation of an artists brushstrokes.
An example of a possible contourlet transformation of an image is seen i Figure 2 –

along with a wavelet transformation for comparison.

(a) Two level wavelet decomposi-
tion of image.

(b) Possible two level contourlet decomposition of image.

Figure 2. Comparison of wavelet and contourlet transformation by a two
level decomposition of the grayscale version of the painting in Figure 1b.
In the highpass subbands of the contourlet transformation we capture lines
at a variety of orientations – as opposed to the three fixed orientations of
the wavelet transform.

The curvelet transform [6, 5] also offers a directional multiscale decomposition of
images. We have chosen to work with the contourlet transform since the contourlet
transform is designed to work on discrete data like the digital images we have access to,
whereas the curvelet transform is designed to work on continuous data and is adapted
to discrete data via a sampling grid.

3.2. Hidden Markov modelling of contourlet coefficients. Referring to Figure 4
and Figure 3 we use the following notation in connection with a contourlet transform of
an image.
The coarsest level of the highpass subbands in a contourlet transform contains the

main directions captured by the transform – in Figure 2b there are four main directions.
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In finer subbands the number of directions may increase, but just as in the wavelet
transform, the directional subbands are naturally related to the coarser scales by their
affiliation to a main direction – as illustrated in Figure 4b.
Consider a contourlet coefficient oi on scale J (which is not the finest scale). The

coefficient on the same spatial position on the immediate coarser scale J + 1 is called
the parent of oi, denoted oρ(i). The coefficients on scale J − 1 whose parent is oi, are
called the children of oi. When we are working with two dimensional transforms, each
coefficient has four children. Each of the coefficients on the coarsest scale of a highpass
subband are roots in a tree and it is these trees we are modelling.
In [8] the authors found a good model for wavelet transforms by modelling such trees.

Due to the excellent compression properties of the wavelet transform, the distribution
of coefficients in a given subband and level is highly peaked around zero and has fairly
heavy tails. In this light is not surprising that a normal distribution is not appropriate
to model the many small coefficients and few large coefficients, but a mixture of nor-
mal distributions provides a good description of the wavelet coefficients. Furthermore,
wavelet coefficients tend to cluster (i.e., if a particular wavelet coefficient is small/large
it is likely that adjacent coefficients are also small/large) and be persistent across scales
(i.e., if a wavelet coefficient is small/large it is likely that the children of that coefficient
are also small/large). The persistency is, however, mostly local – that is, a coefficient
does usually not directly influence its grandchildren.
The model proposed in [8] that captures the (local) dependencies across and within

scales and the mixture of normal distributions is a Hidden Markov Tree (HMT). In a
HMT we introduce a hidden state variable S for each of the observations, that determines
which normal distribution in the mixture our observation stems from, that is, O|S =
m ∼ N (µm, σ

2
m).

The dependencies between the hidden states is modelled by a Markov model, such
that the distribution of a hidden state only depends on the rest of the hidden states
through its parent coefficient. An observation oi and the corresponding hidden state si
are indexed in the same manner – see Figure 3.
In [18] Po & Do demonstrated that contourlet transforms can be modelled by HMT’s

that are similar to those introduced in [8]. The difference is that the HMT’s used to
model contourlet transforms have branches that span multiple directional subbands.
However, this is a major advantage of modelling the contourlet transformations instead
of wavelet transformations, because we can model inter-direction dependencies between
contourlet coefficients.
Consider a HMT T in a main direction of a contourlet transform. Following the

notation in Figure 3, the state/observation at the root is indexed by 1. If each hidden
state has N possible values, we have the following parameters for T :

• pS1(n), 1 ≤ n ≤ N : The distribution of the hidden state at the root of the tree.
• ǫn,mi,ρ(i) = P (Si = n|Sρ(i) = m), i ∈ T \ {1}, 1 ≤ n,m ≤ N : The transition

probabilities between every hidden state and its parent.
• µi,m = E(Oi|Si = m), i ∈ T , 1 ≤ m ≤ N : The mean of the normally distributed
variable Oi|Si = m.

• σ2
i,m = Var(Oi|Si = m), i ∈ T , 1 ≤ m ≤ N : The variance of the normally

distributed variable Oi|Si = m.
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Each of the coefficients in the directional subbands on the coarsest levels is the root of
a tree modelled by a HMT. To obtain robust estimates of the parameters in the model,
we model all trees in one main direction as independent and identically distributed – this
is also known as tying [8, 20]. Each level of the contourlet transform contains a quarter
of the pixels from the previous level. So if we apply e.g. a four level contourlet transform
to our patches of side length 1024 pixels, we have 1282 trees for estimating parameters
in the HMT model.
HMT’s are fitted independently to each of the main directions.
We have only used two values for each hidden state, since this provides an adequate

description of our data with the minimum number of parameters. This also allows
the interpretation that one state is associated with edges in the image (characterized
by a large variance) and on state is associated with homogeneous areas in the image
(characterized by a small variance). Furthermore, we set µi,m = 0 for all i and m, since
this is also in correspondence with data.
With the HMT where each hidden state variable can take two possible values and a

variance characterizing the normal distributions we have the following free parameters,

(1) θ = {pS1(1)} ∪ {ǫ1,mi,ρ(i) : i ∈ T \ {1},m = 1, 2} ∪ {σi,m : i ∈ T ,m = 1, 2}.

S1

Sρ(n)

Oρ(n)

Sn

On

O1

Figure 3. Illustration of a graph and the parent children relations of a
hidden Markov tree. The black nodes are hidden state variables and the
white nodes are observations.

To verify that the HMTmodel is indeed applicable for the images we want to model, we
compare the empirical distribution of contourlet coefficients in a subband with coefficients
simulated from the fitted HMT model. As a by-product of the maximum-likelihood
estimation we get the distribution of the hidden states in the HMT, so simulation from
the mixture model in a subband is straightforward. The validity of the model is verified
by making a QQ-plot of the observed and simulated coefficients.

3.2.1. Estimation of parameters. Finding a Maximum Likelihood Estimate (MLE) of the
parameters in the HMT’s modelling the contourlet transform is not an easy task: There
are many parameters and since we do not observe the values of the hidden states, we can
not estimate the distribution of the hidden variables directly. Hence, it is not feasible to
find MLE analytically. To find a (local) MLE we employ an Expectation-Maximization
(EM) algorithm. The specific steps in an EM algorithm are problem dependent and for
the HMT’s we consider here, the appropriate EM algorithm is described in [8].
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(a) Wavelet transform of
an image.

(b) Two levels in a possible contourlet trans-
form of an image.

Figure 4. Parent-children relationship for wavelets and contourlets. The
black coefficients are parents of the white coefficients.

There are some practical issues with numerical precision that must be taken into
account when applying the EM algorithm for the problem at hand.
The EM algorithm is an iterative procedure and expect as such an initial estimate

of the parameters. When performing maximum likelihood estimation we run the EM
algorithm a number of times with different initial values and pick the final estimate with
the greatest likelihood.
The initial values for the probabilities in (1) are simulated from a uniform distribution

on the interval [ǫ, 1] for some small ǫ > 0. The initial values for the standard deviations
are chosen uniformly in the interval [ǫ, 2s], where s is the observed variance in the relevant
subband.
During the iterations of the EM algorithm we also have to take precautions – both in

the expectation and maximization steps.
In the expectation step this is necessary since some of the intermediate results decays

exponentially fast as information is progressed through the coefficient tree. This is a
common problem circumvented by scaling the intermediate results [20].
In the maximization step we might obtain estimates of the parameters that are too

small and we therefore set a lower bound for values of the parameters – just as in the
initialization. If the variances are too small the likelihood of observing large coefficients
is numerically zero, which is not desirable if it happens for a large number of coefficients.
If the probabilities are too small we run into trouble in the next iteration of the EM
algorithm; the states with small probabilities will not be visited very often and hence
the state probability will again be estimated as being small – in this way we will start a
self-reinforcing effect [20].
A positive effect of restricting the admissible values of the parameters is that our EM

algorithm supposedly is less sensitive to the choice of initial values [14].

3.3. Weighing of parameters. To determine which parameters in the HMT are most
important in distinguishing between the authentic paintings and the known forgeries, we
perform a suitable classification.
In the case where we have only two categories for a patch – authentic or fake – we

model this category by a Bernoulli distribution. In a more general case, where we want
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to determine the affiliation to one of K different artists, we would use the multinomial
distribution with K classes.
Let N denote the number of patches in our data set. For 1 ≤ i ≤ N we let θi

denote the free variables for the HMT fitted to patch i We also use the notation θ̃i =
(1, θi,1, . . . , θi,K).
Furthermore, we introduce the categorical variables yi by

yi =

{
1 if patch i is authentic

0 if patch i is a forgery

and pi = P (yi = 1|θi,β), where β = (β0, β1, . . . , βK) is a vector of scalars described
below.
We model the probabilities by a logistic model:

(2) log
pi

1− pi
= β0 +

K∑

ℓ=1

βℓθi,ℓ = β⊤θ̃i.

A priori it is not given that the relationship in (2) should be linear, but it is a simple
model which ensures that the final classification is scale independent and gives satisfac-
tory results. The issue with independence of scale will be explained in the end of Section
3.4.
With the assumption (2), the log-likelihood for N patches under the Bernoulli model

is

l(β) =
N∑

i=1

{
yi log pi + (1− yi) log(1− pi)

}

=
N∑

i=1

{
yiβ

⊤θ̃i − log
(
1 + exp(β⊤θ̃i)

)}
(3)

It is well known how to maximize this log-likelihood function, see e.g. [13]. When
presented with a patch from an image whose authenticity we would like to determine,
one could be inclined to predict the probability that the patch is authentic by the logistic
model:

(4) pi =
exp(β⊤θ̃i)

1 + exp(β⊤θ̃i)
.

However, as discussed in Section 5, there are some potential issues with this approach.
The other option we have used is presented in the Section 3.4.
With the standard logistic model (3) it is difficult (and sometimes impossible with

the working precision) to obtain estimates of the β’s in high dimensional problems.
To circumvent this problem, we use the lasso logistic regression [13] instead, where we
maximize (3) subject to the constraint

(5)
K∑

ℓ=1

|βℓ| ≤ t.
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Equivalently, we can solve the optimization problem in the Lagrangian form

(6) max
β

{ N∑

i=1

[
yiβ

⊤θ̃i − log
(
1 + exp(β⊤θ̃i)

)]
− λ

K∑

ℓ=1

|βℓ|
}

There are two noticeable effects of using the lasso regression. First of all we are able
to obtain estimates of the β’s even in high dimensional problems. Secondly, when we
impose an ℓ1 constraint on the parameters, we force many of the parameters to be exactly
zero [13]. This is opposed to the usual regression, where many of the parameters have
small numerical values, but few parameters are exactly zero. The second effect of the
lasso regression is desirable since it greatly reduces the number of parameters in the
HMT model that actually influence the decision about the affiliation of a painting, when
the training material is sparse.
In [12] the authors present a fast iterative algorithm for solving (6) and we have used

the implementation made available through [11]. When using the software from [12] we
get solutions for finite, decreasing sequence of λ’s in (6). The optimal λ is then chosen
by cross-validation, performed in the following way (based on the guidelines described
in [13]): We obtain β for a sequence of λ’s based on all patches except those from a
particular image. Then we predict the authenticity of the patches in the image that was
not used in the training and use a suitable loss function to determine if the prediction
is successful. This procedure is repeated for all images and in this way we obtain an
estimate of the prediction error for each λ in the sequence.
As mentioned in the beginning of this section, we can also extend this method to deal

with multiple artists. Now let

pi = P (patch i is made by artist k |θi,β)

where 1 ≤ k ≤ K. Instead of the binomial logistic model (2), we model these probabilities
by the symmetric multinomial logistic model

(7) pi =
exp(β⊤

i θ̃)∑K
k=1 exp(β

⊤
k θ̃)

, 1 ≤ i ≤ K.

With this model we get a β vector for each of the K artists. To find the MLE of (7)
subject to the constraint (5) we can also use the software presented in [12].

3.4. Multidimensional scaling. Here we present a classification alternative to (4) that
resolves some of the issues with the prediction procedure described above. This method
has also been our primary method.
It is desirable to present the patches as points in a euclidean space, i.e. assign mean-

ingful coordinates to a patch. After representing patches in this way we are able to use
a wide range of classification tools. The important part here is the way we obtain the
euclidean representation – the tools we have used in the subsequent classification might
not be optimal – but they serve more as an illustration of the possibility of obtaining
good classification schemes.
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The way we have achieved this is by defining a suitable dissimilarity1 between individ-
ual patches and then employed a Multi-Dimensional Scaling (MDS) algorithm to find a
configuration of points in R2, whose pairwise distances resembles those of the original
data.
When comparing HMT’s it is common to use the Kullback-Leibler divergence [20, 18].

We have tried to use the Kullback-Leibler divergence as a dissimilarity measure between
patches, but this did not give satisfactory results.
Instead we have used a dissimilarity between paintings that utilises the regression

described in Section 3.3.
After performing the logistic regression to obtain β we get an ordering of the θi’s –

the larger the numerical value of βi, the more θi influences the authenticity.
We use this to define a norm between the patches as a weighted ℓ1-norm between the

θ’s of different patches. Let

(8) wi = |βi|, 1 ≤ i ≤ K.

The distance between two patches Pi and Pj with HMT parameters θi and θj, respec-
tively, is then

(9) dP (Pi, Pj) :=
K∑

ℓ=1

wℓ|θi,ℓ − θj,ℓ|.

Since many of the regression coefficients are zero the number of nonzero terms in the
sum (9) is usually much smaller than K.
We compute the patch-to-patch distance between every pair of patches and combine

these into image-to-image distances by computing the Hausdorff distance between the
patches belonging to each image. So if image Ii contains the patches Pi,1, . . . , Pi,Mi

, the
distance from image Ii and Ij is

(10) dI(Ii, Ij) := max
1≤k≤Mi

{
min

1≤ℓ≤Mj

{dP (Pi,k, Pj,ℓ)}
}

and the Hausdorff distance between image Ii and Ij is

(11) dH(Ii, Ij) := max{dI(Ii, Ij), dI(Ij, Ii)}.
We use a MDS algorithm to find a configuration of points in R2 whose pairwise

distances are as close as possible to the distances in (11).
The MDS algorithm that provide the best results is the classical MDS (see e.g. [21]).

The two dimensional representation obtained from the classical MDS accounts for as
much of the variation in data as is possible in two dimensions. It is as such roughly
equivalent to a principal component analysis [13]. 2

1A dissimilarity between patches r and s is a map δ from the set of patches to the real numbers that
satisfies δ(r, s) ≥ 0, δ(r, r) = 0 and δ(r, s) = δ(s, r).

2The classical MDS aims at finding a configuration of points in some Rn – possibly very high di-
mensional – whose pairwise euclidean distances are the same as the specified pairwise distances. The
coordinates of the euclidean configuration are ordered in terms of explaining variance in data – the lower
entries in a coordinate vector explains more of the variance than the higher entries. Hence, we get a
good two dimensional representation by choosing the first two entries in the configuration obtained with
the classical MDS.
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We also tried using a weighted ℓ2-norm in (9), but this gave significantly worse results.
The reason for this is that the most significant parameters of the HMT is the transition
probabilities and the ℓ1-norm penalizes small deviations better than the ℓ2-norm. The
multidimensional scaling algorithms only require that the dI(Ii, Ij) in (10) are dissimi-
larities, so in (8) we also tried ℓτ pseudo-norms with τ < 1. However, this approach did
not outperform the ℓ1-norm.
If we include additional images in the pairwise distance matrix, the configuration of

coordinates changes. So when using this method for classification we proceed as follows.
We calculate the weights (8) using the patches from a training set and perform a MDS
for all the available patches, that is, for both the training images and the images to be
tested. From this MDS we calculate a suitable decision boundary in the training set and
classify the test images with this classifier.
In Section 4 we have used this method in a leave-one-out cross-validation with the

decision boundary calculated with a simple support vector machine classifier.

3.4.1. A note on independence of representation. We can represent a digital image in
multiple equivalent ways by scaling the pixel values, but the final classification should
not depend on the representation.
When calculating distances between models as in (9), we are ensured that the distances

are independent of the image scale, as is seen by the following argument.
The contourlet transform and the standard deviations in the HMT’s are both positively

homogeneous of degree 1 and the weights in the regression are homogeneous of degree
−1. This implies that scaling factors cancel in the expression (9): We only have to
consider the standard deviations in a fitted HMT model and these are homogeneous of
degree 1. Let σi,ℓ and σ′

i,ℓ be the two of the standard deviations in an HMT model of a
patch Pi with equivalent representations. That is, σi,ℓ = kσ′

i,ℓ for some constant k > 0

and the corresponding regression weights are wℓ =
1
k
w′

ℓ. Thus the contribution of these
standard deviations to the distance (9) is

wℓ|σi,ℓ − σj,ℓ| =
wℓ

k
|kσi,ℓ − kσj,ℓ| = w′

ℓ|σ′
i,ℓ − σ′

j,ℓ|,

independent of the scale.

4. Results

We now present the results obtained by our methods. In our experiments we used
the Contourlet Toolbox by Minh Do [9]. In the Contourlet Toolbox we have to specify
the pyramidal and directional filter as well as the number of directional subbands on
each pyramidal level. In our experiments we tried a number of different combinations
of filters, but most filters performed comparably. In the results presented here we have
used the 9-7 pyramidal filter and the pkva12 directional filter.
Besides the number of directions on the pyramidal level, we can also choose the zoom

level – that is, how much digital zoom should be applied before fitting a HMT model. It
turns out that the zoom level is influential – for the high resolution Asger Jorn images

If the classical MDS is successful at finding a perfect euclidean configuration, this dimension reduction
technique is the same as applying a principal component analysis to the euclidean configuration.
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obtained with the Nikon camera, the best results are obtained when the images are
zoomed to be 75% of their original size.
The effect of choosing the right zoom level is not only visible in the final classification;

with the wrong the zoom levels the regression algorithm [11] did not converge – hence
fitting the binomial model is not feasible.
The effect of zoom levels – and other preprocessing of the images – needs further

investigation and will not be explored in the present work.
As described in Section 3.2, we verify that the HMT model is appropriate for our

data by making a QQ-plot of the observed coefficients versus coefficients simulated by
the fitted HMT model. An illustration of a QQ-plot for the coefficients is presented in
Figure 5.
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Figure 5. QQ-plot of coefficients from subband versus simulated coeffi-
cients from the fitted HMT model. The coefficients are from a patch from
an Asger Jorn picture recorded with the Nikon D90 camera.

For some subbands the tails of the coefficient distribution are heavier than the fitted
mixture distribution - however, the model is acceptable.

4.1. Results for Asger Jorn. When deciding which model(s) to work with, we perform
cross-validation as described in Section 3.3 either directly with the logistic model or by
classifying the MDS configuration.
Since we have fixed the filters used in the contourlet transforms, the different trans-

forms we have worked with are characterized by the number of directions on each pyra-
midal level. For the different contourlet transforms we have performed leave-one-out
cross-validation to get an estimate of the error rate when prediction the category of an
image.
The results are presented in Figure 6.
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Figure 6. Results from leave-one-out cross-validation for the different
settings used in the training. The length of a bar is twice the standard
deviation of the estimated misclassification error. For each choice of direc-
tions we have estimated the misclassification error with (4) (left bar) and
by the method described in Section 3.4 (right bar).
The reason that the left bars are shorter than the right is that with (4)
we determine the authenticity of each patch individually where as for the
other method we determine the authenticity one image at a time.
With the method from Section 3.4 the number of misclassified images
varies between 6 and 11 out of 44.

It is seen from Figure 6 that the contourlet transform with 8, 8, 16, 16 directions on
the pyramidal levels performs well with both classification methods – the rest of the
results presented is based on this transform. The contourlet transform with 2 major
orientations directions is best with MDS based classification. We have chosen to work
with the transform that has 8, 8, 16, 16 directions none the less, since the separation for
all images is much better for this transform.
The λ’s in the regression model that give the best classification results rely on between

10 and 30 nonzero parameters from the HMT’s – which in most cases is a considerable
reduction from the full parameter set, cf. Table 1.
Regarding the misclassification probabilities with (4) in Figure 6 the following obser-

vations should be noted: For the best model we noted the misclassification probability
for both the authentic images and forgeries separately. It turns out that for most λ
values used in the lasso regression (6) all the authentic patches were classified correctly,
whereas for the forgeries the minimum misclassification error is around 20 % and this is
only achieved for a few λ values.
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Directions Free parameters

2 2 4 4 8 8 110
2 2 4 4 8 78
2 2 4 4 46
4 4 8 8 16 16 220
4 4 8 8 16 156
4 4 8 8 92
8 8 16 16 32 32 440
8 8 16 16 32 312
8 8 16 16 184

Table 1. The number of free parameters for the HMT model (1) with
the specified number of directions on each pyramidal level.

Furthermore, it is notoriously difficult to classify the images of the painting in Figure
1b by Helmut Sturm. When performing cross-validation, the painting by Helmut Sturm
is misclassified for all the transform tested in Figure 6.
With the HMT model based on the contourlet transform with 8, 8, 16, 16 directions

on the pyramidal levels we have visualized the decision boundary calculated from all of
our available data, as described in Section 3.4.
The result for the Asger Jorn paintings is seen in Figure 7. Here we have presented

separation for the individual photographs and for the individual paintings. We see that
the authentic Asger Jorn paintings are well separated from the non-Asger Jorn paintings.

 

 

non−Asger Jorn
Asger Jorn

(a) Classification of the Asger Jorn images.

 

 
non−Asger Jorn
Asger Jorn

(b) Classification of the Asger Jorn paintings.

Figure 7. Classification of Asger Jorn’s images from the multidimen-
sional scaling configuration described in Section 3.4. One classification is
based on the paintings – each of which is captured in several images. The
other classification is of the individual images.
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As mentioned in Section 2.3 other multiscale methods does not work well across dif-
ferent cameras. To test if our method is robust enough to classify images of the same
paintings obtained with a different camera, we have used the images from our Nikon
camera to classify the images obtained with the Canon camera. As it is seen in Figure 8
the models trained from images obtained with different cameras are comparable – if we
have chosen the right zoom level.
With Figure 8b we correctly classified 32 out of 36 images from the Canon camera.

 

 

non−Asger Jorn (training)
non−Asger Jorn (classified)
Asger Jorn (training)
Asger Jorn (classified)

(a) The zoom level of the training and test im-
ages are very different.

 

 
non−Asger Jorn (training)
non−Asger Jorn (classified)
Asger Jorn (training)
Asger Jorn (classified)

(b) The zoom level of the training and test im-
ages are comparable.

Figure 8. Comparison of the effect of zooming the images. In both
cases we have tried to classify the images from the Canon camera (with
low resolution) from a Support Vector Machine decision rule calculated
from images obtained with the Nikon camera (with different resolutions).
In (a) we used the original images for the training and in (a) we scaled
the training images. The right zoom level was determined manually by
comparing fixed objects in images of the same painting with different zoom
levels.

4.2. Results for Charlotte Caspers. Our results for the images by Charlotte Caspers
are far from satisfactory and except for one curiosity it is not worth elaborating the details
here. In Figure 9 is the result of a MDS for all images by Caspers and the thing worth
noticing here is that the copies and originals are clustered together and separated from
the rest. The clustering tendency is more dominant in an interactive 3 dimensional MDS,
but the main point is still distinct in the 2 dimensional MDS.
Also, the number of nonzero coefficients in the regression is very high for the Caspers

images.

5. Discussion

We have shown that the HMT provides an adequate description of the contourlet
coefficients from the pictures we work with of paintings. By modelling the class of a
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Figure 9. Visualization of the images by Charlotte Caspers as explained
in Section 3.4. The originals and copies are denoted by O# and C#,
respectively, with # = 1, . . . , 7.

painting by a logistic model we obtain two ways of determining the affiliation of a new
painting, namely (1) estimation of the probability that a patch belongs to a certain
class via (4), and (2) applying a classification algorithm on the MDS computed from the
dissimilarities in (11).
As for the method 1), we can obtain fairly good overall performance, as presented in

Figure 6. However, as demonstrated by the separate misclassification probabilities for
the authentic Asger Jorn paintings and the images made by his apprentices, this method
does have its drawbacks. Correct classification of the authentic Asger Jorn paintings
seems to be an easy task for the model, but correct classification of the non-Asger Jorn
paintings is more challenging. The reason for this is that the non-Asger Jorn paintings
is not a well-defined class, since it contains every painting not made by Asger Jorn.
When determining which class is more likely for a new painting to belong to, the model
compares the features of the painting with the features of the different classes. It is not
certain that a new non-Asger Jorn paintings shares the features of the so far observed
non-Asger Jorn paintings and it is also unrealistic to model this class.
One drawback of method 2) is that it is necessary to find a new configuration of points

and compute a new decision boundary every time a new painting needs to be tested.
Method 2) is better than method 1) in the sense that it aims at clustering the points

that share dominant features with authentic training images instead of distributing prob-
ability mass between two (or more) classes.
To illustrate this we have classified the peppers image seen in Figure 10 with both

methods. The peppers image should not resemble Asger Jorn’s image nor the ones made
by apprentices.
Using (4) to predict the category of the peppers image, we get that it is fake with

probability 0.82. But as it is seen from Figure 11, the peppers image is an outlier of the
authentic Asger Jorn images.
A potential problem with our method(s) is seen in Figure 9, where the images cluster

according to the content of the image and/or the canvas rather than according to the
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Figure 10. The peppers image is used to demonstrate how our classifi-
cations work on a picture completely different from the training images.

 

 
non−Asger Jorn

Asger Jorn
peppers

Figure 11. The peppers image is used to demonstrate how our classifi-
cations work on a picture completely different from the training images.

class. A reasonable explanation to this behavior is that the materials induce systematic
patterns that the contourlet transform captures.
An interesting observation is that our classification methods depends on the zoom

level of the images. The effect of data collection and preprocessing of the digital images
is an issue that should be addressed further.

6. Conclusion

In this paper we have constructed methods for classifying paintings. The contourlet
transform of digital images of paintings is able to efficiently capture the contours of the
image – including the brushstrokes of painter, which is believed to be very character-
istic. The multiscale contourlet transformation is well described by a hidden Markov
tree, which captures both the coefficient distribution on the individual scales and the
dependency structure between the scales.
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By applying a lasso regression we are able to link the parameters of the hidden Markov
trees with the class of the each painting. We have utilized this in two classification meth-
ods. We can either get the probability of affiliation for each class based on the likelihood
between the test image and the known representatives of each class. Alternatively we
use the regression coefficients to define a metric between patches as a weighted euclidean
distance and collect the distances between the patches of an image to a distance between
images. When we known the pairwise distances between every image, we can find a
configuration of points in a low dimensional space whose pairwise distances resembles
the distances between the images If the different classes from the training data in such
a configuration are separated, we can use a suitable classification method to calculate
decision rules that can be used on test data.
A promising aspect of our method is that we – with reasonable success – can determine

the authenticity of images digitized differently than the training data.
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