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English Abstract

In this thesis, the author study various aspects of terahertz (THz) spectroscopy
conducted in reflection. After a brief introduction including both THz time-
domain and frequency-domain spectroscopy, the main body focus on the
application of THz spectroscopy for stand-off detection of explosives, which
is followed by a chapter on THz generation through optical rectification (OR)
in reflection. Finally, an outlook is given including a prospective direction of
THz stand-off spectroscopy as well as future studies of THz OR in reflection.

In regard to THz stand-off detection, the methodology for how continuous-
wave frequency-domain THz spectroscopy using multiple sources and de-
tectors can be employed to increase the distance in stand-off measurements
was explored. First, the radiation patterns state-of-the-art THz photomixer
sources were characterized. Then, a stand-off CW THz spectrometer based on
arrays of THz photomixer transmitters and receivers has been demonstrated.
Using a reflecting sample, the stand-off distances could be increased to 10
m while retaining a 2:1 signal-to-noise ratio at 0.8 THz. However, the mea-
surements were governed by the best performing transmitter/receiver pair.
Subsequently, simple machine learning algorithms (MLAs) including princi-
pal component analysis and linear discriminant analysis were implemented
for identification of explosives via their spectroscopic reflection characteris-
tics. Excellent identification accuracies >99% were obtained even under un-
favorable conditions. Additionally, it is shown that deconvolution of THz
reflection spectra by a precise reference spectrum is redundant in regard to
identification tasks based on MLAs.

Finally, THz generation through OR in reflection has been studied at nor-
mal incidence in the scope of future THz microscopy, viz. OR THz imaging,
of opaque materials. First, a nonlinear plane wave model was established to
analyze when generation in reflection is preferable. Secondly, experimental
observations of a THz signal generated in reflection at the surface of a ZnTe
crystal were demonstrated. Most importantly, it is found that the signal gen-
erated in reflection exhibits similar characteristics to a transmission signal but
supports a larger bandwidth as it is not limited by dispersion and absorption
losses from propagation inside the crystal.
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Dansk Resumé

I denne afhandling studerer forfatteren forskellige aspekter af terahertz (THz)
spektroskopi i et reflektionsformat. Først gives en introduktion, hvorunder
THz tidsdomæne og frekvensdomæne spektroskopi kort beskrives. Hov-
edteksten er centreret omkring anvendelsen af THz spektroskopi til sporing
af sprængstoffer på sikker afstand. Herefter findes et kapitel omhandlende
generation af THz stråling via optisk ensretning i reflektion. Til sidst gives
et bud på udsigterne for sporing af sprængstoffer ved hjælp af THz spek-
troskopi, samt et overblik over fremtidige studier indenfor THz genering ved
optisk ensretning i reflektion.

I forhold til sporing af sprængstoffer undsøges det, hvordan frekvens-
domæne THz spektroskopi med multiple THz sendere og modtagere kan
udnyttes til at øge måleafstanden. Først kortlægges udstrålingsmønstrene
af moderne THz antenner. Herefter demonstreres et THz frekvensdomæne
spektrometer med multiple sendere og modtagere til målinger på lang af-
stand. Måleafstanden, hvor et signalstøjforhold på 2:1 ved 0,8 THz er be-
varet, kunne øges til 10 m for en reflekterende prøve. Dog var målingerne
domineret af det bedst ydende sender/modtager par. Endeligt implementeres
simple maskinlæringsalgoritmer til identificering af sprængstoffer via deres
spektroskopiske kendetegn i reflektion. Herunder principal komponent anal-
yse og lineær diskriminant analyse. Sprængstoffer kunne identificeres kor-
rekt i mere end 99% af tilfældene, selv under vanskelige forhold. Ydermere
er affoldning af THz reflektionsspektrene med et nøjagtigt referencespektrum
unødvendigt for korrekt identifikation ved hjælp af maskinlæring.

Til sidst studeres THz generation i reflektion via optisk ensretning under
normalt indfald med henblik på THz mikroskopi af uigennemsigtige mate-
rialer. Først etableres en ulineær planbølgemodel for at analysere, hvornår
generation i reflektion er favorabel. Dernæst observeres et THz signal gener-
eret i reflektion på overfladen af en zinktellurkrystal eksperimentelt. Det
erfares, at signalet genereret i reflektion indeholder samme information, som
et signal genereret i transmission, men det understøtter samtidigt en større
båndbredde, da det ikke begrænses af dispersion og absorptionstab fra ud-
bredning gennem krystallen.
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Chapter 1

Introduction

The terahertz (THz) frequency band spans the electromagnetic spectrum from
the microwave to the far infrared region, slightly overlapping both regions.
Within the community, the consensus is that terahertz spectral band ranges
from 0.1 to 10 THz, even though the boundaries are yet to be clearly defined
[1–3]. The wavelength λ of an electromagnetic wave is inversely proportional
to its frequency ν, that is

λ =
c
ν

, (1.1)

where c = 1/
√

εoµo is the speed of light in vacuuma (εo and µo are respec-
tively the permittivity and permeability of free spaceb). Thus, the THz band
covers wavelengths from 30 µm to 3 mm. Photon energies E = hν associated
with THz frequencies lie between 0.41 and 41 meV (h is the Planck constantc).
An equivalent thermodynamic temperature range can be established through
E = kBT corresponding to roughly 5 - 500 K (kB is the Boltzmann constantd).
Let us notice that the thermal energy Eth at room temperature (T = 300 K)
is approx. 26 meV, which translates to 6.3 THz. Therefore, thermal radiation
and temperature are important factors when working in the THz domain,
which often requires sophisticated experimental schemes.

The interactions of THz waves with matter are of great interest. The adja-
cent microwave and infrared regions are well-known for their spectroscopic
techniques used to probe low-energy rotational transitions of molecular gases
[4] and vibrational as well as rovibrational transitions of molecules [5], re-
spectively. In the THz region, rotational transitions of molecules, torsional
vibrations, and low-frequency vibrational modes involving large-amplitude

a c ≈ 2.998 × 108 m/s
b εo ≈ 8.854 × 10−12 F/m and µo ≈ 1.256 × 10−6 N/A2

c h ≈ 6.626 × 10−34 J s ≈ 4.136 × 10−15 eV s
d kB ≈ 1.381 × 10−23 J/K

1



Chapter 1. Introduction

motions of organic compounds through lattice vibrations in solids to intra-
band transitions in semiconductors and energy gaps in superconductors can
be probed. [1, 2, 6] In fact, the rotational interaction strengths are 103 - 106

times stronger in the THz band relative to the microwave region [7], and
in contrast to mid-infrared region, where polyatomic gases exhibit an abun-
dance of modes leading to complex absorption bands and spectral convolu-
tion of different molecules with similar functional groups [8], the THz region
offers specificity and selectivity [9]. Notably, liquid- and gas-phase polar
molecules absorb THz waves strongly, however, polar gases do have trans-
parent windows in between their absorption peaks. Dielectric media are in
general transparent in the THz region. Nevertheless, pure crystals exhibit
absorption peaks due to phonons, while impurities and localized vibrations
in, e.g. , amorphous solids cause broadband attenuation. On the other hand,
conductive materials like metals containing free charges act as almost perfect
conductors. [1]

Obviously, the THz region has attracted much attention for its ability to
probe such fundamental physical processes. However, while there are sev-
eral ways to generate [10] and detect [11] THz radiation, the main challenge
for THz spectroscopy has been the lack of compact and sufficiently powerful
THz sources and sensitive detectors at spectroscopically relevant frequen-
cies. Electronic THz sources emerging from the radio frequency (RF) side in-
cluding, e.g. , backward-wave oscillators (BWO), Gunn diodes, and frequency
multipliers, are generally narrowband, continuous-wave (CW), and to some
extend tunable emitters. Typically, these sources operate well below 2 THz
and can provide rather high output power up to tens or even hundreds of
mW. Optical techniques include, e.g. , quantum cascade lasers (QCLs), opti-
cal parametric generators/oscillators (OPG/OPO), difference frequency gen-
eration (DFG) and optical rectification (OR) in nonlinear media as well as
photoconductive (PC) antennas and photomixers. Together, these techniques
allow for generation (and in most cases detection) of THz radiation in the
form of coherent CW, narrowband quasi-CW (long pulses), and broadband
ultrashort pulses. However, QCLs often require cryogenic cooling due to
thermal noise and exhibit very limited tunability, while the nonlinear opti-
cal mixing processes cover a broad spectral range and can reach rather high
power levels at the cost of complex laser systems. Though being regarded
as optical techniques qua the use of near-infrared lasers, PC antennas and
photomixers rely just as much on the control of photocarrier lifetimes and
mobilities as well as antenna designs from the RF side. Their development
has especially been driven by the attractive scientific and promising indus-
trial applications of THz spectroscopy together with the advance of modern
laser technology, which has led to compact and reliable pulsed and CW THz
spectrometers have become commercially available in the recent years.

In the following sections, a brief introduction will be given of the two

2



1. Terahertz Time-Domain Spectroscopy

most common methodologies, viz. THz time-domain spectroscopy and THz
frequency-domain spectroscopy. Both of which have been employed in this
work.

1 Terahertz Time-Domain Spectroscopy

For many years, THz spectroscopy was almost synonymous with THz time-
domain spectroscopy (TDS). Hence, the technique is well-described in sev-
eral textbooks [1–3, 12] and thorough reviews [6, 8, 13, 14] of its various
aspects and applications. Thus, this section will only introduce the basics
of the methodology. A traditional TDS setup is seen in Fig. 1.1. A mode-

emitter

Vbias

receiverTIAlock-in
detection

off-axis
parabolic

mirror

sample
THz pulse

laser
BS

optical delay

femtosecond
pulse

Fig. 1.1: Illustration of a traditional TDS setup.

locked laser delivers a train of femtosecond laser pulses, which is divided
into a pump and a probe branch by a beam splitter (BS). The two beams are
then incident on an emitter and receiver, respectively, to generate and detect
THz waves. In this scheme, coherent sub-picosecond broadband THz pulses
are generated. Typically, the THz electric field is detected, which requires
a time resolution on the femtosecond scale much faster than any electronic
receivers. Thus, equivalent time sampling is employed. This technique re-
lies on the ultra-stable pulse trains delivered by mode-locked femtosecond
lasers. An optical delay is implemented in the probe branch, which allow us
to record the THz waveform step by step using a slow field detector. Let us
notice that this allow us to retrieve the instantaneous amplitude as well as
the instantaneous phase of the THz field.

Commercial systemse in particular employ PC antennas as sources and
detectors of THz pulse. Frequency mixing through optical rectification (OR)
in nonlinear crystals is another common way to generate broadband THz

eSee for example TOPTICA Photonics AG, MenloSystems GmbH, Teravil Ltd. or TeraView
Ltd.

3



Chapter 1. Introduction

pulses, which are then typically detected via electro-optic (EO) sampling.
OR will be treated in more details in Chapter 3.

semiconductor
substrate

Vbias metal
electrodes

femtosecond
pulse

THz
pulse

Fig. 1.2: Illustration of a PC antenna employed to generate broadband THz pulses.

PC antennas consist of a semiconductor slab with a pair of metal elec-
trodes on top as illustrated in Fig. 1.2. By applying a bias voltage Vbias to
the electrodes and exciting the semiconductor with a beam of light exhibit-
ing photon energies larger than the bandgap, a time-varying photocurrent is
generated. To generate and detect broadband THz radiation, ultrafast opti-
cal pulses and photoexcited free carrier lifetimes on the sub-picosecond scale
are required. This is often met by 800-nm wavelength Ti:Sapphire mode-
locked femtosecond lasers in combination with low-temperature grown GaAs
substrates, respectively. Thereby, the acceleration and decay of the free car-
riers induce an electric dipole emitting electromagnetic pulses on the sub-
picosecond scale. The resulting THz far-field is proportional to the time
derivative of the photocurrent i(t) [1], i.e.

ETHz(t) ∝
∂i(t)

∂t
. (1.2)

It can be shown [1] that the THz spectral amplitude can be expressed

ETHz(ν) ∝ νµVbias Ilaser, (1.3)

where µ is the electron mobility in the substrate and Ilaser is the laser intensity.
Thus, the PC substrate should also exhibit a high carrier mobility and a high
breakdown field for optimized THz generation.

In a reverse scheme, PC antennas can be utilized to detect broadband
THz pulses. Again, femtosecond pulses are impinged on the PC in the gap
between the antenna electrodes to excite free photocarriers. In the presence
of an incoming THz electric field, the free carriers are accelerated and a pho-
tocurrent flows between the electrodes. This current is proportional to the

4



2. Terahertz Frequency-Domain Spectroscopy

THz field and can be measured using an ammeter connected to the elec-
trodes. Similarly, if the incoming THz bias field is absent, the free carriers
will recombine and no net current is measured between the electrodes. Typi-
cally, a lock-in amplifier is employed since the photocurrent to be measured
is often on the nano-amp scale. The necessary modulation of the generated
THz beam is then achieved by either modulating the emitter bias voltage or
by chopping the optical pump or the THz beam. The THz-induced photocur-
rent is a convolution of the THz electric field and the response function of
the PC switch G(t), i.e.

iph(t, τ) ∝ ETHz(t − τ)
∫ ∞

0
Ilaser(t − t′)G(t′)dt′, (1.4)

where τ is the time delay between emission and detection. [1, 2] However,
the electronics employed to measure the photocurrent are much slower, and
we end up with a time-integrated signal

S(τ) =
∫ ∞

−∞
iph(t, τ)dt (1.5)

for which G(t) = 0 for t < 0 because of causality. Here, the THz waveform is
obtained by scanning optical delay of the optical probe beam corresponding
to τ. Taking the Fourier transform to obtain the spectrum of the recorded
signal, we get

S(ν) ∝ G∗(ν)IlaserE∗
THz(ν), (1.6)

where ∗ denotes the complex conjugate. [1] Thus, short carrier lifetimes are
crucial for broadband PC detectors in order to achieve a broad and flat re-
sponse function G(ν). In modern TDS systems it is possible to achieve band-
widths up to 6 THz with approx. 1 GHz frequency resolution. Furthermore,
high signal-to-noise ratios (SNRs) are inherent to THz-TDS measurements
free of the thermal background due to the gated and coherent detection
scheme. In fact, 100 dB dynamic range at 0.1 THz within a 200 ms inte-
gration is possible, even though, the average THz powers only reach up to
100 µW at best.

2 Terahertz Frequency-Domain Spectroscopy

Continuous-wave (CW) THz frequency-domain spectroscopy (FDS) by means
of photomixing was first introduced by Brown et al. [15] in 1995. Fundamen-
tally, photomixers are optoelectronic devices akin to the PC antennas em-
ployed in TDS. A monochromatic THz wave is generated in the photomixer
illuminated by two CW lasers slightly offset in frequency. The THz frequency
can then be scanned by tuning the frequency difference of the lasers. Typi-
cally, a second photomixer is coherently driven by the same lasers. Thus, like

5



Chapter 1. Introduction

in TDS, both the instantaneous amplitude and phase of the THz electric field
can be obtained.

emitter

Vbias

receiverTIAlock-in
detection

off-axis
parabolic

mirror

sample
2×2 coupler

laser 1

laser 2

ν1

ν2

beat note

CW THz

Fig. 1.3: Illustration of a typical CW THz spectrometer based on photomixers.

Modern CW THz spectrometers [16] are based on 1.5 µm distributed feed-
back (DFB) lasers designed for the telecom band and InGaAs photomixers.
These systems offer tunability up to 2.75 THz using triple DFB lasers [17] and
superior spectral resolution (<10 MHz). Furthermore, the spectrometers are
very compact and robust thanks to the all fiber-coupled design. Typically, the
emitters deliver 100 µW (10 µW) at 0.1 THz (0.5 THz). The coherent detection
scheme together with lock-in detection yield a peak dynamic range of 90 dB.
Fig. 1.3 illustrates such a commercial THz-FDS system. Here, a waveguide
integrated photodiode (PD) antenna in reverse bias mode serves as a THz
emitter. These devices are essentially high-speed PIN-structured PDs (an In-
GaAs/InGaAsP heterostructure grown on semi-insulating InP) developed for
telecom applications, which have been optimized for THz generation, with
bowtie antennas integrated on top of the diodes. Both high speed and high
efficiency is achieved by the waveguide-coupled optical input, which allow
for high absorption in the thin active layer. [18] The receiving photomixer is
a highly engineered PC antenna for the 1.5 µm optical probe beam. A bowtie
antenna with interdigitated finger electrodes in the PC gap is deposited on
a 100-period InGaAs/InAlAs quantum well nanostructure stack grown on a
InP substrate. All combined, this results in a high-speed PC receiver with
low dark currents, improved sensitivity and an increased optical-THz inter-
action length. The two CW lasers emitting at slightly different frequencies
ν1 and ν2 are combined in 50:50 fiber coupler to form an optical beat note.
Subsequently, the resulting beat note is split and incident on the emitting and
receiving photomixers, respectively. Let us assume that the lasers have equal
electric field amplitudes E1 = E2 = E0 and similar polarizations. Further-
more, we write the corresponding angular frequencies as ω1 = ω0 − Ω/2
and ω2 = ω0 + Ω/2. Here, Ω = ω2 − ω1 is the THz frequency. Then, the
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2. Terahertz Frequency-Domain Spectroscopy

combined electric field can be written

E(t) = E0 cos(ω1t) + E0 cos(ω2t). (1.7)

Thus, the laser intensity I(t) = 1
2 cε0|E(t)|2 at the photomixers writes

I(t) = Ilaser

[
cos2(ω1t) + cos2(ω2t) + cos(Ωt) + cos(2ω0t)

]
(1.8)

with Ilaser =
1
2 cε0E2

0 . At the emitting PIN diode, electron-hole pairs (i.e. , pho-
toexicted free carriers) are generated in the intrinsic layer (depletion region)
by the modulated laser intensity. However, the photocarrier response time
is much slower than the oscillations at ω1, ω2 and 2ω0. This means that the
photocarrier density is proportional to time-averaged laser intensity

⟨I(t)⟩ = Ilaser [1 + cos(Ωt)] (1.9)

intergrated over an interval that is short compared to the THz period but
longer than the optical periods.[1] Hence, the photocarriers only respond to
the envelope of the intensity beat note, which is modulated at the THz fre-
quency Ω ≪ ω0. The build-in electric field and/or the applied bias voltage
Vbias facilitates a photocurrent by accelerating the free photocarriers to the
diode contacts. Since the photocarrier density is modulated at the THz fre-
quency Ω, the induced photocurrent i(t) oscillates at this extact frequency.
Similar to PC antennas, the photocurrent is converted into THz waves by the
bowtie antenna. It follows that the radiated THz far-field is proportional to
time derivative of the photocurrent i(t) [1, 2], i.e.

ETHz(Ω, t) ∝
∂i(t)

∂t
∝ IlaserΩ sin(Ωt). (1.10)

Like in TDS, the incoming THz field at the receiving (unbiased) PC antenna
accelerates the induced photocarrier density, which is modulated by the op-
tical beat in Eq. (1.9). Thus, the receiver photocurrent iph(τ, t, Ω) is propor-
tional to the product of the incoming THz field [Eq. (1.10)] and the optical
beat [Eq. (1.9)], i.e.

iph(τ, t, Ω) ∝ ETHz(Ω, t + τ) ⟨I(t)⟩ , (1.11)

where τ is the time delay between emission and detection.[1] The photocur-
rent is generally on the nano-amp scale and requires pre-amplification and
lock-in detection, which is facilitated by modulation of the bias voltage.
Therefore, the measured signal S(Ω, τ) is the time-integrated photocurrent
due to slow electronics. We have

Sph(Ω, τ) = lim
T→∞

∫ T

0
iph(τ, t, Ω)dt ∝ I2

laserΩ sin(Ωτ), (1.12)
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Chapter 1. Introduction

which can be expressed as

Sph(Ω, τ) ∝ ETHz(Ω) sin(Ωτ). (1.13)

The time delay between the emission and detection of the THz wave is τ =
∆L/c, where

∆L = LE + LTHz − LR (1.14)

is the path difference between the emitter branch LE + LTHz and the receiver
branch LR of the interferometer. Here, LE and LR are the optical path lengths
of the optical beat note to the emitter and receiver, respectively, and LTHz the
length of the THz path. Hence, the measured signal in Eq. (1.13) depends
on the THz amplitude ETHz and the phase difference between the THz wave
and the optical beat note at the receiver

∆ϕ = Ωτ =
2πν

c
∆L. (1.15)

The amplitude and phase of the THz electric field can be determined by
scanning the phase difference ∆ϕ.

One way is to modulate ∆L by means of fiber stretchers [19] in the optical
path for a fixed THz frequency ν. This approach has the advantage that the
spectrum can be obtained with an arbitrary effective resolution ∆ν, which is
only limited by the spectral linewidth of the lasers δν (typically a few MHz).
Thus, this approach offers a very high frequency selectivity. Basically, fiber
stretchers are piezo actuators wrapped by several tens of meters of appropri-
ate fiber. The length of the wrapped fiber changes linearly with the voltage
applied to the piezo. Typically, two fiber stretchers are installed in the emitter
and detector branches, respectively. There are several reasons to employ such
a symmetric setup [19]. Evidently, the length change x can be doubled (if one
stretcher operate in reverse). The modulation frequency can be doubled as
well if, e.g. , a sinusoidal voltage is applied. The symmetric setup also min-
imizes thermal drifts. Finally, ∆L can be kept small, which is can improve
phase stability. Utilizing a sinusoidal voltage, the measured photocurrent
varies as

Sph = A sin
(

2πν

c
x + φ

)
. (1.16)

Hence, we can retrieve the THz amplitude A and phase φ at a given fre-
quency ν from a sinusoidal fit to the measured photocurrent.

However, the default approach in many commercial systems is to tune the
THz frequency ν, while keeping the path difference ∆L fixed. The recorded
signal Sph thus oscillates as a function of ν with a period ∆ f determined by
the path difference, i.e. ∆ f = c/∆L. The simplest way to retrieve the ampli-
tude and phase of the THz field is by examining the extrema of oscillating
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2. Terahertz Frequency-Domain Spectroscopy

photocurrent signal. [20] However, in this analysis, the effective frequency
resolution is limited the oscillation period (i.e. , ∆ν = ∆ f /2).

A more sophisticated method has been demonstrated by Vogt et al. [21,
22]. Here, the instantaneous amplitude A(ν) and instantaneous phase φ(ν)
are retrieved via Hilbert transformation. It is assumed the incident THz field
Ein(t) interacts with a linear system with time response function R(t) such
that the output field is given by the convolution, i.e.

Eout(t) =
∫ ∞

−∞
R(t − τ)Ein(τ)dτ. (1.17)

In the frequency-domain, we can write

Eout(ω) = F{Eout(t)} = R(ω)Ein(ω), (1.18)

where F denotes the Fourier transform. Since the time response of a physical
system is causal, its frequency response will be an analytic signal, where its
real and imaginary parts are linked by the Hilbert transform H. [22] That is,
a complex-valued signal with no negative frequency components. [23] As we
showed above, the signal Sph measured in THz-FDS is directly proportional
to the real part of the frequency response ETHz(ω). Thus, we can obtain the
analytic signal as [22]

Sa(ν) = Sph(ν) + jH
{

Sph(ν)
}

. (1.19)

Let us recall that any complex number z = x + jy can be represented in a
polar form z = |z|ejϕ by its magnitude |z| and phase ϕ. Thus, we can readily
retrieve the spectral amplitude A(ν) and phase φ(ν) of the THz electric field
from the analytic signal, i.e.

Sa(ν) = A(ν) exp [iφ(ν)] . (1.20)

Notably, the spectral resolution is equal to the frequency step size and inde-
pendent of the oscillation period, in contrast to the above-described method.
Additionally, Kong et al. [24] have demonstrated that Fabry-Pérot interference
in a spectrum caused by reflections in the experimental setup (e.g. , standing
waves) can be filtered in the time-domain through Fourier transformation.

From Eq. (1.18) it is evident that the complete spectral response R(ω)
of the system including any spectroscopic information is readily available if
Ein(ω) is known. In terms of reflection spectroscopy, we measure the complex
reflection coefficient [1]

r̃(ν) =
Ẽsam(ν)

Ẽref(ν)
=

r̃sam(ν)

r̃ref(ν)
ej4πδν/c, (1.21)

where we have exploited that Ẽsam = r̃samẼinc and Ẽref = r̃ref e−j4πδν/cẼinc.
Here, Ẽx with x = sam, ref, inc are the reflected electric fields from the front
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Chapter 1. Introduction

surface of the sample and reference and the incident electric field, respec-
tively. The exponential in the Ẽref accounts for any phase shift due to a
misplacement δ of the reference compared to the position of the sample front
surface. [1] Thus, any misalignment results in a mean linear slope 4πδ/c in
the measured phase spectrum as a function of frequency, which should be
removed. In THz-FDS, the THz waves are most often linearly polarized and
can freely be aligned in a s-polarized configuration. We can thus extract the
complex refractive index ñ(ν) = n(ν) + jκ(ν) of the sample (n(ν) is the index
of refraction and κ(ν) is the extinction coefficient) from the corresponding
complex Fresnel reflection coefficient, i.e.

r̃sam =
ñ1 cos(θi)− ñ2 cos(θt)

ñ1 cos(θi) + ñ2 cos(θt)
. (1.22)

Here, ñ1 and ñ2 are the complex refractive indices of the surrounding medium
(air) and the sample, respectively. Hence, ñ1 = nair ≈ 1 and ñ2 = ñ(ν). The
subscripts i and t on θ refers to the angles of incidence and refraction, re-
spectively. Typically, a perfectly reflecting sample is used in the reference
measurement, hence, r̃ref ≈ −1. [2] Therefore, Eq. (1.21) can be written

r̃ = −r̃sam =
ñ cos(θt)− cos(θi)

cos(θi) + ñ cos(θt)
(1.23)

with r̃ now being the phase corrected measured reflection coefficient. Rear-
ranging Eq. (1.23), we get

ñ cos(θt) =
1 + r̃
1 − r̃

cos(θi). (1.24)

Snell’s law of refraction can be used to express the angle of refraction [25]

θt = arcsin
(

1
ñ

sin(θi)

)
. (1.25)

If we combine Eqs. (1.24) and (1.25) with the identity [26] cos(arcsin(x)) =√
1 − x2 and solve for ñ, we obtain

ñ =

√(
1 + r̃
1 − r̃

)2
cos2(θi) + sin2(θi). (1.26)

The measured reflection coefficient r̃ = |r̃| exp[∆φ] is given by the relative
amplitude spectrum

|r̃(ν)| = Asam(ν)

Aref(ν)
(1.27)

and the phase spectrum

∆φ(ν) = φsam(ν)− φref(ν), (1.28)
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2. Terahertz Frequency-Domain Spectroscopy

which are obtained from the Hilbert analysis in Eq. (1.20). Finally, we obtain
the refractive index and the extinction coefficient from the real and imaginary
parts of Eq. (1.26), i.e.

n = Re {ñ} =

√(
1 − |r̃|2

1 + |r̃|2 − 2|r̃| cos(∆φ)

)2

cos2(θi) + sin2(θi) (1.29)

and

κ = Im {ñ} =

√(
2|r̃| sin(∆φ)

1 + |r̃|2 − 2|r̃| cos(∆φ)

)2

cos2 θi + sin2 θi. (1.30)

In Fig. 1.4 we have applied this approach to extract the optical param-
eters from a sample of 80% α-lactose monohydrate by weight mixed with
polyethylene. The reference sample was made of pure polyethylene. Clearly,

Fig. 1.4: The refractive index (left) and extinction coefficient (right) of an α-lactose sample ob-
tained by Hilbert transform THz-FDS in reflection. The red line is a fitted Drude-Lorentz model.

there is a very good agreement between the experimental data and the fitted
Drude-Lorentz model (red line). From the fit, we obtain the center frequency
νc = 531.4 GHz and linewidth γ = 21.6 GHz. These values are in excel-
lent agreement with the results (νc = 530.4 ± 0.5 GHz and γ = 25 ± 1 GHz)
reported by Roggenbuck et al. [20] using a similar FDS system to measure
α-lactose monohydrate in transmission, as well as the results reported by
Brown et al. [27] using various THz techniques.
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Chapter 1. Introduction

3 This Work

This thesis covers various aspects of THz reflection spectroscopy that overall
can be divided into three parts.

The first two parts, described in Chapter 2, emphasize the work carried
out in the framework of the project Detection of Explosives using Terahertz Radi-
ation at Improved Standoff-distances (DETRIS). The project, funded by Innova-
tion Fund Denmark (IFD), was conducted at Aalborg University in collabo-
ration with the company MyDefence A/S. Further support was given by the
Danish Ministry of Defence Acquisition and Logistics Organisation (DALO),
who kindly gave access to explosive materials at the Danish Defence research
facilities. In the first part, we explored how a CW THz spectrometer uti-
lizing multiple photomixer sources and detectors can improve the distance
in stand-off spectroscopy, while we in the second part demonstrated how
simple machine learning algorithms can be implemented to reliably classify
and identify explosives (and other compounds) from their spectral charac-
teristics measured in reflection. The latter results have been summarized in
Publication A and B together with the underlying database in Publication C
necessary for the study.

In the third and final part, THz generation through OR in reflection was
studied in collaboration with Dr. Jean-Louis Coutaz, Professor Emeritus, and
Dr. Emilie Hérault, Associate Professor, from Université Savoie Mont-Blanc
(USMB) in France. This work was initiated during my five months research
stay at IMEP-LAHC, UMR CNRS 5130, USMB, from May 31 to October 29,
2021, and subsequently, continued at Aalborg University. Our first results
presented in Publication D are discussed in Chapter 3.

Work has also been conducted within the topic of SHG spectroscopy.
In Publication E, we reported a new characterization technique for high-
resolution nonlinear spectroscopy with broadband femtosecond laser pulses,
which combines Fourier transform (FT) spectroscopy and SHG to enable high
spectral resolution within the spectral bandwidth of the input pulse. Thus,
this allows for very broadband spectral coverage with high spectral resolu-
tion in a single scan without prolonging the scan duration if broadband laser
pulses are utilized to excite the sample The FT-SHG method also benefits
from high spectral reproducibility due to built-in calibration of the spectral
axis by Connes’ advantage compared to conventional techniques. To demon-
strate the capabilities of the method, we resolved the strong and narrow ex-
citon X-line of ZnO at 3.407 eV using much broader spectral bandwidth fem-
tosecond laser pulses to excite the resonance. However, in order to keep the
present thesis somewhat coherent, these results will not be discussed here-
inafter.
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Chapter 2

Terahertz Stand-Off
Detection of Explosives

The DETRIS project evolved around three main conceptions given in the fol-
lowing hypotheses.

Hypothesis I By shifting from time-domain spectroscopy based on broadband
pulsed THz radiation to continuous-wave frequency-domain spectroscopy, which re-
lies on a single tuneable frequency, all the emitted power can be concentrated within
the transmissions windows of the water vapor absorption spectrum. Accordingly,
this will reduce propagation losses and increase the stand-off distance.

Hypothesis II An array of THz photomixers in a multiple-input-multiple-output
(MIMO) configuration will increase the emitted THz power and the directivity as
well as the detection sensitivity by the number of array elements squared. This
will improve the dynamic range (signal-to-noise ratio) of the THz spectrometer, and
therefore, further increase the stand-off distance.

Hypothesis III Machine-learning algorithms can be developed and trained to
identify the spectra of explosives under various conditions and will reduce the nec-
essary signal-to-noise ratio required for identification of explosives. Furthermore, the
algorithms should be able to recognize the spectra when masked by different barrier
materials.

A thorough discussion of Hypothesis I is given in Sec. 2, while Hypothesis
II and III are treated in Sec. 3 and Sec. 4, respectively, including experimental
results. However, before the hypotheses are investigated, we shall set the
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Chapter 2. Terahertz Stand-Off Detection of Explosives

scene by a State-of-the-Art review of THz spectroscopy of explosives and THz
stand-off spectroscopy in the following section.

1 State-of-the-Art

With the introductory paper regarding security applications of terahertz tech-
nology [28] by Kemp et al. in the beginning of the millennium, stand-off detec-
tion of explosives using THz radiation quickly evolved to be one of the most
desired research topics within national security and military defense. [29–
33] Subsequently, underpinned by the joint work of researchers from fifteen
NATO countries [34, 35] carried out from 2010 to 2015 under the Research
and Technology Organisation (RTO) of NATO.

Fig. 2.1: Distribution of the bibliographic search of documents containing ‘terahertz’ and ‘stand-
off’ or ‘stand-off’ in the abstract, title, or keyword field categorized by the topics ‘spectroscopy’,
‘imaging’, ‘review’, and ‘other’.

A bibliographic searcha of documents containing ‘terahertz’ and ‘standoff’
or ‘stand-off’ in the abstract, title, or keyword field accumulates 306 results
published from 1999 to 2021 omitting conference reviews. The distribution
of the search results categorized in relation to ‘spectroscopy’, ‘imaging’, ‘review’,
and ‘other’ are seen in Fig. 2.1. More than half of these documents concern
terahertz imaging, most without spectroscopic relevance, and thus, outside
the scope of the DETRIS project. Less than one third of the results is related
to spectroscopy.

1.1 Terahertz Spectroscopy of Explosives

In 2003, Kemp et al. first demonstrated detection of explosives using THz
radiation in Ref. [28] by THz-TDS in transmission. Fig. 2.2 shows the

awww.scopus.com; as of 14 March 2022.
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Fig. 2.2: Absorption spectra of common explosives measured in transmission. The spectra have
been offset vertically for clarity. Adapted from Ref. [28].

THz absorption spectra of the common explosives TNT, HMX, PETN, RDX
as well as commercial PE4 (RDX mixed with a plasticizer), and Semtex H
(mixture of RDX, PETN and plasticizer) as presented in their paper. Let
us notice that RDX and HDX set the lower and upper bounds of the spec-
tral range of interest with respective absorption features around 0.8 and 2.8
THz. In the following years, Kemp et al. made significant advances includ-
ing the first demonstration of reflection THz spectroscopy of explosives, as
well as detection and identification of explosives using reflection terahertz
pulsed spectroscopic imaging in combination with principal component anal-
ysis (PCA)[36, 37]. The group also conducted transmission measurements
of possible confusion materials including foods (α-lactose monohydrate, vi-
tamins, sugars, chocolate, and marzipan) and common medicines (asparin,
paracetamol, and ibuprofen) as well as different barrier materials (cotton,
wool, silk, vinyl, suede, polyester, nylon, leather, and cardboard).[29, 38, 39]
Finally, they showed that it is possible to distinguish explosives from other
substances such as D-tartaric acid by their reflection spectra, and explored
the detection of explosives hidden behind multiple layers of cotton/polyester
clothing.[39] Here, they found that since the clothing acted as a low-pass fil-
ter, it was necessary to study the reflectance derivative to recover the clear
spectroscopic characteristics. Much of their work on THz stand-off detection
and spectroscopy of explosives is summed up in Refs. [29, 40].

Soon after the first demonstration by Kemp et al. [28], several groups val-
idated the results[41–43] and reported on THz absorption of other explo-
sives and related compounds[43] including bio-agent simulants [44–46], and
comparison studies of THz-TDS and Fourier transform infrared (FTIR) spec-
troscopy [36, 43]. Since then, various spectroscopic studies of explosives have
been published [32, 37, 47–52]. Among these, density functional theory (DFT)
calculations[47, 48, 52–54] were compared to the measured absorption spec-
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tra, which showed that most of the characteristic spectral fingerprints below
3 THz originate from phonon modes, i.e. lattice vibrational modes, of the
solid-state compounds. Furthermore, Yan et al. [55] have very recently shown
that aging of RDX can be detected using THz-TDS, since its absorption peaks
related to N-NO2 bonds fractures as it ages.

The majority of the studies discussed above have been carried out in a
transmission geometry, however, real-world applications like stand-off detec-
tion call for a reflection configuration, and especially, diffuse reflection mea-
surements. Different studies have demonstrated specular reflection THz-TDS
at stand-off distances of 1 m or less [39, 56–63], while Zhong et al. reported
significant results on the detection of RDX by specular reflection TDS at
standoff distances up to 30 m [64, 65]. It should however be noted that in
this study, a collimated terahertz beam traveled 30 m back and forth with
a pair of off-axis parabolic mirrors in close proximity of the sample to fo-
cus and collect the THz beam onto/from the sample. Thus, the setup did
not resemble a true standoff geometry applicable in real-world security ap-
plications. Additionally, Zhong et al. combined THz-TDS with a large scale
two dimensional imaging system, including a large ZnTe sensor crystal and
a CCD camera, to perform reflective THz spectroscopic focal-plane imaging
at 0.4 m stand-off distance. Using this setup they were able to identify and
classify different explosives and bio-chemical materials by their derivative
absorption spectra using PCA and a minimum distance classifier.[56, 65] In
contrast, Liu et al. measured the diffuse reflection spectrum of a RDX pellet by
TDS.[66] The absorbance was calculated by the Kramers-Kronig transform of
the relative reflectance referenced to the spectrum of either Teflon or copper.
Remarkably, the authors were able to distinguish the RDX from polyethylene
and flour, even when covered by different barrier materials such as paper,
polyethylene, leather, and polyester, by its 0.82-THz spectroscopic fingerprint
in ambient conditions. Moreover, various studies have examined the effects
of surface roughness on reflection spectra in THz spectroscopy [62, 67–70]

1.2 Atmospheric Propagation

One of the main challenges in THz stand-off detection is the required prop-
agation through the atmosphere due to high absorption of THz radiation
by the atmospheric water vapor. Because water absorption increases expo-
nentially versus beam propagation distance, standoff detection at longer dis-
tances becomes even more challenging. In Ref. [32], Liu et al. investigated
atmospheric propagation of THz waves. As seen in Fig. 2.3, they found
several transparent windows between the strong absorption lines of water
vapor, in which the atmospheric attenuation is minimal. In 2011, the group
led by Grischkowsky further reported results on propagation of broadband
THz pulses over long distances. They transmitted repetitive 0.5-ps broad-
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Fig. 2.3: Atmospheric attenuation of THz radiation at sea level in the range of 0.01 to 10 THz.
Adapted from Ref. [71, 72]. The shaded areas indicate nine commonly attributed transmission
windows.[32]

band THz pulses through 167 m of the atmosphere at 51 % relative humidity
(RH).[73] However, such broadband THz pulses extend over several trans-
mission windows. The THz power outside these windows is highly absorbed
and, hence, the efficient THz power of the pulse is considerably reduced.
Furthermore, sub-picosecond THz pulses are significantly prolonged by wa-
ter vapor due to group velocity dispersion (GVD). After propagating 167
m, the initial 0.5-ps THz pulses were reshaped into 5-ps symmetric pulses
at the leading edge followed by rapid oscillations to beyond 150 ps. Thus,
the beneficial time-of-flight detection of pulsed THz systems is impossible at
stand-off distances. A few years later, they demonstrated the propagation of
broadband THz pulses through 137 m of dense artificial fog within a build-
ing.[74] The recorded THz pulses showed minimal additional distortion and
attenuation in the presence of the fog, and as importantly, the transmission
windows remain unaltered in the fog without frequency shifts or additional
resonant lines. The same year, the groups of Grischkowsky and Jeon made
a joint proof-of-concept demonstration of outdoor long-path THz-TDS atmo-
spheric measurements between two buildings separated by 79.3 m.[75] The
THz pulses were transmitted 9.5 m above ground level and travelled a 186
m path. Complex transmission spectra were acquired under different RH
and weather conditions including clouds, rain falling at 3.5 mm/h, and snow
falling at 2 cm/h. The spectral bandwidth spread to approx. 1 THz un-
der outdoor weather conditions of 12.5% RH at 9.6°C (1.1 g/m3 water vapor
density (WVD)) and a wind velocity of 1.3 m/s, however, under more se-
vere conditions the bandwidth was limited to approx. 0.5 THz. In 2017,
they extended the long-path setup to a remarkably 910-m distance (883 m
outdoor) retaining a 0.4 THz bandwidth.[76] More recently, the system was
improved with a nanostructure plasmonic THz emitter PCA and a 1-m di-
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ameter seven-mirror array reflector achieving a 141 dB SNR (1170:1).[77] This
allowed recording of THz pulses at high WVD of up to 25.2 g/m3. Further-
more, they measured for the first time the resonances of N2O gas contained
in a 1.5-m diameter balloon located 455 m away under atmospheric pressure
in the 0.1-0.4 THz region. In recent time, the characterization of atmospheric
transmission and dispersion of THz pulses is covered in the book chapter
written by Jepsen et al. [78] in THz Communications (2022). Using ultrafast
THz pulses, the atmospheric water vapor absorption across the 0.5-12 THz
region measured in a laboratory atmosphere of 30% RH is presented.

1.3 Stand-Off Systems and Techniques

In the early years, Kemp and coworkers at TeraView Ltd. developed two
prototype systems as they pursued the uses of THz technology for secu-
rity applications[39, 79]. One of the systems was a stand-off THz detection
setup that resembled a traditional single-point THz-TDS system as described
in Chapter 1 with an additional rapid scanning delay stage, which allowed
real-time operation at 15 Hz. Within the 1/15 s both acquisition and data
processing to remove atmospheric water vapor absorption lines were per-
formed. Long focal length off-axis parabolic mirrors were used to focus and
collect the THz beam at a target distance of 1 m (2.4 m total THz path length).
Using a perfectly reflecting target, they achieved >60 dB dynamic range and
a spectral bandwidth from 0.1 to 3 THz. Furthermore, due to the depth of
focus, they were able to track an object in a range greater than 150 mm from
the focal plane by adjusting the long delay stage to center the THz pulse in
the fast scan window.[79]

Meanwhile, the X.-C. Zhang, who chaired the task group behind the ini-
tial NATO report [34], and his team began studying THz generation and
detection by optically generated plasma discharges in air (mixing of a fem-
tosecond pulse and its second harmonic). A technique Zhang eventually pio-
neered, and which is now know as THz air photonics[80] (or laser air photonics
[81]). However, generation of THz pulses via laser-induced plasma in gas
was first observed in the 1990’s by Hamster et al. [82, 83] and revived in 2000
by Cook et al. [84] and Löffler et al. [85]. First, Zhang’s group systematically
studied the basic generation mechanism [86], which they later expanded by
a full quantum mechanical model[87, 88]. Shortly after, their initial study
was followed by a theoretical analysis and experimental results of broadband
detection of THz waves by a reciprocal four-wave mixing process, viz. electric-
field-induced second-harmonic generation in laser-induced air plasma[89]. A
technique they later termed THz Air Biased Coherent Detection (THz-ABCD).
Noteworthy, they showed that extremely broadband THz pulses covering the
entire THz region, only limited by the femtosecond pump pulse duration,
can be achieved when air is used for both THz generation and detection in a
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coherent detection scheme.[90, 91] Right from the beginning of their studies,
stand-off THz spectroscopy was recognized as a feasible application[92, 93],
which has since been a clear thread throughout their ongoing research and
served to demonstrate and track the progress[94, 95]. Some of the main re-
sults include remote generation of intense THz pulses by propagating optical
pulses over 100 m and focusing them locally [96], and stand-off THz gen-
eration in ambient air up to 30 m from the final optics[97, 98]. Impressive
results have also been reported for THz remote sensing and standoff detec-
tion although being much more challenging, especially due to the strong
atmospheric attenuation of THz frequencies. Even though air-plasma can be
generated remotely forming the basis for the THz-ABCD technique, the THz-
induced second-harmonic signal can only be detected in the forward prop-
agating direction, and requires a high voltage local oscillator bias near the
target if coherent detection is desired [89, 90]. Thus, THz-ABCD is not feasi-
ble in a stand-off configuration. To overcome these hurdles, Zhang et al. have
proposed THz radiation enhanced emission of fluorescence (THz-REEF) [99,
100] and THz enhanced acoustics (THz-TEA) [101], in which the THz wave is
indirectly detected through THz-induced changes in the plasma fluorescence
and acoustics. Both techniques allow for omnidirectional collection of the
signal and circumvents the problem of atmospheric absorption at THz fre-
quencies, and thus, well-suited for stand-off spectroscopy. Especially, Stand-
off detection at 30 m using THz-REEF has been demonstrated[98], while
Clough et al. [102] have reported "all air-plasma" THz spectroscopy encod-
ing the spectral THz signatures of different explosives into the fluorescence
emitted from a bichromatic laser-induced plasma filament. Laser air photon-
ics remain an active research topic by itself, and several reviews of their work
can be found in Ref. [81, 103, 104] Finally, other groups have, e.g. , proposed
optically-biased coherent detection (OBCD) [105] as a simpler counterpart to
THz-ABCD and investigated THz generation in multiple laser-induced air
plasmas [106].

In 2006, a research project was launched by Defence Research & Devel-
opment Canada (DRDC) – Valcartier to study the feasibility of using THz
radiation to detect and identify explosives and concealed weapons at stand-
off distances [107]. The project was initiated by developing a compact TDS
system to establish a THz transmission spectra database of commonly used
explosives. Another task of the project was to develop a diffuse reflection TDS
system based on OR in a large ZnTe crystal using a high-power laser. The
initial work was made in collaboration with Advanced Laser Light Source
(ALLS) at the Institut National de la Recherche (INRS) in Canada. Here, a
beam of 30-fs laser pulses with 800 nm center wavelength and energies up
to 40 mJ at 100 Hz repetition rate was used for generation of THz pulses
with record-high (in 2006) pulse energies of 0.76 µJ and spectral bandwidth
from 0.1 to 3 THz [107, 108]. A future step would be to combine the large

19



Chapter 2. Terahertz Stand-Off Detection of Explosives

ZnTe crystal with their TW laser. This laser delivers 5 TW (250 mJ pulse
energy and < 50 fs pulse duration) and was installed in a standard portable
container including a class 100,000 clean room for ideal laser operation con-
ditions [109]. However, due to the 10 Hz repetition rate of the TW laser,
coherent detection would become very slow. It should be noted, that since
then, tremendous progress has been made on the generation of high-power
THz pulses through OR. For example, in recent times, high-power THz OR
has been demonstrated in GaP reaching a maximum of 1.35 mW average
THz power with a 6 THz bandwidth peaking at 2 THz [110], and in LiNbO3
generating 66 mW average THz power with a bandwidth limited to approx.
2.5 THz [111], both driven by >100 W pump average power at 13.4 MHz rep-
etition rate. Similar results have been reported using organic crystals such
as HMQ-TMS [112, 113] achieving up to 1.38 mW broadband THz radiation
of 6-THz bandwidth at 10 MHz repetition with average pump powers in the
10-W range. A thorough review of the recent development on intense laser-
driving THz sources can be found in Ref. [114].

In continuation of the Canadian feasibility study of THz radiation for de-
tection and identification of concealed explosives and weapons at stand-off
distance [107], DRDC developed a new THz spectroscopy system for standoff
detection based on an intra-cavity (IC) THz parametric oscillator (TPO)[115–
117]. The rather compact TPO source used in the system was tunable from
0.75 to 2 THz emitting 10-ns pulses at a 50 Hz repetition rate with a <50
GHz linewidth and energies >30 nJ, resulting in a THz peak power greater
than 3 W. Moreover, aside from the high spectral brightness and tunability,
the THz output is highly collimated and exhibit an almost Gaussian beam
quality. The detection scheme of this system relied on a 4.2 K liquid he-
lium cooled bolometer. A full description of the ICTPO and the its oper-
ation is given in Ref. [118], while the prototype of the standoff system is
described in Ref. [34, 118]. Let us notice that this scheme operates directly
in the frequency-domain in contrast to all the above-mentioned methods. To
demonstrate stand-off identification, the prototype system was used in the
international experiment carried out under the first NATO task group [34]
to detect and identify C4 hidden behind barrier materials at 8 m stand-off
distance. The TPO was developed by M-Squared Ltd. [119], which since then
has optimized and commercialized it as the Firefly THz OPO [120]. In this
relation, it is worth noting that Piestrup et al. [121] first demonstrated a THz
parametric oscillator based on a Lithium Niobate crystal in 1975. Then, the
technique was stagnant until Kawase et al. [122] took it up in 1996 and later
demonstrated THz spectral imaging of illicit drugs [123] using an updated
compact and widely tunable TPO. Since then, THz spectroscopy and genera-
tion in the form of a TPO/TPG (terahertz parametric generator) [124–132] or
via difference frequency generation (DFG) [133–141] in, e.g. , GaSe has been
a widely studied topic. For example, Kawase’s group have demonstrated a
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multiwavelength injection-seeded (is) TPO for one-pulse spectroscopy[128]
with >60 dB dynamic range using a high-power is-TPG with a peak power
of 50 kW [126] and frequency tunability of 0.4 to 5 THz [128], and coherent
detection by the inverse parametric conversion process in a second nonlinear
crystal [142]. More recently, Takida et al. [132] were able to detect gas-phase
methanol at trace concentrations of 0.2 ppm at the 1.48-THz transparent at-
mospheric window using an is-TPG source (tunable from 0.5 to 3 THz in
1-GHz frequency steps with maximum THz peak power of >50 kW and 100
Hz repetition rate) and a 1.8-m path length multipass cell, which lead to a
prototype of a portable walk-through security screening system

The second NATO task group [35] was launched to investigate how THz
technology could move from laboratory spectroscopy to stand-off detection
in the field. One of the tasks within this framework was to compare dif-
ferent THz technologies and THz systems for detection and identification
of explosives under field conditions. The resulting comparison study was
also published elsewhere [143] in 2014. Several technologies including both
broadband and narrowband pulsed THz spectroscopy as well as CW THz
spectroscopy and electronic sources were considered. However, merely dif-
ferent TDS systems (two based on PC antennas and one EO-based) and a
single electronic system were studied. The latter comprising an electronic
frequency-modulated CW device and a microbolometer array detector. On
this basis, it was concluded that TDS systems were the most promising can-
didates for stand-off detection because of their spectral bandwidth, although
still being too complex for use in the field, while the electronic systems was
recognized for its imaging applications.

As discussed in Chapter 1, direct frequency-domain THz spectroscopy
can also be performed by means of monochromatic CW THz radiation via
photomixing. Shimizu et al. [144] have developed on a system for stand-
off gas sensing system including a photomixing transmitter[145] and a het-
erodyne superconductor-insulator-superconductor (SIS) mixer detector[146].
Finally, Shimizu et al. [147] demonstrated the performance of the stand-off
spectrometer (operating in the 220-500 GHz region) by remote gas sensing ex-
periments conducted in a full-scale simulated fire at approx. 8.6 m stand-off
distance. Hereof the testing room, in which a metallic retroreflector bounced
back the THz radiation, accounted for approx. 3.6 m of the total stand-off
distance. Thus, they measured the transmission spectrum of the simulated
fire and resulting smoke. The smoke appeared transparent to the THz radia-
tion due to its micron-sized particles, and they were able to detect hydrogen
cyanide at concentrations of 890 ppm, estimated from the measured absorp-
tion intensities.

Around the same time, Preu et al. [148] examined both spacial and tem-
poral interference patterns of two independent photomixer sources driven
by the same optical beat, and found that the coherence of the optical beams
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is not affected by the internal structure of the photomixers and transfers di-
rectly to the THz beams. Hence, multiple photomixers are mutual coherent
when driven by a common optical beat. Subsequently, Preu et al. simulated
different array configurations of coherently driven free space THz sources for
high brightness applications [149] such as stand-off sensing. Bauerschmidt
et al. [150–152] followed up by experimentally demonstrating a four element
emitter focal plane array (FPA) of individual, mutually coherent THz pho-
tomixers in a 1×4 and 2×2 configuration for stand-off imaging and spec-
troscopy. Each photomixer was equipped with a pair of lenses, and the fo-
cused THz beams were overlapped at a target distance of 4.2 m. The inter-
ference patterns as well as the transmission spectra of the 1×4 array and a
single emitter were measured in the target plane using a Golay cell detector.
Their measurements confirmed the theoretically square and inverse depen-
dency on the number of sources of the peak intensity and the beam waist,
respectively, as well as an excellent agreement to the expected interference
patterns of the different array configurations.

In contrast, THz detector arrays in the context of synthetic aperture imag-
ing have been explored by the group of J. F. Federici. Bandyopadhyay et
al. [153] first studied the stand-off imaging properties of an interferometric
array in the near-field region theoretically, and experimentally using a pho-
tomixer spectrometer by sampling the THz signal in different positions to em-
ulate a detector array. Meanwhile, Sengupta et al. [57] measured C4 and gold
by reflection THz-TDS, and synthesized THz images from the reflectance
spectra to simulate interferometric detection.

Evidently, THz stand-off detection has primarily evolved from TDS and
photonic techniques. However, a few electronic systems have been proposed
as well. Mo et al. [154] have reported a nine-wavelength CW THz spectrome-
ter for identification of explosive materials using three backward wave oscil-
lator (BWO) sources covering the intervals from 0.18 to 0.26 THz, 0.2 to 0.38
THz, and 0.6 to 0.7 THz, respectively, and pyroelectric detector. To demon-
strate the capabilities of the spectrometer, RDX, TNT, and 2,4-DNT were mea-
sured at nine frequencies between 0.21 and 0.7 THz, and were able to sucess-
fully identify and classify the sparse spectra using machine learning algo-
rithms. Likewise, Richter et al. [155] have proposed a THz spectrometer based
on THz quantum cascade lasers (QCLs) operating at different frequencies in-
cluding a compact heterodyne hot electron bolometer detector for explosive
detection and identification. Lastly and most recently, Chen et al. [156] have
demonstrated wavelength beam-combining of four THz distributed-feedback
QCLs, which could be promising for future monolithic THz QCL arrays for
multi-spectral THz sensing at stand-off distances.
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1.4 Hand-Held Devices

As mentioned, two prototype systems for security screening were developed
at TeraView Ltd., of which we have already discussed one meant for stand-off
detection at a distance. The second was a hand-held THz wand developed
for people screening in close proximity including detection of both hidden
weapons (both metallic and non-metallic) and explosives [39, 79]. The de-
vice was similar to the one described above but the optical pump and probe
beams were coupled into fibers attached to the THz photoconductive (PC)
antennas constituting the handheld THz transceiver head. Interestingly, the
transceiver consisted of a single THz PC emitter, equipped with a silicon
lens to produce a quasi-collimated output, surrounded by an assembly of
six THz PC detectors, each with a silicon lens. The array of detectors could
capture the THz signal reflected and scattered in multiple direction from the
target. By analyzing the recorded signals from each detector independently,
both spatial and spectroscopic information could be extracted The prototype
achieved a dynamic range of approx 45 dB, spectral bandwidth up to 2 THz,
and a 30 Hz scan rate[79], which allowed them to detect various materials in
reflection including explosives behind two layers of leather[39].

In 2011, Schulkin et al. [157] at Zomega Terahertz Corporation presented
a novel one-of-its-kind hand-held, point-and-shoot, batteri-driven THz spec-
trometer operating at 500 Hz for stand-off detection and identification of
chemical compounds. With dimensions less than 26 × 18 × 9 cm3 and weigh-
ing less than 4.5 kg, the form factor of the spectrometer was similar to a
cordless power drill. The spectroscopic identification was performed using
standard correlation analysis to avoid the need for sample references. Using
50-ms integration times perfect classification of library samples including α-
lactose, PABA, L-glutamic acid, and 2,4-DNT could be achieved at a distance
of 7.5 cm.

1.5 Final Remarks

Besides the practical work with TeraView Ltd, Kemp also participated in the
first technical NATO report[34], and reviewed the current progress, differ-
ent challenges as well as future prospects and directions for THz technology
in security applications[29, 158]. In conclusion, Kemp compiled his knowl-
edge in the paper Explosives Detection by Terahertz Spectroscopy – A Bridge Too
Far?[159], in which it was concluded that spectroscopic detection through
barriers is unlikely in practice due to free space propagation loss, atmo-
spheric absorption, barrier attenuation and scattering, and target reflectivity
and/or scattering, while imaging at lower frequencies up to 1 THz (pos-
sibly multi-spectral) was deemed more promising for security applications.
However, as discussed later in this thesis, the ongoing development of power-
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ful monochromatic THz sources (e.g. , electronic sources or QCLs) combined
with our machine learning based approach could allow for spectroscopic de-
tection of explosives and hazardous substances at stand-off distances, even
through barriers.

2 Continuous-Wave versus Pulsed Radiation

Hypothesis I claims that propagation losses can be reduced by employing
CW FDS instead of pulsed TDS as all the emitted power can be concentrated
within the atmospheric water vapor transmission windows. Here, it is im-
plied that both approaches are conducted by optoelectronic techniques using
photoconductive switches and photomixers, respectively. However, the con-
ception behind such an idea is slightly wrong, which can be realized fairly
easily by recalling that a broadband THz pulse can be regarded as a wave
packet formed by the superposition of monochromatic waves of the frequen-
cies in its spectrum. Hence, a THz pulse propagating through atmospheric
water vapor is only absorbed at frequencies that coincide with the absorp-
tion lines of water vapor. In the time-domain, this can be observed as trailing
oscillations to the main peak due to the absorbed waves of the respective
frequencies. Thus, any difference of eligibility between a frequency-domain
and a time-domain approach for stand-off spectroscopy is determined by the
performance of the respective THz sources and detectors available in each
approach. However, absolute power measurements of terahertz waves are
not trivial and generally not available. Recently, Castro-Camus et al. [160]
commented on the reliability of power measurements in the terahertz and
discussed the challenges. Calibration of THz detectors can only be done at
very few laboratories around the the world. For example, this is done by
the THz radiometry group at Physikalisch-Technische Bundesanstalt (PTB),
the German National Metrology Institute, using a far-infrared molecular gas
laser emitting tunable monochromatic radiation from rotational transitions of
the molecular gas [160]. For PC antennas and photomixers, the task is further
complicated by the broad spectrum and/or low power of the emitted THz ra-
diation. Therefore, different THz sources cannot readily be compared and,
typically, THz spectrometers are characterized by system specific measures
such as the amplitude of the detected signal or maximum achievable SNR. On
top of that, a comparison of PC antennas and photomixers is often impeded
by their respective pulsed and CW operation. Nevertheless, let us give a qual-
itative estimate of the performances of (commercially available) PC antennas
compared to photomixers. Globisch et al. [161] have demonstrated absolute
THz power measurements of a standard commercial TDS system using an
ultrathin pyroelectric thin-film (UPTF) detector developed and calibrated by
PTB. The UPTF detector exhibited a spectrally flat absorption of 50% from 0.1
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to 5 THz. The diameter of the UPTF detector was 20 mm, which ensured that
all of the incident THz radiation was captured Using a common InGaAs PC
antenna as THz emitter, the authors measured the (average) THz power for
various optical pump powers and emitter bias voltages. Similarly, a coherent
PC antenna detector was employed to record the temporal THz waveforms
for the same optical powers and bias voltages. Then, by calculating the time
integral of the squared waveforms, a quantity proportional to the THz power
was obtained. Noteworthy, Globisch et al. found an almost perfect agreement
between the two means of measuring the THz power This imply that both
detectors capture all of the incident beam. This is a quite remarkable finding,
since the coherent PC detector has a very small active area between the elec-
trodes (typically less than 50 µm wide). Thus, a strong focus of the THz beam
is required, which is achieved by the attached hyper-hemispherical Si lens.
This lens can be difficult to align and is often non-adjustable. Additionally,
it doesn’t focus the low and the high THz frequencies identically and some
of these frequencies could potentially be coupled to the antenna electrodes.
Furthermore, the sensitivity of such coherent detectors are not spectrally flat.
All these considerations tend towards that only a lesser part of the incident
THz radiation will be properly detected by the PC antenna. Nonetheless, the
results reported by Globisch et al. indicate that these concerns are not so crit-
ical in a well aligned system. Commercial TDS systems employ PC emitters
with average output power of typically 30-70 µW. b This value is averaged
in time and integrated over the entire spectral bandwidth of the THz pulses
from 0.1 to 6 THz. On the other hand, photomixers utilized in FDS systems
are rated by their typical output power at some given frequencies or by their
power spectrum. The red dots plotted in Fig. 2.4 show some typical power
values of commercial photomixers. To give an estimate of the power spec-
trum of PC emitters employed in TDS systems, we recorded a THz waveform
using our commercial TDS setup from Menlo Systems (Terasmart). The blue
line on the left plot in Fig. 2.4 shows the resulting trace averaged over 1000
waveforms. From the recorded time-domain pulse, we can calculate its spec-
trum via the discrete Fourier transform. Let us square the magnitude of the
resulting spectrum to get a quantity proportional to the THz power. A sim-
ple unitless distribution is obtained by normalizing the power spectrum such
that it integrates to unity. For the sake of simplicity, let us suppose that the
average THz power was 100 µW. Multiplying the normalized power distri-
bution by this value, we obtain the spectrum given by the blue line in Fig.
2.4. As said, this is a crude estimate that sets the upper boundary of the THz
power spectrum of PC emitters. Immediately, we see that CW photomixers
reach power levels that are more than an order of magnitude higher. Thus,
we can conclude that the maximum stand-off distance is expected to increase

bAccording to TOPTICA Photonics AG.
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Fig. 2.4: THz waveform recorded using a commercial TDS system and its estimated power
spectrum (blue) together with typical power levels in commercial FDS systems (red).

for current state-of-the-art FDS systems based on CW photomixers compared
to TDS systems, even though Hypothesis I is slightly wrong, simply because
of superior output power. It should however be emphasized that propagation
losses (divergence, scattering etc. ) will not be reduced.

3 Antenna Arrays

The first antenna array was built over 100 years ago by S. G. Brown in 1899.
[162] Two monopole antennas where separated by half a wavelength and fed
out of phase in order to increase the directivity. Likewise, an antenna array
was utilized in the historical event when the pioneer G. Marconi transmitted
the first wireless signals 2100 miles across the Atlantic.[163] A few years later,
Prof. K. F. Braun at University of Strasbourg discovered the phased array
and it’s beam forming capabilities. [164] Finally, in 1909, Marconi and Braun
shared the Nobel Prize in Physics for their contributions to the development
of wireless telegraphy. [165]

Today, microwave phased arrays have become the backbone of modern
wireless communication. Naturally, THz antenna arrays have been investi-
gated as well in search for more powerful sources and sensitive detectors.
As covered in Section 1, Preu and Bauerschmidt et al. investigated the inter-
ference between mutual coherent free standing photomixers[148, 149] and
demonstrated a focal plane array emitter [150–152, 166], while Federici et
al. [153] examined synthetic aperture imaging by THz detector arrays. How-
ever, THz antenna arrays were, in fact, already proposed in 2003 by Brown
[167], who saw the advantage of moving THz photomixing to photoconduc-
tive InGaAs compatible with 1.5 µm lasers that benefit from fiber coupled
optics and amplifiers. In particular, Brown proposed that on-chip fiber cou-
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pled photomixer phased arrays could be realized, which would neglect the
need for bulky silicon lenses, as we will see in the following. This idea was
investigated experimentally a few years later, when Preu et al. [168] reported
a 3×3 array based on LTG-GaAs photomixers with an appertaining microlens
array for optical coupling, and Shimizu et al. [169] demonstrated a 3×1 array
of 300-GHz microstrip antenna UTC photodiodes. More recently in 2022,
Che et al. [170] fabricated an on-chip 4×1 array of InP/InGaAs UTC-PD pho-
tomixers with integrated 1×4 planar slot antennas for generation and beam
combining/steering of both continuous and pulsed THz radiation up to 300
GHz. The generated continuous wave and pulsed output powers reached -
12.87 dBm (52 µW) and -17.71 dBm (17 µW), respectively. This corresponded
to gains of 12 dB and 10 dB relative to a single excited emitter. The lower
output power in the pulsed operation was attributed to the bandwidth limi-
tations of the slot antennas. Besides, various papers have been published on
the topic from studies on array and lens arrangements [171] to a tutorial on
the concepts of THz beamforming [172] and a review of the applications of
THz beam steering [173].

3.1 Array Theory

Let us develop some basic equations of antenna arrays. Consider M oscillat-
ing electric dipoles with angular frequency ω distributed in the xy-plane as
depicted in Fig. 2.5. At a given point in space r⃗ and time t, the electric field

x
y

z

ϕ

θ
r⃗ = (r, θ, ϕ)

r⃗′m

Fig. 2.5: Coordinate system for a collection of oscillating electric dipoles.

radiated by the mth dipole positioned at r⃗m can be written as

E⃗m (⃗r, r⃗m; t) = E⃗0,m (⃗r, r⃗m)ej(⃗k·(⃗r−⃗rm)−ϕm)e−jωt, (2.1)

where E⃗0,m (⃗r, r⃗m) is the complex electric field amplitude, k⃗ = ω/ck̂ = 2π/λk̂
is the wave vector (k̂ is the unit vector in the direction of propagation), and ϕm
is the relative phase. Assuming there is no coupling between the dipoles, the
total electric field radiated by the array E⃗total is the sum of the fields radiated
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by the individual elements E⃗m, i.e.

E⃗total (⃗r) =
M

∑
m=1

E⃗0,m (⃗r, r⃗m)ej(⃗k·(⃗r−⃗rm)−ϕm). (2.2)

Let us assume that the dipoles are identical, orientation included, thus ex-
hibiting similar radiation patterns and equal power. Furthermore, we will
only consider the far-field. That is, where the field components are trans-
verse and the angular distribution is invariant to the radial distance from the
source, which is generally defined to begin at the distance

r ≥ 2D2

λ
=

2D2ν

c
(2.3)

from the source with D > λ/2 being the largest dimension of the source (the
aperture).[174] With these assumptions, we can write E⃗0,m (⃗r, r⃗m) = E⃗0 (⃗r) and
Eq. (2.2) writes

E⃗total (⃗r) = E⃗0 (⃗r)
M

∑
m=1

ej(⃗k·(⃗r−⃗rm)−ϕm). (2.4)

The sum

F(⃗r, r⃗m) =
M

∑
m=1

ej(⃗k·(⃗r−⃗rm)−ϕm) (2.5)

describes the effect of the array and is, hence, referred to as the array factor.
Constructive interference can be achieved in a point r⃗ if the phases of the radi-
ated fields are equal up to an integer number n of 2π, given the polarizations
are identical, i.e.

k⃗ · (⃗r − r⃗m)− ϕm = 2πn. (2.6)

In this case, the array factor equals M and the total intensity Itotal (⃗r) =
|E⃗0 (⃗r)M|2 increases by M2.

In antenna theory, E⃗total (⃗r) and E⃗0 (⃗r) are called the beam pattern and ele-
ment pattern, respectively. The fact that, in the far field, the beam pattern of
an array is equal to the product of the element pattern at a reference point
(typically Origo) and the array factor is an important result in antenna the-
ory known as pattern multiplication.[174] The array factor is independent of
the directional characteristics of the array elements and can thus be regarded
as an array of isotropic point sources. Therefore, different array geometries
can be studied optimized through the array factor and only then the total
field is obtain by multiplying it with the actual element pattern. Typically,
radiation patterns are described using a spherical coordinate system (r, θ, ϕ)
with radial distance r ∈ [0, ∞[ from a fixed origin, polar angle θ ∈ [0, π],
and azimuthal angle ϕ ∈ [0, 2π[. Fig. 2.6(left) shows the normalized beam
patterns of linear arrays of M = 2 (blue) and M = 5 (red) antennas equally
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z
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Fig. 2.6: - left - Beam pattern of a linear array along the x- axis with two elements (blue) and five
elements (red), respectively, equally spaced by d = λ. - right - Beam pattern of a five element
equally spaced linear array with d = 2λ (blue) and d = λ/2 (red), respectively. In both plots, an
element pattern |E⃗0| ∝ cos(θ) is assumed (dotted, black line).

separated by d = λ on the x-axis. An element pattern (dotted) equal to cos(θ)
has been chosen. The main lobe narrows while minor side lobes develop as
the number of array elements is increased. In Fig. 2.6(left), the beam pat-
tern of a M = 5 element equally spaced linear array along the x-axis with
d = 2λ (blue) and d = λ/2 is plotted. Compared to Fig. 2.6(right), we see
that grating lobes (strong side lobes) develop as d is increased and, in par-
ticular, d = λ/2 produces a highly directional beam. Thus, various array
configurations can be exploited to obtain certain beam patterns. In Fig. 2.7,

x
y

z

Fig. 2.7: Three-dimensional beam patterns of a 4×1 and a 2×2 array, respectively, with d = λ
and |E⃗0| ∝ cos(θ).

the three-dimensional beam patterns of a 4×1 and a 2×2 array with element
spacing d = λ are shown. Evidently, the two-dimensional array confines the
main lobe in both x- and y-directions resulting in a higher directivity. An-
other advantage of antenna arrays is beam steering. To exemplify this, let us
consider an uniformly spaced M = 4 linear array (spaced by d = λ/2) with
a linear phase gradient φm = mβ across the array. Additionally, we suppose
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an element pattern |E⃗0| ∝ cos(θ). This is plotted for various values of β in
Fig. 2.8. Evidently, the beam pattern is shifted away from the broadside of
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x

z

x

z

x

Fig. 2.8: The concept of beam steering by exciting the array elements with a linear phase gradient
ϕm = mβ.

the array (β = 0) in the opposite direction of the phase shift β.
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Fig. 2.9: Coordinate system for an array of receivers subject to an incoming plane wave.

Because of reciprocity, everything derived above for an array of transmit-
ters is also true for an array of receivers. However, to get a better under-
standing of the operation of a detector array, let us consider a plane wave
incident on a linear array of identical receiving elements as shown in Fig. 2.9.
The plane wave model of the incoming electric field is a good approximation
since the distance between the transmitting and the receiving array generally
is much greater than the far-field limit. We choose the notation

E⃗(⃗r; t) = E⃗(⃗r)e−jωt = E0e j⃗k·⃗re−jωt, (2.7)

with wave vector k⃗ = ω
c k̂ for the incoming plane wave in air. Since the receiv-

ing elements are identical, they possess an equal receive pattern Sm(θ, ϕ) =
S(θ, ϕ). The received electric field at mth antenna can then be expressed as

Sm (⃗k, r⃗′m) = S(θ, ϕ)E0e j⃗k·⃗r′m . (2.8)
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The exponent can be written as k⃗ · r⃗′m = |⃗k||⃗r′m| cos(αm) with αm = ϕ − ϕ′
m

being the angle between the two vectors. However, we can choose the coordi-
nate system such that the array elements line up along the x axis with the first
antenna m = 1 located in Origo. Hence, we have |⃗r′m| = (m − 1)d and ϕ′

m = 0
implying αm = ϕ. From Fig. 2.9, we see that ϕ = θi + π/2 + π and, hence,
cos(ϕ) = sin(θi). Thus, we arrive at k⃗ · r⃗′m = ω

c (m − 1)d sin(θi). Here, d sin θi
is the extra distance the wave has to travel to reach an adjacent antenna. It
follows that the delay the mth antenna experience relative to the reference
antenna m = 1 is τm = (m − 1)d sin(θi)/c, which corresponds to a phase shift
δφm = ωτm. Hence, k⃗ · r⃗′m = ωτm = δφm. Because the signal received at
a given antenna gain a phase shift relative to the neighboring antennas, the
signals are misaligned and cannot be added coherently and, consequently,
there is no array gain achieved. However, in many cases it is possible to de-
lay the signals independently and, hence, align the phases allowing coherent
summation. This is done by multiplying the signals at the receivers by the
complex weights wm before summation. The total received signal can then be
written as

Stotal(θ, ϕ) = E0S(θ, ϕ)F(θ, ϕ) with F(θ, ϕ) =
M

∑
m=1

wmejδφm . (2.9)

To align the signals, the weights must be chosen as the complex conjugates of
the phase shifts, i.e. wm = e−jδφm . Thus, the array factor F(θ, ϕ) simply adds
up to number of array elements M, and the total received signal is increased
by a factor of M compared to a single antenna or M2 in terms of power.

3.2 Summary of Results

As the starting point for the development of the multiple antenna THz spec-
trometer for detection at improved stand-off distances, we choose a TeraScan
1550 spectrometer from TOPTICA Photonics AG based on THz-FDS as de-
scribed in Sec. 2. This was system was chosen because of its modular design
and compatibility with the wealth of available telecom components including
fiber optics and amplifiers. To accommodate multiple antennas, the TeraS-
can system was extended both in terms of optical and electronic parts. In the
optical branch illustrated in Fig. 2.10, the output of each distributed feedback
(DFB) laser was amplified by an erbium doped fiber amplifier (EDFA) from
Keopsys to support the required power levels of four transmitter and four
detector InGaAs photomixers, respectively. The EDFA outputs were then
connected to a 2×2 fiber coupler, whose outputs were connected to a TOP-
TICA fiber stretcher designed for the TeraScan system. Finally, each output
of the fiber stretcher were connected to a 1×4 coupler to supply the optical
beat to each of the eight photomixers. The electrical wiring is illustrated in
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Fig. 2.10: Schematic of the multiple antenna THz-FDS setup in terms of optical components.
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Fig. 2.11: Schematic of the multiple antenna THz-FDS setup in terms of electrical components.

Fig. 2.11. Normally, the FDS system is fully controlled by TOPTICA’s DLC
Smart digital control electronics including laser operation, bias voltage, lock-
in detection etc. However, since each of the four detectors required a separate
lock-in amplifier (LIA) and because of the higher load needed to be driven
by the bias voltage, the DLC was just used to operate the DFB lasers and to
control the fiber stretcher. Instead, a B&K Precision arbitrary function gen-
erator (AFG) was utilized in combination with a line buffer to supply the
bias voltage to the photomixer emitters and to deliver a reference signal to
the LIAs. The output current of each receiver was preamplified by a custom
designed trans impedance amplifier and measured using a dual channel LIA,
both from Femto Messtechnik GmbH. Finally, a computer with custom de-
veloped MATLAB software was employed to control the DLC as well as the
EDFAs and to record the signals from the LIAs.

The array theory covered in Sec. 3 assumes that each array element (an-
tenna) performs equally in terms of output power, radiation pattern etc. Thus,
a natural first step toward a transmitting THz array was to characterize the
individual THz emitters. The power spectra of four InGaAs THz emitters
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adapted from the test reports made by the Fraunhofer Heinrich Hertz In-
stitute (HHI) are shown in Fig. 2.12. All of the antennas perform within

Fig. 2.12: The power spectra of the four THz photomixer transmitters adapted from the
datasheets.

specs, however, one antenna (blue line) is clearly outperforming the remain-
ing three in terms of output power. This antenna (TC190201) is from a newer
batch compared to the rest. However, all four emitters have chips of the same
design, and there has been no change in the production or assembly process.c

The emitter InP chips (1.5 mm × 3 mm) are waveguide (WG) integrated PIN

Fig. 2.13: Illustration of the bowtie antenna design of the THz photomixer transmitters. The
sketch is adapted from Ref. [175].

photodiodes with an extended bow-tie antenna structure and a bracket-like
feeding point as shown in Fig. 2.13. On the back, a hyper-hemispherical Si
lens of 10-mm diameter is mounted to couple the THz waves into free space.
Thus, the emitters are roughly 6.5 mm thick including the InP chip and Si
lens.

cAccording to HHI. From a private correspondence with Dr. Anselm Deninger, Director
Technical Sales Support, TOPTICA Photonics AG.
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The next step was to characterize the radiation pattern of the individual
THz emitters. Only a very few and recent studies [175, 176] have been pub-
lished on the radiation patterns of PIN diode photomixers as employed in
commercial THz-FDS systems. Particularly, we are interested in the far field
as defined in Eq. (2.3). The aperture size of the PIN diode is approx. 1

Fig. 2.14: The far field distance for Si and air at relevant frequencies calculated using Eq. (2.3).
Adapted from Ref. [176].

mm corresponding to the size of the extended bow-tie antenna. As discussed
by Smith et al. [176], the far field distance is longer in silicon since the THz
wavelength λSi = λ0/nSi is shortened by the large refractive index nSi = 3.42.
Thus, the near field stretches beyond the silicon lens for frequencies above
0.3 THz as seen in Fig. 2.14. Smith et al. [176] propose that this effect causes
the broadening of the central spot and added features they observe in their
measurements. Therefore, the distance at which the radiation patterns are
measured should be chosen larger than the far field distance at the largest
frequency measured. In our experiment, the largest frequency is ν = 1.5
THz and, hence, the distance should be greater than 35 mm (see Fig. 2.14).
In the aforementioned studies, only the one-dimensional angular radiation
profiles are mapped out for the E- and H-plane of the emitted THz field by
rotating the THz emitter vertically relative to the detector. In particular, "The
radiation pattern of E- and H-plane are measured by orienting Tx and Rx with the
respective polarization: for the E-plane, the orientation of the electric field E of emit-
ter and receiver antenna are perpendicular to the rotation axis and for the H-plane,
the magnetic field H is perpendicular to the rotation axis." [175] As described by
Smith et al. [176], the beam profile of an emitter can be mapped by either
lateral or angular displacement of the emitter relative to the receiver. The
former is preferable when mapping out a collimated beam, in which case
the lateral profile and dimensions are preserved. On the other hand, the
angular modality is optimal for the mapping of a divergent beam since the
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emitter and receiver are equidistant for each measured value and the angu-
lar spread and variation are invariant. This approach naturally yields one-
dimensional line scans, even though, several scans can be combined to form
two-dimensional angular maps. In fact, even one-dimensional beam profiles
can be non-intuitive and the exhibited beam features can be difficult to inter-
pret. Nonetheless, because THz PIN diode emitters are divergent, Nellen et
al. [175] and Smith et al. [176] mapped their beam patterns as a function of an-
gular displacement but only for the two perpendicular directions. However,
when the beam profile is only mapped in the perpendicular directions, po-
tentially important information of the full pattern could be lost. In this study,
we characterized the PIN diode emitters using an incoherent Schottky diode
receiver, i.e. power detector, from TOPTICA mounted on an xy-stage, which
was scanned laterally in two dimensions. Although, the recorded beam pro-
files will suffer from slight distortions due to small variations in distance
and the angular dependency of the receiver, we gain a more complete two-
dimensional image of the beam. For example, if the emitter is distanced z =
100 mm from a 50 mm × 50 mm image plane, then the optical path to the
most distant pixels will at most be a few percentages longer relative to the
center pixel. For the characterization, each emitter was placed in front of
the Schottky diode at a distance z and oriented such that the THz electrical
field is vertically polarized (E-plane parallel to the x axis). First, we tested

Fig. 2.15: Measurement repeatability test at ν = 0.5 THz using the TC190201 antenna (a), and
test of the influence of standing waves in the setup (b)-(c).

the measurement repeatability of our setup. Ten successive measurements
where made of a single antenna at z = 145 mm, and the resulting means
and standard deviations of the E- and H- plane, respectively, are shown in
2.15(a). Generally, the repeatability is good with the largest variance around
the main peak. Furthermore, the overall beam profile in both the E- and H-
plane are in good agreement with the results published in the recent studies
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[175, 176]. Standing waves can arise between the emitter and the receiver
and affect the measurements when dealing with CW THz radiation and is,
thus, important to consider. The influence of standing waves was tested by
scanning the distance to the detector over a 300 µm interval in steps of 50
µm between consecutive beam profile measurements at 0.5 THz. Thus, the
interval corresponds to λ/2. The results for the E- and H-plane are shown in
Fig. 2.15(b) and (c), respectively. There do seem to be a decrease in the peak
value for ∆z = 200 and 250 µm, which could be due to standing waves when
the receiver is exactly in front of the emitter.

Subsequently, the radiation patterns were mapped out for a 35 mm × 35
mm area in 1 mm increments for 0.2 THz to 1.5 THz at a distance z = 90 mm.
The resulting radiation patterns of the four emitters are shown in Fig. 2.16.
The color scale of the maps has been normalized to that of the TC190201 an-
tenna at the given frequency. At first sight, the beam diameter decrease from
0.2 THz reaching a minimum around 0.6∼0.9 THz whereupon it increases
up to 1.5 THz. Additionally, the beam patterns generally show irregulari-
ties at 0.4∼0.5 THz and 1∼1.2 THz. At higher frequencies, the patterns are
mainly blurred due to the lower signal-to-noise ratio and the 1 mm step size.
The asymmetric E-plane and H-plane beam profiles have previously been at-
tributed by Nellen et al. [175] to the asymmetric feed point structure as seen
in Fig. 2.13. In particular, the dimensions of the bracket structure equals λ/4
at 0.35 THz and, further, the extended bowtie was argued to act as a broad
dipole producing frequency-dependent side lobes. However, a closer look at
the beam patterns at 0.5-1 THz reveals weaker rings surrounding the main
peaks. In Fig. 2.17, the dynamic range has been calculated to emphasize the
pattern for each antenna at 0.7 THz. In all cases, an Airy-like pattern, i.e. a
bright central spot (Airy disk) with concentric bright rings due to circular
aperture diffraction, is seen. Notably, the Airy disk is approx. the same size
for all antennas. Similarly, the dynamic range maps of the TC190201 antenna
from 0.2 to 0.8 THz are shown in Fig. 2.18. Here, we can notice that the di-
ameter of the central spot as well as the diameter of the concentric rings both
decrease as the frequency increase. A possible explanation could be that the
THz waves are diffracted by the circular aperture of the hyper-hemispherical
Si lens.
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Fig. 2.16: The radiation pattern of the (a) TC190201, (b) TC190106, (c) TC180501 and (d) TC170806
antennas at frequencies from 0.2 to 1.5 THz. Each map covers 35 mm × 35 mm in 1 mm
increments and is measured at z = 90 mm in front of the antennas.

37



Chapter 2. Terahertz Stand-Off Detection of Explosives

Fig. 2.17: Dynamic range of the antenna patterns (34 mm × 34 mm in 1 mm increments) at
ν =0.7 THz, measured at z = 90 mm.

Fig. 2.18: Dynamic range of the TC190201 antenna patterns (34 mm × 34 mm in 1 mm incre-
ments) at frequencies ν = 0.2, 0.4, 0.6 and 0.8 THz, measured at z = 90 mm.

The minima of an Airy pattern far from the aperture occur at the angle

sin θ ≈ m
λ

d
(2.10)

measured from the direction of the incoming light, where d is the diameter
of the aperture and m = 1.220, 2.233, 3.238 gives the first three minima [177].
The diameter of the Airy disk should, hence, be inversely proportional to
the frequency ν = c/λ. Therefore, we plot the diameter of the central spot
versus frequency in Fig. 2.19. The values for each antenna have been nor-
malized to the value at 0.2 THz. Evidently, the central spot diameter follows
a clear ν−1 trend for all antennas, which indicates that the THz beam indeed
is diffracted by a circular aperture. The aperture diameter d can be estimated
from the minima in the Airy pattern. The left hand side of Eq. (2.10) is
sin θ = r/

√
z2 + r2 ≈ r/z, where r is the radius from the center of the Airy

disk. If the two first consecutive minima are separated by ∆r = r2 − r1, we
have

d ≈ (m2 − m1)
cz

ν∆r
= 1.013

cz
ν∆r

(2.11)
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Fig. 2.19: Estimated Airy disk diameter as a function of frequency of the four THz emitters
normalized to the value at 0.2 THz. The black curve is the theoretical ν−1 dependency of the
Airy disk.

for r ≪ z. Fig. 2.20 shows the beam profile in the E-plane of the TC180501

Fig. 2.20: The E-plane beam profile of the TC180501 antenna measured at 0.7 THz for the three
center pixel rows corresponding to y = −1, 0, 1 mm (dotted lines) together with the average
(black).

antenna measured at 0.7 THz. The black curve is the average of the three
center pixel rows corresponding to y = −1, 0, 1 mm (dotted lines). First and
second minima occurs at approx. ±6.5 mm and ±11.5 mm resulting in ∆r =
5 mm. Inserting these numbers in Eq. (2.11), we get d ≈ 8 mm. This crude
estimate is, e.g. , limited by the 1-mm step size and, thus, only serves to give
an order of magnitude of the aperture. The aperture diameter is approx.
equal to that of the 10-mm Si lens. Therefore, it seems obvious that the
radiated THz waves are diffracted by the overall device aperture leading to
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an Airy pattern, which can be interpreted as side lobes when examined only
in the E- and H-plane.

Fig. 2.21: The top row shows the recorded beam patterns in dB of the 2×2 array at different
frequencies from 0.3 to 1.1 THz measured at z = 90 mm over an area of 75 mm × 75 mm. A,
B, C, D refers to the TC190601, TC190201, TC170806, and TC180501 antennas, respectively. The
second row displays the calculated beam pattern using array theory and the mean radiation
pattern of the four emitters at a given frequency.

Next, the four emitters were arranged side by side in a 2×2 array. The
photomixer devices are 25 mm in diameter and, hence, the distance between
two adjacent antennas is approx. d = 25 mm (center-to-center). The array
beam pattern was mapped in a 75 mm by 75 mm area at z = 90 mm for vari-
ous frequencies. The resulting images are shown in the top row of Fig. 2.21.
For comparison, the bottom row of Fig. 2.21 shows the predicted beam pat-
terns using Eq. (2.4). Here, E⃗0 (⃗r) has been taken as the normalized mean of
the individual antenna patterns and interpolated to a higher resolution, while
the array factor has been weighted by the maximum value of the radiation
pattern of each antenna. Interference is clearly present in the measured beam
patterns showing a decreasing fringe spacing with increasing frequency. At
1.1 THz the fringes are washed out due to limited spacial resolution of 1 mm.
The main resemblance between the measured and the predicted patterns is
the checkered pattern due to destructive interference. Unexpectedly, the in-
dividual emitters TC190601, TC190201, TC170806 and TC180501 are easily
distinguished in the four quadrants A-D, respectively. Thus, the expected
array gain of 42 is absent in the measurements. A reason may be the quite
different radiation patterns of the array elements. Nevertheless, both the
measured and calculated beam patterns are rather inconvenient for stand-off
spectroscopy because of their inhomogeneity. Besides the complex individ-
ual radiation patterns, this is also caused by the large array spacing d ≫ λ,
which results in grating lobes.

Instead, we turned our attention to focal plane arrays similar to the emit-
ter arrays investigated by Bauerschmidt et al. [150–152]. The transmitting and
receiving photomixers were each equipped with a custom made double con-
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Fig. 2.22: Picture of the multiple-antenna setup and the perfectly reflecting sample (gold mirror)
located 10 m away.

vex lens of ultra-high-molecular-weight polyethylene (UHMWPE) and con-
figured in two 1×4 arrays, respectively, with d = 12.5 cm element spacing as
seen in Fig. 2.22. The lenses had a focal length of f = 100 mm and where
adjusted to focus the diverging THz beams at a distance z = 10 m in front of
the setup. The optical axes of the array elements were coincided at an angle
θ in the target point at r⃗ = ρ⃗. To achieve constructive interference in the
said point independent of the THz frequency, the emitters were displaced
by ∆sm along their optical axis relative to the first emitter (∆s1 = 0) to ac-
count for any differences in the THz paths modulo 2π. In fact, the relative
phase should be chosen as k⃗ · (⃗ρ − r⃗m) corresponding to the differences in
the THz path of the beams. However, since the optical fiber pigtails of the
antennas vary, further corrections could be necessary. The resulting beam
pattern at 0.9 THz normalized to the mean of the peak intensities of the in-
dividual emitters is seen in Fig. 2.23. We see an excellent inference pattern
with vertical fringes due to the linear array configuration with a strong zero-
order interference peak at x = 0 mm. Furthermore, the peak intensity is
increased by a factor of 10 compared to the expected array gain of 42. The
explanation of this difference is mainly to be found in the very different per-
formance of the emitters. The peak intensity of the TC190201, TC170806, and
TC180501 antennas measured only 68%, 16% and 10%, respectively, relative
to the TC190601 antenna. Next, to test the effect of the receiver array, we put
a reflecting sample (a 4" Si wafer with a 100-nm gold layer on top) in the
target plane at z = 10 m. The optical axes of the receivers were aligned in
pair with the ones of the corresponding transmitting elements, viz. RC190307
and TC170806; RC180402 and TC190201; RC190102 and TC190106; RC180501
and TC180501. As explained in Sec. 3, the received signals must be weighted
to align their phases for coherent summation. This was achieved by scanning
the phase of THz signals at a given frequency using the fiber stretcher. The
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Fig. 2.23: Beam pattern of the 4×1 array in the target plane at z = 10 m. The THz intensity has
been normalized to the mean peak intensity of the array elements.

Fig. 2.24: Spectra of the individual emitters TCxxxxxx as recorded by the elements RCxxxxxx of
the 4×1 receiver array. The gray continuous line is the measured spectra of the full emitter array.

maximum value of the phase scan was subtracted for each receiver and saved
for the given measured frequency. In turn, the frequency was changed and
the procedure was repeated until the desired spectrum was obtained. First,
spectra were acquired for each of the individual elements of the transmitting
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array, and then of the full transmitting array. Fig. 2.24 shows the resulting
spectra received by the 4×1 array. The spectrum of the total transmitting
array measured by each receiver is given in each plot (gray continuous line)
for comparison. A moving average with a window size of 5 data points
has been applied to each spectrum for clarity. The superior performance of
the TC190201 emitter is clearly evident followed by TC190106. In particular,
the TC190201/RC180402 pair retains a fairly good dynamic range consider-
ing the very long THz path of 20 m. The two absorption bands centered at
roughly 0.55 THz and 0.75 THz are due to atmospheric water vapor. In con-
trast, the emitted THz signals of TC180501 and TC170806 are barely detected
by the array. For both of the TC19xxxx antennas, the emitted signal is picked
up by more than one element of the 4×1 receiver array. An explanation could
be the rather complex and different radiation patterns of the emitters. How-
ever, the THz path from the emitter to the receiver array was greater than
20 m. Hence, one would expect only the strongest part of the radiation pat-
tern to survive. Nonetheless, the beam sizes could be very different at the
receiver array. Another possible explanation could be that the focal points
of the individual elements, both emitters and receivers, were not exactly in
target plane. However, the lenses were adjusted to give the largest possi-
ble signal. Let us notice the signal received at the RC180402 and RC190307
antennas are dominated by the TC190201 signal. Furthermore, there is no
significant increase in the received signal when the full emitter array is em-
ployed compared to just the TC190201 antenna. A similar conclusion can be
drawn for the RC190102, RC180501 and TC190106 antennas. In fact, the spec-
tra recorded by the RC190102 and RC180501 antennas show oscillations that
were only present when the full emitter array was operated. This indicates
that the use of the emitter array could lead to undesired destructive inference
at the receivers!

Hypothesis II claimed that an array of receivers will increase the detec-
tion sensitivity by the number of array elements squared. As we saw in Sec.
3, this is true in terms of power if the phases of the received signals can be
coherently added. However, a CW THz spectrometer based on phase sensi-
tive detection by employing secondary photomixers as receivers measures in
fact the incoming electric field and not the power. Therefore, we should only
expect the received signal to increase by a factor of M (number of array ele-
ments). Various strategies can be applied when the coherent output signals
of the receivers are to be added. Some common schemes developed for wire-
less communication [178] are equal gain combining (EGC), maximum ratio
combining (MRC) and selection combining (SC). The former EGC is merely
a coherent summation of the signals. When we account for the number of
receiver elements, it is simply the mean of the signals. Effectively, MRC is the
weighted mean of the signals, where the each signal is weighted according
to its SNR. Thus, MRC is more advanced and requires knowledge about the
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Fig. 2.25: Coherent combining schemes of the measured signals of the full emitter array at the
four elements in the receiver array. The gray continuous line is the spectrum recorded by the
RC180402 receiver for comparison. The dotted line indicates a SNR of 2.

SNR at each receiver prior to the summation. Here, the weights are chosen
as the mean SNR over the given spectrum and normalized to 1. Lastly, in
SC the receiving system switches to the receiver element, which receives the
strongest signal, and the remaining M − 1 elements are ignored. In our case,
we choose the highest value of the dynamic range among the received signals
at a given frequency. The results of the different approaches are seen in Fig.
2.25 together with the spectrum recorded by the RC180402 antenna (gray) us-
ing the full emitter array. The dotted line indicates a SNR of 2. Generally, we
see a slight improvement of ∼1 dB using MRC versus EGC, whereas SC gains
several dB compared to both. Further, we notice that the SC spectrum is more
or less identical to single spectrum recorded by the RC180402 antenna due
to the superior performance of the TC190201 emitter. In conclusion, we see
no significant improvement in the dynamic range due to the receiver array,
even though, we expected a 10 log(4) ≈ 6 dB improvement. This we mainly
attribute to the large variation in the performance of the emitters.

4 Machine Learning

Machine learning (ML) is a field within artificial intelligence which can be
employed for classification by the patterns exhibited by the data. A few im-
portant technical terms [179, 180] are needed when discussing ML algorithms
(MLAs). First, the ML task is a classification problem, if it is to assign each
input of the MLA to one of several discrete categories. This is in contrast to
regression, where the output is one or several continuous variables. Second,
the term class refers to the categories that the THz spectra can be divided into
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(or classified to belong to) based on their spectroscopic characteristics. This
could be the sample material or even the (discrete) concentration of a certain
material in a given sample. Third, the data points in each class can be further
specified using labels. For example, if the THz spectra are divided into differ-
ent material classes, but within each class the spectra are measured at various
(discrete) relative humidity (RH) percentages, then each spectrum of a cer-
tain material can be labeled according to the RH, and vice versa. Thus, labels
allow us to differentiate the THz spectra. However, if there are no particular
differences between the spectra within each class, the labels within each class
are simply the same. Furthermore, in classification tasks, the model will map
each input onto a class label. Finally, the term feature refers to an individual
measurable property (i.e. a variable) of the observed phenomenon. In the task
of classifying THz spectra, features are equivalent to the discrete frequency
components constituting the spectra.

Generally, MLAs are said to be supervised or unsupervised if data class
labels are included or not in the training of the algorithm. In particular, unsu-
pervised MLAs analyze and cluster unlabeled datasets according to hidden
patterns in the data, whereas supervised MLAs can be utilized to predict
the class label of the input data. Further, MLAs can be utilized to reduce
the number of features, while preserving relevant information, which can
facilitate the classification task. Since THz spectra are multivariate data con-
sisting of 100’s or 1000’s discrete frequencies, this is a very pertinent capacity.
Additionally, THz reflection spectra depend on the refractive index of the
sample and, hence, exhibit weak and broad absorption signatures compared
to transmission spectra. Therefore, it can be very difficult for the programmer
to define a model as is required in traditional knowledge-based algorithms.
On the other hand, MLAs are data driven, and a given MLA develop and
build the model of the system itself through data supplied in the training
phase.

Researchers realized early on that MLAs would be beneficial for identifi-
cation and classification of substances using THz spectroscopy. For example,
Watanabe et al. [181] applied principal component analysis (PCA) to multi-
spectral THz images to separate and obtain the spatial patterns of individ-
ual chemical components in a two-component sample, and further estimate
their respective concentrations. Kawase et al. [123] then utilized this tech-
nique to demonstrate non-destructive inspection of illicit methamphetamine
and MDMA hidden in mail envelopes. Soon after, Kemp’s group picked up
the technique and reported on detection and identification of RDX via THz-
TDS imaging in reflection mode [37]. Furthermore, they investigated how
PCA can be used to reduce the spectral dimensionality of multispectral THz
images [36]. Since then several groups have implemented rather complex
MLAs for classification of THz spectra including Bayesian models [182, 183],
artificial neural networks [56, 184, 185], support vector machines [186–188],
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and random forests [182, 184, 187]. Most recently, Park et al. [189] have re-
viewed the use of MLAs for THz-TDS and THz imaging, underpinning the
importance of ML in THz applications.

4.1 Dimensionality Reduction

Dimensionality reduction methods (DRMs) are employed to lower the com-
putational requirements of the MLAs and increase the learning speed. This
is done by reducing the dimensionality of multivariate data while preserving
most of the contained information. Further, DRMs help cluster data, which
in turn allow for better classification results. The reduced dimensionality
of the data also facilitate visualization that can support data interpretation.
Hence, DRMs often serve as a preprocessing step prior to classification. Gen-
erally speaking, we can categorize DRMs in two branches, viz. feature se-
lection and feature extraction. Feature extraction algorithms construct new

Dimensionality Reduction Methods
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Fig. 2.26: Diagram of common dimensionality reduction methods.

features that are combinations of the original variables to form a lower di-
mensional space. These algorithms can either be linear or nonlinear and in-
cludes methods such as principal component analysis (PCA), linear discrimi-
nant analysis (LDA), factor analysis (FA), single value decomposition (SVD),
t-distributed stochastic neighbor embedding (t-SNE), and multidimensional
scaling (MDS). On the other hand, feature selection algorithms select a subset
of the original variables that hold the most information of relevance and dis-
card the remaining ones. These algorithms include filters such as the Relief
algorithm, Information Gain (IG), and minimum redundancy maximum rel-
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evance (mRMR) as well as wrappers using Forward Selection and Backward
Elimination, which evaluate the relevance of a given variable using a pres-
elected ML model. Finally, embedded ML as for example Random Forest,
Classification And Regression Tree (CART), Least Absolute Shrinkage and
Selection Operator (LASSO), and Elastic Net incorporate feature selection to
the learning process. An overview of some common DRMs is given in Fig.
2.26. In this work, we restrict ourselves to two linear feature extraction meth-
ods, viz. PCA and LDA.

In the following, we will let X be our data matrix of size N × M such that
each row n represents a THz spectrum Sn (observation), and each column m
a discrete frequency component νm (variable), i.e.

X =




S1(ν1) S1(ν2) · · · S1(νM)
S2(ν1) Sn(νm) · · · S2(νM)

...
...

. . .
...

SN(ν1) SN(ν2) · · · SN(νM)


 (2.12)

Principal Component Analysis projects the data onto a lower-dimensional
space with the aim of maximizing the variance of the full data set disre-
garding any class information. Hence, it is a unsupervised technique, which
focuses on revealing hidden patterns in the data. First, we assume that the
variables x⃗m (columns of the data matrix X) have been standardized, i.e. each
column has zero mean and unit variance.[190] We can construct a linear com-
bination y⃗ of the individual variables, i.e.

y⃗ =
M

∑
m=1

wm x⃗m = Xw⃗, (2.13)

where w⃗ is a vector of constants w1, . . . , wM. The PCA algorithm searches for
the optimal weights w⃗ that maximizes the variance var(⃗y), i.e.

arg max
∥w⃗∥=1

{var(⃗y)} . (2.14)

The constraint ∥w⃗∥ = w⃗Tw⃗ = 1 secures that the weights are normalized.
Otherwise, the variance could attain an arbitrary large value for an optimal
w⃗. The variance is calculated in the usual way:

var(⃗y) =
1

N − 1

N

∑
n=1

(yn − ȳ)2 =
y⃗Ty⃗

N − 1
. (2.15)

Here, it is implied that the data matrix X and, hence, all linear combinations
y⃗ are mean-centered (ȳ = 0). T denotes transpose. The optimization task can
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then be restated by combining Eqs. (2.13) - (2.15) as

arg max
∥w⃗∥=1

{
w⃗TΣw⃗

}
(2.16)

using the covariance matrix Σ = XTX/(N − 1). The arg max denotes that
we seek arguments or inputs, which maximize the function output. This is a
standard problem in linear algebra solved by eigendecomposition [191, 192],
but let us for the sake of clarity treat it in brief: (i) Form the Lagrangian
function

L (w⃗, λ) = w⃗TΣw⃗ − λ
(

w⃗Tw⃗ − 1
)

(2.17)

with Lagrange multiplier λ. (ii) Find its stationary points, i.e. its partial
derivatives should be zero. This leads to

Σw⃗ − λw⃗ = 0 and w⃗Tw⃗ − 1 = 0. (2.18)

The former is a eigenvalue problem, while the latter the imposed constraint.
Since Σ is a M× M real symmetric matrix, it follows that exactly M real eigen-
values λm and corresponding orthogonal eigenvectors v⃗m exist.[192] The as-
sociated linear combinations y⃗m = Xv⃗m are the so-called principal components
(PCs) of the data, whereas the elements of y⃗m and of v⃗m are respectively re-
ferred to as the PC scores and the PC loadings. In fact, the eigenvalues equal
the variances of the principal components y⃗m:

var(⃗ym) = var(Xv⃗m) = v⃗TmΣv⃗m = λmv⃗Tmv⃗m = λm. (2.19)

Furthermore, we see that any two PCs y⃗m and y⃗m′ are uncorrelated:

cov(⃗ym, y⃗m′) = v⃗TmΣv⃗m′ = λm′ v⃗Tmv⃗m′ = 0, (2.20)

where the last equality is due to the orthogonality of the eigenvectors. Thus,
each PC explains an independent (uncorrelated) portion of the total variance.
Now, let us assume that the eigenvectors are sorted in descending order of
the eigenvalues such that v⃗1 corresponds to the largest eigenvalue λ1. Then
v⃗1 is the optimal solution resulting in a PC y⃗1 with maximal variance λ1.
Equivalently, the successive eigenvectors represent the next orthogonal PCs
along which the maximal proportion of the remaining variance in the data is
captured, respectively. The overall variance can, hence, either be calculated
as the sum of the variances of the original variables, i.e. the trace of the covari-
ance matrix, or by summing the full range of eigenvalues. The quality of each
PC can therefore be quantified by the amount of total variance it explains, i.e.

λm

∑M
m=1 λm

. (2.21)
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Finally, the dimensionality of the data set can be reduced by retaining only
the most significant PCs, which account for most of the variance in the data.
It can be useful to calculate the captured variance, i.e. the cumulative variance
along each new feature normalized to the total variance, equivalent to the pro-
portion of explained variance to aid the decision of how many PCs that should
be kept.

Linear Discriminant Analysis is another common method for transforming
data into a lower-dimensional space. In contrast to PCA, it is a supervised
method meaning that class information is included to formulate the transfor-
mation constraints. In terms of THz spectroscopy, a class can be a different
material or e.g. different concentrations of a material in a given sample. The
naive idea of LDA is to utilize the extra information in the transformation
to increase the separation of the class means and reduce the spread within
each class. Thus, the optimization problem is to maximize the inter-class dis-
tances while minimizing the intra-class distances in the projection space. Let
s⃗i represent the ith row of the data matrix X (the ith observation). The class
information is included to label each observation s⃗i such that the data matrix
X can be partitioned into c classes Kj of nj observation:

X =




K1
...

Kc


 with K1 =




s⃗1
...

s⃗n1


 , K2 =




s⃗n1+1
...

s⃗n2


 , etc. (2.22)

Further, we will denote the projections y⃗i = w⃗T⃗si. Then, the separation of the
different classes in the projection space can be quantified by the between-class
scatter

c

∑
j=1

nj(m⃗j − m⃗)2, (2.23)

where
m⃗j =

1
nj

∑
s⃗i∈Kj

y⃗i = w⃗Tµ⃗j with µ⃗j =
1
nj

∑
s⃗i∈Kj

s⃗i (2.24)

is the jth class centroid in the projection space and

m⃗ =
1
N

c

∑
j=1

njm⃗j = w⃗Tµ⃗ with N =
c

∑
j=1

nj (2.25)

is the weighted mean of the projected centroids. µ⃗j and µ⃗ are the correspond-
ing jth class and global centroids, respectively, in the original space. The
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expressions in Eqs. (2.24)-(2.25) simplifies the between-class scatter as

c

∑
j=1

nj(m⃗j − m⃗)2 =
c

∑
j=1

nj

(
w⃗Tµ⃗j − w⃗Tµ⃗

) (
w⃗Tµ⃗j − w⃗Tµ⃗

)T

=
c

∑
j=1

nj w⃗T (µ⃗j − µ⃗
) (

µ⃗j − µ⃗
)T w⃗

= w⃗TSBw⃗, (2.26)

where the between-class scatter matrix

SB =
c

∑
j=1

nj(µ⃗j − µ⃗)(µ⃗j − µ⃗)T (2.27)

is calculated in the original space. Similarly, the spread of each projected
class j can be quantified by the within-class scatter

σj = ∑
s⃗i∈Kj

(⃗yi − m⃗j)
2

= ∑
s⃗i∈Kj

(
w⃗T s⃗i − w⃗Tµ⃗j

) (
w⃗T s⃗i − w⃗Tµ⃗j

)T

= w⃗TSjw⃗. (2.28)

Here the within-class scatter matrix of the jth class is given by

Sj = ∑
s⃗i∈Kj

(⃗si − µ⃗j)(⃗si − µ⃗j)
T (2.29)

The total within-class scatter of the projected classes is hence

c

∑
j=1

σj =
c

∑
j=1

w⃗TSjw⃗ = w⃗TSWw⃗ (2.30)

with the total within-class scatter matrix

SW =
c

∑
j=1

Sj (2.31)

The task of LDA to maximize the distance between the projected class means
and minimize the within-class variance is therefore equivalent to maximizing
the ratio

arg max
w⃗

{
w⃗TSBw⃗
w⃗TSWw⃗

}
. (2.32)
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This optimization problem is not bound, so we require the weights w⃗ to be of
unit length, and since we are only concerned with directions, we introduce
the constraint w⃗TSWw⃗ = 1. Thus, we need to solve

arg max
w⃗TSWw⃗=1

{
w⃗TSBw⃗

}
. (2.33)

Using the same approach as for PCA, we define the Lagrangian function

L (w⃗, λ) = w⃗TSBw⃗ − λ
(

w⃗TSWw⃗ − 1
)

(2.34)

and examine its stationary points

SBw⃗ − λSWw⃗ = 0. (2.35)

This is a generalized eigenvalue problem

SBw⃗ = λSWw⃗. (2.36)

Given SW is not singular, it is equivalent to

S−1
W SBw⃗ = λw⃗ (2.37)

Again, the optimal solution is the eigenvector v⃗1 associated with the largest
eigenvalue λ1. However, at most c − 1 eigenvectors exist because rank(SB) ≤
c − 1 due to the fact that its columns are linearly dependent. Furthermore,
S−1

W SB is not necessarily symmetric, thus, the eigenvectors are not generally
orthogonal. Consequently, the dimensionality of the original data matrix X
is reduced to k ≤ c − 1 features by projecting it onto the eigenvectors. The
projections y⃗k = Xv⃗k are the linear discriminants (LDs) comparable to the
PCs of PCA. As mentioned above, it can be useful to calculate the captured
variance. However, for LDA this quantity is not equivalent to the proportion
of explained variance, since the eigenvalues are related to the between-class
and within-class variance, and hence, reflect the robustness and the ability to
discriminate between different classes. Lastly, we assumed that SW is non-
singular, which is often not true. A common simple solution is to regularize
SW by

S′
W = SW + βI (2.38)

with regularization parameter β and identity matrix I. Then by eigendecom-
position, we have

S′
W = QΛQT + βI = Q(Λ + βI)QT. (2.39)

Here Q is the square matrix containing the eigenvectors and Λ the diagonal
matrix of the eigenvalues.
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Fig. 2.27: Comparison of PCA and LDA performed on the same dummy data set of two variables
and three classes.

To illustrate the difference of PCA and LDA, the two methods have been
applied to a dummy data set of two variables containing three classes in Fig.
2.27 (left). Two eigenvectors of both algorithms are plotted together with
the data points. The projections of the data onto the respective eigenvectors
are plotted in Fig. 2.27 (right). As expected, the principal components PC1
and PC2 show a larger variance in the data compared to the discriminant
components LD1 and LD2, while the latter exhibit the best separability.

4.2 Classification

As mentioned above, a trained ML classification algorithm predicts the class
of some input data, i.e. it maps the input onto a set of predefined labels. Here,
we will employ three different classification algorithms; one based on proba-
bilities, one based on geometrical distance, and one based on hyperplanes.

The Bayes Classifier calculates the posterior probability

p(Cj |⃗s) =
p(⃗s|Cj)p(Cj)

p(⃗s)
(2.40)

of an observation s⃗ to belong to the ith class Cj.[180] Here, p(Cj) is the prior
probability that the observation belongs to the jth class, p(⃗s|Cj) the likelihood
of an observation s⃗ given class j, and

p(⃗s) =
c

∑
j=1

p(⃗s|Cj)p(Cj) (2.41)

the marginal probability of s⃗. The prior probability and the likelihood are
estimated in the training phase of the algorithm. In this work, we assumed a
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Fig. 2.28: Illustration of the Bayes classifier. The contour lines indicate the posterior class, while
the dashed black line is the decision boundary.

multivariate Gaussian distribution for the class likelihood function

p(⃗s|Cj) =
1√

(2π)M det(Σj)
exp

[
−1

2
(⃗s − µ⃗j)

TΣ−1
j (⃗s − µ⃗j)

]
(2.42)

with M being the number of features or variables and det(Σj) is the deter-
minant of Σj. This was chosen because the estimate of the likelihood then
boiled down to the calculation of the mean vector µ⃗j and the covariance ma-
trix Σj for each class. Subsequently, an observation is mapped to the class
resulting in the highest posterior probability. An example of the Bayes clas-
sifier applied to a data set of two classes (blue and red dots) represented in
a two-dimensional (2D) feature space is given in Fig. 2.28. The contour lines
illustrate the posterior probability for each class, while the dashed line indi-
cate the decision boundary, i.e. where the two probabilities are equal. Hence,
the new input data point (black dot) is classified as "red".

Fig. 2.29: Illustration of the k-NN classifier. The circled points are the k nearest neighbors to the
new observation (black dot). The dashed line is the decision boundary.
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The k Nearest Neighbors (k-NN) is a simple classification algorithm, which
stores all the training data and has as such no training phase. Because the
algorithm does not develop a model with adjustable parameters, it is said
to be non-parametric. Instead, the k-NN classifier calculates the geometrical
distance from each stored observation to the new observation s⃗ and, subse-
quently, classifies it identically to the majority of the k nearest neighboring
observations. The classifier can of course be controlled by choosing different
values of k. Intuitively, the classifier becomes more robust for large k, while
small k will give more flexible decision boundaries, which are prone to out-
liers. The other parameter of the algorithm is the metric (distance function)
between observations. In our studies we utilized the Euclidean distance met-
ric, while we generally matched k to the number of training observations in
the smallest class. This should give an estimate of the separation between
classes as well as the within-class distribution. In Fig. 2.29 the k-NN algo-
rithm is applied to the same data set as in Fig. 2.28 using k = 15. Similarly,
the new observation (black dot) is labeled "red" as the nine of the fifteen
nearest neighbors are red.

Fig. 2.30: Illustration of SVM classifier. The circled points are support vectors used to establish
the margins (dotted lines). The dashed line is the decision boundary (hyperplane). The squared
red point violates the hyperplane. Thus, a soft margin SVM is required.

The Support Vector Machine (SVM) algorithm searches for a hyperplane

H : w⃗ · s⃗ + b = 0, (2.43)

where w⃗ is a normal vector and b is an arbitrary constant determining its lo-
cation, which separates the observations of two classes with maximum mar-
gin.[193, 194] When an optimal hyperplane is found, it serves as a decision
boundary, and a new observation is classified to which side of the boundary
it belongs. Fundamentally, SVM is binary but can be extended to a multi-
class modality by evaluating the separability between every classes pair-wise
(one-versus-one) or by considering each class compared to the remaining
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(one-versus-all). Therefore, let us consider the same binary classification task
as previously given in Fig. 2.28 and Fig. 2.29. Here, we only consider linear
SVM. For now, we disregard the red dot marked by the square in Fig. 2.30.
Hence, the two classes has no outliers and are linearly separable. The outer-
most observations of one class with respect to the second class are referred to
as support vectors. In Fig. 2.30 such two are marked by circles. For a given
direction or normal vector w⃗, an unique margin (dotted lines) can be found
based on the support vectors. We can define the margin by a positive (blue
dotted) and negative (red dotted) hyperplane, i.e.

H+ : w⃗ · s⃗ + b = 1 and H− : w⃗ · s⃗ + b = −1. (2.44)

This constraint ensures an uniquely pair of w⃗ and b. Furthermore, it allows
us to label each observation s⃗n as either positive or negative (yn = ±1). How-
ever, it also implies a hard margin, where no observations are allowed to
violate the boundary, that requires linearly separable classes (no outliers).
The relations in Eq. (2.44) can be collapsed into the single condition

yn(w⃗ · s⃗n + b) ≥ 1, (2.45)

which should be fulfilled in order to classify every observation correctly. Ad-
ditionally, we see that the classification rule for a new observation s⃗ writes

y = sgn(w⃗ · s⃗ + b). (2.46)

Here, sgn is the sign function. We obtain the optimal (centered) hyperplane
H orthogonal to the given direction w⃗ by choosing b such that w⃗ · s⃗ + b = 0.
The hyperplane H is plotted by the dashed line in the illustration. The margin
M is the perpendicular distance between H+ and H−. If we let s⃗+ ∈ H+

and s⃗− ∈ H−, the margin is simply found by projecting the points onto the
unit normal vector w⃗/∥w⃗∥ and using the relations in Eq. (2.44), i.e.

M = |⃗s+ − s⃗−| · w⃗
∥w⃗∥ =

2
∥w⃗∥ . (2.47)

Bringing everything together, we arrive at the constrained optimization prob-
lem

arg max
yn(w⃗·⃗sn+b)≥1

{
2

∥w⃗∥

}
for n = 1, . . . , N (2.48)

or equivalently

arg min
yn(w⃗·⃗sn+b)≥1

{
1
2
∥w⃗∥2

}
for n = 1, . . . , N, (2.49)

which is ensured to have a unique global solution [194], because both the
object function (quadratic) and the set of constraints are convex. Similarly as
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for PCA and LDA, we can apply the method of Lagrange multipliers. The
Lagrangian function for the multiple constraints is

L(w⃗, b, λ⃗) =
1
2
∥w⃗∥2 −

N

∑
n=1

λn (yn(w⃗ · s⃗n + b)− 1) . (2.50)

The stationary points are found be equating the partial derivatives to zero,
i.e.

∂L
∂w⃗

= w⃗ −
N

∑
n=1

λnyn⃗sn = 0 and
∂L
∂b

=
N

∑
n=1

λnyi = 0. (2.51)

Furthermore, the Karush-Kuhn-Tucker (KKT) conditions apply [194], i.e.

λn (yn(w⃗ · s⃗n + b)− 1) = 0, λn ≥ 0, yn(w⃗ · s⃗n + b) ≥ 1 (2.52)

for all n = 1, . . . , N. Generally, this optimization problem must be solved by
numerical methods. However, it can be instructive to study the relations in
Eqs. (2.51) and (2.52). The partial derivative ∂w⃗L = 0 implies that the optimal
direction w⃗ is a linear combination of the training vectors, i.e.

w⃗ =
N

∑
n=1

λnyn⃗sn. (2.53)

Further, when s⃗n is an interior point (i.e. yn(w⃗ · s⃗n + b) > 1), the first KKT
condition requires that λn = 0. This means that the optimal w⃗ is confined
to be a linear combination of the support vectors, since only these satisfy
yn(w⃗ · s⃗n + b) = 1.

As mentioned, this is the hard margin SVM, which does not allow outliers
like the observation marked by the square in Fig. 2.30. However, in real-
world applications data is most likely linearly inseparable. In this case, we
can instead apply a soft margin approach, which allows outliers to violate
the hyperplane at the cost of a penalty. Typically, soft margin SVMs are
better at generalizing to unseen data because wider margins can be chosen.
Mathematically, this is done by introducing positive slack variables ξn to the
constraints in Eq. (2.45). Then, the new constraints can be written

yn(w⃗ · s⃗n + b) ≥ 1 − ξn with ξn ≥ 0 (2.54)

for all n = 1, . . . , N. This implies that for 0 < ξn < 1, a given observation
s⃗n lies within the margin on the proper side of the decision boundary (the
optimal hyperplane), whereas for ξn > 1 it violates the boundary. If an
observation lies on the correct side of the boundary and outside the margin
as ideally in the hard margin case, there should be no penality and ξn = 0.
Hence, the number of training errors are bound by the sum over all ξn. Thus,
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we can naturally extend the optimization problem in Eq. (2.49) to

arg min
yn(w⃗·⃗sn+b)≥1

{
1
2
∥w⃗∥2 + γ ∑

n
ξn

}
for n = 1, . . . , N, (2.55)

to include the penalties. The soft margin problem is solved in a similar fash-
ion [194] and the optimal w⃗ takes the same form as before but the support
vectors now include any point with ξn > 0. Here, γ > 0 is a tuning pa-
rameter chosen prior to training by the programmer. Evidently, a larger γ
value will introduce stronger penalties leading to a smaller margin and vice
versa. In practice, the optimal value of γ can be hard to determine and is
typically found through cross-validation.[179] Here, the data set is randomly
partitioned into a number of subsets of equal size. The subsets are, in turn,
chosen as the test set and the algorithm is trained on the remaining data
for a certain value of the tuning parameter. The average test score is then
compared to that of other parameter values. The value, which result in the
highest average test score, is then chosen as the optimal one.

4.3 Summary of Results

Recently, Park et al. [189] pointed out the difficulties of attaining enough data,
when studying MLAs for THz applications, and the ensuing challenges. Ev-
idently, the set of training data must be sufficiently comprehensive for the
MLA to learn the characteristics of the overall system. However, even when
the training set is adequate for building a model, it may not be generic. Then,
the model can possibly learn specific characteristics of the training data, that
are not representative of the total system, or even fit to noise patterns. This
is known as overfitting. [179] The MLA will hence not generalize well to
unseen data. Since THz data sets are not generally publicly available, studies
are typically based on one or few hundreds of measurements spread over
several sample classes [104, 182, 183, 188]. Thereby each class only comprise
some tens of observations, which in turn are divided into a training and a
test set.

During the DETRIS project, we recorded more than 8000 frequency-domain
THz reflection spectra in the range from 0.09 to 1.2 THz of seven compound
materials, commonly found in the literature. These measurements has been
published as the Database of Frequency-Domain Terahertz Reflection Spectra for
the DETRIS Project (appended Publication C [195]). The experimental setup
utilized for the measurements was built upon a CW THz-FDS spectrometer
from Toptica AG (TeraScan 1550). The experimental scheme is illustrated in
Fig. 2.31. The entire THz path was enclosed in a custom-made humidity
chamber enabling measurements to be done in a controlled humidity envi-
ronment. More details of the setup are given in the appended Publications A
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Fig. 2.31: Experimental scheme used for the reflection measurements comprised in the database.
The angle of incidence was approx. 11◦.

and C. The seven measured compounds included polyethylene (PE), galacti-
tol, L-tartaric acid (L-TA), 4-aminobenzoic acid (PABA), hexogen (RDX), theo-
phylline, and α-lactose monohydrate. PE was chosen due to its flat response
in the THz spectral range and, hence, makes a convenient binder matrix for
other active compounds [196, 197]. The remaining six materials were selected
based on their unique spectroscopic fingerprints in the considered frequency
range. The reflection coefficients of the seven compounds are plotted in Fig.

Fig. 2.32: Reflection coefficients of the seven compounds measured under ambient conditions.
The continuous lines and the filled areas represents the means and the standard deviations of
480 spectra, respectively. Further, the reflection spectra have been offset vertically for a better
readability.

2.32. The spectra show weak and broad spectroscopic characteristics in con-
trast to the sharp and distinct absorption lines well-known from transmission
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spectroscopy. This is due to the dependency of the reflection coefficient on
the refractive index, whereas transmission spectra depend on the absorption
coefficient.[36] Below 0.15 THz, all the spectra exhibit a big dip due standing
waves patterns. Around 1.1 and 1.15 THz, the spectra are noisy due to a
strong absorption by atmospheric water vapor. Otherwise, the fingerprints
of the different materials spread from 0.2 to 1.2 THz with several overlaps
because of their broad extent. As mentioned, PE is generally flat and exhibits
only tiny oscillations around 0.25 and 0.375 THz. Thus, it merely adds a con-
stant background to the spectra of the sample materials and does not interfere
with their respective characteristics. The database consists of three data sets.
The first set (data set I) includes 3190 measurements recorded under ambient
conditions of the compounds mixed with PE at weight-percentages of 20%,
50% and 80%, respectively, including samples of pure PE. The second set
(data set II) contains 2337 measurements of the same samples recorded un-
der controlled humidity conditions at a relative humidity (RH) of 10%, 50%
and 90%, respectively. The third set (data set III) includes 2940 measurements
of the compounds at 80% sample material by weight and samples of pure PE
covered by various barrier materials and recorded under ambient conditions.
The measuring details can be found in the appended Publications A and C.

With the database established, we could properly investigate various as-
pects of MLAs. In Publication A, we investigated the performance of the most
common unsupervised and supervised linear DRMs (i.e. PCA and LDA, re-
spectively) for analysis and classification of THz reflection spectra. Here, we
will only summarize the main findings of the paper related to classification.
Please see Publication A for the capabilities of PCA and LDA to provide vi-
sualization of high dimensional THz spectra. The performances of the two
methods were quantified using the three classifiers described in the previ-
ous section. For the k-NN classifier, we chose k comparable to the number
of observations in the smallest class of the training set. The SVM classi-
fier employed a soft margin with a 10-fold cross-validation to determine the
optimal value of the tuning parameter γ. The spectra were truncated to in-
clude only the range from 0.3 to 1.15 THz, where the six sample materials
have unique characteristics. Moreover, the noise interval from 1.08 to 1.12
THz was excluded. Hence, we were left with spectra of 817 frequency com-
ponents. Throughout the study, we applied a stratified random sampling
to divide any given data subset into a training and a test set at a 4:1 ratio,
respectively. The study comprised four experiments based on the first two
data sets of the database. First, we included only the 1117 spectra of the
samples with highest material concentration (i.e. 80% by weight). The respec-
tive training and test sets included 893 and 224 observations (roughly 128
and 32, respectively, from each class) The dimensionality of the data was
reduced from 817 frequencies down to just two features. The classification
scores (i.e. the percentages of correct predictions also known as accuracies)
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PCA LDA RLDA
Train Test Train Test Train Test

Bayes 0.9843 0.9955 1.0000 0.9509 1.0000 1.0000
125-NN 0.9742 0.9732 1.0000 0.9509 0.9966 1.0000
SVM 0.9888 0.9732 1.0000 0.9464 1.0000 1.0000

Table 2.1: Classification scores of the PCA-, LDA- and RLDA-processed spectra of samples with
80% material by weight and samples of pure PE. Adapted from Publication A [198].

are given in Table 2.1. Both PCA and LDA yielded high classification scores
for all three classifiers. Notably, PCA provided a better generalization to the
unseen test data (superior test scores) compared to LDA. However, because
the number of observations in the training set was comparable to the num-
ber of dimensions (a poorly-posed problem), the within-class scatter matrix
(to be inverted in LDA) became almost-singular [199]. This caused the LDA
algorithm to overfit the training data, which in turn implied the inferior gen-
eralization to the test data. This is also evident from the perfect classification
scores of the training data together with the lower scores of the test data. Par-
ticularly, we found that LDA fitted to the noise in the training data instead of
the spectral characteristics Therefore, we applied regularized-LDA (RLDA)
using a 10-fold stratified cross-validation to obtain the optimal regularization
value β = 0.5 [198]. The RLDA algorithm returned almost perfect classifica-
tion scores of the train data and a perfect generalization to the test data for
all three classifiers (see Table 2.1). Overall, RLDA thus outperformed PCA at
preprocessing the data for optimal classification.

Next, the full data set I containing 3036 spectra of samples with various
material concentrations and samples of pure PE was introduced. The respec-
tive training and test sets included 2428 and 608 observations. "Since the
samples are mixtures of the active material and PE, the obtained reflection coefficient
is an intermediate value between the spectra of the two components. As the concen-
tration of the active material decreases, the material-specific spectral features become
less pronounced. Furthermore, for materials having a significantly higher refractive
index than PE, e.g., PABA and theophylline, the reflection coefficient drops over the
entire spectral range with decreasing concentration."[198] To accommodate the
higher complexity of the data, we retained three features of both the PCA
and LDA algorithms. Furthermore, the material concentrations were dis-
carded from the class labels fed to the LDA algorithm as the principal scope
was to identify the sample material. The classification scores are given in Ta-
ble 2.2. Evidently, LDA obtains superior train scores and generalized much
better to the test data than PCA. The larger size of the training set prevents
LDA from overfitting to the train data. The poor performance of PCA can
be understood by recalling that PCA is unsupervised and aims to maximize
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PCA LDA
Train Test Train Test

Bayes 0.8871 0.8914 0.9975 0.9868
125-NN 0.9090 0.9145 0.9975 0.9885
SVM 0.8937 0.9046 0.9975 0.9868

Table 2.2: Classification scores of the PCA- and LDA-processed spectra of samples with various
material concentrations and samples of pure PE. Adapted from Publication A [198].

the overall variance in the data. Hence, the PCA separates the data according
to the hidden patterns. In that sense, samples of identical material but with
various concentrations are regarded different, which complicates the classifi-
cation task. On the other hand, LDA is supervised and aims to minimize the
intra-class variance while maximizing the inter-class distance. Thus, samples
of identical materials are clustered regardless of concentration, which facil-
itates classification. Hence, the near-perfect classification scores of LDA for
all three classifiers.

Subsequently, we studied data set II, which included 2280 spectra of the
same samples measured under various humidity conditions at 10%, 50% and
90% RH. We simulated a real-world application like stand-off spectroscopy,
where a proper reference spectrum can be impossible to achieve, by only
measuring the reference spectra at 50% RH. In consequence, the weaker water

Fig. 2.33: Reflection spectra of the 80% galactitol by weight measured at various humidity condi-
tions of 10%, 50% and 90% RH. The blue and yellow curves have been offset by ±0.05 for clarity.

vapor absorption lines around 0.55, 0.75 and 0.98 THz, respectively, were
not properly removed from the spectra measured at 10% and 90% RH. In
the former measurements, this resulted in positive peaks, while the latter
exhibited negative peaks, as seen in Fig. 2.33. The training and test sets
contained 1824 and 456 observations, respectively. As before, we projected
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PCA LDA
Train Test Train Test

Bayes 0.6612 0.6316 1.0000 0.9868
95-NN 0.7007 0.6908 1.0000 0.9912
SVM 0.6321 0.6053 1.0000 0.9868

Table 2.3: Classification scores of the PCA- and LDA-processed spectra of samples with various
material concentrations and samples of pure PE measured under various humidity conditions.
Adapted from Publication A [198].

PCA LDA
Train Test Train Test

Bayes 0.7648 0.7747 1.0000 1.0000
383-NN 0.7467 0.7500 1.0000 1.0000
SVM 0.8361 0.8322 1.0000 1.0000

Table 2.4: Classification scores of the PCA- and LDA-processed spectra of samples with various
material concentrations, labeled according to their severity of hazard. Adapted from Publication
A [198].

the THz spectra onto three features using both PCA and LDA, respectively.
The classification scores obtained for the PCA- and LDA-preprocessed data
are given in Table 2.3. Once again, we see an inferior performance of PCA
with scores reaching only up to 0.70, while LDA yields unity train scores
and very high test scores showing a good generalization. The additional
peaks induced by water vapor due to the improper reference increased the
variance of the data. Following a similar chain of reasoning as above, this led
to a further overall spread of the data in the PCA feature space hampering
classification. Again, this does not affect the LDA algorithm as the supplied
class labels only contains information about the material type. Thus, LDA
clusters the data accordingly regardless of the additional peaks due water
vapor.

Lastly, we demonstrated how supervised DR methods like LDA can pro-
vide control of the classification algorithms by manipulating the class labels.
This experiment was conducted on data set I. In view of security screening,
we labeled galactitol, lactose, L-TA, PABA and PE as "Safe". Clearly, RDX
being an explosive material was labeled "Danger". Theophylline is pharma-
ceutical for respiratory diseases and is toxic at high doses. Hence, it was
labeled "Warning". With a total of three classes, LDA could at most retain
two features. Similarly, the data dimensionality was reduced to two features
using PCA for comparison. The results of PCA- and LDA-processed data
classified using the new class labels are listed in Table 2.4. As expected, all
of the classifiers performs perfectly on the LDA-processed data, which also
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exhibit superior generalization on the test data. Yet again, the PCA algorithm
was outperformed by LDA in terms of preprocessing for efficient classifica-
tion with train and test scores of approx. 0.75.

The experiment on data set II of measurements under various humidity
conditions, led us to the hypothesis that MLAs could render deconvolution
by a reference spectrum redundant for classification of THz reflection spec-
tra. Viz. , supervised DRMs can facilitate excellent accuracy scores in clas-
sification tasks of non-referenced THz reflection spectra, compared to unsu-
pervised methods. Hence, we studied the classification of non-referenced vs.
referenced terahertz spectra preprocessed by PCA and LDA, respectively, in
Publication B. For the analysis, we employed only the spectral interval from
0.4 to 1.05 THz, free of the noise induced by strong water vapor absorption
above 1.05 THz. Furthermore, the referenced spectra were each deconvoluted
by an ideal reference spectrum to get rid of any water vapor absorption. To
visualize the difference between the two types of spectra, the non-referenced
(spectral amplitude A(ν)) and referenced (reflection coefficient r(ν)) spectra
measured under ambient conditions (data set I) are shown in Fig. 2.34. For

Fig. 2.34: Non-referenced (left) and referenced (right) THz reflection spectra of samples with 50%
compound material by weight and samples pure PE. Both the non-referenced and referenced
spectra have been offset vertically for better readability. The continuous lines and the filled
areas represents the mean and the standard deviation, respectively, of 160 spectra of the given
compound.

clarity, the non-referenced spectra have only been plotted for samples of 50%
material by weight and samples of pure PE. In Publication B, the experiments
were conducted on the basis of data set II. However, due to political reasons,
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PCA LDA

Train Test Train Test

Ba
ye

s Referenced 0.9844 0.9870 1.0000 0.9974
Non-referenced 0.9368 0.9245 1.0000 0.9974

38
4-

N
N Referenced 0.7474 0.7448 0.9375 0.9349

Non-referenced 0.6836 0.6615 0.9375 0.9349

SV
M Referenced 0.9980 1.0000 1.0000 0.9974

Non-referenced 0.9258 0.9115 1.0000 0.9948

Table 2.5: Classification scores of the referenced and non-referenced spectra preprocessed by
PCA and LDA, respectively. Adapted from Publication B.

measurements on the explosive compound RDX were edited out. Thereby,
the data included 1920 observations that were divided into a train and a test
set using stratified random sampling at a 4:1 ratio. Hence, the two data set
contained 1536 and 384 observations, respectively. With six different classes,
LDA can project the data onto at most five features. The spectra contained
649 discrete frequency components and were thus projected onto five features
by both DRMs, respectively, to keep as much information as possible. The
same three classifiers as before were used for classification of the processed
data. The number of nearest neighbors was chosen equal to number of obser-
vations within each class, i.e. k = 384. Hence, the k-NN classifier will serve
as a quantifier of how well the DRMs are at intra-class clustering. The results
are shown in Table 2.5. Overall, the LDA-processed data yields superior clas-
sification scores as expected. Surprisingly, LDA performs equally well on the
non-referenced and referenced data with perfect train scores for the Bayes
and SVM classifiers and excellent test scores >99.4%. In particular, it is worth
noting the very high Bayes classifier, which is a much simpler approach com-
pared to the SVM. Reasonable classification scores are also obtained by the
Bayes and SVM classifiers working on the PCA-processed data due to larger
number of features as compared to the results of Publication A. However, the
non-referenced score are slightly lower compared to the referenced data. The
384-NN classifier shows the worst performance for both DRMs because of our
choice of k. Evidently, the higher scores for LDA proves its superior ability
of clustering the data, which in turn facilitates classification. In conclusion,
we see that our hypothesis was correct.

Finally, let us end this summary by addressing Hypothesis III of the DE-
TRIS project. The hypothesis claimed that the necessary SNR required for
identification of explosives can be reduced by use of MLAs. Further, these
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algorithms should allow identification of explosives even when masked by
various barrier materials. To investigate the effect of the SNR, the PCA, LDA

Fig. 2.35: Spectrum of an 80% RDX sample measured at 50% RH for various simulated SNRs.

and RLDA algorithms were trained using data set II and a similar method-
ology as above. The maximum number of six features were retained for all
methods. The results presented below are based on the referenced data but
similar results are achieved using the non-referenced data. White Gaussian
noise was in turn added to the test data to synthesize SNRs from 100 to 1. A
spectrum of an 80% RDX sample measured at 50% RH from test data set is
plotted in Fig. 2.35 for the various SNRs. Clearly, the broad characteristic of
RDX at 0.85 THz is hidden in noise and becomes difficult to recognize by eye
as the SNR drops to values less than 10. The classification scores of the Bayes

Fig. 2.36: Classification scores of PCA-, LDA- and RLDA-preprocessed data, respectively, as a
function of the test data SNR. The Bayes train scores coincide with the SVM train scores for LDA
and RLDA. Hence, the blue lines are hidden behind the yellow lines in these plots.
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classifier, k-NN and SVM are plotted as a function of the SNR in Fig. 2.36.
Because noise was only added to the test data, the classification scores of the
train data remains constant in all cases. Generally, all three classifiers follow
the same trend for all three DRMs with slight variations for the same reasons
as discussed above. The classification scores diminish quickly as the SNR
was decreased, starting from a SNR of 50. It is abundantly clear that LDA is
overfitting (perfect train accuracy, poor test scores that rapidly drops with the
SNR) due to a poorly posed problem. This is solved by the RLDA algorithm,
which yields good test accuracies for SNRs better than 25. PCA appears more
robust and retains test scores of approx. 90% at a SNR of 10. Subsequently,
we investigated if it would help to train the algorithms on noisy data as well.
Therefore, we added white Gaussian noise at the given SNRs to the full data
set (train and test data) and retrained the algorithms. The results are seen
in Fig. 2.37. Both PCA, LDA and RLDA yield almost constant train and test

Fig. 2.37: Classification scores of PCA-, LDA- and RLDA-preprocessed data, respectively, as a
function of the overall data SNR. For LDA and RLDA, the blue lines are generally hidden behind
the yellow lines as the train scores of the Bayes classifier coincides with that of the SVM

scores for SNRs larger than 10. However, LDA fits to noise pattern in the train
data and thus starts to generalize poorly when the SNR decreases to values
below 25. Meanwhile, RLDA retained train and test accuracies of 95% and
85%, respectively, at a SNR of 5. PCA performed slightly worse with scores
of 91% and 88%, respectively, at the same SNR. Therefore, we concluded that
MLAs can enable detection of explosives a reduced SNRs. However, the al-
gorithms must be trained on data with a similar SNR. Further, a certain SNR
is required to maintain proper classification accuracies. Supervised meth-
ods proved to be preferable once gain. Here, RLDA maintained the highest
accuracies >96.7% at a SNR of 10.

Lastly, we trained the LDA algorithm on data set III containing 2800 spec-
tra of the 80% samples covered by various barrier materials and measured
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Referenced Non-referenced

Train Test Train Test
Bayes 1.0000 0.9929 1.0000 0.9964
320-NN 1.0000 0.9893 1.0000 0.9946
SVM 1.0000 0.9911 1.0000 0.9946

Table 2.6: Classification scores of the LDA-processed referenced and non-referenced spectra of
80% samples covered by various barrier materials.

under ambient conditions. The barriers included bubble foil, cotton, duct
tape, low density PE, polyethylene terephthalate (PET), paper, a paper and
a plastic bag, polyamide and polystyrene. The details can be found in Pub-
lication C. The train and test sets included 2240 and 560 observations, re-
spectively. The resulting classification accuracies for both the referenced and
non-referenced data are given in Table 2.6. All three classifiers obtain flaw-
less training scores and impressively accurate test scores, better than 99% in
all cases except for the 320-NN of the referenced data set. Notably, the best
test scores >99.4% are yielded for non-referenced data. Thus, we can as well
confirm the second claim of Hypothesis III that explosives masked by various
barriers can be identified using MLAs.

5 Conclusions of the DETRIS Project

The goal of the DETRIS project was to improve the stand-off distance for de-
tection of explosives using THz spectroscopy. At the time the project began,
detection of explosives using THz radiation at distances of more than a few
meters was deemed unlikely. Thus, the goal was to increase the maximum
distance to more than 10 m.

First, we examined how a monochromatic CW FDS spectrometer per-
formed compared to a more common broadband pulsed TDS system. At the
time the project started, such CW system was the state-of-the-art of commer-
cially available THz spectrometers. Needless to say, the propagation losses
are similar in both approaches. Thus, we found that CW systems are better
suited for stand-off spectroscopy, simply because the pertinent THz sources
deliver output powers typically an order of magnitude higher. Next, we in-
vestigated experimentally the use of THz photomixer arrays for improved
output power and directivity of the emitted THz waves as well as improved
detector sensitivity. In this pursue, we characterized four identical, com-
mercially available, PIN diode THz photomixers with an extended bowtie
antenna structure. This was done by mapping out the two-dimensional ra-
diation patterns in the far-field for various frequencies. A rather substantial
variance of the patterns between the individual photomixers was observed.
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However, the overall trend was a strong central spot with weak concentric
rings. We showed that these Airy-like patterns most likely originated from
the THz waves being diffracted by the circular aperture of the Si lenses. The
mutually coherent THz emitters were subsequently configured in a 2×2 array
and characterized in a similar way. A clear interference pattern was observed
in the recorded array beam pattern but the four array elements were easily
distinguished, and the expected array gain was absent. We attributed the
difference between the recorded and calculated beam patterns to the rather
different radiation patterns of the individual elements. However that may
be, both the experimental and theoretical beam patterns were impacted by
the array spacing much larger than the wavelength, which resulted in grat-
ing lobes. Therefore, we concluded that photomixer phased arrays must be
implemented on-chip in order to achieve a proper array gain (output power
or sensitivity) and improved directivity. Finally, we demonstrated a stand-off
CW THz spectrometer based on transmitting and receiving focal plane arrays
of mutually coherent photomixers, respectively. At 10 m stand-off distance,
we retained a 2:1 SNR at 0.8 THz using a reflecting sample. Unfortunately,
the coherent summation of the multiple detected signals did not increase the
sensitivity as expected. In fact, we found that the recorded spectra principally
corresponded to transmitter/receiver pair that included the best performing
THz emitter. Furthermore, we showed that focal plane emitter arrays are not
suitable for stand-off spectroscopy, as the beams only overlap in the target
plane, which, in the worst case, can lead to destructive interference at the re-
ceiver. Nonetheless, detector arrays might still be beneficial if the measured
object scatters the incident THz waves due to surface irregularities causing a
non-line-of-sight setting.

Second, we studied how machine learning algorithms (MLAs) can be de-
veloped and trained to identify the spectra of explosives under various con-
ditions. Contrary to our first hypothesis, MLAs will not reduce the nec-
essary SNR required for identification of explosives and other compounds
with spectral characteristics in the THz region. We particularly examined
principal component analysis (PCA) and linear discriminant analysis (LDA).
The two dimensionality reduction methods represented an unsupervised and
supervised approach, respectively. Our work demonstrated that LDA is su-
perior at preprocessing THz reflection spectra for classification compared to
PCA. Especially, LDA facilitated classification accuracies better than 99% un-
der normal measuring conditions. Additionally, we found that MLAs make
the deconvolution of THz reflection spectra by a precise reference spectrum
redundant. This is a very substantial result, as precise reference spectra can
be problematic or even unobtainable in applications outside the laboratory,
and not least adds to the complexity of the required system. Finally, MLAs
proved themselves very efficient for detection of specific materials retaining
classification scores >99% even under unfavorable conditions (e.g. , samples
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covered by various barrier materials or in severe humidity conditions).
In conclusion, the maximum stand-off distance for detection of explosives

is limited to 10 m at the time of writing due to the maturity of the applied
technology. However, our ML-based approach can most likely help facilitat-
ing THz stand-off spectroscopy at several tens of meters as more powerful
THz sources become available at the relevant frequencies.
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Chapter 3

Terahertz Generation through
Optical Rectification

A few years prior to my research stay at IMEP-LAHC, Prof. Coutaz had
proposed that THz images of nonlinear dielectric materials including bio-
logical samples can be produced with sub-wavelength resolution through
OR THz generation in the sample [200]. It is well-known that second-order
nonlinear optical processes, i.e. , second-harmonic generation (SHG) and OR,
can be induced at the surface of noncentrosymmetric media by intense light
[201]. SHG imaging is excellent for reproducing crystalline inhomogeneties
of samples and a frequently employed in both hospitals and laboratories
[202]. In fact, various nonlinear optical modalities are applied for imag-
ing, and recently, Zhang et al. [203] reviewed the advances in nonlinear op-
tics for bio-imaging applications. Several techniques including two-photon
excited fluorescence (TPEF), SHG, third-harmonic generation (THG), coher-
ent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS),
and pump-probe imaging are describe. Surprisingly, THz generation is not
mentioned at all, even though it is generated simultaneously to SHG, and it
should therefore be possible to record a THz image every time a SHG image
is recorded. As a proof-of-principle of the technique, Coutaz’ group recorded
a THz image of a caster sugar grain in transmission [200], a nonlinear mate-
rial also used for SHG [204–206]. They named the technique ORTI, i.e. Optical
Rectification Terahertz Imaging. However, the conversion efficiencies of SHG
and OR depend on the optical parameters of the sample medium at both
the laser as well as the generated SH and THz frequencies. That is, sample
media could be transparent or opaque at both frequencies, or even trans-
parent/opaque and vice versa at the respective frequencies, like e.g. water.
Furthermore, Groma et al. [207] have demonstrated that OR can be used to
study the molecular response of biological samples. Therefore, ORTI could
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be complementary to SHG imaging and could contribute with additional
information that will be of great interest. Only a very limited number of ex-
periments regarding OR in reflection can be found in the literature, and none
in view of microscopy. A small review is given in our recent paper [208]
(appended Publication D): "Generation of THz pulses through OR in reflection
has only been studied to a lesser extent. In 2005, Reid et al.9 have reported OR
THz generation from a semi-conductor recorded in reflection at 45◦ incidence. They
pumped an InAs sample below its bandgap at 800 nm and by a proper polarimet-
ric study of both THz generation and second-harmonic generation (SHG), they were
able to discriminate the respective contributions of the bound and free photo-excited
electrons. Later in 2007, Zinov’ev et al.10,11 and Bakunov et al.12,13 developed the-
oretical models of THz generation through OR including a field generated in the
backward direction (reflection). Zinov’ev et al. presented a thorough description
of all the THz pulses generated when an optical pulse propagates through a slab of
nonlinear material. Their theoretical calculations clarify that the THz radiation is
generated at the surfaces due to the instantaneous creation and acceleration of polar-
ization charge at the front surface, and subsequent deceleration and extinction at the
back surface. They supported their theory by experiments measured in transmission.
Bakunov et al. extended the usual Fresnel formulas for transmission and reflection
of free-propagating electromagnetic pulses to forced pulses generated in a nonlinear
crystal and showed that the free and forced waves obey different boundary conditions
at the crystal surfaces.12 In the second paper13, they expanded their model to include
the focusing of the pump beam and calculate the Cherenkov angular spreading of the
generated THz waves. Later on, Hargreaves et al.14 published a detailed modeling
on THz OR generation versus the crystal orientation in view of clearly discrimi-
nating OR and photo-induced current transient contributions. Finally, Schneider15

performed a complete analysis of the THz pulses generated in a nonlinear slab con-
sidering dispersion, absorption of both optical and terahertz waves, and multiple
reflections. Furthermore, OR THz generation in reflection has been performed when
dealing with metals.16 Most of these publications focused on the theoretical descrip-
tion of the OR THz generation and experimental results were either performed in
transmission11,17 or under oblique incidence.9,16" However, aspects of OR needs
to be studied and understood before ORTI can be implemented in real-world
scenarios. For example, THz OR generation in reflection under normal inci-
dence, as studied here, is preferable in regards to microscopy.

1 The Nonlinear Plane Wave Model

In this work, we confine ourselves to the case of normal incidence as illus-
trated in Fig. 3.1. Here the laboratory referential is (xyz), and the exciting
laser beam propagates normally to the crystal surface along the z-direction.
When the laser beam is not strongly focused onto the sample, i.e. when the
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Fig. 3.1: A zinc blende crystal with crystal frame (XYZ) and a laser beam E⃗ω incident normal
to the crystal frame along the z-direction and the generated THz fields E⃗R,Ω and E⃗T,Ω in the
laboratory referential frame (xyz).

laser Rayleigh length is larger than the crystal thickness d, it can be approxi-
mated with a plane wave. We will assume that the exciting plane wave con-
sists of two spectral components ω and ω +Ω with ω and Ω being the optical
and THz angular frequencies, respectively. In air, we choose the notation of
the electric field as

E⃗o,ω(z, t) = E⃗o,ω(z)e−jωt = E⃗o,ω ejko,ωze−jωt, (3.1)

where k⃗o,ω = ω
c u⃗z is the incident wave vector, c the speed of light in vacuum,

and u⃗z the unit vector along the z-direction of the laboratory frame. The laser
field inside the crystal writes

E⃗ω (z) = E⃗ω ejk̃ωz = t̃ω E⃗o,ω ejk̃ωz (3.2)

with wave vector ⃗̃kω = ω
c ñω u⃗z and transmission coefficient t̃ω at the crystal

surface. The tilde is employed to indicate complex values except for complex
fields. The complex refractive index of the crystal at the laser frequency
is ñω = nω + jκω. The electromagnetic fields are governed by Maxwell’s
equations, viz.

∇⃗ · D⃗ = ρ, (3.3)

∇⃗ · B⃗ = 0, (3.4)

∇⃗ × E⃗ = −∂B⃗
∂t

, (3.5)

∇⃗ × H⃗ =
∂D⃗
∂t

+ J⃗ (3.6)

with the constitutive relations D⃗ = εo E⃗ + P⃗ and B⃗ = µoµH⃗. Here ρ is the
free charge density andεo the permittivity of vacuum. If we separate the
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polarization
P⃗ = εo ∑

m
χ⃗

⃗

(m) : E⃗m (3.7)

into a linear (m = 1) and a nonlinear (m > 1) part, i.e. P⃗ = P⃗L + P⃗NL, the
displacement field can be written

D⃗ = εo ε⃗̃

⃗

· E⃗ + P⃗NL. (3.8)

Furthermore, neglecting any anisotropy of the crystal, the permittivity tensor
ε⃗̃

⃗

reduces to a scalar ε̃. Additionally, in a nonmagnetic (µ = 1) dielectric
medium, there are no free charges (ρ = 0) and no free currents (⃗J = 0).
Thus, by taking the curl of Eq. (3.5), changing the order of the curl and
the time-derivative on the left-hand side, and substituting Eq. (3.6) and the
constitutive relations, we get

∇⃗ × ∇⃗ × E⃗ = −µoεo ε̃
∂2E⃗
∂t2 − µo

∂2P⃗NL

∂t2 . (3.9)

The right-hand side of Eq. (3.9) can be rewritten using the identity

∇⃗ × ∇⃗ × E⃗ = ∇⃗
(
∇⃗ · E⃗

)
−∇2E⃗.

from vector calculus. Furthermore, since we approximate the electric field by
a plane wave, we have ∇⃗ · E⃗ = 0. Substituting into Eq. (3.9) and applying
µo = 1/εoc2, we obtain the nonlinear Helmholtz propagation equation

−∇2E⃗ +
1
c2 ε̃

∂2E⃗
∂t2 = − 1

εoc2
∂2P⃗NL

∂t2 . (3.10)

Let us recall from Eq. (3.1) that the electric field has a harmonic time depen-
dence e−iωt. Similarly, we can apply this notation to the nonlinear polariza-
tion, i.e.

P⃗NL = P⃗NL(z)e−iωt. (3.11)

Thereby, we calculate the time derivatives in Eq. (3.10) and multiply by eiωt

to obtain the expression

∇2E⃗(z) +
ω2

c2 ε̃E⃗(z) = − ω2

εoc2 P⃗NL(z). (3.12)

The THz wave at frequency Ω is generated through OR, which is described
by the second-order nonlinear susceptibility tensor χ⃗̃

⃗

(2). Therefore, the non-
linear polarization writes

P⃗NL
Ω (z) = εo χ⃗̃

⃗

(2) : E⃗ω+Ω(z) · E⃗∗
ω(z), (3.13)
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where the asterisk denotes the complex conjugate. Finally, we obtain the
nonlinear Helmholtz propagation equation for the THz field E⃗Ω by combin-
ing Eqs. (3.12) and (3.13):

∇2E⃗Ω(z) +
Ω2

c2 ε̃ΩE⃗Ω(z) = −Ω2

c2 χ⃗̃

⃗

(2) : E⃗ω+Ω(z) · E⃗∗
ω(z). (3.14)

Entering expression (3.2) of the laser field into Eq. (3.14) leads to

∇2E⃗Ω(z) +
Ω2

c2 ε̃ΩE⃗Ω(z) = −S⃗ej∆k̃z (3.15)

with ∆k̃ ≡ k̃ω+Ω − k̃∗ω and the source term S⃗ = Ω2

c2 χ⃗̃

⃗

(2) : E⃗ω+Ω · E⃗∗
ω. The

angular wave number difference can be written

∆k̃ =
ω + Ω

c
(nω+Ω + jκω+Ω)− ω

c
(nω − jκω)

=
ω + Ω

c
nω+Ω − ω

c
nω + j

ω

c

((
1 +

Ω
ω

)
κω+Ω + κω

)
. (3.16)

Within the hypothesis Ω ≪ ω, we can develop the refraction index and the
extinction coefficient as

nω+Ω ≈ nω + Ω
∂nω

∂ω
and κω+Ω ≈ κω + Ω

∂κω

∂ω
, (3.17)

respectively. Inserting these approximations into Eq. (3.16), we get

∆k̃ ≈ ω + Ω
c

[
nω + Ω

∂nω

∂ω

]
− ω

c
nω + j

ω

c

((
1 +

Ω
ω

) [
κω + Ω

∂κω

∂ω

]
+ κω

)

=
Ω
c

(
nω + (ω + Ω)

∂nω

∂ω
+ j
[(

2
ω

Ω
+ Ω

)
κω + (ω + Ω)

∂κω

∂ω

])
(3.18)

If we apply the optical group refractive index

nG,ω = nω + ω
∂nω

∂ω
(3.19)

and neglect the terms proportional to Ω2 (these terms will be very small com-
pared to the other terms within our hypothesis Ω ≪ ω), the wave number
difference ∆k̃ simplifies as

∆k̃ ≈ Ω
c

(
nG,ω + j

[
2

ω

Ω
κω + ω

∂κω

∂ω

])
. (3.20)

The second term of the imaginary part is much smaller than first term. Thus,
we arrive at

∆k̃ ≈ Ω
c

nG,ω + j
2ω

c
κω =

Ω
c

nG,ω + jαω ≡ Ω
c

ñG,ω. (3.21)
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Here αω = 2ωκω/c is the absorption coefficient at the optical laser frequency.
Let us notice with

ñG,ω ≡ nG,ω + jκG,ω = nG,ω + j
c

2ω
αG,ω, (3.22)

we can deduce from Eq. (3.21) that

κG,ω =
c
Ω

αω ⇒ αG,ω =
2ω

Ω
αω. (3.23)

With some typical numbers λΩ = 2πc/Ω = 300 µm and λω = 800 nm, we
see that 2ω/Ω = 750. Hence, the group absorption is 750∼1000 times larger
than the laser absorption, which is enormous.

Inside the crystal, the solution of nonlinear Helmholtz Eq. (3.15) is the
sum of free and forced waves, that is

E⃗Ω(z) = E⃗free,Ω ejk̃Ωz + E⃗forc,Ω ej∆k̃z. (3.24)

Entering the forced wave expression into the right-hand side of Eq. (3.15), we
get

∇2E⃗forc,Ω ej∆k̃z +
Ω2

c2 ε̃ΩE⃗forc,Ω ej∆k̃z =

(
−∆k̃2 +

Ω2

c2 ε̃Ω

)
E⃗forc,Ω ej∆k̃z, (3.25)

and thus,

E⃗forc,Ω =
S⃗

∆k̃2 − k̃2
Ω

(3.26)

with k̃2
Ω = Ω2

c2 ε̃Ω = Ω2

c2 ñ2
Ω. Outside the crystal, i.e. in air or vacuum, the

propagation equation is similar to Eq. (3.15) but the nonlinear source term S⃗
is null. The solution is a forward or backward propagating free plane wave.
Because no THz beam illuminates the crystal, only the THz backward wave,
i.e. the reflected THz field, must be considered:

E⃗R,Ω(z) = E⃗R,Ω e−jkR,Ωz (3.27)

with k2
R,Ω = Ω2

c2 . At the crystal surface in z = 0, the tangential components of
the electric and magnetic fields must conserved, i.e.

u⃗z ×
(

E⃗R,Ω(z)− E⃗Ω(z)
)∣∣∣

z=0
= 0, (3.28)

u⃗z ×
(

H⃗R,Ω(z)− H⃗Ω(z)
)∣∣∣

z=0
= 0. (3.29)

The Maxwell-Faraday Eq. (3.5) and B⃗ = µo H⃗ can be utilized to rewrite the
magnetic fields in terms of the electric fields:

∇⃗ × E⃗ = −∂B⃗
∂t

= jΩµo H⃗ ⇒ H⃗ =
j

Ωµo
∇⃗ × E⃗. (3.30)
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Then Eqs. (3.28) and (3.29) take the forms
(−ER,Ω,y + EΩ,y

ER,Ω,x − EΩ,x

)
=

(−ER,Ω,y + Efree,Ω,y + Eforc,Ω,y
ER,Ω,x − Efree,Ω,x − Eforc,Ω,x

)
= 0 (3.31)

∂

∂z

(
−E⃗R,Ω(z) + E⃗Ω(z)

)∣∣∣
z=0

= kR,ΩE⃗R,Ω + k̃ΩE⃗free,Ω + ∆k̃ΩE⃗forc,Ω = 0 (3.32)

after entering the expressions of the THz electric fields Eqs.(3.24) and (3.27),
which leads to the system of equations

[
1 −1

kR,Ω k̃Ω

] (
ER,Ω,i

Efree,Ω,i

)
=

(
1

−∆k̃

)
Eforc,Ω,i for i = x, y. (3.33)

With a little algebra, we find the solutions:
(

ER,Ω,i
Efree,Ω,i

)
=

1
k̃Ω + kR,Ω

[
k̃Ω 1

−kR,Ω 1

] (
1

−∆k̃

)
Eforc,Ω,i (3.34)

Thereby, we have obtained the full expressions of Eqs. (3.19) and (3.22) for
the THz fields that propagate backwards and forwards, respectively:

E⃗R,Ω(z) =
k̃Ω − ∆k̃

k̃Ω + kR,Ω

S⃗
∆k̃2 − k̃2

Ω
e−jkR,Ωz, (3.35)

E⃗Ω(z) =
S⃗

∆k̃2 − k̃2
Ω

(
ej∆k̃z − ∆k̃ + kR,Ω

k̃Ω + kR,Ω
ejk̃Ωz

)
. (3.36)

As expected, the reflected signal does not depend on the crystal thickness,
and thus, it exists even if the crystal thickness tends towards zero: The gener-
ation in reflection is a pure surface effect. Let us notice that the coefficient in
front of the second exponential in Eq. (3.36) is equal to 1 when the reflected
field is neglected. It follows that the transmitted field is not null even if the
sample thickness is zero, because of the surface-effect generation, while it is
null when one makes the hypothesis of no signal at the entrance face of the
crystal.

To get the THz field transmitted through the crystal (z > d) at the rear
surface, we need to multiply Eq. (3.31) by the THz transmission coefficient
t̃Ω:

E⃗T,Ω(z) = E⃗Ω(d)t̃ΩejkR,Ω(z−d). (3.37)

Finally, when we enter the expressions for the angular wave numbers, the
THz fields writes

E⃗R,Ω(z) = − χ⃗̃

⃗

(2) : E⃗ω+Ω · E⃗∗
ω

(ñΩ + 1)(ñG,ω + ñΩ)
e−jkR,Ωz (3.38)
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and

E⃗T,Ω(z) =
2ñΩ

1 + ñΩ

χ⃗̃

⃗

(2) : E⃗ω+Ω · E⃗∗
ω

ñ2
G,ω − ñ2

Ω

(
ej∆k̃z − ñG,ω + 1

ñΩ + 1
ejk̃Ωz

)
. (3.39)

The field magnitudes normalized to nonlinear source terms can be written as

∣∣∣E⃗R,Ω

∣∣∣ /
∣∣∣
↔
χ̃ (2) : E⃗ω+Ω · E⃗∗

ω

∣∣∣ =
∣∣∣ (ñΩ + 1) (ñG,ω + ñΩ)

∣∣∣
−1

(3.40)

and

∣∣∣E⃗T,Ω

∣∣∣ /
∣∣∣
↔
χ̃ (2) : E⃗ω+Ω · E⃗∗

ω

∣∣∣ =
∣∣∣∣

2ñΩ

1 + ñΩ

∣∣∣∣

∣∣∣∣∣∣

2
(

ej∆k̃d − ñG,ω+1
ñΩ+1 ejk̃Ωd

)

(ñΩ + 1)
(

ñ2
G,ω − ñ2

Ω

)

∣∣∣∣∣∣
. (3.41)

The ratio ∣∣∣∣∣
E⃗R,Ω

E⃗T,Ω

∣∣∣∣∣ =

∣∣∣∣∣∣
(ñΩ + 1) (ñG,ω − ñΩ)

4ñΩ

(
ej∆k̃d − ñG,ω+1

ñΩ+1 ejk̃Ωd
)

∣∣∣∣∣∣
, (3.42)

is independent of the crystal nonlinearity, and thus, on the polarization of the
laser and THz beams. Expressions (3.40) and (3.41) are plotted in Fig. 3.2(a)
and (b), respectively, using λ = 800 nm, f = 1 THz, nG,ω = 2.5, nΩ = 3, and
d = 1.52 mm versus the absorption coefficients αω and αΩ. We see that the

Fig. 3.2: Maps of the THz field magnitudes normalized to the nonlinear source term for genera-
tion in reflection (a) and and transmission (b) versus the optical and THz absorption coefficients
αω and αΩ, respectively. The figure is adapted from the appended Publication D [208]

reflected field magnitude depends weakly on the refractive index of the crys-
tal and, thus, contains all the spectral information related to both the linear
and nonlinear crystal properties at the laser and THz frequencies including
phonons resonances at THz frequencies. Additionally, the magnitude of the
reflected field is almost constant up to αω ≈ 106 cm−1 and αΩ ≈ 103 cm−1

forming the yellow plateau, whereupon it quickly goes to zero. In contrast,
the magnitude of the transmitted field decreases strongly when either the
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1. The Nonlinear Plane Wave Model

laser or THz absorption increases and is almost null when αΩ > 103 cm−1

or αω > 107 cm−1, because the laser and/or THz fields does no longer prop-
agate inside the crystal. In particular, the reflected field will naturally be
stronger than the transmitted field for large absorption at laser frequencies
For weak absorption, either at visible or THz frequencies, cumulative gen-
eration inside the crystal is possible and, thus, the transmitted THz field is
much stronger (∼ 10 times) than the reflected field. The difference between

Fig. 3.3: Magnitude of the transmitted (continuous lines) and reflected (dashed line) THz field
versus nG,ω − nΩ. (a) Calculation for different THz absorption values αΩ for a 1.52-mm thick
crystal assumed to be transparent at the laser wavelength λ = 800 nm. (b) Calculation for
different crystal thicknesses for an assumed THz absorption αΩ = 20 cm−1. The curves are
normalized to the reflected signal at nG,ω − nΩ = 0. The figure is taken from the appended
Publication D [208].

the two fields can be emphasized by plotting the field magnitudes versus the
difference nG,ω − nΩ, which is seen in Fig. 3.3 for a crystal transparent at
the laser wavelength λ = 800 nm with nG,ω = 3 and f = 1 THz. The re-
flected field is only plotted for αΩ = 0 cm−1 since dependency on the THz
absorption is weak. In Fig. 3.3(a) the transmitted field is plotted for sev-
eral values of αΩ and normalized to the reflected signal at nG,ω − nΩ = 0.
The transmitted field exhibits clear phase-match oscillations, which are at-
tenuated and eventually erased with increasing THz absorption. Indeed, the
reflected field is free of such phase-matching features. In case of strong THz
absorption or the minima of the phase-match oscillations, the transmitted
field becomes comparable to the reflected field. Typical values are nΩ = 3.2
and nG,ω = 3.16 at 1 THz and, thus, we see that |ER/ET| ≈ 1/90. In Fig.
3.3(b) the transmitted field is calculated for different crystal thicknesses and
αΩ = 20 cm−1. Here, we see that the oscillations in the transmission curves
exhibit a shorter pseudo-periodicity for thinner crystals because of the phase-
matching phenomenon. When phase-matching is realized, the transmitted
field is 1-2 orders of magnitude stronger than the reflected field and overall
the increasing crystal thickness makes up for the THz absorption. We can
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conclude that THz generation by OR in transmission is the most efficient for
common materials. However, the reflected THz field only has a weak depen-
dency on the loss in the material, even for materials with strong absorption
at both the laser and the THz frequencies, and does only vanish for opaque
samples. Therefore, THz generation by OR in reflection can be useful only if
the sample or the experiment does not allow for a measurement of the field
generated in transmission. This could be the case if the sample has a rough
rear face, is covered by nontransparent or diffracting layers, or in case of mi-
croscopy. Additionally, OR in reflection is requested if one wants to study
any physical or chemical phenomena at the surface.

The generated THz fields in Eqs. (3.38) and (3.39) depend on the nonlinear

source term
↔
χ̃ (2) : E⃗ω+Ω · E⃗∗

ω related to P⃗NL
Ω,xyz, in which the nonlinear tensor

↔
χ̃ (2) is known in the crystal frame (XYZ). A first rotation by θ around y
followed by a second rotation by ϕ around z is required to switch from the
laboratory to the crystal frame [209]. The associated rotation matrices are

Ry(θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 (3.43)

and

Rz(ϕ) =




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1


 , (3.44)

which can be simplified by the total rotation matrix R(ϕ, θ) = Rz(ϕ)Ry(θ),
i.e.

R (ϕ, θ) =




cos ϕ cos θ − sin θ cos ϕ sin θ
sin ϕ cos θ cos θ sin ϕ sin θ
− sin θ 0 cos θ


 . (3.45)

The expression of the nonlinear polarization P⃗NL
Ω,XYZ is obtained with the ex-

pression of the laser field in the crystal frame, i.e.

E⃗ω,XYZ = R (ϕ, θ) E⃗ω,xyz. (3.46)

Then, in order to get the nonlinear polarization in the laboratory frame, it is
multiplied by the inverse rotation matrix R−1(ϕ, θ) = Ry(−θ)Rz(−ϕ), that is

R−1(ϕ, θ) =




cos θ sin θ sin ϕ − sin θ cos ϕ
0 cos ϕ sin ϕ

sin θ − cos θ sin ϕ cos θ cos ϕ


 . (3.47)

Thus, we get

P⃗NL
Ω,xyz = R−1 (ϕ, θ) εo

↔
χ̃ (2) :

(
R (ϕ, θ) E⃗ω+Ω,xyz

)
·
(

R (ϕ, θ) E⃗∗
ω,xyz

)
, (3.48)

80



2. Summary of Results

which must be calculated for each crystallographic class and each orientation
of the crystal. Here, we address only cubic crystals (432, 4̄3m, 23) and the
nonlinear susceptibility tensor takes the form [201]

↔
χ̃ (2) =




0 0 0 χ̃
(2)
14 0 0

0 0 0 0 χ̃
(2)
14 0

0 0 0 0 0 χ̃
(2)
14


 . (3.49)

For the most common crystal cuts ⟨100⟩, ⟨110⟩ and ⟨111⟩, the rotation are

θ =
π

2
, ϕ = 0, θ =

π

2
, ϕ =

π

4
θ = arccos

(
1√
3

)
, ϕ =

π

4
,

respectively. Gaborit et al. [209] has shown that this leads to the following
dependence of the THz field on the laser polarization angle ψ:

⟨110⟩ → E⃗R,Ω, E⃗T,Ω ∝
1
4




cos 2ψ − 1
−2 sin 2ψ

0


 (3.50)

⟨111⟩ → E⃗R,Ω, E⃗T,Ω ∝
1√
6




cos 2ψ
− sin 2ψ

−1/
√

2


 (3.51)

No generated THz signal propagates outside the ⟨100⟩ crystal at normal in-
cidence.

2 Summary of Results

The experimental work on THz generation through OR in reflection was ini-
tiated at IMEP-LAHC in Chambéry and afterwards continued at Aalborg
University. The work resulted in the appended Publication D published in
the Journal of Applied Physics.

2.1 Experimental Work at IMEP-LAHC

The initial experimental setup for THz generation in reflection is depicted
in Fig. 3.4. The setup resembled a traditional THz-TDS spectrometer. A
beam of 45-fs polarized laser pulses at 1 kHz repetition rate was delivered
by an amplified Ti:sapphire laser system from Coherent (Libra 7). The laser
wavelength was centered at 800 nm, and the pulse energy was 4.7 mJ. A beam
splitter (BS) divided the pulses into a reflected pump and a transmitted probe
branch. A half-wave plate (HWP) and a mechanical chopper in the pump
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Fig. 3.4: Illustration of the initial experimental setup. BS, beam splitter; ND, neutral density
filter; HWP, half-wave plate; QWP, quarter-wave plate; BPD, balanced two-photodiode.

beam controls the pump polarization and triggers the lock-in detection, re-
spectively. The pump beam was focused by a 200-mm focal lens on a 1.52-mm
thick ⟨110⟩-cut ZnTe crystal at normal incidence through a hole in an off-axis
parabolic mirror (OAP). At the emitter crystal, the pump beam diameter was
1 mm and the average power was approximately 50 mW. The reflected THz
radiation generated by OR was then collected by the same parabolic mirror,
sent through a four OAP configuration and focused onto a 1-mm thick ⟨111⟩-
cut ZnTe crystal for detection via electro-optic (EO) sampling. The majority
of the THz path was placed in a humidity chamber and the measurements
were performed at 5% relative humidity and room temperature. To block the
back-reflected pump beam, a Teflon slab was placed at the THz waist. Before
the EO crystal, the >1 mW probe beam was circularly polarized by a quarter-
wave plate (QWP). In consequence of the THz induced birefringence in the
EO crystal, the probe beam became elliptically polarized. Subsequently, the
probe was sent through a Wollaston prism splitting it in two perpendicular
polarizations, which were focused onto a balanced two-photodiode system
(model Nirvana, New Focus). The signal from the balanced two-photodiode
system was, in turn, recorded using a lock-in amplifier from Stanford Re-
search Systems. The EO detection system was initially calibrated by placing
a THz polarizer (Purewave Polarizers) in the THz path while optimizing the
angle of the HWP, whereafter the former was removed. Hence, the EO detec-
tion scheme was ensured to be only sensitive to horizontally polarized THz
radiation.

Fig. 3.5(a) shows two THz pulses separated by ∆t ≈ 32.8 ps (peak to
peak). The first THz pulse R was generated by OR in reflection at the front
surface of the crystal, while the later pulse T was generated in transmission.
However, the T pulse could either be generated in transmission by the for-
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Fig. 3.5: (a) THz waveforms R and T of pulses generated by OR in reflection and transmission,
respectively. The measurement has been normalized to maximum of the R pulse. (b) Spectra of
the R and T waveforms.

ward going laser beam and, in turn, be reflected at the rear crystal surface
and then transmitted through the front surface, or the laser pulse could prop-
agate through the crystal, be reflected at the rear surface and then generate
the T pulse as it counter propagates the crystal. In the former case, the time
delay ∆t between the two THz pulses is equal to ∆t = 2dnG,Ω/c ≈ 2dnΩ/c,
because the additional optical path length of the T pulse is two times the
crystal thickness times the THz group index compared to the R pulse. Us-
ing crystal thickness d = 1.52 mm and nΩ = 3.20 as measured around 1
THz, we get ∆t = 32.4 ps by setting nG,ω = 3.16 in agreement with the
measured delay. Let us compare the magnitude of the R and T pulses us-
ing Eq. (3.42). We must, however, multiply the transmitted THz field by
r̃Ωe−αΩd/2 to include the back reflection at the rear crystal surface and prop-
agation through the crystal. For now, we assume that THz absorption inside
the crystal is negligible (i.e. αΩ ≈ 0). The Fresnel reflection coefficient at
normal incidence is r̃Ω = (nΩ − nair)/(nΩ + nair) ≈ 0.52 around 1 THz.
In the previous section, we saw that |ER/ET| ≈ 1/90 for the given val-
ues of nΩ and nG,ω. When we take the reflection coefficient into account,
we get |ER/ET|calc ≈ 1/47 in contrast to the measured |ER/ET| ≈ 1/1.2.
In the latter case, the laser pulse and THz pulse each propagates through
the crystal once. Hence, the time delay ∆t′ between the two THz pulses is
equal to ∆t′ = d

c (nG,ω + nG,Ω) ≈ d
c (nG,ω + nΩ). Inserting the same val-

ues as before, we get ∆t′ ≈ 32.8 ps, which is in perfect agreement with our
measurement. In this case, we must multiply the transmitted THz field in
Eq. (3.42) by |r̃ω t̃ωe−αωd/2|2 to take into account the transmission, reflection
and propagation of the laser beam in the crystal. Similarly, if we assume
that the crystal is transparent at the laser frequencies (i.e. αω ≈ 0), we get
r̃ω = (nG,ω − nair)/(nG,ω + nair) ≈ 0.52 and t̃ω = 2nair/(nG,ω+nair) = 0.48,
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and thus the calculated ratio is |ER/ET|calc ≈ 1/6, which is still much smaller
than the measured ratio. However, since the time delay agreed perfectly and
the calculated ratio was closer to the measured ratio, we initially concluded
that the T pulse was generated in transmission by the counter propagating
laser pulse reflected at the rear surface inside the crystal.

Evidently, the recorded THz signals in Fig. 3.5 are very noisy. Hence,
it was not possible to perform meaningful experiments regarding efficiency
and polarimetry. The signal-to-noise ratio (SNR) could, however, readily be
improved by several means. Obviously, the experimental setup was not ex-
plicitly designed for generation in reflection and could, thus, be improved by
removing half of the OAPs to reduce the THz path. But even more impor-
tantly, there was a mismatch between the repetition rate of the laser and the
available recording system (the lock-in amplifier). The 45-fs amplified laser
system operates at 1 kHz. Thus, the resulting duty cycle of 4.5 × 10−11 is ex-
tremely low. The lock-in amplifier measures continuously in time throughout
the on-time of the square-wave reference signal produced by the mechanical
chopper. This implies that noise is recorded for most of the duration (the
measured signal between the laser pulses) and, hence, results in a low SNR.
In fact, boxcar averaging should be utilized for such a low duty cycle system
for an optimal SNR. Here, the signal is recorded only during the laser pulse
duration and the time intervals in-between are ignored. This corresponds to
multiplying the signal by an rectangular pulse train (i.e. a boxcar function)
with a period matched to the repetition rate of the laser. The signal can then
be integrated over the duration of the boxcar width and, subsequently, be
averaged over M periods. Alternatively, an improved SNR can be achieved
using a lock-in amplifier by switching to a high repetition rate laser system
like a Ti:sapphire oscillator typically operating at 100 MHz.

2.2 Experimental Work at AAU

Following the research stay at IMEP-LAHC, the experimental work was con-
tinued at AAU. A new experimental setup was build from scratch optimized
for generation in reflection as illustrated in Fig. 3.6. To achieve an improved
SNR by lock-in detection, a Ti:sapphire oscillator from Spectra-Physics oper-
ating at 80 MHz repetition rate was delivering a beam of linearly polarized
100-fs laser pulses. The laser wavelength was centered around 786 nm, and
the pulse energy was 12.5 nJ. Similarly, a beam splitter divided the pulses
into a pump and a probe branch. The optical delay was employed in the
pump branch together with a mechanical chopper for lock-in detection and
a HWP to control the pump polarization. The pump beam was focused by
a 150-mm focal lens on the same ⟨110⟩-cut ZnTe crystal as utilized at IMEP-
LAHC at normal incidence through a hole in an OAP. The spotsize diameter
was measured using the knife-edge method and approx. 37 µm at the crys-
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Fig. 3.6: Illustration of the experimental setup employed at AAU. BS, beam splitter; ND, neutral
density filter; HWP, half-wave plate; PCA, photoconductive antenna.

tal. Additionally, the maximum average laser power was approx. 440 mW at
the crystal without the chopper and could be controlled by a variable neutral
density filter (ND). The THz path was simplified using only two OAPs. A
first one to collect the generated THz fields and a second one to focus the
THz fields onto a bow-tie PC antenna detector from BATOP GmbH. The de-
tector was oriented to be sensitive to vertically polarized THz radiation. The
measurements were all done under ambient conditions.

Fig. 3.7(a) shows THz waveforms recorded using the optimized setup.
Immediately, the improved SNR is noticed but surprisingly the T pulse was

Fig. 3.7: (a) THz waveforms R and T of pulses generated by OR in reflection and transmission,
respectively. (b) Spectra of the R (red) and T (blue) waveforms. The black curve is the calculated
T spectra.

much weaker than the R pulse contrary to the theoretical expectations. The
two pulses were again separated by ∆t ≈ 32.8 ps (peak to peak). Further-
more, we clearly notice that the T pulse was phase-inverted as it should be
according to Eqs. (3.38)-(3.39). However, in opposition to our initial conclu-
sion and as we shall see below, it seems more likely that the T pulse was
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Chapter 3. Terahertz Generation through Optical Rectification

generated in transmission by the forward going laser beam and, in turn, re-
flected at the rear crystal surface and then transmitted through the front sur-
face. In this case, we calculate the time delay as before ∆t ≈ 2dnΩ/c ≈ 32.4
ps using d = 1.52 mm and nΩ = 3.20 as measured around 1 THz. This
is still in good agreement with the measured delay, and the difference of
0.4 ps corresponds to an 1% error in the refractive index nΩ. Let us recall
that |ER/ET|calc ≈ 1/47. In Fig. 3.7(a), we find that the THz peak-to-peak
magnitude of R relative to T is |ER/ET| ≈ 7 in strong contrast to what we
found in Fig. 3.5. After fruitful discussions with Prof. F. Laurell and Prof.
V. Pasiskevicius from the Department of Applied Physics at Royal Institute
of Technology in Stockholm (Sweden), we realized that this could be related
to the much higher repetition rate of the Ti:sapphire oscillator compared to
the amplified laser system. The photogenerated carrier lifetime of ZnTe is
τZnTe = 25 ns [210], while the pulse period of the Ti:sapphire oscillator is
12.5 ns. Thus, a steady-state population of photogenerated free carriers could
build up through a two-photon absorption (TPA) process, which could de-
crease the THz generation through the crystal and, in turn, absorb the THz
radiation reflected at the rear crystal surface.

Let us estimate the TPA-induced THz absorption αΩ = 2ΩκΩ/c. First, in
the experiment the laser peak power density at the crystal is

D ≈
Epulse

τpulseϕs
(3.52)

with Epulse being the laser pulse energy, τpulse the pulse duration and ϕpulse
the spotsize. Here, the laser pulse energy is modeled to be uniform during
the pulse duration. The pulse energy is proportional to the average power P̄
and the laser repetition rate frep, i.e. Epulse = P̄/ frep. Let us now develop the
laser intensity inside the crystal as

I(z + dz)− I(z) = −
(

αI(z) + βI2(z)
)

dz, (3.53)

where α and β are the linear and TPA absorption coefficients at the laser
frequency, respectively. Eq. (3.55) is equivalent to the differential equation

dI(z)
dz

= −αI(z)− βI2(z), (3.54)

which is solved by integration:
∫ dI

αI + βI2 = −
∫

dz = −z. (3.55)

The fraction under the left hand side integral can be rewritten as

1
αI + βI2 =

1
α

(
1
I
− β

α + βI

)
. (3.56)
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Hence, we have

1
α

(∫ dI
I

− β
∫ dI

α + βI

)
=

1
α
(ln(I)− ln(α + βI)) + C = −z, (3.57)

where C is the integration constant. Rearranging Eq. (3.57), we get

ln
(

I
α + βI

)
= αC − αz ⇒ I

α + βI
= Ae−αz. (3.58)

The coefficient A is determined at crystal entrance (at z = 0), i.e.

I(z)
α + βI(z)

=
I(0)

α + βI(0)
e−αz ⇒ I(z) =

I(0)e−αz

1 + β
α I(0) (1 − e−αz)

. (3.59)

Since the ZnTe is transparent at the laser frequency, we can neglect the linear
absorption, thus,

I(z) = lim
α→0

I(0)e−αz

1 + β
α I(0) (1 − e−αz)

=
I(0)

1 + βI(0)z
. (3.60)

Here, we have applied L’Hôpital’s rule from calculus, i.e.

lim
x→0

f (x)
g(x)

= lim
x→0

f ′(x)
g′(x)

. (3.61)

The absorbed laser intensity due to the TPA effect is therefore

∆I = I(0)− I(d) =
βI(0)d

1 + βI(0)d
I(0). (3.62)

The laser intensity at the crystal entrance is I(0) = TωD with transmission
coefficient Tω = (2/(nG,ω + 1))2. The number of absorbed photons for each
pulse is proportional to the absorbed intensity, thus, we can write

∆I
I(0)

=
Nabs

Npulse(0)
⇒ Nabs =

∆I
I(0)

Npulse =
∆I

I(0)
Epulse

ℏω
(3.63)

with Epulse = Npulseℏω. Let us assume that the corresponding generated
carrier density is uniform throughout the crystal, which can then be written
as

nTPA =
Nabs
ϕsd

. (3.64)

Here, we are only interested in the mean carrier density and, hence, we will
not consider dynamics of the TPA carrier density. Due to the laser pulse train
effect, the carrier density accumulates over time. When a second pulse hits
the crystal, the carrier density from the former pulse is down by e−∆τ , where
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∆τ = τrep/τrc is the ratio of the time delay between two consecutive laser
pulses τrep = 1/ frep and the free carrier lifetime τrc. After M pulses, we have

sM =
M

∑
m=1

e−m∆τ = e−∆τ + · · ·+ e−M∆τ

= e−∆τ
(

1 + e−∆τ · · ·+ e−(M−1)∆τ
)

(3.65)

= e−∆τ
(

1 + sM − e−M∆τ
)

,

which implies

sM =
e−∆τ − e−(M−1)∆τ

1 − e−∆τ
→ e−∆τ

1 − e−∆τ
for M → ∞. (3.66)

Thus, the mean density is

n̄TPA = nTPA
e−∆τ

1 − e−∆τ
= nTPA

1
e∆τ − 1

. (3.67)

We can now apply the Drude model

ε̃Ω = ε∞ −
ω2

p

Ω(Ω + jΓ)
with ω2

p =
n̄TPAe2

meffεo
. (3.68)

to determine κΩ. Here, ε̃Ω = (nΩ + jκΩ)2 is the complex permittivity, ω2
p the

plasma frequency, nTPA the TPA photocarrier density, meff the effective mass
of the free electrons, Γ the damping angular frequency, and e the electron
charge. From Eq. (3.68) we can deduce the real and imaginary parts of the
complex permittivity,

εr = ϵ∞ −
ω2

p

Ω2 + Γ2 = n2
Ω − κ2

Ω and εi = −
ω2

pΓ

Ω(Ω2 + Γ2)
= 2nΩκΩ, (3.69)

using the identities Re{z} = 1
2 (z + z∗) and Im{z} = 1

2j (z − z∗). Substituting

nΩ = εi/(2κΩ) into εr = n2
Ω − κ2

Ω, it follows that

κ4
Ω + ϵrκ

2
Ω − ε2

i
4

= 0 ⇒ κΩ =

√√√√
√

ε2
r + ε2

i − εr

2
. (3.70)

Finally, we can estimate the TPA-induced THz absorption αΩ = 2ΩκΩ/c.
Using the TPA coefficient β ≈ 5 cm/GW [211], τrc, ZnTe ≈ 25 ns [210], ϵ∞ = n2

Ω
with nΩ = 3.2 as measured at f = 1 THz, Γ = 20 THz [212] and meff =
0.15 × me [213] together with the experiment parameters, we obtain αΩ ≈ 80
cm−1. Likewise, we can fit the modified Eq. (3.42) (multiplied by r̃Ωe−αΩd/2
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in the denominator) to the measured ratio |ER/ET| ≈ 7. In this case, we
find αΩ ≈ 77 cm−1 in good agreement with our estimate. The slightly lower
measured absorption coefficient is expected, because we do not take into
account the change in THz transmission and reflection due to the increased
THz absorption, as well as a non-uniform distribution of the free carriers in
the sample.

The THz spectra associated with waveform R and T are shown in Fig.
3.7(b). When disregarding water vapor absorption lines, the R spectrum (red)
is fairly smooth, while the T spectrum (blue) exhibits the well-known sinc
function pattern with a first zero at ∼1.5 THz, which agrees with the cut-off
frequency fcut−off = c/πd(nΩ − nG,ω) ≈ 1.57 THz related to non-optimal
phase-matching. Therefore, the T spectrum is also narrower than the R spec-
trum. The lower SNR of the T spectrum is due to the attenuated intensity
by linear and TPA absorption when propagating backwards in the crystal as
explained above. The R spectrum extending up to 2.7 THz is limited by the
bandwidth (-20 dB limit) of the bow-tie PC antenna detector. The actual R
spectrum may be directly proportional to laser pulse spectral width, since
the THz pulse generated in reflection is only weakly dependent on the crys-
tal absorption. Thus, it could reach some tens of THz with sub-100 fs laser
pulses. However, detection of such broadband R pulses would require a very
sensitive detector because of the inherent weak magnitude of the R pulses.
Typically, sensitive detectors like bolometers exhibit a long response time.
This could be overcome by performing an interferometric measurement as
is developed for SHG spectroscopy in the appended Publication E. In that
case, the recorded signal will be the autocorrelation trace of the generated
THz pulses. Previously, we concluded that the T waveform originates from a
THz pulses generated in transmission and subsequently reflected at the rear
crystal surface. Thereby, the T spectrum should be equal to the R spectrum
multiplied by the calculated ratio r̃Ωe−αΩd/2

∣∣ET,Ω
/

ER,Ω
∣∣, which takes into

account the the reflection and absorption through the crystal. In particu-
lar, this is true since both the R and T waveforms are recorded by the same
detector and, hence, it allow us to get rid of the setup’s spectral response.
As before, we apply the Drude model to calculate the TPA-induced THz ab-
sorption, but this time the only adjustable variable is the free carrier density.
The black curve plotted in Fig. 3.7(b) is the calculated T spectrum, which
evidently makes an excellent fit to the measured T spectrum for a carrier
density of 1.19 × 1015 cm−3. Conversely, we can estimate the photogenerated
carrier density through Eq. (3.64) and laser power applied for the measure-
ment, in which case we obtain a carrier density of 6.49 × 1015 cm−3. The
agreement between the two values is reasonable, when we take into account
that we neglect the TPA effect in nonlinear propagation equation, which if
included would result in a higher estimate of the carrier density from the
fitted T spectrum.
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Fig. 3.8: Measured R pulse waveforms and peak magnitude (circles) versus laser peak fluence,
respectively. The dotted straight line is a linear fit, while the continuous black curve is calculated
taking into account the TPA effect.

Next, we studied the efficiency of THz generation in reflection via OR.
The recorded THz waveforms and corresponding THz field maxima (circles)
of the R pulse are plotted versus pump laser fluence in Fig. 3.8, respectively.
Additionally, a linear fit (dotted) and a TPA-induced saturation fit (black)
are calculated for the maximum THz field magnitudes on the right. The ef-
ficiency is linear for low pump laser fluences and TPA-induced saturation
is seen from 200 µJ/cm2 in good agreement with published results on THz
generation in transmission through OR in ZnTe [214]. In accordance with the
discussion above, this saturation is explained by the TPA-induced THz ab-
sorption. It is a comprehensive task to carry out an stringent analysis of this
phenomena, which requires one to solve the coupled nonlinear propagation
equations including the TPA effect. In particular, propagation equations are
typically solved in the frequency-domain, while carrier population dynamics
generally are treated in the time-domain. Thus, it is beyond the framework
of this thesis. Nevertheless, we can evaluate the order of magnitude of the
TPA effect. Notice that both refractive indices ñΩ and ñG,ω ∝ ñω at the THz
and the laser frequencies, respectively, are modified by the TPA photocarrier
population. Let us recall the magnitude of the reflected THz field given in
Eq.(3.40):

∣∣∣E⃗R,Ω

∣∣∣ /
∣∣∣
↔
χ̃ (2) : E⃗ω+Ω · E⃗∗

ω

∣∣∣ =
∣∣∣ (ñΩ + 1) (ñG,ω + ñΩ)

∣∣∣
−1

.

Evidently, TPA-induced changes will affect the reflected field as well. The
Kerr effect the TPA effect can respectively cause variations ∆nω and ∆κω

in the real and imaginary parts of ñG,ω. The related coefficients are n2 ≈
5 × 10−18 m2/W and β = 5 cm/GW in ZnTe[215]. Using Eq. (3.52), we find
that the maximum laser intensity in the experiment is Imax ≈ 5.5 GW/cm2
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and, thus, we obtain ∆nω ≈ 2.5 × 10−4 and ∆κω ≈ 2 × 10−4. Therefore,
we conclude that photoinduced variation of ñG,ω is too small to explain the
saturation seen in Fig. 3.8. To address the variation of THz refractive index
ñΩ, we will once again employ the Drude model to include the influence of
the TPA photocarrier population using the optical parameters of ZnTe de-
termined by Constable and Lewis [213] (meff = 0.151 × me, ε∞ = 7.3 and
Γ = 0.3 THz). The real and imaginary parts of the resulting refractive index

Fig. 3.9: Calculated variations of photoinduced variation of ñΩ = nΩ + jκΩ (left) and the effect
on the THz field generated in reflection (right) versus laser intensity.

ñΩ together with the magnitude of the reflected THz field normalized to the
source term are plotted versus the laser intensity in Fig. 3.9 We see that TPA
induces both a decrease in the refractive index and an increase of absorption
at THz frequencies. Further, we see that the decrease in refractive index has
a greater impact on the generated THz field than the increased absorption,
which results in a slight increase of the reflected field with increasing laser
intensity. Thus, the explanation of the saturation effect is neither to be found
here. Consequently, the saturation must be related to photoinduced modifi-
cations of the nonlinear susceptibility. In a classical model for the nonlinear

susceptibility [201, 216], the magnitude of the nonlinear susceptibility
↔
χ̃ (2) is

proportional to the magnitudes of the linear susceptibilities at ω and Ω, i.e.

∣∣∣
↔
χ̃ (2)

∣∣∣ ∝
∣∣∣∣
(↔

χ̃
(1)
ω

)2 ↔
χ̃
(1)
Ω

∣∣∣∣

=
∣∣∣(ε̃ω − 1)2 (ε̃Ω − 1)

∣∣∣ (3.71)

=

∣∣∣∣
(
(nω + jκω)

2 − 1
)2 (

(nΩ + jκΩ)2 − 1
)∣∣∣∣ .
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Let us modify Eq.(3.64) in the Drude model to include the coefficient η, i.e.

nTPA = η
Nabs
ϕsd

, (3.72)

which accounts for the dynamics of the photocarrier population including
carrier lifetime, diffusion inside the sample, etc. . Using the same parameters

for the Drude model as previously, we can calculate the term
∣∣∣
↔
χ̃ (2)

∣∣∣ Iω of
Eq. (3.38). The continuous black curve in Fig. 3.8 is the normalized result.
Here, we used η as the only adjustable parameter. The excellent fit with our
experimental data is obtained for η = 0.259, meaning that roughly a quarter
of the photoexcited carriers interact with the THz pulse generated in reflec-
tion. As mentioned in our paper [208] (appended Publication D) "The reason
could be that they both recombine and diffuse inside the sample (Dember effect, both
longitudinal and transversal33,34) in between two successive laser pulses." It should
be emphasized that this model is crude and the explanations must be vali-
dated by an exhaustive study as mentioned above. Nonetheless, the change
in the nonlinear susceptibility seems to be the predominant consequence of
the strong TPA effect.

Fig. 3.10: Polarimetric pulse trace measurements of the R pulse (left). The peak THz field
magnitudes are plotted versus laser polarization angle as circles and fitted with the model by
the red continuous line (right).

In Fig. 3.10, we see the recorded THz waveforms of the R pulse versus
the pump laser polarization angle ψ = 2ψHWP, which is scanned 360◦ in 5◦

steps by adjusting the half-wave plate angle ψHWP. The peak of the THz
field magnitudes are plotted as circles versus ψ in the figure to the right.
Since the PC antenna used for detection does not completely discriminate
the perpendicular polarization due to its bow-tie antenna geometry, we must
fit a weighted expression

(1 − γ)ER,Ω,x + γER,Ω,y (3.73)
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of the field components given in Eqs. (3.50) and (3.51). Further, the fit con-
siders the disorientation of the crystal axes compared to the laboratory frame
via an angular shift δψ. The best fit as shown in Fig. 3.10 (the red continuous
line) is found for γ = 0.34 and δψ = 66.5◦, which corresponds to a cross
polarization sensitivity of 10%, within the specifications given by BATOP
GmbH. This shows that information of the crystalline orientation of sample
is embedded in the reflected THz signal.

3 Conclusion

As concluded in the published paper [208] (appended Publication D), "we
experimentally demonstrated the generation of a reflected THz signal at normal inci-
dence through OR in a ZnTe crystal. The reflected signal originates in the boundary
conditions for the nonlinear fields at the crystal surface. All the characteristics of
THz OR generation in the crystal (polarization symmetry, spectral features...) are
retrieved in the reflected signal. Its bandwidth is wider than in transmission, because
it is not limited by absorption losses in the crystal. At high laser power excitation,
the reflected THz signal from ZnTe saturates: It seems that its origin is the effect
of TPA, which reduces the magnitude of the second order nonlinear susceptibility.
However, for crystals of common mm-thickness that are transparent or exhibit mod-
erate absorption in both the THz and visible domains, the THz reflection magnitude
is much smaller than the one in transmission. When dealing with crystals that are
opaque in one or both of these spectral domains, or whose rear surface is rough or
covered by opaque films like metals, the reflected THz signal is of great interest since
the transmitted THz signal is weak or even zero. This could be applied to THz mi-
croscopy of opaque materials, like humid biological samples, e.g. when performing
sub-wavelength OR THz imaging.7,8"
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Chapter 4

Outlook

In the following sections, we will outline some perspectives of future di-
rections of THz stand-off spectroscopy and THz generation through OR in
reflection, respectively.

1 Prospects of Terahertz Stand-Off Detection

THz stand-off detection of explosives is still current, whether it is in relation
to the safety of critical infrastructure like airports or to prevent improvised
explosive devices and roadside bombs.

It is clear from the DETRIS project that the technology is still not mature
for field applications. This is mainly due to lack of powerful THz emit-
ters and sensitive THz receivers. However, tremendous progress have been
made in the development of both THz emitters and receivers since the project
started. For example, commercial electronic THz sources based on frequency
multipliersa are now able to operate above 3 THz. Similarly, compact quan-
tum cascade lasers (QCLs) with cryogenic free coolingb can now produce
powerful THz radiation at multiple discrete frequencies in the 2.5 - 5 THz
range have become commercially available. In Fig. 4.1 we have plotted the
power spectrum of a PC antenna as estimated from TDS (see Sec. 2) together
with typical power levels of THz photomixers based on PIN photodiodes
(PDs), electronic sources and QCLs for comparison. Generally, the high out-
put power of the monochromatic CW electronic sources comes at the cost of
limited tuneability. Several individual sources are, hence, required to cover
the spectral region up to 3.2 THz. There are, however, still a few dead regions,
e.g. , from 0.74-0.8 THz, 1.17-1.32 THz, 1.54-1.71 THz and 2.15-2.48 THz. The

aSee, e.g. , the custom transmitters made by Virginia Diodes Inc.
be.g. , the TeraCascade 2000 series by Lytid SAS.
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Fig. 4.1: Comparison of available output power from different THz sources. The colored con-
tinuous lines are power spectra adapted from custom electronic transmitters by Virginia Diodes
Inc. The QCL data is adapted from Lytid SAS’s TeraCascade 2000 series.

same apply for the QCLs operating in the upper THz band from 2.5 THz.
Very recently, Murate et al. [217] investigated how feature selection ML

algorithms can applied to THz spectroscopic imaging of reagents hidden by
thick shielding materials. In contrast to the feature extraction algorithms,
which we applied in this thesis, feature selection algorithms select a subset
of the original frequency components containing the most relevant informa-
tion and discard the remaining ones. The study by Murate et al. included
852 transmission spectra of lactose, maltose and glucose. Each spectrum con-
sisted of 70 frequency components between 1.1 and 1.8 THz. They found that
the materials could be identified with almost 100% accuracy using only seven
of the 70 frequency components. The seven selected frequency components
were chosen according to the largest contribution ratios (calculated by the
ML algorithm). As intuitively expected, the largest contributions came from
the frequency components near the absorption peaks. Concurrently, we have
investigated the performance of different feature selection algorithms on THz
reflection spectra. Here, we will not discuss our work in details (manuscript
in preparation). However, our main result shows that we can retain ≥ 95%
accuracy by retaining only 10 of the >800 initial frequency components. Fur-
thermore, the frequency components selected by the ML algorithms were not
strictly chosen according to the absorption features of the samples. This is a
remarkable result as it allows for identification of substances using only a few
THz sources emitting at selected discrete frequencies. That is, broad spectra
are not necessarily requisite in order to accurately identify different com-
pounds via THz spectroscopy. This together with powerful monochromatic
sources (e.g. , electronic sources or QCLs) could in particular pave the way
for THz stand-off detection of explosives and other hazardous substances, in
contrast to Kemp’s conclusions in Ref. [159].
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2 Future Studies of Optical Rectification

As mentioned in Chapter 3, a long-term perspective for ORTI is to achieve
sub-wavelength THz images of biological samples through OR, like it is com-
monly done using SHG and THG. It should however be noted that it is not
without challenges to apply ORTI to biological samples. First of all due
to much weaker nonlinear conversion (3 orders of magnitude) compared to
SHG due to the Manley-Rowe energy conservation law. Second, there exists
no detectors which can facilitate photon-counting of the weak THz signal,
as for SHG and THG. Nonetheless, THz generation via OR must be further
studied, while the technology certainly develops and matures. Clearly, it
is pertinent to demonstrate ORTI microscopy in reflection, which is needed
for, e.g. , opaque samples. Additionally, THz generation in reflection does
not suffer from dispersion and/or attenuation effects related to propagation
through the crystal. Thus, the THz bandwidth is expected to be directly
proportional to the laser bandwidth (i.e. , inversely proportional to the laser
pulse duration). Therefore, laser pulses of sub 100-fs duration should pro-
duce very large broadband THz pulses. A natural next step would be to
record these ultra broadband THz pulses generated in reflection. In common
THz-TDS systems, the bandwidth is limited by the receiver response. Using a
PC antenna receiver, the bandwidth is roughly limited to 6 THz. Electro-optic
(EO) sampling can facilitate larger bandwidths (up to 40-50 THz [218]) using
very thin EO crystals, however, at the cost of sensitivity (and vice versa). We
learned that THz signals generated in reflection are rather weak. Thus, broad
bandwidth EO sampling using a thin insensitive crystal is neither adequate.
Instead, we can apply the Fourier transform approach, we developed in Pub-
lication E for SHG. This methodology will allow us to use a slow but very

Fig. 4.2: Experimental scheme for time-resolved broadband measurements based on the Fourier
transform approach in Publication E.

sensitive detector (e.g. , a bolometer), as illustrated in Fig. 4.2. Here, two
delayed laser pulses are used for THz generation. The temporal resolution
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is then achieved by controlling the delay between the two pulses. Of course,
varioius experiments can be conducted using this approach. The scheme il-
lustrated in Fig. 4.2 assumes normal incidence of the lasers pulses but a
similar setup can be designed for oblique incidence. Furthermore, the THz
generation can be studied at normal incidence in view of different polariza-
tions of the two laser pulses.

Fig. 4.3: THz generation through OR versus sample thickness. a) With different samples and b)
with a single wedged-shaped sample. The dashed line indicates the laser pulse, while the THz
pulses are drawn with continuous lines.

Another obvious experiment would be to study the THz generation ver-
sus the crystal thickness. This could either be examined with samples of
different thicknesses [Fig. 4.3 a)] or with a single wedged-shaped sample
[Fig. 4.3 b)], which can be continuously scanned laterally to change the effec-
tive crystal thickness. In both experiments, the reflected signal should remain
constant, while the THz signal generated transmission is expected to follow
the well-known sinc-dependence. Evidently, the wedged sample will refract
the transmitted THz signal at the angled crystal rear face. However, if the
wedge angle is small and large aperture optics are used to collect the THz
signal, it should be possible to measure the back-reflection of the transmitted
THz from the rear crystal face, as we did in Publication D.

These are just a few examples of future experiments. Other very inter-
esting studies include, e.g. , the effect of a surface layer, which alters the
boundary conditions, from which the reflected field originates, and to scan
the pump laser over a polycrystalline or inhomogeneous sample to obtain a
two-dimensional map of the reflected THz signal.
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Abstract
The unique properties of terahertz (THz) spectroscopy show a great potential for security
and defense applications such as safe screening of persons and objects. However, a
successful implementation of THz screening systems requires a development of reliable
and efficient identification algorithms. Dimensionality reduction (DR) methods aim to
reduce the dimensionality of the multivariate data and are therefore commonly used as a
preprocessing step for classification algorithms and as an analytical tool allowing data
visualization. In this paper, we compare the use of unsupervised and supervised DR
methods for analysis and classification of THz reflection spectra based on their most
widespread linear representatives, namely principal component analysis and linear dis-
criminant analysis, respectively. To this end, both methods were applied to more than
5000 THz reflection spectra acquired from six active materials mixed at three different
concentrations with polyethylene and measured at various humidity conditions. While
considering scenarios with different levels of complexity, we found that the supervised
approach provides better results because it enables efficient grouping despite intra-class
variability. Furthermore, we showed that manipulating labels introduced into the super-
vised DR algorithm allows conditioning the data for a desired classification task such as
security screening. Presented classification results show that simple machine learning
algorithms are sufficient for highly accurate classification (>98.6%) of THz spectra,
which will be suitable for many real-life applications of THz spectroscopy based on
material identification.
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1 Introduction

Terahertz (THz) spectroscopy exhibits a unique potential for security and defense applications
[1–6], which, along with wireless communication [7–10] and quality control applications [6,
11–14], has been the main stimuli for a rapid development of THz technology during the past
decades. Many hazardous substances including pure and military-grade explosives [1–4, 15,
16], illicit drugs [1, 2, 17, 18], and toxic gasses [19–21] possess distinctive spectral fingerprints
in the THz region allowing their identification. Furthermore, THz radiation penetrates most
nonpolar dielectric covering materials such as paper, cardboard, plastic, and textiles (e.g., cotton
and polyester) with only moderate absorption losses enabling identification of concealed objects
[4, 22–24]. Finally, THz radiation is nonionizing. Therefore, at reasonable intensities, it is
considered safe for scanning persons and objects [5, 24]. This exceptional set of features makes
it possible to implement a nondestructive and noninvasive THz security screening, which can be
used to improve safety in public places such as airports and subway stations [25–27], and
monitor the content of mails and parcels [4, 5, 28, 29].

Despite being overshadowed by the more popular pulsed time-domain technology, THz
continuous-wave(CW)frequency-domain spectroscopy (FDS) offers numerous advantages
desired in security screening applications. Spectral selectivity associated with this technology
enables measurements within water transmission windows. This limits water absorption losses
that are unavoidable for broadband time-domain systems. Consequently, CW technology has a
potential for measurements at stand-off distances. Furthermore, a high spectral resolution of
FDS makes it suitable for detection of gasses, which usually have very narrow absorption lines
[19, 30, 31]. Modern THz CW spectrometers based on photomixing technology and highly
reliable distributed-feedback 1.5 μm lasers offer a wide range of frequency tuning and high
signal-to-noise ratio even at relatively short exposure times [32–34]. In comparison to time-
domain systems that require femtosecond lasers and delay lines, CW spectrometers are cheaper
and more robust. Furthermore, their compact size and low weight allow development of
portable systems, which can be mounted on vehicles or drones enabling a myriad of new
applications [35, 36].

Nevertheless, a successful implementation of THz screening systems requires a develop-
ment of reliable and efficient identification algorithms. A variety of machine learning tech-
niques has been fostered for classification of THz spectra. This includes Bayesian models [37,
38], artificial neural networks [39–41], support vector machines [42–44], and random forests
[37, 39, 43]. Dimensionality reduction (DR) methods play an important role in that process
[37, 43, 45–49]. They transform the data into a lower dimensional space, while preserving
most of the relevant information. This allows lowering the computational requirements of the
machine learning algorithm and increasing the speed of learning. Therefore, DR is commonly
used as a preprocessing step for classification [37, 43–50]. Furthermore, DR often allows
visualization of the data, which is an important analytical tool that facilitates the interpretation
of the data.

In this work, we compare the use of unsupervised and supervised DR methods in the
analysis of THz spectra. To this end, we used principal component analysis (PCA) and linear
discriminant analysis (LDA), which are the most commonly used linear representatives of each
approach, respectively [51, 52]. We analyzed spectra of six compounds, measured in a
reflection configuration using a THz CW FDS. While analyzing the spectra, we focused on
two main applications of DR, namely data visualization and preprocessing the data for
classification. To test the visualization ability of the featured methods, we have reduced the
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dimensionality of the data to at most three dimensions. Furthermore, we have classified the
DR-processed data using three different classifiers, namely k-Nearest Neighbors (k-NN),
Bayesian classifier, and support vector machines (SVM). We considered four different
scenarios with different levels of complexity. In Section 3.1, we focused on samples with
only a single concentration of each active material. In Section 3.2, we analyzed spectra of
the samples that contain three different concentrations of the active material (80%, 50%,
and 20%). Section 3.3 investigates an impact of atmospheric conditions, namely water
vapor absorption. For that purpose, we analyzed THz spectra measured under controlled
humidity conditions at a relative humidity of 90%, 50%, and 10%. Finally, we considered a
real-life example related to THz security screening (in Section 3.4). For that purpose, we
arbitrarily divided the samples according to the threat they pose. This included RDX that is
an active component in several military explosives [3]. This approach allowed us to test
whether the DR methods are able to properly condition the data for this specific classifi-
cation task.

This paper explains the differences between the use of unsupervised and supervised DR
methods in the analysis of THz spectra. It shows that DR methods are a useful tool that allows
the visualization of multidimensional spectra and that they are able to ensure high classifica-
tion accuracy when used even with simple classification algorithms. Our results are highly
relevant for applications that rely on the classification or identification of THz spectra such as
security screening.

2 Experimental Details and Methods

2.1 Sample Fabrication

We selected six compounds with discernible spectral features in the THz regime, namely
galactitol, L-tartaric acid (L-TA), 4-aminobenzoic acid (PABA), hexogen (RDX), theophyl-
line, and α-lactose monohydrate. All the materials were purchased from Sigma-Aldrich except
for L-TA that was purchased from MERCK and RDX that was supplied by the courtesy of the
Danish Ministry of Defence Acquisition and Logistics Organisation. We mixed each of the
materials with polyethylene (PE) powder, which functions as a binder [53], at weight
percentages of 80%, 50%, and 20% of the active material, respectively. Since PE does not
have any features in the observed spectral range, it does not affect the measured spectrum other
than providing a constant background [54]. To facilitate easy handling of the samples, the
mixtures were subsequently compressed into cylindrical pellets with a diameter of 25 mm
and weight of 7 g using a hydraulic press. The applied pressure was approximately 4 tons.
To prevent interference arising between the front and the back surface reflections, we
fabricated an inset to the hydraulic press that made the back surface at an angle of 15°
relative to the front surface. As a result, we produced truncated cylindrical samples as
shown in the inset of Fig. 1. After pressing the samples, no additional surface treatment
such as polishing was performed. We fabricated two samples for each material composition
and two additional samples of a pure PE. Table 1 provides an overview of all samples used
in this study. Due to the relatively large crystal size of galactitol and L-TA, we were unable
to fabricate satisfactory pellets, especially for the compositions with a high content of the
active material. The samples were brittle and had a tendency to break when removed from
the press. Furthermore, their surface was rough, following the crystal size, which promoted
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light scattering. Therefore, before mixing with PE, galactitol and L-TA were ground into a
fine powder using mortar and pestle.

2.2 Terahertz Setup and Measurements

We characterized the samples by means of THz-FDS using the reflection setup shown in Fig. 1.
The setup is based on a TeraScan 1550 system (Toptica Photonics), which operates in a
coherent detection scheme. A combined output of two tunable distributed-feedback diode lasers
creates a heterodyne (beat pattern), which illuminates two InGaAs photomixers (emitter and
receiver, respectively) modulating their conductivity. Applying a bias voltage to the emitter
induces a photocurrent oscillating at the difference frequency of the lasers, which is then
outcoupled into free space by an integrated antenna. The emitted THz radiation covers the
spectral range from 0.09 to 1.19 THz. A 1″ diameter off-axis parabolic mirror collimates the
THz beam, which is then reflected towards the sample at an angle of approximately 11° and
focused onto the sample’s surface by a TPX lens. A symmetrical optical system collects the
reflected THz signal and focuses it onto the receiver. The total optical path length of the THz
beam is approximately 1 m. The detected THz signal superimposed with the optical beat
induces a photocurrent in the receiver. The photocurrent is amplified by a lock-in amplifier,
recorded by the DLC smart controller for the TeraScan system and analyzed by a computer.

First, we performed measurements under ambient conditions. Each sample was measured
80 times over the entire spectral range using a frequency step of 80 MHz and 3 ms integration
time. Using these parameters, the time per scan was around 45 s. A computer-controlled two-
axis translation stage moved the sample after each measurement to a random position within a
7 × 7 mm scanning area with a step resolution of 0.5 mm. Every 20 measurements, we
replaced the sample with an aluminum mirror and recorded its spectrum as a reference.
Subsequently, we performed measurements under controlled humidity conditions. For this
purpose, a custom-built humidity chamber enclosing the terahertz setup was purged with either

Fig. 1 Schematic drawing of the terahertz reflection setup. The inset of the figure shows a typical truncated
cylindrical sample used in the experiments
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dry or water vapor saturated nitrogen depending on whether the intended humidity was lower
or higher than the ambient air. Based on a relative humidity readout from a DHT22 sensor, a
custom-built humidity controller manages a solenoid valve, which opens and closes the
nitrogen flow. A fan installed next to the nitrogen inlet ensures a uniform humidity distribution
inside the chamber. The applied methodology allowed us to keep the relative humidity (RH) at
the intended level with a stability better than ±0.3 percent points. We measured each sample 20
times at the RH of 90%, 50%, and 10%, respectively, using the same parameters as before.
Due to a long purging time, the samples were measured in groups of two with a single
reference measurement at RH of 50% used for both samples. Despite a good performance of
our humidity controller, we observed a small variation in the intensity of water absorption
peaks. We attribute this to changes in the room temperature, which were approximately ±0.7
°C during the measurements.

2.3 Data Processing

In the CW coherent detection scheme, the photocurrent, Iph, depends on the THz electric field
amplitude, ETHz, and the phase shift, Δφ, between the THz wave and the optical beat via Iph ∝
ETHz cos(Δφ = 2πΔLv/c) [55–57]. The phase difference depends, in turn, on the frequency of
the THz signal, ν, and the optical path difference ΔL = LTHz + LE − LR, where LTHz is THz
beam path, and LE and LR are optical beat paths to emitter and receiver, respectively. For setups
with a fixed path length difference, which is the case here, it is possible to separate the
magnitude and phase of the detected THz signal by analyzing an interference pattern (fringes)
in the frequency scan [55–58]. To achieve this, we employed a well-known approach of
finding fringe extrema, where the THz amplitude is directly proportional to the absolute value
of the photocurrent and the THz phase is a multiple of π. This approach neglects all other
measurement points. Consequently, the spacing between adjacent extrema defines the effective
measurement resolution, which for our setup was around 0.9 GHz. To eliminate the possible
offset in the photocurrent, instead of treating the extrema separately, the photocurrent was
obtained from two adjacent extrema and used at the average frequency. The coherent detection
scheme allows extraction of the phase information, but in this study, we used only the
amplitude of the THz field. Therefore, the methodology presented in this paper can be also
applied to THz systems using non-coherent detection. To compensate for spectral shifts of
fringe extrema, the data was interpolated onto integer GHz frequencies. Finally, we determined
the reflection coefficient of the sample by dividing the THz spectrum with the corresponding

Table 1 Overview of the samples used in our studies. Each filled circle represents a single sample with a given
concentration of the active material

Material Weight percentage of the active material

20% 50% 80% 100%

Galactitol ● ● ● ● ● ●
Lactose ● ● ● ● ● ●
L-TA ● ● ● ● ● ●
PABA ● ● ● ● ● ●
RDX ● ● ● ● ● ●
Theophylline ● ● ● ● ● ●
PE ● ●
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reference spectrum. Due to the standing wave patterns and lack of spectral features in the low
frequency regime, we only used the data in the spectral range from 0.3 to 1.15 THz.

We recorded 3040 terahertz reflection spectra of six compounds with three different weight
percentages of the active material under ambient conditions. Four out of these 3040 measure-
ments were excluded due to processing issues and not analyzed further. These spectra are used
in Sections 3.1, 3.2, and 3.4. Additionally, we collected 2280 spectra under controlled
humidity conditions, which are analyzed in Section 3.3. A dataset of this size constitutes a
good basis for developing various machine learning classifiers, which is an important step
towards a real-time identification of illegal substances, e.g., explosives or drugs, using
terahertz spectroscopy. The data is available online as a part of “Database of frequency-
domain terahertz reflection spectra for the DETRIS project” [59].

The datasets were arranged in n × d matrices, where n is the number of observations
(measurements, also referred to as data points) and d is the number of features (dimensions).
Before DR, the dataset under consideration was randomly divided into a training set and a test
set at a ratio of 4:1 using stratified random sampling. Furthermore, the features were stan-
dardized so that they had a zero mean and a variance equal to unity, which is crucial for a
correct operation of the PCA algorithm [60, 61]. All presented algorithms (feature standard-
ization, DR, and classification) were only trained on the training set, and the test set was used
solely for the final evaluation. We performed the data processing and implemented all DR and
classification algorithms used in this study in MATLAB (MathWorks, version R2018a).

2.4 Dimensionality Reduction

As the name suggests, dimensionality reduction algorithms aim to lower the dimensionality of
the multivariate data while maintaining most of the information it contains [62–64]. They can
be divided into two categories, namely feature selection and feature extraction. In machine
learning, the term “feature” refers to an individual measurable property of the observed object
or phenomenon [65]. In our case, features correspond to discrete frequencies in THz spectra.
Feature selection methods strive to select a subset of features that contain the most relevant
information (for a desired task) while eliminating redundant, noisy, and irrelevant features.
Common approaches for feature selection include filters such as Relief and Information Gain,
and wrappers, which utilize a preselected machine learning model to evaluate relevance of
considered features [62–64]. Additionally, some machine learning algorithms, such as random
forests and models based on LASSO regularization, have an embedded feature selection step
[62–64]. Feature extraction methods construct a new feature space with reduced dimension-
ality, where new features are obtained as a combination of the original features. In this work,
we focus on two well-known linear feature extraction methods, namely principal component
analysis and linear discriminant analysis, which represent unsupervised and supervised ap-
proach, respectively [51, 52]. Therefore, when referring to dimensionality reduction, we
explicitly refer to feature extraction.

Principal component analysis is a widespread multivariate analysis and dimensionality
reduction method, which has found application in various fields including image processing,
pattern recognition, and chemometrics [47, 49, 63, 66, 67]. As an unsupervised method, PCA
does not process class membership information (labels); therefore, its outcome depends only
on the hidden patterns in the data. It transforms original features into a set of new uncorrelated
(orthogonal) features, called principal components, designed to maximize the variance of the
data. This should lead to separation of observations having different properties (i.e., belonging
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to different classes). In practice, the variance maximization is achieved by eigendecomposition
of the data’s covariance matrix (or correlation matrix [60]). The obtained eigenvectors are
ordered by the amount of explained variance, which is proportional to their eigenvalues, so that
the first principal component represents the highest variability. Dimensionality reduction is
obtained by selecting a limited number of most relevant principal components. In many cases,
projecting the initial data onto a relatively small number of principal components is able to
explain the vast majority of the variance. This allows for a significant reduction in dimension-
ality [45, 68, 69].

Linear discriminant analysis is a commonly used dimensionality reduction technique,
which utilizes a supervised approach. In comparison to unsupervised methods, using class
membership information offers a range of new possibilities for formulating transformation
criteria. LDA seek a transformation that maximize the distance between classes, while
minimizing the scatter within each class [70]. This should provide a large inter-class spacing
and small intra-class separation in the new reduced feature space. Satisfying these criteria
requires calculating between-class Sb and within-classSw scatter matrices defined as:

Sw ¼ 1

n
∑
m

j¼1
∑

x∈X j

x−c jð Þ
� �

x−c jð Þ
� �T

Sb ¼ 1

n
∑
m

j¼1
n j c jð Þ−c
� �

c jð Þ−c
� �T

where x is a vector representing a specific observation, c is a global centroid and c(j) is a
centroid of jth class, and n and m are the number of observations and classes, respectively.
Alternatively, a total scatter matrix St calculated as

St ¼ 1

n
∑
n

i¼1
xi−cð Þ xi−cð ÞT ¼ Sb þ Sw

can be used instead of Sw. It has been shown that these two approaches yield equivalent
solution [52, 71, 72]. In this work, we used second approach (calculating St). The desired
optimization task is then reduced to eigendecomposition of St−1Sb (or Sw−1Sb) [52, 70]. Since
the rank of the Sb matrix is limited to m − 1 (Sb is the sum of m matrices of rank 1), the
obtained solution contains at most m − 1 independent eigenvectors that are associated with
non-zero eigenvalues [51, 72]. Consequently, LDA can project the data onto at most m − 1
dimensions. Since in most cases the number of original features is larger than the number of
considered classes, this property alone imposes a reduced dimensionality of the new feature
space. However, it is also possible to select a smaller number of most relevant features to
further reduce the dimensionality.

2.5 Machine Learning–Classification Algorithms

The Bayes classifier is a probabilistic classification model that utilizes Bayes’ theorem [51, 73,
74]. According to Bayes’ formula, a posterior probability p(Ci| x), which is the probability that
the observation with value x belongs to the ith class, can be calculated as

p Cijxð Þ ¼ p xjCið Þ p Cið Þ
p xð Þ ¼ ∑

i
p xjCið Þ p Cið Þ posterior ¼ likelihood� prior

evidence
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where p(Ci) is called the prior and it is the probability that the observation, regardless of its
value, belongs to the class i, and the likelihood p(x|Ci) is a probability that the member of the
ith class takes an observation value x. The expression in the denominator p(x), called the
evidence, is a marginal probability that the observation x occurs. The evidence is merely a
normalization factor, which ensures that the posteriors sum up to one, and can be neglected.
The prior and the class likelihood are estimated from the training data and used for computing
the class-specific posterior probability. Finally, the Bayesian classifier assigns the observation
to the class with the highest posterior probability. In our work, we assumed a multivariate
normal (Gaussian) distribution of the class likelihood function. This limited the likelihood
estimation to finding the two unknown parameters of the multivariate Gaussian, namely the
mean vector and the covariance matrix. Henceforth, we refer to the method as the Gaussian
Bayes classifier.

k-Nearest Neighbors is a simple, yet effective, non-parametric classification algorithm. De-
spite being considered a machine learning algorithm, k-NN has no model learning (training)
phase (a so-called lazy learning algorithm) [75, 76]. Instead, the algorithm stores all training data
and classify a new observation based on its similarity to the training instances. Here, similarity is
expressed in terms of the geometrical distance, such as the Euclidean, Minkowski, Manhattan, or
Chebyshev distance, between the data points [76, 77]. The algorithm assigns the new observation
to the class possessed by the majority of the k closest data points called nearest neighbors. The
choice of k, the number of considered nearest neighbors, is crucial as it allows for controlling the
algorithm’s behavior. For small k, the decision boundaries are more flexible, but the algorithm
becomes prone to outliers, while higher k results in more robust boundaries [78, 79]. In this study,
we used the Euclidean distance as a similarity metric in the k-NN algorithm. For each considered
case, we used k comparable to the number of training examples in the smallest class (k = 125 in
Chapters 3.1 and 3.2, k = 95 in Chapter 3.3, and k = 383 in Chapter 3.4, as indicated in the
corresponding classification accuracy tables). This approach should provide a good estimate of
intra-class distribution and separation between classes.

Support vector machine was introduced by Vapnik in 1995 and has been one of the most
widely used classification algorithms ever since [80]. The algorithm is based on the maximal
margin classification concept. It searches for a hyperplane, h(x) = xTβ + β0 = 0, that
separates the observations belonging to two classes and has the largest value of the minimum
geometrical distance to class representatives—the margin M. The classification of new
observations is based on which side of the hyperplane they are on. The maximal margin
hyperplane is found by solving the following optimization problem [81–83]:

max
β;β0; βk k¼1

M subject to yi xi
Tβ þ β0

� �
≥M ; i ¼ 1;…; n;

where β and β0 are parameters of the optimal hyperplane, y ∈ {−1, 1} are labels associated
with two considered classes, and n is the number of observations. The maximal margin
classifier offers the solution with M > 0 only when the classes are linearly separable. For
non-linearly separable data, the algorithm utilizes a soft margin approach. It allows some data
points to violate the margin or even be on the opposite side of the hyperplane in exchange for
imposing a penalty, called the slack variable ξi, on the objective function. The optimization
problem then becomes:

max
β;β0; βk k¼1

M yi xi
Tβ þ β0

� �
≥ M 1−ξið Þ; ξi≥0; ∑

n

i
ξi≤C; i ¼ 1;…; n;
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where C is a non-negative tuning parameter that controls the balance between the margin
width and the slack (the bias-variance trade-off). In practice, finding an optimal hyperplane
only requires the consideration of a small number of observations that lie on or violate the
margin (so-called support vectors). Since the hyperplane has a dimensionality of d − 1, where
d is the dimensionality of the input data, the obtained decision boundary is linear. However,
SVM can also create non-linear decision boundaries. This is achieved by mapping the data into
higher dimensional space using non-linear kernel functions. In this study, we used SVMs with
a linear kernel. Originally, SVMs were defined for a binary classification problem. In order to
perform multiclass classification, we adopted a one-versus-one approach in which a separate
SVM is constructed for each pair of classes [81]. The final classification is a majority decision

of all m
2

� �
pairwise SVM classifiers. To determine the optimal value of C, we performed a

10-fold cross-validation on the training set.

3 Results and Discussion

3.1 Samples with Single Concentration of Active Materials

Some publications on material identification using THz spectroscopy consider samples with
only a single concentration of active materials within each material class [40, 84]. Therefore,
we first compared the performance of DR methods in this simple scenario. To this end, we
used the samples with the highest content of the active material (80%), which exhibit the most
pronounced spectral features, and two samples of pure PE. As shown in Fig. 2, all six active
materials have distinctive spectral features in the measured frequency range, while PE is
inert and exhibits an almost featureless spectrum. Since THz spectroscopy measurements
were performed in a reflection configuration, the spectra depend on the refractive index of
the materials [85] having smooth and relatively broad features. Consequently, there is
significant spectral overlap among materials and the spectral features cover almost the
entire frequency range. Two prominent absorption lines of atmospheric water vapor,
located at around 1100 and 1115 GHz, respectively [4], reduce the signal measured from
the sample (but not the reference) to the level comparable to the noise floor. This leads to
the formation of two narrow, noisy peaks. By excluding the noisy data in the range 1086-
1119 GHz (blue line in Fig. 2), we obtained 1117 spectra containing 817 discrete frequen-
cies (dimensions / features), which we divided into training and test sets (4:1) and used for
the evaluation of the DR methods.

We used PCA and LDA algorithms to reduce dimensionality of the THz spectra. To
numerically verify the performance of the DR methods in terms of grouping and separating
different materials, we classified the data using three different classifiers, namely a Gaussian
Bayes classifier, a k-NN, and an SVM. Table 2 summarizes the obtained classification
accuracies. As shown in Fig. 3, projecting the spectra onto a two-dimensional space provides
good separation between materials in the training set (filled circles). For PCA (Fig. 3a), there is
a small overlap between lactose, theophylline, and galactitol, while the other materials are well
separated. Classification of PCA-processed data with the SVM and the Bayes classifier yielded
similar training classification accuracies of 0.9888 and 0.9843, respectively. The k-NN
algorithm showed slightly lower performance of 0.9742. As expected, all misclassification
cases originate from confusing two of the overlapping materials. For LDA (Fig. 3b), all the
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materials seem to be spatially separated. Although theophylline is located close to L-TA, there
is no overlap between these materials. The performed classification confirms that observation
as all classifiers yielded a perfect accuracy on the training set.

Subsequently, we performed DR on the test set (empty squares in Fig. 3) using the trained
PCA and LDA algorithms to verify their performance on unseen data, a so-called generaliza-
tion. For PCA (Fig. 3a), the test set overlaps distinctly well with the training set and each
cluster corresponding to different materials shows similar distribution for both datasets.
Furthermore, the obtained test classification accuracies are comparable to those obtained on
the training set, which proves a good generalization of the PCA algorithm. However, as shown
in Fig. 3b, LDA does not generalize as well as PCA. Data points corresponding to the specific
material are more scattered in the test set than it is the case for the training set. Classifying the
LDA-processed test data, we obtained a relatively poor classification accuracy of around
0.9509 and 0.9464 for Bayes classifier and k-NN, and for SVM, respectively. Most cases of
misclassification arose from confusing theophylline and L-TA due to the increased dispersion
of the test data. The observed lack of generalization together with a perfect performance on the
training set suggests overfitting of the LDA algorithm [86, 87]. It has been reported that LDA
is prone to overfitting if the dimensionality of the data is comparable to the size of the training
set [88–90] (poorly posed problem), which applies to the considered case (817 features and
893 training spectra). The eigenvectors obtained during the training confirm that the algorithm

Fig. 2 THz reflection spectra of the samples with 80% of the active material and samples of pure PE. The central
lines represent the mean of 160 measurements performed on two different samples, while the error bars (outer
lines) represent a standard deviation of the measured spectra. For clarity, each consecutive spectrum, except PE,
has been shifted upwards by 0.1. The blue line represents a spectral region excluded from simulations due to
significant water absorption–related noise

Table 2 Classification accuracy of DR-processed THz spectra. Only the samples with 80% of active material and
samples of pure PE have been considered

PCA LDA RLDA

Train Test Train Test Train Test

Bayes 0.9843 0.9955 1.0000 0.9509 1.0000 1.0000
125-NN 0.9742 0.9732 1.0000 0.9509 0.9966 1.0000
SVM 0.9888 0.9732 1.0000 0.9464 1.0000 1.0000
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follows the noise instead of patterns (spectral features) in the data (see Fig. S1 in the
supplementary material). Consequently, the algorithm performs poorly on the unseen data,
which exhibit a different noise pattern.

Overfitting is a well-known problem in machine learning and is closely related to the bias/
variance trade-off, where the trained model exhibits a high variance [51, 86]. Increasing the
size of the training set constrains the variability of the model and thus prevents overfitting.
However, performing a great number of additional measurements is usually time-consuming
and costly, and in some applications, it can be impractical or even impossible. Another
approach is to reduce the number of parameters to train. It can be achieved by feature selection
methods, which eliminate redundant features and those that contain the least amount of
information [62]. However, feature selection is a complex task and sometimes may remove
essential features leading to inferior performance of the algorithm [89]. Regularization is a
simple, yet effective, solution to the overfitting problem. It has been implemented in many
machine learning algorithms [51, 82, 86]. It allows constraining the variance by imposing a
penalty on complex models. In LDA, the simplest form of regularization is implemented by
adding a regularization parameter λ to the diagonal elements of the total scatter matrix St
following the formula: bSt ¼ St þ λI , where λ > 0 and I is the identity matrix [52, 70, 72].
However, more sophisticated forms of regularization have also been proposed [52, 72, 87, 91].
Choosing λ is crucial for a correct operation of regularized LDA (RLDA) because it directly
controls the balance between bias and variance of the model (see Fig. S2 in the supplementary
information). To estimate an optimal value of λ, we performed 10-fold stratified cross-
validation on the training set [81, 82, 88]. Using the classification accuracy of the Gaussian
Bayes classifier as a validation criterion, we found the optimal value of λ to be 0.5. Finally, we
trained the RLDA algorithm on the entire training set using the previously estimated optimal
value of λ and applied the trained model to the test set.

As shown in Fig. 4, RLDA provides significantly better generalization than the classical
LDA algorithm while maintaining a perfect separation between materials. There is a perfect
alignment between the training and test data and material-specific clusters show similar
distribution in both datasets. The SVM and the Bayes classifier had no problems with the
RLDA-processed data yielding a unity accuracy on both training and test sets. The k-NN also
achieved a perfect test accuracy but misclassified a few training examples yielding a training
accuracy of 0.9966. Our results shows that RLDA slightly outperforms PCA in terms of
preprocessing data for classification purposes. However, reducing the dimensions of the data

Fig. 3 THz reflection spectra (shown in Fig. 2) projected onto a two-dimensional feature space using two DR
methods: a PCA and b LDA. Filled circles correspond to the training set, while empty squares to the test set
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from 817 to two is very strict. Projecting the THz spectra onto three- instead of two-
dimensional space allows obtaining a perfect separation of materials also for PCA as con-
firmed by the Gaussian Bayes classifier and SVM (k-NNmisclassified a few training examples
resulting in a training accuracy of 0.9955). In comparison to PCA, RLDA provides more
efficient spatial grouping of the materials. For PCA, data points corresponding to RDX are
scattered and form two separate clusters (a similar behavior can be observed for L-TA). We
found that two nominally identical samples of RDX exhibit slightly different spectra, which
we attribute to non-uniform distribution of the active material. Since PCA is an unsupervised
method, it considers only the patterns in the data. Therefore, spectral differences between RDX
samples result in spatial separation in the reduced feature space. In the case of RLDA, the
provided class membership information, which is a key property of supervised learning
methods, enables efficient grouping of data despite the spectral differences. A poor grouping
ability of unsupervised DR methods may have a negative impact on the performance of some
classification algorithms.

3.2 Samples with Various Concentrations of Active Materials

Subsequently, we considered a more realistic scenario, where the samples contain various
concentrations of the active material to be identify. To this end, we characterized the samples
with three different concentrations, i.e., 80%, 50%, and 20%, respectively. Additionally, we
used two samples of pure PE to test whether the samples with low active material content and
therefore high PE content can be distinguished from the background. Figure 5 shows the
spectra of all types of samples used in this study. Since the samples are mixtures of the active
material and PE, the obtained reflection coefficient is an intermediate value between the
spectra of the two components. As the concentration of the active material decreases, the
material-specific spectral features become less pronounced. Furthermore, for materials having
a significantly higher refractive index than PE, e.g., PABA and theophylline, the reflection
coefficient drops over the entire spectral range with decreasing concentration. Here, we
investigate if the increased variability of the data associated with material concentration affects
the performance of the DR algorithms.

Fig. 4 THz reflection spectra
(shown in Fig. 2) projected onto a
two-dimensional feature space
using RLDA. Filled circles corre-
spond to the training set, while
empty squares to the test set
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While performing DR, we used the same methodology as before. First, PCA and LDA
algorithms were trained on the training set containing 80% (2428) of the THz spectra. Then,
we applied them to the remaining 20% (608) of the spectra, which constitute a test set. Since
the aim was to identify the sample by the contained active material regardless of its concen-
tration, the class labels used for the supervised DR contain only the information about the type
of the material, while neglecting its concentration. In contrast to the simple scenario considered
previously, the DR algorithms were unable to provide good separation between the materials
using only two most significant features. Therefore, we projected the data onto three-
dimensional space. As an unsupervised method, PCA considers only the patterns in the input
data, or more precisely, its variance. Therefore, we expect that an additional variability related
to material concentration is going to be transferred into a lower dimensional space as we
observed for RDX in the previous section. As shown in Fig. 6a and 7, PCA processing
arranged the data into a shape resembling a conical surface. At the vertex of the cone, there are
data points corresponding to the pure PE, which is a component of all the samples. The data
corresponding to samples with a low content of active material, and hence with a high content
of PE, is located close to the pure PE and distributed around the cone’s symmetry axis
depending on the contained active material (Fig. 7). In this configuration, faint spectral features
of the samples with low active material content correspond to a small spatial separation
between samples. As the concentration of the active material increases, the data points are
projected further from the vertex. Consequently, the data corresponding to each material is
divided into clusters, which correspond to different material concentrations. The materials that
exhibit larger concentration-related spectral changes (globally, over the entire spectra), e.g.,
RDX or PABA (see Fig. 5), are more scattered in the reduced feature space. Therefore, the
spatial separation between the samples with high active material content, which have more
pronounced spectral features, becomes larger. In other words, the greater the spectral differ-
ences between the samples, the larger the separation is in the reduced feature space. This

Fig. 5 THz reflection spectra of all samples used in this study. The central lines represent the mean of 160
measurements performed on two different samples, while the error bars (outer lines) represent the standard
deviation of the measured spectra. For clarity, each consecutive spectrum, except PE, has been shifted upwards
by 0.1. The blue line represents a spectral region excluded from simulations due to significant water absorption–
related noise
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intuitive explanation of variance can become useful in data analysis; however, in terms of data
visualization, the clarity offered by PCA is rather poor. A comparable distribution of test and
training data in Fig. 6a and 7 indicates that, as in the previous case, PCA provides a good
generalization on unseen data. Subsequently, we classified the PCA-processed data depending
on the active material contained in the sample (Table 3). The classification accuracies obtained
on the training set ranged from 0.8871 for the Bayes classifier to 0.9090 for the k-NN. For the
test set, the classifiers yielded accuracies ranging from 0.8914 to 0.9145 for Bayes classifier
and k-NN, respectively. Test results similar or, in that case, better than those obtained on the
training set prove a good generalization of PCA. However, the concentration-related separa-
tion of data within the material class disturbs the operation of heavily biased classifiers used in
this study. This, in turn, results in relatively poor classification accuracy.

The objective of LDA is to maximize the inter-class distance and minimize the scatter
within each class. Figure 6b shows that the algorithm does it very well. LDA provides not only
a great separation between materials but also a superior intra-class grouping than PCA. The
class membership information, introduced into a supervised algorithm by labels, enables
efficient grouping of data associated with the same active material despite having an additional
variability related to the concentration. However, the distribution of the data in the lower
dimensional subspace is not as intuitive and easy to interpret as we observed for PCA. In
comparison with the simple scenario presented in the previous section, LDA shows better
generalization. Since we used more THz spectra for training (2428 compared to 893 used
previously), the noise is effectively averaged out and the algorithm better learns the pattern in
the data. As a result, the test set shows a similar distribution compared to the training set. As
shown in Table 3, all classifiers achieved a high accuracy of 0.9975 for the LDA-processed
training data. For the test set, the obtained classification accuracies were 0.9868 and 0.9885 for
the Bayes classifier and the SVM, and the k-NN, respectively. An inferior test performance of
both classifiers may suggest that despite an increased amount of data the algorithm slightly
overfits the data. It has been suggested that for the optimal performance, machine learning
algorithms require at least ten times as many training examples as the number of features [92],
while in our case this ratio is only around three. Nevertheless, LDA clearly outperforms PCA
in terms of preprocessing the data for classification, as the efficient grouping mechanism
offered by the supervised approach results in significantly better performance.

Fig. 6 THz reflection spectra of samples with various concentrations of active material (shown in Fig. 5)
projected onto a three-dimensional feature space using two DR methods: a PCA and b LDA
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3.3 Samples with Various Concentrations of Active Materials Under Various
(Controlled) Humidity Conditions

Absorption of the atmospheric water vapor is a well-known problem in the THz technology. In
Section 3.1, we observed that strong water absorption lines located around 1100 GHz and
1115 GHz almost completely attenuated the THz signal, preventing any useful measurements
in the adjacent spectral range (Fig. 2 and Fig. 5). For weaker absorption lines that allow
resolving the remaining THz signal, the reference measurement was able to efficiently remove
the spectral features related to atmospheric water vapor (Fig. S3 in the supplementary
materials). However, in many potential out-of-the-lab applications, e.g., stand-off

Fig. 7 PCA-processed THz
spectra from Fig. 6 projected (for
clarity) onto two-dimensional
planes and labeled with respect to
the active material and its
concentration

Table 3 Classification accuracy of DR-processed THz spectra for the samples with various concentrations of
active materials

PCA LDA

Training Test Training Test

Bayes 0.8871 0.8914 0.9975 0.9868
125-NN 0.9090 0.9145 0.9975 0.9885
SVM 0.8937 0.9046 0.9975 0.9868
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identification of hazardous substances, obtaining a precise reference is difficult or even
impossible to achieve. Consequently, the THz spectra may possess additional spectral features
related to water absorption. To verify their impact on the performance of DR algorithms, we
characterized all samples at three different RH levels of 90%, 50%, and 10%, respectively. The
reference measurements were performed at RH of 50%. The obtained THz spectra have three
narrow peaks corresponding to the water absorption lines located at around 557 GHz, 753
GHz, and 988 GHz (see Fig. S3 in the supplementary materials). The peaks are positive for
measurements performed at RH 10% and negative for RH 90%. At RH 50%, the peaks do not
occur as they were removed by the reference.

Using an unaltered methodology, we applied DR algorithms to project the THz spectra onto
a three-dimensional subspace. As shown in Fig. 8a, PCA arranged the data into three
distinctive clusters that correspond to RH level during the measurements. Each RH-related
cluster contains smaller clusters corresponding to the active material contained in the sample
and its concentration. We conclude that the additional variability related to the water absorp-
tion has an effect similar to the material concentration in Section 3.2 and leads to further
separation (grouping) of data in the principal component space. This had a significant impact
on classification results of PCA-processed data, presented in Table 4. The k-NN algorithm,
which showed the best performance, provided an accuracy of only around 0.70 and 0.69 for
the training and test set, respectively. In turn, training and test accuracies obtained with SVM
were as low as 0.6321 and 0.6053. Figure 8b shows that despite the additional variability,
LDA provides an excellent separation between materials and great intra-class grouping.
Classification results of the LDA-threated data summarized in Table 4 prove a superior
performance of the supervised method. All classification algorithms yielded a unity accuracy
on the training set and a test accuracy better than 0.986. The obtained results are similar to
those from the previous section showing that the additional variance originating from the water
absorption does not adversely affect LDA performance.

3.4 Manipulating Class Label in Supervised Methods

Our results from previous sections show that due to using class membership information,
supervised DR methods provide better separation of the materials and superior grouping in
comparison to their unsupervised counterparts. However, class labels offer another important
functionality. As an additional input parameter, they provide better control over the

Fig. 8 Three-dimensional projections of THz spectra obtained by a PCA and b LDA. The THz spectra of
samples with various concentrations of active materials were measured under various humidity conditions
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classification algorithm. To demonstrate this, we considered an example related to security
screening, which is a potential application of THz spectroscopy. For security screening, it is
not necessary to identify an exact material composition of the investigated object. Instead, it is
more relevant to recognize whether the object poses any threat, to specify a type and
magnitude of the threat, and to determine the proper course of action in response. Therefore,
we re-labeled the spectra used in Section 3.2 based on the type of hazard that the correspond-
ing samples represent. RDX is a common explosive compound that has been used in numerous
bomb plots including terrorist attacks. It is widely used as a stand-alone explosive but also as a
part of explosive mixtures such as Composition C-4, Torpex, and Semtex H [3]. Due to posing
an imminent threat to multiple persons, detection of RDX requires immediate actions.
Therefore, we labeled RDX as “Danger”. Theophylline is a pharmaceutical compound used
to treat respiratory diseases such as asthma. It has a narrow therapeutic range and is toxic if
ingested at higher doses. Nevertheless, in comparison to RDX, the threat it constitutes is minor
and does not require such drastic measures. Consequently, theophylline was assigned with a
“Warning” label. The rest of investigated materials (galactitol, lactose, L-TA, PABA, and PE)
does not pose any hazard; hence, they were labeled as “Safe”.

Subsequently, we used the spectra with new labels to train the LDA algorithm. Since we
divided the data into three classes, LDA can project the data onto a two-dimensional subspace
at most. Despite this limitation, LDA provides a perfect separation between newly established
classes and an efficient intra-class grouping, as shown in Fig. 9. Furthermore, LDA shows a

Table 4 Classification accuracy of DR-processed THz spectra for the samples with various concentrations of
active materials measured under various humidity conditions

PCA LDA

Training Test Training Test

Bayes 0.6612 0.6316 1.0000 0.9868
95-NN 0.7007 0.6908 1.0000 0.9912
SVM 0.6321 0.6053 1.0000 0.9868

Fig. 9 THz reflection spectra
projected onto a two-dimensional
feature space using LDA. The la-
bels used in supervised DR corre-
spond to the hazard represented by
the samples. Filled circles corre-
spond to the training set, while
empty squares to the test set
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good generalization on the test data. As expected, none of the classifiers had any problems
with LDA-processed data, yielding unity accuracy on both training and test sets. This shows
that by altering the class labels, it is possible to project the data into different groups that are
more suitable for the desired application. For comparison, we classified PCA-processed data
using new class labels. Since the output of unsupervised methods does not depend on the class
labels, we refer to the results from Section 3.2 (PC1-PC2 plane in Fig. 7). Obtained classifi-
cation results, summarized in Table 5, show that PCA was not up to the task. Bayes classifier
and k-NN correctly predicted only around 0.77 and 0.75 of test data, respectively. On the other
hand, SVM yielded a higher, but still far from satisfactory, test classification accuracy of
approximately 0.83.

4 Conclusions

In summary, we compared the use of principal component analysis and linear discriminant
analysis—two linear methods that represent an unsupervised and a supervised approach,
respectively, for analysis of THz CW reflection spectra. We focused on two common applica-
tions of dimensionality reduction, namely data visualization and preprocessing the data for
classification. In the simple scenario, where we considered only samples with a single concen-
tration of active materials, both approaches were able to compress 817-dimensional spectra
down to a two-dimensional subspace while providing good discrimination between materials.

However, as we increased the complexity of the data by using samples with various
concentrations of active materials, the performance of the unsupervised approach decreased
significantly. We observed a formation of separate clusters for samples having different active
material concentrations in PCA-processed data. The same effect was observed while evaluat-
ing measurements performed under various humidity conditions. Since the unsupervised
methods depend only on the patterns in the data, the additional intra-class variance is
transferred into the reduced lower dimensional space. This may have a negative impact on
the classification accuracy, especially for highly biased classifiers as those used in this study.
On the other hand, using class membership information (labels) allowed LDA to effectively
group the samples with the same active material despite differences in concentration and RH.
As a result, LDA provides better visualization clarity and higher classification accuracy.
Therefore, if the considered application provides the labels, we strongly recommend using
supervised methods, as the use of unsupervised methods in this case involves neglecting
information. Furthermore, using THz security screening as an example, we demonstrated that
manipulating the labels allows tuning the output of the algorithm for the desired classification
task.

Table 5 Classification accuracy of DR-processed THz spectra for the samples with various concentrations of
active materials, labeled according the type of hazard they represent

PCA LDA

Training Test Training Test

Bayes 0.7648 0.7747 1.0000 1.0000
383-NN 0.7467 0.7500 1.0000 1.0000
SVM 0.8361 0.8322 1.0000 1.0000
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Despite showing a better performance and more flexibility than PCA, LDA has some
drawbacks that need to be considered. When the number of observations is comparable to the
number of features, a so-called poorly posed problem, LDA tends to overfit the data. This can
result in a significant drop in classification accuracy. Therefore, LDA requires more measure-
ments than its unsupervised counterpart does, which in some applications may be an obstacle.
We demonstrated that regularization is an effective solution for the overfitting problem;
however, tuning the regularization parameter requires an additional user intervention. Since
LDA aims to maximize the distance between classes and minimize the intra-class scatter, the
distribution of the data in the lower dimensional subspace is not as intuitive as it is the case in
PCA, which aims to maximize the variance.

Furthermore, our experiments show that simple algorithms (linear dimensionality reduction
and basic classifiers such as Bayesian classifier and k-NN) are sufficient for visualization and
classification of THz reflection spectra. In all presented scenarios, the obtained classification
accuracy was better than 98.6% using LDA. However, we recognize that in more complex
cases, such as measurements through covering materials and diffused reflection measurements,
which are relevant for implementation of THz screening systems, the use of more sophisticated
algorithms, e.g., neural networks, may be beneficial.
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10.1007/s10762-021-00810-w.
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An analysis of eigenvectors obtained from the optimization task provides insight into the operation of the DR algorithm. Fig. 
S1 shows that PCA eigenvectors follow spectral features of the measured material (population / global characteristics); 
whereas LDA overfits the data as its eigenvectors reproduce the noise pattern (sample / local characteristics). Consequently, 
LDA performed poorly on the unseen data, while PCA showed good generalization ability.   

 
Fig. S1 Eigenvectors obtained during dimensionality reduction using PCA (top panel) and LDA (bottom panel). The blue line represent a 

spectral region excluded from simulations due to water absorption-related noise. 

Overfitting of the LDA algorithm can be overcome by regularization. In this study, we performed regularization by adding 
a regularization parameter 𝜆 to diagonal elements of the total scatter matrix. Adjusting 𝜆 allows controlling the balance 
between bias and variance of the model. Fig. S2 shows eigenvectors obtained by RLDA for three different values of 𝜆, 
including the optimal solution 𝜆 = 0.5 determined by means of 10-fold stratified cross validation. As 𝜆 increases, the 
eigenvectors become less noisy and more similar to the spectral features of the measured samples.  
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Fig. S2 RLDA eigenvectors obtained for different values of the regularization parameter 𝝀. The blue line represent a spectral region 

excluded from simulations due to water absorption-related noise. 

 

 

 

 
Fig. S3 THz spectra of PABA measured at relative humidity of 10 %, 50 % and 90 %, respectively. The measurements were referenced 

with a spectra of aluminum mirror recorded at RH = 50 %. For clarity, each consecutive spectrum, except RH 90 %, has been shifted 
upwards by 0.1. The blue line represent a spectral region excluded from simulations. 
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Fig. S4 THz spectra of samples with various concentrations of active material measured under various humidity conditions projected 
onto three-dimensional space using PCA. Data points are labeled with respect to a) relative humidity b) active material and its 

concentration (for clarity shown as projections onto 2D planes). 
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Commonly, a terahertz spectrum is deconvoluted by a reference spectrum to remove the water vapor absorption lines and
other system related responses. However, in real-life applications obtaining reference spectra can be problematic and
adds to the complexity of the system. In this letter, we study how typical machine learning algorithms for classification
of terahertz reflection spectra perform on non-referenced spectra, i.e. spectra which have not been deconvoluted by
reference spectra, compared to referenced spectra. Prior to classification, the dimensionality of the spectra is reduced
from 649 frequencies to five features by either the unsupervised principal component analysis or the supervised linear
discriminant analysis. We apply three different classification algorithms; namely a Gaussian Bayes model, the k nearest
neighbors, and a support vector machine. Especially, if the terahertz spectra are preprocessed using linear discriminant
analysis, very high classification scores (> 99.7%) can be retained for the non-referenced spectra. Thus, this could be
of great importance for real-world material identification applications based on terahertz spectroscopy.

I. INTRODUCTION

Terahertz (THz) spectroscopy has proven to be a promising
technology for security, defense, safety, and quality control,
applications1,2 since many compound materials exhibit unique
spectroscopic characteristics. Including hazardous substances
such as explosives, commercial and illicit drugs, and toxic
gasses, e.g., ammonia or carbon monoxide. Concurrently, ter-
ahertz radiation allows for non-invasive screening as many
non-polar and non-metallic materials are transparent within
the terahertz frequency band. In addition, the low photon en-
ergy inherent to terahertz radiation results in a non-ionizing
nature to biological samples. Hence, terahertz spectroscopy is
not only desired but also safe for screening of personnel and
objects.

For many real-world applications of THz spectroscopy, it is
necessary to be able to distinguish different substances in an
efficient and reliable manner. Additionally, many applications
require the THz spectroscopic measurements to be done in a
reflection scheme. The weak and broad spectroscopic charac-
teristics of substances inherent to reflection spectra, caused by
the dependence on the refraction index3, complicates things
further. Reflection spectra of some materials commonly found
in the literature, measured under ambient conditions, are seen
in Fig. 1. The center line of each curve is the mean of 80
measurements, while the filled area represents the standard
deviation. The curves are shifted vertically for a better read-
ability. Each spectrum shows clear absorption lines of atmo-
spheric water vapor around 0.55, 0.75, and 0.99 THz, while
the spectral characteristics intrinsic to the studied materials
are much harder to recognize. If the same spectra are de-
convoluted with appropriate reference spectra to obtain the
reflection coefficients of the samples (Fig. 2), the material
specific characteristics are easily recognized. However, when
the weight percentage of the active material in a sample drops
to from 50% to 20%, it suddenly becomes difficult to distin-
guish or identify materials like theophylline, L-TA and PE.

Several rather complex machine learning techniques includ-
ing Bayesian models4,5, artificial neural networks6–8, support
vector machine9–11, and random forests4,6,10 have previously
been utilized for classification of terahertz spectra. To make
such identification algorithms more efficient, the data is typi-
cally preprocessed using dimensionality reduction (DR) meth-
ods. This lowers the computational requirements, increases
the learning speed of the machine learning algorithm, and al-
lows for visualization of the data for easier interpretation.

Recently, we compared the performance of two unsuper-
vised and supervised linear DR methods12; Principal Com-
ponent Analysis (PCA) and Linear Discriminant Analysis
(LDA). We showed that simple machine learning algorithms
are sufficient for highly accurate classification (>98.6%) of
terahertz spectra. The results relied on deconvolution of the
measured reflection spectra with non-ideal reference measure-
ments. Nevertheless, the need for reference spectra can be
very inconvenient or even impossible to fulfill in a real-world
scenario.

In this letter, we present the classification results of non-
referenced vs. referenced terahertz spectra preprocessed using
either PCA or LDA for three different classifiers: Bayesian,
k nearest neighbors (k-NN), and support vector machines
(SVM). These classifiers represent a probabilistic, a non-
parametric, and a finely tuned linear algorithm, respectively.

II. METHODS AND MATERIALS

A thorough description of the experimental setup and mea-
suring procedure can be found in12.

A. Experimental Setup, Samples, and Measurements

The samples were characterized in a reflection geometry
by continuous wave (CW) terahertz frequency-domain spec-
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FIG. 1. Non-referenced THz reflection spectra of the samples with
50% of active material and pure PE measured at 50% RH. The dark
colored center line of each curve is the mean of 80 measurements,
while the light colored fill represents the standard deviation. The
curves of each material are shifted vertically for a better readability.

troscopy (THz-FDS) using a TeraScan 1550 system manufac-
tured by Toptica Photonics working from 0.09 to 1.19 THz.
The complete setup was enclosed by a custom-built humidity
chamber that could be purged with either dry or water vapor
saturated nitrogen to achieve relative humidity (RH) levels be-
low or above the ambient air level. Five compound materials
with spectral features in the frequency range of the TeraS-
can 1550 were selected for the study. Including galactitol,
L-tartaric acid (L-TA), 4-aminobenzoic acid (PABA), theo-
phylline, and alpha-lactose monohydrate. Six pellets from
each compound were fabricated in pairs at weight percent-
ages of 20%, 50%, and 80% of active material mixed with
polyethylene powder. The flat response of PE in the spectral
band of interest makes it a convenient binder matrix for the
active compounds13. Furthermore, the sample pellets were
shaped as a 15◦ wedge to avoid interference between the front
and the back surface reflections. Each sample was measured
over the entire spectral range in 80 MHz increments integrated
for 3 ms at 20 random positions in 0.5 mm steps within the
scanning area of the sample surface. A reference spectrum
was recorded for every 40 measurements replacing the sam-
ple with an aluminum mirror. The acquisition procedure was
repeated under controlled conditions of 10%, 50%, and 90%
RH, respectively. The data includes more than 1900 spectra

FIG. 2. Referenced THz reflection spectra of the samples with 20%,
50% and 80% of active material and pure PE measured at 50% RH.
The dark colored center line of each curve is the mean of 80 measure-
ments, while the light colored fill represents the standard deviation.
The curves of each material are shifted vertically for a better read-
ability.

and is available online as a part of the "Database of frequency-
domain terahertz reflection spectra for the DETRIS project"14.

B. Data Processing and Machine Learning

The CW THz-FDS setup operates in a coherent detection
scheme, which causes phase oscillations in the recorded pho-
tocurrent Iph(ν) as the THz frequency ν is scanned. In this
study, the instantaneous amplitude A(ν) and instantaneous
phase φ(ν) were calculated by applying the Hilbert transfor-
mation H to the oscillating photocurrent proportional to the
THz electric field15,16. The resulting complex-valued analytic
signal

Ia(ν) = Iph(ν)+ iH
{

Iph(ν)
}
= A(ν)exp [iφ(ν)]

was then Fourier transformed into the time-domain, in which
it was filtered for any reflections in the experimental setup
causing Fabry-Pérot interference, and inversely Fourier trans-
formed back into the frequency-domain.17 The data was
cropped to an interval from 0.4 to 1.05 THz to include only
the spectral region containing spectroscopic characteristics of
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samples and achieving a proper signal to noise ratio. In coher-
ence to our previous study12, we used only the spectral ampli-
tude A(ν) of the THz field in the further processing. Nonethe-
less, the same unique material information is contained in
the spectral phase φ(ν) as for THz time-domain spectroscopy
(TDS)15,16. Prior to the calculation of the reflection coefficient

R(ν) = Asample(ν)/Areference(ν),

the data was interpolated onto integer GHz-frequencies to en-
sure a proper deconvolution of the individual spectral compo-
nents. In the remaining part of this paper, we categorize the
spectral data A(ν) and R(ν) plotted in Fig. 1 and Fig. 2 as
non-referenced and referenced, respectively.

The referenced and non-referenced data sets were both
standardized i.e., each feature was normalized to zero mean
and unity variance, which is crucial for PCA to operate
correctly18,19. Next, the two data sets were individually di-
vided into training and test sets at a 4:1 ratio using stratified
random sampling. Each spectrum in the data sets spanned
649 discrete frequencies. In machine learning, such individ-
ual measurable properties of the observed object are referred
to as features. We restricted ourselves to two well-established
linear feature extraction methods to reduce the dimensionality
of our multivariate data. Principal Component Analysis max-
imizes the variance of the data by eigendecomposition of the
covariance matrix20. The resulting orthogonal eigenvectors or
principal components are ranked by the respective eigenval-
ues, which are proportional to the amount of explained vari-
ance, such that the first principal component represents the
highest variability. The dimensionality of the data can be re-
duced while maintaining most of the information by retaining
only a relative few of the most significant principal compo-
nents. The PCA algorithm does not include any class mem-
bership information and relies solely on hidden patterns in
the data. Hence, this method is unsupervised. A supervised
counterpart to PCA is Linear Discriminant Analysis, which
includes class membership information to calculate the dis-
tance between class means and the variance within each class.
Here, each material (and/or weight percentage of the active
material) can be viewed as a different class. Through e.g.
eigendecomposition a lower-dimensional space is constructed
such that the inter-class distances are maximized while the
intra-class variance is minimized. Contrary to PCA, at most
N−1 non-zero eigenvalues exist, where N is the total number
of classes, meaning that LDA reduces the dimensionalty to at
most N −1 features20,21.

For classification, three different algorithms were applied.
First, a probabilistic classification model based on Bayes’ the-
orem. The Bayes classifier calculates the posterior probability
p(Ci|x) of an observation with value x to belong to the ith class
Ci as the product of the prior probability that the observation
belongs to the ith class p(Ci) and the likelihood p(x|Ci) of an
observation value x given class i normalized by the marginal
probability of x. That is20,

p(Ci|x) =
p(x|Ci)p(Ci)

p(x)
, p(x) = ∑

i
p(x|Ci)p(Ci)

FIG. 3. The cumulative captured variance (cross and square) vs. the
number of included features in the reduced feature space computed
by PCA (left) and LDA (right). For LDA, the ratio of the cumulative
sum over the total sum of eigenvalues (dot and circle) is plotted as
well.

Accordingly, the Bayes classifier appoints the observation to
the class with the highest posterior probability. Here, we
assumed the class likelihood function to follow a multivari-
ate normal distribution. Second, the simple non-parametric
k Nearest Neighbors algorithm. This classification algorithm
stores all training data, calculates the geometrical distance to
a new observation, and subsequently, classifies the new obser-
vation identically to the majority of the k nearest neighboring
data points. In our study we utilized the Euclidean distance
metric and k = 384 equal to the total number of observations
in each class. Choosing such a large value of k means that
the k-NN algorithm will be an indicator of how well PCA and
LDA are at intra-class grouping. The final approach was the
support vector machine. The algorithm searches for a hy-
perplane separating observations of two classes with maxi-
mal margin, i.e. the maximum geometrical distance to both
classes. A new observation is classified according to the half-
space it is belonging. Real-world data is often linearly in-
separable, wherefore a soft margin is often applied. It allows
data points to violate the hyperplane at the cost of a penalty.
This results in a wider margin that generalizes better to un-
seen data. We utilized a linear kernel and a soft margin ap-
proach together with a 10-fold cross-validation on the training
set. The data processing was performed in MATLAB (Math-
Works, R2020b).

III. RESULTS AND DISCUSSION

The referenced and non-referenced data sets consisted of
1920 reflection spectra of samples prepared as pellets of
polyethylene with 20%, 50%, and 80% by weight of active
materials, respectively, measured under various controlled hu-
midity conditions (10%, 50%, and 90% RH). The dimension-
ality of each THz spectrum was reduced by either PCA or
LDA for comparison. In Fig. 3, we plot the captured vari-
ance (cross and square), i.e. the cumulative variance along
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FIG. 4. Projections of the referenced (top) and non-referenced (bot-
tom) spectra to a two-dimensional feature space processed by PCA
(left) and LDA(right), respectively.

each new feature normalized to the total variance in the re-
duced feature space, computed for the principal component
and linear discriminant analyses of the train sets. For PCA, the
captured variance is equivalent to the proportion of explained
variance (the ratio of the cumulative sum and the total sum
of eigenvalues) as the eigenvalues are proportional to the total
variance19. This is not true for LDA, for which the eigenvalues
are related to the between-class and within-class variance and,
hence, reflect the robustness and the ability to discriminate
between different classes21. For the sake of comparison, we
plot the cumulative eigenvalue ratio (dot and circle) of LDA
as well. In terms of captured variance, the LDA algorithm
performs almost equally well, whether the input data is refer-
enced or not, while there is a slight difference in performance
of the PCA algorithm up to three features. Interestingly, more
than 90% of the variance is explained by including just three
features of the PCA, whereas three LDA features capture 85%
of the variance and achieve 61% robustness. To retain most
of the information in the data, the dimensionality of the THz
spectra was reduced from 649 frequencies to five features.
In Fig. 4 the referenced (top) and non-referenced (bottom)
spectra are projected onto a two-dimensional feature space by
PCA (left) and LDA(right), respectively. The training and test
sets of the data are displayed with dots and open squares, re-
spectively. Overall, the test data fits very well with the train
data indicating that both PCA and LDA provide a good gen-
eralization to unseen data. As we have previously shown for
referenced data using a non-ideal reference12, PCA clusters
the data according to the sample material and further by the
material concentration as the algorithm aims to maximize the
overall variance. Thus, PCA results in poor intra-class group-

PCA LDA

Train Test Train Test

B
ay

es Referenced 0.9844 0.9870 1.0000 0.9974
Non-referenced 0.9368 0.9245 1.0000 0.9974

38
4-

N
N Referenced 0.7474 0.7448 0.9375 0.9349

Non-referenced 0.6836 0.6615 0.9375 0.9349

SV
M Referenced 0.9980 1.0000 1.0000 0.9974

Non-referenced 0.9258 0.9115 1.0000 0.9948

TABLE I. Classification accuracy scores of the PCA- and LDA-
processed referenced and non-referenced spectra.

ing, which is also evident from the poor classification score of
k-NN in Table I. LDA, on the other hand, includes the class
labels to cluster each type of material regardless of concentra-
tion.

The Bayes, k-NN, and the SVM classification algorithms
are applied to quantify the performance of the DR methods on
the referenced and non-referenced spectra, respectively. The
classification scores is given in Table I. At first glance, we
see that the classification scores of the referenced and non-
referenced are astonishingly similar for all three classifiers.
This clearly indicates that THz reflection spectra can be accu-
rately classified without deconvolution by an precise reference
measurement. Furthermore, it is clear from the exceptional
agreement of the train and the test scores that our algorithms
generalize very well. Among the three classifiers, the perfor-
mance of the 384-NN classifier is inferior. Particularly, for the
PCA-processed data with classification scores around 70%.
This is related to our choice of k equal to the total number
of observations within each class, that was intended to verify
the inter-class grouping. As expected, LDA exhibits supe-
rior performance due to the clustering of the data contrary to
the splitting in case of PCA evident from Fig. 4. Finally, it
is worth noting the identical, almost perfect performance of
the Bayes classifier and the SVM. We shall, however, bear in
mind that SVM is the most computationally complex classi-
fier of the three and requires fine-tuning of the slack variable
through cross-validation. Thus, the performance of the Bayes
classifier is remarkable taking its simplicity into account.

IV. CONCLUSION

In conclusion, we demonstrated that terahertz reflection
spectra do not need to be deconvoluted with a reference spec-
trum to achieve highly accurate classification. The perfor-
mance of the classification algorithms was improved when
the data was preprocessed by LDA compared to PCA. Espe-
cially, LDA secured almost perfect classification (> 99.7%) of
the non-referenced data. This could be of great importance
for real-world applications of terahertz spectroscopy based on
material identification.
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Database of frequency-domain terahertz reflection spectra for  

the DETRIS project 

 

Paweł Piotr Cielecki, Mathias Hedegaard Kristensen and Esben Skovsen 

Department of Materials and Production, Section for Physics and Mechanics, Aalborg University, 

Skjernvej 4A, DK-9220 Aalborg East, Denmark 

 

Hereby, we present a database of frequency-domain terahertz reflection spectra for the project Detection of explosives 

using terahertz radiation at improved standoff-distances (DETRIS) conducted at Aalborg University in collaboration with 

MyDefence and with help from Danish Defence and Danish Ministry of Defence Acquisition and Logistics Organisation, 

and financial support from The Innovation Fund Denmark.  

1.1 Samples 

Terahertz (THz) reflection spectra contained in the database were acquired from solid-state samples in form of truncated 

cylinders with a diameter of 25 mm and weight of 7 g shown in the inset of Fig. 1. The angle of 15° between the back 

and the front surface of the sample was introduced to prevent interference. We selected six compounds with discernible 

spectral features within the investigated THz range. This includes: 

Compound Name in the Database 

4-Aminobenzoic acid PABA 

Galactitol Galactitol 

Hexogen RDX 

L-tartaric acid LTA 

Theophylline Theophylline 

α-Lactose monohydrate Lactose 

 

We mixed each of the materials with a spectrally inert polyethylene (PE) powder, which functions as a binder, at weight 

percentages of the active material of 80%, 50% and 20%, respectively. PE was purchased from Micro Powders, LTA 

from MERCK, and RDX was supplied by the Danish Ministry of Defence Acquisition and Logistics Organisation. The 

remaining materials were purchased from Sigma Aldrich. The mixtures were compressed into samples under the pressure 

of approximately 4 tons using a hydraulic press. Galactitol and LTA were ground into a fine powder using mortar and 

pestle before mixing with PE. Otherwise, the obtained samples were brittle and had a tendency to break during removal 

from the press due to relatively large crystal size of these compounds. The obtained samples were used as is without any 

additional surface treatment like, e.g. polishing. In total, we fabricated 38 samples: Two samples for each material 

composition and two samples made of a pure PE, as summarized in following table:   

 

 

 

 

 

 

 

 

155



Material 
Weight percentage of the active material 

20% 50% 80% 100% 

Galactitol ● ● ● ● ● ●  

Lactose ● ● ● ● ● ●  

L-TA ● ● ● ● ● ●  

PABA ● ● ● ● ● ●  

RDX ● ● ● ● ● ●  

Theophylline ● ● ● ● ● ●  

PE    ● ● 

1.2 Terahertz setup and measurements 

The setup used for THz characterization is based on the commercially available frequency-domain spectrometer TeraScan 

1550 (Toptica Photonics) operating in a coherent detection scheme. The setup was arranged using 1” optics in the 

reflection configuration as shown in Fig. 1. The incidence angle was approx. 11° and the total path length of the THz 

beam was approximately 1 m. We performed all measurements using the parameters listed below: 

 frequency scanning range – 0.09 – 1.19 THz, 

 frequency step – 80 MHz, 

 integration time – 3ms. 

After each measurement, a computer-controlled two-axis translation stage with a fixed step of 0.5 mm moved the sample 

to a new (random) position within a 7 x 7 mm scanning area allowing measurements of different spots on the sample. 

 

Fig. 1 Schematic drawing of the THz setup.  

We conducted THz measurements under various experimental conditions divided into three datasets, as described below: 

Datasheet I: Measurements performed under ambient conditions. We measured each sample 80 times in the series of 20 

measurement. A single reference was recorded before each series of measurements. For that purpose, we replaced 

the sample with an aluminum mirror.  
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Datasheet II: Measurements performed under controlled humidity conditions. To this end, a custom-built humidity 

chamber that encloses the THz setup was purged with either dry or water vapor saturated nitrogen to lower or increase 

the humidity, respectively. A custom-built humidity controller opens and closes the nitrogen flow based on the readout 

from a DHT22 sensor, which allowed maintaining the relative humidity inside the chamber within ±0.3 percent points of 

the intended level. To ensure a uniform humidity distribution, a fan was installed next to the nitrogen inlet. We measure 

each sample 20 times at a relative humidity of 90%, 50% and 10%, respectively. Due to a long purging time, we measured 

the samples in groups of two and, at each relative humidity, we recorded a single reference measurement intended for 

both samples.  

Datasheet III: Measurements performed under ambient conditions through various barrier materials described in the table 

below. The barrier was placed in a rotating holder with a clearance of ~10 cm by 6 cm located approximately 3.7 cm in 

front of the sample. In this configuration, the barrier blocks both the incoming and reflected THz beam, as it would be 

the case in real-world applications. Due to the large number of investigated barriers, these measurements were performed 

only on samples with the highest concentration of active material (80%) and PE samples. For each barrier material, we 

measured each of the considered samples 20 times. Each such measurement series was preceded by a reference 

measurement. The barrier was kept parallel to the sample surface for the first six measurements in the series. For 

the remaining measurements, a stepper motor coupled to the barrier holder rotated the barrier (around z-axis) by a fixed 

step in the range of approx. −32° to 32°.  

Name of the barrier Description 

BubbleFoil Two layers of packaging ‘bubble foil’ 

Cotton Plain 100% cotton fabric obtained from a T-shirt 

Duct Plastic shopping bag (the same as in PlasticBag) with a single layer of a 0.23 mm thick duct 

tape (3M, Duct Tape 3939) 

LDPE Low-density polyethylene packaging foam with a thickness of approx. 5.3 mm 

Paper A sheet of office paper 

PaperBag Shopping bag made of recycled paper 

PET Polyethylene terephthalate (PET) obtained from a plastic bottle 

PlasticBag Plastic shopping bag made of low-density polyethylene 

Polyamide A plain fabric made of 96% polyamide and 4% elastane obtained from a T-shirt 

Polystyrene polystyrene sheets with thickness of approx. 4.5 mm and approx. 6.5 mm were used 

interchangeably 

1.3 Database structure and file details 

The database consists of raw .txt files obtained from a frequency-domain THz spectrometer. The files contain three tab-

delimitated columns. The first column represents a set frequency expressed in GHz. The second column contains the 

values of the measured photocurrent in nA. The third column contains the actual frequency given in GHz. The set 

frequency represents an expected frequency value and may differ from the actual frequency. Therefore, it is recommended 

to use the actual frequency (𝑣) listed in the third column. For more information, we refer to Toptica’s manual for TeraScan 

1550 system.  

The database contains 8467 files (8118 measurements and 349 references) arranged into three datasets described earlier. 

Dataset I contains 3190 files (3038 measurements and 152 references) categorized by the active material and in the next 

directory level by material concentration. As with all the datasets, the reference files are always in the same folder as the 

corresponding measurement files. Noteworthy, there are 160 measurements for each material composition except of 

Lactose80 and PABA80. For these material compositions, only 159 have been performed due to a processing error. 

Dataset II consists of 2337 files (2280 measurements and 57 references). As with Dataset I, the files are arranged by the 

active material in the first directory level and by material concentration in the second. Finally, Dataset III contains 2.940 

files (2800 measurements and 140 references) arranged by the barrier material.  
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The measurement files in the database are named according to the following scheme: 

2020_07_17⏞        
𝑑𝑎𝑡𝑒 

_ Theophylline80⏟          
𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑒𝑡𝑎𝑖𝑙𝑠 

_ BubbleFoil⏞      
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

_ 0023⏟  
𝑛𝑢𝑚𝑏𝑒𝑟

. txt                         (1) 

The filename starts with the date of the measurement followed by sample details, experimental conditions, and ends with 

the measurement’s number. The date is in the format of YYYY_MM_DD. Sample details consist of two parts: The name 

of the active material and a numeric value corresponding to its weight percentage in the sample. For samples made of 

pure PE, which do not contain any active material, the second part of sample details is omitted. In this case, sample details 

are only ‘PE’. Experimental conditions describe either relative humidity given in form of ‘RHxx’, where xx is the 

percentage value of the relative humidity (this applies to Dataset II) or a name of the barrier material used in the 

measurement (this applies to Dataset III). For Dataset I, which contains measurements under ambient conditions and 

without any barrier materials, the experimental conditions field is not used. Since we performed multiple measurements 

of each sample at a given set of experimental conditions, similar measurements were given consecutive numbers. 

The number has form of four digits padded with zeros before the value. Hence, the sample measurement filename from 

(1) corresponds to the 23rd measurement recorded on the sample with 80% weight percentage of Theophylline through 

BubbleFoil. 

The reference files are named in a similar fashion: 

2020_07_17⏞        
𝑑𝑎𝑡𝑒 

_reference_for_ Theophylline80⏟          
𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑒𝑡𝑎𝑖𝑙𝑠 

_ BubbleFoil⏞      
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

_ 0021 − 0040⏟        
𝑟𝑎𝑛𝑔𝑒

. txt                            (2) 

At the beginning of the filename, the date when the reference was recorded is given followed by ‘reference_for’. 

Subsequently, there is information about the measurement files, which the reference is intended for. This includes sample 

details, experimental conditions, and the range of measurements’ numbers, which are analogous to the parts of 

measurement filenames. Sample details is the name of the active material and its weight percentage in the sample. For 

the measurements from Dataset III, experimental conditions correspond to the applied barrier material used, while for 

measurements from the Dataset I, this field is unused. Because we intended to use references and measurements recorded 

at different humidity levels with each other, reference files in Dataset II are named differently. We did not state the 

relative humidity during sample measurements in the experimental conditions field as the reference is not limited for use 

with measurements performed at a single relative humidity. Instead, we specified the relative humidity level during 

recording the reference. To this end, we replaced ‘reference_for’ with ‘reference_RHxx_for’, where xx is the percentage 

value of the relative humidity. Based on the above description, the sample reference filename from (2) is intended for 

measurements 21 to 40 performed on the sample containing 80% weight percentage of Theophylline with a BubbleFoil 

used as a barrier material. This includes the measurement with name (1).  

1.4 Data processing and MATLAB repository 

Due to characteristics of the coherent detection scheme, the measured photocurrent depends both on the amplitude of the 

THz electric field (𝐸𝑇𝐻𝑧) and the phase shift (∆𝜑) between the THz wave and the laser beat signal via 

𝐼𝑝ℎ  ∝  𝐸𝑇𝐻𝑧 cos(∆𝜑 =  2𝜋∆𝐿𝑣/𝑐). The phase difference depends on the THz frequency (𝑣) and the optical path 

difference ∆𝐿 = 𝐿𝑇𝐻𝑧 + 𝐿𝐸 − 𝐿𝑅, where  𝐿𝑇𝐻𝑧 is THz beam path, and  𝐿𝐸 and 𝐿𝑅 are optical beat paths to emitter and 

receiver, respectively. To obtain the THz spectrum, 𝐸𝑇𝐻𝑧(𝑣), it is necessary to extract the amplitude of the detected THz 

signal from the interference pattern (also known as fringes) in the frequency scan [1–3]. A common approach is to find 

the fringe extrema, where the THz amplitude is directly proportional to the absolute value of the photocurrent (∆𝜑 is a 

multiple of π), and neglect the remaining data points. Consequently, the effective spectral resolution of the measurement 

is determined by the spacing between adjacent extrema, which in our case was around 0.9 GHz. Instead of analyzing the 

extrema separately, we calculated the THz amplitude and corresponding THz frequency based on the information 

contained in two adjacent extrema (maximum and minimum). This approach should compensate for a possible offset in 

the photocurrent. The obtained data points were then interpolated onto integer GHz frequencies to compensate for spectral 

shifts of the fringes. As the low frequency regime exhibited no material-related spectral features and was dominated by 

standing wave patterns, we cropped the spectra to range from 0.3 to 1.17 THz. All data processing was performed in 

MATLAB (version 2020b).  

We saved the processed data together with the raw data in the .mat file named Main. There are two variables in the Main 

file: The structure array named Database and a vector named Frequency. The Database contains both raw and processed 

data from the THz measurements. Each row of the array corresponds to a single .txt file (either measurement or reference). 

The Database structure have the following fields: 
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Name of the field Description 

'FileName' The name of the corresponding .txt file 

'Folder' Path to the folder containing the .txt file 

'Frequency_raw' Actual frequency, which corresponds to the third column in the .txt file (raw data) 

'Photocurrent' Measured photocurrent, which corresponds to the second column in the .txt file (raw 

data) 

'E_THz' Amplitude of the THz electric field extracted from the measured photocurrent 

(processed data) 

'Reference' The field indicates whether the file is a reference or the measurement. For reference this 

field is ‘true’ 

'Dataset' Indicates the dataset to which the file belongs, ∈{1, 2, 3} 

 

The Frequency vector contains discrete frequencies (GHz) onto which the electric field amplitude THz has been 

interpolated. This vector is common for all the data. In order to obtain THz spectra one should plot E_THz of 

the considered measurement or reference versus the Frequency vector. 

1.5 Contact information  

In case of any questions related to the database, please contact us: 

Paweł Piotr Cielecki  pawel.cielecki@yahoo.com 

Esben Skovsen   es@mp.aau.dk 
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Known issues: 

 PABA20 measurements 101-160 in the Dataset I, the date in the filename is 2019_08_21 while it should be 

2019_08_22 
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ABSTRACT

In this paper, we study terahertz generation through optical rectification in reflection at normal incidence in a dielectric nonlinear crystal.
We first analyze, with a nonlinear optical model, the sample parameters (thickness, absorption at both laser and terahertz wavelengths, etc.)
for which a terahertz optical rectification reflection scheme is preferable to the common transmission scheme. Then, we report our experi-
mental observations of a reflected terahertz signal generated at the surface of a ZnTe crystal. The reflected terahertz signal shares all the
characteristics of a signal generated in transmission but is not limited by absorption losses in the crystal, thereby providing a broader band-
width. At high pump laser power, the signal exhibits saturation, which is caused by the decrease of the nonlinear susceptibility due to photo-
carriers generated by two-photon absorption. This reflection scheme could be of great importance for terahertz microscopy of opaque
materials like, e.g., humid samples or samples exhibiting strong absorption bands or to study samples for which the transmitted signal
cannot be recorded.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0144433

I. INTRODUCTION

Optical rectification (OR) is an elegant way to produce tera-
hertz (THz) pulses by irradiating a dielectric nonlinear crystal with
femtosecond laser pulses. Because of the almost instantaneous
polarization of the crystal atoms or molecules, broadband THz
pulses may be generated.1 Moreover, very intense THz peak power
can be delivered.2 Actually, OR corresponds to the difference of fre-
quencies between all the spectral components of the ultra-short
laser pulse. In fact, difference-frequency generation was the first
opto-electronic technique used to generate far-infrared beams.3–5

Here, difference-frequency generation is named OR because the
generated THz frequencies are much smaller than the exciting laser
frequency. Usually, generation of THz waves through OR in a
crystal is performed in transmission, because the generated THz
field magnitude increases linearly with the crystal thickness if
phase-matching between the incident laser beam and the generated
THz beam is realized. Recently, Sotome et al.6 employed OR in

transmission to obtain THz images of ferroelectric samples, where
the laser beam was scanned over the sample, and each irradiated
point of the sample generated a THz signal whose magnitude was
related to both the crystallinity and nonlinearity of the sample.
More recently, some of us used the same technique to get THz
images of a caster sugar grain with a sub-wavelength resolution.7

We named this technique Optical Rectification Terahertz Imaging
(ORTI). Then, by improving our setup, we published an ORTI
image of the domains of a periodically poled KTP crystal with a
lateral resolution of λ=200.8 A next progress toward ORTI of actual
samples will be to record images in reflection. It will allow one to
characterize opaque or bulky samples or samples whose rear face is
rough.

Generation of THz pulses through OR in reflection has only
been studied to a lesser extent. In 2005, Reid et al.9 have reported
OR THz generation from a semi-conductor recorded in reflection
at 45� incidence. They pumped an InAs sample below its bandgap
at 800 nm and by a proper polarimetric study of both THz
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generation and second-harmonic generation (SHG), they were able
to discriminate the respective contributions of the bound and free
photo-excited electrons. Moreover, they demonstrated the different
contributions of both bulk and surface regions of the sample, this
difference arising thanks to the surface electric-field. The effect is
strong in narrow bandgap semiconductors like InAs, but insignifi-
cant in larger bandgap materials, like GaAs. Later in 2007, Zinov’ev
et al.10,11 and Bakunov et al.12,13 developed theoretical models of
THz generation through OR including a field generated in the
backward direction (reflection). Zinov’ev et al. presented a thor-
ough description of all the THz pulses generated when an optical
pulse propagates through a slab of nonlinear material. Their theo-
retical calculations clarify that the THz radiation is generated at the
surfaces due to the instantaneous creation and acceleration of
polarization charge at the front surface and subsequent deceleration
and extinction at the back surface. They supported their theory by
experiments measured in transmission. Bakunov et al. extended the
usual Fresnel formulas for transmission and reflection of free-
propagating electromagnetic pulses to forced pulses generated in a
nonlinear crystal and showed that the free and forced waves obey
different boundary conditions at the crystal surfaces.12 In the
second paper,13 they expanded their model to include the focusing
of the pump beam and calculate the Cherenkov angular spreading
of the generated THz waves. Later on, Hargreaves et al.14 published
a detailed modeling on THz OR generation vs the crystal orienta-
tion in view of clearly discriminating OR and photo-induced
current transient contributions. Finally, Schneider15 performed a
complete analysis of the THz pulses generated in a nonlinear slab
considering dispersion, absorption of both optical and terahertz
waves, and multiple reflections. Furthermore, OR THz generation
in reflection has been performed when dealing with opaque materi-
als like metals.16

In most of these publications, the research was focused on the
theoretical description of the OR THz generation. When experi-
mental results were reported, they were performed either in trans-
mission11,17 or under oblique incidence.9,16 From a practical point
of view when dealing with applications like ORTI, THz OR genera-
tion in reflection under normal incidence is preferable. The goal of
this paper is not to propose a highly efficient scheme for high
power THz generation but to show that OR in reflection can be
used to study the THz response of samples. Moreover, generation
in reflection is the only available OR technique when samples are
absorbing and too thick, or if their rear face does not allow a good
transmission of the THz beam (rough surface, surface covered with
opaque films like metallic ones, etc.). In particular, we will (1) eval-
uate for which samples OR in reflection supplies stronger signals
than OR in transmission and, thus, should be preferred and (2)
experimentally demonstrate THz OR generation in reflection under
normal incidence. This study is performed with ZnTe as a dielectric
nonlinear crystal.

II. MODELING

Let us recall some basic expressions of OR generated THz
fields. We will deal only with the case of normal incidence. The
laboratory reference frame is xyzð Þ and the laser beam propagates
normally to the crystal surface along the z-direction. We suppose

that the irradiating laser beam is a plane wave with two spectral
components at ω and ωþ Ω (ω and Ω are, respectively, the optical
and THz angular frequencies). The plane wave is a good approxi-
mation when the laser beam is not strongly focused onto the
sample, i.e., the laser Rayleigh length is larger than the crystal
thickness d. We choose the following notation for the electrical
field of this plane wave in air:

~Eo,ω z, tð Þ ¼~Eo,ω zð Þe�jωt ¼ ~Eo,ω e
jko,ωze�jωt : (1)

Here, ~ko,ω ¼ ω
c~uz is the incident wave vector (c is the velocity of

light in vacuum and ~uz is the unit vector along direction z). We
neglect the anisotropy of the crystal. Inside the crystal, the laser
field is

~Eω zð Þ ¼ ~Eω e
j~kωz ¼ ~tω~Eo,ω e

j~kωz , (2)

with wavevector ~~kω ¼ ω
c ~nω~uz and transmission coefficient ~tω at the

crystal surface (we employ a tilde to indicate complex values except
for complex fields). Here, ~nω ¼ nω þ jκω is the complex refractive
index of the crystal at the laser frequency. The THz wave at fre-
quency Ω is generated through OR, i.e., a second order nonlinear
effect. The related nonlinear polarization is

~PNL
Ω zð Þ ¼ εo ~χ

$
2ð Þ :~EωþΩ zð Þ �~E*

ω zð Þ, (3)

where εo is the permittivity of vacuum, ~χ
$

2ð Þ is the nonlinear OR
tensor, and the asterisk denotes the complex conjugate. The nonlin-
ear Helmholtz propagation equation for the THz field~EΩ is

∇2~EΩ(z)þΩ2

c2
~εΩ~EΩ zð Þ ¼ �Ω2

c2
~χ
$

2ð Þ :~EωþΩ zð Þ �~E*
ω zð Þ: (4)

In order to derive the THz fields reflected and transmitted outside
the crystal, we neglect the rebounds of the laser and THz pulses
inside the crystal. We then substitute the laser field in Eq. (4) with
the expression from Eq. (2), and thus, the nonlinear term is written
as follows:

~χ
$

(2):~EωþΩ(z) �~E*
ω(z) ¼ ~χ

$
(2):~EωþΩ �~Eωe j ~kωþΩ�~k

*
ω

� �
z: (5)

The wave vector difference

~kωþΩ � ~k
*
ω ¼ ωþ Ω

c
nωþΩ � ω

c
nω þ j

ω

c
1þΩ

ω

� �
κωþΩ þ κω

� �
,

(6)

simplifies as

Δ~k ¼ ~kωþΩ � ~k
*
ω � Ω

c
nG,ω þ jαω ;

Ω

c
~nG,ω, (7)

assuming Ω � ω and using the group index nG,ω ¼ nω þ ω @nω
@ω . In

Eq. (7), αω ¼ 2ω
c κω is the coefficient of absorption at the laser
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wavelength. It follows that

~nG,ω ; nG,ω þ j
c
2ω

αG,ω ) αG,ω ¼ 2ω
Ω

αω: (8)

Solving the boundary equations at the surface (z ¼ 0) within this
hypothesis, the reflected THz field is given by

~ER,Ω zð Þ ¼ � ~χ
$

2ð Þ :~EωþΩ �~E*
ω

~nΩ þ 1ð Þ ~nG,ω þ ~nΩð Þ e
�jkR,Ωz: (9)

Here, ~nΩ is the refractive index at the THz frequency and
kR,Ω ¼ Ω=c. When dealing with ultrashort laser pulses, expression
(9) must be integrated over the whole laser pulse spectrum [see, for
example, Eqs. (7) and (20) in the paper by Schneider et al.17]. This
is compulsory when one desires to determine the upper spectral
limit of the generated THz signal or to fit the experimental spectra.
Let us notice that in Eq. (9),

~nG,ω þ ~nΩ ¼ nG,ω þ nΩ þ j
c
2Ω

2αω þ αΩð Þ, (10)

which is deduced from Eq. (7). As expected, the reflected field does
not depend on the crystal thickness and exists even if the crystal
thickness tends toward zero: The generation in reflection is a pure
surface effect. The reflected field magnitude depends on the crystal
nonlinearity and only slowly on the crystal refractive index.
Therefore, the reflected THz signal exhibits all the spectral features
related to the linear and nonlinear properties of the crystal at both
laser and THz frequencies. In particular, phonon resonances at
THz frequencies should be clearly observed in the reflected THz
spectrum. Figure 1(a) shows the magnitude normalized to the non-
linear source, i.e.,

~ER,Ω= ~χ
$

2ð Þ :~EωþΩ �~E*
ω

����
���� ¼ ~nΩ þ 1ð Þ ~nG,ω þ ~nΩð Þ

����
�����1

,

for λ ¼ 2πc=ω ¼ 800 nm, f ¼ 1 THz, nG,ω ¼ 2:5, and nΩ ¼ 3 vs
the absorption coefficients αG,ω and αΩ. We see that the reflected
field magnitude is almost constant up to αω � 106 cm�1 and
αΩ � 103 cm�1 (the yellow plateau), whereupon it decreases
strongly and becomes zero. We can conclude that for most of mate-
rials, even if they exhibit a rather large absorption at both laser and
THz wavelengths, the reflected THz field does not depend so much
on the loss. It vanishes only for materials that are practically
opaque.

Let us now treat the transmitted THz field. At a distance z
inside the crystal, the field is the sum of the propagating free and
forced waves,

~EΩ zð Þ ¼ ~χ
$

2ð Þ :~EωþΩ �~E*
ω

~n2G,ω � ~n2Ω
e jΔ

~kz � ~nG,ω þ 1
~nΩ þ 1

e j
~kΩz

� �
, (11)

with ~kΩ ¼ Ω
c ~nΩ. The field transmitted at the exit face of the crystal

(z . d) must be multiplied by the THz transmission coefficient ~tΩ,

~ET,Ω zð Þ ¼~EΩ dð Þ~tΩe jkR,Ω z�dð Þ: (12)

The magnitude of the transmitted field normalized to the nonlinear
source,

~ET,Ω= ~χ
$

2ð Þ :~EωþΩ �~E*
ω

����
���� ¼ 2~nΩ

1þ ~nΩ

2 e jΔ
~kd � ~nG,ωþ1

~nΩþ1 e
j~kΩd

� �
~nΩ þ 1ð Þ ~n2G,ω � ~n2Ω

� �
������

������,
is plotted in Fig. 1(b) using similar parameter values as for the
reflected field and crystal thickness d ¼ 1:52 mm (this is the thick-
ness of the sample studied in the experimental part. It corresponds
to a typical value for a rather efficient and broadband THz OR gen-
eration in transmission). The transmitted THz signal decreases
strongly when the visible and/or THz absorption increase.
Typically, it is almost null when αΩ . 103 cm�1 or αω . 107 cm�1.
Finally, let us compare the magnitudes of the reflected and trans-
mitted THz fields,

~ER,Ω
~ET,Ω

����
���� ¼ ~nΩ þ 1ð Þ ~nG,ω � ~nΩð Þ

4~nΩ e jΔ~kd � ~nG,ωþ1
~nΩþ1 e

j~kΩd
� �

������
������: (13)

The ratio is independent on the crystal nonlinearity and, thus, on
the polarization of the laser and THz beams. For weak visible and
THz absorption, the transmitted THz signal is much stronger than
the reflected signal due to cumulative generation throughout the
crystal. At higher absorption, laser and/or THz beams no longer
propagate inside the crystal. This appears clearly on the contour
maps plotted in Fig. 1(c) for d ¼ 0:1 mm, Fig. 1(d) for
d ¼ 1:52 mm, and Fig. 1(e) for d ¼ 1 cm. The red line represents
the unity ratio. For the d ¼ 1:52 mm sample, the red line limit
occurs at αΩ � 103 cm�1 for crystals with an absorption αω at the
laser frequency less than �103 cm�1. For large absorption values at
the laser frequency, the reflected signal is of course stronger than
the transmitted one at an absorption weaker than for thinner
samples. In conclusion, for most of the common materials with
standard thicknesses, THz generation by OR in transmission is
more efficient than in reflection, and hence, the reflection tech-
nique is practically useful only if the sample or the experimental
geometry does not allow to measure the transmitted signal. This is
the case for samples whose exit face is rough or covered by a metal-
lic film. For absorption values beyond this red contour, i.e., for
materials like water18 or carbon-fiber composites19

(αΩ � 1000 cm�1), the reflected signal is stronger than the trans-
mitted signal. However, we must keep in mind that its magnitude
is very weak, even if stronger than the transmitted one. The differ-
ence between the reflected and transmitted signals is emphasized
when plotting the field magnitudes vs the difference nG,ω � nΩ.
Figure 2(a) shows the transmitted and reflected THz fields vs
nG,ω � nΩ for nG,ω ¼ 3 and f ¼ 1 THz. We assume that the crystal
is d ¼ 1:52 mm thick and transparent at the laser wavelength
(λ ¼ 800 nm). The transmitted field is plotted for different values
of the THz absorption. Because the reflected field depends weakly
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on the THz absorption, we plot it only for αΩ ¼ 0 cm�1. The
phase-matching oscillations in transmission are clearly seen when
the THz absorption is null, while the much weaker reflection curve
does not show any phase-matching feature. Typically, at 1 THz
with nΩ ¼ 3:2, nG,ω ¼ 3:16, and d ¼ 1:52 mm, one obtains
ER=ET ¼ 1=90. With increasing THz absorption, the transmitted
THz signal decreases and its oscillations are attenuated. However,
when the sample is almost opaque to THz waves (αΩ ¼ 1000 cm�1,
like water18 or carbon-fiber composites19), the phase-matching
maximum is erased and the transmitted field is comparable to the
reflected field. Figure 2(b) presents similar curves but calculated for
a given THz absorption (αΩ ¼ 20 cm�1) and different crystal thick-
nesses. Because of the phase-matching phenomenon, the transmit-
ted curves show oscillations whose pseudo-periodicity is shorter
with thinner crystals. Here, the effect of THz absorption is com-
pensated by increasing the crystal thickness when phase-matching
is realized. Thus, as before [Fig. 2(a)], the transmitted field is stron-
ger than the reflected one by 1–2 orders of magnitude when phase-
matching is realized.

Hence, it appears that, even for transparent crystals and
without achieving phase-matching, the signal generated in reflec-
tion is much smaller than the one in transmission. Therefore, OR
performed in reflection is not a technique that produces high
power THz pulses. It should be used when studying materials that
are opaque or scatter in the THz range, or whose rear face is rough,
or covered by nontransparent or diffracting layers. Also, it could be
of interest when a reflection scheme is easier to implement than a
transmission one, for example, in microscopy. In all other cases, a
transmission arrangement is more efficient.

Let us now address the error on the transmitted THz field
made when the reflected THz is omitted. Instead of expression
(11), one gets

~Eapprox
Ω dð Þ ¼ ~χ

$
2ð Þ :~EωþΩ �~E*

ω

~n
2

G,ω � ~n
2

Ω

e jΔ
~kd � e j

~kΩd
� �

: (14)

FIG. 1. Maps of the THz field magnitudes generated in reflection (a) and transmission (b) normalized to the nonlinear source using λ ¼ 2πc=ω ¼ 800 nm, f ¼ 1 THz,
nG,ω ¼ 2:5, nΩ ¼ 3, and d ¼ 1:52 mm, vs the optical and THz absorption coefficients. The contour map of the ratio [Eq. (13)] is plotted in the case of phase-matching
(nG,ω ¼ nΩ ¼ 3) for d ¼ 0:1 mm (c), d ¼ 1:52 mm (d), and d ¼ 10 mm (e). The red lines indicate the unity ratio.
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The relative error writes

~Eapprox
Ω dð Þ �~EΩ dð Þ

~EΩ dð Þ ¼ ~nG,ω � ~nΩ

1þ ~nΩð Þe j Δ~k�~kΩð Þd � 1� ~nG,ω
: (15)

Typically, this error is almost constant with ~nΩ � ~nG,ω, but it
depends strongly on the crystal thickness d. For a transparent
crystal, and at 1 THz, the error is much less than 1% for d larger
than 1 mm, and thus, it could be neglected. But, it increases to
�7% for d ¼ 100 μm and up to �30% for d ¼ 10 μm. In such
very thin crystals, used to generate very broadband THz signals,20

generation in transmission is weak because the crystal thickness is
small. Thus, the amplitudes of the reflected and transmitted THz
signals become of the same order of magnitude. Therefore, the
reflected field can no longer be omitted.

The generated THz fields depend on the nonlinear source
term ~χ

$
2ð Þ :~EωþΩ �~E*

ω. This nonlinear term has to be calculated in
the crystal frame XYZð Þ, in which the nonlinear tensor ~χ

$
2ð Þ is

known. To switch from the laboratory to the crystal frame, a first
rotation by θ around y is performed followed by a second rotation
by f around z.21 The whole rotation matrix R is

R f, θð Þ ¼
cosf cos θ � sin θ cosf sin θ
sinf cos θ cos θ sinf sin θ
� sin θ 0 cos θ

0
@

1
A: (16)

The nonlinear polarization ~PNL
Ω,XYZ in Eq. (4) is calculated in the

crystal frame using

~Eω,XYZ ¼ R f, θð Þ~Eω,xyz

and then multiplied by the inverse rotation matrix R�1 f, θð Þ to

obtain the expression in the laboratory frame

~PNL
Ω,xyz ¼ R�1 f, θð Þεo ~χ

$
2ð Þ : R f, θð Þ~EωþΩ,xyz

� � � R f, θð Þ~E*
ω,xyz

� �
:

(17)

Expression (17) must be calculated for each crystallographic class
and each orientation of the crystal. In the case of cubic crystals
(432, �43m, 23) addressed here, the nonlinear susceptibility tensor is

~χ
$

(2) ¼
0 0 0 ~χ(2)14 0 0

0 0 0 0 ~χ(2)14 0

0 0 0 0 0 ~χ(2)14

0
B@

1
CA: (18)

For the most common crystal cuts h110i and h111i, the rotation
angles are, respectively,

θ ¼ π

2
, f ¼ π

4
and θ ¼ arccos

1ffiffiffi
3

p
� �

, f ¼ π

4
,

which leads to the following dependence of the THz field on the
laser polarization angle ψ :21

h110i ! ~ER,Ω,~ET,Ω / 1
4

cos 2ψ � 1
�2 sin 2ψ

0

0
@

1
A, (19)

h111i ! ~ER,Ω,~ET,Ω / 1ffiffiffi
6

p
cos 2ψ
� sin 2ψ
�1=

ffiffiffi
2

p

0
@

1
A: (20)

Here, we model the THz OR generation in the framework of
plane waves interaction. However, if strongly focusing the exciting

FIG. 2. Calculated transmitted (continuous lines) and reflected (dashed line) THz field magnitudes vs nG,ω � nΩ. All the curves are normalized to the reflected signal at
nG,ω � nΩ ¼ 0. (a) The sample (d ¼ 1:52 mm) is assumed to be transparent at the laser wavelength and nG,ω ¼ 3. (b) The THz absorption is assumed to be
αΩ ¼ 20 cm�1, and the curves are calculated for different crystal thicknesses, namely, d ¼ 0:1, 0.5, 1, and 10 mm.
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laser beam in view of performing ORTI microscopy, the issue of
focusing the pump laser beam is of utmost importance. Such an
issue is very difficult to address, as both laser and THz beams
encounter diffraction, and the nonlinear process in the crystal is
made complicated because each spatial plane wave component of
the incident laser beam exhibits a E-field polarized in a slightly dif-
ferent direction. A complete modeling taking into account the
finite size of the exciting laser beam has already been treated by
Bakunov et al.:13 When the laser beam is not strongly focused, the
generated THz beam is very similar to a one-dimensional beam
(plane wave-like of limited radial size). On the other hand, when
the laser spot size at the crystal entrance is smaller than the
involved THz wavelengths, a Cherenkov cone is generated inside
the crystal and both the transmitted and reflected THz beam are
highly diverging outside the crystal: The excited area of the crystal
behaves almost as a THz point-source. In the hypothesis of a
crystal thickness that is smaller than the laser beam Rayleigh
length, Schneider et al.17 came to the same conclusion and gave a
simple analytical expression of the generated THz beam, assuming
the realization of phase-matching and no absorption at both laser
and THz frequencies. THz generation by optical rectification in
transmission, with a sub-wavelength Gaussian-shaped spot source,
has been modeled and measured by Lin and co-workers.22 When
the laser spot size is much smaller than the THz wavelength, the
THz beam is diffracted in nearly all directions from the crystal
independently of the frequency, and it obeys the obliquity factor
law. The main result is a decrease of the signal collected by an
aperture-limited receiving system. Oppositely, for large laser spot
size, the generated THz beam is almost a paraxial Gaussian-like
beam. For intermediate laser spot size, the diffraction effect is more
pronounced for the lower frequency range, making the correspond-
ing signal detected with a weaker efficiency than the high frequency
range. Here, a similar behavior is expected, as only the excited spot
at the sample surface radiates the THz field. In the case of ORTI
microscopy, as-large-as-possible aperture optics must be employed
in front of the receiver in order to collect the maximum of all the
THz reflected light spread in a 2π solid angle. Let us point out that,
even in the case of strong focusing, all the spectral features of the
THz field will be saved.

III. EXPERIMENT

The experimental setup used for THz generation through OR
in reflection (Fig. 3) resembled a THz time-domain spectroscopy
setup. A beam of 100-fs linearly polarized laser pulses at 80MHz
repetition rate was delivered by a Ti:sapphire oscillator
(Spectra-Physics Tsunami, 786 nm center wavelength, and 12.5 nJ
pulse energy). A beam splitter (BS) divided the pulses into a pump
and a probe branch. A half-wave plate (HWP) and a mechanical
chopper in the pump beam controlled the pump polarization and
triggered the lock-in detection, respectively. The pump beam was
focused by a 150-mm focal lens on a 1.52-mm thick h110i-cut
ZnTe crystal at normal incidence through a hole in an off-axis par-
abolic mirror (OAP). At the crystal, the spotsize diameter was
37 μm and the maximum average laser power was approximately
400 mW without the chopper. A neutral density filter (ND) was
used to control the laser power at the crystal. The reflected THz

radiation generated through OR was collected by the same para-
bolic mirror and focused onto a photoconductive antenna (PCA)
by a second OAP. The bow-tie PCA detector (BATOP GmbH) was
oriented such that it was sensitive to vertically polarized THz radia-
tion. Finally, the measurements were done under ambient
conditions.

IV. RESULTS AND DISCUSSION

Figure 4(a) shows two THz pulses separated by Δt � 32:8 ps
(main-peak-to-main-peak). The first THz waveform R was gener-
ated through OR in reflection, while the later waveform T was gen-
erated in transmission and then reflected at the exit surface of the
crystal. The time delay Δt between the two THz waveforms is thus
equal to Δt ¼ 2dnG,Ω=c � 2dnΩ=c. With the crystal thickness
d ¼ 1:52 mm and nΩ ¼ 3:20 measured around 1 THz, we get
Δt ¼ 32:4 ps. Let us examine the magnitudes of the R and T
pulses. Here, the T pulse is not measured in transmission but is
reflected by the exit face of the crystal toward the detector. The
great advantage of this scheme over the common transmission one
is that both the R and T pulses are excited by the same laser pulse
and are measured by the same detector and the same receiving
electronics. Therefore, any error due to a difference in sensitivity of
a double separated detection (one in reflection and one in trans-
mission) is avoided. Moreover, we took a great care in the align-
ment of the sample in the THz beam, in such a way the T pulse is
directed exactly in the same direction as the reflected one. Laser
beams reflected at the entrance and exit faces of the crystal were
adjusted to superimpose at the detection system, within a precision
better than the laser beam size, i.e., less than 1 mm at a 30-cm dis-
tance from the crystal. The angular precision is thus better than
0.003 rad = 11 arcmin. Let us notice that, generally, crystals are sup-
plied with a parallelism of a few arc min. The ratio of the R and T
pulse can be calculated using Eq. (13). However, the transmitted
THz field must be multiplied by ~rΩe�αΩd=2 to include the back
reflection at the second crystal surface and transmission through
the crystal. With αΩ � 0, we get ER,Ω ET,Ω=j jcalc� 1=47. In the
recorded trace, we unexpectedly find that the THz peak-to-peak

FIG. 3. Illustration of the experimental setup. ND, variable neutral density filter.
BS, beam splitter; HWP, half-wave plate; PCA, photoconductive antenna; OAP,
off-axis parabolic mirror.
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magnitude of waveform R is 7 times stronger compared to wave-
form T. A possible explanation of the weak T pulse is THz absorp-
tion by free carriers generated through a two-photon absorption
(TPA) process. Bose et al.23 measured the photogenerated carrier
lifetime of ZnTe to be τ ZnTe ¼ 25 ns. The pulse period of the Ti:
sapphire oscillator is 12.5 ns. Thus, TPA could lead to a steady-state
free carrier population that may decrease the THz generation
through the crystal and, in turn, absorb the THz radiation reflected
at the exit surface. Using the TPA coefficient β � 5 cm/GW,24

τ ZnTe � 25 ns, and the Drude model to determine the THz absorp-
tion by the mean density of photogenerated carriers, we obtain
αΩ � 80 cm�1. Contrary, if we extract the absorption coefficient
from the measurement using the modified expression (13), we get
αΩ � 77 cm�1 in good agreement with the estimate. As expected,
the measured absorption coefficient is slightly lower compared to
our estimate, since we do not consider the change of THz transmis-
sion/reflection due to the increase of THz absorption.

The THz spectra of waveform R (black) and waveform T
(blue) are plotted in Fig. 4(b). The R spectrum is rather smooth
(excluding water vapor absorption lines), while the T spectrum
exhibits the known sinc function shape with a first zero around
1.5 THz [fcut�off ¼ c=πd(nΩ � nG,ω) � 1:57 THz] and two plateaus
at 0.9 and 2 THz. The T spectrum is evidently narrower than the R
spectrum due to non-perfect phase-matching and exhibits a poor
signal-to-noise ratio because its intensity is degraded by linear and
TPA absorption when propagating backwards in the crystal.
Previously, we hypothesized that the T pulse corresponds to a THz
pulse generated in transmission and reflected at the exit face of the
crystal. Within this hypothesis, the T spectrum is equal to the R
spectrum multiplied by the calculated ratio ET,Ω ER,Ω=j j and by
~rΩe�αΩd=2 to include the reflection and absorption through the
sample. The TPA-induced THz absorption is calculated using a
Drude model with the free carrier density as the only adjustable
variable. We assume that the crystal is transparent in the visible

range. This allows us to get rid of the spectral response of our
setup. The calculated spectrum is plotted as a red curve in
Fig. 4(b). We see that it corresponds nicely to the measured T spec-
trum. The best fit is obtained for a carrier density of
1:19� 1015 cm�3. The photogenerated carrier density can also be
estimated from the laser power used in the measurement. Using
the TPA coefficient β � 5 cm/GW and τ ZnTe � 25 ns, we get a
carrier density of 6:49� 1015 cm�3. This is in fairly good agree-
ment with the above fit as we neglect the TPA effect in the nonlin-
ear propagation equation, which would lead to a higher value of
the carrier density calculated from the T spectrum fit. The recorded
R spectrum spreads up to 2.7 THz, which is the upper limit
(�20 dB) of the Batop bow-tie detector bandwidth. As the reflected
pulse is weakly affected by absorption in the crystal, one may
expect that its actual spectrum is directly proportional to the laser
beam spectral width and could reach some tens of THz with
sub-100 fs laser pulses. However, because of the weak magnitude of
the reflected signal, detection of this latter requires very sensitive
receivers that usually exhibit a long response time, like bolometers.
This could be overcome by performing an interferometric measure-
ment that will supply the autocorrelation trace of the generated
THz pulses.25

The efficiency of the THz generation through OR in reflection
vs pump laser fluence is plotted (circles) in Fig. 5(a) together with
a linear fit (dotted) and a TPA-induced saturation fit (red). At
weak pump laser fluence, the efficiency is linear, while
TPA-induced saturation begins at 200 μJ/cm2 in good agreement
with published results on OR in transmission.26 This saturation
effect is explained by the absorption of the THz signal induced by
the TPA photogenerated carriers in the sample. A rigorous analysis
requires solving coupled propagation equations with the TPA
effect. This is a rather tricky task, which is outside the scope of this
paper, as the carrier population dynamics is usually treated in the
time domain, while propagation equations are solved in the

FIG. 4. (a) Waveforms of THz pulses R and T generated through OR in reflection and in transmission, respectively. (b) THz spectra of waveform R (black) and T (blue)
and the calculated T spectra (red). The inset shows the R and T spectra normalized to their peak value, which points out the narrower T spectrum as compared to the R
spectrum (see comments in the text).
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frequency domain (see, for example, the pump-and-probe THz
studies performed by Kužel and co-workers27,28). However, a
simple evaluation of the order of magnitude of the influence of
TPA can be performed as follows. The photocarrier population
modifies both the refractive indices ~nΩ and ~nG,ω / ~nω at THz and
laser frequencies, respectively. Thus, it changes the magnitude of
the reflected THz signal, whose expression is given by Eq. (9). The
variation of the real part of ~nG,ω is due to the Kerr effect, while its
imaginary part is modified by TPA. In ZnTe, the value of the TPA
absorption coefficient is β ¼ 5 cm/GW and the Kerr coefficient is
n2 � 5� 10�18 m2/W.29 In the present experiment, the maximum
laser intensity is Iω(max ) � 5:5 GW/cm2, therefore, the photoin-
duced variation of ~nG,ω is Δnω � 2:5� 10�4 and Δκω � 2� 10�4.
We conclude that the variation of ~nω is too small to explain the sat-
uration of the reflected THz field. Let us now address the variation
of ~nΩ. To take into account the influence of the TPA photocarrier
population, we use the Drude model

~εΩ ¼ ε1 � ω2
p

ω(ωþ jΓ)
¼ (nΩ þ jκΩ)

2, ω2
p ¼

NTPAe2

meffεo
: (21)

Here, NTPA is the TPA photocarrier density, meff is the effective
mass of the free electrons, Γ is the damping angular frequency, and
e is the charge of electron. As already explained, we do not take
into account the dynamics of NTPA, but we simply take an averaged
value in time and over the sample thickness. The absorbed laser
intensity due to the TPA effect is

ΔIω ¼ Iω 1� e�βIωd
� �

: (22)

The number of absorbed photons per laser pulse is

Npulse ¼ ΔIω
τ laser
�hω

S, (23)

with laser pulse duration τ laser, the reduced Planck constant ℏ, and
laser spot size S. The TPA-induced photocarrier density is given by

NTPA ¼ η
Npulse

Sd
: (24)

The coefficient η (not calculated here) renders for the dynamics of
the photocarrier population (carrier lifetime, diffusion inside the
sample, etc.). We performed the calculation using ZnTe parameters
determined by Constable and Lewis:30 meff ¼ 0:151�me,
ε1 ¼ 7:3, and Γ ¼ 0:3 THz. The TPA induces both an increase of
absorption and a decrease of the refractive index at THz frequen-
cies. However, the effect of the refractive index decrease is stronger
in Eq. (9), leading to a small increase of the reflected signal vs the
laser intensity. Thus, this can neither explain the observed satura-
tion effect. The only possible reason left for this saturation is the
dependence of the nonlinear susceptibility on the carrier density.
In a classical model for nonlinear susceptibility,31,32 the magnitude

of the nonlinear susceptibility ~χ
$

(2) is proportional to the magni-
tudes of the linear susceptibilities at ω and Ω, i.e.,

~χ
$

(2)

����
����/ ~χ

$
(1)
ω

� �2
~χ
$

(1)
Ω

�����
����� ¼ ~εω � 1ð Þ2 ~εΩ � 1ð Þ�� ��
¼ nω þ jκωð Þ2 � 1

� �2
nΩ þ jκΩð Þ2 � 1

� ���� ���:
(25)

We calculated the term ~χ
$

(2)

����
����Iω of Eq. (9) using the above-

described Drude model and the ZnTe parameters by Constable and
Lewis.30 The normalized calculated curve is plotted as a continuous
red curve in Fig. 5. We can see the good agreement with our exper-
imental data. The only adjustable parameter is the coefficient η,

FIG. 5. (a) Measured R pulse amplitude vs laser peak fluence (circles). The dotted straight line is a linear fit while the continuous red curve is calculated taking account
TPA as explained in the manuscript. (b) Polarimetric measurements of the R pulse (circles) fitted with the model (red).
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whose best fitting value is η ¼ 0:259. This means that just about a
quarter of the photoexcited carriers interact with the THz pulse.
The reason could be that they both recombine and diffuse inside
the sample (Dember effect, both longitudinal and transversal33,34)
in between two successive laser pulses. Of course, this crude model
and the related explanations must be validated by a complete rigor-
ous analysis. Nevertheless, the variation of the nonlinear suscepti-
bility appears to be a prevailing phenomenon when dealing with
OR THz generation in a crystal exhibiting a strong TPA effect.

Finally, we perform a polarimetric study of the R pulse. The
angle of the linear polarized pump beam ψ ¼ 2ψHWP is scanned
360� by adjusting the half-wave plate angle ψHWP in 5� increments.
The bow-tie detector is not strictly sensitive to a single polarization
due to its antenna geometry. Therefore, we must fit a weighted
expression

(1� γ)ER,Ω,x þ γER,Ω,y (26)

of the field components given in Eq. (19) to the data. Additionally,
the fit takes into account an angular shift δψ due to disorientation
of the crystal axes compared to the laboratory frame. Inspecting
Fig. 5(b), we see an excellent agreement of the recorded THz peak
magnitude (circles) and our fitted model (red, δψ ¼ 66:5�,
γ ¼ 0:34). This value of γ corresponds to a 10% sensitivity of the
antenna to the cross polarization, which is within the specifications
given by Batop GmbH. Thus, the reflected THz signal contains
information of the crystalline orientation of the sample.

V. CONCLUSION

In conclusion, we experimentally demonstrated the generation
of a reflected THz signal at normal incidence through OR in a
ZnTe crystal. The reflected signal originates in the boundary condi-
tions for the nonlinear fields at the crystal surface. All the charac-
teristics of THz OR generation in the crystal (polarization
symmetry, spectral features, etc.) are retrieved in the reflected
signal. Its bandwidth is wider than in transmission because it is not
limited by absorption losses in the crystal. At high laser power exci-
tation, the reflected THz signal from ZnTe saturates. It seems that
its origin is the effect of TPA, which reduces the magnitude of the
second order nonlinear susceptibility. However, for crystals of
common mm-thickness that are transparent or exhibit moderate
absorption in both the THz and visible domains, the THz reflection
magnitude is much smaller than the one in transmission. When
dealing with crystals that are opaque in one or both of these spec-
tral domains, or whose rear surface is rough or covered by opaque
films like metals, the reflected THz signal is of great interest since
the transmitted THz signal is weak or even zero. This could be
applied to THz microscopy of opaque materials like humid biologi-
cal samples, e.g., when performing sub-wavelength OR THz
imaging.7,8
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A B S T R A C T

In this communication we demonstrate a new characterization technique combining Fourier transform (FT)
spectroscopy and second harmonic generation (SHG) that enables high spectral resolution with broadband
femtosecond laser pulses. The strong and narrow exciton resonances of the wide band gap semiconductor ZnO
were chosen for demonstrating the capabilities of the method. FT-SHG offers high reproducibility and high
spectral resolution within the bandwidth of the input pulse.

1. Introduction

During the last decades second-order nonlinear optical (NLO) pro-
cesses have become essential tools within studies of semiconductor
materials [1–3]. Second-order NLO processes have different selection
rules from linear optics. This has led to a wealth of applications,
where valuable information on inhomogeneous structures, surfaces,
interfaces, and metamaterials has been obtained. Furthermore, the NLO
techniques benefit from being contact-free, applicable for layers buried
in transparent media, and generally non-destructive.

Fourier transform (FT) spectroscopy is a well-established technique
applied in many different fields of science such as nuclear magnetic
resonance (NMR) spectrometry, optical spectroscopy, and terahertz
spectroscopy. [4,5]

One of the inherent advantages of optical FT spectroscopy is the
multiplex nature, i.e. all of the spectral components are measured
simultaneously, known as Fellget’s advantage [6], which increases the
signal-to-noise ratio. This advantage cannot be exploited in the case
of weak NLO signals, since detectors working in the UV range are
dominated by shot noise, which equals the gain in signal-to-noise ratio.
However, the single-shot feature of the technique using broadband fem-
tosecond pulses is still beneficial in terms of scan duration. Connes’ (the
spectral accuracy) advantage [6] may be less well known. Nonetheless,
it is very significant to the FT technique. The spectral sampling intervals
are inversely proportional to the optical sampling intervals, wherefore
the respective errors are directly coupled. The change in optical path
difference can be tracked very precisely using the interference pattern
of monochromatic light of a HeNe laser. By this approach the accu-
racy of the optical sampling intervals is entirely determined by the
precision of the HeNe laser wavelength itself. Thus, FT spectroscopy
measurements have a built-in calibration of the spectral axis giving the

∗ Corresponding authors.
E-mail addresses: math@mp.aau.dk (M.H. Kristensen), es@mp.aau.dk (E. Skovsen).

technique a very high spectral reproducibility. Finally, the FT approach
has the advantage of practically unlimited spectral resolution. This is
due to the fact that the resolution does not rely on the input pulse
characteristics but is entirely determined by the maximum optical path
difference of the interferometer. However, the FT method has primarily
gained ground within infrared (IR) and terahertz spectroscopy. [5–7]
Nevertheless, it has been demonstrated that ultrafast laser spectroscopy
can take advantage of the benefits of the FT technique. This was
accomplished by Bellini et al. by the demonstration of Ramsey spec-
troscopy with femtosecond laser pulses [8] and most recently McGuire
et al. demonstrated IR–visible FT sum-frequency generation (FT-SFG)
with femtosecond laser pulses, where the IR beam is modulated by an
interferometer [9].

During recent years, more and more research groups have replaced
their old nanosecond, picosecond, or 100 fs laser systems with modern
ultrafast laser systems. The light pulses of the modern lasers are typi-
cally sub-40 fs and thus spectrally broader, which limits the achievable
spectral resolution for conventional nonlinear spectroscopy.

In this communication, we present a new NLO technique combining
second harmonic generation (SHG) and FT spectroscopy to circumvent
this limit and give access to high spectral resolution with ultrafast
laser pulses. Broadband femtosecond laser pulses are used to induce
a polarization in a sample, whereupon the recorded interferogram of
the response is Fourier transformed to acquire the spectral content.

An exhaustive theoretical and experimental study of the exciton
resonances of the wide band gap hexagonal semiconductor ZnO in the
range of 3.2–3.5 eV photon energy has previously been carried out by
Lafrentz et al. [10]. Strong crystallographic SHG signals were reported
for parallel p-polarized fundamental and SHG light in transmission
at a sample temperature T of 1.6 K using a nanosecond-pulse-width
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Fig. 1. Illustration of the FT-SHG setup. BS, beam splitter; PMT, photomultiplier. For
details see text.

laser with narrow spectral bandwidth. Several sharp lines were found
in the exciton spectral range from 3.37–3.44 eV. The broadening of
the excitons at temperatures exceeding 20 K was found to be almost
homogeneous and linearly increasing with temperature. The peak in-
tensity and the full width at half maximum (FWHM) of the 𝑋-line and
the 1𝑠𝐿(𝐶) exciton change slower with temperature compared to the
2𝑝𝑥,𝑦(𝐴) states [10]. Regarding our work, the 𝑋-line at 3.407 eV is
pertinent for benchmarking the FT-SHG technique due to its strong and
narrow characteristics.

We find that the exciton peak can be resolved if the FT technique
is applied. Furthermore, the width of the exciton peak is found to be
three times smaller using the FT technique in comparison to regular
SHG experiments using 100-fs laser pulses.

2. Experimental methods and materials

The FT-SHG setup is illustrated in Fig. 1. A beam of laser pulses
(725 nm center wavelength, 10 nm FWHM , ∼100 fs pulse width,
600 mW average power, and 80 MHz repetition rate) generated by
a Ti:sapphire Tsunami femtosecond laser from Spectra-Physics, was
sent through a home-built Michelson interferometer. A specially de-
signed dielectric 50/50 beam splitter from Femto Optics obviates the
need of an additional compensation plate, since each surface has a
coated and uncoated section. The optical delay was established by a
N-565 PiezoWalk linear stage and the appertaining E-861 controller
from Physik Instrumente (PI). The N-565 stage utilizes an optical
nanometrology encoder to ensure a stable, smooth, and precise linear
translation of suitable length (13 mm travel range, 3 nm minimum
incremental motion, and 0.5 nm resolution). Additionally, the interfer-
ometric encoder ensures the reproducibility of the spectral axis through
Connes’ advantage. The field leaving the Michelson interferometer, EM,
was a superposition of two short pulses separated in time. Next, the
beam was incident at 45◦ upon the sample mounted in a cryostat at a
temperature of approx. 60 K. Prior to the sample, a long pass filter was
inserted to block any previously generated SH light. The ZnO sample
was cut from a (1000)-oriented ZnO single crystal and polished into a
5◦ wedge such that the back reflection can be avoided and the reflection
from the first interface can be isolated in order to avoid Maker fringe
effects [11]. The reflected SHG originates from a thin surface layer
with a thickness of the order of the wavelength [12]. The signal is
therefore small compared to the transmitted signal, but there is only a
small effect of the linear absorption on the SH signal. It is thus expected
that the spectra directly demonstrate excitonic resonances near the ZnO
bandgap.

The SH signal generated at the sample was reflected into a photo-
multiplier tube (PMT) with proper band pass filters attached to block
the fundamental and third harmonic, while transmitting the second
harmonic. The signal detected by the PMT was recorded by a Stanford

Fig. 2. SHG interferogram of the wedged ZnO crystal sample.

Research Systems SR400 gated photon counter. The SHG measured in
reflection from a quartz crystal wedge was used to normalize the ZnO
signal. Furthermore, the measurements were carried out for a p-to-p
polarization combination. The signal was recorded by the computer as
the optical delay was varied in a step-scan mode.

The output of the Michelson interferometer EM(𝑡, 𝜏) is the sum of
two replicas of the input fields E(𝑡) + E(𝑡 − 𝜏), where

E(𝑡) = ∫
∞

−∞
Ẽ(𝜔) exp[−𝑖𝜔𝑡] d𝜔, (1)

and Ẽ is the Fourier transform of E(𝑡), and similar for the delayed
replica E(𝑡− 𝜏). Upon incidence on the sample the electric field induces
a nonlinear polarization P(2) = 𝜖0𝜒 (2)E2, where 𝜒 (2) is the nonlinear
susceptibility tensor. Hence, the reflected SHG field can be written as

ESHG(𝜏) ∝ 𝜒 (2)E2M(𝜏) (2)

The SHG signal of a single pulse measured by the photomultiplier is
given by

𝐼SHG(𝜏) ∝ ∫
∞

−∞
|ESHG(𝑡, 𝜏)|2 d𝑡 ∝ ∫

∞

−∞
|𝜒 (2)|2|E2M(𝑡, 𝜏)|2 d𝑡. (3)

For 𝜒 (2) = 1 this is the second order interferometric autocorrelation
of 𝐸(𝑡) and 𝐸(𝑡 − 𝜏). Finally, the spectrum can be achieved by Fourier
transforming the measured SHG signal, i.e.

𝐼SHG(𝜔) = F
(
𝐼SHG(𝜏)

)
∝ |𝜒 (2)(𝜔)|2|Ẽ2M(𝜔)|2 (4)

3. Results and discussion

Fig. 2 shows the SHG interferogram of the ZnO crystal wedge. The
interferogram was recorded by scanning the optical delay by roughly
3.33 ps in 1.67 fs increments integrating for 500 ms. The magnified tail
of the interferogram shown in the inset of Fig. 2 reveals a long-lasting
oscillation, which indicates narrow spectral features in the signal.

Prior to the Fourier transform the recorded interferograms were
baseline corrected and multiplied by an apodization function. Various
apodization functions including triangular, Blackman-Harris, and Han-
ning were tested, however, no pronounced differences were seen in
the region of interest. Therefore, the triangular apodization function
was used onward. Subsequently, the data were zero padded to the
next power of twice its length. Finally, in accordance to common
practice [6], the signal was shifted about the maximum signal to
reference the signal as close to zero phase as possible before being
Fourier transformed.

The Fourier spectrum corresponding to the interferogram shown in
Fig. 2 of the ZnO crystal wedge is seen in Fig. 3. The 3.33 ps optical
delay in 1.67 fs increments transform to a spectral resolution of 1.2 meV
and a 12.4 eV spectral range. However, the Fourier spectrum in Fig. 3

2178



M.H. Kristensen, P.K. Kristensen, K. Pedersen et al. Optics Communications 482 (2021) 126593

Fig. 3. The Fourier spectrum of the SHG interferogram shown in Fig. 2 cropped to 8
eV.

Fig. 4. Zoom-in of the fundamental peak seen in Fig. 3.

has been cropped, since no signal nor aliasing are present above 8 eV.
Distinct peaks of the Fourier intensity in Fig. 3 are seen around 1.71
and 3.42 eV corresponding to the fundamental and SHG energies of
725 nm light, respectively. The fundamental peak is an inherent part of
the Fourier transformed signal even though only the SHG light reached
the detector, while the incident near IR was completely blocked by
filters. This is due to the interferometric nature of the probe signal.
Fig. 4 shows a zoom-in of the fundamental peak. The central energy of
the peak translates to a center wavelength of 725 nm while the FWHM
equals 10 nm, which is in very good agreement with the expected
characteristics of the laser pulses.

The interference signal has modulation components with an oscil-
lating period corresponding to the SH signal, i.e. a period of 1.2 fs.
In order to obtain a good interference signal the stability level of the
interferometer should be a fraction of this period, and moreover, hold
for the entire integration time in each step. The delay fluctuations of
the interferometer was measured with a HeNe laser to be ± 0.048 fs,
which is well below the required stability.

In Fig. 5 the normalized surface FT-SHG spectrum of ZnO at approx.
60 K (line) and the frequency-doubled squared laser spectrum (dashed)
obtained from the fundamental peak are displayed for laser pulses of
10 nm FWHM centered at 725 ± 0.5 nm. The normalized FT-SHG
spectrum is the ratio of seven averaged ZnO measurements and three
averaged reference measurements on quartz. The bandwidth of the SHG
signal is only measurable within the squared Gaussian intensity profile
of the fs pulses as the SHG signal vanishes in noise towards the tails of
the distribution. Hence, the spectral range has been cropped hereto.
Clearly, a strong feature is seen around 3.413 eV, which is in very

Fig. 5. The relative SHG Fourier intensity of the ZnO and quartz wedge samples
measured with 10 nm FWHM laser pulses centered at 725 ± 0.5 nm.

Fig. 6. The normalized SHG signal of the ZnO wedge sample measured without the
Michelson interferometer.

good agreement with the strong exciton 𝑋-line observed at 3.407 eV
in [10]. The 6 meV shift of the peak in SHG energy equals a wavelength
shift of 0.6 nm. This is comparable to the laser stability of ±0.5 nm.
However, the measurements were recorded at a temperature of approx.
60 K compared to 1.6 K in [10], which as well contributes to the shift.
The FWHM of the 𝑋-line in Fig. 5 is approximately 17 meV when the
baseline is taken into account. According to [10], the magnitude of the
𝑋-line and the 1𝑠𝐿(𝐶) exciton decrease to approximately 20% at 50
K compared to the magnitude measured at 1.6 K, while the 2𝑝𝑥,𝑦(𝐴)
states vanish in the background above 30 K. Additionally, at 50 K the
FWHM of the 𝑋-line and the 1𝑠𝐿(𝐶) exciton was observed to be roughly
2.2 times wider compared to the FWHM measured at 1.6 K [10]. The
FWHM of the 𝑋-line can be estimated from [10] to be ∼3 meV at 1.6 K
resulting in a FWHM of ∼7 meV at 50 K. Finally, Lafrentz et al. observed
that the peaks merge into one at 3.417 eV as the temperature rise to 128
K. In the view of this, we deduce that our measurements are consistent
with those in [10].

Measurements of SHG from the ZnO and quartz wedge samples
were also made without the Michelson interferometer using an Optical
Parametric Amplifier (Light Conversion Topas-C Model 800-fs) pumped
by 100 fs pulses of an amplified Ti:sapphire laser and a PMT at the
exit of a monochromator was used as detector. Careful analysis of the
spectra was necessary in order to separate SHG from strong two-photon
photoluminescence generated at the band gap. Fig. 6 shows normalized
SHG signal extracted from the measured spectra. The width of the peak
is roughly 50 meV, which is three times larger than the exciton peaks
detected with FT-SHG. Evidently, the use of fs laser pulses with the
FT technique allows one to distinguish the narrow individual exciton
resonance peaks.
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4. Conclusion

We have shown that the spectral resolution in SHG spectroscopy
using femtosecond laser pulses can be efficiently improved by the FT
technique to achieve high spectral resolution independent of the input
pulse characteristics. This was demonstrated by resolving the strong
exciton 𝑋-line at 3.407 eV in ZnO, which is much narrower than the
spectral bandwidth of femtosecond laser pulses used for excitation of
the resonance. Furthermore, compared to conventional methods, our
FT-SHG technique benefit the high spectral reproducibility of the FT
approach due to built-in calibration of the spectral axis by Connes’
advantage.

The presented method is enhanced if laser pulses with even broader
spectral bandwidth are utilized to excite the sample. In this case a very
broad spectral band can be covered in a single scan, while retaining
high spectral resolution, without prolonging the scan duration.
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