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Abstract

This is the era of cost-effectiveness and resource management. The biggest
and foremost concern of the managerial authorities is cutting the cost short
while maximizing the benefits. Occupancy analysis is the solution to one
such problem. The analysis is performed to monitor a place for a long time
to figure out the time slots in which the particular place is not in use. This,
in turn, can help the authorities utilize the space more efficiently.

This thesis aims to devise an effective and efficient method for occupancy
analysis of outdoor football fields. Football/soccer is the most played sport in
all over the world. It is well played across Europe regardless of the weather
and environmental conditions. However, installing artificial grass in every
other football field is expensive for the managerial authorities in harsh win-
ter and sandy grounds like Denmark. Occupancy analysis of such fields can
minimize this cost by figuring out the utilization of the fields vs the time of
the day. In the long run, this analysis helps to figure out the fields or parts of
the fields not used by the people at a particular time or day. This thesis cov-
ers the camera-based methods for the occupancy analysis of outdoor soccer
fields.

Weather and light play a key role in selecting any camera setup to perform
any vision-based analysis in an outdoor environment. Therefore, as the first
and foremost study, preliminary research is conducted to explore different
camera options to cover the whole soccer field in changing weather and light
conditions. The analysis is performed by considering the cost-effectiveness
and setup management complexity.

In the later section of this thesis, methods for player detection and occu-
pancy analysis are presented for each type of camera setup. First, a method
of combining distortion correction and appearance-based features for classi-
cal machine learning is introduced using a fisheye camera. The method is
developed for player detection based on occupancy analysis of soccer fields.

Afterwards, using thermal cameras, two approaches for player detection
are introduced. One uses machine learning and virtual reality-based features,
and the other uses a deep network. The latter approach also discusses the
role of different kinds of data in learning the convolution neural network
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Abstract

for person detection in thermal sensors and introduces a diverse thermal
dataset for person detection. A study to observe the network behaviour by
introducing homogeneity in data polarity for person representation is also
conducted for a thermal camera.

Finally, this thesis introduces a method for monitoring the soccer field
using one thermal and one fisheye camera. The thermal camera partially
captures the soccer field in this setup and is fully captured by a fisheye cam-
era. Furthermore, the method learns the person representations of missing
thermal view using an adaptive student-teacher-based network. The final
setup and the occupancy report in different fields of Aalborg, Denmark, is
then provided to the municipality to enable them to figure out the ways of
resource management and cost-effectiveness.

The thesis also leads to the publication of two new datasets for person
detection, one for diverse outdoor conditions in outdoor thermal and another
for cross-learning or multimodal and multiview distillation using thermal
and fisheye camera feeds.
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Resumé

Omkostningseffektiv ressourcehåndtering er et væsentligt område for mange
myndigheder. Her gælder det om at reducere omkostningerne mens forde-
lene maksimeres. For at opnå dette kan belægningsanalyser bruges som
beslutningsstøtte til myndighederne. En belægningsanalyse udføres ved at
overvåge et sted i lang tid for at finde ud af, hvilke tidspunkter stedet ikke
er i brug. Dette kan hjælpe myndighederne med at udnytte pladsen mere
effektivt.

Denne afhandling har til formål at udvikle en effektiv metode til belægn-
ingsanalyse af udendørs fodboldbaner. Fodbold er den mest spillede sport i
hele verden og spilles på tværs af hele Europa uanset vejr- og miljøforhold-
ende. I nogen lande som fx Danmark kan vejrforholdende medføre at almin-
delige fodboldbaner ikke kan bruges om vinteren. Ligeledes kan det være
svært at lave almindelige fodboldbaner i sandede områder. Derfor anven-
des der ofte kunstgræsbaner, men da kunstgræsbaner er dyre at lave er det
vigtigt at banerne udnyttes fuldt ud. Belægningsanalyse af sådanne baner
kan bruges til at undersøge hvornår og i hvilket omfang banerne anvendes.
Disse informationer kan bruges som beslutningsgrundlag for hvorvidt der
skal investeres i flere baner.

Denne afhandling omhandler kamerabasede metoder til belægningsanal-
yse af udendørs fodboldbaner. Når der skal laves vision-baserede anal-
yser kræver det at det som skal analyseres fremstår tilstrækkeligt tydeligt
på billederne fra kameraerne. I et udendørs miljø påvirkes billederne af
vejr og lysforholdene og det er derfor nødvendigt at finde en kameraløsning
som kan levere tilstrækkelig god billedkvalitet på alle tider af døgnet uanset
tidligere nævnte forhold. Derfor blev der i det første studie undersøgt en
række forskellige kameratyper og -opsætninger. Målet var at finde det mest
omkostningseffektive setup der kunne dække en hel bane og levere billeder
af tilfredsstillende kvalitet, uanset vejr og lysforhold.

I den efterfølgende sektion af afhandlingen præsenteres forskellige metoder
til detektering af spillere og belægningsanalyser for hver kameraopsætning.
Først introduceres en metode som kombinerer korrektion af forvrængning
fra linsen og feature-baserede funktioner til klassisk maskinlæring ved an-
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Resumé

vendelse af et fiskeøjekamera. Derefter introduceres to metoder til spillerde-
tektering ved brug af termiske kameraer. Den ene metode bruger maskin-
læring og virtual reality-baserede features, mens den anden bruger deep
learning. I forbindelse med sidstnævnte metode diskuteres også betydnin-
gen af forskellige typer data ved træning af et convolutional neural network.
Derudover præsenteres et termisk datasæt til persondetektering som inde-
holder termiske billeder for en række forskellige scenarier. En undersøgelse
af netværkets opførsel ved introduktion af homogenitet in polariteten af de
termiske billeder er ligeledes gennemført. Til sidst præsenterer denne afhan-
dling en metode til overvågning af fodboldbanen med brug af et termisk og
et fiskeøje kamera. Fiskeøjekameraet dækker hele banen mens det termiske
kamera ikke dækker hele banen. Desuden lærer metoden vha. et student-
teacher netværk hvordan en person er repræsenteret i de områder som ikke
er dækket af det termiske kamera. Metoderne udviklet i dette projekt er
blevet anvendt på forskellige baner i Aalborg i Danmark og er blevet præsen-
teret for kommunen som beslutningsstøtte i forbindelse med prioritering af
kommunens ressourcer.

Afhandlingen har også ført til udgivelsen af to nye datasæt til personde-
tektering, et der indeholder termiske billeder til persondetektering under en
række forskellige udendørs forhold, og et til tvær-læring eller multimodal og
multivisual distillation ved brug af termisk og fiskeøje kamerafeed.
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Chapter 1

Introduction

The thesis aims to develop a robust algorithm to perform long-term occu-
pancy analysis in outdoor soccer fields in Denmark. In this work, different
camera setups are proposed and analyzed for person/player detection for
finding occupancy in the local outdoor soccer fields.

1 Motivation and background

Soccer is the most watched and played sport in the world [1]. People all
over the world follow and play both indoor and outdoor soccer. Costly and
complex camera setups are utilized for the commercial country club and in-
ternational matches. These camera setups not only record but also focus on
different game angles to use the information for game analysis, prediction,
players’ performance monitoring, predicting trends, reviewing decisions in
video-assisted referees and many more. However, when it comes to local
soccer, the primary concern of the management is cost minimization.

The weather conditions in the North of the world are harsh, especially
in winter. It is almost impossible to maintain good ground conditions on
soccer fields. The optimum solution to maintain a winter soccer field is to
install artificial grass, which is expensive. The management always looks for
optimum solutions to such problems. In such a scenario, occupancy analysis
of the targeted fields can provide the required information about their usage
in order to help management optimize the expenses. Because there may
be many fields around that are occupied only some of the time. In some
scenarios, people book the time but do not show up at the field or may be so
small in numbers that they could use half of the field. The resources in such
scenarios can be optimized. An example of how an occupancy analysis chart
looks is illustrated in Fig. 1.1.
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Chapter 1. Introduction

Fig. 1.1: Example of occupancy chart for seven days(monday to saturday, from 7:00 am to 11:pm).
The grey rows in the chart are actual bookings, while the coloured rows show the occupancy.
The colours from green to red illustrate minimum to maximum occupancy at respective times.

The traditional method for occupancy analysis involves a human anno-
tator, which is expensive and inconvenient for long-term projects. Now
with the emergence of vision-based technologies, imaging sensors are widely
employed almost everywhere. Therefore, vision-based occupancy analysis
methods can be proposed to save time and cost.

With the given considerations, this thesis follows the motivation to pro-
vide the municipality with a robust solution for occupancy analysis for out-
door soccer fields using a vision-based setup. Therefore, the thesis revolves
around the application challenges for different camera setups and ends with
the final report to the municipality.

The main challenge in the vision-based method lies in understanding the
outdoor weather conditions and the choice of image sensor that has good
performance for a long time. In the context of weather conditions, the prob-
lem with the outdoor data lies in its uncertainty due to the presence of noise
factors, including wind, varying sunlight, night vision, rain, snow, shadows
and many more. Another challenge is to keep the overall system low budget
and easy to install, as the fields are armature and mostly need to be equipped
with proper lighting and installation setups (like mounting pole, electric and
network supply).

2 State of the art

2.1 Computer vision in sports

For decades camera systems have been widely implemented in different
sports areas. The application varies from broadcasting to player performance
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analysis [2]. Many camera-based systems are used commercially [3–9] as
well as in local sports arenas for a wide range of applications [10–16, 16–20].
Thomas et al. [2] discuss in detail the current applications of vision in sports.
The article also describes the commercially used setups for monitoring and
broadcasting in sports. It also provides the details about many publically
available datasets for vision-based applications like player detection [21–23],
ball detection [21], tracking [21, 24, 25], camera calibration [26], event detec-
tion [27, 28] and many more.

Fig. 1.2: example of computer vision in Sports. Semi-automated offside technology implemented
in FIFA 2022 [29].

The primary application domains for applicable computer vision in soc-
cer or football analysis are mainly match analysis [10, 30–35], player detec-
tion [25, 36–38], action recognition [39], event detection and recognition [14]
object tracking [15, 40, 41], game performance analysis [16, 42], camera se-
tups [26], scene analysis [18], occupancy analysis of fields [19], audience/
crowd Analysis [20], and game analysis [16, 42].

Commercially available solutions mainly focus on video base analysis by
manually tracking the ball and players or providing GPS-based support. SPI-
IDEO provides the solution for performance analysis and camera systems for
proper coverage [3]. Hudl sportscode provides tools for performance analy-
sis [4]. Inmotio [8] provides solutions like player tracking, action generation
and data analysis. iSports analysis, Nacsports, Interplay [5–7] provides pack-
ages to players and coaches for performance monitoring.

Research has been conducted in action detection, activity detection and
action recognition in sports using vision-based methods. Vanderplaetse et al.
performed action spotting using visual and audio cues at different stages of
DNN [43]. Kanimozhi et al. proposed a content-based viewpoint for classi-
fying meaningful events in sports videos [44]. Host et al. tested the baseline
CNN model with LTSM and MLP-based models for classifying 11 actions in
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handball matches [45]. Piergiovanni et al. introduced MLB-Youtube data set
for activity detection and tested a range of algorithms on video streams of
baseball broadcast [46]. Sanford et al. model the ball and player interaction
events and used self-attention in soccer play for group activity detection [28].
Schlosser et al. tested two-stream architectures to generate proposals for tem-
poral actions [47]. Rahimi et al. presented a technique based on extracting
scene graph features from sports videos [48]. Giancola et al. proposed a fea-
ture pooling-based method on NetVLAD, dubbed NetVLAD++. Instead of
creating a single pool, the method splits the context before and after the oc-
currence of an action. They claimed that including both the prior and poste-
rior information creates a more distinctive pool of features for understanding
actions [49]. Hong et al. proposed a method based on pose estimation for
action recognition in sports videos. They introduced a video pose distillation
method to learn features from the video domain in a student-teacher man-
ner [39]. Many others [50–52] also utilized CNN-based approaches to action
recognition in sports.

In sports, professionals are also eagerly interested in the occurrence of
meaningful events, i.e. opportunities created, attacks and others, to assess
teams or individual performances and make plans for coming games. To fa-
cilitate such an approach, Cioppa et al. [53] have proposed a two-step process
for event detection. In the first step, a deep learning-based network is built to
extract semantic features, which in the second step are passed to a decision
tree classifier for event detection in the soccer game. Kanojia et al. [54] pro-
posed an LSTM-based model to identify and classify 48 events/tasks that are
performed in diving. Vats et al. [55] developed a model for event detection
for the ice hockey game. The method combined a single 2D CNN for features
extraction and multiple 1D CNN architectures with varying kernel sizes to
detect actions for identifying events. Kaichi et al. [27] investigated the appli-
cation of camera vision for analyzing athletes’ performance by determining
the centre of mass (CoM). Shukla et al. [56] worked on automatic highlight
generation for cricket matches. Saikat et al. [57] employed SVM based ap-
proach to map the game scenarios and generate game statistics. Shukla et
al. [56] worked on automatic highlight generation for cricket matches. Saikat
et al. [57] employed SVM based approach to map the game scenarios and
generate game statistics.

Cioppa et al. [26], Kosuke et al. [58], Jianhui et al. [17] worked on cam-
era calibration methods in sports video recordings. A method that is the
combination of segmentation, encoding of zone segmentation and template
homography to obtain calibration parameters is implemented by Cioppa et
al. [26]. Kosuke et al. [58] proposed an alternative method of processing im-
ages independent of calibration and synchronization to estimate 2D and 3D
human poses. In another approach, Jianhui et al. employed an automated
process using synthetic data and a generative adversarial network (GAN)
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model for camera calibration [17].
Many new datasets have also been published in sports for research pur-

poses. For example, Giancola et al. [59] have collected and made the dataset
of soccer matches public. The dataset comprises 500 games with a total du-
ration of 764 hours. The dataset has already been annotated for the goals,
yellow/red cards and substitution events. Frame rates of these videos vary
between 25 and 50 fps with MPEG and H264 encoding and SD/full reso-
lution. Tanaka et al. [60] prepared the dataset from the game "League of
Legends". The authors collected a total of 9723 clips and 62677 captions from
the videos of the game played at the world championship. Deliege et al. [61]
published the annotations of 300k images within soccerNet for action spot-
ting, segmentation and boundary detection.

3 Player detection

Player detection is the primary challenge in many of the vision-based sports
applications, i.e. tracking [12], action recognition [62], and player recognition
[63]. It has been performed for both outdoor and indoor sports, including
soccer [11], badminton [64, 65], baseball [63, 66], basketball [11, 25, 67–69],
hockey [70, 71], handball [72, 73], tennis [12, 36, 74], squash [75] and running
[76].

Several techniques have been reported for player detection. Of these tech-
niques, background subtraction [77] is the most frequently used method for
this purpose. It has been reported for its fast-processing time, which is
favourable for real-time applications. Moreover, It can be applied for both
static [36, 37] and moving cameras if the surfaces have uniformity [78]. Other
algorithms, including Otsu, edge-based detection, haar-like features, and
hough transform [79–81] have also been implemented for player detection
in the soccer field.

Background uniformity in outdoor sports is of significant concern for
various reasons, e.g. colour contrast between background and foreground,
varying lighting conditions, and many others. Several methods have been
proposed to address these challenges. SVM has been widely used because of
its low computation complexity, optimal solution and better accuracy in de-
tecting unseen data [82, 83]. In [82], Zhu et al. implemented SVM for player
detection using a player colour model defined in HSV colour space. A particle
filter-based SVR algorithm is implemented for player tracking, followed by a
player detection algorithm. Maćkowiak et al. [83] also used SVM for player
detection in a broadcast soccer video. In their work, a colour segmentation-
based playfield detection algorithm is also implemented—afterwards, the
HOG features-based SVM classifier is used for player detection. Bai et al. [84]
proposed a method for automatically generating labelled data. They imple-
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mented a one-class SVM technique to detect players on a soccer field. One-
class SVM has also been reported in [85], where it is followed by a fuzzy
c-mean algorithm to facilitate the prediction of data points close to the SVM
hyper-plane. In [38], HOG features-based Adaboost algorithm is proposed
for player detection on the football field. An unsupervised approach using
contrastive learning from Jersey colours is proposed by Koshkina et al. [86].
Pidaparthy et al. [87] used deep visual and audio cues to identify the active
period in the game to aid player segmentation in hockey using the hidden
Markov model.

Fig. 1.3: Overview of the proposed system. Mask R-CNN is first used to detect and segment
each person on the playing surface. A pre-trained CNN is then used to classify referees while
the remaining players are passed to our embedding network for clustering into teams. This
allows the production of heat maps showing the distribution of the two teams over the playing
surface. [86]

With the recent advancement, DNNs being the standard for solving many
object detection problems, YOLO [21–25, 88, 89], SSD [88] and Faster RCNN
[72, 88, 90–92], UNet [93], and many other deep networks have been uti-
lized for player detection in static and moving cameras. In [94], shallow and
reverse-connected CNN networks are proposed for player detection. Sah et
al. also compare deep learning methods with traditional methods for player
detection in field hockey datasets [88]. Previously they compared different
image representations to feed in one CNN for the same hockey dataset for
player detection [94]. Zhang et al. [21], Kalafatic et al. [24], You et al. [95],
Acuna et al. [25], Pobar et al. [22], Buric et al. [23, 89] implemented YOLO
Network for the purpose of player detection in sports videos. Zhang et al. [21]
combined YOLO V4 [96] with Deep Sort [97] to detect and track players
and football in NBA and Worldcup matches. Kalafatic et al. utilized YOLO
V3 [98] with Faster R-CNN anchor boxes for player detection and SORT al-
gorithm for player tracking in football fields. They compare their work with
traditional adaptive background subtraction-based player detection systems.

8



3. Player detection

Buric et al. [23, 89, 99] combine YOLO with optical flow for player detection
and tracking.

Acuna et al. [25] also used YOLO with SORT [100] algorithm to detect and
track football players. They used YOLO V2 [101] for the purpose of detection.
A method based on adding reverse-connected modules to CNN for multiscale
player detection is presented by Zhang et al. [102]. Theagarajan et al. [103]
proposed DCGAN for data augmentation and found it to help improve the
object detection accuracy inside a soccer field. Lu et al. [104] implemented
a cascaded CNN to detect players in varying light conditions, low-quality
images and high-speed moving cameras. A method based on the fisher vector
combined with CNN to identify players in basketball is presented by Senocak
et al. [105]. Komorowski et al. designed and implemented the pyramid-
based deep neural network Deepball [106] for ball detection and dubbed
FootAndBall [91], designed for player and ball detection in high-resolution
video recordings.

3.1 Occupancy analysis

Occupancy analysis is an essential element for managing resources effec-
tively and efficiently. In literature, methods to perform occupancy analysis
can be divided into two categories, i.e. visual or non-visual. In non-visual
approaches, multiple sensor data is used, and most proposed solutions are
targeted for indoor occupancy analysis.

Zhao et al. [107] utilized the data of multiple sensor networks, i.e. WiFi,
GPS and chair/keyboard/mouse sensors, to implement a Bayesian belief net-
work and perform occupancy analysis for offices. Other methods proposed
using the data from passive infrared sensor [108–110] and Carbon dioxide
(CO2) level [111, 112]. Dong et al. [113] developed a test bed comprised
of wireless and wired sensor networks, i.e. wireless ambient sensing system,
CO2 and air quality reader sensors, to analyze occupancy. They implemented
support vector machines (SVM), neural networks (NN) and hidden Markov
models (HMM) techniques to process sensor data. Pedersen et al. [114] also
proposed climate sensor data, i.e. CO2, PIR and volatile organic compound,
to detect room occupancy. Xin et al. [115] proposed a data mining approach
to perform occupancy analysis by only using the time series data of people
inside the building. The aforementioned non-visual methods have the disad-
vantage of a limited application area, as they are only feasible for buildings
and closed rooms but not for large outdoor fields.

To overcome the challenges of occupancy analysis in an outdoor envi-
ronment, image-based techniques are proposed [116–118]. The methods of
processing images or video sequences for person detection, where the data
is recorded either using RGB or thermal cameras. The applications of these
methods are found in indoor offices, pedestrian detection and players detec-
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tion in sports fields [114, 118–120]. Specifically, for the sports arena, little
literature has been published in the domain of thermal cameras. Gade et
al. [119], and [120] performed occupancy analysis for indoor sports arenas us-
ing thermal data. Occupancy analyses for outdoors have also been reported
for parking lots [121–123].

3.2 General Challanges

Within the image-based techniques, many challenges exist when applied to
outdoor environments, i.e. occlusion, weather/light conditions and monitor-
ing large areas. A brief state of the art in these domains is discussed below.

• Occlusion: Occlusion is a primary challenge in performing long-term
occupancy analysis and many other vision analysis applications. In
this phenomenon, persons very close to each other can be identified as
one, affecting the accuracy and reliability of long-term occupancy and
people detection results. Some examples are shown in Fig. 1.4

(a) (b) (c)

Fig. 1.4: Examples of occlusion in (a) Thermal camera, (b) RGB camera and (c) Wide-angle RGB
camera.

Many methods [124–129] have been proposed to meet this challenge.
In [130], Jin et al. presented a human tracking algorithm using an RGB
camera. In the proposed method, the occlusion is handled by applying
a threshold to the output of the target person template and given frame
comparison. Marin et al. [131] handled the partial occlusion for human
detection application. The reported method is comprised of two steps.
At first, a holistic classifier is implemented, whose output is further
processed by an ensemble classifier for human detection if the confi-
dence output of the first classifier lies in a defined range referring to
possible occlusion. In [132], Zhou et al. a bi-box regression approach
to estimate the occlusion and simultaneously detect a pedestrian. In
the proposed method, two branch CNN is implemented, one targeted
for regressing the bounding box for the entire body and the other for
visible human parts. In [133], an RNN algorithm is proposed to detect
occlusion while multiple persons. In [134], Shu et al. developed a part-
base model to detect partial occlusion in multi-person tracking prob-
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lems. Solutions to deal with partial occlusion for detection, classifica-
tion and tracking applications have also been reported in [135–137]. In
these works, the Bhattacharyya distance, pyramidal part-based model
and restricted Boltzmann machine-based deep models are developed to
detect occlusion.

• Weather effects: Weather effects that include the sun, shadow, rain,
and surrounding and body temperatures affect the output of cameras
used and, in turn, the performance of person detection and occupancy
analysis.

(a) (b)

Fig. 1.5: Examples of the effect of sunny weather in (a) RGB camera, (b) Thermal camera.

The shadows affect the performance of the detection system by dis-
torting the person representation [138]. A four-stage shadow detection
and classification approach is presented in [139]. In the proposed algo-
rithm, the candidate region is passed through a weak classifier to de-
tect shadow points, followed by determining spatial and temporal con-
stancy. Finally, the comparison of the last two stages gives the shadow
classification. Methods for shadow detection are also being studied
in [140]. Kristo et al. [141] studied the object detection performance of
thermal data in the presence of rain, fog and precise weather condi-
tions. They implemented YOLOv3 and compared its performance with
three other algorithms, including Faster R-CNN, SSD, and Cascade R-
CNN. Tumas et al. [142] also studied thermal data in varying weather
conditions, i.e. clear, cloudy, rain and fog. They also used YOLOv3
deep network to deal with these problems.

• Large area coverage: In the domain of occupancy analysis, especially in
outdoor coverage of an extensive area is a primary challenge. Moreover,
issues can arise in terms of cost, maintenance complexity and perfor-
mance while selecting cameras. Thus, the camera selection becomes
challenging to balance all these measures.

In the RGB domain, different cameras are available depending on the
field of view. Wide angle cameras have the advantage of wide view-
ing angle, and for this reason, it has been reported for application, i.e.
surveillance [143, 144], indoor environment [145], automobiles [146].

11



Chapter 1. Introduction

Deep learning-based approaches are getting popularity in object detec-
tion in recent times. Pre-trained deep networks and transfer learning
are other possibilities. In the last decade, many deep learning-based
networks [98, 147–152] have been abundantly created and utilized for
person detection in colour images.

Thermal cameras can perform very well at night and in low-light conditions.
Moreover, the results are not affected by foreground and background colour
similarity. Thermal soccer dataset [119], OSU thermal pedestrian [153], OSU
Color Thermal [154], Terravic Motion IR [155], and CVC-09 [156] is the publi-
cally available thermal datasets. These datasets have been recorded for pedes-
trian detection, person detection in the outdoor and indoor environment and
player detection in the sports arena. traditional methods based on feature
extraction, and thresholding [118–120, 157] have been enormously employed
for person detection in thermal. Machine learning [158, 159] combined with
Histogram of gradients and deep neural networks [160, 161] have also been
used in recent studies for person detection in thermal cameras.

If we look for the comprehensive dataset for local/non-perfect labelled
data, there is a bridge/gap. It shows that the available datasets and the
designed algorithms are applied for ideal, predictable conditions obtained
from closed environmental conditions. Moreover, different camera setups
can behave differently in given conditions for a particular application in an
outdoor environment. Therefore, this thesis analyses the challenges men-
tioned above by employing and testing multiple camera setups for long-term
outdoor monitoring.

Moreover, The work presented in this thesis is inspired by [119] and [120],
which was aimed at an indoor sports arena, whereas, here, we focus on an
occupancy analysis system for the outdoor sports field.

4 Objectives and scope of the work

This PhD work aims to develop a robust algorithm for counting the number
of persons in the soccer fields to identify the occupancy measure for a very
long time. Therefore, in this thesis, different camera setups will be presented.
Furthermore, the person detection methods for different camera setups will
be developed and tested to determine the desired occupancy in an unsta-
ble outdoor environment. To this end, the following research tasks will be
conducted:

• Investigate feasibility analysis of different camera setups for occupancy
analysis for large area coverage while keeping the system simple and
cost-effective.
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• Develop an algorithm for the robust occupancy analysis of outdoor
fields that performs well even in challenging weather, wind and light
conditions. The algorithm should be able to identify and classify the
occlusions to count the number of players for occupancy.

• Evaluate algorithm performance on raw data from the fields in Aalborg,
Denmark.

• Testing and performing long-term occupancy analysis in the soccer
fields of Aalborg, Denmark and reporting to the municipalities.

Fig. 1.6 shows the overall scope of the thesis along with the addressed
challenges and related thesis chapters. The following section describes the
overall structure of the thesis.

Fig. 1.6: scope of the thesis.

5 Outline of the thesis

The thesis is organized into six sections indicated by roman numbers. The
first section provides an introduction to the thesis, including motivation and
a summary of the conducted research. The following four sections relate to
the sensor approach, see Fig. 1.6, and the last section concludes the thesis.
Each section consists of one or more chapters. The chapters of sections II-V
are indicated in Fig. 1.6. Chapters 9 and 10 belong to part VI. Below is a
summary of the different chapters.

Chapter 1 explains the background of the research, motivation, scope of
the thesis and state of the art in the field. Chapter 2 provides a summary of
the coming chapters.

Chapter 3 of the thesis is based on the feasibility study of different camera
setups for outdoor long-term occupancy analysis. Analyzing setups analyt-
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ically is the first and foremost task. Therefore, the chapter first defines and
evaluates different camera setups based on observation and data analysis.

An algorithm for player detection and finding occupancy in local outdoor
soccer fields using a fisheye camera setup is presented in chapter 4. The
challenges in the fisheye camera image outdoors include very high distortion
at the corners and occlusion in players that worsen in the presence of high
camera distortion.

Chapters 5, chapter 6 and chapter 7 deal with some of the challenges
in thermal camera setup. The challenges include occlusion detection and
handling, weather challenges and lack of enough thermal data to deal with
such challenges when implementing deep learning. Chapter 5 presents an
algorithm for detecting players in the field and handling occlusion using ma-
chine learning and virtually projected features by 3D simulations. Chapter 6
reviews the thermal person detection datasets and presents a diverse dataset
that includes varying weather and light effects. The chapter also studies
person detection in thermal images using transfer learning from RGB and
indoor thermal data. Finally, chapter 7 explores preprocessing methods’ ef-
fect on creating homogeneity in data polarity in thermal person detection
datasets. The study defines different preprocessing methods and investigates
the outcomes using transfer learning and the diverse dataset published in
chapter 6.

Chapter 8 presents a method based on multi-modal and multi-view distil-
lation. It deals with the challenge of changing light conditions day and night
by presenting a relatively cheap and straightforward installation setup of one
thermal to only see in the middle of the field and one fisheye camera to cover
the whole field.

Chapter 9 discusses the final setup for long-term occupancy, the report
and results to the municipality and chapter 10 conclude the research with
possible future directions.

The research conducted in this thesis is carried out by considering the
applicability of the algorithms in practical scenarios. All the experiments are
performed on self-recorded data from actual outdoor soccer fields. Thus, it
covers all the real scenarios and diversity w.r.t weather, light conditions, and
person representations.
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Chapter 2

Summary of research and
contributions

As mentioned in the previous chapter, this thesis consists of four main tech-
nical parts (II-V) documenting the research conducted to achieve the project
goal of occupancy analysis using diverse camera setups. The summary of
each of those studies, contributions and findings are provided in this chap-
ter.

1 Chapter 3: Experimental setup to investigate the
feasibility of long-term data recordings in out-
door environment

This chapter reports the "Experimental setup to investigate the feasibility of
long-term data recordings in an outdoor environment". This study aims to
define and evaluate different camera setups based on the feasibility of instal-
lation, cost, area coverage and other factors. Three camera types, i.e. fish
eye, wide angle action and thermal, are used in this study. With different
combinations, five camera setups are initially proposed, keeping in mind the
ease of installation. The suggested camera setups are considered mainly due
to their coverage area. Two camera setups, namely, 1) one fisheye and 2)
two wide-angle cameras covering the whole field, are the simplest solution.
Another setup consisting of three thermal cameras is also proposed due to
its better performance in low light and total dark conditions. To reduce the
complexity of multiple camera installations, another setup consisting of only
one thermal panning camera is investigated. The last proposed setup com-
bines one fisheye and one thermal camera. Although the installation setup
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(a) (b) (c) (d)

(e)

Fig. 2.1: A grey area shows the coverage area while the green area represents the field. The red
dot indicates the position of the camera. (a) One fisheye camera, (b) Three thermal cameras, (c)
Two wide-angle cameras, (d) One fish eye and one thermal camera, (e) Rotating thermal camera
at different time instances.

seems complex, the aim is to achieve day and night full field coverage. The
fields of view of the five setups are shown in figure 2.1.

One day data for each setup was recorded at a soccer field in Aalborg,
Denmark, on the same day. Fortunately, the recorded data was diverse,
having all the variations of sunlight, the shadow at different angles, rain,
wind, night time and shadows cast by moving clouds. The video recordings
were then thoroughly analyzed in terms of camera cost, recognition visibility,
day/night vision, occlusion, complexity, weather effect, and area coverage.
Finally, the study deduced that the setups with two wide-angle cameras and
one rotating thermal camera could not be tested further due to their limita-
tion, including power, storage and full-time area coverage, respectively.

2 Chapter 4: Occupancy Analysis of Soccer Fields
Using Wide-Angle Lens

This chapter investigates the "Occupancy Analysis of Soccer Fields Using
Wide-Angle Lens" [1]. A camera setup with one fisheye is used in this study,
and the aim is to perform player detection-based occupancy analysis over a
specific interval of time. Data analysis revealed a few challenges, i.e. a) image
distortion around the corners and b) players appear very small, especially as
they move away from the camera. Furthermore, the analysis showed that
detecting occluded and blur players is hard. To address these issues, this
paper first deals with distortion correction by implementing barrel distortion
correction presented in [2]. Afterwards, image enhancement is performed by
implementing 2-D wavelets to deal with blurring and enhancement of field
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Occlusion Handling

area, explicitly enhancing the directional edges in the image.

(a)

(b)

Fig. 2.2: (a) Image after enhancement, (b) Image after background subtraction [1].

The enhancement of the images leads to the sharp appearance of play-
ers. However, noise from distortion or other edgy objects in the field, like
the lines or the grass, is also enhanced. In order to suppress it, background
subtraction is employed, which significantly improves the image quality (see,
Fig 2.2. Other small noise pixels are removed by using morphological opera-
tions. This leads to our candidate player regions in the image. Each candidate
region is further categorized using the threshold method based on compact-
ness and colour information to cater for occlusion. Six thousand frames are
manually labelled as ground truth to calculate the results. The work has
achieved a small average error of 2.67% in the full activity period, 3.64% dur-
ing the transition period and o.00096 % in no activity period. Fig 2.3 shows
the results.

3 Chapter 5: Estimating the Number of Soccer Play-
ers using Simulation-based Occlusion Handling

This chapter, "Estimating the Number of Soccer Players using Simulation-
based Occlusion Handling" [3] also focuses on occupancy analysis but using
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Fig. 2.3: Occupancy analysis over 6000 samples [1].

(a) (b) (c) (d)

Fig. 2.4: (a) red circles show the connected points whereas green circles and lines are the branch
points to calculate connected point distance and slope, (b) The diagonal length of a bounding
box is the length of red line between the corners a and b, (c) Top view of the virtual setup, (d)
Side view of the virtual setup [3].

a thermal camera. Thermal cameras provide better data quality, especially
in low and no-light conditions. However, it is challenging to cater for occlu-
sion, especially for objects away from the camera, because of less textural and
no colour information. Therefore, the paper introduces a method that com-
bines machine learning and virtual reality-based estimation of the number of
players in the field to perform occupancy analysis. In the proposed method,
candidate player regions are first identified using maximum entropy-based
thresholding. The thresholding segments the light player regions from the
dark background. Further, morphological operations are utilized to remove
the small noise blobs. Occluded and non-occluded players are then classi-
fied using bragged tree classifier [4], where connected point-slope, connected
point distance (see, Fig 2.4a), convex area and finally the diagonal length of
bounding boxes (see, Fig. 2.4b) are used as input features.

Simulations on Unity 3D [5] are performed by making a virtual setup for
identifying the number of players, i.e., 2, 3 and 4, in the occluded blob (see
Fig. 2.4c, Fig. 2.4d). The virtual setup recreates the occlusions by making
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Person Detection

one player still and moving the other players from right to left in a loop. The
program measures 9978 possible instances for two-player occlusions, 12401
possibilities for three occluded players and 33001 possibilities for four. After-
wards, the number of players is identified using maximum likelihood-based
density estimation, in which blob sizes in simulations are compared with the
blob sizes of the original image.

The tests are performed on 8990 frames from a video of five minutes
containing 71443 players. The paper has achieved an accuracy of 96.1% in
detection and a precision of 97.8% in carrying out the occupancy analysis
(see Fig.2.5).

Fig. 2.5: Orange line represents the estimated number of people and the blue line shows the
ground truth [3].

4 Chapter 6: The Effect of a Diverse Dataset for
Transfer Learning in Thermal Person Detection

To further study the thermal performance using deep learning, long-time
data analysis is performed in "The Effect of a Diverse Dataset for Transfer
Learning in Thermal Person Detection" [6]. The paper thoroughly reviews
available thermal datasets for person detection in thermal. Unfortunately,
the online available thermal datasets have a person visibility of more than
50% and, in most cases, more than 70%. This makes it impossible to use these
datasets and adapt the model for real-life application areas. The twenty-week
thermal dataset is recorded and analyzed to address this challenge. The study
indicated that the weather, light and environmental effects are more visible
in thermal than in RGB camera setup (Fig. 2.6).

Transfer learning saves the cost of annotating a tremendous amount of
training data for deep neural networks. The paper uses YOLO v3 network [7]
as a base model, and two-step transfer learning is performed. In the first step,
human features are learned from the RGB dataset. In the second step, online
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(a) (b) (c) (d)

Fig. 2.6: Some challenging characteristics in thermal data. (a) Varying body temperatures. (b)
Similar temperatures. (c) Motion blur due to wind. (d) Shadows [6].

(a) (b)

Fig. 2.7: (a) Precision and (b) recall measures of different training weights on publicly available
datasets. Here, the blue bars are the results tested by our thermal training weights, and orange
bars are the results tested by our thermal training weights and further training by adding only
5% of the new dataset for 100 iterations [6].

available thermal data with good person visibility is used to make the net-
work learn human detection features. Later the diverse data with all possible
outdoor scenarios are added to the training data to let the network adapt to
our real-life application. The diverse outdoor data is categorized into nine
phenomena, i.e., good condition, far viewpoint, opposite temperature, sim-
ilar temperature, low resolution, occlusion, shadow, snow, and wind. The
effect of each phenomenon is investigated by adding data from different phe-
nomena and then combinations of phenomena and observing the results on
testing data. The testing data consists of 1000 randomly selected images from
twenty weeks of data recordings. Furthermore, the trained network with the
best combination of data is also tested with publicly available datasets (Fig.
2.7).

The paper suggests that each data category affects the performance dif-
ferently for a given application. The data categories could be selected intel-
ligently per the application requirements to save the time and effort of data
annotation. The diverse data set is publicly available for further research, and
investigation [8].
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5 Chapter 7: Effects of Pre-processing on the Per-
formance of Transfer Learning Based Person De-
tection in Thermal Images

Further studies in the thermal domain to investigate the role of different
polarities and pre-processing techniques are investigated in "Effects of Pre-
processing on the Performance of Transfer Learning Based Person Detection
in Thermal Images" [9]. This study is the continuation of [6] to analyze
the behaviour of different phenomena data. Thermal data typically possess
two main polarities, i.e., light-person representation on dark background and
dark-person representation on a light background. In the previous study, [6],
it was observed that results changed significantly whenever the data from
opposite polarity was added. In this paper, we focused on improving re-
sults for such images, i.e. similar temperature (minimum contrast between
person representation and background) images and diverse polarity images
(Fig. 2.8). To cater to similar temperature images, we implemented contrast
enhancement. In addition, an automated process is proposed for diverse po-
larity images to detect opposite polarity images and convert them to the same
polarity before further processing.

(a) (b) (c)

Fig. 2.8: (a) Person appeared similar to background, (b) Person appeared darker w.r.t back-
ground and (c) Person appeared lighter w.r.t background [9].

Contrast enhancement is performed by using histogram equalization. Whereas
opposite polarity detection is performed in two steps, i.e., 1) sunlight detec-
tion and 2) human body temperature detection. High sunlight is detected by
summing up the lighter pixels in an image, while the human body tempera-
ture is detected by studying the histogram bins of the high-intensity images.
The proposed method of studying the effect of data homogenization in single
polarity is evaluated using YOLO v3 [7]. It was observed that the best results
are obtained without applying pre-processing techniques or homogenization
and by using the data in its original form.
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(a) (b) (c)

Fig. 2.9: (a) Projection of the thermal image onto the fisheye image. The thermal camera sees
only ≈ 22% of the football field pixels of the fisheye image. (b) The bounding boxes given by
the teacher network. (c) surrogate ground-truth bounding boxes [10].

6 Chapter 8: Multimodal and multiview distilla-
tion for real-time player detection on a football
field

Player detection and occupancy analysis using one fish eye and one thermal
camera is presented in "Multimodal and multiview distillation for real-time
player detection on a football field" [10]. In this setup thermal camera only
covers the middle of the field, while the fisheye camera covers the whole field.
The main objective of this setup is to achieve full area coverage during the
day and night. Moreover, the setup is simple and cost-effective in installation.
In this work, the idea is to cross-learn from thermal to fisheye and then trans-
fer the learning parameters to non-thermal coverage parts of the field. Data
preparation is an essential step in such a setup. As both cameras have dif-
ferent clock cycles and camera parameters, time synchronization and model
transfer parameters for spatial transformation or mapping of pixels between
two cameras are performed as a foremost step before further processing (Fig.
2.9a).

The online distillation method, based on a teacher-student network [11], is
applied to learn from thermal to fisheye. As a teacher network, YOLO is used,
previously trained on thermal data [10], to detect the players in thermal (Fig.
2.9b). Afterwards, the bounding boxes are transferred from thermal to fisheye
image using camera calibration and model transfer parameters. This gives
some surrogate ground truth annotation (Fig. 2.9c) for retraining the fisheye
image for the thermal-fisheye overlapping area using tinyYOLO. To extend
the training data to a non-overlapping thermal-fisheye region in the fisheye
image, we have augmented the players by copying and pasting the player
from the overlapping thermal-fisheye region to the non-overlapping thermal-
fisheye region. As distortion affects differently at different parts of the fisheye
image, depending on the distance from the camera, the player regions are first

34



7. Chapter 9: Report to municipality

Fig. 2.10: Results on the player counting task averaged over a 1-minute window, and associated
standard deviation [10].

scaled, rotated, and blended before pasting to match the specifications of the
particular region in the fisheye image. In this manner, some fake ground
truths are generated. To solve the problem of initially present players in non-
overlapping regions, we used viBe [12] background subtraction to remove
the original players while training and only keep the augmented players.
The results show that the teacher-student network improves over time. It
is noticed that the network achieved RMSE of 3.4 players (Fig. 2.10) w.r.t
ground truth. The code and data are also made publicly available for further
research [13].

7 Chapter 9: Report to municipality

The chapter covers the aspects of the final report to the Aalborg municipality.
It goes through the specifications of the final setup used for occupancy analy-
sis of the outdoor soccer fields. It also covers the algorithm details, evaluation
methods, limitations in the detection and the format of the final report that
is presented to the municipality.

8 Contributions

This section will sum up the contributions made in this thesis.

• Analysis of different test camera setups for occupancy analysis in an
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outdoor environment is performed in chapter 3. The analysis investi-
gated the requirements for the occupancy analysis application in Den-
mark’s local soccer field. A comparison of different test setups is also
presented in the chapter.

• Occupancy analysis of outdoor soccer field using a single fisheye cam-
era is presented in chapter 4. Method for occupancy analysis based
on player detection is presented, where player detection is performed
using a features-based machine learning algorithm.

• Occupancy analysis of outdoor soccer field using thermal camera is
presented in chapter 5. In this setup, player detection is based on a
features-based machine learning algorithm, and occlusion is handled
using simulation-based computer graphics.

• Diverse thermal dataset is presented to research community. Chapter
6 explains the dataset and the findings about the need for diversity in a
dataset. This chapter also explains how different phenomena in thermal
data affect the learning of a CNN.

• Occupancy analysis using dual modalities, i.e. one fisheye and one
thermal camera is presented in chapter 9. The research deals with the
multiview distillation problem. Point-to-point registration is performed
for a common view, and then knowledge is transferred using student-
teacher-based network training approach [11].

• Fisheye-thermal Dataset for cross-model learning between fisheye and
the thermal camera is also presented in chapter 9 for further studies
and research.

• chapter 7 rules out the need to perform data homogenization in thermal
images before feeding to Deep Neural Network. A machine-learning
method for high sunlight detection in thermal data is also presented.
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Chapter 3

Experimental setup to
investigate the feasibility of
long-term data recordings in
outdoor environment

1 Introduction

Data recording is an essential block in the pipeline of computer vision as it
is the first and foremost step for every machine vision application [1]. The
outcome, as well as the result of each step in the pipeline, depends on the
quality of the data recorded. Our primary concern is to have image data
covering the entire football field. Since the soccer is rather big, which sensor
setup to select is not apparent. Moreover, our focus is long-term analysis, so
we must deal with changing outdoor conditions. Also, the cost of the sensor
suite is relevant to consider. This chapter defines and compares five different
camera setups by using three cameras analytically. The criteria include com-
plexity, price and image visibility in diverse weather and light conditions.
The following section defines the required considerations.

2 Requirement considerations

Before initiating the study, some prior considerations are required to narrow
the number of camera setups. Following are the considerations we took be-
fore employing a setup. It comprehends the essential demands of the setup
to carry out the recording of twenty weeks.
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2.1 Coverage

The project aims to cover the whole field area and to count the persons in-
side that area. The maximum field size that can be encountered is 105 x 68
m. Therefore, the camera setup should be able to cover the whole area and
recognize the presence of any person within the specified area.

2.2 System simplicity

We intend to imply the camera setup for local football fields with fewer re-
sources. It is hardly possible to set up at different locations with network
availability. Manual cabling for the network at different locations could lead
to disturbance in the play. We aim to deploy the setup to keep it simple in
installation and integration with the existing setup. This ultimately means
the sensor suite is mounted in only one location.

3 Proposed Camera Setups

Initial brainstorming rooted in the requirements and prior work resulted in
five camera setups with three different types of cameras initially proposed to
study further. All the setups are employed on a single pole to keep in mind
the simplicity of installation. The height of the highest camera is kept at 9.8m
from the ground. The other setups lie 50 cm below each other. Fig. 3.7 shows
the setups for the day. Following are the proposed camera setups.

(a) (b)

Fig. 3.1: (a) Virtual view of proposed setup. (b)Closeup cameras. The three cameras at the top
of the pole are thermal cameras. Just below is one fisheye camera. Below the fisheye camera are
two wide-angle action cameras. The last one is the thermal panning camera.
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3.1 Cameras

The lens concept was first explored 1000 years back in the ’Book of optics’
(Kitab al manazir) by Ibn al-Haytham [2]. Later the idea of a camera setup
was first introduced in 1021, and the cameras became commercialized in 1888
[3].

At the beginning of the camera revolution, cameras were not able to
record images. Instead, a pinhole setup was used to project the light on
another surface upside-down in greyscale. With the evolution of technology,
it became possible to record the image on a film in analogue cameras and in-
stant development inside the camera in Single Lens Reflex (SLR)-based tech-
nology. With more advancements, films get replaced by an imaging sensor
that breaks the entering light into pixels and stores it in the form of numbers
for each pixel which is the mechanism of Digital Single Lens Reflex (DSLR)
cameras [3].

The possibilities of three main cameras are explored in this work. The
considered camera setups are a combination of the mentioned cameras. The
following sections provide a brief history and introduction of used cameras.

Wide angle action camera

Many lenses and combinations have evolved over the centuries for pho-
tographing and recording [4]. For example, the wide-angle camera is made
to maintain a small focal length for attaining a wide angle and increasing the
size of the image. A small negative element is placed in front of the anterior
focus of the lens projection to attain a large field of view. The setting with
the combination of the lens and the large negative lens is called the reversed
telephoto [4]. The setting makes it easier to capture magnified images by
increasing the back focal distance of the lens.

We used wide-angle cameras specially designed for recording action videos.
The cameras can capture vast horizontal and vertical angles and be made to
record action sports and event videos [5].

Fisheye Camera

Fisheye cameras are wide-angle RGB cameras, first introduced in 1906 by
Wood [6]. The name fisheye is derived from the fact that the initial theory
and development of the camera are based on the assumption of how we
appear to the fish underwater. The lens development started in the 1920s.

It is impossible to capture an expansive view with a standard rectangular
lens. Moreover, making a rectangular lens that can give coverage of more
than 100◦ is challenging [7].

The lens of a fisheye camera is a convex-shaped, ultra-wide lens. It creates
a spherical dome image comprising an extreme distortion due to its non-
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linear distribution [8]. Two main kinds of lenses are common in the fisheye
camera. One of them is a circular lens. The whole image dome is inscribed
inside the film in the circular lens. The image is created by making horizontal,
vertical and diagonal FOV of 100◦. The other one is the full-frame fisheye
lens in which the circular dome of the image lies outside the film, and it is
obtained by diagonal coverage of 100◦.

The objects captured by a fisheye lens vary in appearance depending on
the distance from the camera. The objects just below the camera appear very
large and convex. As the objects move away from the camera, they appear
very small and distorted. Image correction may lead to significant loss of
information and overall image quality [8].

Due to the viewing angle of more than 180◦, the camera was initially
utilized to monitor clouds and forests. Nowadays main application areas for
fisheye lie in video surveillance. Other than surveillance, the cameras are also
utilized robotics, satellite position other computer vision areas [9, 10].

Despite a severe distortion around the corners in the circular lens, a fish-
eye camera provides extensive area coverage and achieves simplicity within
the mid-price range.

Thermal Cameras

Thermal sensing devices were introduced mainly for military use in the 1940s
and 1950s. The thermal sensing devices use the principles of infrared (IR)
radiation to create images [11]. The devices become publically available in
the 1980s.

Every object has some body temperature. Thermal sensing devices detect
a heated object in terms of the temperature difference. The more hot an object
is, the brighter it appears in a thermal image. However, the object can only
be distinguished if its body temperature varies from the background and
other objects [12]. Two primary imaging methods are used to capture the
image. In the first method, the sensor detects the image either pixel by pixel
or row by row. In the second method, the sensor detects the whole image
simultaneously. The first method is more time-consuming and less popular
nowadays [13].

Every camera detects electromagnetic radiation. As opposed to the other
RGB cameras that detect the light reflected by the objects, thermal cameras
absorb and detect the radiations emitted by an object. For thermal cameras,
the heat radiations to be detected lie in the infrared region of the electromag-
netic spectrum. The objects captured by thermal cameras lie in the range of
black, white and different scales(256) of grey [13]. Primarily white represents
the hot, but black as a heat source could be more understandable in some se-
tups. Pseudo-colours may also be used to understand different heated objects
in an image clearly.
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The lens of a thermal camera is not made of glass, as ordinary glass blocks
thermal radiation. Germanium and Chalcogenide glass(germanium-based)
are mainly used as a lens. The materials let pass the thermal radiations and
block the light [13].

Thermal cameras are also mainly used in surveillance, especially in night
vision and low-light conditions. However, their applications are not limited
to surveillance. They are widely used in industries, medicine, traffic and
many more. [13].

3.2 Setups

The following setups are being studied by using the cameras mentioned
above.

One fisheye camera (FC)

One Hikvision wide-angle Network Camera is used to capture the whole
field in the test setup. The camera’s field of view is kept 360◦ with the reso-
lution of 1280 × 1280. The camera recorded the video at 10fps for ten hours.
Data is transmitted by storing it on an SD card and then transferring it to
the computer for further processing. Images are compressed in JPEG, and
video is compressed in H264 format. The camera is derived by power over
Ethernet. The camera setup and the image example are shown in Fig. 3.2.

Three thermal cameras (TC)

Three AXIS Q1922-E, Thermal Network Cameras inline cover the whole field.
Each camera’s horizontal field of view is 57◦ with a resolution of 640x480.
The cameras record the videos at variable rates(29-30 fps) for 10 hours. Data
is transmitted by recording on SSD and then transferring to a computer for
further processing. For further study, the videos require time synchroniza-
tion. Overlapping regions between different camera setups are segmented
out. The images are stored in JPEG, and videos are stored in H264 format
for further studies. The cameras derive on power over Ethernet. The setup
does not cover the field area right below the camera poles. Fig. 3.3 shows the
camera setup, coverage area, and example images.

Two wide-angle action cameras (WC)

Two Go pro 5 cameras are set up to record the field at 30fps for 10 hours. The
camera will be mounted on a pole just below the fisheye camera. The cameras
operate on a battery, and the recordings are captured in SSD storage. A small
shield will be created to protect the cameras from rainwater. The video is
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(a) (b)

(c)

Fig. 3.2: (a) Hikvision Camera, (b) Field of view and area coverage of the camera. Where the
green rectangle represents the field and a grey area represents the camera coverage, (c) Virtual
image representation of field through the camera.

(a) (b)

(c) (d) (e)

Fig. 3.3: (a) Thermal camera, (b) Field of view and area coverage of the camera. Where the green
rectangle represents the field, and a grey area represents the camera coverage, [(c),(d),(e)] Virtual
image representation of field through cameras 1, 2, and 3, respectively.
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(a) (b)

(c) (d)

Fig. 3.4: (a) Wide angle action camera, (b) Field of view and area coverage of the camera. Where
the green rectangle represents the field and a grey area represents the camera coverage, [(c),(d)]
Virtual image representation of field through camera1 and camera2, respectively.

recorded as compressed in H264 formal. As the cameras can capture wide-
angle horizontally and vertically, a small field area below the pole is left
unattended. Fig. 3.4 shows the camera setup, coverage area, and example
images.

Multi-modal, One fisheye and one thermal camera (F-T-C)

The fisheye, in combination with the middle thermal camera, is studied to
monitor the pros and cons of each camera. The recordings for both cameras
are stored in an SSD. The time, space and frame rate synchronization is per-
formed after recording. The setup gives a full view of the field. The camera
setup, coverage area and example images are shown in Fig. 3.5.

One Rotating/panning Thermal camera (RTC)

One thermal panning camera is used to study the outcome and possibility
of monitoring the activities on the soccer field. The recordings are collected
via storage on SSD for further study. The camera operated at 29fps with a
resolution of 648x480. The camera setup and example frames are shown in
Fig. 3.6.
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(a)

(b) (c)

Fig. 3.5: (a) Field of view and area coverage of the F-T-C camera setup. Where the green rectangle
represents the field, and a grey area represents the camera coverage, (b) Virtual image represen-
tation of field through the thermal camera, (c) Virtual image representation of field through the
fisheye camera.

4 Pilot study-Behavioral Analysis

The setups were installed in a field in Aalborg, Denmark, on the 5th of Oc-
tober, 2017. All the cameras are installed for one day. Fig. 3.7 shows the
setup. The outcome of the setups is thoroughly studied and observed in
terms of resolution, complexity, price, occlusion, contrast, and image appear-
ance in different light and weather conditions. Fortunately, the day depicted
the overall weather and light conditions that a camera can encounter on a
typical day in northern Denmark. That conditions mainly include wind, sun,
shadows, and rain. In addition, cameras also captured daytime, nighttime,
and the transition of day-to-night recordings. Following are the five proposed
camera setups.

4.1 Initial observations

Following are the initial observations based on analyzing and studying the
recorded data.

• The fisheye camera is effortless and cheap to employ, but the image
quality could be better, especially at the corners of the fields. The iden-
tification of players becomes impossible in the corners, especially at
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(a)

(b)

Fig. 3.6: (a) Field of view and area coverage of the RTC camera setup. Where the green rectangle
represents the field and a grey area represents the camera coverage, (b) Virtual image represen-
tation of field through the camera.

Fig. 3.7: Field to be captured along with the camera setups on the pole.

night, e.g., Fig. 3.8

• Wide-angle give a good contrast of players over green grass with a very
good resolution. However, they also capture the clouds and different
light intensities more clearly. Shades and intensity variations are more
difficult to cater to in wide-angle. The effect of wind (pole shaking and
displaced images) is also more prominent in wide-angle go pro cameras
because of their small size. Fig. 3.9.

• Thermal cameras give a perfect result in the near field region. It is a
good option to cater to light variation and weather effects. However,
in far-field regions, player appearance is microscopic. This makes it
difficult to cater for occlusion. Fig. 3.10.

• Player recognition and tracking is more difficult in thermal and fisheye
cameras due to less resolution.
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(a) (b) (c) (d)

Fig. 3.8: Example images captured by the fisheye camera. (a) and (b) are from daytime while (c)
is from evening time and (d) is from night time.

(a) (b) (c) (d)

Fig. 3.9: Example images captured by wide-angle camera 1. (a) and (b) are from daytime while
(c) is from evening time and (d) is from night time.

• Rain effect is not very visible in any of the cameras.

5 Comparison analysis

The parameters chosen for comparison can vary depending on the desired
outcome. Real-world problem solving takes account of possible scenarios and
readily available resources. Resource management and accessibility play an
important role in finding solutions. Depending upon the municipality’s re-
quirement, local weather conditions, availability of resources at local football
fields and demands of the project, the following are the parameters studied
and compared for all the setups. Table 3.1 shows the complete analysis.

• Camera cost: Thermal camera that we are using is expensive. Installing
three thermal cameras together in TC adds up the cost. Wide-angle
cameras, on the other hand, are a bit cheaper solution. Another plus
in wide-angle camera installation is the less number of camera require-
ments due to their wide coverage area. This also reduces the total cost
of installation.

• Recognition visibility: Both thermal and fisheye setups can not pro-
vide the solution to person recognition. The fisheye camera has a ter-
rible resolution as the object moves away from the centre. The nearest
player to be captured in the field is almost 10m away from the cam-
era, with a resolution of 35x35 pixels. This makes Recognition almost
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(a) (b) (c)

Fig. 3.10: Example images captured by Thermal camera. (a), (b) and (c) are from camera 1, 2
and 3 from TC respectively.

impossible. Contrary to that, the nearest person in a wide-angle ac-
tion camera is of resolution 126x206, which may allow one to recognize
a person through the image. A thermal camera with a resolution of
640x480 and a nearest-person resolution of 24x60 is also unsuitable for
solving the recognition problem. For every camera setup, the visibility
of players decreases as we move towards the outer corner of the field.

• Day vision: The observation for the one-day video has shown that ev-
ery camera setup is performing well enough in daylight conditions. The
video from WC is particularly good because of its high resolution.

• Night vision: We have observed that thermal cameras are perfect for
observing night vision. So TC and RTC perform well in the nighttime.
WC also perform well enough except at the outer corner of the field due
to low light conditions. The vision in FC becomes unreadable at night,
combining low light and lousy corner resolution. We have hypothesized
that F-T-C can perform well by making a learning algorithm to learn
from thermal feed and applying that to fisheye feed.

• Occlusion: The problem of occlusion is easy to handle in colour camera
setups than in thermal camera setups. Especially as the objects of inter-
est move farther away from the camera, for catering for the problem of
occlusion, we have again hypothesized that learning from the fisheye
feed and applying it to the thermal feed can improve to detection of
maximum players in F-T-C.

• Complexity: Here, we are discussing installation and data preparation
complexity. Installation complexity also includes setup preparation. As
we increase the number of cameras, the complexity increases with it.
Installing FC or RTC is the simplest solution, as they only have one
camera. TC and WC are almost equally complex in terms of installation
and data processing. For both setups, the cameras’ data need to be
synchronized. WC needs extra care and build-up while installing as the
cameras are tiny in size, and keeping those stable in the northern winds
is not easy. F-T-C is equally complex in installation as TC, but data
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preparation is relatively complex. The data needs to be synchronized
both in time and space. Time synchronization takes more time when
both cameras operate at different rates and save the videos in variable
clip sizes. It becomes reasonably challenging to process real-time feed.

• Weather effects: For the one day of video, thermal setups, i.e. TC and
RTC, behave particularly well in all weather conditions. For F-T-C, we
have hypothesized that a thermal camera can be used to cater to the
weather-related effect in the fisheye setup. Unfortunately, the fisheye
setup records weather effects badly as the camera suffers from distor-
tion. On the other hand, even though WC produces very good resolu-
tion and quality feed, It still gets significantly affected by the weather.
With good person representation in WC, every other environmental ef-
fect is visible in the feed.

• Area coverage: Out of all setups, FC and F-T-C provide the full field
coverage due to the presence of fisheye cameras. TC and WC miss some
of the fields below the camera setups. RTC, on the other hand, lacks
time-to-time coverage (see, Fig. 3.6a. A significant patch of field can
be missed for observation for a particular period. Full-time coverage of
the field is a crucial consideration in applying occupancy analysis. All
four sides of the fields should be observed in all time slots to consider
any player entering or leaving the field. Our application differs from
other sports-related computer vision areas where some people play in
a sports field for a particular time as a team. The application for such a
play could be player detection, player tracking, game analysis and many
more. However, this thesis is more focused on occupancy analysis of the
field, which can be occupied by people not playing but just stretching
in the sun. They can enter and leave the field at any instance of time.

• Power supply: Wide angle action cameras operate on battery while all
the other setups work on power over Ethernet. Working with cameras
with battery-driven options for long recording periods is not conve-
nient. Power over Ethernet and external power is a better option.

• Privacy preservation: an essential requirement in our setup is privacy
preservation. The data we are dealing with is from local soccer field
data. Not everyone likes to be observed while playing at sports fields.
It eventually decreases the number of people coming to the fields. Plus,
it raises the question of taking the consent of the field users before
recording, which could make the whole process complex. Our first and
foremost consideration is to make the whole system so that it does not
violate the personal privacy of the users of the sports facility.
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The initial analysis gave us know-how on what kind of data we will deal
with if we deploy and experiment with it further. Our main requirement
from the setup for the particular application of occupancy analysis is full-
time and full-area coverage. WC and RTC are deducted from the list for
further studies. WC is a battery-driven setup and can hinder long recording
time, while RTC can not provide full-field coverage for all-time instances.
Based on their complexity, other camera setups will be individually studied
in the next chapters.

6 Conclusion

This chapter focuses on the preliminary study performed to choose camera
setups for further analysis. Different camera setups, their limitations and
their analytical performance are discussed in detail. A test setup was em-
ployed on the field. Video of a duration of ten hours for all the setups was
observed critically. Out of five, three setups, FC, TC, and F-T-C, are chosen for
further analysis. The following chapters in the thesis further experiment on
above mentioned three setups to study their behaviour in terms of different
performance measures.
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1. Introduction

Abstract

Occupancy analysis is critical for resource assessment. This paper presents a novel
solution for occupancy analysis in soccer fields, which is needed to assist the manage-
ment for resource assessment. The analysis is based on player detection in the soccer
fields. The process of detection is performed by using one static fish-eye camera, which
is achieved by enhancement of the players based on their structural properties using
2-D Gabor wavelet combined with background subtraction. Moreover, the gray scale
intensity matching is performed for catering luminance issues. Occlusion is handled
through a color and compactness based analysis of expected player regions. It has
been shown through experiments that the developed method results in precise analy-
sis of occupancy i.e. an average error of .0094 % for no player in the field, 2.67% for
full activity in the field and 3.64% during transition.

1 Introduction

With increasing focus on optimization of resources and time of community,
occupancy analysis is becoming vital for the assessment of resources. This
technology has been applied to various areas of life e.g. indoor sports arena,
in offices for managing light resources, parking areas monitoring and many
more [11, 15, 19]. In the field of outdoor sports arenas, specifically soccer
fields, authorities are dealing with investing many resources on installing ar-
tificial grass without having the knowledge of its significance and utilization.
These facilities are highly demanded by local clubs, but very expensive to
build, and manual observations are cumbersome and costly. The need of oc-
cupancy analysis thus become very important. Hence, there is a need for a
system that is cheap and utilizes minimum resources for monitoring sports
arenas.
Several solutions [20, 22, 26] have been proposed for sports analysis. Those
systems typically employ a large number of cameras, making the whole sys-
tem expensive. In addition, a general public trust of large-scale camera in-
stallations in public facilities are harder to come by due to privacy issues. We
therefore apply a one fish-eye camera solution, which is able to capture the
complete sports field from distant location. One of the advantage of using
fish-eye cameras is the cost effectiveness of this technology. The camera is
placed at an aerial view to capture the complete field. This makes people
identification difficult, thereby maintaining the privacy. On the other hand,
this also makes it hard to detect correct occupancy in the field. As people
often appear to be small, they can be misclassified as any other discontinuity
in the image. Other than that, because of distant field of view, the challenges
of occlusions appear to be more challenging in these images, see figure 4.1.
The novelty of the proposed work is a reliable method for occupancy analy-
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Fig. 4.1: Scenes with blur and occluded players

sis using fish-eye camera videos. As there is no data set available for fish eye
camera soccer videos, so our work is focused on more challenging real-life
videos. We utilized the data collected from local soccer field by using only
one camera. The focus of the work is to identify the occupancy level in those
fields.

2 Literature review

Two type of approaches are currently used to analyze occupancy; non visual
and image-based approach. In non-visual approach sensor data is used to
analyze level of occupancy in the closed room environment. Zhao et. al. [3]
performed occupancy analysis in offices. They used Bayesian belief network
by utilizing system information e.g. Wi-Fi, chair sensor, GPS location, and
keyboard and mouse sensor. Data from passive infrared (PIR) sensors is
most commonly used sensor data [4–6]. Energy efficient operation for light-
ing mainly use the PIR sensors. Carbon dioxide (CO2) level in rooms is also
an attractive indicator for analysis, as it is the most obvious consequence of
human presence. This indicator is also independent of human movement to
some extent [7, 8]. Another way to solve the occupancy problem is to build
statistical models for the data [7, 9, 10]. Pedersen et. al. [11] applies image
information by defining some rules for trajectory of sensor data to detect oc-
cupancy.
The most common disadvantage of existing non-visual methods for occu-
pancy detection is that these sensors can only be utilized in buildings and
closed rooms and are not suited for large outdoor fields.
Image based methods on the other hand [12–14] use the video sequences and
detect the people to encounter the problem. Zhang et. al. [14] utilized the
depth-frame data to detect and track moving people. They used kinetic cam-
era, placed just 4.0 m above the people. Pedersen et. al. [11] follow the same
method and detect and track people 2.3-3.0 m below the camera.
Occupancy analysis in sports arenas is previously performed by Gade et.
al. [15] and [16]. They used thermal cameras for occupancy analysis of in-
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door sports arenas.
All the above mentioned methods either deal with the occupancy detection
in indoor buildings or arenas in closed environment. For outdoor envi-
ronments, the analysis is also performed to monitor occupancy of parking
lots [17–19].
Our work is the extension of [15] and [16]. The work in [15] and [16] utilized
a set of thermal cameras for occupancy analysis in indoor sports arenas. Here
we are using fish-eye camera for capturing outdoor soccer fields. The main
part of camera based systems for occupancy detection is detection of people.
In case of sports arenas it is the detection of players. A lot of work has been
performed on the detection of players in soccer fields by using broadcast
videos or more than one camera approach.
A system based on motional graphic feature is proposed by Liu et. al. [20].
They performed the motion analysis and action recognition of players in
broadcast videos. Their approach is based on SVM and analysis of optical
flow. Another motion detection based system is proposed by Mahmoudi et.
al. [21]. The system utilized optical flow analysis using Lucas-Kanade algo-
rithm for motion tracking. Liu et. al. [22] performed player detection and
tracking based on Markov Chain Monte Carlo data association using Kalman
filter. They used broadcasting video for the test of their algorithm. Khan et.
al. [23] proposed a colour based segmentation method and Kalman filter for
dealing with occlusion problems while tracking. Hayet et. al. [24] suggested
a solution based on point distribution model. They performed tracking by
matching model points with a set of similar feature points. They dealt with
partial occlusion situations on specific video streams captured through multi-
ple cameras with variable zoom and rotations. Iwase and Saito [25] proposed
a solution based on 8 cameras for dealing with occlusion. Beetz et. al. [26]
used ontology models of game with motion trajectories in in-camera view of
broadcasting videos. Area of interest was first separated by intensity vari-
ance and the player identification and tracking was performed by color base
segmentation and Blackwellized Resampling particle Filter. Huang et. al. [27]
performed players detection by using forward shape analysis-based approach
obtained by a trained color histogram-based playfield detector and connected
component analysis. They employed Euclidean distance transform to extract
skeletons for every foreground blob, and then perform shape analysis to re-
move false positive detection. Yang et. al. [28] detected soccer players by
edge detection combined with Otsu algorithm. They used broadcast videos
for testing their algorithm. Another method for detection of players in broad-
cast videos is performed by Mohammad et. al. [29]. They used Multilayer
Perceptron Neural Network as classifier for players classification. Gerke et.
al. [31] utilized color histogram and spatiograms in an unsupervised manner
for detection. They also tested their algorithm on broadcast videos. Sermet-
can et. al. [32] evaluated target players likelihood of being player or not by
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using combined appearance and motion model. They used two cameras for
deteting and tracking players. M. Manafifard et. al. [33] proposed a detector,
that utilizes two-step blob detection (grass-based blob detection followed by
an edge-based blob detection) combined with particle swarm optimization
(PSO) by assigning sub-swarms to each detected blob.
Our work is based on the occupancy analysis of soccer fields by counting the
number of players in the field, using only one wide angle camera to keep the
setup simple and cheap. Our detection is based on enhancement of players
by using wavelet transform and then color and edge information.

3 Methodology

3.1 Approach

Occupancy analysis is broadly divided into two categories, i.e. player detec-
tion, and occupancy monitoring. The system for the analysis of occupancy
uses RGB frames of video sequence as an input to find players in the field,
whereas in monitoring, the system detects the changes in the number of play-
ers at different time moments. This paper presents a method to perform these
analysis. The complete flow diagram of the proposed system is shown in fig
4.2.
The proposed system is composed of following three stages.

• Candidate player region extraction.

• Region classification.

• Players monitoring.

In the first phase, image enhancement is performed to enhance texture of all
possible candidate regions for players. Moreover, background subtraction is
implemented to remove all candidate enhanced region that belongs to the
background i.e. grass, field lines etc. In stage 2, Candidate regions are classi-
fied on the basis of color, shape and size. Finally, the number of players are
calculated over a large period to determine the level of occupancy.

3.2 Data Collection

The fish-eye camera was placed in one public soccer field in Aarhus, Den-
mark. The soccer field was monitored for four days from 19-22 September,
2016. It captured the whole arena from an aerial view (see figure 4.3). Af-
terwards, the sequences of videos were transferred to a computer in order to
perform the analysis.
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Fig. 4.2: Flow diagram for proposed system

3.3 Distortion correction

In our system, since the camera films a large area, the lens cause a radial
distortion resulting in a convex and round appearance of the image. This
distortion must be eliminated, So that the wrapped pixels can be placed at
their correct location. The success criteria of most of the distortion correction
techniques is the straightening of the curved lines that appears in the image.
We, in our work, focused on an image that is clear enough to identify players
rather than line straightening. According to Smita’s Distortion model [1], the
relation between wrapped pixels qd = (xd, yd) and their correct location in
the image qu = (xu, yu) is expressed as

qu = qd(1 + kq2
d) (4.1)

Here k is the lens specific distortion parameter. The above equation can be
written in terms of radial dependent magnification M = 1/(1 + M2kq2

u) as

xd = xu M(k, q2
u) (4.2)

yd = yu M(k, q2
u) (4.3)

Here qu =
√
(x2

u + y2
u), so it is suggested to have the model in terms of q2

u.
The points from the distorted image are mapped on the model image on
corrected position qu = (xu, yu) in order to magnify and perceive a better
understanding of player’s positions in our region of interest. The final image
does not correct the straight lines but produce a better, magnified and clear
image necessary for occupancy analysis.
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Fig. 4.3: Frame acquired by the fish-eye camera

3.4 Player enhancement

As this work takes into account the real scenario with natural grass and only
one camera view, It is insufficient to use only background subtraction and
color based segmentation to give some satisfactory results. Pixels belonging
to one single player may appear as separate blobs while using only back-
ground subtraction. It also results in missing the detection of many players,
as the size of the players is small in the image. Therefore, we are using pixel
based enhancement and segmentation in our work.
Our method enhance the soccer players in the model image using Gabor
wavelets. Gabor wavelets are flexible in terms of different frequencies and
orientations, which is useful for enhancing players based on their textures.
This emphasizes on locating player in the soccer field as single blobs re-
gardless of illumination conditions. Wavelets perform as low-level oriented
edge discriminators [2]. Since the players have directional patterns, 2-D Con-
tinuous Wavelet Transform are the best option to use for enhancement due
to their directional selectiveness capability. They can be used to detect even
slightly slanted features by using different frequency tunings. These wavelets
are defined as

ψG(x) = exp(jko)exp(−1
2
|Ax|2) (4.4)
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(a) (b)

Fig. 4.4: a) Image after distortion correction b) Image after applying wavelets

Here A ia elongation of the filter defined by

[
ε−

1
2 0

0 1

]
and ko ∈ R is a vec-

tor that defines the frequency of the complex exponential. The enhancement
equation can be defined as

Tψ(b, θ, a) = C− 1
2

ψ a
∫

exp(jkb)ψ̂∗(ar−θk) Î(k)d2k (4.5)

Here a and b are the dilation parameter and displacement vectors respec-
tively, θ defines the angle of rotation, Cψ is the normalization constant for the
particular wavelet ψ and I is the image representation as square integral.
For each pixel position in an image the max(Tψ(b, θ, a)) is computed for span-
ning θ from 0o to 170o at steps of 8o. Inverse green image plane is used
for enhancement as it gives best contrast of players over nearly green grass.
Transformed model image and the image after enhancement is shown in the
figure 4.4.

3.5 Backgrond subtraction and player detection

The enhanced soccer field image contains some lines and noise of the field
which may cause the separation of the players from the field difficult. To
decrease this noise we have integrated our idea with a very useful and con-
venient background subtraction approach.
Background subtraction is the well known approach for motion detection. It
is based on assessment of current frame by comparing it with a reference
frame. Let the enhanced reference background model obtained after using
the Guassian Mixture model [30] be BE(x, y) and the enhanced current frame
be IE(x, y), then a pixel (x, y) is supposed to be a foreground pixel if it differs
from the background model BE(x, y) more than twice the standard devia-
tion [34]. Gray level pixel intensity matching with the reference background
frame is applied on the images before enhancement and subtraction to min-
imize the changing illuminance effects. Figure 4.5 shows the resultaning
image obtained after background elimination.
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The implemented 2D wavelet based background subtraction model use only
the edge and energy information of each point in a frame. Each point in the
image is evaluated in a small sliding window to be categorized as moving or
static. The small edges that may be discontinuities in natural grass are not
included in the final image. This leads to the final image that contains the
players only.

Fig. 4.5: Final response after background elimination shown with the applied definition of
boundary

As seen in fig. 4.5 detection of players in the field is a difficult task with
one wide angle lens as the size of a player in the image are less 30 pixel
height. This often results in unclear image content. Shapes and colors seems
to be blurred and share the same boundary.
As we are using static camera configurations, so we can define the boundary
of the field ourself, as natural does not always give good contrast. Region
of interest boundaries are defined and threshold on the intensities in the en-
hanced d image is applied to extract the candidate player regions. Morphol-
ogy is used to remove small noise pixels. Enhancement of the frame helps
us in extracting the candidate players as full-connected blobs but further pro-
cessing is required to separate the falsely connected candidate regions (oc-
clusions).
Candidate player regions that may contain occlusions are grouped into ab-
normal regions. Abnormal regions are separated based on expected length
of major axis, minor axis and finally the compactness of the pixels in those
specific regions. Furthermore, the area of the skeletonized abnormal region
is calculated to confirm the occlusion. In order to split the abnormal regions,
color constraint are applied in the regions. The color model for the shirts
of the players is defined in HSV space and the value of each pixel (x, y) in
candidate region is compared with the predefined color model for all the ab-
normal regions. If the pixel in that candidate region lie in the model space it
is labeled as true shirt pixel otherwise it is discarded. This means that only
the points belonging to the upper body of the player are labeled, as true pos-
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itive (for that particular abnormal region), and all other pixels are labeled as
negative. This will result in separating the blobs for each player by eliminat-
ing parts of body other than the upper body. This is shown in fig. 4.6. Final
players detection is shown in the fig. 4.7.

Fig. 4.6: Occluded players after applying color and compactness constraints

Fig. 4.7: Finally detected players in soccer field

4 Experimental results

As there is no publically available data set for fish-eye camera videos of soc-
cer fields, so experiment is carried out placing our own camera in the soccer
field in Aarhus, Denmark. A static Hikvision Fish-eye network camera, with
a resolution of 1280× 1280 pixels and a field-of-view of 360o, is used to cover
the experiment. It captures the video at 10 frames per second and covers the
complete field areas and some surroundings. 6000 frames of videos are used
to test the proposed method. The ground truth is calculated by manually
counting the number of persons, frame by frame, in the video. Player’s oc-
cupancy i.e the number of players in the field over the time, shown in figure
4.8, is computed by taking the mean for the window of 100 samples. It can
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be visualized that the proposed scheme detects the players occupancy with
low error rate. It is observed that the error is very low when detecting empty
fields, an average error of 0.0094 %. With full activity on the field (22-24
persons) the average error is found to be 2.67%, while during the transition,
when lot of players leave in or out of the field, the error is 3.64%.

Fig. 4.8: Occupancy analysis over 6000 samples

5 Conclusion
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1. Introduction

Abstract

Estimating the number of soccer players is crucial information for occupancy analysis
and other monitoring activities in sports analysis. It depends on player detection in
the field that should be independent of the environment and light conditions. Ther-
mal cameras are therefore a better option over normal RGB cameras. Detection of
non-occluded players is doable but precise estimation of number of the players in
groups is hard to achieve. Here we propose a novel method for estimating number of
the players in groups using computer graphics and virtual simulations. Occlusion
conditions are first classified by using distinctive set of features trained by a bagged
tree classifier. Estimation of the number of players is then performed by maximum
likelihood of probability density based approach to further classify the occluded play-
ers. The results show that the implemented strategy is capable of providing precise
results even during occlusion conditions.

1 Introduction

Soccer is the most popular sport around the world [34]. The application of
soccer video analysis includes strategy understanding, player action recogni-
tion, occupancy analysis and many more. Estimation of number of players
is the foundation of understanding soccer especially if we need to know the
occupancy in a particular field. The occupancy analysis can be achieved by
counting the number of players with respect to the time stamp over a large
period [11]. Player detection and correct estimation of a number of players in
the sports field is the basic step in every sports analysis. A number of solu-
tions [36] have been proposed for soccer analysis. These solutions normally
employ a large number of cameras or used broadcast videos for analysis. This
makes the whole system very complex to deploy in local sports fields. Fur-
thermore, the communal trust of large-scale, high-resolution camera systems
in public fields is harder to come by due to the general privacy issues.

Precisely estimating the number of players is a challenging topic due to
various factors. These factors consist of occlusion, motion blur, varying il-
lumination, outdoor weather, changing player sizes and inconsistency in ap-
pearance of the players. Even though multi-camera solutions improves the
precision by providing more information [8]. They also increase the hard-
ware and complexity of the whole system. RGB cameras are also effective in
many cases but they are challenged in varying illumination conditions.

Consequently, we propose a thermal camera based solution for estimating
the number of players in groups and counting. Three thermal cameras are in-
stalled on a single pole. The setup is able to capture the complete soccer field
from a distant location. One of the advantages of using three thermal cameras
on the same location is its ease of installation. The other obvious advantage
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of the thermal camera over normal cameras is the privacy preservation, be-
cause thermal view makes people identification almost impossible. Contrary
to this, it is hard to detect and estimate the correct number of players, spe-
cially when they are in groups. This is because thermal cameras provide less
textual information about player appearance. The main contribution of this
work is a simulation-based approach that efficiently deals with occlusion in
the thermal camera view.

2 State of the art

Player Detection in Soccer Field

Various solution for the detection of players in soccer fields have been pro-
posed. These methods include background subtraction and spectator region
extractions [5, 8, 19, 20, 24, ]. However, there may remain some noisy regions
in the image (line segments and other discontinuities in the image). Yoon et
al. [43] proposed a solution based on player regions separation by defining
thresholds for size, compactness, ratio of vertical to horizontal length and
color distribution. Haung et al. [18] presented a shape-based player detection
method in order to remove noisy areas from connected components. Yao
et al. [42] used the confidence map for segmentation of players in broadcast
videos. The confidence map is generated from the output of a Hough forest.

A Motion graphic feature based system is proposed by Liu et al. [25].
Their approach is based on motion analysis and action recognition of play-
ers using SVM and optical flow analysis in broadcast videos. Mahmoudi et
al. [28] proposed another motion based system. Their system also utilized op-
tical flow analysis with Lucas-Kanade algorithm for detection and tracking of
players. A method based on Markov Chain Monte Carlo data association and
Kalman filter is proposed by Liu et al. [26]. A combined appearance and mo-
tion model for evaluating player regions is proposed by Sermetcan et al. [1].
They used two camera system for detection and tracking players. Direkoglu
et al. [7] proposed an 8 camera based system for detection of player in the
field. They proposed a diffusion equation based solution to make the whole
system invariant of color and rotation information.

Beetz et al. [2] utilized ontology models of game together with motion
trajectories of players for detection. They suggested Blackwellized Resam-
pling particle Filter for tracking of players. Intensity variance and color
based segmentation is used for player segmentation in their work. Liu et
al. [27] proposed a context-conditioned motion based tracking model. They
work is based on the fact that the player response in an existing situation
in only a limited number of ways. Yang et al. [41] proposed edge detection
and threshold based player detection. They used broadcast videos for test-
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(a) (b)

(c) (d)

(e)

Fig. 5.1: (a) shows the top camera view of the soccer field with camera positions, (b) is the
reference frame from left camera view, (c) shows the binary Image, (d) is the mask of the image
and (e) is the final image we get after applying background mask and morphology.
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ing their algorithm. Heydari et al. [17] used Multilayer Perceptron Neural
Networks for classification of players in broadcast videos. Gerke et al. [15]
proposed color histogram and spatiograms for the detection of players. They
enhanced their work using histogram based features for the identification of
players [14]. They also tested their algorithm on broadcast videos. Most of
the literature is either based on evaluation on broadcast videos or large cam-
era setup is employed for player detection and tracking. This leads to the
lack of more simple and robust approach for estimating number of players.

Occlusion Handling

Occlusion is one of the major problems while dealing with sports videos.
Khan et al. [31] proposed a color based segmentation method and Kalman
filter for dealing with occlusion problems during tracking. Hayet et al. [16]
performed detection based on point distribution model. They dealt with par-
tial occlusion situations on specific video streams captured through multiple
cameras with variable zoom and rotations. Iwase and Saito [20] proposed
a solution based on 8 cameras for dealing with occlusion. Sabirin et al. [33]
proposed free viewpoint based approach to cater occlusion while tracking.
Kristoffersen et al. [23] perform people counting and occlusion handling by
using stereo thermal camera setup in the street. They perform 3-D recon-
struction and deal with occlusion based on clustering and tracking of the 3D
point clouds. Manafifard et al. [29] suggested a detector that performs two-
step blob detection (grass-based blob detection followed by an edge-based
blob detection). They handled occlusion by a blob-guided PSO multi-player
detection algorithm. Gade et al. [11] proposed a system based on identifying
the occlusion in thermal cameras by defining thresholds on length and width
of the blobs. They also enhance their work of player counting in indoor and
outdoor sports arenas using constraint information of the stable periods by
Graph search optimization [13]. In most of the literature, either the occlusion
is handled in tracking of the players or complex system is employed to cap-
ture the videos at multiple angles. Choosing a threshold is also a compromise
between false positives (spurious occlusions) and false negatives (missed oc-
clusions) detections.

Thermal cameras

Automatic identification of human body includes both the visual and ther-
mal information [4, 22, 32, 37, 40]. A comprehensive survey regarding ther-
mal cameras and their application is performed by Gade et al. [12] Gade et
al. [10, 11, 13] also proposed player counting and occupancy analysis by us-
ing thermal cameras in indoor sports arenas. Other work in the domain of
thermal cameras for video analysis and human detection is pedestrian detec-
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Fig. 5.2: Flow diagram for the proposed system.

tion and counting [23, 39]. Most of the work for utilizing thermal cameras
in sports analysis is related to indoor sports arenas with a relevantly closed
environment and small area of interest. Large outdoor sports fields are yet to
be analyzed with thermal camera setups.

3 Proposed Method

Most vision systems for detection and counting of players in a sport field are
either complex, in terms of number of cameras and controlled light environ-
ment, or they lack any supervised algorithm for the detection of player on
a soccer field. In this work, we proposed a three staged supervised player
detection and counting system i.e. candidate player detection, occlusion de-
tection and estimation of number of players in each occluded group.

Player detection in soccer has always been a challenging task because of
various factor i.e. weather (wind, rain, snow, clouds, etc.) and varying light
conditions. Moreover, the shape, geometry and size of the player in the field
vary with the angle and position of the camera.

To cope with all these issues here we propose a fixed three thermal camera-
based solution that is independent of varying light and weather conditions
and for the evaluation of our algorithm, we apply our approach to the out-
door field of soccer. The camera setup is shown in figure 9.4a. The proposed
approach for estimating the number of players consist of the following steps.
Given a video frame by the thermal camera, we compute a binary image. We
have assumed that a player is any human on the field that could be a team
player or a referee. From the resulting image a feature vector is extracted
from each blob and afterwards, a bagged tree classifier is implemented to
separate blobs into occluded and non-occluded players. Occluded players
are then fed to a maximum likelihood of density estimation analysis to esti-
mate the actual number of players in each occluded blob.
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The whole process, of occlusion detection and estimating number of players
in the occluded blob, is illustrated in the figure 5.2 and described in details
in the following.

3.1 Player Detection

The thermal camera captures grey scale where a warm object, which is a
player in our case, appears to be brighter than the surroundings and back-
ground. The first step in our algorithm is to detect and separate these objects
from the image. Maximum entropy based thresholding that finds the thresh-
old value based on the sum of entropies is employed for the segmentation of
these light objects [21]. There may remain some blobs and noise outside the
field because of intensity variations or spectators. Those blobs are removed
from the image by a manually marked geometry based field mask. Blobs
smaller than specified minimum area are discarded as they may belong to
some noise and morphological closing is applied to join the other small blobs.
The blobs are then labeled using a contour-finding algorithm [35].

3.2 Occlusion Detection

People standing beside or behind each other often merge into one big blob.
These blobs come under the category of occlusion. One of the major contri-
bution in this paper is occlusion handling by utilizing only blob information.
Where the aim is to decide if a blob is one player or more than one (occluded
player).

Images obtained from a thermal camera do not carry much textual or
color information. Also, the players have different posture, shape and size
that depending on the distance and orientation of the cameras. Moreover,
the players on the border of the field appear too small to detect. Therefore,
the normal state of the art feature extraction methods fails. The only thing
that can be utilized is the shape and orientation of the blobs.

Feature Vector Information

Players, whether occluded or non-occluded, appear larger near the camera.
However, at the same pixel position, an occluded blob appears to be larger
than a non-occluded blob. The non-occluded blob always has a vertically ori-
ented shape, as players are always vertically oriented from the camera point
of view. For an automated system to distinguish between occluded and non-
occluded regions, a feature vector based on the blob information is formed
for each candidate region. If a binary image I contains N potential candidate
regions, then the set representation for an image I is I = {I1, I2....IN}. Each
candidate region is considered as a sample for classification and represented
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(a) (b) (c)

(d) (e) (f)

Fig. 5.3: (a), (b) and (c) show the heat map, skeleton mask and connected points of an occluded
region, (d), (e) and (f) show the heat map, skeleton mask and connected points of a non-occluded
region. Note that red circles in (c) and (f) show the connected points whereas green circles and
lines are the branch points.

by a feature vector containing all M features, i.e. for a sample non-occluded
blob Ii the feature vector is Ii = { f1, f2, f3....FM}, where i = {1, 2, 3, ...N}. The
set of features utilized here are:

• Connected point slope: The connected points and branch points say
C(x, y) of the skeleton of the blobs are founded by using [9]. In the case
of non-occluded blobs all the founded points, C = {C1, C2, C3, ....Ck},
are connected in a single vertical symmetry. While the blob of an oc-
cluded group of players normally have two or more vertical symme-
tries. In these cases, slopes between each connected point provides a
useful information to distinguish between occluded and non-occluded
players’ blobs and is computed according to the following equation,

slopek =
yk+1 − yk
xk+1 − xk

(5.1)

Where k represents a point in the set of all potential connected points,
K from 1 : k, with k = 1 is the top branch point and K = k is the bottom-
most branch point. In the case of non-occluded player blobs the slopes
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would be greater between each connected point, whereas the in case of
occlusion, where there are two or more vertical symmetries the slopes
would be smaller.

• Connected point distance: This is the distance between the connected
points in the skeleton of a blob. It can be observed in figure 5.3d that
for some connected points, smaller slopes can occur in non-occluded
cases as well. In that cases the distance between the connected points
contain useful information. So, If two connected points with smaller
slope have a larger distance between them, then they probably belong
to an occluded blob otherwise not, as shown in the figure 5.3c.

• Convex area: It is the area of the convex hull of a blob. The convex
area of occluded blobs appears to be larger than the convex area of
non-occluded blob at the same position. But as we move away from
the camera both occluded and non-occluded blobs appear to be small.
So the blob area with respect to pixel distance from the camera is con-
sidered as a feature in our case. The pixel distance is calculated by
equation 5.2.

y′ =

√
| 640

2
− y |2 + | 480 − x |2 (5.2)

Here x and y are the pixel locations in image I (varying from 0 to 640
and 0 to 480 respectively). y′ is the pixel distance with respect to the
camera (see figure 5.4b) and 640 x 480 is the size of the image.

• Diagonal Length of bounding box: The diagonal distance of the
bounding box (figure 5.4a) is the last feature to be used for classification.
This distance would be larger for occluded blobs then non-occluded
blobs.

Classification using Bragged Tree Classifier

Feature extraction is followed by the implementation of Bragged tree classi-
fier [3] to distinguish between occlusion and non-occlusion blobs. The train-
ing dataset used for the classifier includes 1700 non-occluded and 120 oc-
cluded player blobs samples collected from over three different soccer videos.
Evaluation of the proposed classifier was performed using k-folds cross vali-
dation with folds selected to be 5. Results are explained in section 4.2.

3.3 Estimating the number of players

Here we present a novel method for estimating the number of players in an
occluded blob. Our method estimates the number of players in a blob by
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(a) (b)

Fig. 5.4: (a) The diagonal length of a bounding box is measured between the corners ’a’ and ’b’,
(b) shows the pixel distance calculation where the blue lines are the pixel distances and red lines
are the original distances in the image plane.

(a) (b)

Fig. 5.5: Virtual setup. (a).Top View of our setup, (b). Side View of our setup.

comparing the size of the detected blob with different likelihoods of learnt
blob sizes created in virtual environment. A virtual setup of a football field
with real world field coordinates, camera height, viewing angle and resolu-
tion is created using unity [38]. A human body is modeled as cylindrical
blobs. The height, depth and width of the cylinders are taken as standard
person height and width. Virtual player occlusion is created by considering
the fact that occlusion can occur in a finite number of possible ways. All
of these are simulated and a likelihood density is learned for each distance
from the camera. Shadows are not considered in our work as the background
surface is non-reflecting and no shadow occurs in case of thermal view. The
virtual setup is illustrated in figure 5.5

The process of simulating data for occlusion of two persons is

1. One static player is placed at minimum possible distance from the cam-
era in the field.

2. The second player is shifted horizontally towards the first player from
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Fig. 5.6: (a), (b) and (c) are the examples of virtual projections of two, three and four occluded
players, respectively. (d), (e) and (f) are the normalized probability densities with respect to
distance.

right to left in steps of 0.05 meter until they occlude in the 2D camera
view.

3. The instant occlusion occurs the algorithm measures the combined pixel
area of the blob.

4. The second player is shifted until the players are non-occluded in the
camera. For each step the pixel area of the blob is measured.

5. The second person now shifts 0.05 meters above the previous position
and steps 6.4b-6.4e are repeated until no occlusion is present.

6. The first static person is then moved 1m further away from the initial
position and the process (steps 6.4b-6.4f) is repeated for the entire field.

Since the size of a blob to a large degree is independent of the viewing direc-
tion, the steps above are only required for one particular viewing direction,
and hence the size of a blob only depends on the distance from the camera.
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The process for three and four players follows a similar procedure except that
it forms more combinations of static and moving players. The process could
be repeated for higher number of players but the data set we are using is
having a maximum of four occluded players.

Maximum likelihood based density estimation

The processes above result in 9978 possible occlusion combinations for two
players, 12401 possible occlusion combination for three players and 33001
possible occlusion combination for four players. The size of each combination
is normalized by the size of one simulated person at that particular distance.
This results in a likelihood distribution that expresses the size as a function of
the number of persons. This is illustrated in figure 5.6. After classification of

Fig. 5.7: Relationship between blob area and camera distance.

occlusion, see figure 5.2, pixel distance with respect to camera is first calcu-
lated for each occluded blob (see equation 5.2). Then the blob is normalized
with respect to the pixel area of a one-player blob, so the measure can be
compared with the simulated data. In order to perform this normalization,
an analytic function is learned from one-player blobs and their distances to
the camera, see figure 6.3. This lead us to formulate a general relationship
between pixel distance from the camera and average pixel area of a person
that can be used for estimating the area of one person at every pixel location.
The relationship is dependent on external parameters like camera height and
tilt angle.
Normalized area with its pixel distance is compared with the virtually gener-
ated likelihood distributions. The one that matches best determine the actual
number of players in a particular blob. In case, the pixel distance does not
match with any of the learn likelihood densities, the nearest neighbor dis-
tance is considered in that case.
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4 Experiments

4.1 Data and Setup

As there exist no publicly available soccer data captured with thermal cam-
eras, we have used our own captured data for evaluation purposes. The video
is captured with an AXIS Q1922 LWIR sensor with 57 degrees of horizontal
Field of View (FOV) and a resolution of 640x480. The camera is placed on
a pole that is 4.6 meter away from the field at a height of 10.5 and tilt angle
of 27◦. The data that are used for the testing contain 5 minutes of video
with 8990 frames containing 71443 players. The ground truth is marked by
manually counting the number of players in each frame.

4.2 Results

In this paper, we present the results for the left view camera. Here the eval-
uation of our features with Bagged tree classification model. This evaluation
includes the comparison of our features with state of art human detection
histogram of oriented gradients (HOG) features [6] which are still used in
many state of the art player detection algorithms [1, 15]. [7, 15, 29] have also
performed this comparison analysis. HOG is trained on grey scale images
for classification of occluded and non-occluded blobs. Figure 5.8 shows the
comparison of two features in terms of ROC. Other comparison measures for
evaluation of our features are presented in Tables 5.1.

Clearly our proposed features gather with classifier performed better than

Fig. 5.8: Receiver Operating Curve for the [6] and proposed method.

[6]. 100% accuracy can not be achieved due to more false negative cases be-
cause of the factors that include fully occluded cases and occlusions in farther
blobs interpreted as non-occlusions. This is because the blobs appear to be
too small to detect and classify, see figure 5.9.
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Acc P % R% AUC TT
HOG+SVM [6] 94.3 62.1 77.3 0.79 142.0sec

Proposes 96.1 77.3 84.1 0.91 1.5sec

Table 5.1: Comparison of the methods for occlusion detection with [6] in terms of accuracy (Acc),
precision (P), Recall (R), area under receiver operating curve (AUC) and training time (TT).

(a) Frame 400 (b) Frame 480

Fig. 5.9: Non-Occluded vs Occluded, yellow boxes show some false negative cases.

Next we evaluate our method for estimating the number of players com-
pared with the ground truth. The results are is presented in figure 5.10.
Figure 5.11 shows some qualitative results after estimation. The results pre-
sented demonstrate the precision of the proposed method. Another impor-
tant observation from figure 5.10 is that the proposed approach yields better
accuracies in former frames. The reason is that most of the players appear at
the farther boundary of the field in the last part of the test data. This makes
the occlusion detection more challenging and hence estimation become more
uncertain.

For the quantitative evaluation, a comparative analysis of our proposed
algorithm with previously proposed algorithms is presented in table 5.2.

Our system clearly outperforms in terms of precision. It should be noted
that everyone has used their own local datasets and hence no direct compari-
son is possible. [14, 17, 26, 29] have used broadcast videos for the detection of
players. We are performing estimation of number of players rather than just
detection. Also we are working on non-commercial videos and not utilizing
any temporal information since this is not desirable in ordinary setups where
bandwidth and on-site processing power can be problematic. [11] have used
thermal cameras for evaluation of their counting algorithm but tested their
methodology in indoor sports arenas having closed environment and rela-
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Fig. 5.10: Orange line represents the estimated number of people and the blue line shows the
ground truth.

Method Acc% P% R %

Liu et al. [26] – 88.6-92.3 88.8-92.1
Heydari et al. [17] 96.5 – –
Manafifard et al. [29] – 93 91
Gade et al. [11] 95.5 – –
Gerke et al. [14] – 83-90 66-78
Proposed Method 81.4 97.8 78.8

Table 5.2: Comparison of our proposed method against previous techniques in terms of Accu-
racy(Acc), Precision(P) and Recall(R).

tively small area of interest. We are testing our algorithm in a large outdoor
soccer field. Better accuracy can probably be achieved by including boundary
information and temporal data like in [11].

5 Conclusion and Discussion

This paper proposed an automated system for precise counting of players
using thermal cameras. A detailed feature vector for each candidate region
is formed by using the shape and geometry of the blobs. We used Bagged
tree classifier for detection of occlusion. In order to further classify the num-
ber of players in occlusion, we proposed a simulation based method. 8990
frames are used for evaluation of the proposed technique for detection of
occlusion and estimation of number of players. No ideal conditions are as-
sumed, so it is critical to know that the datasets that we have used contain
all types of variations with respect to posture and position of players. The
results showed that our proposed method for estimating number of players
achieved a high precision, which makes our system suitable for counting pre-
cise number of players in groups. Our proposed system is not dependent on
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(a) Frame 50 (b) Frame 350

(c) Frame 4000

Fig. 5.11: Results after estimation.
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light and weather conditions, which make our system more practical for local
non-commercial sports analysis.

The mapping from visual appearance of occluding people to the number
of individuals could be based on other features than the number of pixels as
done in this work. Given sufficient training data more sophisticated hand-
crafted features or automatically extracted features via a deep learning ap-
proach could probably work. But such approaches are likely to require large
amounts of annotated data to generalize to arbitrary setups. And since our
work is to be applied in many different setups focus has been on a simple
feature and an easy training procedure. In fact, for a new setup we need
only to input the external camera parameters to the virtual simulation and
re-render figure 6.3 and then learn the size of a 1-person blob as a function of
distance to the camera in a particular setup. This makes our approach easy
to adapt. However, as more fields are analyzed annotated data are automat-
ically collected and future work therefore includes an investigation into the
use of deep learning for learning a general mapping from blobs (or bounding
boxes) to the number of people [43].
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1. Introduction

Abstract

Thermal cameras are popular in detection for their precision in surveillance in the dark
and for privacy preservation. In the era of data driven problem solving approaches,
manually finding and annotating a large amount of data is inefficient in terms of cost
and effort. With the introduction of transfer learning, rather than having large
datasets, a dataset covering all characteristics and aspects of the target place is more
important. In this work, we studied a large thermal dataset recorded for 20 weeks
and identified nine phenomena in it. Moreover, we investigated the impact of each
phenomenon for model adaptation in transfer learning. Each phenomenon was inves-
tigated separately and in combination. the performance was analyzed by computing
the F1 score, precision, recall, true negative rate, and false negative rate. Further-
more, to underline our investigation, the trained model with our dataset was further
tested on publicly available datasets, and encouraging results were obtained. Finally,
our dataset was also made publicly available.

1 Introduction

Person detection is the backbone of many applications ranging from surveil-
lance and military to traffic analysis. Many computer vision branches like
behavior analysis, activity recognition, threat recognition, and person re-
identification start with the challenge of person detection.

Visual cameras capturing visible light, as well as thermal cameras cap-
turing infrared radiation have been utilized for person detection. Many fea-
ture based machine learning [1–4], as well as deep learning [5–7] approaches
have been utilized to deal with the problem of person detection in thermal
images. Even though thermal cameras have an advantage in outdoor per-
son detection, due to the independence of illumination, robust detection still
becomes very challenging in diverse weather and light conditions (see Fig-
ure 6.1) and is therefore far from a solved problem.

In the last decade, many deep learning based networks [8–14] have been
abundantly created and utilized for person detection in color images. The key
to success in the area of machine learning and deep learning is the availabil-
ity of many datasets [1, 13–16]. Recording and processing of large amount
of dataset take much effort and many resources. Alternatively, currently, sin-
gle shot detectors [8, 10, 11] and transfer learning are also gaining the atten-
tion of developers due to their speedy detection and fewer data requirements.
Transfer learning refers to learning for a task by transferring the knowledge
from the learning of another task. In deep learning, it refers to a method
where a model for one task is reused as a starting point for training another
task [17]. This reduces the data required, as well as the time needed for train-
ing. While learning based approaches have been successful in many com-
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(a) (b)

(c) (d)

Fig. 6.1: Some challenging characteristics in thermal data. (a) Varying body temperatures. (b)
Similar temperatures. (c) Motion blur due to wind. (d) Shadows.

puter vision and data domains, there is still a large gap in being able to solve
thermal detection and classification problems due to the lack of a compre-
hensive and diverse dataset.

We reviewed the thermal datasets that are available publicly and can
be used for person detection. Most of the publicly available thermal datasets
(see Table 6.1) are either for tracking or classification. They are short se-
quences with little variability in the scene, i.e., weather conditions, light con-
ditions, and person heat radiation. This drawback decreases the generaliza-
tion of detectors. Furthermore, most of the thermal datasets available for per-
son detection are pedestrian data from traffic scenarios and captured from
the front view, which makes it difficult to detect people far from the camera.
Only one dataset is available that has weather information including haze,
rain, and cloudy conditions [18]. However, it contains only a small number
of images and hence fails to generalize.

Capturing and annotating a large amount of thermal data are still chal-
lenging. An optimal solution would be to study a large range of data and uti-
lize the tool of transfer learning to learn from RGB data. A different range
of phenomena affecting thermal videos in the outdoor environment have not
been investigated and described yet. Observing the effect of various data
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phenomena from thousand of hours of video can help in optimizing dataset
development and annotation. The study requires a large dataset recorded
over several weeks in different positions and in different places to make sure
that all possible outdoor phenomena are covered.

As our first contribution, we studied 20 weeks of variable outdoor ther-
mal data thoroughly to find different phenomena that affect the images. Even
by determining all the phenomena, it is still questionable what kind of data
are going to have a positive effect and which kind will have a negative effect
on person detection in outdoor environments while training a network. Gen-
erally, it is presumed that the higher the number of images, the better the de-
tection results. However, due to the high variation of the data characteristics
and the low resolution of the thermal images, this is not necessarily the case
here, as some phenomena might contribute to a high FP rate. To investigate
this research question, as our second contribution, we categorized the phe-
nomena and performed an ablation study for each category. This study gave
us a deep analysis of the impact of each category of thermal data and let
us choose data in an intelligent manner. This analysis was performed using
a single shot deep network and the tool of transfer learning. We employed
a single shot deep network due to its high performance and fast learning
rate. Finally, the third contribution of this article was a new public ther-
mal dataset for thermal person detection that contains variations regarding
the time of day, weather, distance to the camera, various body vs. back-
ground temperatures, and shadows. The thermal weights will also be avail-
able for researchers for further utilization for transfer learning and solving
other thermal data problems.

The rest of the paper is organized as follows: Section 2 provides an
overview of the related work. In Section 3, we present our new dataset,
and in Section 4, we conduct a thorough investigation into the role of novel
training data in transfer learning. Finally, in Section 5, we discuss our find-
ings and future perspectives.

2 Related Work

To create an understanding of thermal person detection, the following pro-
vides an overview of the state-of-the-art techniques, as well as the datasets
used for the evaluation of these techniques.

2.1 Multimodal Approaches

Hwang et al. [1] presented a benchmark dataset and baseline code for detec-
tion of pedestrians in RGB-Thermal (RGB-T) data. Lahmayed et al. [19] pre-
sented a method based on multi-threshold and Histogram of Oriented Gradi-
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ents (HOG) and Histograms of Oriented Optical Flow (HOOF) color features
combined with an SVM using both thermal infrared and visible light im-
ages. They tested their algorithm on the OSU color thermal dataset [20],video
analytic dataset [21], and LITIVdataset [22]. Fritz et al. [23] investigated
the generalization of a deep learning network in multispectral person de-
tection datasets. They mainly used the Caltech [24], city person [25], CVC-
09 [26], KAIST [1], OSU color thermal [20], and Tokyo segmentation [27]
datasets for their investigation. Li et al. [28] used the KAISTdataset [1] to cre-
ate a person detector baseline and then narrowed it down by mining hard
negatives. Cuerda et al. [29] employed stream selection based on the confi-
dence map. In this way, they were able to choose the best image out of ther-
mal and visible data based on day and night confidence maps. Many fea-
ture extraction and deep learning based approaches have been used for deal-
ing with multimodal data. The problem with multimodal based techniques
is the complexity in data handling, as well as the complexity in hardware
installation. Here, we are more concerned about thermal only approaches.

2.2 Thermal Approaches

Thermal cameras have been utilized in many scenarios ranging from industry
to daily life applications [30]. Much research has been carried out for person
detection in the infrared domain. Dai et al. [31] presented a method based
on background subtraction and shape based classification. They tested their
method on the OSU thermal pedestrian database [18]. Zhang et al. [4] also
presented a method based on background subtraction and boundary gra-
dients, the temporal coherence of the object area, and the region signature
of the intensity distribution. They also tested their method on the OSU ther-
mal database [18]. Li et al. [2] implemented the pedestrian detection in in-
frared imagery by tuning HOG features. They also tested their algorithm on
the OSU thermal pedestrian dataset [18]. A two-stage person recognition ap-
proach based on Maximally Stable Extreme Regions (MSERs) and verification
of the detected hot spots using a Discrete Cosine Transform (DCT) based de-
scriptor was proposed by Teutsch et al. [3]. They evaluated their approach on
the OSU thermal pedestrian [18], OSU color thermal [20], and Terravic motion
IR datasets [32]. Many [29, 33–39] used their own datasets for the evaluation.

Recently, Herrmann et al. [5] tested the Single Shot Detector (SSD) with
different preprocessing methods to assess thermal performance. They used
KAIST [1] for performance evaluation. They [5] also worked with MSERs
and CNN and tested on the AMROS, OSU thermal pedestrian [18], OSU
color thermal [20], and Terravic motion IR [32] datasets. Tumas et al. [6] pro-
posed an HOG based pedestrian detector combined with CNN for the FIR
domain. Heo et al. [7] proposed adaptive Boolean map based saliency com-
bined with YOLO for pedestrian detection at night time. They used CVC-
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09 [26] for their experiments. For sports player detection, Gade et al. [37,
38, 40] presented a method based on background subtraction and automatic
thresholding. They tested their method on the indoor thermal dataset [40].
Huda et al. [39] previously suggested a simulation based occlusion handling
method for detecting and counting the players. This was tested on their own
sports dataset.

2.3 Datasets

Different multimodal and thermal datasets are publicly available for traffic
analysis, surveillance, person tracking, and human pose estimation, among oth-
ers. The datasets that can be used for person detection are listed in Ta-
ble 6.1. The scene characteristics, type of data, number of frames, viewpoint,
and scene characteristics/or main purpose of the datasets are also provided
in the table. All these datasets can be used as pre-training of another network
according to the application area.

Table 6.1: Available thermal datasets for person detection and the characteristics of each dataset.
“Application area/main scene characteristics” summarizes the main features of the videos in
each dataset. “Viewpoint” is estimated by generally looking at the image for the camera angle
and the distance of persons from the camera.

Name
# of
Frames

# of
Seq

Viewpoint
Application Area/
Main Scene
Characteristics

Camera/
Image
Specifications

KAIST [1] 95 k Near front

outdoor
traffic,
day and night
multispectral

640 × 480,
20 Hz

OSU
Color
Thermal
(CT) [20]

17 k Far top
Outdoor
walkway

Raytheon
PalmIR 250D,
320 × 240,
30 Hz

AAU-VAP
TPD [41]

5.7 k 3 Near front Indoor office
Axis Q1922
640 × 480
30 Hz

LITIV-
-VAP [22]

4.3 k Near front Indoor hall

CVC-09 [26] 11 k Near
Traffic pedestrian,
day and night

640 × 480

CVC-14 [42] 7.7 k Near
Traffic pedestrian,
day and night
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Table 6.1: Cont.

Name
# of
Frames

# of
Seq

Viewpoint
Application Area/
Main Scene
Characteristics

Camera/
Image
Specifications

LITIV-
-2018 [43]

3 Near front Indoor hall

OSU
Thermal (T)
[18]

0.2 k Far top

Outdoor
pedestrian
haze, fair,
light rain,
partially cloudy

Raytheon
300D,
320 × 240,
30 Hz

ASL-TID
[44]

4.3 k 8 Varied
Outdoor varied
background,
person, cat, horse

FLIR Tau
324 × 256

Terravic
Motion
IR [32]

23.7 k 18 Varied

Outdoor tracking,
surveillance,
indoor hallway,
plane tracking,
underwater and
near-surface motion,
background motion

Raytheon L-3
Thermal-eye
2000AS,
320 × 240

LSI
Dataset
[45]

15.2 k 13
Outdoor
pedestrian Hz

Intigo Omega
imager,
164 × 129

BU-TIV [46]
Benchmark
Atrium

7.9 k 2 Near Indoor atrium 512 × 512

Lab 26.7 k 3 Near Indoor and 512 × 512

Marathon 1 k Very far
outdoor
marathon

1024 × 640

VOT-TIR
2015 [49]

Birds

270 1 Near front Fair outdoor
640 × 480,
30 Hz

Crossing 301 1 Near top Fair outdoor
640 × 480,
30 Hz

Crouching 618 1 Near front
Outdoor
roadside

640 × 480,
30 Hz

Crowd 71 1 Near front
Outdoor roadside
occluded

640 × 512,
30 Hz

Street 172 1 Far front Outdoor street
640 × 480,
30 Hz
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Table 6.1: Cont.

Name
# of
Frames

# of
Seq

Viewpoint
Application Area/
Main Scene
Characteristics

Camera/
Image
Specifications

Saturated 218 1 Near front
Outdoor street
occluded

640 × 480,
30 Hz

Mixed
distractor

270 1 Near front Indoor
527 × 422,
30 Hz

Hiding 358 1 Near front Indoor
263 × 210,
30 Hz

Garden 676 1 Near top Outdoor garden
324 × 256,
30 Hz

Depth-wise
crossing

851 1 Medium top
Outdoor fair
roadside

640 × 480,
30 Hz

Trees 665 1 Far top Outdoor dark
640 × 480,
30 Hz

Thermal
soccer
dataset [40]

3000 4 Near top
Indoor soccer
arena

640 × 480,
30 Hz

All the datasets available consisted of sequences with a short duration;
thus, they had less variability in terms of weather and light conditions. Most
of the available datasets were pedestrian data from traffic data analysis and cap-
tured from a frontal viewpoint. Many datasets were indoor, and thus, these
were captured in controlled light and temperature conditions and did not
include all the variability of outdoor environments. Even with a large num-
ber of frames [1] and weather information [18], it was still questionable if
the data were enough to include all outdoor phenomena. Therefore, the re-
search community lacks a comprehensive and diverse dataset to develop ro-
bust algorithms for the detection of people. Therefore, we studied long dura-
tions of data and came up with a shorter, but novel and diverse dataset below
that is comprised of all outdoor phenomena.

3 Novel Dataset

The first contribution of this paper is the investigation and study of a diverse
thermal dataset for person detection. In thermal images, weather conditions
have a similar effect as lighting conditions have on RGB images. it is therefore
essential to include varying weather and light effects in a dataset. Further-
more, because the resolution of thermal sensors is still relatively low, the size
of objects in images is also an important factor. The data we recorded were
captured in outdoor sports fields with people playing soccer or performing
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6.2: Nine different phenomena that are included in our novel dataset. (a) Low resolution.
(b) Far viewpoint. (c) Wind. (d). Occlusion. (e) Shadow. (f) Snow. (g) Opposite temperature.
(h) Similar temperature. (i) Good condition.

related exercises. The nature of these recordings ensured that many chal-
lenges related to person detection were included: different scales, pose vari-
ations, interactions/occlusions between people, and fast and erratic motion.
Regarding the weather effects, we recorded 20 weeks of thermal recordings
across January to April in Denmark. Therefore, it spanned the periods from
little daylight to bright sunny days and snowy days of winter to pleasant
spring days. In the recordings, we experienced several different key chal-
lenges: varying temperatures (people hotter/colder/same temperature than
the ground), shadows (parts of the ground were not heated by the Sun),
wind (camera moving), snow (regions on the ground with different reflec-
tion and emissivity of heat), and occlusion (people in groups) in the thermal
images.

After examining all challenges and scrutinizing the entirety of the data,
we suggested that nine different phenomena should be included in a dataset
for it to be sufficiently diverse and help the model generalize outdoor person
detection in thermal images. These nine phenomena are listed and illustrated
in Figure 6.2.
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3.1 Data Recording

We recorded thermal videos from 10 different sports fields for two weeks
each, which comprised 20 weeks of data. The cameras used for recording
were Axis Q1921 (resolution 384 × 288 pixels) and Axis 1922 (resolution
640 × 480), and they were mounted approximately 9m above the ground on
a light pole surrounding the field. Three cameras were installed at the center
of each field to cover the entire field area. The sequences selected for this
investigation were from all of the cameras’ views. The recordings were done
from January 2018 to April 2018.

3.2 Data Description

As the first step in transfer learning is a model adaptation, we used 3000
indoor publicly available images [40] as pre-training images for model adap-
tation. The dataset from [40] was selected for pre-training as it had nearly
perfect thermal data, i.e., lighter person on a darker background. More-
over, it was similar to our dataset as it was recorded in an indoor sports
field and contained 24,000 person annotations. As the data from [40] helped
in model adaptation and saved in annotation cost, our new dataset (Table 6.2)
helped in obtaining the goal of generalization in detection as it included all
possible outdoor phenomena from an outdoor environment.

Manually annotating all the data was unrealistic. Therefore, we scru-
tinized the periods where all nine phenomena occurred, and the number
of players in a given image in these periods varied (from 0 to 40). In each
period, we selected a frame every 160th second and annotated that frame.
This large temporal gap between annotated frames was introduced to enforce
as much diversity as possible. One-thousand nine-hundred forty-one frames
were selected as the training dataset. In these frames, a total of 5590 per-
sons were annotated. The details of the dataset are presented in Table 6.2.
For testing purposes, 1000 more frames were randomly selected from all
the recorded data (100 frames from two weeks of video). it was manually
checked that no image from the training data was repeated in the testing
data. The camera view (left, right, middle) was also selected randomly.
All of the data were annotated with the MATLAB object detection bound-
ing box annotator [47]. Our person detection dataset (PD-T) is available at
http://www.vap.aau.dk/dataset/.

4 Investigating the Role of Training Data

A traditional deep learning network contains a large number of parame-
ters. Training such a network requires an enormous amount of training

109

http://www.vap.aau.dk/dataset/


Chapter 6.

Table 6.2: Key characteristics of the proposed training data.

Category Phenomena # of Frames # of Persons

Viewpoint
Good condition 122 632
Far viewpoint 64 652

Heat effects
Opposite temperature 72 792
Similar temperature 107 644

Image artifacts
Low resolution 158 734
fOcclusion 20 305

Weather effects
Shadow 171 742
Snow 1060 168
Wind 167 921

data. The online availability of such an enormous amount of data is not
always a possibility, especially in non-RGB applications. Transfer learning
is the optimal solution in such conditions since many features in the first lay-
ers of a deep learning network are similar across applications [48]. The ques-
tion is which phenomena need to be included in a dataset for outdoor thermal
person detection for a positive transfer. To investigate this research question,
we needed a pre-trained detection algorithm on which we could apply trans-
fer learning with our data. we chose the CNN based single shot detector
YOLOv3 [8].

You Only Look Once (YOLO) is one of the fastest deep learning algo-
rithms for the detection of objects in an image, which can process 45 frames
per second. This algorithm treats the problem of detection as a regression
problem and trains on the whole image at once to optimize the performance.
Moreover, it detects the class objects with their probabilities at the same time
without requiring region proposals.

The YOLOv3 network, used in this work, divided every training image
into a grid of (S × S) cells. it searched for the center of the target objects
in these grid cells. B number of bounding boxes with their confidence scores
could be predicted by each grid cell. Confidence was defined as the prob-
ability of detected objects multiplied by the Intersection over Union (IoU)
between the ground truth bounding box area and the detected object bound-
ing box area.

The model was more effective at detecting small objects compared to pre-
vious versions of YOLO because it predicted bounding boxes at different
scales. This added multiscale detection in v3 allowed us to detect a per-
son very far from the camera. At the same time, the number of predictable
bounding boxes in each cell provided some limitation on the detection.
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Table 6.3: List of combinations for tests.

# Combinations # Combinations

1. Indoor 9.
Indoor+heat effects
+image artifacts

2. Indoor+viewpoint 10.
Indoor+heat effects
+weather effects

3. Indoor+heat effects 11.
Indoor+image artifacts
+weather effects

4. Indoor+image artifacts 12.
Indoor+Viewpoint
+heat effects+image artifacts

5. Indoor+weather effects 13.
Indoor+viewpoint
+heat effects+weather effects

6.
Indoor+viewpoint
+heat effects

14.
Indoor+heat effects
+image artifacts+weather effects

7.
Indoor+viewpoint
+image artifacts

15.
Indoor+viewpoint
+image artifacts+weather effects

8.
Indoor+viewpoint
+weather effects

16.
Indoor+viewpoint+heat effects
+image artifacts+weather effects

4.1 Assessment Protocol

To assess the role of training data, we divided our training data based on
the phenomena discussed in Section 3 into categories defined in Table 6.2.
The amount of test data was always kept the same. Tests were performed
by adding one category of images at a time and then combining different
categories of images. A total of 16 different combinations were tested, listed
in Table 6.3. Indoor data were from [40] and were used as a baseline for model
adaptation. Results for each of these combinations would provide insights
into how different types of training data affected the detection results on
varying data.

For transfer learning, we used convolution weights that were pre-trained
on ImageNet [14] using the Darknet53 [8] model due to their reported high
performance and speed [8]. The network was trained with S = 7, where net-
work iterations were set to 40,000, and the results from the mean of iterations
(10,000, 20,000, 30,000, and 40,000) were considered. Here, we set the learning
rate to 0.001, momentum to 0.9, and decay to 0.0005. The training and testing
of all combinations were performed using a graphical processing unit GTX
1080 with Linux Ubuntu 16.04.
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4.2 Evaluation

We used precision, recall, F1 score, False Negative Rate (FNR), and True Neg-
ative Rate (TNR) as the performance measures. Along with recall and preci-
sion, we were also interested in true and false negative rates, as these matrices
are of great importance in surveillance and occupancy analysis applications,
where an event of negative detection is as important as an event as positive
detection. The F1 scores of all the combinations are provided in Table 6.4.
Recall, precision, TNR, and FNR are illustrated in Figure 6.3. Here, we calcu-
lated our measures, i.e., F1 score, recall, precision, TNR, and FNR, as:

F1 score =
Precision ∗ Recall
Precision + Recall

, Recall =
TP

TP + FN
, Precision =

TP
TP + FP

(6.1)

TNR =
TN

TN + FN
, FNR =

FN
FN + TP

(6.2)

True Positives (TP) were defined as the number of persons that were cor-
rectly detected as persons and True Negatives (TN) as the number of images
with zero persons correctly identified as having zero persons. False Posi-
tives (FP) represented the regions in the image with no person, but there was
nonetheless a person detected. False Negatives (FN) represented the regions
where persons were present, but the detector failed to recognize them.

Results presented in Table 6.4 indicated that for Combinations 2 to 5,
when only one category was added at a time, viewpoint images significantly
increased the value of the F1 score, indicated by green, while the images
with the heat effect had the least impact on the results, indicated by red.
For Combinations 6 to 11, the alliance of heat and weather effects and the al-
liance of viewpoint and image artifacts seemed to have the lowest perfor-
mance. The combinations of heat effect and image artifacts and the combina-
tion of viewpoint and weather effects had the highest performance in terms
of F1 score. For the last combinations, 12–15, we could see that including all
categories exclusive of the weather effect had the highest F1 score of 89.74%,
while the other combinations performed almost equally. The last combina-
tion with all data included as expected showed the maximum performance
in terms of F1 score.

In looking individually at the results of each combinations, one noticeable
observation was found with Combinations 2, 7 and 10. These combinations
almost had the same performance. Although, if we looked at the number
of images in Combinations 2 and 10, Combination 10 had more than three
times the number of images as Combination 2. The same pattern could be ob-
served in Combinations 12 and 16. The weather effect contained more than
half of the data, but its inclusion increased the performance only by 1%.

The overall contribution of each category is also shown in the last row
of Table 6.4. The mean was computed by taking the mean of all F1 scores
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(a) (b)

Fig. 6.3: (a) Precision and Recall, (b) True Negative Rate (TNR) and False Negative Rate (FNR).

in which a particular category was included. Results were consistent with
the precision and TNR results, and heat effects had the lowest F1 score.
The highest F1 score was obtained for the viewpoint category, which had
images with good contrast and both far and close views. Moreover, this
category introduced scene adaptation from an indoor to outdoor field envi-
ronment. it could also be observed that although the image artifacts category
had eight times fewer training images than weather effects, it had a better
mean F1 score.

The results obtained from the experiment are also presented in Figure 6.3.
Precision and recall are shown in Figure 6.3a, and FNR and TNR are shown
in Figure 6.3b. it can be seen that for certain combinations, i.e., 3, 6, 10,
and 13, there were visible dips in the precision and TNR values. The mag-
nitude of the dip in precision was less than the TNR because only FP was
considered in the calculation of precision, whereas in the TNR calculation,
both FP and TN played a role.

If we looked at all these combinations, the common category was “heat
effects”. The other noticeable effect was the decrease in the dip magnitude
with the addition of more categories. As more and more categories were
added to “heat effects”, the precision and TNR both improved. There was
no significant change observed in the FNR results. However, the recall had
an opposite effect from the precision and TNR, as the addition of the “heat
effects” category improved recall. The details of this improvement are ex-
plained later in the section.

The precision and TNR were maximum for the image artifacts and weather
effects categories. This was because occlusion and low resolution images
were present in the image artifacts category, and the FP and FN reduced;
whereas for weather effects, more images of empty fields with snow and shadow
were added in the training data. Snow and shadow could sometimes re-
semble humans and be detected as persons. Therefore, with the addition
of the weather effect category, FNR and TNR both improved.

Herrmann et al. concluded that an inverted thermal dataset had a resem-
blance to the grayscale of RGB data. Therefore, the domain adaptation was
quicker when pretrained RGB weights were used. In our results, we could
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Table 6.4: F1 score of combinations. Here, X indicates the category added in a combination.
Other than indoor data, Combinations 2–5 only had one category of images, Combinations 6–11
two categories of images, and Combinations 12–15 three categories of images. Lastly, Combi-
nation 16 had all categories. The red color shows the worst-performing combinations, and the
green color shows the best performing combinations within each section.

Combinations Indoor Viewpoint
Heat

Effects
Image

Artifacts
Weather
Effects

F1
Score

1 X 63.35

2 X X 81.52
3 X X 75.35
4 X X 78.39
5 X X 79.68

6 X X X 83.63
7 X X X 81.74
8 X X X 87.37
9 X X X 88.24

10 X X X 81.71
11 X X X 83.04

12 X X X X 89.74
13 X X X X 87.57
14 X X X X 87.34
15 X X X X 86.99

16 X X X X X 90.23

Mean 82.87 86.10 85.48 85.78 85.49
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also observe a similar response in terms of recall.
We can see in Figure 6.3a that every time the heat effects category was

added, recall improved. However, at the same time, precision and TNR re-
duced. All the other categories in Table 6.2, except heat effects, had images
with persons in the dark background. Therefore, the heat effect category,
which was 8% of the complete training dataset, acted as noise. In particular,
similar temperature images had the most effect on reducing TNR. Any lesser
contrast noise could be detected as FP. This problem could be solved by gen-
eralizing the dataset in a single domain by detecting the heat category events.
Results also suggested that converting the whole dataset into inverted ther-
mal images might be more beneficial, as this would help improve the recall
and model adaptation.

To select which category to include in training, it still depended on the tar-
get application. For example, if we compared Combinations 12 and 16, the in-
crease in the F1 score was only 0.49% by including the data from the weather
effect category. To show the effect of including the weather effect data,
a few test images are shown in Figure 6.4. Figure 6.4a,b is from our dataset,
and Figure 6.4c–d were taken from the publicly available CVC-09 database.
Figure 6.4a,c,e was tested with Combination 16, where the weather effect was
included; whereas Figure 6.4b,d,f is the results of the same images when
the weather effect was not included, i.e., Combination 12. it can be seen that
without the weather effect, TN and FN were better; however, with its inclu-
sion, TP improved, but the FPR also increased. For example, if we needed
the system for surveillance, then it would be important to avoid an FN event.
In such cases, weather effects data would be required for training. Occupancy
analysis has similar requirements.

4.3 Results on Publicly Available Datasets

We picked three public datasets to test the generalization of our trained
weights for person detection. The datasets consisted of three different diverse
datasets from Table 6.1: CVC-09 [26], OSU-T [18], and BU-TIV-atrium [46].

OSU-T was recorded outdoors with different weather conditions, as men-
tioned in Table 6.1. it consisted of 284 images. The data were captured from
a far top viewpoint. CVC-09 was recorded from a camera in a car while driv-
ing. The images were divided into two subsets for day and night. CVC-09
(day) consisted of 2881 test images and 4223 training images, out of which
1112 were negative frames and 3111 positive frames. CVC-09 (night) con-
sisted of 2883 test images and 3200 training images, out of which 1001 were
negative frames and 2199 positive frames. BU-TIV was recorded indoors with
a near top viewpoint. it had three sequences of videos with Views 1, 2, and 3.
we chose its View 1 for our tests, which consisted of 3482 images.

Tests on publicly available datasets were performed in two sessions. Firstly
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(a) (b) (c)

(d) (e) (f)

Fig. 6.4: Example images for qualitative assessment. (a,c,e) are the results for Combination 16,
while (b,d,f) are the results for the same images from Combination 12. The images (a,b) are from
our test data, and the images (c–f) are from OSU-T [18]. In these images, highlighted red boxes
are incorrect detections.
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(a) (b)

Fig. 6.5: (a) Precision and (b) recall measures of different training weights on publicly available
datasets. Here, the blue bars are the results tested by our thermal training weights, and orange
bars are the results tested by our thermal training weights and further training by adding only
5% of the new dataset for 100 iterations.

the images were tested using the weights obtained from Combination 16,
shown in Table 6.3. In the second session, tests were performed by adding
5% of the data from the public dataset to the Combination 16 dataset and re-
training it.

For training the second session test, from OSU-T and BU-TIV, we added
5% of the whole data in training corresponding to 14 and 174 images, re-
spectively, and from CVC-09 (day and night), 5% of the training data was
added to the training set corresponding to 211 and 160 images, respectively.
The number of iterations for learning was 100 to avoid overfitting due to a small
number of training images.

Results of this experiment are presented in Figure 6.5. Blue bars are the re-
sults obtained from Combination 16 weights, and red bars are the results ob-
tained after retraining Combination 16 with 5% of the public dataset. it can
be seen that by using the weights from Combination 16, the performance was
not good, and in the case of BU-TIV, the algorithm failed to detect anything.
In BU-TIV, the viewpoint was different, and people appeared larger than
in our dataset. However, with only 5% of training data and with 100 itera-
tions, a significant increase in precision could be seen. The highest precision
was obtained for BU-TIV and the lowest for the CVC data, with an average
precision of 0.69%. In BU-TIV and OSU-T, there were no other heated objects
present other than humans, and in OSU-T, the viewpoint was very similar
to our dataset; therefore, good precision results were achieved.

In the CVC dataset, a significant difference between day and night re-
sults was observed. During the day, the temperatures of car bodies, tires,
and other objects increased. Their pattern became similar to human body fea-
tures, which increased FPR and decreased precision. Example results from
all datasets used for evaluations are shown in Figure 6.6.
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(a) (b) (c)

(d) (e) (f)

Fig. 6.6: Example images for qualitative assessment. The images (a) and (b) are from our test
data. The results of images (a) and (b) are obtained from Combination 16, shown in Table 6.4.
Image (c) is from CVC-day [26], image (d) from CVC-night [26], image (e) from OSU-T [18],
and image (f) from BU-TIV-atrium [46]. The contrast of (f) is adjusted for better visualization.
In these images, highlighted red boxes are wrong detections.
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5 Conclusions

In this work, we reviewed publicly available thermal datasets that could
be used for person detection, and we documented the lack of diversity in these
datasets. we also studied and presented a new thermal dataset and found
nine different phenomena that could occur in outdoor soccer fields. The phe-
nomena were further categorized into four categories. The impact of each cat-
egory was studied for model generalization using transfer learning. Results
showed that each category benefited the model generalization differently.
The results showed that depending on the application, categories could be se-
lected intelligently to obtain the desired results. The weights obtained from
our dataset were further tested on three publicly available datasets. For a rel-
atively small amount of training data from a new domain and with few itera-
tions, good performance was achieved for person detection. Results showed
that our weights could be used for model adaptation for a new domain. This
will help researchers save the effort of annotating large datasets and also
the time for training a new network from scratch. Moreover, with weights
for YOLOv3, our new dataset is made publicly available for further research.
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1. Introduction

Abstract

Thermal images have the property of identifying objects even in low light conditions.
However, person detection in thermal is tricky, due to varying person representations
depending upon the surrounding temperature. Three major polarities are commonly
observed in these representations i.e., 1. person warmer than the background, 2.
person colder than the background and 3. person’s body temperature is similar to
background. In this work, we have studied and analyzed the performance of the
detection network by using the data in its original form and by harmonizing the
person representation in two ways i.e., dark persons in the light background and
light persons in a darker background. The data passed to each testing scenario was
first pre-processed using histogram stretching to enhance the contrast. The work
also presents the method to separate the three kinds of images from thermal data. The
analysis is performed on publicly available outdoor AAU-PD-T and OSU-T datasets.
Precision, recall, and F1 score is used to evaluate network performance. The results
have shown that network performance is not enhanced by performing the mentioned
pre-processing. Best results are obtained by using the data in its original form.

1 Introduction

Person detection is the fundamental problem in any human-related computer
vision based approach. Different camera setups, including RGB and thermal,
have been proposed for person detection.
In RGB domain, well-defined solutions based on machine learning and deep
learning have been reported. However, RGB cameras have their limitation
in low light and total blackout conditions. Whereas thermal cameras have
the advantage to perform very well in such situations. On the contrary, the
outcome from the thermal cameras gets affected by the temperature of the
surrounding objects as well as the temperature of the environment.
Most of the reported solutions in thermal domain are based on finest videos
and image-based data experiments. The data used had the characteristics
of higher person temperature vs lower background temperature, along with
small occlusion, less reflection and weather effects. Therefore, It becomes less
effective to apply the available research to outdoor environments.

The heat effect on thermal images has the worst outcome. It normally
results in three different polarities of person representation in an image, as
shown in Fig. 7.1: 1. person appearing darker as compared to the back-
ground. It occurs when the environmental temperature gets higher than the
person temperature. 2. person appearing lighter than the background, which
is when the person gets much warmer compared to the environment. 3. per-
son appearance similar to the background. This happens when the person
temperature as well as the environment temperature rise to the same level.
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(a) (b)

(c)

Fig. 7.1: Person representation in thermal images (a) Person appeared darker w.r.t background,
(b) Person appeared lighter w.r.t background, (c) Person appeared similar to background

In this era of deep learning and big data solving, the approach to deal
with the aforementioned or any other challenges is to increase the dataset
either by producing synthetic data or by recording more videos. Increase
the training data helps the classifier to learn every possible effect. On the
other hand, some studies have proposed pre-processing techniques for ther-
mal data to improve the performance of the convolutional neural network
(CNN) [7, 8].

In this work, we have investigated the effects of pre-processing the ther-
mal data for person detection using deep learning network. The implied
pre-processing approach is to homogenize the data by converting the images
to the same polarities/representation. Each representation is tested by using
similar CNN and train settings to analyze which data type helps the network
to perform better. We hypothesise that proposed pre-processing techniques
should improve the performance of the subsequent algorithms. The pre-
processing should help in model adaptation if they have an impact. Based on
the above hypothesis following are the two main contributions in this paper,
1. Evaluation of polarity homogenization based pre-processing techniques
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for person detection using a deep neural network in thermal images, 2. A
new method for polarity detection and polarity homogenization in thermal
data.

The rest of the paper is arranged as: Section 2 presents the overview
of thermal person detection techniques as well as pre-processing methods
explored both in thermal and RGB data. Section 3 describes the proposed
experiments, and the results are presented in Section 4. Section 5 concludes
this work.

2 Related work

In this section, deep learning solutions for thermal person detection and pre-
processing techniques for enhancing deep network performance are intro-
duced.

Many deep learning techniques have also been proposed for person de-
tection. In [6] maximally stable extremal regions (MSERs) and CNN based
methods were proposed for person detection using thermal pedestrian [1],
OSU color thermal [2] and terravic motion IR [11] datasets. Tumas et. al [17]
combined HOG and CNN for pedestrian detection for FIR domain. Heo et.
al [5] combined YOLO and adaptive boolean-map-based saliency methods
for pedestrian detection using CVC-09 [16] dataset. In [8] Huda et. al investi-
gated the effects of environment and weather conditions for players detection
in the outdoor soccer field. They used the transfer-learning approach using
YOLO3 for analysis and evaluation. In [12], authors implemented a cascade
object detector to detect human silhouette in thermal images. They aimed
to develop a pedestrian detection system in poor light conditions. Zhang et.
al [19] addressed the lack of availability of thermal dataset for implementing
CNN networks. To deal with this challenge authors proposed RGB to ther-
mal translation models to generate synthetic thermal data for training deep
networks.

In the domain of deep learning several pre-processing techniques have
been reported for improving the detection performance. In [13] zero com-
ponent analysis is reported to have the most significant effect on the per-
formance of image classification using CNN. The noise removing techniques
i.e., non-local filtering, bilateral filtering and total variation denoising meth-
ods were studied to improve the image quality before it is passed to deep
neural network [18]. Diah et. al [14] studied the influence of resizing, face
detection, cropping, adding noise and normalization on CNN performance
for emotion detection. Francisco et. al [10] found intensity normalization to
have the most effect on the diagnosis of Parkinson’s disease using CNN based
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models. In [9] logarithmic and square root transformation methods were pro-
posed for enhancing mammogram to detect breast cancer. Square root was
found to have more influence on the performance of CNN based detection
network. Image inversion, blurring, histogram stretching, and equalization
methods were used to pre-process thermal images for person detection us-
ing CNN [7]. Homomorphic filtering and OTSU thresholding methods are
proposed in [3] for improving image quality for concrete cracks detection us-
ing CNN. In [15] it is suggested that it is better to not pre-process the data.
Their results showed that most CNN networks perform better if trained from
scratch and only using data augmentation. Whereas, in [7] it is shown that
inversion and histogram stretching techniques perform better while training
a CNN based model using transfer learning for thermal person detection.
Huda et. al [8] also proposed that inversion of thermal images to same per-
son representation w.r.t background may help in the improvement of perfor-
mance.

In the reported literature, we have perceived that the impact of pre-processing
is mostly positive. In a few cases, the pre-processing does not improve the
performance of the detection network. Our aim in this paper is to investi-
gate and evaluate the impact of data homogenization based pre-processing
technique using a CNN network performance on a thermal person detection
dataset.

3 Methodology

In this work, the key investigation is to evaluate the role of image homoge-
nization and image enhancement based pre-processing techniques used for
transfer learning from a pretrained CNN network. We have used Yolov3,
which is pretrained on RGB Imagenet data. The network is utilized due to
its higher detection accuracy and the ability to detect smaller objects in an
image.

As discussed earlier, heat effects alter the representation of a person in a
thermal image in three ways.

• Person appeared lighter w.r.t background

• Person appeared darker w.r.t background

• Person appeared similar to background

To add more clarity in the images of similar background, we are using
histogram stretching to enhance the person intensities in the background.
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After histogram stretching, we have proposed and tested the following pos-
sible ways of passing the data to the learning network. The possibilities are
graphically explained in Fig. 7.2 and the details are as follows.

• Normal data: Both train and test datasets are kept in their original form.

• Enhanced data: Histogram stretching is applied to both train and test
datasets to enhance the image contrast.

• Light person: Train dataset is homogenized and enhanced. The homog-
enization is performed by inverting and making the person representa-
tion lighter on dark background for all the images. Image enhancement
is performed by histogram stretching. The test dataset is altered by de-
tecting and inverting the events of dark person representation on the
lighter background (the procedure of detection is explained later in the
section). The test data is also enhanced by using histogram stretching.

• Dark person: Train dataset is homogenized and enhanced. The ho-
mogenization is performed by inverting and making the person repre-
sentation darker w.r.t the lighter background. Image enhancement is
performed by histogram stretching. In the test dataset, the events of
light person representation with a darker background are detected and
inverted. The test data is also enhanced by using histogram stretching.

• Light person test on normal data: Train dataset is homogenized and
enhanced. The homogenization is performed by inverting and making
the person representation lighter on dark background for all the images.
Image enhancement is performed by histogram stretching. Test data is
used as it is.

• Dark person test on normal data: The homogenization is performed by
inverting and making the person representation darker on light back-
ground for all the images. Image enhancement is performed by his-
togram stretching. Test data is used as it is.

For the testing data, the first step is the detection of the polarity of the im-
age. Detection of events is performed in two steps, i.e., 1- sunlight detection
and 2- human temperature detection.

Sun light detection: In thermal imagery, the images captured in high sun-
light are the images that are brighter than the other images. For the detection
of brighter images, image segmentation is performed. Sum of entropy-based
thresholding is used for segmentation of images to get the brighter spots
separated from the darker spots in the images. Afterwards, the accumulated
pixel value is calculated by summing up all the pixels. The sum represents
the number of bright pixels. A threshold is applied to the number of bright
pixels to identify the images with high sunlight.
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Fig. 7.2: Test setups
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Low human body temperature detection: After the detection of brighter
images, the next step is to find the lower person intensities in those brighter
images. The data is separated based on histogram maps of both polarities
of images i.e., light person with a dark background and dark person with
a light background, separately. Two main features are used to detect low
body temperature i.e., 1. intensity peaks vs the number of intensity bin in the
histogram map of the image and 2. value of peak intensity in the histogram
map.

4 Evaluation protocol

4.1 Training

Dataset

For training, we have used the training data presented in [4, 8]. [4] is an
indoor recorded soccer thermal dataset and consists of 3000 images. Every
image consists of 8 persons playing soccer and occludes at some point while
playing. The data is used as pre-training thermal data [8]. AAU-PD-T [8]
training and testing data consist of 1941 and 1000 images, respectively, from
the outdoor soccer field. In these images persons are running, playing, and
doing exercises. The data is characterized as far players (far), images with
snow (snow), images with the wind (wind), good outdoor (NR), occlusion
(Oc), opposite temperature (OT), shadow (Sh), and similar temperature (ST).

Network setting for training

Re-training of Yolov3 is performed using training data. In order to maintain
consistency in results, training setup parameters, except number of iterations,
are kept constant and exactly same as reported in [8] (i.e., learning rate =
0.001, momentum = 0.9, and decay = 0.0005). The iterations are set to 10000
to have long term analysis and observe deviations if any.

4.2 Testing

Sun light detection

AAU-PD-T dataset is used for separating high-temperature images based on
thresholding as defined in section III. In the AAU-PD-T dataset, OT and ST
category contain the images with high sunlight. Fig. 7.3 clearly shows that
sum of pixel values is directly related to image intensity values. NR category
images also show some spikes for the sum of pixel values due to some images
captured on sunny days.
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Fig. 7.3: Sum of pixel values vs categorical data

Low human body temperature detection

AAU-PD-T is used to observe the threshold values to separate the two polar-
ities. It can be seen in fig. 7.4 that images with the person having lower body
temperature than background seem to have lower intensities and a dip be-
tween bins 100 and 200. Also, these images mostly have two peaks. Whereas
the images with persons having higher body temperature than background
have high-intensity values especially in middle bins i.e., between bin 100 and
bin 200.

Dataset for evaluating the testing scenerios

AAU-PD-T [8] test data and OSU-T [1] data are used for the evaluation of
testing scenarios presented in Fig. 7.2. AAU-PD-T contains 1000 image with
variable polarities. OSU-T dataset consists of 284 images. It is recorded in
the Ohio State University campus at a pedestrian intersection and has images
with both polarities.

4.3 Evaluation parameters

Precision and recall are used as evaluation parameters.

F1 score =
2xPrecisionxRecall
Precision+Recall

(7.1)

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

(7.2)

Here TP (True Positives) are the number of persons correctly detected, FP
(False Positives) are the number of persons that are falsely detected. TN
(True Negatives) are the correctly identified negative frames (frames with
no persons) and FN (False Negatives) are the persons that are not detected.
The training and testing of all combinations are performed using a graphical
processing unit GTX 1080 with Linux Ubuntu 16.04.
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(a)

(b)

Fig. 7.4: Mean intensity values for respective histogram bins. (a) Images with lower body tem-
perature than background. (b) Images with higher body temperature than background.
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(a)

(b)

Fig. 7.5: Results of AAU-PD-T [8] dataset.

5 Results

The results for each iteration are plotted in Fig. 7.5, and Fig. 7.6 and the
results of max F1 Score for all iterations is presented in Table 7.1.

It can be seen from Fig. 7.5 and Fig. 7.6 that there is no significant dif-
ference in performance, i.e., precision and recall, between each testing setup
except for dark person test on normal data. The performance of this setup
is the lowest, which is understandable because most of the images in the
datasets has a person representation of lighter intensity w.r.t the background.
The results of the AAU-PD-T dataset shows that precision is similar for each
test setup, whereas recall is higher for normal data test setup. The lower
performance of recall for pre-processed datasets can be explained by the fact
that training CNN network with high contrast images increases the chances
of miss-detection for slightly lower contrast images.

The results of the OSU dataset shows that recall is higher than precision,
which shows that FP detection is higher than FN detections. This is because
the OSU dataset has better contrast images, and the person is labelled when
appeared more than 50%. In the training, dataset person visibility varies and
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(a)

(b)

Fig. 7.6: Results of OSU-T [1] dataset
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it is not fixed to any percentage for labelling. Therefore, any person that is
detected in the OSU dataset with visibility lower than 50% will appear as
FP. This effect got enhanced when the images are pre-processed. The overall

Table 7.1: F1 Score for test setups

Data AAU-PD-T OSU-T
Normal data 0.70 0.65
Enhanced data 0.69 0.58
Light person 0.67 0.63
Dark person 0.65 0.61
Light person test on normal data 0.66 0.63
Dark person test on normal data 0.18 0.12

results in Table 7.1 show that the best performance is achieved when CNN is
trained with normal data in its original form. When the network is trained
with pre-processed data, it gets sensitive to a particular type of data and can
react to any small change in testing data. In real-life applications, this kind
of processed data can have more drastic effects as data is unpredictable.

6 Conclusion

In this work, the performance of a deep learning-based person detection
network is analyzed for thermal data. The impact of inversion for creat-
ing homogeneity in person representation and histogram stretching for im-
age enhancement were evaluated by proposing six testing setups. Results
showed that the performance of the CNN network does not improve by pre-
processing. Techniques improving the contrast of the images have a negative
impact as the data in real-life scenarios is not restricted to better contrast im-
ages and increasing contrast may also enhance the noise. As different stud-
ies [7] have shown, pre-processing to improve data diversity and amount of
data to process may help to improve detection performance. On the other
hand, if the dataset is diverse and pre-processing is used to restrict the data
in one form or to induces homogeneity, it causes degradation in the perfor-
mance of the deep neural network.
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1. Introduction

Fig. 8.1: Illustration of the problem handled in this paper. We leverage the detections made on
a thermal image on a part of the field to detect all the players on the whole field on the fisheye
image.

Abstract

Monitoring the occupancy of public sports facilities is essential to assess their use and
to motivate their construction in new places. In the case of a football field, the area
to cover is large, thus several regular cameras should be used, which makes the setup
expensive and complex. As an alternative, we developed a system that detects players
from a unique cheap and wide-angle fisheye camera assisted by a single narrow-angle
thermal camera. In this work, we train a network in a knowledge distillation ap-
proach in which the student and the teacher have different modalities and a different
view of the same scene. In particular, we design a custom data augmentation com-
bined with a motion detection algorithm to handle the training in the region of the
fisheye camera not covered by the thermal one. We show that our solution is effective
in detecting players on the whole field filmed by the fisheye camera. We evaluate it
quantitatively and qualitatively in the case of an online distillation, where the stu-
dent detects players in real time while being continuously adapted to the latest video
conditions.

1 Introduction

Local sports fields can be expensive to construct and maintain, especially
those built with artificial turf. Therefore, it is important to monitor and then
optimize the occupancy of existing fields and stadiums. Furthermore, an
automatic occupancy analysis method may open up new possibilities within
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real-time information and booking. In this work we propose a robust and
cost-effective method for player detection and counting in a football field.

For robust video monitoring of outdoor football fields, one main chal-
lenge is the size of the field. A field may be covered by either several regular
cameras, which makes the setup rather complex and expensive, or it is pos-
sible to use a camera with a wide field of view, such as a fisheye camera.
However, with a fisheye camera covering the entire football field, the players
will appear small and have different orientation in the image due to the lens
distortion. Player detection on these types of images is therefore not a trivial
task. Another main challenge in outdoor environments is varying lighting
conditions. Even though a football field may be illuminated during nights,
lighting conditions will change during the day due to changing weather, po-
sition of the sun, and the effect of artificial lighting. To avoid problems with
difficult lighting conditions, thermal cameras may be considered. These cam-
eras capture only thermal infrared radiation, which represents temperature
in the scene, hence they are more independent of lighting and normally eases
the task of person detection because people have a temperature different from
the background [14]. However, thermal cameras are expensive and due to
their limited field of view and resolution, several cameras would be needed
to cover a football field.

To construct a camera setup that is reasonable in price level and at the
same time robust to changes in weather and lighting conditions, we propose
to use one fisheye RGB and one thermal camera co-located at the side of the
field. An illustration of the setup and example images from the two cameras
are shown in Figure 8.1. Only the fisheye camera will cover the entire field,
while the detections obtained directly from the thermal camera will serve to
provide some kind of ground truth for teaching a network.

There are two main contributions in this paper: (i) We show how two
different image modalities and fields of view can be combined in a student-
teacher distillation approach. (ii) We show how a student network can be
trained to detect players outside the field of view of the teacher, through a
combination of a custom data augmentation process and a motion detection
algorithm.

2 Related work

Player detection in sports. Detection of players in sports fields is the first
step of vision systems for sports applications, like occupancy analysis, track-
ing, performance analysis, etc. [36]. Background subtraction based methods
have often been used for player detection due to the fast processing time that
makes it well-suited for real-time applications. It has been applied for static
cameras [1, 33] and for moving cameras in the case of uniformly colored
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surfaces [31]. However, noise should be expected due to, e.g., other mov-
ing objects, similar colors in foreground and background, changing lighting
conditions, and shadows. It has also been proposed to use classic person
detection methods like using the AdaBoost algorithm for training a linear
classifier with HOG features for detecting players in Australian Rules Foot-
ball [11], or similarly with AdaBoost and Haar features for player detection
in basketball [21] and baseball [26].

More recently, like for general object detection, CNN-based methods have
also been the dominant trend for detecting sports players. In [34] a shallow
CNN was trained to detect players on a hockey field, while others use pre-
trained networks like Mask R-CNN for handball videos [30] and basketball
videos [41], or YOLO for handball videos [6]. In [43] a reverse connected
convolutional neural network (RC-CNN) is proposed for player detection.
The reverse connected modules are embedded into the CNN to pass semantic
information captured by deep layers back to shallower layers.
Person detection in fisheye and thermal cameras. Fisheye cameras have
been widely used for person detection because of their advantage of wide
viewing angle. Methods using a single camera setup have been reported
for surveillance [22, 23], automobiles [24], indoor environment [35, 39] and
outdoor sports field [18]. In these methods, the setup was used for pedestrian
detection, tracking and occupancy analysis. Multiple camera setups are also
proposed to detect persons for similar applications [3, 28, 40]. However, the
main disadvantages with fisheye cameras are the distortion on the borders
and the lower image quality in low lighting conditions.

Thermal cameras have long been used in practice because of their effi-
ciency in bad lighting conditions. The range of applications varies from in-
dustrial uses to daily life traffic and surveillance [14]. Various methods based
on thermal cameras have been proposed for person detection, such as feature
extraction and threshold based methods [9, 12, 13, 42], HOG methods [25, 37],
machine learning techniques [20] and deep neural networks [16, 17, 19]. A
dataset and a trained network for people detection on outdoor thermal im-
ages have been proposed in [19]. The disadvantage of thermal cameras is
their expensive cost and their reduced field of view.

In this work we will continue on recent trends to use a CNN-based method
for player detection. We aim to circumvent the limitations of both fisheye and
thermal cameras, by combining these modalities and teach the network for
the fisheye camera with detections from the thermal camera, in a student-
teacher distillation approach.
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3 Data acquisition and calibration

Camera setup. The data used in this work consist of video streams of two
different cameras: a fisheye camera and a thermal camera. Both cameras
are installed on the same pole at the side of a football field, as illustrated in
Figure 8.1. The thermal camera is placed approximately 9.8 meters above the
ground and the fisheye camera is installed at 9.5 meters. By doing so, the
field of view of the fisheye camera covers the whole football field, whereas
the thermal camera covers the central area, as shown in Figure 8.1. In this
setup, the field of view of the thermal camera represents 6% of the fisheye
image, and covers 22% of the football field as seen by the fisheye camera.

Let us note that several teams use the field simultaneously for a training
session during the video. Hence, the players are performing different activ-
ities, such as moving goals or performing various exercises. Therefore, the
players can be found in different postures in any part of the field.
Acquisition. The fisheye video stream is recorded using a Hikvision Fisheye
Network Camera with a resolution of 1280 × 1280 pixels and a field of view
of 360◦. The thermal video stream is recorded using an Axis Q1922 camera
that has a resolution of 640 × 480 pixels and 57◦ of horizontal viewing angle.

The videos were recorded during one hour in an amateur football field
in December 2017, at night time with artificial light illuminating the field.
The fisheye camera records the video at 12 fps. The thermal camera initially
records the video at 30 fps, which is then re-sampled at 12 fps to allow a
synchronization of the two streams. A proper camera calibration and regis-
tration between fisheye and thermal images is required for the transferability
of points of interest.
Calibration and registration. First, a calibration of the internal parameters of
each camera is performed following the procedure described in [29]. For the
thermal camera, an A3-sized 10 mm polystyrene foam board is used as back-
drop and a board of the same size with cut-out squares is used as checker-
board. In order to obtain a suitable contrast, the backdrop is heated and the
checkerboard is placed at room temperature before the calibration. For the
fisheye camera calibration, a checkerboard of 25 × 25 centimeters is used. Fi-
nally, the camera parameters derived from the calibration are obtained with
a Matlab toolbox [4]. Second, we perform the registration between the two
cameras. We undistord the images of the cameras using the internal parame-
ters obtained previously. We manually choose several points of interest on the
undistorded football field to compute the homography between the cameras,
following [27]. These points are player feet positions for the players seen by
the two cameras. The projection of the thermal image onto the fisheye image
is shown in Figure 8.2.
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Fig. 8.2: Projection of the thermal image onto the fisheye image. The thermal camera sees only
≈ 22% of the football field pixels of the fisheye image.
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4 Methodology

Problem statement. A general formulation of the problem tackled in this
paper is the following. Given a network performing a detection task on data
from a camera, how can we train a real-time network for the same detection
task on data from another camera with a possibly different modality and
a different field of view of the same scene? In this section, we describe our
solution for this problem in general terms, and we also explain how each step
is particularized for our practical use case. Our use case consists in the task
of player detection on a football field given a network able to detect players
on a fixed thermal camera with a narrow field of view, which is used to train
another detection network on data from a fixed fisheye camera with a wide
field of view. This is illustrated in Figure 8.1.
Notations. We handle this problem with a teacher-student distillation ap-
proach, in which the output of a trained teacher network T erves as surrogate
ground truth to train a student network S (see [38] for a recent review). Such
a method has already been successfully applied in sports in [7] for segment-
ing football and basketball players in real time by distilling a slow T Mask
R-CNN [15]) into a fast S (TinyNet [8]). In addition, in [7], the distillation is
performed in an online fashion, such that S continuously adapts to the latest
game conditions. However, T nd S use the same video feed, which implies
that S can be directly (no transformation needed) and entirely (no missing
ground truth) supervised by T

In the present work, the setup is more challenging as T nd S process
the video feeds of two cameras CT and CS with different modalities and
fields of view. Having different modalities prevents us from using T n the
feed of CS , and having different fields of view prevents us from directly and
entirely supervising S . We assume that CT and CS are synchronized, such
that they capture frames CT (t) and CS (t) simultaneously at each capture
time t. We also assume that the projection from CT (t) to CS (t), expressed
in terms of pixel coordinates, is known from the preliminary calibration step
explained in the previous section. We note P the area of CS (t) representing
the projection on CS (t) of the part of the scene also filmed by CT (shown in
Figure 8.3). The remaining part of CS (t) is filmed by CS only and is noted P.
As both cameras are fixed, this partition of CS (t) is independent of t.

In order to train S , we need surrogate ground-truth bounding boxes both
in P and in P. We detail hereafter how we obtain such boxes in CS (t) for a
given capture time t. Following common practice, we represent a bounding
box coordinates by a quadruplet containing the two coordinates of the center
of the box, its width and its height.
Surrogate ground truths in P. This part is straightforward. First, we use T
o detect players in CT (t) and retrieve the coordinates of bounding boxes of
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CT (t). Then, we project them into CS (t) using the calibration of the previous
section. By doing so, we obtain the surrogate ground-truth bounding boxes
of CS (t) that are located in P, as shown in Figure 8.3. The remaining part of
P constitutes detection-free areas.
Surrogate ground truths in P. This part is more difficult as we cannot have
a direct access to the pixels of P from those of CT (t). Training S solely with
the boxes provided in P for each CS (t) leads the network to focus only on
P and to overlook P for each frame. Eventually, the network is not able to
detect anything in P.

To circumvent this problem, our idea is the following. First, we use a
custom data augmentation process to create artificial players with known
bounding boxes in P. This provides us the “ground-truth locations” of some
“true positive” players that S will have to detect. This is not sufficient as we
still need “ground-truth information” in areas where we did not create any
player. For that purpose, we use a motion detection algorithm to identify
areas of P that are guaranteed player-free. This provides us “true negative”
areas, in which S will be penalized when predicting player bounding boxes.
In the remaining areas of P, we have no useful information, hence S will not
be penalized. These two steps are described in detail hereafter.
[1. Custom data augmentation] In order to introduce true positive players
with known bounding boxes in P, we design the following automatic data
augmentation process. Given a frame CS (t), we start by randomly extracting
image crops delimited either by one isolated or by several adjacent bounding
boxes previously obtained in P (Figure 8.4). Then, for each crop, we ran-
domly select a pixel in P, which will serve as an anchor point where the crop
will be pasted after being rescaled and rotated appropriately. In our use case,
the anchors are selected in the subset of P corresponding to the football field.

We perform a rescaling and a rotation of each crop to produce an insertion
that looks as realistic as possible by taking into account the inherent distor-
tions of CS (Figure 8.4). Let (r, θ) denote the initial polar coordinates (with
origin located at the center of CS (t)) of the center of the crop and (r′, θ′) those
of its selected anchor point. We rescale the crop by a factor αeβ(r′−r) + γ with
α = 0.5, β = −0.004, γ = 0.5 and rotate it by the angle difference θ′ − θ. Fi-
nally, we paste the transformed crop on CS (t) itself with OpenCV’s seamless
blending function, such that its center is located at the selected anchor point
(Figure 8.4). In order to obtain the boxes associated with these artificial play-
ers, we perform the same transformation on each bounding box included in
the initial crop. Eventually, for each transformed box, we consider as surro-
gate ground-truth bounding box the smallest unrotated (regular) rectangular
box that encloses it (Figure 8.4).

In our fisheye setup, the data augmentation process allows to create ar-
tificial players with known bounding boxes in P (Figure 8.4). However, this
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Fig. 8.3: The bounding boxes given by T n CT (t) (a) are projected (b) into CS (t) to provide us
surrogate ground-truth bounding boxes in P (c).
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4. Methodology

Fig. 8.4: Our custom data augmentation pipeline designed to construct surrogate ground-truth
bounding boxes in the region P filmed by CS only. First, crops containing players are extracted
(a) from the area filmed by both cameras P, in which we know their location. Then, each crop
and its associated bounding boxes are scaled (b) and rotated (c) to be appropriately pasted in
P. A seamless blending is applied during the collage to increase the realistic aspect of the
augmented image. As a result, we create artificial players with known bounding boxes in P.

Fig. 8.5: Initial motion detection mask M(t) overlayed on its corresponding frame (left), and
enlarged motion detection mask M(t) (right).

does not suffice to train S efficiently, as real players without known boxes
may still be present in P. In a standard training process, S would thus be
forced to detect the artificial players and would be penalized for detecting the
remaining real ones. To bypass this undesirable effect, we remove the penalty
suffered by S for detections containing enough motion. Hence, we leverage
a motion detection algorithm to determine where this should be applied. By
doing so, we also obtain areas where there is assuredly no player, i.e. where
detections should not be made.
[2. Motion detection] As we handle a video feed from a fixed camera, we
use ViBe [2] to obtain, for each frame CS (t), the set of pixels that are in
motion, noted M(t), and those that are not, noted M(t) (Figure 8.5). ViBe
is very sensitive to motion, which implies that, in our fisheye setup, M(t)
almost surely contains all the players, as well as pixels corresponding to the
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balls, player shadows, and some noise. As M(t) may be tight around the
players, we morphologically dilate it by a 11 × 11 square kernel to ensure
that it includes the bounding boxes that would surround the players if they
were available (Figure 8.5). By doing so, we obtain an enlarged mask M(t),
such that we can penalize S when it detects players in M(t), i.e. outside the
enlarged mask. However, M(t) remains an area of uncertainty, where we do
not penalize S . Technically, this means that we zero out the loss in this area
during training, as detailed hereafter.
Training S . We use the YOLOv3 network [32] trained to detect humans
on thermal images in [19] as teacher network T We use YOLOv3-tiny [32]
as student network S , adapted for a single class problem and with four
times less channels for each convolutional layer. Hence, S outputs a list of
5-dimensional vectors. Each of them encapsulates information on a predicted
bounding box: the four coordinates (x, y, w, h) defining the box, and a player
score p representing its confidence for a player to actually belong to the box.

The loss of YOLOv3-tiny, hence S , penalizes these vectors in the following
way (see Figure 8.6). For a predicted box close to a surrogate ground-truth
box (either in P or in P), the mean square error loss between the coordi-
nates of the boxes is computed, as well as the binary cross-entropy loss of p.
This encourages the network to predict a high confidence score (closer to 1)
and to find the right dimensions of the box. For a box far from a surrogate
ground-truth box, only the binary cross-entropy loss of 1 − p is computed,
to discourage the network from predicting a player in that box (p closer to
0). In our case, we must take into account the uncertainty about the boxes in
M(t) in the region P, as they may correspond to unnanotated real players.
Therefore, for a box far from a surrogate ground-truth box (including those
created by the data augmentation), we zero out its loss if the center of the box
is in P and is in motion (belongs to M(t)). If the center of the box belongs
to M(t), we are practically sure that there is no player in the box, and we
thus leave the loss as is to penalize that detection. There is not particular
restriction about the loss in P. This is illustrated in Figure 8.6.
Inference. When used for inference, we verify that the bounding boxes pre-
dicted by S contain enough motion. Indeed, the predicted boxes whose cen-
ter is not in motion, i.e. outside M(t), are not likely to contain a player.
Therefore they are removed from the final output of S .

5 Experiments

Online distillation. In this work, we perform the distillation of the teacher
network T nto the student network S in an online manner as in [7]. The
reason for using that process is threefold. First, this allows S to continuously
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Fig. 8.6: Combination of our data augmentation and motion detection algorithms, showing how
the loss is applied to penalize the predictions of S in P (outside the white area). S must detect the
players artificially created (red rectangles). Also, predicted boxes whose center falls within the
enlarged motion mask M(t) (the black zones) do not generate any loss, since this area includes
the players of P not erased by the data augmentation, for which we have no ground-truth boxes.
Finally, S must not predict any box in the rest of the image in P. Let us recall that the loss is
applied everywhere in P, as we have the ground truth from T n that area.
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adapt to the latest weather and lighting conditions. Second, in a real-life
deployment of the system, the online distillation will indeed be performed
continuously. Hence, in order to have an understanding of how S behaves as
it trains and detects people in real time, it is worth testing S under similar
conditions. Third, training S adaptively allows us to study the evolution
of the performance of the network as it learns through time. As we have
only one video sequence with both the thermal and the fisheye recordings,
this also enables us to evaluate S multiple times rather than measuring its
performance only once, on a unique (and maybe abnormally hard or easy)
small set of frames.

In the online distillation process, all the frames of the fisheye camera CS
are treated by S , which runs in real time. Meanwhile, some frames of the
video feed of the thermal camera CT are input to T which provides boxes
converted into surrogate ground-truth bounding boxes in the area P of the
frame captured by CS . These boxes are accumulated in an online dataset with
5-minutes memory, and the dataset is used to train a copy of S in a separate
thread. The training is performed on the whole frames CS (t) as described
in the previous section, using our data augmentation and motion detection
processes outside P. When this copy of S has trained during one epoch on
the online dataset, its weights are updated and transferred into the initial
network S that performs the detection on all the frames. Consequently, the
weights of this network evolves through time to continuously adapt to the
latest video conditions.
Quantitative evaluation. To assess the performance of the student network
S over the course of the video, we manually annotated the ground-truth
bounding boxes for all the players of one frame every 10 seconds of the fish-
eye video. We compute the performance of S on a set of frames with the
Average Precision (AP) metric particularized for one class. Following prac-
tice for the Pascal VOC dataset [10], each bounding box predicted by S is
matched with the ground-truth box with which it has the largest intersec-
tion over union (IoU). We consider predicted boxes with an IoU larger than
some threshold t_IoU as true positives, the others as false positives, and the
ground-truth boxes left unmatched are false negatives. If several true posi-
tives are associated with the same ground-truth box, only one of them is kept
as a true positive, while the others are rather considered as false positives.
We note the number of true positives (resp. false positives, false negatives)
TP (resp. FP, FN). Then, we compute the precision and recall as

P =
TP

TP + FP
and R =

TP
TP + FN

.

We compute the points (P, R) for various thresholds on the confidence scores
of the boxes to obtain the PR curve. Finally, we compute the area under the
PR curve as suggested in [10] to obtain the AP for that set of frames. Despite
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Fig. 8.7: Performances of T n P on the last 15 minutes of video as a function of t_IoU. This
quantifies how accurately T enters its bounding boxes on the players. We can see that T s not
perfect. We decide to evaluate the performances of S for t_IoU = 0.25, as we consider it as the
largest t_IoU for which T till displays satisfying performances (AP > 70%).

its limitations [5], this kind of evaluation process has been widely adopted in
the community.

In order to determine an appropriate value of t_IoU for evaluating the
performance of S , we examine the efficiency of T n predicting the boxes in
P. For that purpose, we compute the AP of T n the last 15 minutes of video,
for several values of t_IoU ranging from 0 to 1, for the frames where ground-
truth annotations are available. This allows us to determine how good T s
at centering its bounding boxes on the players. The performance of T n P as
a function of t_IoU is shown in Figure 8.7. We can see that T s not perfect
in P, which conditions the performances that can be expected from S . To
evaluate S , we choose t_IoU = 0.25, as T isplays reasonable performances
in P with that threshold. Given the small size of the boxes, it also makes
sense to examine the performance of S for a relatively low value of t_IoU.
Let us recall that the boxes outputted by the network are independent of
any particular choice of threshold. It serves only for quantitative evaluation
purposes.

Following [7], we evaluate the performance of the student network S pro-
gressively. Every 10 seconds, S predicts the bounding boxes of the frames for
which we have manual annotations within a running temporal window that
covers the next 3 minutes of video. For this set of frames, we compute the
AP. The evolution on the AP through time with t_IoU = 0.25 is represented
in Figure 8.8. We see that the performance tends to increase, indicating that
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Fig. 8.8: Evolution of the performances of the student network S through the video in PPP, PPP, and
in the whole frames. We can see that the network improves over time and that it manages to
perform well both in P and in P.

S learns to better detect players over time. Figure 8.8 also reveals that there
is still room for improvement in the present challenge.

We further examine the effectiveness of our data augmentation and mo-
tion detection processes to train S for detecting players outside P. For that
purpose, we perform a region-specific analysis by computing the temporal
evaluation of the AP within P and P. The performance curves are displayed
in Figure 8.8. We note that S learns efficiently to detect players in P, as the
performances for P and P are close to each other and follow the same trend.
Also, further experiments reveal that the post-processing with the motion
mask M(t) is particularly helpful to increase the performance in P. In that
area, the AP decreases by 5 to 20% without post-processing, while the drop
is below 3% in P.

Finally, as a potential application of this system is to monitor the use of the
football field, we examine the results obtained for the task of people count-
ing. The predicted number of people on the field corresponds to the number
of bounding boxes predicted by S (thus on the fisheye images) after post-
processing. We average the counting using a 1-minute sliding window. The
results are displayed in Figure 8.9. We note that our method gives a globally
reliable estimate of the number of people present on the field. Quantitatively,
during the last 15 minutes of video, the root mean square error (RMSE) be-
tween the predictions and the ground truth is as low as 3.4 players. Again, we
can see that the performance tends to increase over time since the estimate
is more accurate at the end of the video, indicating that S learns to better
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Fig. 8.9: Results on the player counting task averaged over a 1-minute window, and associated
standard deviation. During the last 15 minutes, we have a RMSE with the ground truth of
3.4 players, which is reasonable and shows that our method provides a reliable estimate of the
occupancy of the football field.

detect players over time. Also, we can see in Figure 8.9 that the standard
deviation of the box count computed for each sliding window decreases over
time, which indicates that the network becomes more consistent as it trains.
Even though S tends to slightly overestimate the actual number of players,
we can see that it manages to provides a good overview of the use of the
field.
Qualitative evaluation. To further assess the usefulness of our data aug-
mentation and motion detection processes, we perform ablation studies on
the components of our method. We investigate the combination of either en-
abling or disabling the data augmentation, with either zeroing out the loss
in the motion mask M(t), or nowhere in P, or everywhere in P. The effects
observed for these setups are reported in Table 8.1. In our experiments, we
observe that the combination of the data augmentation and of zeroing out
the loss in M(t), as detailed in this paper, leads to the best student network
S at inference time. Activating the loss everywhere in P at training time
forces S to detect only the artificial players in P and to avoid detecting the
actual players of P that have not been erased by the data augmentation. This
may confuse S , leading to a decrease in its ability to detect players in P at
inference time. We notice that canceling the loss everywhere in P leads to
thousands of predicted bounding boxes in P at inference time. This makes
sense since the network is not forced to detect or not players in P in this case.
Most of these predictions are false positives, and the system is useless in
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In P
With data

augmentation
Without data
augmentation

Cancel loss in
the motion
mask M(t)

Our full method.
Most players in P

correctly detected,
few false positives.

Few players
detected in P,

unusable in practice

Activate loss
everywhere

in P

Able to detect
players in P,

but not as good as
our full method

Unable to make
any detection in P,

no true positives

Cancel loss
everywhere

in P

Thousands of
detections in P,

mostly false positives

Thousands of
detections in P,

mostly false positives

Table 8.1: Ablation results in P. The combination of the data augmentation and the motion
detection algorithm gives the best trade-off between true and false positive detections.

practice. As indicated in Table 8.1, we also note that removing the data aug-
mentation always leads to mediocre networks, for similar reasons as those
already explained. In particular, activating the loss everywhere in P makes
S unable to detect any single player in P. This results from the absence of
ground-truth true positives (both artificial and real ones) in P.

Finally, examples of detections provided by S are given in Figure 8.10. We
can see that players located in P are detected as efficiently as those located
in P. This was made possible thanks to our data augmentation and motion
detection algorithms in the distillation approach.

6 Conclusion

In this work, we propose a novel system for monitoring the field occupancy
in low-budget football stadiums. Our system uses a single wide-angle fisheye
camera assisted by a thermal camera to detect and count all the players on
the field. We use a network trained in a student-teacher distillation approach.
The student network is locally supervised by a teacher network that easily de-
tects players on the thermal camera. These detections are then projected into
the fisheye camera using camera registration and serve as surrogate ground
truths. Since both cameras have different modalities and fields of view of the
scene, the student cannot be fully supervised by the teacher. Therefore, we
develop a custom data augmentation process, combined with motion infor-
mation provided by a background subtraction algorithm, to introduce sur-
rogate ground truths outside their common field of view. In our case, we
perform the distillation in an online fashion, i.e. our student is continuously
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Fig. 8.10: Detections on a test frame. We can note that players are accurately detected, even
though there are a few superfluous predicted bounding boxes.
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trained to adapt to the latest video conditions, while performing the player
detection in real-time. We show that our system is able to accurately de-
tect players both inside and outside the common field of view, thanks to our
custom supervision.
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Chapter 9

Report to municipality

This thesis work was supported by Aalborg Municipality, where the aim was
to investigate and develop an autonomous system for occupancy analysis.
This chapter will summarize the report that was prepared for the Municipal-
ity. The data presented in this report is from the studies conducted in this
thesis.

1 Setup

The deployed camera setup adopted and proposed for long-term occupancy
analysis is from Chapters 5 and 6, i.e. three thermal camera setup to cover
the whole field. The camera setup is employed because it is independent of
day/night light conditions.

The cameras are placed almost 10m from the ground and attached to a
pole. As the fields are amateurs, camera placements vary depending on the
pole’s availability and electricity resources. The arrangements with respect
to each soccer field are described in the coming sections.

2 Data recordings

The data is recorded from 10 different artificial grass fields from the 10th of
January to the 11th of April, 2018. The recording days in each soccer field are
described in Table 9.1.

The recording is performed at one 1/8 f rame/secto meet up with long-
term storage. Afterwards, data is prepared for further processing by per-
forming time synchronization and image segmentation. First, the cameras
are clocked for time synchronization for multiple cameras covering one field.
The image segmentation is performed for overlapping and non-field areas
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Start date End date Name of the field

10th of January 4th of February

1. NFB-11 (Nørresundby Forenede
Boldklubber, 11-players)
2. NFB-8 (Nørresundby Forenede
Boldklubber, 8-players)

8th of February 28th of February
1. Aalborg Chang
2. Gug Boldklub

5th of March 18th of March

1. SSB (Storvorde Sejlflod Boldklub)
2. AAB-1 (Aalborg Boldspilklub
af 1885, kunstgræsbane 1)
3. AAB-2 (Aalborg Boldspilklub
af 1885, kunstgræsbane 2)

21st of March 11th of April

1. IAF (Idrætsklubben Aalborg Freja)
2. SGI-1 (Svenstrup-Godthåb
Idrætsforening, 11-mands)
3. SGI-2 (Svenstrup-Godthåb
Idrætsforening, 4 små

Table 9.1: Overview of the recording periods for each soccer field.

by manual labels using a mapping video clip. The mapping video clip is
recorded for every soccer field before the start of the actual recording. In that
mapping video, a dummy person takes a round trip around the field. The
video annotator follows the person in the video clip to map the field area and
overlap of field areas in each camera. The overlapping and non-field areas
are then segmented out from actual images of the video.

For the six fields named NFB-8, NFB-11, Aalborg Chang, Gug Boldklub,
IAF and SSB, full field coverage is performed using three cameras to cover
the whole field. Fig. 9.1 shows the camera coverage, and Fig. 9.2 shows the
example images.

At fields AAB-1 and AAB-2, three cameras are installed to cover both
fields, where both soccer fields share the middle camera. Camera coverage is
demonstrated in Fig. 9.3, and example images are shown in Fig. 9.4.

Coverage of SGI-1 and SGI-2 is performed by using only one camera. Both
fields are closely constructed, where SGI-1 is a big field, and alongside, there
are four small fields. SGI-2 represents those four small fields. The camera
placement and the soccer fields are explained in Fig. 9.5, and the example
images are shown in Fig. 9.6

170



3. Algorithm for person detection in the fields

Fig. 9.1: Camera coverage for NFB-8, NFB-11, Aalborg Chang, Gug Boldklub, IAF and SSB. Blue
represents the coverage area, and grey represents the segmented area.

(a) Left camera image (b) Middle camera image (c) Right camera image

Fig. 9.2: Example images from NFB-8, NFB-11, Aalborg Chang, Gug Boldklub, IAF and SSB.

3 Algorithm for person detection in the fields

The algorithm from chapter 6 is used for person detection in thermal images,
i.e. YOLO v3-based deep neural network. The network used two-step trans-
fer learning. One is from RGB labelled data, and the second is from perfect
thermal indoor soccer data. Thoroughly studied and carefully selected data
with labels from overall recordings is then added to the network to learn and
detect a person in outdoor soccer fields. An example is shown in Fig. 9.7.

4 Evaluation

The detection algorithm is evaluated on 1000 images, randomly selected from
all data recordings. All the images are manually labelled and checked twice
for ambiguities. Finally, the number of players in the field found by the
algorithm is compared with the number of players counted manually. An
example result is shown in Fig. 9.8.

Sensitivity, Equ. 9.1, is chosen as a performance evaluation measure as
we are interested in positive detection. The desired algorithm, on average,
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(a) Left and middle camera coverage for AAB-1 (b) Right and middle camera coverage for AAB-2

Fig. 9.3: Camera coverage for AAB-1 and AAB-2. Blue represents the coverage area, and grey
represents the segmented area. Green is the covered area from other soccer fields being seg-
mented out

detects 73% of the players correctly. This implies that there is a 0.98% chance
of getting the wrong detection for one image.

Sensitivity =
TP

TP + FP
(9.1)

It is noticed that the quality of the image significantly decreases the de-
tection rate (Fig. 9.9). Most of the time, the bad results are from blurred
images, especially for players in the far regions. The blurred vision in the
camera appears at the start of every video sequence. The cameras used in
this setup record five minutes of sequence. So, blurred images are captured
at the beginning of every new sequence.

5 Final results to the Municipality

The results are presented to the Municipality in tabular form with a colour
representation. The results are calculated for each quarter that consists of 100
sequential images. For the fields covered with more than one camera, the
number of players is added up and averaged up for 100 images. The colours
in the table represent the level of occupancy in the fields ( Fig. ??). The rows
represent the time in hours duration from 7:00 am to 11:00 pm. Columns are
the days of the week that are further divided into registered bookings vs the
actual show-up at the fields. The report is submitted in the Danish language,
and an example is shown in Fig. 9.11.
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(a) Left camera image, AAB-1 (b) Middle camera image, AAB-1

(c) Middle camera image, AAB-2 (d) Right camera image, AAB-2

Fig. 9.4: Example images from AAB-1 and AAB-2.

(a) Middle camera coverage for SGI-1 (b) Right camera coverage for SGI-2

Fig. 9.5: Camera coverage for SGI-1 and SGI-2. Blue represents the coverage areas, and grey rep-
resents the segmented area. Green is the covered area from other soccer fields being segmented
out.
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(a) Middle camera image (b) Right camera image

Fig. 9.6: Example images from SGI-1 and SGI-2 respectively.

(a) Example image from recording. (b) Positive person detections in the image.

Fig. 9.7: Example of person detection using the algorithm from chapter 6.

Fig. 9.8: The plot shows the number of players detected by the program vs the number of players
labelled manually.
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(a) Example of low-quality image and detection
result

(b) Example of multiple body temperatures in
one image.

Fig. 9.9: Example of blurred images and wrong detections.

Fig. 9.10: Color representation for occupancy in the field. The number on the colours is the
number of persons
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Fig. 9.11: Example Report.
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Chapter 10

Conclusion and Discussion

1 Conclusion

This thesis covers the possible solutions for occupancy analysis in outdoor
soccer fields. To that end, different camera setups are investigated for the
application of person/player detection. Furthermore, this work presented
challenges associated with camera setups like occlusion and distortion and
outdoor monitoring like weather, environment, and light conditions.

With the focus on occupancy analysis, the first part of the thesis is a pre-
liminary study that is aimed to observe and analyze the behaviour of five
camera setups for player detection and counting. Each camera setup was
closely studied for its installation complexity, cost-effectiveness, setup re-
silience for capability for long-term recordings and their behaviour in the
wind, shadow, day and night recordings. In addition, a person’s appearance
and artefacts related to light and weather are studied for each camera output.

The camera setup analysis showed that the thermal camera performs well
in low light and night conditions, but the setup is more expensive and com-
plex. Whereas wide-angle high-resolution camera setups are found to be
cheap and less complicated, the setup does not ensure the privacy of the
field users and hinders long-term recordings. One fisheye camera is both af-
fordable and straightforward in installation. The setup also gives anonymity
to the users due to low resolution, but the video data looks pretty distorted,
especially at the corners. Night vision in fisheye at the corners of the field al-
most become invisible. One thermal panning solution performs well at night
and is simple but does not provide full field coverage for the whole time.
One fisheye and one thermal camera solution are neither expensive and not
cheap, and it is suitable for both day and night video feeds and preserves
privacy. The problem with this kind of setup is the installation and data
processing complexity. Any further comment on the setup required testing
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Chapter 10. Conclusion and Discussion

for performance analysis. Three out of five camera setups were chosen for
further research by analyzing the requirements for outdoor recording for a
long time and considering privacy preservation. The following parts of this
section address the challenges related to each chosen camera setup for player
detection and occupancy analysis.

In the second part of the thesis, the results of one fisheye and wide-angle
lens camera are presented for player detection and counting for occupancy
analysis. The algorithm is based on adaptive background subtraction for
detecting region of interest proposals as players. Afterwards, players are
classified by using appearance-based features. It is observed that despite
the high distortion along the corner of the field, the proposed method for
occupancy analysis manages to achieve good performance for a reasonable
period. The algorithm is tested for consecutive frames with almost the same
light conditions. Results may vary by changing the light and environmental
conditions.

The later part of the thesis presents player detection methods using a ther-
mal camera setup. The first study proposes a machine learning approach to
classify occluded vs non-occluded players. In the occluded blob, the number
of players, i.e. 1, 2, 3, or 4, was identified by designing a virtual players and
field setup. The method performed well for occupancy analysis in good ther-
mal data. In the second study, many available thermal datasets are reviewed
to use a deep neural network, and a lack of a diverse dataset is reported.
So, thermal data of 20 weeks is thoroughly studied and categorized. Sig-
nificant variance is observed in long-term recording, raising many more re-
search questions. A diverse thermal dataset for person detection was finally
presented. Moreover, the effect of each category of data was observed for
training a deep learning network. The third study studied the influence of
data harmonization on detection performance using a deep neural network.
It is presented that the data homogenization-based preprocessing method
does not improve the performance in person detection.

For the last study of camera setups, a combination of thermal and fisheye
cameras is employed for detecting and counting players on a soccer field.
First, a teacher-student-based network is employed to learn the thermal rep-
resentations for the missing fisheye view. Both camera information was then
utilized for detection using the deep network. It is observed that the student
network starts learning and even sometimes performs better as it trains for
more time. This leads to the conclusion that by increasing the amount of
data, results get better while training online.

The final report to the municipality is then presented for long-term oc-
cupancy analysis of soccer fields using three thermal camera setups. The
camera setup is mainly chosen due to its simplicity in installation and In-
dependence on the artificial light conditions in the soccer fields. Overall
each camera setup has its advantages and disadvantages. Fisheye camera
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setup [1] performed well in daylight. Thermal camera setup performed well
in low light conditions [2] and even in diverse environmental conditions [3].
The systems are simple to install and require minimum time sync for data
processing for further analysis. The combination setup [4] can perform well
in both day and night conditions provided enough online data streaming but
it requires complex data sync, not complying with this condition can lead to
significant performance degradation.

2 Outlook limitations and future perspectives

This thesis explores different methods and camera setups for occupancy anal-
ysis of outdoor soccer fields. Diverse outdoor challenges in connection to the
outdoor environment are addressed in all sections of the thesis. Studying the
abilities and limitations of each camera setup has opened the doors for many
more possible research directions, not limited to soccer analysis. The inves-
tigation can be extended to functional application areas such as pedestrian
analysis, security and surveillance, crowd analysis and many more.

The initial study for camera setup selection covers different outdoor pa-
rameters to be considered in accordance with the application area before the
final setup. In the particular case of occupancy analysis, coverage area, setup
simplicity, camera visibility, and long-time recording robustness are the most
critical parameters. The study provides a guideline for the steps that could be
considered before installing an outdoor setup for practical long-term record-
ing applications. The study’s limitation lies in the recording time, as the ini-
tial research is conducted for one day only. Therefore, it does not cover many
more outdoor parameters encountered in long-term recording, e.g. camera
behaviours for snow and high environmental temperatures. Furthermore, the
recordings were made in moderate temperatures during the autumn season.
Every season could have different environmental parameters to be considered
before planning to have the long-term recording for that particular season.

Working with the fisheye camera has a clear advantage for the coverage
of the whole field. In addition, using this camera reduces the installation
and processing complexity as well as the cost. The algorithm for occupancy
analysis using a fisheye camera yielded considerable results for controlled
light conditions. The limitation of the fisheye lens lies in distortion around
the image corners. No matter the algorithm, fisheye lens image suffers from
severe distortion that, if combined with low light conditions, can lead to total
blindness at the corners of the fields. For future work, better methods for
distortion correction and image enhancement techniques can be explored for
person detection. With the availability of enough data, CNN-based methods
can also be inspected for better performance.

Thermal camera has the advantage of working well in low light condi-
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tion and at night time. It also gives privacy preservation. The first work’s
limitation lies in the availability of enough outdoor thermal data. Every data
set has its characteristics depending on the environment and the application
area. No outdoor soccer field data is available online. That’s why the stud-
ies generate artificial data by creating a virtual environment. The tests are
performed on the data from one-day test recordings. Algorithm testing on
long-term data can reveal more detailed results.

For the second study in the thermal domain, the experiments are con-
ducted on long-term recordings, where the data is collected for 20 weeks.
The long-term recordings lead to many new possible areas of research. It
reveals many outdoor thermal-related issues that can not be encountered
otherwise. The whole data is thoroughly studied and categorized. Catego-
rizing the data enables the investigation of the effect of each kind of data on
the results of detection. The results depict the contradicting behaviours while
gathering opposite temperature images, i.e. images with a higher person’s
body temperature than the background and images with a lower person’s
body temperature than the background. Further studies and experimenta-
tion can reveal the actual effect of putting both kinds of images to gather and
the effect of any prepossessing on the data. An intelligent selection of data
for relevant applications may also lead to some exciting results to investigate
through.

For the third study, the data homogenization-based preprocessing is in-
vestigated using the thermal person detection dataset. The study indicates
that the polarity homogenization-based preprocessing does not improve the
results. Therefore, other homogenization-based preprocessing techniques
need to be tested to provide a general discussion on the matter.

Combining thermal and fisheye camera in a way that thermal camera cov-
ers only a part of the field is a novel and compelling study. The multi-modal
and multi-view distillation cross-learn with time from thermal to fisheye. The
principle of learning is based on a student-teacher-based network in which
one framework acts as a student to learn from another framework we choose
to act as a teacher. With time the student gets better and better at detection.
The limitation of the work lies in the requirement of strict data synchroniza-
tion, which is hard to achieve given that both cameras operate at different
time stamps, frame rates and clip duration. More recordings with varying
models of cameras may help to understand the options more clearly and
make the data synchronization live and easy.

Every study has open up more research questions that may help improve
the current state of the art. During the span of the PhD study, my research
work revolves around particular camera model options. More camera model
options for each setup can be investigated. The results may lead to either
contradicting or confirming results. All the research conducted is based on
self-collected data, and the outcome in the form of a report is also provided
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