
 

  

 

Aalborg Universitet

Proceedings of the 1st Virtual Control Conference VCC 2010

Stoustrup, Jakob; Leth, John-Josef; Schiøler, Henrik

Publication date:
2010

Document Version
Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):
Stoustrup, J., Leth, J.-J., & Schiøler, H. (red.) (2010). Proceedings of the 1st Virtual Control Conference VCC
2010. Aalborg Universitetsforlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 16, 2024

https://vbn.aau.dk/da/publications/fc057fb9-af32-4a08-b00b-16c00ba4a29b


Proceedings 
 

 of the  
 

1st Virtual Control Conference 
  

VCC 2010 

henrik
Published by Aalborg University Press, 2010 http://forlag.hum.aau.dk/ISBN: 978-87-7307-999-7



Organizing Committee

Chair:
Henrik Schiøler,
Vice-chair:
Jakob Stoustrup,
Members:
Jens Dalsgaard Nielsen,
Kirsten Mølgaard Nielsen,
John Leth,
Jan Bendtsen,
Per P. Madsen.

International Program Committee

Frank Allgöwer,
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Reference Tracking and Profit Optimization of a Power Plant

Martin Kragelund, John Leth, and Rafa l Wisniewski

Abstract—In this paper we discuss two di↵erent

methods for implementing reference tracking in a

profit optimization problem of a power plant. It is

shown that tracking included as a side constraint

results in an significant tracking error only when the

reference gradient is large. When tracking is included

in the cost function, as a quadratic term, the reference

is tracked with a small accumulated error. Finally, the

two methods are compared both in terms of tracking

performance and computational burden.

I. Introduction

Traditional thermal power plants, i.e., coal, gas, or oil
fired power plants, have been studied in details [1]. In
brief, a thermal power plant functions by burning a fuel
in a boiler which evaporates water to steam under high
pressure. The stream then drives a turbine generating
electrical power which is delivered to the electrical grid.

A thermal power plant is modeled by first principle
in [2], where the considered fuel is coal dust which is fed
by four coal mills grinding the raw coal. The detailed
model in [2] was used to establish an observer for the
flow of coal into the boiler to improve the control of
the coal mills. Simpler models for system control are
presented in [3], where the di↵erent methods for changing
the output from the complete portfolio of DONG Energy
in Denmark are described. The means of changing the
output is denoted an e↵ectuator in [3], and the models
of typical e↵ectuators in a power plant are derived. An
example of an e↵ectuator is the boiler load in a thermal
power plant which can be modeled as a 3rd order system.

In production economics the possible outputs from a
production unit or “firm” are identified and called the
production set [4, Chapter 5]. The production units are
seen as black boxes which are capable of transforming
some goods (input) to other goods (output). Some as-
sumptions are often made about the production set e.g.
No free lunch and Free disposal, i.e. the production set,
Y , cannot contain Rl

+

as this would yield production of
some quantity without consumption and the company
can absorb any additional input without reducing the
output. In [4, Chapter 5] it is concluded that the ob-
jective of a company is to maximize its profit, which at
first seems reasonable. However, it is possible to imagine
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companies which have the objective of maximizing sales
revenue or the size of the company, but if the company
is owned by the consumers in a market they will agree
that profit maximization is preferable regardless of their
own preference function.

The electricity market place for Nordic Countries is
called Nord Pool. Here the price of electricity, as known
by the average electricity consumer, is negotiated. Fur-
thermore Nord Pool regulates related to the quality of
the power deliverance. These quantities are traded on
the hourly spot market, elspot. The transmission system
operator maintains the energy balance. In other words it
takes care of the situation when a power plant delivers
too much or too little electricity to the grid than agreed.
To ensure that su�cient reserve capacity is available the
transmission system operator pays two prices, an up price
and a down price, i.e. price for producing more or less
electricity than previously agreed.

The data from Nord Pool has been used before to
schedule the usage of hydro power plant in Norway such
that the production plan commitment of the current
day is fulfilled while maximizing the profit of the hydro
plant [6].

This work focus on two di↵erent methods for including
reference tracking into the design of an optimal profit
strategy for a power plant, using coal, gas and oil, under
the consideration of two business objectives, e�ciency
and controllability.

A. Outline

In Section II the plant dynamics, business objectives
and profit function are described. In Section III the
continuous optimization problem is formulated without
reference tracking. For this purpose a discrete formu-
lation of the problem is derived. In Section IV and
Section V the reference tracking is included into the
optimization problem as a side constraint and as a
quadratic term in cost function, respectively. Section VI
contain a discussion of the methods for implementing the
tracking.

II. Plant Model

In this section a model of the power plant considered
in this work is presented. The plant is capable of using
three di↵erent fuel systems; coal, gas, and oil. For further
details about the presented models and quantities the
reader is referred to [7]–[10].



A. Plant Dynamics

The fuel flow, x(t) [kg/s], into the power plant is gov-
erned by third order di↵erential equations (these equa-
tions also include the power plant dynamics). The control
signal to the valves controlling these flows is denoted
u = (uc, ug, uo) 2 U, U =

�
v 2 R3

+

| 0  v

T
eu  400

 
,

where eu = (10.77, 18.87, 15.77) [kg/s], and the dynamics
is given by

ż(t) = Az(t) + Bu(t)

x(t) = Cz(t),
(1)

where

A =

2
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and hij , i 2 I, are constants describing the dynamics of
the three fuel systems which are obtained from transfer
functions of the form

Hi(s) =
1

(⌧is + 1)3
,

where ⌧i, i 2 I, is 90, 60, and 70, respectively. The three
fuel systems may have some shared dynamics but to
simplify the model in this work the systems are assumed
decoupled.

Functions describing the two business objectives are
derived in the following.

B. E�ciency

The e�ciency objective, ye = ye(z), deals with how
much electricity is produced from a certain amount of
fuel. Three a�ne functions describing the contribution of
the individual fuels to the e�ciency objective have been
established using measurement data from two Danish
power plants and can be expressed as

ỹe(z) = Q̃

z + b, (2)

where

Q̃ = diag(ex)C, ex = (10.77, 18.87, 15.77),

b = (�1.76, 1.85, �0.37),

and C defined in (1). The values of ex and b have been
established using measurement data and are measured
in [MJ/kg] and [MW ] respectively. The energy used for
preprocessing the individual fuels is expressed by the
bi’s, and the exi ’s are conversion factors which are a
combination of the boiler e�ciency and energy storage
in the di↵erent fuels.

The total amount of e�ciency is described by the
function

Z ! Y
1

; z 7! ye(z) = �

T
ỹe(z),

where

� = (1, 1, 1).

C. Controllability

The controllability objective, yc = yc(z), deals with a
measure of how fast the production of electricity can be
changed. Allowed changes in the production is limited
to a certain gradient depending on the current e�ciency.
The reason for this limit is a compliance to maximum
temperature gradients in the boiler (these have not been
explicitly modelled and are therefore indirectly consid-
ered by limiting the allowed changes). When using coal
it is allowed to change production with 0.133 [MW/s]
when running the plant at low and high production
and 0.267 [MW/s] in the middle range from 200 [MW ]
to 360 [MW ]. When using oil or gas the values are
0.133 [MW/s] and 0.534 [MW/s]. If a mixture of the
three fuels are used it is assumed that the allowed
change is a linear combination of the allowed change
of the individual fuels. The controllability objective is,
therefore, modelled as

Z ! Y
2

; z 7! yc(z) =

8
><

>:

0.133 ye(z) 2 S
1

⇠T
˜ye(z)

ye(z)

ye(z) 2 S
2

0.133 ye(z) 2 S
3

,

(3)

where

⇠ = (0.267, 0.534, 0.534), S
1

= {s 2 R|0  s  200},

S
2

= {s 2 R|200 < s < 360}, and

S
3

= {s 2 R|360  s  400}.

D. Prices

The cost of using the fuel, revenue from production
of output, and the profit of operating the power plant
can now be determined. The above constructions yields
a product (or output) function, yP , of the system given
by

yP : Z ! Y ; z 7! (ye(z), yc(z)).

The growth of cost and growth of revenue for the
system are defined by the following functions (both with
units in [DKK/s])

gC : Z ! R; z 7! z

T
C

T
pC ,

gR : Y ⇥ R
+

! R; (y, t) 7! y

T
pR(t), pR(t) > 0,

where pC = (1.20, 3.74, 6.00) is the price of coal, gas, and
oil respectively and

pR(t) = (pR1

(t), pR2

(t))



the price of the e�ciency and controllability respec-
tively.1

The growth of profit is hence defined by

Z ⇥ Y ⇥ R
+

! R; (z,y, t) 7! gR(y, t) � gC(z),

which for the system yields the function

gP : Z ⇥ R
+

! R; (z, t) 7! gR(yP (z), t) � gC(z).

Therefore, the profit is given by

P : R
+

! R; t 7!
Z t

0

gP (z(⌧), ⌧)d⌧. (4)

III. Problem Formulation

Using the above it is now possible to formulated the
following optimization problem

max
u2U

P (T ) =
R T

0

gP (z, t)dt

subject to ż = Az + Bu,
(5)

and with the additional requirement that, ye(z(t)) should
track a predefined reference signal, yr(t).

For computational reasons the optimization problem
above will be simplified by introduction two approxima-
tions. One which assumes good reference tracking and
one which deals with condition for discretization of (5).

The growth of profit function, gP , can when ye ⇡ yr

be approximated by

gp(z, t) = ⇥(t)z + '̃(t), (6)

where

⇥(t) = pR1

(t)�T
Q � pR2

(t)pT
CC + #(t),

'̃(t) = pR1

(t)�T
b + pR2

(t)⇣(t),

and #(t) and ⇣(t) makes up for the switching function in
the original formulation of the controllability, i.e.,

#(t) =

8
><

>:

0 yr(t) 2 S
1

⇠T Q
yr(t) yr(t) 2 S

2

0 yr(t) 2 S
3

,

⇣(t) =

8
><

>:

0.133 yr(t) 2 S
1

⇠T b
yr(t) yr(t) 2 S

2

0.133 yr(t) 2 S
3

,

Hence the assumption ye ⇡ yr enables us to consider
the growth of profit (4) as a a�ne function of the state
as is (6). Note that the assumption also implies that the
switching condition yr(t) 2 Si in the expression for # and
⇠ are time dependent, this switching condition would be
state dependent otherwise.

The time period T is divided into N equally sized time
units, h, i.e., T = Nh. It is assumed that ⇥(t), '(t),

1The prices used in this work corresponds to the market prices
the 29th of June, 2008 and has been established using inter-
nal DONG Energy documents and the archive of power price
at www.nordpool.dk, which is a marketplace for trading power
contracts.

 (t), yr(t) can be approximated by piecewise constant
functions for each time step, i.e.,

⇥(t) = ⇥k, kh < t < (k + 1)h,

'̃(t) = '̃k, kh < t < (k + 1)h,

yr(t) = yrk , kh < t < (k + 1)h.

Furthermore, the control will be assumed piecewise con-
stant as customary when digital to analogue conversion
is performed using sample-hold circuits.

Using a fact from [11] the continuous time state z(t)
in the dynamical system in (5) can be described by

z(t) = eAt
z

0

+

Z t

0

eA(t�s)
Bu

0

(s)ds

=
⇥
I 0

⇤
exp

⇢
A B

0 0

�
t

�
z

0

u

0

�
,

(7)

where I is an identity matrix with appropriate dimen-
sion. Using (7) it is possible to derive the following
formula which is used during the discretization of the
cost and constraint
Z h

0

eAtdt = eAh

Z h

0

e�A(h�t)dt

= eAh

✓
e�Ah · 0 +

Z h

0

e�A(h�t)Idt

◆

= eAh ⇥
I 0

⇤
exp

⇢ �A I
0 0

�
h

�
0

I

�
.

(8)

The objective function, P (T ), in the optimization
problem in (5) is converted to discrete time by using the
above, i.e.,

P (T ) =

N�1X

k=0

Z (k+1)h

kh

(⇥(t)z(t) + '̃(t)) dt

=

N�1X

k=0

⇥k

Z h

0

✓
eAtzk +

Z t

0

eA(t�s)Bdsuk
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dt + h'̃k

=

N�1X

k=0

⇥k

Z h

0

⇥
I 0

⇤
eÃt
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uk

�
dt + h'̃k

=

N�1X

k=0

⇥k

⇥
I 0
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eÃh

⇥
I 0
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eÂh


0

I

� 
zk

uk

�
+ h'̃k,

where

Â =

 �Ã I

0 0

�
, Ã =


A B

0 0

�
.

With the reference tracking disregarded and the
growth of profit function as in (6), the optimization
problem (5) can be reformulated as

max
uk2U

N�1X

k=0

Ckzk + Dkuk + Ek

subject to zk+1

= �zk + �uk,

(9)

where

Ck = ⇥k

⇥
I 0
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�
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Ek = h'k, � = eA(tk+1�tk), and � =

Z tk+1�tk

0

eAsdsB.



When considering the reference tracking di↵erent
approaches can be used to formulate them. In this work
two di↵erent methods are considered - briefly these are:

Quadratic: In this approach the tracking constraint
is included in the profit function as a norm of the
di↵erence between the e�ciency and the reference
and thus penalizing deviations.

Side Constraint: In this approach the tracking
is formulated as a constraint in the optimization
such that the reference is followed within a refer-
ence band. This is implemented as additional side
constraints to problem (9).

IV. Side Constraint

To include the reference tracking in problem (5) we
introduce in this section a reference band with time
dependent width, ↵(t), i.e., ↵(t) is the normed error at
time t. In continuous time the reference band can be
formulated as

h(z(t), t) � 0, (10)

where

h(z(t), t) = ⌥z(t) + (t), (11)

with

⌥ =


�

T
Q̃

��T
Q̃

�
,

 (t) =


�

T
b � yr(t) + ↵

��T
b + yr(t) + ↵

�
.

By direct calculation the discrete time approximation
then yields

 lzk +⇧luk +⌦k,l � 0

where for l = 0, 1, 2, ..., L

 l = ⌥eA
l�1
L h,

⇧l = ⌥

Z l�1
L h

0

eA(

l�1
L h�s)

Bds,

⌦k,l =  ( l�1

L h + kh).

Note that the constraint is guaranteed to be satisfied L
times between each sampling of the system in (9).

Hence the optimization problem (9) together with
tracking constraint can be formulated as

max
u 2 U
↵ � 0

N�1X

k=0

�
Ckzk + Dkuk + Ek � Wk↵k

�

subject to zk+1

= �zk + �uk,

 lzk +⇧luk +⌦k,l � 0.

Note that the tracking width ↵k is included in the op-
timization problem, i.e., the tracking error is minimized
as well.
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Fig. 1. Graphs of the e�ciency output, input usage, and tracking
error for the optimization problem with reference band tracking,
L = 1.
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Fig. 2. Graphs of the e�ciency output, input usage, and tracking
error for the optimization problem with reference band tracking,
L = 5.

The optimization problem above has been solved for
L = 1 and L = 5, the results are depicted in Figure 2 and
Figure 1. As seen in these figures, reference is tracked
well with an significant error only present at times with
large gradients in the reference signal. Furthermore, the
tracking of the reference is considerably better when L =
5 as both the intensity and the value of the e�ciency
error is smaller.

V. Quadratic

In this section we include the reference tracking as
a cost on the deviation from the reference. This is
formulated as

Q(T ) =

Z T

0

��q

��
�

T
Qz(t) � yr(t)

��2

dt, (12)



where k·k is the Euclidean norm. The tracking is included
in the objective function as

P (T ) =

Z T

0

gp(z, t) � �q

��
�

T
Qz(t) � yr(t)

��2

dt

=

Z T

0

0

B@�z(t)T
Qz(t)| {z }

P2(T )

+ 2q(t)T
z(t) + '(t)| {z }
P1(T )

1

CA dt,

(13)

with

Q = �qQ̃
T
��

T
Q̃

q(t)T =
1

2
⇥(t) + �qyr(t)�

T
Q̃

'(t) = '̃(t) � �qyr(t)
2.

As our maximization problem is formulated in discrete
time we need to discretize (13). This is done in the sequel
by apply (7) and (8).

P1(T ) =

Z T
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⇣
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⌘
dt
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N�1X

k=0

2q(t)T
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Z h

0

⇥
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⇤
eÃt
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dt + h
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=
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k=0

2q(t)T eÃh ⇥
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eÂh
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�
+ h

N�1X
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'k

=

N�1X

k=0

(Mzzk + Muuk + h'k) , (14)

where

Mz = 2q(t)T e
˜Ah
⇥
I 0

⇤
e

ˆAh


0
I
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I

0

�

Mu = 2q(t)T e
˜Ah
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⇤
e

ˆAh


0
I
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0
I

�

with

Â =

 �Ã I

0 0

�
, Ã =


A B

0 0

�
,

and the matrices I and 0 of appropriate dimensions.

Now, the quadratic term is discretized by using (7)

P2(T ) = �z(t)TQz(t)

= �
N�1X

k=0

Z h

0

✓
zT

k eA
T t

+ uT
k

Z t

0

BT eA
T (t�s)ds

◆
Q

✓
eAtzk +

Z t

0

eA(t�s)Bdsuk

◆
dt

= �
N�1X

k=0

Z h

0

⇥
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k uT
k

⇤
eÃ

T t


I
0

�
Q

⇥
I 0

⇤
eÃt
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�
dt

= �
N�1X

k=0

⇥
zT

k uT
k

⇤
eÃ

T hY (h)eÃh


zk

uk

�
(15)

where Ã is as above and

Y (h) =

Z h

0

e�ÃT (h�t)
¯Qe�Ã(h�t)dt (16)

¯Q =


I
0

�
Q

⇥
I 0

⇤

The integral in (16) is on the form of the solution to a
matrix di↵erential equations which can be formulated as

Y (h) =

Z h

0

e�ÃT (h�t)
¯Qe�Ã(h�t)dt )

� d
dh

Y (h) =

˜ATY (h) + Y (h)

˜A � ¯Q, Y (0) = 0. (17)

Using the Vec(·) notation which is defined as

Vec(P ) =

2

64
p
1

...
pn

3

75 , (18)

where pi is the columns of P , it is possible to formulated
(17) as

�dVec(Y (h))

dh
=FVec(Y (t)) � Vec(Q̄) (19)

where
F =

⇣
I ⌦ Ã

T + Ã

T ⌦ I

⌘

and ⌦ denotes the Kronecker product. By using the
solution to standard vector di↵erential equation and (8),
the solution to (19) is given by

Vec(Y (h)) =

Z h

0

eF (h�⌧)d⌧Vec(Q̄)

=eFh
⇥
I 0

⇤
e

ˆFh


0
I

�
Vec(Q̄)

=eFh
F̃Vec(Q̄),

where

F̃ =
⇥
I 0

⇤
e

ˆFh


0
I

�
, F̂ =

 �F I

0 0

�
.

That is (15) can be expressed as

P2(T ) = �
N�1X

k=0

⇥
zT

k uT
k

⇤  N zz Nzu

Nuz Nuu

� 
zk

uk

�
(20)



where

Nzz =
⇥
I 0

⇤
e

˜AT hVec�1

⇣
eFh

F̃Vec(Q̄)
⌘

e
˜Ah


I

0

�

Nzu =
⇥
I 0

⇤
e

˜AT hVec�1

⇣
eFh

F̃Vec(Q̄)
⌘

e
˜Ah


0
I

�

Nuz =
⇥
0 I

⇤
e

˜AT hVec�1

⇣
eFh

F̃Vec(Q̄)
⌘

e
˜Ah


I

0

�

Nuu =
⇥
0 I

⇤
e

˜AT hVec�1

⇣
eFh

F̃Vec(Q̄)
⌘

e
˜Ah


0
I

�

with matrices I and 0 of appropriate dimensions, and

Vec�1

⇣
eFh

F̃Vec(Q̄)
⌘
, an n ⇥ n matrix, denoting the

“inverse” of the Vec-operator in (18), i.e., reshaping the
vector into a matrix.

Hence the optimization problem together with
quadratic tracking error can be formulated as

max
u 2 U
↵ � 0

N�1X

k=0

Ck

subject to zk+1

= �zk + �uk,

where

Ck =
⇥
z

T
k u

T
k

⇤
N


zk

uk

�
+ Mzzk + Muuk + h'k,

with

N = �


Nzz Nzu

Nuz Nuu

�
,

and the matrices N zz, Nzu, Nuz , Nuu, Mz , and Mu

as given above.
The optimization problem above has been solved and

the results are depicted in Figure 3. As seen in the figure
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Fig. 3. Graphs of the e�ciency output, input usage, and tracking
error for the optimization problem with quadratic tracking error.

the reference is tracked with a small accumulated error
caused by the quadratic error term in (12).

VI. Comparison of Optimization Methods

In this section we compare the two di↵erence methods
for solving the problem (9) with reference tracking.

Comparing the e�ciency error of the three di↵erent
methods it is noted that the mean of the error in
the case of side constraints is less than the quadratic
method. However, the fluctuations of the e�ciency error
when using side constraints are more frequent than the
quadratic case.

The profit of the three di↵erent methods are almost
identical and are therefore not included in this analysis.
We note that this is also supported by the fact that the
use of fuels in the three approaches are similar and by
the fact that the e�ciency error is small hence producing
similar profits.

In table I the times for running the optimization are
presented for the three solution strategies. Hence the

Method Optimization Time Solver

Side Constraint (L = 5) 896 s SeDuMi
Side Constraint (L = 1) 168 s SeDuMi
Quadratic 157 s BPMPD

TABLE I

Comparison of optimization times between the three

solution strategies.

quadratic method or side constraint method with L =
1 should be applied if only the optimization time is
considered.

As the profits of each of the methods are the same the
choice of methods should be based on the need for com-
putation time and requirements on tracking performance,
which depend entire on the specific control problem.

To this end we remark that if continuous time is con-
sidered, the quadratic method has the advantage of only
having the dynamical system as side constraint, which
eases application of the Pontryagin maximum principle.
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Abstract—A nonlinear experimental pH neutralization plant is
controlled using a neural networks based Approximate Predictive
Control (APC) strategy. First a closed-loop identification is
performed, further, using neural networks, a black-box modeling
of the experimental plant is conducted. Then the approximate pre-
dictive controller is realized, where a linear model of the plant is
extracted at each sampling period from the neural network model.
This strategy is used to control the experimental neutralization
plant for set point tracking and disturbance rejection.

Index Terms—pH Neutralization Plant, Neural Networks,
Approximate Predictive Control

I. INTRODUCTION

Monitoring and controlling the pH level is often performed
in many chemical, industrial processes. It is important to
improve the productivity and at the same time the robustness
of these processes.

A PID controller is often used to deal with this process;
however, it can only react to changes in a reference signal. On
the other hand, a Model Predictive Control (MPC) approach
is proactive and makes use of the information of the future
reference signal which is usually known beforehand in a pH
neutralization process. Although the MPC approach can not
follow a step function directly it can follow it much better than
a PID (justifiably assuming that the maximal possible slope of
the change is the same). Furthermore a MPC approach is more
sophisticated than a PID in terms of handling input and output
constraints, as well as dealing with difficult system behaviors
like high nonlinearity and long time delays, see e.g. [1].

Nonlinear Model Predictive Control (NMPC) is a well-
established research approach to deal with nonlinear plants.
Currently the NMPC is limited to processes with relatively
slow dynamics due to the usage of nonlinear optimization
approaches. Different techniques have been proposed to deal
with this problem, see e.g. [2] and [3]. One of these techniques
is the Approximate Predictive Control (APC) which uses a lin-
earized model of the plant at each sampling period [4]. By this
way, only a linear optimization problem has to be performed
every sampling instant, this reduces the computational load and
enables to deal with faster processes.

The APC approach is already known since more than ten
years and some simulation studies were introduced in [5]

to control gas turbine engines and in [4] for a pneumatic
servomechanism. Although there is a vast literature on MPC
in connection with neural networks there are not many appli-
cations of APC approaches based on neural network models
used on real problem instances. One of the exceptions is the
experimental 3-DOF Helicopter presented in [6].

To deal with the pH neutralization process in [7] a PID
controller based on a neural network model is presented, which
uses a genetic algorithm to tune the parameters of the PID
controller offline on the nonlinear neural network model. In
[8] on this problem an adaptive nonlinear control strategy is
used.

Fig. 1. The experimental pH neutralization plant.

In this paper an APC strategy is used to control the experi-
mental pH neutralization plant shown in Figure 1. We consider
the set point tracking and disturbance rejection problem. All
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Fig. 2. Schema of the problem in its SISO arrangement.

these in order to assist the capability of APC to control such
highly nonlinear process.

The rest of the paper is structured as follows: Section II
describes the system under consideration. In Section III a
system identification of the experimental pH neutralization
plant is performed. Here a data set is collected in closed-loop
and based on which a neural network is trained to represent the
experimental plant. A short introduction to the APC strategy
is given in Section IV. Section V presents the experimental
results in terms of a set point tracking and a disturbance
rejection problems. Finally in Section VI some conclusions
are drawn.

II. PROBLEM DESCRIPTION

The pH neutralization process considered in this work is
technically realized in a mixing tank with two input streams
and one output stream. Figure 1 and Figure 2 show the ex-
perimental plant and a draft of it, respectively. The cylindrical
tank is initially filled to three-fourths of its volume with water
and the mixer is arranged in the lower fourth of the tank.

Separate control loops, one for the temperature and one
for the liquid level, are used for holding the environmental
conditions approximately constant. These controllers are sim-
ple On/Off-Controllers and as such are independent from the
control method for the pH neutralization process.

One of the input streams is an alkaline solution (NaOH) and
has a constant flow rate as well as a constant pH-value. The
second input stream is acid (HCl) with a constant pH-value
but its flow rate is manipulated to control the pH-value in the
tank. The output stream is controlled in the mentioned sepa-
rated On/Off-Control loop and hence the outflow is discrete
depending on the liquid level within the tank. Finally a pH
sensor is attached near the bottom of the tank precisely above
the opening for the output stream. The reference signal which
is a desired pH-value in the tank is known beforehand.

The whole system can be formulated as a SISO system: the
pH-value of the liquid in the tank is the output and the acid
flow rate is the input to this system. The right acid flow rate
results in the desired pH-value within the tank. Insufficient
acid results in an excessively alkaline pH-value; conversely,
excessive acid inflow leads to an exceedingly acidic pH value.

In the following the nonlinearities of the experimental pH
neutralization process are summarized:

• The neutralization process proceeds nonlinearly and has
a high sensitivity around the pH-value of 7.

• The neutralization process has two regions of saturation:
one in the very acidic (pH-value < 5 approximately)
and one in the very alkaline region (pH-value > 9
approximately). If one of the regions is reached, it is very
difficult to lead the pH-value out of the saturation.

• Although a mixer blends the liquids in the tank, a
continuous homogenous distribution can not be reached
immediately. One reason for this is the positions of the
mixer relative to the location of the inflow stream, with
the first being placed at the bottom of the tank, while the
latter is found at the top.

• As a consequence of inhomogeneous liquid distribution,
the liquid level, as well as other effects, the whole system
has a noticeable time delay.

Furthermore the experimental build-up has some limita-
tions:

• The available storage volume for the acid solution is
limited and leads to a limitation of the measurement
duration. Hence the data set which can be collected is
relatively small.

• The pH sensors used have a measuring range from 0 to 14
pH, a smallest measuring range of 0.5 pH and an accuracy
of ± 0.2%. This accuracy of the pH sensors defines the
highest accuracy for the control.

III. SYSTEM IDENTIFICATION

To handle the nonlinear character of the plant a black-box
modeling method is used. First the data has to be generated
with which a neural network is then trained.

A. Data generation
For black-box modeling a set of input and output data

must contain all important information about the behavior
of the plant. To get all important information of a nonlinear
system, the whole range of amplitudes and frequencies must
be stimulated within which the plant shall be operated. The
resulting data is a set of data input uk and output yk of the
experimental plant with N being the number of samples k:
ZN = {uk, yk | k = 1, 2, . . . , N}. Because of the saturation
regions of the neutralization process the amplitude range of the
pH-value which has to be covered is from around 5 to around
9.

With the relay feedback method [9] the critical frequency fc;
with different step responses the rise time tr and finally using
(1) the sampling frequency fs and hence the sampling time
Ts are determined as fc = 1

60

Hz, tr = 90sec and Ts = 9sec,
respectively.

fs = (5 ⇠ 10) · fc and fs = (5 ⇠ 10) · 1

tr
(1)

A multisine signal [10] is used to excite the system. This
is a periodic non-binary multifrequency signal given as:



u(t) =
nsX

i=1

Ai · cos(!i · t), (2)

where Ai and !i are the i-th amplitude and frequency of
the multisine. With a multisine a desired frequency spectrum
with constant amplitudes in a desired frequency range can be
designed easily. Additionally a relatively small crest factor
can be achieved (hence it has a good signal-to-noise ratio).
Following [11] the minimum number of samples N and the
minimum number of different frequencies ns of the multisine
can be computed by:

N � 2 · ⇡ · �s · ⌧dom

T
, (3)

ns � N · Ts · ↵s

2 · ⇡ · ⌧dom
, (4)

where ⌧dom is the dominant plant time constant, �s specifies
how much low-frequency information will be in the signal and
here it is chosen as �s = 3 to get low-frequency information.
The constant ↵s denotes how much faster the closed-loop
response is expected to be in comparison with the open-loop
one, it is chosen as ↵s = 1. In addition, N and ns are chosen
as 350 and 20, respectively, which fulfil (3) and (4).

Figure 3 shows a typical spectrum of an input signal for
the identification purpose, where fn is the Nyquist frequency,
fb is the bandwidth of the closed loop system which is taken
as fb = 1

60

Hz with fb = ↵s · fc. The low frequency part up to
fb stimulates the range in which the plant shall be operated.
The amplitude of the high frequency part from fb to fn is only
half of the amplitude of the low frequency part. Therefor, the
high frequency noise is not significantly amplified.

Fig. 3. The frequency spectrum of the input signal.

The closed-loop shown in Figure 4 is used to generate
the data set for identification. By using the feedback control
scheme one can force the output signal to get out of the
saturation. This counteracts the problem of getting stuck in
the saturation which otherwise occurs with the open-loop
approach. A proportional controller is used in the closed-
loop and the input signal is added just after the proportional
controller. It is known that closed-loop identification based on
a direct approach [10] is sensitive to noise since the noise of
the input to the plant is correlated with the noise of the output;
however, the high signal-to-noise ratio allows to assume that
the amount of the noise in the output signal is neglectable.

The data set generated in this way is shown in Figure 5
and will be used in the following section for the training of
the neural network.

Fig. 4. Closed loop structure for the identification of the data set.
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Fig. 5. Input and output signals of the training data set.

B. System identification with neural networks
A neural network is trained to capture the nonlinear behav-

ior of the plant. The structure of the neural network is chosen to
correspond to an ARX (AutoRegressive with eXogenous input)
model structure in linear systems [10]. We refer to a neural
network with this structure as a NNARX model structure, see
Figure 6.

The input vector ' of the neural network consists of the
past n output signals yk�1

until yk�n and of the past m input
signals uk�d until uk�d�m+1

which are shifted by the delay d.
The output of the neural network is ŷk which is a prediction of
the plant’s output at instant k. A multilayer preceptron neural
network type is used [4], with two layers, p neurons and which
is described as:

ŷ = f2(W 2f1(W 1' + !1

0

) + !2

0

), (5)

where f1 and f2 are the tangent hyperbolic and linear
functions, respectively, W 1 and W 2 are matrices containing
the network weights and !1

0

as well as !2

0

are the weights of
the biases. ✓ in Figure 6 contains all weights, i.e. it includes
the weights W 1, W 2, !1

0

and !2

0

.

Fig. 6. NNARX model structure.

To train the network, i.e. to find the weights, the Levenberg-
Marquardt Backpropagation algorithm [4] is used. The method
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seeks to minimize the sum of the mean squared prediction
errors given as:

VN (✓, ZN , ↵) =
1

2N

NX

k=1

((yk � ŷk(✓))2 +
1

2N
✓T ·↵I ·✓). (6)

During the training of the neural network an undesired
effect may occur, which is known as overfitting [4], [12].
In overfitting, the neural network is not only trained on the
plant dynamics but also on the plant disturbance. In order
to deal with this, two methods can be used: training with a
regularization term and pruning [4], [12]. Both methods are
used in this paper. The regularization term ↵ can be found in
(6) and it is tuned to be as ↵ = 10�3.

To implement these methods the Neural Network Based
System Identification TOOLBOX [13] is used. It contains
algorithms for the training and the validation of multilayer
perceptron neural networks together with methods for pruning
and the regularization term.

Using the data generated in the closed-loop, a NNARX
model of the experimental neutralization plant is found. The
result is a neural network which has p = 11 neurons, uses
n = 11 past outputs as well as m = 10 past inputs and
has a delay of d = 1. The number of past inputs m and
past outputs n was determined with an order index criterion
based on Liptschitz quotients [4]. The 10-step ahead prediction
with the NNARX model in comparison to the validation signal
can be seen in Figure 7. It has to be noted that the data set
used to train the neural network and the data set used for
validation are two different ones. Since the storage volume
of the acid solution is limited the measurement period is also
limited. This may reduce the quality of the nonlinear model;
however, as shown in Figure 7 the plant behavior has been
identified with satisfactory in the 10-step ahead prediction. In
the following sections this neural network model is used for
the APC controller as well as for tuning the controller in a
simulation build-up.

IV. APPROXIMATE PREDICTIVE CONTROL

The main concept behind common predictive control strate-
gies is to predict the future outcome of different plant inputs
and to choose the best out of these. Its calculations are
relatively time consuming, this being its main disadvantage.

Fig. 8. Block structure of Approximate predictive control.

The minimization problem:

min
˜Uk

Jk = min
˜Uk

(
N2X

i=N1

(rk+i � ŷk+i)
2 + ⇢

NuX

j=1

�u2

k+j�1

), (7)

where Jk is the cost function, rk+i is the known future
reference signal and ⇢ is a factor which penalizes the influence
of the input signals on the cost function has to be solved at
each instant k. Moreover Ũk is a vector with the most recent
control input changes given as:

Ũk = [�uk �uk+1

. . . �uk+Nu�1

]T , (8)

where � = 1 � z�1 with z�1 is a time delay operator
(i.e. z�puk = uk�p). At each instant only the first computed
input change �uk is applied to the plant and then the whole
computation is repeated for the next instant.

To solve this minimization problem the predicted outputs
ŷk+i within the fixed prediction horizon have to be determined.
To reduce the calculation time requirements the General Pre-
dictive Control (GPC) approaches use a linear model to predict
the future outputs [14], [15]. This results in a linear optimiza-
tion problem with a new linear model for each sampling period.
Approximate Predictive Control (APC) is a special case of the
GPC approach, where the linear model is extracted from a
neural network. This is known as instantaneous linearization
[4]. In Figure 8 the block structure of the APC is shown.

A detailed introduction of the APC can be found in [4], and
a toolkit which uses these formulas is implemented in [16].

V. EXPERIMENTAL STUDY

In this section the experimental results of the APC on the
pH neutralization plant are presented. A set point tracking
problem as well as a disturbance rejection problem are con-
sidered. It is difficult to adjust the parameter values of the
controller directly in the real experimental plant because of its
nonlinear behavior, the time intensive preparations to run the
plant and the long measurement duration to obtain sufficient
measurements. Therefore, first the parameter values of the APC
are adjusted off-line with the neural network model identified
earlier, then the APC is tried on the experimental plant.
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Fig. 9. Simulation results of a set point tracking problem with APC (N1 = 1,
N2 = 10, Nu = 2 and ⇢ = 2000).

A. Off-line parameter values adjustment

The neural network model found in Section III-B which
provides the results shown in Figure 7 is used to tune the APC
off-line. The model is used twofold: first it is applied inside
the APC structure (for this purpose the neural network model
is constructed as shown in Figure 8), and second it simulates
the plant that has to be controlled.

The parameter values of the APC are adjusted as follows:
N

1

= 1 is fixed and equals the delay of the system. N
2

is
selected as tr

Ts
= 10 so that the prediction horizon covers at

least the rise time of the plant; Nu = 2 is chosen relatively
small in comparison with N

2

. It has been observed that the
choice of N

2

and Nu is mostly unproblematic and gives good
results for different values. The value of ⇢ in (7), which
penalizes the control signal, should be carefully tuned. With
⇢ = 2000 a satisfactory tracking capability has been achieved
in simulation.

Figure 9 shows the simulation results of the set point
tracking problem. The reference signal is a three level signal
that changes each 500 seconds. The APC produces reasonable
control inputs and the output tracks the reference signal
in a satisfactory manner. Finally, in Figure 9 the proactive
characteristic of the APC can be observed because the control
action begins earlier than the change in the reference. Next,
the above parameter values are used with the real experimental
plant.

B. Experimental results

The same obtained controller parameters have been utilized
when the APC is tested on the real experimental pH neu-
tralization plant. However, to improve the tracking capability
and to reduce some oscillations which appear during the
implementation, the value of ⇢ has been further tuned online,
and it turns out that its best value is ⇢ = 20000.

The resulted measurement on the set point tracking problem
is shown in Figure 10. The first change from pH-value 7 to 5.5
is unproblematic and relatively well done. The changes from
pH 5.5 to 8 and then back to 7 are not ideal, but the control
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Fig. 10. Experimental results of a set point tracking problem with APC
(N1 = 1, N2 = 10, Nu = 2 and ⇢ = 20000).

signal touches its limits, in particular, the lower one. Overall
the results are reasonable and almost the same as the simulated
ones.

From Figure 10 it can be also seen that the prediction
is close to the real output, which shows that the model can
capture the dynamics of the plant very well.

Finally the performance of the APC on a disturbance
rejection problem is considered. The same parameter values
as in the set point tracking problem are used. The task for
the controller is to hold a constant pH-value equal 6, while
some unmeasured disturbances are acting on the alkaline
input stream. In Figure 11 the results are presented. The first
disturbance is done by increasing the base valve opening for
one sampling period from 0.2 to 0.4, which is equivalent to a
three times higher alkaline flow rate. The second disturbance is
obtained by reducing the valve opening from 0.2 to 0 for two
sampling periods. It can be observed that the controller directly
reacts with a change of the acid inflow when a deviation in
the pH value occurs. Furthermore, it can be seen that the
disturbance can not bring the pH-value far from the reference.

VI. CONCLUSION

In this work an approximate predictive control strategy for
an experimental pH neutralization plant has been carried out.
In closed-loop, with a multisine input signal, an identification
data set has been gathered. A multilayer preceptron network
with a NNARX model structure has been trained. Based on
the trained neural network model, an APC has been off-line
tuned and then implemented on the experimental plant.

The experimental results of a set point tracking and a dis-
turbance rejection problems have demonstrated the capability
of the APC to control the experimental pH neutralization plant
successfully.
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Progress in Systems and Control Theory, Vol. 26, Birkhauser Verlag,
Basel 2000.

[4] M. Norgaard, O. Ravn, N. Poulsen, and L. Hansen: Neural Networks
for Modelling and Control of Dynamic Systems. Springer-Verlag,
London, UK, 2000.

[5] J. Mu, D. Rees: Approximate model predictive control for gas turbine
engines. In Proc. American Control Conference, 2004, pp. 5704-5709.

[6] J. Witt, S. Boonto, H. Werner: Approximate model predictive control
of a 3-DOF helicopter. In Proc. IEEE Conf. Decision and Control,
2007, pp. 4501-4506.

[7] A. Popov, A. Farag and H. Werner: Tuning of a PID controller using
a multiobjective optimization technique applied to a neutralization
plant. In Proc. IEEE Conf. Decision Control, 2005, pp. 71397143.

[8] M.A. Henson, D.E. Seborg: Adaptive nonlinear control of a pH
neutralization process. In IEEE Transactions on Control Systems
Technology, Vol. 2, No. 3, pp. 169-182, 1994.

[9] K. J. Aström and B. Wittenmark: Adaptive Control. Addison-Wesley
Series in Electrical Engineering: Control Engineering. Addison-
Wesley Publishing Co., 2nd edition edition, 1995.

[10] L. Ljung: System Identification, Theory for the User. Prentice Hall
Information and System Sciences Series. Prentice-Hall Inc. USA, 2nd
edition edition, 1999.

[11] D. E. Rivera, S. V. Gaikwad, and X. Chen: A demonstration prototype
for control-relevant identification. Technical report, Dept. of Chemical,
Bio and Materials Engineering, Arizona State University, 1994.

[12] I.R. Wior: Modeling and Control for Titration and Neutralizatio
(TINA) Plant. Institute of Control Systems, Hamburg University of
Technology, Bachelor Thesis, 2006.

[13] M. Norgaard: Neural network based control system design toolbox,
ver. 2. Technical Report 00-E-891, Department of Automation, Tech-
nical University of Denmark, 2000.

[14] D.W. Clarke, C. Mothadi, P.S. Tuffs: Generalized predictive control -
Part I. The basic algorithm. Automatica, Vol. 23, No. 2, pp. 137-148,
1987.

[15] D.W. Clarke, C. Mothadi, P.S. Tuffs: Generalized predictive control
- Part II. Extensions and interpretations. Automatica, Vol. 23, No. 2,
pp. 149-160, 1987.

[16] M. Norgaard: Neural network based control system design toolkit, ver.
2. Technical Report 00-E-892, Department of Automation, Technical
University of Denmark, 2000.



3 Sensitivity Analysis of the LMI-based H-inf Control Prob-
lem

19



Sensitivity Analysis of the LMI-based H1 Control
Problem

A. S. Yonchev⇤, P. Hr. Petkov⇤, N. D. Christov† and M. M. Konstantinov‡
⇤Department of Systems and Control, Technical University of Sofia

1000 Sofia, Bulgaria; Email: ajonchev@mail.bg, php@tu-sofia.bg
†Laboratory of Automatics, Computer Engineering and Signal Processing

Lille University of Science and Technology, 59655 Villeneuve d’Ascq
France; Email: Nicolai.Christov@univ-lille1.fr

‡Department of Mathematics, University of Architecture, Civil Engineering
and Geodesy, 1046 Sofia, Bulgaria; Email: mmk fte@uacg.bg

Abstract—Local perturbation bounds are obtained for the
continuous-time H1 control problem based on linear matrix
inequalities (LMI). The sensitivity analysis of the perturbed LMI
is done by introducing a suitable slightly perturbed right-hand
part. This approach leads to tight, condition number based
perturbation bounds for the LMI solutions to the H1 control
problem.

I. INTRODUCTION

In the last decade a number of papers have been published
on the sensitivity of the H1 control problem [2]. These papers,
however, consider exclusively the case of the Riccati-based
H1 control problem. In contrast, in this paper we study the
sensitivity of the LMI-based H1 control problem. We propose
a new approach to the perturbation analysis of this problem via
introducing a suitable right hand part in the considered matrix
inequalities. Using this new perturbation technique we obtain
local perturbation bounds for the the continuous-time LMI-
based H1 control problem in terms of condition numbers with
respect to the perturbations in the data.

We use the following notations: Rm⇥n – the space of
real m ⇥ n matrices; Rn = Rn⇥1; In – the identity n ⇥ n
matrix; en – the unit n ⇥ 1 vector; M> – the transpose of
M ; M† – the pseudo inverse of M ; kMk

2

= �
max

(M) –
the spectral norm of M , where �

max

(M) is the maximum
singular value of M ; kMk

F

=
p

tr(M>M) – the Frobenius
norm of M ; kMk1 := sup

Re s�0

kM(s)k
2

; k.k is any of
the above norms; vec(M) 2 Rmn – the column-wise vector
representation of M 2 Rm⇥n; ⇧m,n 2 Rmn⇥mn – the
vec-permutation matrix, such that vec(M>) = ⇧m,nvec(M);
M ⌦ P – the Kroneker product of the matrices M and
P ; vec(MXP ) = (P> ⌦ M)vec(X) – column-wise vector
representation of the multiplication MXP . The notation “:=”
stands for “equal by definition”.

The paper is organized as follows. In Section II we shortly
present the problem setup and objective. Section III describes
the performed linear sensitivity analysis of the LMI based
H1 control problem. Section IV presents a numerical example
before we conclude in Section V with some final remarks.

II. PROBLEM STATEMENT

Consider the linear continuous-time system

ẋ(t) = Ax(t) + B
1

w(t) + B
2

u(t)

z(t) = C
1

x(t) + D
11

w(t) + D
12

u(t) (1)
y(t) = C

2

x(t) + D
21

w(t)

where x(t) 2 Rn, u(t) 2 Rm, y(t) 2 Rr and z(t) 2 Rp

are the system state, input, output and performance vectors
respectively, w(t) 2 Rl is the disturbance and A, B

1

, B
2

, C
1

,
C

2

, D
11

, D
12

, D
21

are constant matrices of compatible size.
The suboptimal H1 control problem consists in finding a

control law u(t) which leads to a bounded H1-norm of the
transfer function matrix Tzw(s) from w(t) to z(t) :

kTzw(s)k1 < �, � > 0. (2)

In the optimal H1 control problem one tries to find the
infimum of � (further denoted by �opt) which satisfies (2).
The solution of the optimal H1 control problem corresponds
to the best disturbance attenuation at the performance vector
of the closed-loop system.

The H1 control problem (1), (2), is solvable if and only
if there exist two symmetric matrices R, S 2 Rn⇥n satisfying
the following system of LMI [4] :

2

664
N

12

... 0
. . . . . . . . .

0
... I

3

775

>
2

666664

AR + RA> RC
1

> ... B
1

C
1

R ��I
... D

11

. . . . . . . . . . . .

B
1

> D
11

> ... ��I

3

777775

⇥

2

664
N

12

... 0
. . . . . . . . .

0
... I

3

775 < 0 (3)
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2

664
N

21

... 0
. . . . . . . . .

0
... I

3

775

>
2

666664

A>S + SA SB
1

... C
1

>

B
1

>S ��I
... D

11

>

. . . . . . . . . . . .

C
1

D
11

... ��I

3

777775

⇥

2

664
N

21

... 0
. . . . . . . . .

0
... I

3

775 < 0, (4)


R I
I S

�
> 0 (5)

where N
12

and N
21

are the orthonormal bases of the null
spaces of

⇥
B

2

> D
12

> ⇤
and

⇥
C

2

D
21

⇤
, respectively.

Computing solutions (R, S) of the LMI system (3)-(5) is
a convex optimization problem. The sensitivity of the LMI
under consideration, subject to variations in the system data,
may affect the accuracy of the matrices R and S and hence
the accuracy of controller matrices. It is not clear up to the
moment how LMI sensitivity is connected to the sensitivity of
the given H1 suboptimal problem.

In what follows, we assume that �
opt

is determined and
present a sensitivity analysis of the optimal H1 control
problem based on the LMI (3)-(5).

Suppose that the matrices A, . . . , D
21

and the quantity �
in (3), (4) are subject to perturbations �A, . . . , ��

opt

and
denote by R⇤+�R, S⇤+�S the solution of the perturbed LMI
system. The sensitivity analysis of the H1 control problem
is aimed at determining bounds for �R and �S near the
optimal value of �, as functions of the perturbations in the
data A, . . . , D

21

and �
opt

. In the next section we shall derive
linear, condition number based bounds for �R and �S with
respect to perturbations in A, B

2

, C
2

, D
12

, D
21

and �
opt

.

III. LINEAR SENSITIVITY ANALYSIS

The essence of our approach is to perform sensitivity
analysis of LMI (3) and (4) in a similar way as for proper
matrix equations after introducing suitable right hand sides
which are slightly perturbed.

Consider first LMI (4). Its structure allows us to analyze
only the perturbed inequality

(N
21

+�N
21

)>

⇥
("

(A +�A)>(S +�S) + (S +�S)(A +�A) 0

B
1

>(S +�S) 0

#

+

"
0 (S +�S)B

1

0 ��I ���I

#)

⇥ (N
21

+�N
21

) := P̄⇤ +�P̄
1

< 0 (6)

where the matrix P̄⇤ is obtained using the nominal LMI

N
21

>


A>S⇤ + S⇤A S⇤B
1

B
1

>S⇤ ��
opt

I

�
N

21

:= P̄⇤ < 0 (7)

and �P̄
1

is due to the data and closed-loop performance
perturbations, the rounding errors and the sensitivity of the
interior point method that is used to solve the LMIs.

Within first order terms the perturbed relation (6) may be
written as

N
21

>WN
21

+N
21

>W�N
21

+�N
21

>WN
21

+�N
21

>W�N
21

(8)
where

W =
"

A>S⇤+ S⇤A + A>�S +�SA+�A>S⇤+ S⇤�A 0

B
1

>S⇤ + B
1

�S 0

#

+

"
0 S⇤B

1

+�SB
1

0 ��
opt

I ���
opt

I

#
.

Using relation (19) one has

�P̄
1

= N
21

>⌥SN
21

N
21

>(P⇤ +⌥S)�N
21

+

+�N
21

>(P⇤ +⌥S)N
21

+ S)�N
21

(9)

+�N
21

>(P⇤ +⌥S)�N
21

(10)

where P̄⇤ = N
21

>P⇤N
21

, ⌥S = �S + ⌦S ,

�S =


A>�S +�SA �SB

1

B
1

>�S 0

�

⌦S =


�A>S⇤ + S⇤�A 0

0 ���
opt

I

�
.

Neglecting the second and higher order terms in (9) one obtains

�P̄
1

= N
21

>�SN
21

+ N
21

>⌦SN
21

(11)

+ �N
21

>P⇤N
21

+ N
21

>P⇤�N
21

.

Setting P⇤N
21

= Ñ
21

and N
21

>P⇤ = Ñ ⇤
21

it follows that

vec(�N
21

>Ñ
21

+ Ñ ⇤
21

�N
21

) = (12)

[(Ñ
21

> ⌦ I)⇧
(n+l),n2 + (I ⌦ Ñ ⇤

21

)]vec(�N
21

).

Relation (11) may be written in a vector form as

(N
21

> ⌦ N
21

>)vec(�S) + (N
21

> ⌦ N
21

>)vec(⌦S) (13)

+ NS⌦

vec(�N
21

) = vec(�P̄
1

)

where

vec(�S) =

2

664

I ⌦ A> + A> ⌦ I
B

1

> ⌦ I
I ⌦ B

1

>

0

3

775 vec(�S) := V�s



vec(⌦S) =

2

664

(I ⌦ S⇤) + (S⇤ ⌦ I)⇧n2 0
0 0
0 0
0 �el3

3

775

⇥


vec(�A)
��

opt

�
(14)

:=
⇥

V
t1

V
t2

⇤ 
vec(�A)
��

opt

�

and
NS⌦

= (Ñ
21

> ⌦ I)⇧
(n+l),n2 + (I ⌦ Ñ ⇤

21

).

Thus we have

V
s

�s + V
ts1

vec(�A) + V
ts2

��
opt

+ NS⌦

vec(�N
21

)

= vec(�P̄
1

) (15)

where

V
s

= (N
21

> ⌦ N
21

>)V, V
ts1

= (N
21

> ⌦ N
21

>)V
t1

V
ts2

= (N
21

> ⌦ N
21

>)V
t2

.

It is well known [6] that the perturbation bound for the
projector N

21

may be written as

k�N
21

k
2

 k[C
2

, D
21

]†k
2

k[�C
2

, �D
21

]k
2

. (16)

Using the fact that kvec(M)k
2

= kMkF , we finally obtain the
relative perturbation bound for S⇤

k�SkF
kS⇤kF

 1

kS⇤kF

✓
V

ab1

k�AkF
kAkF

+ V
ab2

|��
opt

|
|�

opt

|
◆

(17)

+
1

kS⇤kF

✓
V

cd

k[�C
2

, �D
21

]kF
k[C

2

, D
21

]kF
+ V

1

k�P̄
1

kF

kP̄⇤kF

◆

where

V
ab1

kS⇤kF
=

kV †
s

k
2

kV
ts1

k
2

kAkF
kS⇤kF

V
ab2

kS⇤kF
=

kV †
s

k
2

kV
ts2

k
2

|�
opt

|
kS⇤kF

,
V

1

kS⇤kF
=

kV †
s

k
2

kP̄⇤kF
kS⇤kF

V
cd

kS⇤kF
=

kV †
s

k
2

kNS⌦

k
2

k[C
2

, D
21

]†kFk[C
2

, D
21

]kF
kS⇤kF

are the relative condition numbers of LMI (4) with respect to
the perturbations in the data.

In a similar way we can obtain a relative perturbation bound
for the solution R⇤ of the LMI (3). In this case we consider
the perturbed inequality

(N
12

+�N
12

)>

⇥
("

(A +�A)(R⇤ +�R) + (R⇤ +�R)(A +�A)> 0

C
1

(R⇤ +�R) 0

#

+

"
0 (R⇤ +�R)C

1

0 ��
opt

I ���
opt

I

#)

⇥(N
12

+�N
12

) := Q̄⇤ +�Q̄
1

< 0 (18)

where

N
12

>


AR⇤ + R⇤A> R⇤C
1

>

C
1

R⇤ ��
opt

I

�
N

12

:= Q̄⇤ < 0. (19)

Here, instead of �S and ⌦S we have

�R =


A�R +�RA> �RC

1

>

C
1

�R 0

�

⌦R =


�AR⇤ + R⇤�A> 0

0 ���
opt

I

�

and thus

vec(�R) =

2
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C

1

⌦ I
I ⌦ C

1

0

3

775 vec(�R) := T�r

vec(⌦R) =

2

664

(R⇤ ⌦ I) + (I ⌦ R⇤)⇧n2 0
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0 �ep3

3

775

⇥


vec(�A)
��

opt

�

=
⇥

T
t1

T
t2

⇤ 
vec(�A)
��

opt

�
.

Denote

Q̄⇤ = N
12

>Q⇤N
12

, Q⇤N
12

= Ñ
12

, N
12

>Q⇤ = Ñ ⇤
12

NR⌦

= (Ñ
12

> ⌦ I)⇧
(n+p),n2 + (I ⌦ Ñ ⇤

12

)

T
r

= (N
12

> ⌦ N
12

>)T, T
tr1

= (N
12

> ⌦ N
12

>)T
t1

T
tr2

= (N
12

> ⌦ N
12

>)T
t2

.

Having in mind that

k�N
12

kF  k[B
2

>, D
12

>]†kFk[�B
2

>, �D
12

>]kF

we obtain the relative perturbation bound for R⇤

k�RkF
kR⇤kF
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✓
T
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k�AkF
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+ T
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opt
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|
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◆
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T
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T
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T
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2
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are the relative condition numbers of LMI (3).



IV. NUMERICAL EXAMPLE

Consider the continuous-time system (1) with

A=


0 1

�k/m �c/m

�
, B

1

=


0 0 0

�pm �pc/m �pk/m

�

B
2

=


0

1/m

�
, C

1

=

2

4
�k/m �c/m

0 c
k 0

3

5

C
2

=
⇥

1 0
⇤
, D

11

=

2

4
�pm �pc/m �pk/m

0 0 0
0 0 0

3

5

D
12

=

2

4
1/m

0
0

3

5 , D
21

=
⇥

0 0 0
⇤

and m = 3, c = 1, k = 2, pm = 0.4, pc = 0.2, pk = 0.3. The
perturbations in the data are chosen as

�A = A ⇥ 10�i, �B
1

= B
1

⇥ 10�i, �B
2

= B
2

⇥ 10�i

�C
1

= C
1

⇥ 10�i, �C
2

= C
2

⇥ 10�i, �D
11

= D
11

⇥ 10�i

�D
12

= D
12

⇥ 10�i, ��
opt

= 10�i⇥ �
opt

for i = 8, 7, . . . , 4.
The perturbed solutions R⇤ +�R and S⇤ +�S are com-

puted using the LMI Control Toolbox of MATLAB [5]. The
optimal closed-loop performance obtained is �

opt

= 0.4191.
The relative perturbations in the solutions R⇤ and S⇤ of (3),
(4) are estimated using the perturbation bounds (20) and (17),
respectively.

The results obtained for different values of i are shown in
the following table:

i k�SkF
kS⇤kF

Bound(17) k�RkF
kR⇤kF

Bound(20)
8 1.2 10�7 3.8 10�7 1.0 10�7 1.5 10�7

7 1.7 10�7 3.8 10�6 1.9 10�7 1.5 10�6

6 4.1 10�6 3.8 10�5 8.2 10�6 1.5 10�5

5 1.9 10�5 3.8 10�4 9.9 10�5 1.5 10�4

4 2.0 10�4 3.8 10�3 1.0 10�4 1.5 10�3

V. CONCLUSIONS

Linear sensitivity analysis of the LMI arising in the
continuous-time H1 control problem is done. Condition num-
ber based perturbation bounds are obtained in a similar way
as for matrix equations, introducing a slightly perturbed right
hand side in LMI. A numerical example is presented illustrat-
ing the accuracy of the proposed LMI perturbation bounds.
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Abstract—Attenuating both exogenous signals and initial dis-
turbances caused by unknown initial conditions is considered
in the framework of a so called problem of H1 control with
transients. Applying an LMI approach, instead of the Riccati
equations one, in characterizing the performance measure that is
the worst-case norm of the regulated output over all exogenous
signals and initial states allows one to synthesize a time-invariant,
instead of the time-varying, output-feedback controller for which
the performance measure of the closed-loop system is less than
a prescribed number. State-space formulae for all time-invariant
state- and output-feedback controllers in the problem of the H1
control with transients are also presented.

Index Terms—H1 control, unknown initial conditions, linear
matrix inequality, output-feedback controller

I. INTRODUCTION

The classical H1 control theory [1], [2] defines the control
law for which the performance measure that is the worst-
case norm of the regulated output over all exogenous signals
less than a prescribed number. It is usually assumed that the
plant initial state is zero. However, there exist situations when
the plant initial state is possibly nonzero and unknown. The
nonzero initial state causes an additional unknown disturbance.
In [3], [4], �-optimal control which minimizes the worst-
case norm of the regulated output over all initial states in
the disturbance-free system was considered. When two above
reasons are available, it is worth-while to synthesize a control
law that would provide attenuating both exogenous and initial
disturbances.

Reference [5] introduced a performance measure that is
the induced norm of the regulated output over all exogenous
signals and initial states for finite and infinite horizons (see
also [6], [7]). The performance measure is parameterized by
a weighting matrix R reflecting the relative importance of the
uncertainty in the initial state contrary to the uncertainty in the
exogenous signal. The problem is to synthesize controllers for
which the performance measure of the closed-loop system is
less than a prescribed number. Since the authors of [5] from
the very outset restrict their attention to the central solution
to the corresponding H1-like problem based on the Riccati
equations and since the central controller for the problem under

consideration turned out, even in the infinite horizon case, to be
a linear time-varying output-feedback controller, they obtained
necessary and sufficient conditions for the existence of a linear
time-varying output-feedback controller. This observer-based
controller is of the form

dx̂

dt
= (A + ��2B

1

BT
1

P )x̂ + [I � ��2Q(t)P ]�1⇥
Q(t)CT

2

(y � C
2

x̂) + B
2

u,

u = �BT
2

P x̂,

(1)

where P is the stabilizing solution to H1-type algebraic
Riccati equation such that P < �2R, Q(t) is the solution
to H1-type differential Riccati equation for the finite time
horizon with initial condition Q(0) = R�1 such that the
unforced linear time-varying system

ṗ = [A � Q(t)(CT
2

C
2

� ��2CT
1

C
1

)]p

is exponentially stable, and finally ”spectral radius” function
{1 � ��2⇢[Q(t)P ]}�1 > 0 for all t � 0 and is bounded.
From the numerical point of view, constructing such a con-
troller based on solving these algebraic and differential Riccati
equations coupled to the nonstationary algebraic inequality
seems to be a rather complicated problem, and finding an
optimal controller is very problematical. Quantitative results
concerning another time-varying output-feedback controller for
a slightly different H1 control problem with initial conditions
were obtained in [8].

At the same time, there exists a whole set of controllers
that yield the prescribed performance. Among these controllers
there maybe time-invariant output-feedback ones. The present
paper just shows that this is the case. Necessary and sufficient
conditions for the existence of time-invariant state- and output-
feedback controllers in the H1 control problem with transients
are derived in the terms of LMIs, and state-space formulae for
all such controllers are presented. The role of the weighting
matrix is revealed in the trade-off between H1- and �-optimal
controls. More precisely, necessary and sufficient conditions in
the form of a fundamental inequality for the weighting matrix
is obtained under which the above trade-off takes place.
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II. PERFORMANCE MEASURE

Let the asymptotically stable system be described by the
equations

ẋ = Ax + Bv, x(0) = x
0

,
z = Cx + Dv,

(2)

where x 2 Rnx is the state, v 2 Rnv is the exogenous
input, z 2 Rnz is the regulated output. It is assumed that
the exogenous disturbance v = v(t) 2 L

2

[0, 1) and that the
plant initial state x

0

is unknown. The performance measure is
defined as the worst-case norm of the regulated output over all
admissible exogenous signals and initial states [5], i.e.,

�w = sup
kvk2

+xT
0 Rx0 6=0

kzk
(kvk2 + xT

0

Rx
0

)1/2

, (3)

where k ·k denotes L
2

-norm of the corresponding function and
R = RT > 0 is a given weighting matrix.

If the initial state is zero, �w is equal to the worst-case norm
of the regulated output over all admissible exogenous signals,
i.e., �w = �1, where

�1 = sup
kvk6=0

kzk
kvk = sup

!2(�1,1)

kH(j !)k = kHk1,

H(s) = D + C(sI � A)�1B is the transfer function matrix,
j =

p�1, kHk = max
i

�i(H), �i is the ith singular value of
the matrix H , and k · k1 is the 1-norm in the space of H(s)
such that sup

Re s�0

kH(s)k < 1.
If the exogenous input is zero, �w is the worst-case norm

of the regulated output over all admissible initial states, i.e.,
�w = �

0

(R), where

�
0

(R) = sup
x0 6=0

kzk
(xT

0

Rx
0

)1/2

. (4)

It is shown in [5] that the performance measure of the
system (2) with D = 0 satisfies inequality �w < � for a given
� if and only if there exists a symmetric matrix P such that

AT P + PA + ��2PBBT P + CT C = 0,

A + ��2BBT P is asymptotically stable, and P < �2R.
Even though in the characterization of the standard H1 norm
the Riccati equation can be substituted for the corresponding
Riccati inequality, that is equivalent, by Schur lemma, to LMI,
it does not yet follow from this that �w < � is equivalent to
these two LMIs. This fact requires a separate proof.

Theorem 1: The performance measure of the system (2) is
less than a prescribed value � if and only if there exists a
(nx ⇥ nx)-matrix X = XT > 0 such that LMIs

0

@
AT X + XA XB CT

BT X ��2I DT

C D �I

1

A < 0, X < �2R (5)

are feasible.
The proof of Theorem 1 utilizes some ideas of the proof of

Theorem 1.3 in [5] and is given in Appendix. Since �w can

equivalently be expressed as

�w = inf
�

{� :
kzk

(kvk2 + xT
0

Rx
0

)1/2

< �,

8 v 2 L
2

, 8 x
0

2 Rnx , kvk2 + xT
0

Rx
0

6= 0},

from Theorem 1 it follows that �w can be computed as the
minimal value of � for which LMIs (5) are feasible in variables
X = XT > 0 and �2 > 0. This is a standard procedure in
Matlab which results in a value �� = �w + ", where " > 0 is
determined by the accuracy of LMI solvers.

Now we study the performance measure as a function of
the weighting matrix R, i.e., �w = �w(R). From (3) it follows
that if R

1

 R
2

, then �w(R
1

) � �w(R
2

). This property was
also mentioned in [5]. Further, since

sup
kvk2

+xT
0 Rx0�1

kzk � sup
kvk=1, x0=0

kzk = �1,

sup
kvk2

+xT
0 Rx0�1

kzk � sup
xT
0 Rx0=1, v�0

kzk = �
0

(R),

we arrive at �w(R) � max{�1, �
0

(R)}. The next property of
the performance measure plays a special role and is proven in
Appendix.

Theorem 2: Let the system and the performance mea-
sure be as above. Then �w(R) = �1 if and only if
�max(R�1R⇤)  1, where R⇤ = (1/�2

1) lim
��+0

X(") and
X(") is a stabilizing solution of the Riccati equation

AT X + XA + CT C + "2I+

(CT D + XB)[(�1 + ")2I � DT D]�1(CT D + XB)T = 0.
(6)

Corollary 1: The performance measure (3) for the system
(2) is the trade-off between kHk1 and �

0

(R) if and only if
the following inequality holds

�max(R�1R⇤) > 1, (7)

where R⇤ is defined in Theorem 2.
To compute the matrix R⇤ it is sufficient to find both the

minimal �⇤ ⇡ �1 and the corresponding matrix X⇤ satisfying
the first inequality in (5), and then R⇤ ⇡ X⇤/�2

⇤ .

III. STATE-FEEDBACK CONTROL

Consider the controlled plant

ẋ = Ax + B
1

v + B
2

u,
z = C

1

x + D
11

v + D
12

u,
(8)

where x 2 Rnx is the state, v 2 Rnv is the exogenous input,
u 2 Rnu is the control input, and z 2 Rnz is the regulated
output. The problem is to find a linear state-feedback control

u = ⇥x (9)

for which the performance measure �w(⇥) of the closed-loop
system is less than a given � > 0.

Substituting the matrix of the closed-loop system into (5),
multiplying the first inequality by diag (X�1, I, I) from the
left and from the right, introducing the new variables Y =



X�1 and Z = ⇥Y , and changing the second inequality by
using Schur lemma, we arrive at the following statement.

Theorem 3: There exists an admissible state-feedback con-
troller such that �w(⇥) < � if and only if the LMIs

0

@
Y AT + AY + B

2

Z + ZT BT
2

⇤ ⇤
BT

1

��2I ⇤
C

1

Y + D
12

Z D
11

�I

1

A < 0,

✓
Y I
I �2R

◆
> 0

(10)
are feasible in the variables Y = Y T > 0 and Z, where ⇤
stands for notation of the corresponding entry of the symmetric
matrix. In this case, gain matrix ⇥ is computed as ⇥ = ZY �1,
where (Y, Z) is a solution of (10) for the given �.

Define an optimal state-feedback controller by the inequal-
ity �w(⇥) < �⇤

w(1+") for any sufficiently small " > 0, where
�⇤

w = inf
�

�w(⇥). To numerically compute �⇤
w and the optimal

gain matrix ⇥⇤ it is required to find a minimal value of �
and the corresponding Y⇤, Z⇤ for which (10) are feasible with
regard to Y = Y T > 0, Z, and �2 > 0 and then compute
⇥⇤ = Z⇤Y �1

⇤ .
Remark 1: Note that the gain matrix for the standard

H1-optimal state-feedback controller can be computed as
⇥1 = Z⇤Y �1

⇤ , where (Y⇤, Z⇤) is the solution of the first
inequality in (10) with the minimal value of � ⇡ �̄1. From
the second inequality in (10) it immediately follows that for
R > R⇤ = �̄�2

1 Y �1

⇤ , we get �⇤
w(R) = �̄1 and, hence,

H1-optimal state-feedback controller with transients coincides
with the standard H1-optimal controller. Also note that �-
optimal state-feedback controller (see [3]) is computed as
⇥

0

(R) = Z
0

Y �1

0

, where (Y
0

, Z
0

) is the solution of LMIs (10)
in the first of which the second row and column are deleted,
with the minimal value of � ⇡ �̄

0

(R).

IV. OUTPUT-FEEDBACK CONTROL

Let the plant be described by the equations

ẋ = Ax + B
1

v + B
2

u,
z = C

1

x + D
11

v + D
12

u,
y = C

2

x + D
21

v,
(11)

where x 2 Rnx is the plant state, v 2 Rnv is the exogenous
input, u 2 Rnu is the control input, z 2 Rnz is the regulated
output, y 2 Rny is the measurable output, and the full order
dynamic output-feedback controller be described by

ẋr = Arxr + Bry , xr(0) = 0 ,
u = Crxr + Dry ,

(12)

where xr 2 Rnx is the controller state. Denote the gain matrix
of the controller as

⇥ =

✓
Ar Br

Cr Dr

◆
.

The problem is to synthesize a time-invariant output-feedback
controller such that the performance measure of the closed-
loop system satisfies the inequality �w(⇥) < � with a given
� > 0.

Theorem 4: There exists an admissible output-feedback
controller such that �w(⇥) < � if and only if the LMIs

NT
1

0

@
AT X

11

+ X
11

A ⇤ ⇤
BT

1

X
11

��2I ⇤
C

1

D
11

�I

1

A N
1

< 0,

NT
2

0

@
Y

11

AT + AY
11

⇤ ⇤
C

1

Y
11

�I ⇤
BT

1

DT
11

��2I

1

AN
2

< 0,

✓
X

11

I
I Y

11

◆
� 0, X

11

< �2R

(13)

are feasible in (nx ⇥ nx)-matrices X
11

= XT
11

> 0 and
Y

11

= Y T
11

> 0, where columns of the matrices N
1

and N
2

form bases of kernels of matrices (C
2

D
21

0) and (BT
2

DT
12

0),
respectively.

The proof of Theorem 4 is based on Theorem 1 and
manipulations using LMI technique and given in Appendix.
The procedure of computing gain matrix ⇥ is following: find
matrices X

11

and Y
11

, construct matrix X using formula
(23), and solve LMI (18) with respect to ⇥. Note that the
problem is rendered tractable under the assumption that the
initial conditions of the controller states are zero, otherwise
the problem is not reduced to convex optimization (see [3]).

An optimal output-feedback controller is defined by the
inequality �w(⇥) < �⇤

w(1+") for any sufficiently small " > 0,
where �⇤

w = inf
�

�w(⇥). Analogously to the state-feedback
case for R > R⇤ = �̂�2

1 X⇤
11

, where X⇤
11

is the solution to
inequalities in (13), except the last one, with the minimal value
of � ⇡ �̂1, we have �⇤

w = �̂1 and, hence, for such weighting
matrices, the optimal output-feedback controller coincides with
the standard H1-optimal output-feedback controller. This very
steady-state central H1 controller was derived in [5] (see
Corollary 2.5) as a solution to the problem of H1 control
with transients for sufficiently large R.

V. ILLUSTRATIVE EXAMPLE

Consider a controlled linear oscillator described by the
equations (8) with matrices

A =

✓
0 1

�1 �0.1

◆
, B

1

= B
2

=

✓
0
1

◆
,

C
1

=

✓
1 0
0 0

◆
, D

11

=

✓
0
0

◆
, D

12

=

✓
0
1

◆
.

Calculate the standard H1-optimal state-feedback controller
to find the gain matrix ⇥1 = �(0.5012 10.0217) and
�̄1 = 0.9950. For �-optimal controller we find ⇥

0

(⇢) =
�(0.4142 0.8156) and �̄

0

(⇢) = 1.2087/⇢. Note that in this
case the gain matrix ⇥

0

(⇢) does not depend on ⇢. Fig.1 shows
three curves: curve 1 is the performance measure �w for the
the closed-loop system with ⇥1; curve 2 is that for the closed-
loop system with ⇥

0

; curve 3 is the optimal performance
measure �⇤

w(⇢) corresponding to H1-optimal state-feedback
controller with transients. From this figure it follows that the
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Fig. 1. Performance measure of the closed-loop system under
(1) H1-optimal, (2) �-optimal and (3) H1-optimal with transients
controllers versus parameter � in the state-feedback case.
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Fig. 2. Performance measure of the closed-loop system under
(1) H1-optimal, (2) �-optimal and (3) H1-optimal with transients
controllers versus parameter � in the output-feedback case.

performance measure �⇤
w(⇢) is closed to �̄

0

(⇢) for small ⇢ and
is closed to �̄1 for large ⇢, while in a certain range of ⇢ it is
considerably less than both of these.

In the output-feedback case, we obtained the following
parameters for H1-optimal and �-optimal controllers

⇥1 =

0

@
�26, 35 1, 00 �26, 35
�75, 84 �0, 0004 �74, 85
�252, 4 10, 00 �252, 9

1

A ,

⇥
0

=

0

@
�1, 5056 0, 0334 0, 6472
0, 0506 �1, 5251 �1, 0082
0, 8990 �1, 3760 �0, 9378

1

A .

Fig.2 shows three curves: curve 1 is the performance measure
�w(⇢) for the the closed-loop system with ⇥1; curve 2 is that

for the closed-loop system with ⇥
0

; curve 3 is the optimal
performance measure �⇤

w(⇢) corresponding to H1-optimal
output-feedback controller with transients. Let us compare the
values of the performance measure, for example, at ⇢ = 4, 5:
�p(⇥1) = 8, 2203, �p(⇥0

) = 1, 7221 and �⇤
p = 1, 0651

under H1-optimal output-feedback controller with transients
for which

⇥⇤ =

0

@
�5, 425 0, 9584 �5, 587
0, 1695 �0, 5665 0, 4048
�10, 93 2, 142 �11, 42

1

A .

Thus, the performance measure under the optimal controller
constructed is considerably less then that under the standard
H1-optimal controller.

VI. CONCLUSION

This paper presents an LMI approach to H1 control in-
corporating unknown initial conditions. The main contribution
of the paper is the new LMI based necessary and sufficient
conditions for the existence of a time-invariant output-feedback
controller solving the problem of H1 control with transients
and a procedure of synthesizing optimal controllers. It is also
shown that H1-optimal control with transients is actually a
trade-off between H1-control, being optimal under unknown
exogenous disturbances and zero initial state, and �-control,
being optimal under zero exogenous signal and unknown initial
conditions, if and only if the weighting matrix satisfies a
fundamental inequality. If this inequality fails, the performance
measure coincides with the H1-norm and the trade-off gets
broken.
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APPENDIX A
PROOF OF THEOREM 1

By Schur lemma the first inequality in (5) implies that for
all x, v (|x|2 + |v|2 6= 0)

xT (AT X + XA)x + 2xT XBv+

(Cx + Dv)T (Cx + Dv) � �2|v|2 < 0.

This means that the derivative of the function V (x) = xT Xx
along a trajectory of the system (2) satisfies inequality

V̇ + |z|2 � �2|v|2 < 0 8 x, v (|x|2 + |v|2 6= 0).

Integrating this inequality over infinite horizon, we get kzk2 �
�2kvk2 < xT

0

Xx
0

. Then the second inequality in (5) implies
�w < �.

Let now �w < �. Since �1  �w, then kHk1 < � and,
hence, it follows from KYP lemma [9], [10] that the first
inequality in (5) is feasible and that there exists a stabilizing
solution X� = XT

� > 0 of the Riccati equation

AT X + XA + CT C+

(CT D + XB)(�2I � DT D)�1(CT D + XB)T = 0



such that matrix A + B(�2I � DT D)�1(CT D + X�B)T is
asymptotically stable. Note that �2I � DT D > 0 due to the
first inequality in (5). This means that the derivative of the
function V (x) = xT X�x along trajectories of the system (2)
satisfies

V̇ + |z|2 � �2|v⇤|2 = 0, (14)

where v⇤ = (�2I � DT D)�1(CT D + X�B)T x.
We will show that there exists a solution of the first

inequality in (5) satisfying the second inequality. To that
end, at first we show that matrix X� satisfies the second
inequality in (5). Suppose this is not the case, i.e., there
exists x

0

6= 0 such that xT
0

X�x
0

� �2xT
0

Rx
0

. Choose
the initial state x(0) = x

0

and integrate (14) to obtain
kzk2��2kv⇤k2 = xT

0

X�x
0

� �2xT
0

Rx
0

. This implies �w � �
which contradicts the assumption. Thus, X� < �2R and,
consequently, �max(R�1/2X�R�1/2) = �max(R�1X�) <
�2, where �max(·) denotes the maximum eigenvalue of the
corresponding matrix.

Suppose that any solution X of the Riccati inequality

AT X + XA + CT C+

(CT D + XB)(�2I � DT D)�1(CT D + XB)T < 0

that is equivalent to the first inequality in (5) does not satisfy
the inequality X < �2R, i.e., �max(R�1X) � �2 holds. Then
there exists a consequence "n ! 0 as n ! 1 such that,
for stabilizing solutions X("n) = XT ("n) > 0 to the Riccati
equations

AT X + XA + CT C+

(CT D + XB)(�2I � DT D)�1(CT D + XB)T + "2

nI = 0,

the inequalities �max[R�1X("n)] � �2 hold. Since X("n) !
X� as n ! 1, the limiting matrix possesses the analogous
property, which contradicts to �max(R�1X�) < �2.

APPENDIX B
PROOF OF THEOREM 2

Let �w(R) = �1 and X(") be a stabilizing solution of
(6). By Schur lemma X(") satisfies the first inequality in (5)
for � = �1 + ", where " > 0. It was shown in the proof of
Theorem 1 that the inequality X(") < �2

w(R)R holds. Taking
the limit as " ! 0 we get �2

1R⇤  �2

w(R)R and, hence,
R � R⇤ or, equivalently, �max(R�1R⇤)  1.

Now, let �max(R�1R⇤)  1. Denote R(") = X(")/(�1 +
")2. Since X(") = (�1 + ")2R(") < (�1 + ")2R for R >
R("), then X(") also satisfies the second inequality in (5) for
� = �1 + " and R > R("). Now, from Theorem 1 it follows
�w(R) < �1 + " for R > R("). Taking the limit as " ! 0,
we get �w(R)  �1 for R � R⇤. In view of �w(R) � �1
for any R > 0, we arrive at �w(R) = �1 for R � R⇤.

APPENDIX C
PROOF OF THEOREM 4

The closed-loop system (11), (12) is described by the
equations

ẋc = Acxc + Bcv,
z = Ccxc + Dcv,

(15)

where xc = col (x, xr),

Ac =

✓
A + B

2

DrC2

B
2

Cr

BrC2

Ar

◆
,

Bc =

✓
B

1

+ B
2

DrD21

BrD21

◆
,

Cc = (C
1

+ D
12

DrC2

D
12

Cr) ,

Dc = D
11

+ D
12

DrD21

.

(16)

Since the initial state of this system is of the form col (x
0

, 0),
its performance measure is determined by (3) as before. From
the proof of Theorem 1 it immediately follows that the LMI
characterization of such a performance measure is reduced to
0

@
AT

c X + XAc XBc CT
c

BT
c X ��2I DT

c

Cc Dc �I

1

A < 0, X
11

< �2R, (17)

where X
11

is the (nx ⇥ nx) top left block of the matrix X .
Further, let us present the matrices of the closed-loop system

in the form
Ac = A

0

+ B⇥C , Bc = B
0

+ B⇥D
21

,

Cc = C
0

+ D
12

⇥C , Dc = D
11

+ D
12

⇥D
21

,

where

A
0

=

✓
A 0
0 0

◆
, B

0

=

✓
B

1

0

◆
, C

0

= (C
1

0),

B =

✓
0 B

2

I 0

◆
, C =

✓
0 I
C

2

0

◆
,

D
12

= (0 D
12

), D
21

=

✓
0

D
21

◆
.

Insert these expressions into inequality (17) to present it in the
form (see also [11], [12], [4])

 + PT⇥T Q + QT⇥P < 0, (18)

where

 =

0

@
AT

0

X + XA
0

XB
0

CT
0

BT
0

X ��I DT
11

C
0

D
11

��I

1

A ,

P = (C D
21

0), Q = (BT X 0 DT
12

).

(19)

Then by elimination lemma, inequality (18) holds for some ⇥
if and only if

WT
P

0

@
AT

0

X + XA
0

XB
0

CT
0

BT
0

X ��I DT
11

C
0

D
11

��I

1

A WP < 0,

WT
Q

0

@
AT

0

X + XA
0

XB
0

CT
0

BT
0

X ��I DT
11

C
0

D
11

��I

1

AWQ < 0,

(20)

where WS stands for notation of a matrix whose columns form
any base of the null space of the matrix S. Observe that

Q = R

0

@
X 0 0
0 I 0
0 0 I

1

A , R = (BT 0 DT
12

).



Hence,

WQ =

0

@
X�1 0 0

0 I 0
0 0 I

1

AWR.

Thus, inequalities (20) are equivalent to following two LMIs

WT
P

0

@
AT

0

X + XA
0

XB
0

CT
0

BT
0

X ��I DT
11

C
0

D
11

��I

1

A WP < 0,

WT
R

0

@
Y AT

0

+ A
0

Y B
0

Y CT
0

BT
0

��I DT
11

C
0

Y D
11

��I

1

A WR < 0,

(21)

where Y = X�1. Taking into account the block structures of
the above matrices and partitioning X and Y as

X =

✓
X

11

X
12

XT

12

X
22

◆
, Y =

✓
Y

11

Y
12

Y T

12

Y
22

◆
,

we arrive at the first pair of inequalities in (13).
According to Frobenius formula, Y = X�1 implies

Y
11

= (X
11

� X
12

X�1

22

XT
12

)�1 (22)

which shows there exist reciprocal matrices X > 0, Y > 0
with given blocks X

11

= XT

11

> 0, Y
11

= Y T

11

> 0 if and only
if X

11

�Y �1

11

� 0, i.e. the third inequality in (13) holds. If this
inequality is strict, blocks X

12

and X
22

of the corresponding
matrix X can be chosen, for example, as

X
12

= X
22

= X
11

� Y �1

11

. (23)

Thus, inequalities (17) are feasible if and only if inequalities
(13) are feasible. This completes the proof.
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Abstract—This paper presents an output feedback sliding
mode control scheme for uncertain dynamical systems. The design
problem is solved in two steps, involving first a state feedback
and then an output feedback problem. First, using the null space
dynamics, the sliding surface for the unmatched uncertainty is
designed. Then, by tuning the sliding surface a robust controller
is constructed for the whole uncertainty; this problem takes the
form of static output feedback. Based on this, a dynamic output
feedback controller for the system augmented with the sliding
surface is designed. The synthesis involves the solution of an
LMI and a BMI problem; the BMI problem is solved iteratively.
The proposed approach is illustrated by applying it to a well-
known robust benchmark problem, and also experimentally on
a spring mass system with variable stiffness. Simulation and
experimental results show that the proposed method outperforms
previous approaches in terms of robust performance.

I. INTRODUCTION

Ideal sliding mode control is a technique that has attracted
the attention of researchers for more than four decades because
of its attractive theoretical robustness properties [8], [3]. A
serious limitation in this technique and most of the literature
in this field is that only state feedback is considered, i.e.
all states are assumed to be available for measurement. In
[10], static output feedback sliding mode control is introduced
to nominal system without uncertainty, the necessary and
sufficient condition to existence problem is given in [7], [14].
In [7] introduced sliding mode control to system with matched
uncertainty, constructed the controller in LMI framework in
presence of matched uncertainty using only equivalent control
is done by [14]. The controller in [14] is extended by [6]
using equivalent control and applied control. In static output
feedback sliding mode controller, if the number of system
output and input are equal, it is not possible to build sliding
hyperplane robust to the unmatched uncertainty unless the
system inherent robust stable against unmatched uncertainty. In
other words, there is enough stable zero dynamic in the system
covering the dynamic of the sliding hyperplane and inherently
stable against unmatched uncertainty. Hence, [6] is extended
by [22] to design robust sliding hyperplane against matched
and unmatched uncertainty by considering more system output
than input is available. The sliding hyperplane is designed to
minimize the unmatched by formulate it in polytopic formula,
the equivalent control part divided to two parts, a part minimize
the unmatched uncertainty and part minimize the matched one.
The design of static output feedback sliding mode control in

[6], [22] is encounter non-convex matrix inequality that non-
iterative LMI-based algorithm proposed in [17], [16] is used
to design the controller.
As discussed previously, dynamic output feedback sliding
mode control can satisfied only the sufficient condition ex-
istence problem. In [11], the controller is designed to nominal
system without uncertainty. For system has matched and un-
matched uncertainty a robust hyperplane design is introduced
[1]. In [9], the sliding hyperplane is constructed using LMI,
the design is restricted to system has matched uncertainty, this
work is extended by [23] to unmatched uncertainty. In [29],
a different approach to design state feedback sliding mode
control is introduced, the approach is to design dynamic sliding
hyperplane by using compensator, the compensator is designed
when system in sliding mode. This approach is extended by
[20] to design output feedback dynamic sliding mode control
using H� control µ synthesis theory, and LPV sliding mode
in [24].
In most applications, only measured system outputs are ac-
cessible. A more practical approach is taken in [21], where
output feedback sliding mode control is considered. However,
it is restricted to a specific type of uncertainty, the control
action tends to have high magnitude and frequency contents.
The design procedure in [5] introduces a general way of
selecting a sliding surface for a given system in an optimal
way, such that the performance of the reduced order system is
balanced against the control costs. In this paper, we propose a
new approach to design output feedback sliding mode control
scheme where the dynamics on the sliding surface are selected
to minimize a H� cost function. The approach is illustrated
with its application to a well-known benchmark problem for
robust control, the ACC benchmark problem, and to an experi-
mental spring mass system with variable spring constants. The
extension of this paper to robust H2 is introduced in [19]. In
[18] extended to LPV system.
The layout of the paper is as follows. The general dynamic
model is first introduced, and a method to design a sliding
surface and to synthesize a sliding mode output feedback
controller is proposed. To illustrate the approach, in section(IV)
the ACC benchmark problem model is summarized. Section(V)
shows simulation results and a tuning procedure for the pro-
posed controller. Finally, experimental results with an imple-
mentation of the proposed controller and a standard robust
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LTI output feedback controller based H� minimization on an
experimental spring mass system are presented in section(VI).

II. PROBLEM DESCRIPTION

Consider an uncertain dynamic system of the form

ẋ = (A+�A)x+(B+�B)u
y = Cx (1)

where �A,�B represents the uncertainty in the matrices A,B
respectively. The matrix A can be decomposed as (Aum +Am)

A =


A11 A12
A21 A22

�
, Aum =


Aum11 Aum12

0 0

�

Am =


0 0

Am21 Am22

�
, B =


0

B2

�
(2)

where x 2 Rn is the state vector, u 2 Rm is the control input,
y 2 Rp is the output. Am represents matched uncertainty i.e.
BT Am 6= 0, Aum is unmatched uncertainty that mean AT

umB� 6= 0,
and A11 2 R(n�m)⇥(n�m), B2 2 Rm⇥m.
The first objective is to design a sliding surface of the form
S = {x : Sx = 0}, where S 2 Rm⇥n is a full rank matrix which
needs to be designed, so that the associated reduced order
sliding mode, when the system states are confined to S , has
appropriate dynamics. This is a state feedback problem (all
states are available for measurement).
The second objective is to design a sliding surface of the form
S = {x : S(CKxk +DKy) = 0}, where xk 2 Rn, with controller
state equation ẋk = AKxk + BKy, AK 2 Rn,BK 2 Rn⇥p,CK 2
Rn⇥n,DK 2 Rn⇥p. This problem is output feedback.

III. CONTROLLER DESIGN

The generalized plant P(s) for (1) has the state space
representation

ẋ = Ax+Bww+Bu
y = Cx
z = Cwx+Duu

w = �z (3)

Perturbation of the nominal plant A,B is expressed via fictitious
inputs through Bw and fictitious outputs through Cw,Du. Where
the matrix � represents the range of admissible perturbations
and is assumed to satisfy k�k� < 1 at all times, leading to the
LFT form

ẋ = (A+Bw�Cw)x+(B+Bw�Du)u (4)

For the analysis, it is convenient to re-partition the system
states x given in (1) to x1,x2 where x1 2 R(n�m)⇥1, x2 2 Rm⇥1.
On the other hand the sliding matrix can be partitioned as S =⇥
S1 S2

⇤
where S1 2 Rm⇥(n�m), S2 2 Rm⇥m. To design sliding

mode controller, the design procedure will be in two steps.
First, find the a part of the sliding surface matrix S�1

2 S1 that
minimizes the unmatched uncertainty Aum, then choose S2 to
minimize the whole uncertainty �A,�B. Next, augmented the
system with the sliding surface, then design the dynamic part
that feeds the controller with the necessary information about
the states. The control block diagram is shown in Figure 1.

y

K(s)

C(s)S
ũ

P(s)

�

P̃(s)
w

z

u

Fig. 1. Closed-loop system with generalized plant

A. State Feedback Sliding Mode Controller
For first order sliding mode control, it is known [5] that

when the system is on the sliding surface, the dynamics of the
motion are governed by (5),

ẋ1 = (A11 +Aum11)x1 +(A12 +Aum12)x2

x2 = �Mx1 (5)

where M 2 Rm⇥(n�m), and the sliding surface S can be de-
composed such that S = �

⇥
M Im

⇤
. By neglecting Aum12 the

dynamic part of (5) can be written in LFT form as follows

ẋ1 = (A11 +B11�11C11)x1 +A12x2 (6)

The singular value decomposition method of [27] can be
used to determine B11 and C11 such that k�11k� < 1 for all
operating points of the reduced order system. When Aum12 is
not neglected, the system in (5) can be decomposed into a
more general LFT from as [4]

ẋ1 = (A11 +B11�11C11)x1 +(A12 +B11�11D11)x2 (7)

The generalized plant for the reduced order system is shown
in Figure 2. The plant variation is represented by an uncertain
real gain matrix block �11 connected between fictitious outputs
z11 and inputs w11, leading to the state space representation

ẋ1 = A11x1 +A12x2 +B11w11

y = x1

z11 = C11x1 +D11x2

w11 = �11z11 (8)

For the state feedback problem, assume the system given in
(3) to have all states available for measurement, i.e. C = I. The
problem considered in this section is to design a sliding surface
S, such that the closed loop transfer function Tzw satisfies
kTzwk� < � for all k�k� < 1. This can be achieved by first
designing M to guarantee kTz11w11k� < �11 for the reduced
order system (5). The problem is now to minimize kTz11w11k�
for the generalized plant in (8). Therefore, M is designed to
make kTz11w11k� less than �11. This is a standard LMI problem,
i.e. M can be computed using the robust control toolbox for
Matlab [2]. On the other hand, finding the value of the scaling
parameter � involves solving a BMI problem.
The design problem can now be solved as a static output
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z11

�M

P11(s)

�11

x2 x1

w11

Fig. 2. Configuration with reduced-order plant

w

�

⇥
M Im

⇤P(s)

�

u x y

z

Fig. 3. Static output feedback problem

feedback problem, as shown in Figure 3. Solutions to this
problem are discussed e.g. in [13], [15]. For a single-input
system, � can be computed from the BMI problem using linear
search - fixing it makes it into an LMI problem that can be
solved for the value of � . The best value of � is the one that
gives the smallest value for � .
If there is more than one input to the system, � will be a
matrix and a genetic algorithm can be used for the search.

B. Output Feedback Sliding Mode Controller

The problem considered in the second step of the design is
to find a dynamic controller C(s) of order n with input y and
output ũ

C(s) =


AK BK
CK DK

�
(9)

such that kTzwk� < � over all admissible perturbations �. The
closed-loop block diagram is shown in Figure 4. where the

z

C(s)

P̃(s)

�

ũ y

w

Fig. 4. Dynamic output feedback problem

generalized plant P(s) in Figure 1 is changed to P̃(s) in Figure

4, and the generalized plant P̃(s) is given as

ẋ = Ax+Bww+B�
⇥
M Im

⇤
ũ

y = Cx
z = Cwx+Du�

⇥
M Im

⇤
ũ

w = �z (10)

For simplicity suppose D̃ = Du�
⇥
M Im

⇤
and

B̃ = B�
⇥
M Im

⇤
. The closed-loop system from w to z

is

ẋc = Acxc +Bcw
z = Ccxc (11)

where

Ac =


A+ B̃DkC B̃CK

BKC AK

�
, Bc =


Bw
0

�
, (12)

Cc =
⇥
Cw + D̃DKC D̃CK

⇤

The design objective is now to find the controller C(s) that
minimizes kTzwk� < � . The problem has now been converted
to an output feedback problem with multi-inputs. This problem
can be solved using the robust control toolbox for Matlab.
The controller that will be connected to the system is then

K(s) =


AK BK

��
⇥
M Im

⇤
CK ��

⇥
M Im

⇤
DK

�
(13)

The control action that will be applied to the plant is

u = ko sat(
S(CKxk +DKy)

µ ) (14)

where ko > 0, and µ > 0 is the width of the boundary layer.

IV. APPLICATION TO A BENCHMARK PROBLEM

In this section, the approach presented in the previous
section will be illustrated by applying it to a well-known robust
benchmark problem, known as ACC benchmark problem, first
proposed in [28]. In [25], a score for the achieved performance
is defined that will be used here.
Comparison with a standard LTI based H� minimization robust
design will show that the proposed sliding mode controller
is more robust and achieves a higher performance score than
this and other controllers proposed previously for the ACC
benchmark problem, see e.g. [25], [12].
The plant to be controlled is a spring mass system, shown
in Figure 5, with two masses m1 = m2 = 1 connected to each
other by a spring with stiffness k, which is uncertain and varies
in a given range. A state space model of the system is

d1

u
m1 m2 d2

k
x1 x  = y2

Fig. 5. Two-mass spring system
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ẋ = (A+�A)x+Bu+
⇥

G1 G2
⇤

d1
d2

�
,

y = Cx (15)

where

A+�A =

2

664

0 0 1 0
0 0 0 1

� k
m1

k
m1

0 0
k

m2
� k

m2
0 0

3

775 , B =

2

664

0
0
1

m1
0

3

775

G =

2

664

0 0
0 0
1

m1 0
0 1

m2

3

775 , C =
⇥
0 1 0 0

⇤
(16)

Comparing (16) with (15) we obtain

Am =

2

664

0 0 0 0
0 0 0 0

��k �k 0 0
0 0 0 0

3

775 , Aum =

2

66664

0 0 0 0
0 0 0 0
0 0 0 0

�k ��k 0 0

3

77775
,

Dm =

2

664

0
0
1

m1
0

3

775 Dum =

2

664

0
0
0
1

m2

3

775 (17)

where x1 and x2 are the position of body 1 and body 2,
respectively. x3 and x4 are the velocities of body 1 and body
2, respectively. u is the control input acting on body 1. d1 and
d2 are disturbances acting on body 1 and 2, respectively. y is
the measured output. The design requirements is given in [25].

V. CONTROLLER DESIGN AND SIMULATION RESULTS

The design procedure divides to two parts. First, design the
sliding surface that yields a minimum value of � when all states
are available for feedback. Second, design the dynamic output
feedback law and provide the sliding surface with the required
states. The sliding surface design requires first to synthesize
M that minimize �11 for the reduced order system, while � is
used to reduce � for the full order system. A suitable value
for � is chosen by solving the static output feedback problem
shown in Figure (3); using linear search. The minimum value
of � for sliding mode state feedback is 1.0692 with � equal
1.35; this will be used in the second design step.
The second design step is to find a dynamic output feedback
sliding mode controller C(s), see Figure 4, that minimizes � .
The value of � that has been chosen in the design step for the
sliding surface is used when computing C(s). It may however
have to be re-tuned, since it had been tuned for a state feedback
problem. For the output feedback sliding mode control, the
tuning of � can be again considered as static output feedback
problem, and solved as a BMI problem. A linear search is used
to solve this problem here.
The value of � that minimizes � for the state feedback problem
is not same value as that minimizing � for the output feedback
problem - this value of � is 1.4. The variation of � affects the

gain and phase margin: the maximum phase margin is obtained
when � = 0.8, while the gain margin decreases with increasing
� . Increasing the value of � increases the minimum value of
the spring constant for which the system is stable, whereas the
maximum value of the spring constant for which the system
is stable is decreased with increasing � . Thus the range of
stability is decreased with increasing � . The effect of � on
the robustness measure pm introduced in [25]: it is obviously
decreased with increasing � . Note that the control action in
(14) provides a free parameters ko,µ , that can be tuned to
improve the performance. Figures 6-7 show the response of the
system to an impulse disturbance applied on mass1 and mass2,
respectively, with the tuning parameters �, ko, µ equal to 0.8,
0.7, and 0.625, respectively. In the reference [25] a scoring

0 5 10 15 20 25 30

0

1

2

3

x1

Response to an impulse disturbance applied to Mass1

0 5 10 15 20 25 30

0

1

2

3

x2

0 5 10 15 20 25 30
−1

0

1

u

 

 

k=0.5
k=1
k=2

Fig. 6. Impulse disturbance applied at mass1, for �, ko, µ equal to 0.8, 0.7,
0.625, respectively
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0
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3

x1

Response to an impulse disturbance applied to Mass2
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0

1

2

3

x2

0 5 10 15 20 25 30
−1

0

1

u

 

 

k=0.5
k=1
k=2

Fig. 7. Impulse applied at mass2, for �, ko, µ equal to 0.8, 0.7, 0.625,
respectively

scheme to evaluate and compare the performance of different
controllers for the ACC benchmark problem was proposed.
In the same paper, a H2/classical controller was designed that
achieved a score of 7.4. A robust H2 controller proposed in
[12] outperformed this with a score of 8.5, see Table (I). The
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sliding mode controller presented above in turn outperforms
both controllers and achieves a score of 10.1, see Table (II).

TABLE I
PERFORMANCE MEASURES FOR ROBUST H2 CONTROLLER [12]

PM GM ts(sec) umax kmin � kmax pm Score
32 6.6 14.5 0.55 0.41-3.1 0.48 8.5

TABLE II
PERFORMANCE MEASURES FOR SLIDING MODE CONTROLLER

PM GM ts(sec) umax kmin � kmax pm Score
37.97 8.5 14.4 0.7 0.24-5.05 0.61 10.1

VI. REAL-TIME CONTROL OF A RECTILINEAR PLANT

In this section, the output feedback sliding mode control
scheme is applied to an experimental version of the ACC
benchmark problem.
The mechanical plant used for this purpose is the rectilinear
mechanism shown in Figure 8. To construct an output feedback

Fig. 8. Experimental version of the ACC benchmark problem

sliding mode controller, the design procedure proposed in sec-
tion (III) will be used. To tune the controller for performance,
an LMI condition representing regional pole constraints is
added; here a vertical strip and a conic sector are considered.
The fist step in the design is to find M which determines the
sliding surface. The LMI condition for M is now combined
with the LMI region constraint. In order to convert the design
from state feedback to output feedback, the model of the plant
in Figure 8 is augmented with the sliding surface and with
integral action for accurate tracking.
The augmented system is then used to design the output feed-
back controller as explained in section (III-B), by adding the
LMI region constraint (intersection of vertical strip with conic
sector). The tuning parameters are �l , �r, � , the selection of
which will be discussed later.
After design the sliding surface and the dynamic part of the
sliding mode controller, a first order lag with time constant �
was used as a prefilter to reduce the overshoot. Experimental
results show that when the parameters �l ,�r,� are fixed, and
the parameter �lr ,�rr are increased, the steady state error
is reduced. However, in general increasing these parameters
amplifies noise in the system, a reasonable trade-off used in
all results shown in this section is �lr = 7, �rr = 3.
Oscillation in the response can decreased by increasing the
conic sector angle � . The values of the parameter �l ,�r,�
for the experimental results shown here are 8.3, 4.3 and 35,

respectively.
First, the control law (14) is used for the nominal system
(medium stiffness) with ko,µ equal to 1. Unfortunately, the
value of ko can not be increased beyond one, and the boundary
layer µ cannot be decreased below one for the above control
law, which means that simply a linear controller is imple-
mented. To reduce the boundary layer µ , the control scheme
suggested in [26] turned out to work well in this application.
The control law then becomes

u = Mko(e) sat(
S(CKxk +DKy)

µ ) (18)

where Mko(e) = ko Mo |e|, e is the difference between
desired input and controlled output. Using control law (18),
the boundary layer can be reduced to µ = .0067 and ko = .2.
Experimental results show that the overshoot is increased by
increasing ko, and the reverse is true for the steady state error
when the control law (14) is used. On other hand, using the
modified control law in (18), the overshoot is decreased and
rise time is increased by increasing Mo for the medium and
spring. It is clear that the performance is improved when the
modified control action in (18) is used. The increasing of Mo
reduces the overshoot and increases the rise time for medium
and hard stiffness, while for weak stiffness, the overshoot is
increased with increasing Mo. By modifying the control law
(18), the steady state error can be reduced further: the required
modification is as follows:

i f |e| < �, Mko(e) = ko M1 |e| (19)
otherwise, Mko(e) = ko M2 |e|

The modified control law (19) involves two gains (M1,M2)
instead of one gain Mo in control law (18). The experimental
results show that increasing M1 reduces the steady state error,
increases oscillation, and by reducing � the oscillation can be
reduced. Figure (9) shows the response for different springs
using the proposed control law (19), which improves the steady
state error. Finally, for comparison a standard robust LTI output
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Fig. 9. Experimental results: response with M1 = 4,M 2 = 2.5, � = 0.5 for
three different springs

feedback controller based H� minimization is designed using
the same pole constraints that were used for the sliding mode
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controller. The system response with this controller is shown in
Figure 10. It is obvious from the comparison of the response
of the two controllers in Figures 9 - 10, the sliding mode
controller outperforms the standard robust LTI controller based
H�.
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Fig. 10. Experimental results: response for robust LTI output feedback control
based H� for three springs

VII. CONCLUSION

A systematic design and tuning strategy for H� output
feedback sliding mode controllers has been proposed. The
first step is to design a robust sliding surface that minimizes
the H� norm for a part of the unmatched uncertainty or the
all unmatched uncertainty. Secondly, the system is augmented
with the sliding surface, then one designs an output feedback
dynamic sliding mode controller that is robust against the
matched and unmatched uncertainty. The proposed control
scheme has been tested on a benchmark problem and compared
with previously published results as well as a standard robust
LTI based H� minimization controller. Simulation results show
that the proposed controller achieves a score is higher than
that of previous controllers: The sliding mode control score is
10.1, while for the Classical/H2 and robust H2 scheme it is
7.4 and 8.5, respectively. In addition, the proposed controller
has been applied successfully to an experimental version of
the benchmark problem. Again, comparison with a robust LTI
controller based H� shows that sliding mode control gives less
overshoot, better steady state error and faster rising time.
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Abstract—The least-squares quadratic filtering and fixed-point
smoothing problems of discrete-time stochastic signals from
observations with multiple packet dropouts are addressed. The
random dropouts are modelled by introducing a sequence of
Bernoulli random variables with known distributions in the
observation model. A recursive estimation algorithm is deduced
without requiring full knowledge of the state-space model gener-
ating the signal process, but only information about the dropout
probabilities and the moments of the processes involved. Defining
suitable augmented signal and observation vectors, the quadratic
estimation problem is reduced to the linear estimation problem
of the augmented signal based on the augmented observations,
which is solved by using an innovation approach.

I. INTRODUCTION

Over the past few years, research on networked systems
has gained lot of interest. Classical estimation methods are not
appropriate for these systems in which time delay and/or data
packet dropouts are unavoidable due to numerous causes, such
as network congestion, random failures in the transmission
mechanism, accidental loss of some measurements, or data
inaccessibility at certain times.

Under the assumption that the state-space model of the
signal to be estimated is known, several modifications of
conventional linear estimation algorithms have been proposed
to incorporate the effects of random delays on the measurement
arrival (see e.g. Ray et al. [1]). Also, many results have been
reported on linear estimation for systems with packet dropouts
(see e.g. Sahebsara et al. [2] and Sun et al. [3] for systems with
multiple packet dropouts, and Sun [4] for the case when the
number of consecutive packet dropouts is bounded by a finite
number). Nevertheless, in some practical situations the state-
space model of the signal is not available and another type
of information, for example about the covariance functions
of the processes involved in the observation equation, must
be processed for the estimation. In this context, linear esti-
mation algorithms from randomly delayed observations based
on covariance information have been derived, for example,
in Nakamori et al. [5] and, also, quadratic estimators, which
improve significantly the performance of linear ones, have been
proposed in Hermoso and Linares [6], among others. However,
for systems with packet dropouts, estimation problems using
covariance information have not been well studied yet.

In this paper a least-squares quadratic filtering and fixed-
point smoothing algorithm is proposed for observation mod-
els with multiple packet dropouts. The measurement packet
dropouts are modelled by introducing a sequence of Bernoulli
random variables, whose values (one or zero) indicate if the
current measure is available or lost (in which case, the latest
measurement is processed instead). For the quadratic estima-
tion approach the signal and observation vectors are augmented
by assembling the original vectors with their second-order
powers. Then, by using an innovation approach, the linear
estimator of the augmented signal based on the augmented
observations is obtained, providing the required quadratic
estimator.

The rest of the paper is organized as follows. In Sec-
tion II the observation model considered and the hypotheses
on the signal and noise processes are presented. The least-
squares quadratic estimation problem is formulated in Section
III, where the augmented observation model and the statisti-
cal properties of the augmented vectors are established; the
quadratic estimation problem is then reduced to the linear es-
timation problem of the augmented signal, and the innovation
technique used to address such linear estimation problem is
described. The least-squares quadratic estimation algorithm is
derived in Section IV which includes recursive formulas to
obtain the estimation error covariance matrices; these matrices
provide a global measure of the estimators accuracy. Finally,
in Section V, a numerical simulation example is presented to
show the effectiveness of the estimation algorithm proposed in
the current paper, and some conclusions are drawn in Section
VI.

II. OBSERVATION MODEL

Consider an n-dimensional signal vector, zk, whose mea-
sured output at the sampling time k, denoted by eyk, is
perturbed by an additive noise vector vk; that is,

eyk = zk + vk, k � 1. (1)

Assume that, at the initial time k = 1, the measured output
ey
1

is always available and, hence, the measurement processed
for the estimation is equal to the real measurement, y

1

= ey
1

.
However, at any time k > 1, the measured output eyk can
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be randomly dropped-out during network transmission, which
occurs with known probability. Consequently, the measurement
processed at time k, yk, will be either the current measured
output eyk (with probability pk) or, if such measured output is
lost during transmission, then the latest measurement received
yk�1

will be processed (with probability 1 � pk); that is

yk =

⇢
eyk, with probability pk

yk�1

, with probability 1 � pk.

Therefore, the following model for the measurements pro-
cessed to estimate the signal is considered:

yk = �keyk + (1 � �k)yk�1

, k > 1; y
1

= ey
1

, (2)

where {�k; k > 1} is a sequence of mutually independent
Bernoulli random variables with P [�k = 1] = pk.

This model, considered by Sahebsara et al. [2], can describe
multiple packet dropouts if successive values of the Bernoulli
variables are equal to zero. For example, if �k = �k�1

=
�k�2

= 0 and �k�3

= 1, three consecutive data are lost and
the measurement received at k �3 will be used at k �2, k �1
and k.

To address the quadratic estimation problem of the signal
the following assumptions are needed:
(H1) The signal process {zk; k � 1} has zero mean and auto-

covariance function Kk,s = E[zkzT
s ] = AkBT

s , s  k,
where A and B are n ⇥ M known matrix functions.
The autocovariance function of the second-order powers
(defined by the Kronecker product, z[2] = z ⌦ z),
Kz[2]

k,s = E
�
(z[2]

k � E[z[2]

k ])(z[2]

s � E[z[2]

s ])T
�

is also

factorized as Kz[2]

k,s = akbT
s , s  k, where a and b

are n2 ⇥ L known matrix functions. Moreover,

Kzz[2]

k,s = E
�
zkz[2]T

s

�
=

⇢
↵k�T

s , s  k,
"k�T

s , k  s,

where ↵, �, " and � are n ⇥ N , n2 ⇥ N , n ⇥ P and
n2 ⇥ P known matrix functions, respectively.

(H2) The noise process {vk; k � 1} is a zero-mean white
sequence and its moments, up to the fourth one, are also
known and denoted as follows

Rv
k = E[vkvT

k ], Rvv[2]

k = E[vkv[2]T
k ],

Rv[2]

k = E
�
(v[2]

k � E[v[2]

k ])(v[2]

k � E[v[2]

k ])T
�
.

(H3) The noise {�k; k > 1} is a sequence of independent
Bernoulli random variables with known probabilities
P [�k = 1] = pk.

(H4) The signal {zk; k � 1} and the noises {vk; k � 1} and
{�k; k > 1} are mutually independent processes.

III. QUADRATIC ESTIMATION PROBLEM

Given the observation model (1)-(2) under assumptions
(H1)-(H4), the problem is to find the least-squares (LS)
quadratic estimator, zQ

k/L, of the signal, zk, when information
on the measurement history up to the Lth instant, {y

1

, . . . , yL},

is available. More specifically, our aim is to derive recursive
algorithms for the filter, zQ

k/k, and the estimators zQ
k/L at the

fixed-point k, for any L > k, that is, the fixed-point smoother.

From hypotheses (H1) and (H2), E[y[2]T
i y[2]

i ] < 1, so the
required quadratic estimator zQ

k/L exists and can be obtained as
the orthogonal projection of zk on the space of n-dimensional
linear transformations of y

1

, . . . , yL and y[2]

1

, . . . , y[2]

L . The
technique used to obtain this estimator consists of augmenting
the signal and observation vectors by assembling the original
vectors and their second-order powers,

Zk =

✓
zk

z[2]

k

◆
, eYk =

✓
eyk

ey[2]

k

◆
, Yk =

✓
yk

y[2]

k

◆

thus deriving the estimator zQ
k/L as the vector constituted of

the first n entries of the LS linear estimator of Zk based on
Y

1

, . . . , YL, whose existence is guaranteed from (H1).

In the next section the relation between the augmented
vectors is studied and their statistical properties are analyzed.

A. Augmented observation model

By using (1) and the Kronecker product properties, the
following expression for ey[2]

k is obtained

ey[2]

k = z[2]

k + (In2 + Kn2) (zk ⌦ vk) + v[2]

k , k � 1,

where In2 is the n2⇥n2 identity matrix and Kn2 is the n2⇥n2

commutation matrix, which satisfies Kn2(zk ⌦ vk) = vk ⌦ zk.
Hence, the centered augmented vectors Zk = Zk �E[Zk] and
eYk = eYk � E[ eYk] satisfy

eYk = Zk + Vk, k � 1,

where

Vk =

✓
vk

(In2 + Kn2) (zk ⌦ vk) + v[2]

k � vec(Rv
k)

◆
.

Next, using (2) and taking into account that �2

k = �k, the
following expression for y[2]

k is obtained

y[2]

k = �key[2]

k + (1 � �k)y[2]

k�1

, k > 1; y[2]

1

= ey[2]

1

.

Using again the Kronecker product properties and the model
hypotheses, it is deduced that the centered augmented vector
Yk = Yk � E[Yk] satisfy the following equation:

Yk = �k
eYk + (1 � �k)Yk�1

+ (�k � pk)Ck, k>1; Y
1

= eY
1

,

where Ck = E[ eYk] � Ek�1

, k > 1, with Ek = E [Yk] being
recursively calculated from

Ek = (1 � pk)Ek�1

+ pkE[ eYk], k � 2; E
1

= E[ eY
1

]

and

E[ eYk] =

✓
0

vec(AkBT
k + Rv

k)

◆
, k � 1.



B. Statistical properties of augmented vectors
Clearly, the signal and noise processes, {Zk; k � 1} and

{Vk; k � 1}, have zero mean. Their second-order statistical
properties, which are derived from (H1)-(H4), are established
in the following propositions.

Proposition 1. If the signal process {zk; k � 1} satisfies (H1),
the autocovariance function of the augmented signal process
{Zk; k � 1} can be expressed in a semi-degenerate kernel
form; namely,

KZ
k,s = E[ZkZT

s ] = AkBT
s , s  k,

where

Ak =

✓
Ak ↵k 0n⇥P 0n⇥L

0n2⇥M 0n2⇥N �k ak

◆
,

Bk =

✓
Bk 0n⇥N "k 0n⇥L

0n2⇥M �k 0n2⇥P bk

◆
.

Proposition 2. Under (H1)-(H4), the noise {Vk; k � 1}
is a sequence of mutually uncorrelated random vectors with
covariance matrices given by

E[VkV T
k ] = RV

k =

 
Rv

k Rvv[2]

k

Rvv[2]T
k R22

k

!

where

R22

k = (Im2 + Km2)
�
AkBT

k ⌦ Rv
k

�
(Im2 + Km2) + Rv[2]

k .

Moreover, {Vk; k � 1} is uncorrelated with the process
{Zk; k � 1}.

C. Linear estimation of the augmented signal Zk

As indicated previously, to obtain the LS quadratic estima-
tors of the signal, zk, based on the observations {y

1

, . . . , yL},
we consider the LS linear estimation problem of the augmented
signal, Zk, based on the augmented observations {Y

1

, . . . , YL}.
This problem is addressed via an innovation approach, which
simplifies considerably the derivation of the filtering algorithm,
since the innovations constitute a white process.

Let ⌫i = Yi��Yi/i�1

, where �Yi/i�1

denotes the LS linear es-
timator of Yi based on the previous observations, Y

1

, . . . , Yi�1

.
For each i, ⌫i may be regarded as a measure of the new
information or the innovation provided by the observation Yi.
It is known that the innovations {⌫i, i  L} can be determined
from the observations {Yi, i  L} by means of a causal and
causally invertible linear transformation. Therefore, each set
can be replaced by the other with no loss of information and,
consequently, the LS linear filter of the signal Zk based on the
observations Y

1

, . . . , YL, which is denoted by �Zk/L, is equal to
the LS linear estimator given the innovations ⌫

1

, . . . , ⌫L. Since
the innovations constitute a white process, from the Orthogonal
Projection Lemma it is easily proven that the filter is given by

�Zk/L =
LX

i=1

Sk,i⇧
�1

i ⌫i, (3)

where Sk,i = E[Zk⌫T
i ] and ⇧i = E[⌫i⌫T

i ].

Thus, as the estimators are expressed in terms of the
innovations, we start by determining them or, equivalently,
the predictors �Yi/i�1

. It is clear that �Y
1/0

= 0 and, taking
into account the model hypotheses, the Orthogonal Projection
Lemma leads to

�Yi/i�1

= pi
�Zi/i�1

+ (1 � pi)Yi�1

, k � 2. (4)

IV. QUADRATIC FILTERING AND FIXED-POINT SMOOTHING
ALGORITHM

Using the properties of the augmented processes, as estab-
lished in propositions 1 and 2, we derive recursive algorithms
for the linear filtering and fixed-point smoothing estimators,
�Zk/L, L � k, of the augmented signal Zk. These estimators
allow us to obtain the required quadratic filtering and fixed-
point smoothing estimators of the original signal zk, just by
extracting the first n entries.

Theorem 1. The quadratic filtering and fixed-point smoothing
estimators, zQ

k/L, L � k, of the signal zk are given by

zQ
k/L = ⌥ �Zk/L, L � k

where ⌥ is the operator which extracts the first n entries of
�Zk/L, the linear estimators of the augmented signal Zk, which
are recursively obtained by

�Zk/L = �Zk/L�1

+ Sk,L⇧�1

L ⌫L, L > k (5)

from the initial condition

�Zk/k = AkOk. (6)

The innovation, ⌫L, satisfies

⌫L = YL � pLALOL�1

� (1 � pL)YL�1

, L � 2;
⌫
1

= Y
1

,
(7)

where the vectors OL are recursively calculated from

OL = OL�1

+ JL⇧�1

L ⌫L, L � 1; O
0

= 0. (8)

The matrix function J satisfies

JL = pL

⇥BT
L � rL�1

AT
L

⇤
, L � 2; J

1

= BT
1

, (9)

where rL are recursively obtained from

rL = rL�1

+ JL⇧�1

L JT
L , L � 1; r

0

= 0. (10)

The covariance matrix of the innovation, ⇧L, verifies

⇧L = ⌃Y
L � p2

LALrL�1

AL
T � (1 � pL)2⌃Y

L�1

�pL(1 � pL)
⇥ALGL�1

+ GT
L�1

AL
T
⇤
, L � 2;

⇧
1

= ⌃Y
1

,
(11)

where ⌃Y
L and GL are recursively calculated from

⌃Y
L = pL(ALBT

L + RV
L ) + (1 � pL)⌃Y

L�1

+pL(1 � pL)CLCT
L , L � 2;

⌃Y
1

= A
1

BT
1

+ RV
1

(12)

and
GL = JL + pLrL�1

AT
L + (1 � pL)GL�1

, L � 1;
G

0

= 0.
(13)



Finally, the matrices Sk,L are calculated from

Sk,L = pL[Bk � Hk,L�1

]AT
L, L > k,

Sk,k = AkJk
(14)

where Hk,L satisfy

Hk,L = Hk,L�1

+ Sk,L⇧�1

L JT
L , L > k,

Hk,k = Akrk.
(15)

Proof. From the general expression (3), it is clear that the linear
fixed-point smoothers of the signal Zk are recursively obtained
by relation (5), and its initial condition is obviously provided
by the filter, �Zk/k.

From (3), in order to determine the filter, the coefficients
Sk,i = E[Zk⌫T

i ], must be calculated for i  k. Using
expression (4) in ⌫i = Yi � �Yi/i�1

yields

Sk,i = E[ZkY T
i ]�piE[Zk

�ZT
i/i�1

]�(1�pi)E[ZkYi�1

], i�2

Sk,1 = E[Zk
eY T
1

].

Again, taking into account (3) for the predictors, �Zi/i�1

, and
using that E[Zk

eY T
i ] = AkBT

i for 1  i  k, since E[Zk⌫T
j ] =

Sk,j , we have

Sk,i = piAkBT
i � pi

i�1X

j=1

Sk,j⇧
�1

j ST
i,j , 2  i  k

Sk,1 = AkBT
1

.

This expression for Sk,i guarantees that

Sk,i = AkJi, 1  i  k, (16)

where J is a function satisfying

Ji = piBT
i � pi

i�1X

j=1

Jj⇧
�1

j ST
i,j , 2  i  k

J
1

= BT
1

.

(17)

Hence, if we denote

OL =
LX

i=1

Ji⇧
�1

i ⌫i, O
0

= 0, (18)

which, obviously, satisfies (8), expression (6) for the filter is
deduced from (3), (16) and (18) for L = k.

Similarly, the one-stage predictors of the signal are given
by

�ZL/L�1

= ALOL�1

, (19)

and expression (7) for ⌫L = YL � �YL/L�1

is obtained by
substituting (19) in (4) for i = L.

Next, taking into account that, from (16), SL,i = ALJi for
1  i  L, and by denoting

rL = E
⇥
OLOT

L

⇤
=

LX

i=1

Ji⇧
�1

i JT
i , r

0

= 0, (20)

from (17) for i = L, expression (9) for JL is easily derived.
The recursive formula (10) for rL is obvious from (20).

By denoting ⌃Y
L = E[YLY T

L ] and GL = E[OLY T
L ], it is

clear that the innovation covariance matrix ⇧L = E[YLY T
L ] �

E[�YL/L�1

�Y T
L/L�1

] satisfies expression (11).

Recursive relations (12) and (13) for ⌃Y
L and GL, respec-

tively, are derived as follows:
• Clearly, from the model hypotheses, E[eYL

eY T
L ] =

ALBT
L +RV

L ; hence, taking into account that E[�2

L] = pL,
E[(1 � �L)2] = 1 � pL and E[�L(1 � �L)] = 0, the
expression (12) for ⌃Y

L is obtained.
• We write GL = E[OLY T

L ] = E[OL⌫T
L ] +E[OL

�Y T
L/L�1

].
Clearly, from (18) and since the innovation is a white
process, we have E[OL⌫T

L ] = JL and E[OL
�Y T
L/L�1

] =

E[OL�1

�Y T
L/L�1

]. Next, from (4), (19) and (20), we have
E[OL�1

�Y T
L/L�1

] = pLrL�1

AT
L + (1 � pL)GL�1

, and
expression (13) is obtained.

Finally, we must prove (14) for Sk,L = E[Zk⌫T
L ] and (15)

for Hk,L. Using (7) for ⌫L, and since E[ZkY T
L ] = pLBkAT

L

for L > k, we obtain

Sk,L = pLBkAT
L � pLE[ZkOT

L�1

]AT
L,

which leads to (14), just denoting Hk,L = E[ZkOT
L ]. The

initial condition in (14) is immediately clear from (16).

The recursive relation (15) is derived from (8) and its initial
condition is obtained from (6) and (20), taking into account
that, from the Orthogonal projection Lemma, E[ZkOT

k ] =
E[ �Zk/kOT

k ].

A. Error covariance matrices
The performance of the LS estimators �Zk/L, L � k, is

measured by the covariance matrices of the estimation errors,

Pk/L = E
⇥
ZkZT

k

⇤� E
�
�Zk/L

�ZT
k/L

�
, L � k.

Using the recursive relation (5) for �Zk/L, these matrices can
be written as

Pk/L = Pk/L�1

� Sk,L⇧�1

L ST
k,L, L > k (21)

The initial condition is Pk/k, the error covariance matrix
of the filter �Zk/k = AkOk which, taking into account that
E[ZkZT

k ] = AkBT
k and rk = E[OkOT

k ], is given by:

Pk/k = Ak

⇥BT
k � rkAT

k

⇤
.

The first n ⇥ n blocks of the matrices Pk/L, L � k,
constitute the covariance matrices of the quadratic smoothing
and filtering errors, thus providing a measure of the accuracy
of the respective quadratic estimators.

V. COMPUTER EXAMPLE

In this section a numerical simulation example is shown
to illustrate the feasibility and effectiveness of the proposed
quadratic estimation algorithm. For this purpose, we have
simulated 100 values of the signal to be estimated and the cor-
responding observations with multiple packet dropouts. Using
these observations, both linear and quadratic estimates of the



signal are calculated and the corresponding error covariance
matrices are provided to measure the estimation accuracy.

We consider a zero-mean scalar signal {zk; k � 1} such
that the autocovariance and cross-covariance functions of this
signal and their second-order powers are given by

Kz
k,s = 1.025641 ⇥ 0.95k�s, s  k,

Kz2

k,s = 2.1038795 ⇥ 0.952(k�s), s  k,

Kzz2

k,s = 0, 8s, k;

hence, according to hypothesis (H1), the functions which
constitute these covariance functions can be defined as follows:

Ak = 1.025641 ⇥ 0.95k, Bk = 0.95�k,
ak = 2.1038795 ⇥ 0.952k, bk = 0.95�2k,

↵k = �k = "k = �k = 0.

For the simulations, the signal is assumed to be generated by
the following first-order autoregressive model

zk+1

= 0.95zk + wk

where {wk; k � 1} is a zero-mean white Gaussian noise with
V ar [wk] = 0.1, for all k.

The real measurements of the signal, eyk = zk + vk, are
perturbed by a white noise, {vk; k � 1}, with distribution

P [vk = �8] =
1

8
, P


vk =

8

7

�
=

7

8
, 8k � 0;

hence,

E[vk] = 0, Rv
k = 9.142857,

Rvv2

k = �62.693878, Rv2

k = 429.900875.

Now, according to our theoretic study, we suppose that, at
any sampling time k > 1, the measurement processed for the
estimation, yk, can be either the current measured output eyk,
with constant probability p, or the latest measurement received
yk�1

, with probability 1 � p; that is, the measurements of the
signal are given by

yk = �keyk + (1 � �k)yk�1

, k > 1; y
1

= ey
1

with
eyk = zk + vk, k � 1.

First, considering a fixed value of the probability p = 0.5,
the error variances of the linear and quadratic estimators are
calculated, allowing us to compare the performance of both
estimators. The error variances of the linear and quadratic
filters and fixed-point smoothers, are displayed in Figure 1
which shows, on the one hand, that the quadratic estimation
error variances are less than the linear ones (confirming the su-
periority of the quadratic estimators over the linear ones) and,
on the other, that the estimation accuracy of the smoothers is
superior to that of the filters and, also, that the performance of
the fixed-point smoothers improves as the number of available
observations increases.

Next, we compare the performance of the estimators con-
sidering different values of the probability p. Since the error
variances show insignificant variation from the 20th iteration
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Fig. 1. Linear and quadratic estimation error variances for p = 0.5.

onwards, only the error variances at a specific iteration are
considered. In Figure 2 the linear and quadratic filtering and
smoothing error variances at k = 100 are displayed versus p.
This figure shows, as expected, that both, linear and quadratic
estimators, have better performance (the error variances are
smaller) as the probability p increases or, equivalently, as the
dropout probability decreases.
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Fig. 2. Linear and quadratic estimation error variances versus p.

Finally, Figure 3 displays 100 simulated values of the signal,
together with the linear filtering estimates and the quadratic
filtering and fixed-point smoothing estimates, for the value
p = 0.5. This figure shows, on the one hand, that the quadratic
filtering estimates follow the signal evolution better than the
linear ones and, on the other, that the signal evolution is
followed more accurately by the smoothing estimates, agreeing
with the comments made about Figure 1.
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VI. CONCLUSION

A recursive algorithm is proposed for the LS quadratic
filter and fixed-point smoother from observations featuring
multiple packet dropouts, a realistic assumption in networked
stochastic systems where, generally, transmission losses are
unavoidable due to the unreliable network characteristics. We
assume that, when the current measurement is not available,
the latest measurement is processed for the estimation.

To address the quadratic estimation problem, an augmented
signal and observation vectors are introduced by assembling
the original vectors with their second-order powers, defined
by the Kronecker product. Using an innovation approach,
the linear estimator of the augmented signal based on the
augmented observations is obtained, providing the required
quadratic estimator.

The estimation algorithm does not require the knowledge
of the signal state-space model, but only the autocovariance
and crosscovariance functions of the signal and its second-
order powers, and the same information on the additive noise.
Furthermore, our estimators only depend on the data arrival
probabilities, but do not need to know if a measurement is
received or lost at a particular sampling time. To measure
the performance of the estimators, recursive formulas for the
estimation error covariance matrices are also proposed.

To illustrate the theoretical results established in this paper,
a simulation example is presented, showing the feasibility of
the proposed algorithm and the superiority of the quadratic
estimators over the linear ones.
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Abstract — This paper considers modelling and 
simulation study of a helicopter system – UH-60 Black 
Hawk helicopter. Mathematical model of single main rotor 
helicopters is presented in this paper. For the convenience of 
presentation, force and moment expressions of the various 
helicopter components are given in the paper to bridge a 
generic model to the model of UH-60 Black Hawk 
helicopters. For simulation study a UH-60 like Flightlab 
GRM model (Generic Rotorcraft Model) is used. 
Comparisons are made between the simulation results and 
flight test data. A general agreement exits but where 
disagreements and anomalies occur, clues are gathered to 
give explanation. Overall the model represents the UH-60 
Black Hawk helicopter. This model can be used for 
controller development to improve flight handling quality 
and performances.
      Keywords - modelling; simulation; model validation; helicopter 

system; flight control

I. INTRODUCTION

A helicopter has six degrees of freedom in its motions: 
up/down, fore/aft (longitudinal motion), left/right (lateral 
motion), pitching, rolling, and yawing. The motions of a 
helicopter are achieved by; 1) collectively changing the pitch of 
all the main rotor blades, thus increasing rotor thrust (collective 
pitch); 2) cyclically changing the pitch as a sinusoidal function 
of azimuth which tilts the tip-path-plane fore/aft or left/right 
and changes the thrust vector direction (cyclic pitch); and 3) 
collectively changing the tail rotor pitch, which changes tail 
rotor thrust and thus the yaw moment. A helicopter pilot must 
simultaneously control three forces and moments, hence,
control of a helicopter, is a difficult task indeed. A helicopter 
pilot typically has at his disposal a cyclic stick to control both 
fore/aft motions (pitch control) and left/right motion (roll 
control), a collective lever to control up and down motions 
(vertical control), and pedals to control left and right yawing 
motions (yaw control). Lift, thrust, pitching, and rolling control 
comes from the main rotor while yawing control comes from 
the tail rotor (Bramwell, 1976, Stepniewski, et al, 1984). 
Analyse the dynamic problems of controlling a helicopter and 
to develop control schemes for alleviating these problems it is 
necessary to derive a dynamic model for helicopters. The 
dynamic model should be well suited to stability and control 
analysis, which may involve linearized equations of motion 
about possible equilibrium positions.

In the following section a mathematical model of a single 
main rotor helicopter is presented. The forces and moments 
from the different elements of helicopter are discussed in 
details. Then the model of UH-60 helicopter has been derived 
and simulation study has been conducted. The results are 
presented in this paper.

II. DYNAMIC MODEL OF A HELICOPTER

The overall vehicle equations of motion are derived. The forces 
and moments from the different elements of a helicopter, such 
as main rotor, tail rotor, fuselage and empennage, are discussed 
in this paper. The helicopter has six degree of freedom in its 
motion and it has nine state variables in general, which are 

wvu ,, the aircraft velocity components at centre of gravity, 
rqp ,, the aircraft roll, pitch and yaw rates about body reference 

axes, and \IT ,, the Euler angles. To derive the equations of 
the translational and rotational motions of a helicopter, the 
helicopter is assumed to be a rigid body referred to an axes 
system fixed at the centre of mass of the aircraft, so the axes 
move with time varying velocity components under the action 
of the applied forces. The Euler angles define the orientation of 
the fuselage with respect to earth axes system (Padfield, 1996). 
There are four control inputs, which are, longitudinal cyclic 
stick ( s1K ), lateral cyclic stick )( 1cK , collective lever )( cK and 
pedal input )( pK which control the helicopter’s motion 
through NandMLZYX ,,,,, . So the system equations are as 
follows

aM/Xsingqwrvu ��� T�       (1a) 

aM/Ysincosgrupwv ��� IT�       (1b)

aM/Zcoscosgpvquw ��� IT�       (1c)   
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TITII tancostansin rqp �� �                                   (3a)
IIT sincos rq � �               (3b)

TITI\ seccossecsin rq � �              (3c)
where aM and g are the mass of the helicopter and acceleration 
due to gravity, zzyyxx III ,, are the moment of inertia of the 
helicopter about yx, and z axes, and xzI the aircraft product of 
inertia. The model (1) ~ (3) can be considered as a cascade 
connection nonlinear system, that is, it has the following form:

� �yxfx ,1 �                   (4)
� � � � UyGy,xfy � 2�                   (5)

The overall external forces YX , and Z along zyx ,, axes and 
moments NML ,, about zyx ,, axes can be written as
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where U is air density, R and : are the main rotor blade radius 
and speed, 0a and s the main rotor blade lift curve slope and 

solidity, and zYx CCC ,, are the main rotor force coefficients in 
shaft axes. They are given by
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where W< is the side-slip angle and TC is the main rotor thrust 
coefficient given by

� � 22 RR
T

CT SU :
                (14)

The main rotor force coefficients in the hub-wind axes XWC and 
YWC are can be obtained through equations (15) and (16) in 

terms of harmonic components of integrated blade 
aerodynamic loads and harmonics of flapping.
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where 0E is the coning angle and cw1E , sw1E are the first harmonic 
cyclic flapping angles. The harmonic components of integrated 
blade aerodynamic loads are given by the following 
expressions

� � tw
zw

sw

p
F TP

OP
T

PP
T 20

1

2

0
)1(

0 1
4
1

22223
1

��¸̧
¹

·
¨̈
©

§ �
�¸̧
¹

·
¨̈
©

§
��¸̧

¹

·
¨̈
©

§
� (17)

¸
¹

·
¨
©

§ ����
�

 twz
swsw

sF TOPTP
TD

3
2

3 00
1)1(

1                   (18)

23
0)1(

1

PETD
�

�
 cwcw

cF      (19)

¿
¾
½

¯
®


�
�

�� 0
1

11
)1(

2 22
PE

O
ET

P cww
swcws

q
F                     (20)

¿
¾
½

¯
®


¸̧
¹

·
¨̈
©

§
��

�
��� 

222 0
1

11
)1(

2
twsww

cwswc

pF T
TP

O
ET

P      (21)

� �

� �

0
01

1
1

1
1

0
1

1
01

2

00

11010

2
)2(

1

24

48
3

2

42443

442

a
q

p

F

sw
cww

cw

cw
sww

z
sw

tw
c

z
sw

cwz
sw

cwswcwzsws

sw

GP
PEE

O
T

P

E
OP

OP
T

T
PE

OP
PD

E
P

OPP
D

T

DE
P

E
P

OPEE
P

D

�¸̧
¹

·
¨̈
©

§
��

�
�

¸̧
¹

·
¨̈
©

§
¸̧
¹

·
¨̈
©

§
���

�
�

¸̧
¹

·
¨̈
©

§
¸̧
¹

·
¨̈
©

§
����¸̧

¹

·
¨̈
©

§
����

�¸̧
¹

·
¨̈
©

§
��� 

        (22)



                                                                                     

   

¸̧
¹

·
¨̈
©

§
��

�
�

¸
¸
¹

·
¨
¨
©

§
¸̧
¹

·
¨̈
©

§
�

�
�

�
�

¸
¸
¹

·
¨
¨
©

§
¸̧
¹

·
¨̈
©

§
���¸̧

¹

·
¨̈
©

§
¸̧
¹

·
¨̈
©

§
����

¸̧
¹

·
¨̈
©

§
���¸̧

¹

·
¨̈
©

§
��� 

01
1

1

1
10

1

1
0

1001

10100
)2(

1

24

242

8342234

4
3

3
4

2

PEE
O

T
P

E
OPOP

T

E
PE

P
D

TE
P

E
PD

TDE
P

DPEOPPEOPPE

sw
cww

sw

cw
swwz

cw

sw
cw

twsw
cw

swsw

cwcwzcwzc

q

p

F

(23)               

where 0T is the main rotor collective pitch and is given by
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In equation (24), 0cg and 1cg are the collective gearing 
constants, gk and n' the autostabiliser feed back gain and 
aircraft normal acceleration increment, and cK the collective 
lever variable (control input).

swcw 11 ,TT blade cyclic pitch components in hub-wind axes are 
defined by
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where cs 11 ,TT are the longitudinal and lateral cyclic pitch they 
are determined by
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where qp kandkkk TI ,, feedback gains, sc kandk 11 are feed 
forward gains. 0101 , cs and KK are constants, adjustable by the 
pilot and sc 11 ,KK are lateral and longitudinal cyclic stick 
variables (control inputs).

The tail rotor provides control for the yaw, whose only 
responsibility is to provide a sideways thrust force and thereby 
produce a yawing moment about the main rotor shaft 
(Newman, 1994, Leishman, 2000) i.e. contributes the external 
force Y , moments L , and M (see equations (7), (9) and (11)). 
Tail rotor contributaion can be determined by
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where T0T is a tail rotor pitch (control input) and is given by
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In equation (29), 10 , tt gg are pedals gearing constants, and 0ctg is 
the pedal cable gearing constant.  pc KK , are the collective liver 
variable and pedal variable, which are the control inputs.

Almost all of the performance characteristics of a helicopter 
depend on the power-plant performance (Prouty, 1986). Here a 
simplified model for a helicopter rotor-speed, associated engine 
and rotor governor dynamics formulae are presented as 
follows.
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In time domain, differential equation can be written as
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where RE QQ , and TQ are the engine, main rotor, and tail rotor 
torques, respectively. TG is the tail rotor gear ratio. RI is the 
moment of inertia of the rotating system.  i: is the idling rotor 
speed and  3K overall engine/rotor speed gain.
Some assumptions are made to produce a closed form of 
expressions to the helicopter motion, which are shown below. 
The tail rotor flapping is ignored. For the main rotor, flapping 
angles are assumed small and the overall fuselage acceleration 
and blade weight effects are neglected. Yaw rate and sideslip 
rate, are assumed small compared with rotor angular rate : in 
the kinematics of blade motion. Especially, basic assumptions 
regarding to the rotor blade aerodynamics are summarised as 
follows:
x A constant, two-dimensional, lift curve slope is assumed.
x Compressibility effects are ignored.
x Stall and reversed flow effects are ignored.
x The induced velocity distribution, normal to the rotor disc, 

includes linear longitudinal and lateral variations, the value 
at the centre satisfying simple momentum considerations. 

x Couplings from blade pitch and lag dynamics into flapping 
motion are ignored.

x Quasi-steady flapping and coning are used in the 
derivation of the reaction forces and moments on the 
fuselage, i.e., the interaction of disc tilt modes with 
fuselage mode are neglected.

These assumptions make it possible to integrate the 
aerodynamic loading analytically and hence produce the closed 
form of expressions for the rotor forces and moments. 



                                                                                     

III. SIMULATION STUDY OF UH-60 BLACK HAWK 
HELICOPTER USING FLIGHTLAB

A similar approach has been taken for modelling main rotor 
and tail rotor apart from that the tail rotor flapping has been 
ignored. In Flightlab, the tail rotor component implemented is 
based on a simplified theoretical method of determining the 
characteristics of a lifting rotor in forward flight (report No 716 
National Advisory committee for Aeronautics by F.J. Bailey, 
Jr,) which is called bailey rotor. The co-ordinate system of the 
bailey rotor has X forward into the free-stream airflow and Z in 
the direction of thrust. Rotor thrust and torque are calculated as 
functions of the blade tip loss factor by making the similar 
assumptions as mentioned above. Bailey derived rotor thrust 
and torque by analytically integrating the air-loads over the 
rotor blade span and averaging them over the azimuth. For the 
bailey rotor, using a reasonable initial value for the tail rotor 
thrust TT , the thrust coefficient TTC can be calculated from 
momentum theory as
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              (35)

The only difference from mathematical model described in (28) 
is that the blockage effect, blk , is introduced due to fin 
consideration. Total inflow 0O and the induced velocity iv can 
be calculated by
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Using these values, an iterative procedure is performed to 
determine the values of the total inflow.  This is done by using 
the equation below derived by applying momentum theory.
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where 0T and 1T are the blade collective pitch at the root and 
tip, respectively. 0O is the total inflow across the rotor disk. 
The values 1,3t , 2,3t and 3,3t are computed by
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Once the values of 1,3t , 2,3t and 3,3t have been determined within 
a reasonable tolerance, the induced velocity is again calculated 
using the above equation.  From equation (36) the thrust 
coefficient is then recalculated using
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The rotor thrust can then be calculated with the following 
equation:
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where the blockage effect, blk , due to a fin is used to modify 
the rotor thrust as a function of the velocity which is given by,
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in equations (44) and (45) the transition velocity, blv and the 
tail blockage constants, 1tb and 2tb , are specified by the users. 
This allows calculating the root collective pitch 0T by

> @ cbiasTT TTGGST ��� 330 tan
180

,                       (46)

where cT is the commanded root collective pitch, biasT is a 
preset collective pitch bias, TT is the tail rotor thrust, and 3G is 
the hinge skew angle for pitch-flap coupling. In addition, for 
the main rotor, in Flightlab model, aerodynamic effect has been 
taken into account. In more details, the aerodynamic 
components are numeric components that allow the 
computation of airloads, inflow, and interference. Airloads are 
computed to give the motion of the attached structural 
component and inflow is computed based on the airloads. 
Additionally, interference between the aerodynamic 
components can be computed. 

Fuselage and empennage components are implemented in 
Flightlab model, by using simple aerodynamics laws, in which 
the forces and moments from these elements are given by 
functions of incident and sideslip angle. In the process of 
modelling due to the complex flow field around helicopter 
fuselages and the interaction of the main rotor wake with the 
fuselage, some difficulties are caused to construct the forces 
and moments equations. So the direct results from wind tunnel 
test data gathered from various sources are used (Biggers, 
1962, Wilson, et at, 1975). The engine output torque is 
controlled by the governor system that senses a change in rotor 
speed : and demands a fuel flow change fZ . The fuel change 
is represented as a single lag.

': � 11 effe KZZW � ,                      (47)

where 1eW and 1eK are the time constant and gain respectively. 
1eK is the slope of the droop in the rotor speed from flight idle 

to maximum contingency fuel flow.

i:�: ': ,                      (48)

where ': and i: are the changes in rotor speed and flight idle 
rotor speed, respectively. The engine torque EQ response to the 



                                                                                     

fuel flow change is described by a lag responding to fuel flow 
and flow rate

� �ffeeEEe KQQ ZZWW � � ��
223 ,                      (49)

where 2eK is the gain and 2eW , 3eW are the time constants. 
Combining the above results gives a second order ordinary 
differential equation as follows

� � � �^ `:�:�:���� ����
2331

31

1
WWW

WW iEEee
ee

E KQQQ        (50)

The equation is further normalised by maximum engine torque 
maxEQ as
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m: is the rotor speed at maximum contingency fuel flow. 
Similarly in the mathematical model the simplified free turbine 
engine equations are also presented (see equation (34)).

In the flight control system, essentially, signals from the cyclic 
stick, collective lever and yaw pedals are transmitted to the 
main and tail rotor blades. Inter-links between collective lever, 
main rotor cyclic, and tail rotor collective pitch are also 
incorporated in the mathematical model. These pilot generated 
signals are combined with error signals from the stabilisation 
and automatic flight control systems and passed through a first 
order lag. The autostabiliser transmits signals from rate and 
attitude gyros to produce feedback control of roll through 
lateral cyclic, pitch through longitudinal cyclic and yaw 
through tail rotor collective. Feed forward signals are also 
incorporated in the cyclic loops for compensation also normal 
acceleration is fed back into the main rotor collective channel 
to reduce adverse rotor pitching moments at high forward 
speeds. In Flightlab model the control components are designed 
as multi input/ mulit output, linear and nonlinear sub system. 

Simulation results are presented in this paper. The appropriate 
parameters for the UH-60 helicopters are used in the simulation 
studies are presented in the appendix Table A.1~A.4. 
Comparison result shows that there is a general agreement 
between the flight test data and the Flightlab GRM model 
simulation results. The flight test data were generated from the 
tests conducted for the UH-60 helicopter under very calm wind 
condition at Navy crows landing, California in September 1992 
(Fletcher, 1993, Fletcher, 1995).  

Simulation with two dynamics manoeuvres (Hover and 80Kts) 
for the four control input has been carried out. The model 
response was computed using the actual flight measured 
control positions. Both the flight data and the simulation data 
ware plotted in the same scale, which enables an easier 

comparison of the variables of interest, such as translational 
velocities ( wvu ,, ), rotational velocities qp,( , r ), Euler 
angles ),,( \TI and body axes accelerations ),,( zyx aaa .  In this 
paper longitudinal stick input simulation results are choosen as 
an example, which are shown In Fig. 3.1(a) and Fig. 3.1(b). 
The pilot’s longitudinal stick input was used to drive the model 
in hover condition and 80Kts forward flight speed. 

There exists reasonably good correlation with the flight data 
response, however some discrepancies are evident in the pitch 
rate )(q . Initially it starts with a good agreement but tends to 
differ in the long term, which might be an indication of that 
some unstable factors in real flight vehicle have not been 
included into the mathematical model.

IV. CONCLUDING REMARKS

The paper describes modelling and simulation study of a 
helicopter system. The mathematical model for a helicopter has 
been developed for simulation study and control analysis.             
For the simulation study in the paper a UH-60 like Fightlab 
GRM model has been used. The model responses are compared 
with UH-60 flight test data in both hover and 80Kts forward 
flight conditions. Correlation in the main is satisfactory but 
anomalies are present. The possible reasons for those 
anomalies are suggested. Overall satisfactory results are 
achieved. Simulation analyses with the mathematical model 
itself are currently undergoing and the results will be 
investigated for the analysis of the system stability and control. 
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Figure. 3.1(a) Comparison of helicopter dynamic responses at hover between flight test data and FGR model for longitudinal 
stick input

Figure. 3.1(b) Comparison of helicopter dynamic responses at 80Kts between flight test data and FGR model for longitudinal 
stick input



                                                                                     

APPENDIX A

PARAMETER OF UH-60 HELICOPTER

UH-60 helicopter data are gathered from various 
sources are presented below (eg. Hilbert, 1984). 

Table A.1 Aircraft mass and inertia:

Description Symbol UH-60 
value

Units

mass of the helicopter
aM 15350 lb

aircraft roll inertia
xxI 5629 2ftslug

aircraft pitch inertia
yyI 40000 2ftslug

aircraft yaw inertia
zzI 37200 2ftslug

aircraft product of inertia
xzI 1670 2ftslug

centre of gravity location - (36.0 0 4.7) ft

Fuselage reference pt. - (34.6 0 23.4) ft

   

Table A.2 Main rotor group:

Description Symbol UH-60 value Units
main rotor speed : 27.0 sec/rad
main rotor blade radius R 26.83 ft
blade lift curve slope

0a 5.73 1�rad
main rotor solidity s 0.08210 -
rotor shaft forward tilt

sJ 0.05236 rad
rotor thrust coefficient

TC 0.1846 -

number of blades b 4 -

blade lock number � �0JJ 8.1936 -

rotor inertia number
EK 1.0242 -

flap frequency ratio
EO 1 -

linear blade twist
twT -0.3142 rad

z co-ordinate of  rotor 
hub

Rh 31.5 ft

mixing angle
F\ 0.175 rad

blade chord c 1.73 ft
flapping spring const.

EK 0 -

c.g. location fwd.of 
fuselage ref. Point cgx 1.4 ft

Stiffness number
ES 0 -

blade profile drag 
coefficient 0G -0.0216 -

air density U 0.002473 3/ ftslug

blade flapping moment 
of inertia EI 3.10 2ftslug

Table A.3 Empennage:

Description Symbol UH-60 
value

Units

tail plane area
TPS 45.0 ft

lift curve slope at zero incident
TPa0

4 -

Location aft of fuselage reference 
point TPl , FNl 70.0 ft

fin area
FNS 32.3 2ft

  Table A.4 Tail rotor group:

Description Symbol UH-60 
value

Units

tail rotor blade radius
TR 5.5 ft

tail rotor speed
T: 124.62 sec/rad

blade lift curve slope
Ta0

5.73 1�rad

tail rotor solidity
Ts 0.1875 -

fin blockage factor
TF -0.402 -

tail rotor inertia number
Tn )( E

0.4223 -

flap frequency ratio
T)( EO 1.0 -

tail rotor location aft of fuselage 
reference point Tl 73.2 ft

Negative z co-ordinate of hub
Th 32.5 ft

linear blade twist
twT -18.0 deg

Number of rotor blade b 4 -

blade profile drag coefficient
T0G -0.0216 -

blade lift dependent drag coefficient
T2G 0.40 -

pitch/flap coupling ( 3G ) 3k 0.700 -

blade lock number � �TJ 3.378 -
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Abstract—This paper presents a robust design approach for 
the Terminal Iterative Learning Control (TILC) algorithm 
based on the µ-synthesis approach. TILC is used to control 
the reheat phase of plastic sheets in a thermoforming oven. 
TILC adjusts the heater temperature setpoints so that the 
plastic sheet temperature measured at the end of the reheat 
cycle converges to a desired temperature after a few cycles. 
Simulation results are included to show the effectiveness of 
this robust TILC algorithm. 

Keywords—Terminal Iterative Learning Control, robust 
control, µ-synthesis, thermoforming. 

I.  INTRODUCTION 
In the thermoforming industry, the reheat phase is an 

important part of the process, since plastic sheets have to 
be heated to the right temperature before being molded [1-
4]. The heater temperature setpoints are adjusted manually, 
by trial and error. This manual adjustment takes some 
cycles to complete, and results in monetary loss owing to 
the production of rejected parts. 

This problem, observed in the plastics industry, has led 
to the idea of a cycle-to-cycle control approach to 
automatically tune the heater temperature setpoints [5]. To 
achieve this efficiently, the Terminal Iterative Learning 
Control (TILC) algorithm can be used to tune the setpoint 
temperature of heaters in a thermoforming oven [6-8]. The 
approach calls for the installation of temperature sensors 
measuring the surface temperature of the plastic sheet at 
the end of the cycle [4, 9].   

TILC adjusts the heater temperature setpoints so that 
the sheet surface temperature converges to a desired 
temperature profile at the end of the heating cycle [10]. 

For the experimental oven, since it is small, the 
temperature sensors are inside the oven.  But, for a bigger 
oven, the use of temperature scanner at the output of the 
oven is cheaper than using a lot a sensor inside the oven, 
so we need to use TILC. 

This paper concerns the use of µ-synthesis as a tool to 
design TILC controllers. The µ-synthesis approach has 

been successfully used by other researchers for ILC – see 
[11, 12], and [13]. While robust ILC design has been 
studied extensively, robust TILC has attracted much less 
attention. TILC was introduced first in [14] and then in a 
PhD thesis in the same year [15]. High-order TILC, 
presented in [14-17], has been proposed to improve 
robustness. TILC is a variant of ILC, the main difference 
between them being that ILC has access to measurements 
sampled during the entire cycle, while TILC only has 
access to measurements sampled at the end of the cycle 
[14, 18]. 

Section II presents the system used to design TILC. 
Section II introduces the µ-synthesis concepts required to 
carry out the robust design, such as weighting functions 
and their parameters. Simulation results, using a TILC 
algorithm created with µ-synthesis, are shown in section 
IV. Section V concludes the paper. 

II. PROBLEM SETUP 
The system on which we apply the TILC algorithm is a 

thermoforming machine, but the algorithm can be applied 
to any system that behaves in a repetitive way. A 
linearized system is used to design TILC, and has been 
defined by [4, 6, 7, 10]: 

 
( ) ( )
( ) ( )

k k k

k k

x t Ax t Bu
y t Cx t

 �

 

�
 (1) 

In (1), t�\  and k �` represent the time within the 
cycle and the cycle number respectively. The cycle length 
T has a fixed duration, because it is an important 
assumption of the TILC approach. Matrices A, B, and C 
are time-invariant. The state vector ( ) n

kx t �\  expresses 
the temperature at n points on the plastic sheet. The input 
vector m

ku �\  contains the temperature of the heaters, 
and those temperatures are maintained constant during the 
entire reheat cycle. The surface temperatures of the plastic 
sheet are in the output vector ( ) p

ky t �\ . 

The control task is to update the control the input ku , 
such that the sheet surface temperatures converge to a 



                                  
 

desired terminal value vector  p
dy �\   at time T. For 

linear systems, the terminal output is 

 ( ) (0)k k ky T x u * �< . (2) 
The matrix p nu*�\ is used to obtain the zero-input 

response, and is defined as 

 ATCe*  . (3) 
The matrix p mu<�\  is used to obtain the zero-state 

response, and is defined by 

 � �

0

T
A TC e BdW W�<  ³ . (4) 

To put the emphasis on the cycle domain, expressed by 
k, the notation can be changed, and so (2) is rewritten as 

 0[ ] [ ] [ ]Ty k x k u k * �< , (5) 
where [ ] : ( )T ky k y T , [ ] : ku k u , and 0[ ] : (0)kx k x . 

Since it is a discretized system in the cycle domain, the 
z-transform is a useful tool for analyzing it. Then, the z-
transform of (5) for the cycle domain is 

 0ˆ ˆ ˆ( ) ( ) ( )Ty z x z u z * �<  (6) 
where the z-domain variables have a caret above them. 

In the z-domain, the TILC algorithm is defined by 

 � �ˆ ˆ ˆ( ) ( ) ( ) ( )d Tu z C z y z y z � . (7) 
The closed-loop transfer function of the system (6) 

controlled with the TILC in (7)  is expressed by 

 � � ^ `1

0ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )p dy z I C z C z y z x z
�

 �< < �* , (8) 
or 

 � � ^ `1
0ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )m du z C z I C z y z x z� � < �* . (9) 

Lemma 1: The closed loop-system is internally stable 
if and only if the following matrix is invertible: 

 
( )m

p

I C z
I

ª º
« »�<¬ ¼

 (10) 

for all z outside the unit circle. 

Proof: The proof can be found in [20, 21].                  Ƒ 

An example of a first-order TILC algorithm (since it is 
an integrator) would be 

 � � 1( ) 1C z z � � � <  (11) 
where the + exponent represents the pseudoinverse 
operator. 

Theorem 1: Suppose that a system represented by the 
matrix <  is controlled by the TILC algorithm expressed 
by (11). Then, the closed-loop system is internally stable. 

Proof: From Lemma 1, the system is internally stable if 
(10) is invertible: 

 � � 1( ) 1m m

p p

I C z I z
I I

� �ª ºª º � <
 « »« »�< �<« »¬ ¼ ¬ ¼

. (12) 

The determinant of (12) is 
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Then, 

 � � � �� �( ) 1 det 1p
pp z z I z� � � � �<< . (14) 

The roots of (14) ( ( ) 0p z  ) correspond to the poles of 
the closed-loop system. The zeros of ( )p z  are also the 
eigenvalues of pI ��<< . There are two cases:  

If pI�<<  , then the eigenvalues are all equal to 0 
and the system is stable.  

If pI�<< z , then the eigenvalues are equal to 0 or 1, 
since pI ��<<  is idempotent, like �<< . The 1 
eigenvalues are canceled out by the ( 1)z �  term in the 
denominator of (14), leaving the 0 eigenvalues, implying 
that the closed loop system is stable. 

Then, in both cases, the closed-loop system is stable.  Ƒ 

The closed-loop system must remain stable, even when 
the parameters of the system are uncertain. However, fast 
convergence is needed to minimize the number of plastic 
sheets wasted. 

III. THE MU-SYNTHESIS APPROACH 
The µ-synthesis approach can be used to design a 

robust TILC algorithm by tuning the filter parameters. 
Figure 1 shows the detailed block diagram of the system 
matrix with its uncertainties [8]. The system matrix <  is 
related to the nominal one, 0< , with the weighting 
functions and matrices necessary to define the uncertainty 
of the system. 

 
Figure 1: Representation of system uncertainty 

 
We need to define each matrix appearing in this figure 

before proceeding. 

The control system is expressed by its nominal matrix 
0

p mu< �\ , and the uncertainty amplitudes on each entry 
of the system matrix <  are expressed by each entry 

,ii< �' �\ , ^ `1,2, ,i r� � "  of the real diagonal matrix 



                                  
 

<' . The size of matrix <'  depends on the number of 
uncertain real entries in the system, but the maximum size 
is pm pmu . 

The real diagonal matrix '  is such that each entry on 
the main diagonal is strictly smaller than 1 ( 1ii' � ). 
Hence, the size of the matrix '  is the same as <' . To 
associate each entry 0,ij<  of 0<  with the corresponding 
uncertainty amplitude ,kk<' , we need two real matrices 
identified by UW  and YW . Then, the uncertain system can 
be written as 

 0 Y UW W<<  < � '' . (15) 

When all parameters of the system <  are uncertain, 
the matrix pm m

UW u�\  is 

 > @TU m m mW I I I "  (16) 
where the identity matrix mI  is repeated p times, and 
matrix p pm

YW u�\  is 

 > @1 1 1Y pW I � "  (17) 
where the 1 is repeated m times. 

When some parameters of the system have no 
uncertainty, the corresponding lines and columns have to 
be removed from the matrices, as shown in Figure 2. 
Hence, this operation reduces the size of all the matrices 
appearing in this figure [8]. 

 
Figure 2: Removal of a 0 uncertainty 

 
The uncertain system <  is connected to a cycle-to-

cycle control to close the loop in the cycle domain. Figure 
3 shows the complete block diagram of the system. 

The TILC controller ( )C z  results from combining the 
blocks ( )C z�  and 1z I� . The part of the controller to be 
designed using the µ-synthesis approach is ( )C z� . 

Since the robustness of the controller is obtained by the 
uncertainties expressed earlier, the performance 
specifications are included in the 1( )W z  matrix containing 
the weighting function of the main diagonal. Each entry of 

1( )W z  has the following transfer function: 

 
� � � �
� � � �

1, 1, 1, 1,
1,

1, 1, 1, 1, 1,

2 21
2 2
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ii
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M z M
W

M z
Z Z

H Z H Z

 ½� � �° ° ® ¾
� � �° °¯ ¿

 (18) 

where ^ `1,2, ,i p� " . 
The parameters of the weighting function are [8]: 

- 1,iM : the high-frequency gain of the inverse of 

1,iiW , its purpose being to limit the high-
frequency gain of the sensitivity function of the 
closed-loop system; 

- 1,iH : the low-frequency gain of the inverse of 1,iiW  
– the steady state error of the closed-loop system 
will remain under this value; 

- 1,iZ : the frequency where the gain of the inverse is 
equal to 1, which will determine the speed of 
convergence of the closed-loop system. 
 

The block diagram shown in Figure 3 can be 
reorganized into the one shown in Figure 4. The TILC and 
uncertainty are put into distinct blocks, and all the other 
blocks are grouped into a block named N. Figure 4 can be 
simplified to an N C' �  representation, as shown in Figure 
5.  

From the block diagram in Figure 5, we can write 
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1
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1
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Y

W z
N WW W W z

W I z

�
<

�

�

ª º'
« » � � <« »
« »� �<¬ ¼

. (19) 

This N matrix is the main component of the following 
relationship between input and output shown in Figure 5: 

 d

p q
z N y
e u

ª º ª º
« » « » « » « »
« » « »c¬ ¼ ¬ ¼

. (20) 

The µ-synthesis consists of finding a controller ( )C z�  
that minimizes the maximum value of µ. The objective 
function to minimize is given by [8, 19] 

 � �
( )

( ) arg min ( ( ), ( )lstabilizing C z
C z N z C zP � �� . (21) 

In this function, the lower linear fractional 
transformation (LFT)  is defined as 

 � � 1

11 12 22 21: ( , )lP N C N N C I N C N
�

  � �� � �� . (22) 

 

 

 
Figure 3: Block diagram of the closed-loop system with weighting functions 

  



                                      
 

 
Figure 4: Reorganized block diagram 

 

 
Figure 5: Simplified block diagram for µ-synthesis 

 
In (22), N is partitioned as follows: 
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, (23) 
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 > @21 YN W I � , (25) 

 1
22 0N z� �< . (26) 

 
The performance specification is expressed by a fictitious 

uncertainty matrix p p
P

u' �^ . This matrix connects the output 
z of the weighting function 1W  to the input dy .  

The matrix P'  is such that 

 � � 1P PV'  ' �  (27) 
at all frequencies. The matrix P'  is a full matrix of complex 
values. Both uncertainty matrices, '  and P' , are combined 
into one [19, 22]: 

 
0

0 P

'ª º
 « »'¬ ¼

ǻ . (28) 

 
Note that ǻ  satisfies 

 � � � � � �� �max , 1PV V V  ' ' �ǻ ǻ  (29) 
at all frequencies. 

Since the norm of ǻ  is smaller than 1, by the small gain 
theorem, the combination of the system expressed by matrix N 
and the controller C�  must give a matrix P having a gain (or 
norm) smaller than 1 at all frequencies. 

The µ-synthesis is a way to obtain the TILC controller 
1C z C� �  for the system. The algorithm consists of finding a 

controller that minimizes the maximum value of µ. If the 
maximum value of µ is less than 1, controller C ensures a 
system with robust performance. If not, the closed-loop system 
violates at least one of the specifications, robust performance or 
robust stability. 

To use the available software tools to perform ȝ-synthesis, 
the system must be converted from discrete to continuous time 
using the Tustin approach [8]. The controller found must then 
be converted back to discrete time. For this design, we use the 
“dkitgui” function in Matlab®. 

IV. SIMULATION RESULTS 
The simulation is performed with a nonlinear model of the 

AAA thermoforming oven (this model is explained in [4, 6, 8]). 
The oven has 12 heater banks and 14 infrared temperature 
sensors (IRT) to measure the temperature at the surface of the 
plastic sheet. Figure 6 shows the location of the IRT sensors 
and the heaters in the oven. The TILC algorithm created with 
the ȝ-synthesis approach is designed with a linearized model of 
the thermoforming oven with the default parameters shown in 
Table 1. The weighting function parameters of 1W  are 1 2M  , 

1 0.01H  , and 1 0.5Z  . Those parameters will ensure a fast 
and monotonic convergence of the closed-loop system. 

Heater
Heater Bank

Infrared sensor

 
Figure 6: Heater and sensor location (bottom heaters and sensors at the same 

location, with subscript B) 

TABLE I.  PARAMETERS USED IN THE SIMULATIONS 

Parameter Units Default Modified  
Density kg/m3 950 1045 

Specific heat J/(kg·K) 1838 2021.8 
Effective emissivity  0.45 0.495 

Absortivity  300 350 
Heat conduction W/(m·K) 0.4 0.3 

Convection factor W/(m2·K) 6 10 
 

All simulations are performed on the nonlinear system, 
some with the default parameters and some with the modified 
parameters, to test the robustness of the closed-loop system. 



                                      
 

A. Two heater/two sensor configuration 
The first three simulations are performed with a two-heater, 

two-sensor configuration. All heaters above the plastic sheet 
are grouped together, as are all the bottom heaters. The desired 
terminal values are 150°C at IRT1 and 151°C at IRB1. From the 
linearized model, the ȝ-synthesis-designed TILC algorithm is 
(with 0.910P  ) 

 � � 1 1.8044 0.7342
( ) 0.995

0.7343 1.9061
C z z � �ª º

 � « »�¬ ¼
. (30) 

 
Using this TILC algorithm on the nonlinear model of the 

thermoforming machine, we obtain the maximum surface 
temperature error (MSTE) plot in Figure 7 (Ƒ). The 
temperature error falls below 5°C in 3 cycles. 
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Figure 7: Surface temperature error, sim. #1 and #2 

  

The initial heater temperature setpoints were set to 250°C in 
all simulations. Although a thermoforming oven operator might 
consider this initial adjustment to be unwise, that setting may 
make it possible to demonstrate the ability of the TILC to 
converge rapidly to the desired surface temperature profile.    

With a non-linear model having the modified parameters, 
convergence is slower, since the maximum temperature error 
falls below 5°C in 6 cycles (ż in Figure 7). The energy transfer 
from the heater to the plastic sheet in this case seems to be less 
efficient, which is why the heater temperature setpoints are 
higher in simulation 2. 

In the third simulation, the � � 10.995z ��  term in (30) is 

replaced by � � 11z �� . Then, the maximum surface temperature 
error converges to 0 and no steady-state error remains. 
However, the heater temperature setpoints are about 10°C 
higher. 

B. Six heater/sir sensor configuration 
For the fourth simulation, we consider an oven 

configuration with six heaters and six sensors. The TILC 
algorithm obtained gives the results shown in Figure 8. The 
convergence is slower and the maximum temperature error 
falls below 5°C in 8 cycles. For this algorithm, we obtained 

0.954P  , with the weighting function parameter 1 0.125Z  . 

C. Ten heater/ten sensor configuration 
Finally, the last four simulations were performed with a 10 

heater/10 sensor configuration. Using 1 0.125Z   for the TILC 
design, the resulting TILC algorithm has a maximal µ equal to 
0.997. The denominator of the controller obtained is 
� �0.9988z � . The fifth simulation was performed with the 
system having the default parameters. Figure 9 shows a 
convergence to a value under 5°C in 7 cycles (Ƒ). A steady-
state error remains. 
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Figure 8: Surface temperature error, sim. #4 
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Figure 9: Surface temperature error, sim. #5 & #6 

  

The measured surface temperatures have a monotonic 
convergence all measured temperatures.  

For the sixth simulation, the denominator of the controller 
was changed to � �1z � . With this new TILC, convergence is a 
little bit faster (ż in Figure 9) and the MSTE falls to 0.  

The next simulation was performed with a system subject to 
a measurement noise having a standard deviation of 1°C, an 
ambient temperature drift of 1°C per cycle and slow sinusoidal 
variation of initial temperature. With the system having the 
default parameters, the MTSE converges below 5°C at the 8th 
cycle (Figure 10). Due to noise, drift, and initial temperature 
variation, the error does not fall to 0, even if the denominator is 
� �1z � . From the 8th cycle, the MTSE remains under 5°C. 

For the last simulation, with the modified parameters, the 
MTSE falls below 5°C at the 11th cycle. The effect of noise, 



                                      
 

drift, and initial temperature variation is apparent on the heater 
temperature setpoints in Figure 11. The TILC algorithm is able 
to sustain slow variations of the oven temperature and variation 
of the initial temperature of the plastic sheet. 
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Figure 10: Surface temperature error, sim. #7 
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Figure 11: Heater temperature setpoints, sim. #8 

  

V. CONCLUSION 
The TILC algorithm design with µ-synthesis is able to 

produce a robust controller, as shown by the simulations. Now, 
there is a compromise to be made between robustness and 
performance. Each cycle with a maximum terminal surface 
temperature error over 10°C can lead to a wasted plastic sheet 
(for HDPE).  

Then, the speed of convergence becomes an important 
specification defined by tuning the parameter 1Z  of the 
weighting function 1W . 

Ideally, convergence must be monotonic, since an excessive 
overshoot on the heater temperature setpoints can lead to an 
overheated plastic sheet. The plastic can become too fluid and 
fall onto the bottom heaters, damaging the thermoforming 
oven. Therefore, the system must be robust in the face of slow 
parametric and environmental changes. µ-synthesis makes it 
possible to tune this compromise, so that the thermoforming 

oven will behave relatively well during the reheat phase, even 
with an unwise choice of initial heater temperature setpoints. 
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Gain-scheduled H1 control of a robotic manipulator
with nonlinear joint friction

Seyed Mahdi Hashemi and Herbert Werner

Abstract—This paper presents the LPV modelling and con-
trol of a robotic manipulator with a nonlinear joint friction
model. A nonlinear dynamic model of the manipulator includ-
ing viscous and Coulomb friction terms is obtained and the
signum function in the friction model is approximated by a
hyperbolic function in order to smooth such hard nonlinearity.
A quasi-LPV model is derived and since it has a large number
of affine scheduling parameters and a large overbounding,
parameter set mapping is used to reduce conservatism and
complexity in controller design by finding tighter parameter
regions with fewer scheduling parameters. Then, a polytopic
LPV gain-scheduled controller is synthesized and implemented
experimentally on an industrial robot for a trajectory tracking
task. The experimental results illustrate that the designed LPV
controller outperforms a similar LPV controller based on a
linear friction model, a model-based inverse dynamics and a
decentralized PD controller in terms of tracking performance.

I. INTRODUCTION

Modelling and control of systems in which friction occurs
has been an active field of research during the last decades
[1], [2] and [3]. A number of models have been developed for
sliding and pre-sliding friction regimes [4] [5] and [6] which
can capture various aspects of this phenomena. However,
nonlinearities in most of them is a major challenge to design
high performance controllers.
Linear parameter-varying (LPV) gain-scheduling tech-

niques have evolved into a promising and effective frame-
work for modern control applications. Their attractiveness
lies in the extension of well-known linear optimal H1
control methods and the use of Linear Matrix Inequalities
(LMIs), to the solution of nonlinear control problems, see e.g.
[7], [8] and [9]. Many nonlinear systems can be converted
into a quasi-LPV form, where the scheduling parameters may
include system inputs, states, outputs and external signals.
However, the number of reported successful implementation
of LPV controllers on practical applications is still limited.
Two major limiting problems in this regard are conservatism,
among other things due to overbounding, and the large
number of scheduling parameters [10].
Obviously, simply neglecting some dynamic terms of

the plant model or heuristically freezing some scheduling
parameters will in general not be an appropriate solution.
Parameter set mapping based on principle component anal-
ysis (PCA) proposed in [10] helps to obtain LPV models
with tighter parameter sets that have less overbounding.
In addition, correlation between scheduling parameters is

S. M. Hashemi and H. Werner are with the Institute of Control Systems,
Hamburg University of Technology, Eissendorfer Str. 40, 21073 Hamburg,
Germany, {seyed.hashemi, h.werner}@tu-harburg.de

detected and insignificant directions in the parameter space
can be neglected without loosing much information about
the plant.
Using LPV gain-scheduling techniques, high performance

controllers can be designed and implemented for nonlinear
robotic manipulators. In [11], LPV modelling and control
of a simple drive system with a nonlinear friction model is
reported, where the scheduling parameters include some dis-
continuities which can be a challenge in many applications.
In [12], [13] and [14], LPV gain-scheduling controllers were
designed for robot models ignoring friction. In [15] and [16],
LPV modelling and control of a robotic manipulator were
reported, where a linear friction model was adopted.
This paper presents the application of LPV gain-

scheduling techniques to modelling and identification of a
two-degrees-of-freedom (2-DOF) robotic manipulator with
a nonlinear friction model. Dynamic model of the robot
including Coulomb and viscous friction terms is identified to
derive a quasi-LPV model. Although there is no upper bound
on the rate of change for scheduling parameters in polytopic
LPV controller synthesis with a fixed Lyapunov function
[7], existence of sudden changes with an infinite slope
due to the Coulomb friction term in scheduling parameters
can degrade the experimental results. Thus, a continuous
hyperbolic function is used to smooth such hard nonlinearity.
A quasi-LPV model in polytopic form is constructed such

that the state matrices depend on the scheduling parameters
in an affine manner. Such a model has a large number
of scheduling parameters, which makes the LPV controller
synthesis conservative and computationally expensive. Thus,
parameter set mapping is applied and less significant com-
ponents are neglected and the accuracy of the approximated
model is assessed. Afterwards, the model is discretized and
a discrete-time polytopic LPV controller with a fixed Lya-
punov function is designed and implemented on the robot for
a trajectory tracking task. The experimental results illustrate
that the designed LPV controller outperforms a similar LPV
controller based on a linear viscous friction model, a model-
based inverse dynamics and a decentralized PD controller in
terms of tracking performance.
The contribution of this paper is that an smoothed nonlin-

ear friction model is included in an LPV framework, which
leads to an improvement in modelling accuracy and control
performance. In addition, no ad-hoc simplification in the
manipulator dynamics is made, but a systematic approach is
used to derive a suitable LPV model for controller synthesis.
This paper is organized as follows. Dynamic and friction

modelling of the robot is presented in section II. In Section



III, LPV modelling and application of parameter set mapping
for parameter reduction is discussed. The LPV controller
synthesis is described in Section IV. Controller implemen-
tation and experimental results are given in Section V. The
last section gives the conclusions.

II. DYNAMIC MODEL
The CRS A465 robotic manipulator shown in Fig. 1 has

six rotational DOFs. In this paper, only the second and
third joints of this robot, referred to as joint 1 and joint 2
respectively, are modeled and the other links are considered
as parts of them, and are fixed during the experiments
as shown in Fig. 2. These two links which represent the
shoulder and elbow respectively, are the most challenging to
control, since they are affected by gravity as well as inertial,
centripetal, Coriolis and friction torques.

Fig. 1. The CRS A465 robot
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Fig. 2. Side view of the 2-DOF robot model

Using the Euler-Lagrange formulation, a rigid-body dy-
namic model of the 2-DOF manipulator is obtained as

⌧ (t) = D(q(t))q̈(t) + c(q(t), q̇(t)) + g(q(t)) + ⌧ f (q̇(t)),
(1)

where ⌧ is the vector of joint torques (control inputs), and
q, q̇ and q̈ are the vectors of joint positions, velocities
and accelerations respectively, all belonging to R2. D is the
inertia matrix and c, g and ⌧ f are the vectors of Coriolis-
centrifugal, gravity and joint friction torques.
It is reported in [17] and [18] that a friction model

containing Coulomb and viscous terms is appropriate for a
wide range of robotic applications. This model is adopted
here since Coulomb and viscous terms have a higher effect
in comparison with the Stribeck term in this plant [19]

⌧fi(t) = fcisgn(q̇i(t)) + fvi q̇i(t), i = 1, 2, (2)

where fci and fvi are the Coulomb and viscous friction
coefficients and sgn represents the signum function. Since the
plant is not equipped with high resolution proximity sensors,
friction models including the presliding regime can not be
selected.
If joint positions are measured from a fixed coordinate

axis shown in Fig. 2, some undesirable nonlinear terms in
the dynamic equations will disappear, and developing an
LPV model which depends affinely on scheduling parameters
will become easier. Such a measurement is not possible in
practice, but one can introduce new joint position variables
q̃i with a fixed coordinate reference

q̃
1

= q
1

, q̃
2

= q
1

+ q
2

. (3)

Using (3), the dynamic model (1) is rewritten as

⌧ (t) = D̃(q̃(t))¨̃q(t) + c̃(q̃(t), ˙̃q(t)) + g̃(q̃(t)) + ⌧̃ f ( ˙̃q(t)),
(4)
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and the coefficients bi, i = 1 . . . 11 are linear combinations
of dynamic and kinematic parameters, given in Appendix A.
Some scheduling parameters of the LPV model will in-

clude the signum function in (2), that may degrade the
performance in experiments. Thus, it is approximated by a
smooth hyperbolic tangent function shown in Fig. 3

sgn(q̇i(t)) ⇡ tanh(�q̇i(t)), i = 1, 2, (6)

where � = 20 is a smoothing coefficient that is chosen
to make the scheduling trajectories smooth enough while
providing suitable model accuracy. The unknown dynamic
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Fig. 3. Signum (dashed) and hyperbolic tangent functions(solid)

and friction parameters bis are estimated using the linear
least squares method, see [15] for more details.
The estimated parameters are given in Table I. To validate

the accuracy of the estimated model, measured and predicted
torques by the model for a cross validation trajectory are
compared and plotted in Fig. 4, which illustrates a high



TABLE I
ESTIMATED INERTIAL AND FRICTION PARAMETERS

(WITH NON-SI UNITS)

b1 0.0877 b5 0.0407 b9 0.5860
b2 0.0241 b6 0.4524 b10 0.1603
b3 -0.0075 b7 -0.00957 b11 0.7060
b4 0.0154 b8 0.0675

accuracy. Having an accurate nonlinear model is of great
importance in deriving a useful quasi-LPV model.
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Fig. 4. Measured (dashed) and predicted (solid) torques for cross validation
trajectory with non-SI units

III. LPV MODEL
A. Derivation of a Quasi-LPV Model
Consider an LPV model in the state-space form

ẋ(t) = AP (✓(t))x(t) + BP (✓(t))u(t)

y(t) = CP (✓(t))x(t) + DP (✓(t))u(t)
, (7)

where x 2 Rn, u 2 Rnu and y 2 Rny . The mappings
AP (.), BP (.), CP (.) and DP (.) are continuous functions of
time-varying scheduling parameter vector ✓(t) 2 Rl. In this
problem, n = 4, nu = 2, ny = 2. This model can also be
represented by a linear input-output map

P (✓) =


AP (✓) BP (✓)
CP (✓) DP (✓)

�
. (8)

The parameter vector ✓(t) depends on measurable signals
⇢(t) 2 Rs referred to as scheduling signals, according to

✓(t) = f(⇢(t)), (9)

where f : Rs ! Rl is a continuous mapping.
Consider the compact set P✓ ⇢ Rl : ✓ 2 P✓, 8t > 0.

Here, it is assumed to be a polytope defined by the convex
hull

P✓ := Co{✓v1 , ✓v2 , . . . , ✓vL}, (10)

where L = 2l is the number of vertices.
The LPV system is called parameter-affine, if the state

space model depends affinely on the parameters

P (✓) =
lX

i=0

✓iPi = P
0

+ ✓
1

P
1

+ · · · + ✓lPl. (11)

Since ✓ can be expressed as a convex combination of L
vertices ✓vi , if (11) holds, it follows that the system can be
represented by a linear combination of LTI models at the
vertices; this is called a polytopic LPV system

P (✓) 2 Co{P (✓v1), P (✓v2), . . . , P (✓vL)} =
LX

i=1

↵iP (✓vi),

(12)
where

PL
i=1

↵i = 1, and ↵i � 0 are the convex coordinates.
To obtain the quasi-LPV model of the robot, ⇢(t) is selected
as the state vector of the system, which consists of the
transformed joint positions and velocities

⇢(t) = x(t) =
⇥
q̃
1

q̃
2

˙̃q
1

˙̃q
2

⇤>
. (13)

The state matrices of the quasi-LPV model of the robot
are obtained from (4) and (5) as
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CP =
⇥
I O

⇤
, DP = O,

(14)

where I and O denote identity and zero matrices of appro-
priate dimensions. In this problem l = 10 and the affine
scheduling parameters ✓ are given in the Appendix B. The
representation of the new joint position variables q̃i in (3)
facilitates the affine generation in (14). Affine dependence
of the state matrices in ✓ is different from [15] to avoid
increasing the number of scheduling parameters due to the
Coulomb friction terms.
Since L = 1024, this quasi-LPV model would require a

number of 2049 LMIs [7] to be simultaneously solved for
a polytopic LPV controller synthesis, which is obviously a
numerically challenging problem. Moreover, an implemented
controller would have on-line dependence on 1024 vertex
controllers. For practical reasons, the number of vertices
should therefore be decreased.

B. Parameter Set Mapping
Parameter set mapping is a systematic procedure to find

tighter regions in the space of the scheduling parameters.
Moreover, approximations of LPV models can be obtained
which neglect insignificant directions in the mapped parame-
ter space without ad-hoc model simplifications and parameter
freezing. Using parameter set mapping allows a trade-off
between the number of parameters and model accuracy in
a straightforward way. Altogether, it will lead to a less
conservative controller synthesis [10], [15]. This method
is used in this paper to reduce the computation cost and
conservatism of the controller. The objective is to find a
mapping g : Rs ! Rm such that m 6 l, and

�(t) = g(⇢(t)), (15)



yields a model

ẋ(t) = ÂP (�(t))x(t) + B̂P (�(t))u(t)

y(t) = ĈP (�(t))x(t) + D̂P (�(t))u(t)
, (16)

that provides a satisfactory approximation of (7). Finding
a suitable integer m is an important issue. The first step
is to generate typical trajectories of the scheduling signals
such that all expected operating regions of the plant are
covered. A multi-sine trajectory covering the whole operation
range of the robot is used for this purpose with N = 70000
data points. Then, corresponding scheduling parameters are
computed to generate the data matrix

⇥ =
⇥
✓(0) ✓(T ) . . . ✓((N � 1)T )

⇤ 2 R
l⇥N , (17)

where T = 0.001. To put the same weight on each ✓i, all
rows of the data matrix are normalized such that each has
zero mean and a unit standard deviation

⇥n
i = Ni(⇥i), ⇥i = N �1

i (⇥n
i ). (18)

Now, PCA [20] is applied to the normalized data. Intro-
duce the singular value decomposition of ⇥n

⇥n = [Us Un]


⌃s 0 0
0 ⌃n 0

� 
V >

s

V >
n

�
, (19)

where ⌃s = diag(�
1

· · · �m), ⌃n = diag(�m+1

· · · �l),
Us 2 Rl⇥m, Vs 2 RN⇥m, Un 2 Rl⇥(l�m) and Vn 2
RN⇥(N�m), and assume that Us, ⌃s and Vs correspond to
the m significant singular values, such that

⇥̂n = Us⌃sV
>
s ⇡ ⇥n, (20)

is a reasonable approximation of the given data. The fraction
of total variation vm is calculated to evaluate the accuracy
of the approximated model as

vm =

Pm
i=1

�2

iPl
i=1

�2

i

, (21)

where �i denote the singular values in (19). By choosing
the number m of scheduling parameters, one can trade the
accuracy of the model against complexity. The matrix Us

represents a basis of the significant column space of the data
matrix ⇥n, and can be used to obtain a reduced mapping g
in (15) by computing

�(t) = g(⇢(t)) = U>
s N (f(⇢(t))). (22)

The approximated model in (16) is related to (7) by

P (�) =


ÂP (�) B̂P (�)

ĈP (�) D̂P (�)

�
=

"
AP (✓̂) BP (✓̂)

CP (✓̂) DP (✓̂)

#
,

(23)
✓̂(t) = N �1(Us�(t)) = N �1(UsU

>
s N (✓(t))), (24)

where N �1 denotes the row-wise re-scaling. The approxi-
mated LPV model can be produced at any time by (24).
The above procedure is applied to the derived LPV model

in (7). It turns out that about 57% of the information is
contributed by the first principle component. Around 96%
and 98% of the information is selected by choosing m = 2
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Fig. 5. Scheduling parameter ✓i (dashed) and approximation ✓̂i (solid)

and m = 3, respectively. In this paper m = 2 is chosen
since it gives only 4 vertices and 9 LMIs to be solved
for LPV controller synthesis. It is also obvious that the
mapped parameter space with two dimensions has much
less overbounding than the original one, leading to a less
conservative controller. Some typical parameter trajectories
for the accurate and approximated model are compared in
Fig. 5, which illustrates a satisfactory accuracy for controller
design purpose. Based on the derived quasi-LPV model, a
polytopic LPV controller is designed.

IV. CONTROLLER SYNTHESIS

Polytopic gain-scheduled controller design with a fixed
Lyapunov function [7] has been proven to be an effective and
practical tool for LPV synthesis due to the simplicity of the
synthesis and implementation and low online computational
effort. The reduced quasi-LPV model in the previous section
is used for controller synthesis. The manipulator is controlled
by an LPV controller that is scheduled by the reduced
parameter vector. The design objective considered here is
to stabilize the plant in the whole operating range with a
high tracking capability, disturbance and measurement noise
rejection and taking in consideration the actuator constraints.
An H1 mixed-sensitivity loop-shaping approach is adopted
to achieve the objectives. After discretizing the LPV model,
a 12th order discrete-time polytopic gain-scheduled H1
controller is synthesized similar to the design in [15]. The
design procedure is not explained here again due to space
limitation.

V. EXPERIMENTAL RESULTS

This section describes the experimental setup and the
implementation of the designed LPV controller, and com-
parison of results with a similar LPV controller based on a
linear friction model and two classical controllers. A low-
complexity controller structure and reduced conservatism
lead to an experimental implementation of the designed con-
troller with a high performance. A low online computational
load required for controller implementation allows to chose
a high sampling frequency.



A. Experimental Setup
The CRS A465 industrial robotic manipulator has six

rotational joints actuated by DC motors. The angular dis-
placements of the motor shafts are measured by incremental
encoders with a resolution of 1.5 ⇥ 10�5 rad. The robot
has a repeatability of 0.05 mm with 2 Kg payload, and its
harmonic drive transmission provides a smooth motion with
zero backlash for all joints.
The system is supplied by the manufacturer with a C500C

controller that controls the robot with a decentralized PD
controller. It also connects both encoders and motor ampli-
fiers to a PC-based open architecture control system via a
Q8 input/output board of Quanser Consulting. Online data
acquisition and control in MATLAB/SIMULINK is possible
using a WinCon real-time Windows application [21]. The
sampling frequency during the identification experiment and
controller implementation is 1 kHz. Higher sampling rate is
not possible due to hardware limitations.

B. Controller Implementation
The designed LPV controller which is referred to as

LPV-CV is implemented on the two assigned joints of
the robot, to track a specific trajectory which is different
from identification trajectories. Joint velocities are obtained
online by numerical differentiation of the joint positions
after suitable low-pass filtering, since they are needed to
compute the scheduling signals. For comparison, a similar
LPV controller based on a linear viscous friction model
[15] referred to as LPV-V, an inverse dynamics feedforward
controller based on an accurate identified model in [19] and
a decentralized PD controller proposed by the manufacturer
are also implemented.
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Fig. 6. Cartesian command trajectory (solid), LPV-CV (dashed-dotted) and
PD (dashed) controller outputs

The trajectory tracking results in Cartesian space are
plotted in Fig. 6 only for LPV-CV and PD controllers for a
convenient comparison (Other plots are indistinguishable in
print). The joint space trajectories together with the reference
inputs for LPV-CV and PD controllers are plotted in Fig. 7,
where the figures are zoomed in to make the deviations more
visible. The root mean square (RMS) of tracking error for
the whole trajectory by all controllers are given in Table II.
The experimental results in both Cartesian and joint spaces

illustrate the high accuracy of the designed LPV-CV con-
troller. It has a better tracking performance compared with

TABLE II
RMS OF TRACKING ERROR FOR ALL IMPLEMENTED CONTROLLERS IN

CARTESIAN SPACE (METER) AND JOINT SPACE (DEGREE)

Controllers Cartesian Space Joint Space
LPV-CV 3.42 10�4 0.0481
LPV-V 3.66 10�4 0.0516

Inverse Dynamics 3.71 10�4 0.0522
PD 3.0 10�3 0.4084

the LPV-V controller. Moreover, the LPV-CV and LPV-
V controller obviously outperform the PD controller by a
factor of 8 in terms of tracking performance and achieve a
slightly better accuracy than a model-based inverse dynamics
controller. Since the inverse dynamics control law includes
the whole dynamic terms of the robot, it is more complex
especially for higher DOFs.
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Fig. 7. Joint command trajectory (solid), LPV-CV (dashed-dotted) and PD
(dashed) controller outputs for both joints (zoomed-in)

The tracking experiment is done for 13 seconds, including
two periods of the Cartesian trajectory tracking plus initial
and final smoothing trajectories. The control signal computed
by the LPV controller during the tracking experiment is far
below the saturation limits but not shown here due to space
limitation.

VI. CONCLUSIONS

This paper presents a realistic LPV modelling and control
of a 2-DOF robotic manipulator. All rigid-body dynamic
and important friction terms of the manipulator have been
taken into account in the modelling without any ad-hoc
model simplification. The adopted friction model includes
the Coulomb and viscous terms , where the hard nonlinearity
in the Coulomb term has been approximated by a hyperbolic
tangent function. Since the quasi-LPV system has a large
number of scheduling parameters and a high overbounding,
the systematic procedure of PCA-based parameter set map-
ping has been used to find tighter scheduling parameter set
with fewer dimensions, which results in a less conservative
controller with lower online computation load. The parameter
set dimension has been reduced from 10 to 2 by this
mapping, reducing the number of LMIs to be solved for
controller synthesis from 2049 to 9.
A polytopic LPV gain-scheduled controller has been syn-

thesized based on the approximated LPV model and is



implemented successfully on an industrial robot. It is illus-
trated that the designed LPV controller has a better tracking
performance compared with a similar LPV controller based
on a linear viscous friction model. Moreover, it obviously
outperform a PD controller and achieves a slightly better ac-
curacy than a model-based inverse dynamics controller. The
advantage of the LPV controller over the inverse dynamics
one is that it is less complex and various design objectives
can be adopted according to the performance and robustness
requirements of the application.
The computed control signal by the LPV controller is

far below the actuator saturation limits, and the high mea-
surement noise of encoders are rejected since both facts are
considered in the mixed-sensitivity loop-shaping design.
If the setup is equipped with high resolution position

sensors, dynamic friction models including presliding regime
can also be used in LPV modelling, following the same
procedure proposed in this paper.

APPENDIX
A. Grouped Dynamic and Kinematic Parameters
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where Izzn is the moment of inertia of nth link, mn and
an are the mass and length of the links, Mxn and Myn

are the first moment of the nth link (product of mass and
coordinates of gravity center), and Imn is the motor moment
of inertia. The axes are named according to the modified DH
convention.
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Abstract— This paper presents an observer based scheme for 
adapting the power control of wind turbines to the actual 
power coefficients of the blades mounted on the wind turbine. 
Normally it is assumed that the power coefficients for one 
turbine in a production series are valid for all the turbines in 
that production series. An unknown input observer is used to 
estimate the actual table of power coefficients depending on 
blade pitch angle and tip speed ratio. If the actual table is 
much different from the initial assumed table, the actual table 
is found by iterations. A simulation is used to illustrate the 
schemes potential to estimate the power coefficients and to see 
the gained potential of the use of this scheme compared with a 
non-corrected situation. 

Keywords- Wind turbines; unknown input observers; adaptive 
systems; aerodynamics; power control 

I.  INTRODUCTION 
In the recent years the installed energy generation capacity 

of wind turbines has dramatically increased. In the same period 
the sizes of the individual wind turbines has increased from 
turbines in the kilo watt sizes to multiple mega watts. 
Consequently optimization of the power generated by the 
turbine is as well of increasingly interest.   

A wind turbine consists of a tower on which a nacelle is 
mounted; in the nacelle the generator is placed. The generator 
is driven by a main shaft at which the turbine’s blades are 
fixed. In the example used in this paper a turbine with 3 pitch-
able blades are used, meaning that their angle towards the wind 
can be controlled. A gearbox, enabling the possibility of 
different rotational speeds, divides the main shaft. The 
increased size of the wind turbines have also increased the 
interest of turbines with variable speed and active pitch of the 
blades, which are used to keep the turbine at rated power when 
the rated wind speed is exceeded. Until the rated power is 
achieved the power optimum is obtained by requiring the 
optimal reference torque at the generator, see [1] 

Some research has been conducted on the subject of 
optimization of the generated power of the wind turbine. A 
couple of examples can be found in [1] and [2]. 

The optimal torque and pitch references are obtained by a 
mapping between power generation ratio, pitch angle and the 
tip speed ratio which is the ratio between wind speed and the 
speed of the blade tip, (the rotation speed of the rotor can be 
controlled by the torque reference). This mapping is denoted 
the -surface and could be obtained by: finite element 
simulations, wind tunnel experiments etc., in practice it is often 
represented by a table, which in the following is denoted as the 

-table. 

A problem in achieving optimal power and speed control of 
a wind turbine is that the -surface is not well known. Initially 
these values are most often not actually measured but 
computed, and if measured, only a few blades in an entire 
production series and measurements are rarely performed on 
the actual turbine. Some work has been published regarding 
adapting the power controller to the specific -surface. In [1] 
a scheme is proposed which uses a Newton like scheme to find 
the power optimum online. A non-linear controller is proposed 
in [2], which assumes that the wind speed is well known. [3] 
presents an adaptive scheme which uses a least square method 
to online identify the system parameters; the controller is 
designed using a minimum variance controller, which is 
impractical. [4] presents a fuzzy control to adapt the power 
controller.  

In [5] another part of the solution dealing with this problem 
is presented. It presents a method to estimate the -value and 
the wind speed online based on standard measurements from 
the wind turbine. The estimated -values can subsequently 
after approximately 1 month be used to update of the -
surface. Based on the updated -surface a new power 
optimum can be found. This means that the power control is 
adapted using an adaptive -surface. A large advantage of this 
scheme is that the existing control structure is not influenced by 
this scheme, it do only provide updated power references when 
present. An unknown input observer is used to estimate these 
variables, for details on the general scheme see [6], in this 



     

context it is changed to estimate the unknown inputs instead of 
being robust towards them, another example can be found in 
[7]. 

Based on these online estimations of the -surface a 
simple scheme was proposed to adapt the optimal reference 
point to the power controller of wind turbine, in respect with 
changes in the -surface due to change with time e.g. due to 
debris build-up on the blades of the turbine, see [8]. In this 
paper the proposed scheme will both be extended and also bee 
changed to handle the estimation of the real -surface and its 
optimum point. This estimation is designed to be performed 
during the commission of the wind turbines. 

The model of the wind turbine is subsequently introduced, 
which leads to an estimator design using the optimal unknown 
input observer scheme. Based on the estimates of the -values 
a -table can be computed, which again can be used to find 
the optimum of the -table. This optimum is used as reference 
for the power controller of the wind turbine. 

 

In Section II a wind turbine model is described. The 
proposed scheme is presented in Section III and Section IV. In 
Section V the end the simulation is used to show the potential 
gain of using this proposed adaptive scheme to adapt the actual 
optimum of the -table, by comparing a wind turbine with 
and without an adapted optimum reference value. A conclusion 
is drawn in Section VI. 

II. WIND TURBINE MODEL 
In a typical variable speed wind turbine the generated 

power is controlled by two modes power and speed control. In 
power control mode the generator torque is controlled to 
maximize the generated power, by obtaining a tip speed ratio 
which results in the optimum on the -surface. The produced 
power of these two control modes is mapped as a function of 
the wind speed in Fig.1. In speed control mode the blades are 
pitched such that the rated power is obtained and the generator 
torque chosen such that the rotational speed of the rotor is 
following the nominal value. In order to obtain the optimum 
power in power control mode the -surface is highly 
important, e.g. the turbine will not be controlled optimally if 
the optimum on -surface is moved from the assumed. 

Inspecting the problem deeper, the torque balance model of 
the wind turbine is considered. 

,   (1) 

and 

,  (2) 

where  is the rotational velocity of the rotor,  is 
the reference torque to the generator transferred to the low 
speed side, and due to the fast power electronics in the 
converter and the generator it is assumed that this reference is 
followed,  is the pitch angle,  is the tip speed ratio,  

is the wind speed,  is the moment of inertia of blades shaft 
etc,  is the density of the air,  is the area covered by the 
blades in the rotation.  and  are measurable. The 
wind denoted  is measured as well, but is very non-reliable, 
since it should be the average over the entire swept area, and 
not a point measurement, in addition the wind is measured with 
an anemometer mounted on the wind turbine nacelle behind the 
blades. The aerodynamics of the blades will consequently 
influence the wind speed measurement by the anemometer. 

If this model is linearized a small signal model can be 
obtained, the variations between actual power coefficients and 
wind speed compared to measured and computed once are 
denoted as  and . 

 

,(3) 
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Fig. 1 Illustration of the produced power until the rated power is reached at 

a wind speed of 15 m/s, the power is optimized and above this speed it is 
limited by blade pitching.  

In this context the power coefficient and the wind speed is 
assumed to be unknown variables, which varies around a well-
known working point, as modelled by the small signal values 
of these. Changes in the - table would be very slowly, 
meaning that the frequency content of  is in the region 
close to 0 rad/s. Compared to this the changes in the wind 
speed will be placed in a region with much higher frequency 
content, meaning that frequency separation can be assumed.  

The anemometer, introduces a risk of a DC-error on the 
measurement. This is much more critical than high 
uncertainties at higher frequencies since these can be decoupled 
by the frequency information. If a DC calibration of the 
anemometer is not performed, an offset will be introduced on 



     

the -table estimates. It will be a constant offset on the entire 
-table, and consequently not resulting in a false optimal -

value, but the absolute value cannot be determined. 

III.  OBSERVER DESIGN 
In order to design the observer model of the wind turbine, 

the model should be extended similar to the method used in [7]. 

The existence of the unknown inputs in the system, points 
at the usage of a specific scheme to estimate the - values, 
this is the optimal unknown input observer. In order to use this 
unknown input observer  is used as a state; it can be 
modeled as low pass filter of first order. However, used in the 
commissioning process of the wind turbine this means that the 

-tables should be recomputed a number of times in order to 
iterate to the correct table. In order to use this approach the 
wind speed needs to be estimated as well, and it can be 
assumed to change much faster than the -table, meaning it 
can be represented by a band pass filter, the difference between 
the measured and actual wind speed was previously defined as 

. In principle these filters represents the uncertainties in 
the -table and the wind speed. In practice the difference in 
the relevant frequencies is relatively large. In terms of time 
durations of the relevant content are days for the -table and 
in the milliseconds range for the wind speed variations.  

The linear wind turbine model extended with the internal 
models of  and  can be seen in     

  (4) 

where 

 

 is a state vector representing the internal model of 
,  is the state vector representing the internal model 

of ,  is a signal representing the unknown input. The 
internal model of the  is in state space form 

, and the internal model of  is in 
state space form , the merged system 
matrices are defined by: 

, (5) 

     (6) 

  (7) 

    (8) 

The first element in  is non-zero even though that  is 
not assumed to be driven by the uncertain input. The reason is 
that this small but non-zero elements in the matrix introduce 
some robustness towards model uncertainties, which could be 
due to linearization of the nonlinear model before it is used to 
design the observer. 

The system is subsequently descretized with a sample 
frequency at 10 Hz. Resulting in a state space system defined 
as in (9), where stochastic disturbances and measurement 
noises are added. 

(9) 

in addition to the filters defining the internal models, the 
covariance matrices  and  introduces design flexibility into 
the system as a couple of design parameters. The filters 
representing  and  have to be designed, the point is 
that , , and  are found such that it is a low pass 
filter with a time constant of days, and ,  and  such that 
they form a high pass filter/ band pass filter such that its pass 
region is placed in the much higher region in terms of 
frequency content with a time constant in the milliseconds. 

Due to the non-linearity of the model, especially the cubic 
dependency on the wind speed, a number of operating points 
are used in practice such that an observer is designed for each, 
and bump-less transfer is used to switch between them. 
However, for simplicity this is left out in this paper, and only a 
single observer is consequently designed to one point of 
operation. However, the introduction of these multiple 
observers would increase the performance of the estimated; 
but, as one can see in the simulation section, the scheme with 
only one observer performs pretty well. 

A. Unknown Input Observer 
The unknown input observer is given by a state space 

representation seen in (10). 

(10) 

 

In where the matrices are found using an algorithm 
described in [6]. 

B. Online Power Coefficients Table Computation 
The estimated -values are stored in an array depending 

on the pitch angle and tip speed ratio of the blades. The values 
are stored as the sum of the  and the assumed -values 
based on the aerodynamic model. Each measurement is stored 
in the element with the closest geometrical origin; which is 
illustrated in Fig. 2, where the most recent measurement is 
marked with a black dot, and the nearest entry is (k-1,m). 
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Fig. 2 Illustration of the location of the closets table entry. The 

measurement is marked with the black dot, and the nearest table entry (k-1,m).  

In order to limit the needed memory for storing all the -
values, the mean value is computed iteratively, meaning that 
the computed mean of -value and a counter of the -values 
contained in the mean are stored. 

The mean value of -table at the point  in the table is 
denoted as and defined as 

   (11) 

Where  is the counter of elements used to compute the 
old mean value. The computation of the -table can be 
subsequently be defined as the following algorithm. 

Find the element  of the present -value. 

Compute a new mean for this element using (11). 

Update the counter as  
 

After the -table has been computed for a sufficient time 
period, denote this time period as , the table will be 
recomputed using the same measurement data as used to the 
present table, the only different is that the most recent 
computed -table is used to compute the expected - values 
used in the estimation. Continue this iterative process until the 
difference between the recent and previous -table is small 
enough. The time period can be decreased if  and   contains 
increased actuations. 

Define the table error as 

,(12) 

It is now possible to summarize the algorithm to compute. 

Set n=1. 

Compute first -table using the previous algorithm, define 
this table as . 

Set . 

Replace the initial with , and compute  as 
in 2). 

Compute the table error as in (12). If , stop the 
algorithm, else jump to 3). 

The value of  should be found by experiments, it should at 
least represent so long time that the relevant parts of the table is 
well covered with a large enough numbers of instances. The 
table can covered faster if additional actuation signals are 
added to  and .  An initial guess on the value of  is 1 
month. 

IV.  TABLE BASED OPTIMIZATION 
The optimization can be performed quite simple. Just find 

the point in the table where the maximal -value is found. 
Since this algorithm is only performed once per time period 
computational efficiency is not very important. However, due 
the implementation in the wind turbine it is still relevant to 
limit the computational burden of the algorithm. In this first 
version of the algorithm a simple max search is used.  

V. SIMULATIONS 
In this simulation the same set of model parameter is used 

as in [5]. In which the observer used to estimate the -values 
is designed. 

The wind turbine is modelled by the nonlinear model in (1)-
(2), and the following model parameters are used:  

, ,   

The sample frequency of the system and wind data is 10 
Hz. 

For the linear model the points of operation are chosen such 
that the entire range of the wind speed in the data set is covered 
as well as possible. The values are found to be  

  and .  

The linear observer model matrices of the two internal 
models are found iteratively to: 

 and  

 

The two cross correlation matrices are found iteratively as: 

 

In [5] this observer is used to estimate the -values, the 
same simulations is performed with a change in the initial -
table to test how fast the observer will converge to the actual 

-values, this shown in Fig. 3. 



     

 
Fig. 3 Simulated -values compared with the estimated one, simulated 

with an error in the initial -value. 

This simulation shows that the used observer estimates the 
-values quite well even though the initial value of -table is 

wrong. 

Subsequently it is simulated how much can be gained by 
using the proposed adaptive scheme in a case where the 
optimal tip speed ratio  is assumed to be 10% wrong. Since 
the pitch angle kept constant under power control of the wind 
turbine, -table is in this simulation only depending on .  
These two -curves can be seen in Fig. 4. From this figure it 
can be seen that the actual optimal -value is approximately 
equal 8 and that the assumed  is approximately equal 7.  
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Fig. 4 Comparison of the actual -curve only depending on  and the 

assumed -curve. 

In order to simulate the non-adapted -curve and the 
adapted -curve measured wind data is used, see Fig. 5. 

 
Fig. 5 The wind speed profile used in the simulation, which includes 47 

minuets ranging from 5 m/s to 18 m/s. 

The wind turbine is now simulated on this wind data, 
sampled at 10Hz, for both the adapted and non-adapted 
situation. A standard proportional controller is used as 
presented in [1], in which  

,    (13) 

where 

    (14) 

in which  is the maximal power coefficient and which 
is equal 0.45,  is the tip speed ratio relating to the maximal 
power coefficient, which in this case is 8 for the adapted case 
and 7 for the non-adapted. The produced powers for these 
simulations are both shown in Fig. 6. In the figure the powers 
are plotted relative to the rated power of the wind turbine. 
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Fig. 6 Comparison of the simulations of power produced by the wind 

turbine for both adapted  and standard . 

 

This plot shows the power generated in the two cases of 
power references; the adapted one and the non-adapted one. It 
is clear to see that if the power controller is not adapted to 



     

actual blades and -table/curve quite allot of energy is actual 
lost. It is approximately 20 % on the maximal power. It is a 
further study to investigate how much the -table varieties 
between wind turbines. 

Using this scheme the torque reference curves can be 
adapted during the first couple of months during the 
commission of the wind turbine using only standard 
measurements present at the wind turbine. An alternative 
would be to place a wind measuring mast in front of each 
turbine which would be highly costly, and consequently almost 
never done in practice. Even though wind measurement 
equipments are used at a few test turbines to document the 
power production. This measurement could be used to adapt 
the power reference curve, and is some times done. It will, 
however, clearly increase the potential gain if every turbine is 
adapted to its own actual power reference curve which is 
possible using the proposed algorithm. 

VI. CONCLUSIONS 
Optimality of power produced by wind turbines depends on 

the correctness of a table of power coefficients. This table is 
normally provided by the manufactures of the wind turbine 
blades. These are measured or calculated for a limited number 
of blades in a production series but not for all produced blades. 
This means that the used table might be incorrect regarding the 
actual used one. This again leads to risk of non-optimal power 
production by the wind turbine. An unknown input observer 
designed in another paper is used to estimate a new -table 
which fits the actual power coefficients of the blades of the 
wind turbine. This might require a number of iterations if the 
actual power coefficients are highly different from the assumed 

-table. The optimal reference curve is found based on this 
newly computed -table. A simulation is performed where the 
found optimal reference curve is compared with the initial 
assumed one. In this simulation the non-adapted power 
controlled wind turbine generates approximately 20% less 
power compared with the adaptive power controlled one. 
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Abstract— Fault detection in large scale industrial systems are 
of importance in order to detect and accommodate eventual 
faults and failures in the system. Such an industrial system is a 
hydraulic system which typically consists of a high number of 
control valves. It would be beneficial to detect eventually 
faults in these valves. In computer controlled systems these 
valves are often electromagnetic actuated. In this paper a 
model of an electromagnetic normally-closed hydraulic valve 
is completed. This model of the valve is used to test a scheme 
to detect blocked gliders in the electromagnetic actuated 
hydraulic valve. The scheme tested in this paper only detects 
when a valve is blocked. This is a very important feature to 
have in a system with many hydraulic valves, since it can take 
a lot of time to find the valve with the failure in such a system. 
In a situation like this it is critical to detect and isolate a 
blocked valve; however, it is not necessary to detect the fault 
at the instant it occurs. The algorithm used in this paper find 
100% faulty cases, without any false positive detection. 

Keywords-Fault Detection, Hydraulic Valves 

I.  INTRODUCTION 
In the industry valves are often used to control hydraulic 

systems. In a complex system with many hydraulic valves, it 
will be highly time consuming to localize a defect valve. 
Therefore it could be useful to have functionality in the control 
system to detect if a valve is moving or not as it should. 

The valve used in this paper is at normally open, double 
blocking poppet-type solenoid valve. This valve is activated by 
a 26W coil and the magnetic will push the masses and close the 
valve. This armature is pushing on a small mass which again is 
pushing on the plunger. The plunger closes and opens for the 
hydraulic oil. 

In order to have robust detection of faults in the valve in 
terms of a blocked plunger, the best solution is to use the coil 
current measurement as the detection signal. This current is 
measured in order to control the proportional valve. 

 
This controller’s actuation signal is in most case a pulse wide 
modulated signal, since this enables a design of a controller to 

reduce the current to what is necessary to hold the valve open. 
The control loop is formed with the coil current as measured 
output and the voltage over the coil as control signal. 

Most of the published research on fault detection on 
hydraulic systems has been on the system level. Detection on 
specific valves has been rare. Some examples are as follows. 

In [8] a neural network based scheme is used to identify the 
parameters in physical model of a hydraulic system. In [5] 
redundancy and logic based detection scheme are used to find 
the most likely “good” sensor signal and actuator drive. In [2] 
an Extended Kalman estimator is used to detect faults in a 
hydraulic actuator system with servo valves and pistons. A 
model-based fault detection scheme is presented in [4] which is 
used to detect faults in hydraulic brake system for automobiles. 
In [3] and [11] two different fault detection benchmark 
problem are presented dealing with the industrial problem of 
detection of faults in valves in process plant. A couple of 
examples on detection valve faults in case of process control 
systems are: stiction detection and control in [12], and fuzzy 
logic based detection in [6]. 

Examples on models of electrical actuated hydraulic valves 
can be seen in [14, 1, 16, 9, 15], and a more basic description 
of the physics of the valves can be seen in [7]. 

In [10] and unknown input observer is used in the same 
scenario this scheme can detect the faults as they occurs. In 
[13] a number of different detection schemes have been suggest 
to detect the fault in an electro activated hydraulic valve, one 
method has as well been implemented, a method based on 
differentiation has been implemented. The detection on the 
valve is not time critical, so it could be possible to record some 
data and make an analysis on the recorded dataset. The same 
data used in these experiments is described in this paper and 
the differentiation detection is described. Before the algorithm 
the model used for test is described in details, in order to 
provide information about the valves mechanical data, and the 
test setup. 

A FFT analysis is performed on the fault free and faulty 
model output to compute the frequency range of the major 
difference between the two cases. 



                                                                                       
 

In Section II a model of the electro activated hydraulic 
valve is presented, and in Section III an experimental setup is 
presented. Validation of the model is presented in Section IV, 
and the proposed scheme is presented in Section V, followed 
by simulation results in Section VI. The paper is concluded in 
Section VIII. 

 

II. MODEL OF ELECTROACTIVATED HYDRAULIC VALVE 

A. Systems Description 

The system in question is an on/off electro-magnetic hydraulic 
valve (normally closed) in which the position is controlled by 
the voltage over the coil, , and only the coil current, , 
is measured and consequently provided as output. A current 
controller is form to control and position the valve glider. An 
illustration of the valve can be seen in Fig. 1 

 

Fig. 1 An illustration of the physical layout of the on/off electro-magnetic 
hydraulic valve. 

In the dynamic model of the electro-magnetic valve there are 
two deferent situations. Situation 1 is where the armature is 
open and the armature is moving to the plunger. Situation two 
is where the two masses are moving together closing the 
valve, see Fig. 2. The figure also defines the minimal, 
maximal and servo positions, . 

 

Fig. 2 An illustration of the two situations of the valve movements. 

B. Model of Valve  
In the section the dynamic equations for the valve will be 

described. The coil has  turns and a resistance . The 
armature inside the coil has an area , a mass ,, and  
plunger sitting in the valve has a spring constant , and the 
preloaded force . Area of the plunger is , mass of it is 

, and the pressure from the hydraulic supply is . 
In the two situations the frictions constants are different. The 
first situation the friction constant is , and in the next 
situation the constant is . 

The magnetic field, , can be found by 

,  (1) 

Resulting in a differential equation 

,  (2) 

The magnetic force,   is 

,   (3) 

The current is 

,   (4) 

Where 

  (5) 

The position  is found by two situations depending on 
its value. In (6)-,(7) the acceleration, , of the position  
are found. 

If  

,  (6) 

If  

,(7) 

in which  is the meeting position of the plunger and 
armature. 

This gives two nonlinear state space representations: 

Situation 1 

,  (8) 

Where 

, (9) 

Situation 2 

, (10) 



                                                                                       
 

,(11) 

Where 

,  (12) 

The output equation is 

,   (13) 

The following parameters are used in the model: 

    

    

    

    

    

    

    

    

 

 

 

III. EXPERIMENTAL SETUP 
A system overview over the setup used in these 

experiments is shown in Fig. 3. 

 

Fig. 3 – Block diagram over the experimental setup. 

 

The hydraulic pressure station has a reservoir with 
hydraulic oil and an oil cooler included. The pump generates a 
pressure on 20[bar], and the valve used on the hydraulic station 
is normally-open, double blocking poppet-type solenoid valve. 

The controller card has a Pulse Wide Modulation (PWM) 
output with a PI current regulator implemented. The power 
supply on the PWM output is a 24[V] supply. And it measure 
the current with the sample rate on 1[kHz]. 

 

 

IV. EXPERIMENTS AND MODEL IDENTIFICATION 
Two experiments where preformed on the valves; one 

where the valve is blocked and another one where the valve is 
not. In both situations the input to the controller is a step on the 
current. The controller is a PI with anti windup. 

Kp and Ti is tuned so the current controller not will reduce 
the current in the step. The following controller parameters are 
used: , . 

The results of the experiments can be seen in Fig. 4, it is 
easy to see the difference between the blocked and non-blocked 
valve. 
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Fig. 4 Measured data from a situation with the same valve blocked and 

unblocked 

 

With those data it is now possible to compare the measured 
data with the simulations using the model found for the valve 
in the previously section. After tuning of the valve parameters, 
on the non-blocked model the measured and simulated current 
is quite close, see Fig. 5. In case of the blocked valve the 
simulated current increased a bit faster than the measured 
current, see Fig. 6. Fortunately, this model error is not of large 
importance due to the large variation between blocked and non-
blocked behavior  

0 20 40 60 80 100 120 140
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Samples

Cu
rre

nt

 

 

Simulation Model
Meashured

 
Fig. 5 Comparison on the model found and the measured data on the 

unblocked valve. 
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Fig. 6 Comparison between the model and the blocked valve. 

Measurement noise is added to the simulated current as 
Gaussian noise with zero mean value and a std twice the 
measured one in the experimental setup . 

V. PROPOSED SCHEME 
In this paper scheme which is easy to implement and as 

well have shown strong performance is described. 

It is a simple but effective scheme. It is based on a 
backward-differentiation of the current, which is used to find 
the catachrestic of the current, when the valve not is locked. 
This detection method is really useful in this scenario because 
the valve current contain much information about the armature 
and plungers position. 

The backward-differentiation results in a high pass filter 
effect. On the measurements board there is a low pass filter. 
Combing these two gives a band pass filter. This input filter is 
a RC coupling witch transfer function there could be described 
by.  

,  (14) 

in which: ,  

Transferring this function from the continues time domain 
to the discrete with using bilinear transformation with a sample 
frequency at 1[kHz]: 

,    (15) 

where the coefficients for this transferred with bilinear 
approximation is, , , . 
Implementation of the backward-differentiation is as following. 

,      (16) 

The transfer function of this is given by.   

,   (17) 

,   (18)  

,    (19)  

 

The transfer function for the two systems will subsequently 
be folded to find the transfer function for the filter. And k is set 
to 2. 

,   (20) 

,  (21) 

The bode plot of this transfer function can be seen in Fig. 7. 
It is seen that this filter pass most of the energy in the 
frequency interval between 250[rad/s] and 2000[rad/s], which 
corresponds to (39.8[Hz] 318[Hz]). 
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Fig. 7 Bode plot of the merged transfer function of the input filter and the 

detection filter. 

This differentiation based detection filter works since the 
current increase much faster in case of a blocked valve 
compared to a non blocked valve. It reaches the steady state 
value after 60 samples compared to 80 samples for a non 
blocked valve. 

After the backward-differentiation is calculated with  
the result  is compared to the threshold, . The value of 
this variable is found by trail error method; in many different 
scenarios on the model. The most optimal threshold value for 
this valve is . 

A.  FFT analysis of faulty and fault free valve 
The characteristic in the current generated by coil can be 

computed with a Fast Fourier Transform (FFT) the movement 
of the mass inside the coil will give a specific frequency in the 
current. 

To search this for frequency a windowed FFT is calculated, 
on the data generated from the model, to se if it is possible to 
find the characteristic frequency in the current. This analysis is 
executed in order to find the frequency range with the largest 
difference between the faulty and fault free case. 

Fig. 8 shows the frequency response in the current when a 
valve is in normal operation. It is clear to see that most of the 
energy is located in frequencies in the interval between 40 and 
50[Hz].   
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Fig. 8 FFT on data from fault free valve. 

 
If a FFT based on same method is calculated when plunger is 

locked the calculations gives a result shown in Fig. 9. 
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Fig. 9 FFT on data from a blocked valve. 

 
In this plot it is simple to see there is a difference to Fig. 9. 

Again most of the energy is located between 40 and 50[Hz] but 
with a clearly difference sequence at these frequencies in time. 
This means that the frequency interval to look at for the 
detection filter should be between 40 and 50[Hz], and this 
interval the detection filter has a gain at around 4 db, meaning 
most of the energy of the error would pass through the 
detection filter. Consequently the detection filter is sensible 
towards the fault as it was suppose to. 

FFT is in both examples calculated with at window size of 
5 over 100 samples. 

VI. SIMULATIONS 
The simulations are performed using the backward-

differentiation detector where 2744 situations are simulated, 
1372 situations are fault free and 1372 has a fault. This fault is 
blocked value at a position between 0.6mm and 1.4mm. 

The results of the simulations tests executed on the 
algorithm with the model give following results. 

True Positive 100 % 

False Negative 100 % 

False Positive 0 % 

True Negative 0 % 

Table 1 - Tabel of preformed test on algorithm. 

This algorithm detects the failure pretty good, beside it is 
quite simple to implement. The rate of correct detections are 
that high since the current in the blocked case increases 
dramatically faster than in the non-blocked case. Due to the 
model uncertainty, the simulation of the blocked valve might 
result in a much clearer difference between the blocked and 
non-blocked case, this means that in practice the results might a 
little bit less impressive in terms of true positive detection rates. 

VII. CONCLUSIONS 
In this paper a model of an electromechanically valve is 

found and used to test goodness of algorithm for detecting fouls 
on the valve in terms of blocked valves. The only measured 
data is the current and this is differentiated and from this it is 
easy to see if there is a critical fault on the valve. 1372 faults 
and 1372 non faults are simulated with measurement noise. 
With a correct threshold value the detector detect 100% true 
negative faults, and 100% true positive faults. 
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Abstract— In this paper an observer based scheme is proposed 
to detect blocked gliders in electromagnetic actuated hydraulic 
valves. Detection of blocked gliders in electromagnetic 
actuated hydraulic valves is of large importance in large 
hydraulic systems which contain a large number of control 
valves. If the glider position was measured this detection 
would be simple, however, in many cases only the coil current 
is measured. In case of a blocked glider, it can be viewed as 
the introduction of an extra force to keep the glider in position. 
This extra force can be viewed as an unknown input, and can 
be estimated by the use of an unknown input observer. Using 
this estimated fault signal gives correct fault detection in case 
of 96.6% of 1500 faulty cases and only 4% in case of no 
faults, these numbers are found using Monte Carlo 
simulations. The detection time is as fast as the step response 
of the current changes in the valve. 

Keywords-Fault Detection, Hydraulic Valves, Unknown Input 
Observers 

I.  INTRODUCTION 
In the industry hydraulic systems valves are often used to 

control the systems. In case of a complex system with many 
hydraulic valves, it will take a lot of time to localize a defect 
valve in the system, and sometime a defect valve could result in 
large damage of the system. To find this defect on the valve 
before it will damage on the system would be very helpful. The 
system operator could as well be informed that this valve is 
going to be damaged, so it could be replaced with a new one 
before it damages the system. 

Most of the published research on fault detection on 
hydraulic systems has been on the system level. Detection on 
specific valves has been rare. Some examples are as follows.  

In [1] a model of a hydraulic servo system is made by using 
a neural network to identify the parameters in physical based 
model of the hydraulic system with a neural network based 
model on this structure. A multi model approach for detection 
of faults in a hydraulic servo axis can be seen in [2]. In [3] 
redundancy and logic based detection scheme are used to find 
the most likely “good” sensor signal and actuator drive. In [4] 
an Extended Kalman estimator is used to detect faults in a 
hydraulic actuator system with servo valves and pistons. A 

model-based fault detection scheme is presented in [5] which is 
used to detect faults in hydraulic brake system for automobiles. 
In [6] a fault detection benchmark problem is presented dealing 
with the industrial problem of detection of faults in valves in 
process plant. Signal processing on the coil current is often 
used for fault detection in process plant valves. In [7] a number 
of different detection schemes have been suggest to detect the 
fault in a electro activated hydraulic valve, one method has as 
well been implemented; a method based on differentiation has 
been implemented. Examples on models of electrical actuated 
hydraulic valves can be seen in [8, 9, 10, 11, 12], and a more 
basic description of the physics of the valves can be seen in 
[13]. 

An alternative approach would be to use an observer based 
scheme such that faults can be detected based on both position 
measurements as well as control actions. In order to deal with 
model uncertainties, as well, an unknown input observer, see 
[14], is applied to detect the fault. 

The valve in question is controlled by a current controller 
and consequently it would be beneficial to include an observer 
in the fault detection scheme, since the observer can combine 
information in both control signals and system output. A 
blocked glider in the valve could be modeled as a force balance 
with an additional force keeping the glider in a specific position 
whatsoever forces the controllers puts on the glider. In [15] and 
[16] an unknown input observer is used to detect faults and or 
missing input signals to systems, in the first the observer is 
used to estimate faults in coal mills and in the second paper it is 
used to estimate power coefficients and wind speeds in an 
application of a wind turbine. The same approach is applied to 
the problem of detecting blocked gliders in this specific 
hydraulic valve.  

In this paper the system description and the model of the 
valve is first described, followed by the applied scheme and 
experiments. Finally a conclusion is drawn. 

II. MODEL OF ELECTROACTIVATED HYDRAULIC VALVE 

A. Systems Description 
The system in question is an on/off electro-magnetic 

hydraulic valve (normally closed) in which the position is 
controlled by the voltage over the coil, , and only the coil 



                                                                                       
 

current, , is measured and consequently provided as output. 
A current controller is form to control and position the valve 
glider. An illustration of the valve can be seen in Fig. 1 

 

Fig. 1 An illustration of the physical layout of the on/off electro-magnetic 
hydraulic valve. 

In the dynamic model of the electro-magnetic valve there 
are two deferent situations. Situation 1 is where the armature is 
open and the armature is moving to the plunger. Situation two 
is where the two masses are moving together closing the valve, 
see Fig. 2. The figure also defines the minimal, maximal and 
servo positions, . 

 

Fig. 2 An illustration of the two situations of the valve movements. 

B. Model of Valve  
In the section the dynamic equations for the valve will be 

described. The coil has  turns and a resistance . The 
armature inside the coil has an area , a mass ,, and  
plunger sitting in the valve has a spring constant , and the 
preloaded force . Area of the plunger is , mass of it is 

, and the pressure from the hydraulic supply is . 
In the two situations the frictions constants are different. The 
first situation the friction constant is , and in the next 
situation the constant is . 

The magnetic field, , can be found by 

,  (1) 

Resulting in a differential equation 

,  
 (2) 

The magnetic force,   is 

,   

 (3) 

The current is 

,   (4) 

Where 

  (5) 

The position  is found by two situations depending on 
its value. In (6)-,(7) the acceleration, , of the position  
are found. 

If  

,  (6) 

If  

,(7) 

in which  is the meeting position of the plunger and 
armature. 

This gives two nonlinear state space representations: 

Situation 1 

,  (8) 

Where 

, (9) 

Situation 2 

, (10) 

,(11) 

Where 

,  (12) 

The output equation is 

,   (13) 

 

 



                                                                                       
 

The following parameters are used in the model: 

    

    

    

    

    

    

    

    

 

 

 

In order to simplify the used observer only one linear model 
of the valve is used to design the observer. The point of 
operation is found in situation 2, causing a large model 
uncertainty then describing situation 1. The linear model can be 
seen in (14)-(17). 

  (14) 

  (15) 

Where 

 (16) 

     (17) 

, ,  

,  , .  
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Fig. 3 Comparison of linear model output with system output 

In Fig. 3 the linear model is compared with the system 
output, from which it can be seen that the linear model fits the 
system output quite well. The model is following discretized 
with a sample frequency at 1 kHz. 

3. PROPOSED SCHEMES 

The idea is to add an additional force to the motion model 
in,(7) and the second row in the state space model ,(11).  Now 
take the linearized model (14)-(17) and introduce an unknown 
input into it representing a force keeping the glider in a blocked 
position. Subsequently an Unknown Input Observer is designed 
to estimate the unknown inputs. Consequently, in order to 
estimate the unknown input a state represent of the “fault” is 
introduced in the model, an example of this approach can be 
found in [15].  

The introduced state represents the fast dynamics of the 
fault by a high pass filter. 

(18) 

  (19) 

where:  is a unknown input representing the force 
needed to keep the gilder in the blocked position,  is the 
state representing the fault. The new state matrix is defined as 

 as, in which  is the zero of the high pass filter and  is 
the pole of the same filter.  

(20) 

The  matrix has been extended with an extra zero. 



                                                                                       
 

       (21) 

The  matrix is defined as 

,     (22) 

The first three elements in  matrix is set to 0.1 in order 
to introduce some robustness regarding model uncertainties, 
and  the parameter relating to the fault estimate will be found 
in the design section. 

This linear model is subsequently discretized. 

Since the system in mind contains some unknown inputs 
the idea is to use an unknown input observer in its optimal 
version, see  (Chen & Patton, 1999). The structure is: 

(23) 

where  and  are matrices 
designed to achieve decoupling from the unknown input and as 
well obtain an optimal observer.  is a vector of the states of 
the extended model. The matrices in the unknown input 
observer are found using the following equation see (24)-(32). 

          (24) 

       (25) 

       (26) 

       (27) 

       (28) 

      (29) 

      (30) 

     (31) 

,      (32) 

The observer design procedure can be described by the 
following algorithm: 

1) Set Initial values:  
 

 

 

 

2) Compute  using (32). 

3) Compute  and  using (28) and (31). 

4) Compute , ,  and  by (25), (26), 
(27) and   

5) Compute the state estimate  and  using 
(23). 

6) Compute  using (30) and (31).. 

7) Set  go to step 2). 

3.1 Design of detection scheme 

The observer and detection scheme is designed on data 
from the non-linear simulation model simulating a fault free 
situation and a situation with a blocked valve at 0.6mm. The 
two variance matrices in the observer design  and  are 
found by experiments in order to optimize the correct fault 
detection rate and detection time, resulting in the following 
values: 

 (33) 

 (34) 

Additional a threshold  is used determine if a fault is 
present. If  a fault is detected and no faults are 
detected if . By experiments  is found as the 
lowest threshold value which detects the faults without too 
many false positive detections. 

The detection scheme applied to data from a blocked valve 
can be seen in Fig. 4. It can be seen that the fault is detected a 
approximately the same time as the step response has reached 
its steady state value, see Fig. 3. 
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Fig. 4  Illustration of the fault estimate and threshold in case of a fault – a 
blocked value. 

In Fig. 5 the fault estimate is compared with the threshold 
in case of a non blocked valve and consequently a fault is not 
detected. 
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Fig. 5 Illustration of the fault estimate and threshold in case of no faults. 

 

Experiments 

The experiments are performed using Monte Carlo 
simulations on the nonlinear model where 3000 situations are 
simulated, 1500 situations are fault free and 1500 has a blocked 
value at a position between 0.6mm and 1.4mm. Measurement 
noise is added to the simulated current as Gaussian noise with 
zero mean value and a std (standard deviation) twice the 
measured one in the experimental setup . 

The results are shown in Table 1, where it is seen that 
96.6% of the faults are correctly detected and only 4% of the 
non-faults are falsely detected as faults. It is, consequently seen 
that this proposed observer based detection scheme has a good 
performance of detecting the faults in the valve even though the 
presence of the large model uncertainties, which are tested by 
applying the observer on data from non-linear model some 
different model parameters. These tests are not a part of this 
paper, since they are on going, but they indicate some good 
properties regarding handling model uncertainties. 

 

True Positive 96.6% 

False Negative 3.4% 

False Positive 4.0% 

True Negative 96.0% 

Table 1: Results of the simulation with 1500 faults and 1500 non-faults. 

Other methods not focusing on fast detections can obtain 
100 correct fault detections, which can be match by the 
proposed algorithm if detection time is not considered. 

III. CONCLUSION 
In this paper an unknown input observer based scheme is 

proposed to detect faults in hydraulic valves in terms of 
blocked gliders. The only measurement assumed is the current 
through the valve coil. The current is controlled to follow a step 
reference. 1500 faults and 1500 non-faults are simulated with 
measurement noise and the detection scheme detects in must 
cases the fault at the time the current reaches its steady state 
value. The detection scheme detects 96.6% “true positive 
faults” and 96% “true negative faults” (correctly detected non-
faults). 
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Università della Calabria

Rende (CS), Italy
Email: guzzo.alessandra@gmail.com

Abstract—Automotive idle speed control is a critical issue in
engine control fields. Essentially it is a highly nonlinear and time-
varying problem. Its performance has a significant impact on fuel
economy and emission levels. In this paper, the authors present
a complete and coherent engine model, aimed at the challenging
purpose of the analysis of the interaction between the idle speed
control and variable valve actuation system. The model is based
on an innovative approach for engine dynamics conceived mainly
on the analogy with electric systems. Firstly, the behavior of a
relatively simple and well known control, named Mid-Ranging
scheme has been tested on a complete ”in-cylinder” engine model,
after a modified control is proposed, in order to test the modern
engine performances improvement due to the synergy between
variable valve actuation devices and idle speed control strategy.

Keyword: Modeling; Automotive system; SI engine model,
VVA control.

I. INTRODUCTION

The evolution of engine control from mechanical to elec-
tronic strategy, and from open loop to closed loop control
method, is a consequence of the hardware and software de-
velopment. The use of electronics improves sensing accuracy,
actuation capability, and flexibility in control law design. This
results in adopting complex control strategy based on dynamic
models purposely designed. The paper deals with the Idle
Speed Control (ISC) and Variable Valve Actuation (VVA)
systems based on an engine model formalized mainly on the
analogy with electric systems.

The objective is to analyze the interaction between the
engine idle speed and the VVA application. Load torque
disturbances, such as air conditioning, power steering and
VVA different commands can cause fluctuation on engine
speed around the idle speed reference. Moreover, vehicle
aging, variation in fuel efficiency, emissions and automotive
vibrations can also effect the idle speed set point.

Several works are presented in literature on these topics.
In (1), a review of various dynamic control technologies suc-
cessfully applied to ISC systems is presented. The automotive
ISC is a multi-objective and multi-variable control issue. The
selection of target idle speed corresponds to a tradeoff among
fuel consumption, idle operation stability, and emission levels
(2). The idle speed control mechanism of different engine types

varies. For a typical Port Fuel Injection (PFI) engine, the ISC
system uses a controlled bypass valve to regulate the air flow
rate around a closed throttle, using a solenoid, stepper motor, or
controlled duty-cycle valve. The throttle bypass valve is used to
adjust the intake manifold air flow around the primary throttle
plate at idle. Its secondary function is to prevent stalling and
produce smooth throttle tip in and tip out by providing extra
air during idling and acting as an electronic dashpot during
sudden deceleration (3).

Moreover, the presence of the VVA can cause uncertainty
in the air mass flow estimation. In fact the different profiles
of the VVA, full lift, early closing, late opening and multi
lift, determinate a variable air mass flow depending by VVA
control, as described in details in the following. So it is critical
to model such system, aimed at analyzing the phenomenon
and at designing suitable control strategies to compensate
this uncertainty (4). The main contribution is the air-charge
prediction for a Spark Ignition Internal Combustion Engine
(SI-ICE) equipped with VVA, necessary to verify and validate
control strategies, such as air-fuel regulation, idle speed control
and torque generation (5). In particular, an accurate estimation
of air flowing into the cylinders is the key point to determinate
the engine fueling rate in order to control the air-fuel ratio
during the combustion (6) and, consequently, to optimize the
performance of the three way catalytic converter.

Generally, in order to overcome this kind of problem,
mathematical models are used both to analyze the behavior
of the system and, eventually, to design advanced control
strategies. Among others, finite models of the combustion
chamber allow to calculate all in-cylinder variables with a
local resolution. The drawback is the long computing time.
Vice versa, MVEMs (Mean Value Engine Models) simulate
the dominant physical effects neglecting the fast dynamics,
resulting in a lower computing time.

In this context, the paper presents an SI engine model
equipped with a VVA system aimed at controlling the en-
gine idle speed through two different control strategies, a
multivariable mid-ranging algorithms and a new solution for
the strategies to reduce the control complexity. The proposed



model is obtained exploiting an innovative approach based on
the analogy of the engine components with electrical circuits
(7). The robustness of the model is tested comparing some
measurable variables with experimental data, while the analysis
on the proposed solution is based only on simulation results
due to lack of measurements.

II. ENGINE MODEL

In this paper, the engine model used to analyze the inter-
action between idle control and VVA system is derived by
(7). In the following, the utilized modeling approach is briefly
described. The authors, starting from a simple analogy with
electrical systems, have obtained an engine description similar
to an electrical circuit, with all the useful consequences in term
of existence and numerical availability of the solution (8). The
advantages are in the specific comparison that is founded be-
tween the engine components and variables (as throttle valve,
cylinder, inertial flows) with electrical counterparts (current,
voltage, resistance). In the following, the utilized modeling
approach is briefly described. For details and equations see
(7).

The engine is seen as an array of cylinders, having common
connections with an intake and an exhaust manifold. The
connections are regulated by valves opening. It is then possible
to distinguish separate subsystems interconnected each others,
such as the intake manifold equipped with throttle valve, the
exhaust manifold and cylinders. From the phenomenological
point of view, the elements composing the engine can be
classified in the following categories: volumes, orifices, inertial
effects and combustion.

The intake and exhaust manifolds and cylinders are grouped
respectively as constant and variable volumes.

The orifices are responsible of the pressure drops along the
gas path. They are modeled as variable resistances causing
equivalent voltage drops.The size of the orifice. and con-
sequently the resistance, is variable and regulated by valve
opening, as throttle valve, air bypass, intake and exhaust
valves.

The inertial phenomena can be considered as minor efforts
but not complectly negligible. They describe the reduction or
the increase of the pressure upstream the valve of a quantity
proportional to the derivative of the mass flow through the
same valve. Here, they are modeled as an linear inductance.The
combustion process constitutes the most meaningful and com-
plex phenomenon occurring into the engine. In order to model
the in-cylinder cycle pressure, an equivalent electric circuit has
been adopted. The circuit is formed by a variable condensator,
representing the cylinder volume, equipped by an impulsive
voltage generator. This causes an impulsive increase of the
voltage at the condensator extremities and, consequently, gen-
erates a current flow thought the capacitor. This phenomenon
corresponds to the well known combustion process, i.e. an
impulsive increase of the in-cylinder pressure caused by the
combustion resulting in a torque generation and in mass flow
through the exhaust valves. Based on the electric analogies,

Fig. 2. Experiment 1 at 1500 rpm and WOT. Intake and exhaust mass flows
for the four cylinders.

the entire engine can be represented by the circuit shown in
Figure 1.

Starting from the left of the figure, the model describes the
dynamic of the air crossing the intake manifold, i.e. driven
by the ambient pressure (a current generator), the air mass
passes the filter (a resistance) and the throttle body (a variable
resistance) and arrives into the cylinders through the intake
valves (a new variable resistance). The cylinders are then
described by a parallel of ”n” combustion equivalent circuits,
with ”n” the number of cylinders composing the engine.

In order to verify the reliability of the proposed model,
some experiments are conducted aimed at comparing some
measurable variables with experimental signals. The model
has been designed by means of a simple approach based
on the analogy of mechanical components with electrical
circuits. This methodology has been presented in (7), where
the validation of the model has been detailed.

Figures 2 and 3 report an experiment at 1500 rpm. In partic-
ular, 2 shows the simulated intake and exhaust mass flows for
each cylinder. Figure 3 completes the experiment comparing
the simulated in-cylinder pressure cycle with experimental data
highlighting the good performance. The intake and exhaust
valve lift ends the Figure 3.

The results, showing a good level of the model of reliability
and accuracy, allows to carry on the simulated analysis of
air mass dynamics for two different control strategies. It is
remarked again that the purpose of the work is the study in
simulation of phenomenon aimed at a better knowledge of the
system.

III. VARIABLE VALVE ACTUATION SYSTEM

The variable valve actuation has been introduced as a
promising technology able to improve the performance of the
vehicle in terms of fuel economy, emission reductions and,
more generally, the whole efficiency of the system (4).

In opposition to the classical engine, where the intake and
exhaust valves are commanded mechanically by the camshaft
and so both the timing and the duration of valves opening are



Fig. 1. Internal combustion engine equivalent circuit.

Fig. 3. Experiment 1 at 1500 rpm and WOT. The first plot compares
experimental data (dotted-black line) of the pressure inside cylinder and
simulated results (solid-magenta line); the second plot reproduces the intake
and exhaust valves lift (experimental data).

fixed by events, the VVA system offers the possibility to vary
the valves actuation.

The adopted VVA system is shown schematically in Figure
4. In this work, only the intake valves are actuated since the
benefits to actuate as well the exhaust valves are considered
small and does not justify the increase of costs to realize them.
The valve actuator consists of a piston connected through an
oil chamber to the intake valve, a solenoid valve to regulate
the pressure inside the oil chamber and an hydraulic brake to
assure the soft landing.

As reported in Figure 5, the system can operate in the
following operating modes:

• Full Lift (FL) represents the normal functioning of the
valves, i.e. commanded mechanically by the camshaft:
the solenoid valve remains closed assuring high pressure
into the oil chamber and, consequently, a rigid connection

Fig. 4. VVA system.

between the intake valve and the camshaft through the
piston;

• Early Closure (EC) is obtained by opening the solenoid
valve at a certain cam angle, i.e. the control angle,
reducing the pressure inside the oil chamber. The motion
of the intake valve is then decoupled from the piston
and, forced by the valve springs, it starts to close earlier
than in the full-lift mode. Soft landing of the intake valve
is controlled by an hydraulic dampening unit (hydraulic
brake);

• Late Opening (LO) can be achieved by regulating the
solenoid valve partially opened. In this way, the pressure
inside the oil chamber is regulated to a lower pressure
than in the full lift mode, obtaining a rigid connection, but
with a shorter distance function of the chamber pressure,
between the intake valve and the camshaft. Consequently,



Fig. 5. Valve lift profiles. The valve lift values on the y-axes are omitted for
confidential reason.

the valve profile is similar to the full lift mode, but with
a smaller time duration;

• Multi Lift (ML) is a particular operative actuation mode
obtained combining the late opening with the early
closure. This profile is limited by the mechanical cam
constrains, in fact the next late opening must be activate
before of the 50% of the full lift cam.

The flexibility of intake valve control offered by the VVA
system leads to enhance the efficiency of the combustion
process. As an example, it is possible to deactivate one of
the four valves per cylinder in order to produce swirls and
so improve the combustion optimizing the propagation of the
flame inside the cylinder. Or it is possible to actuate the
early closure mode to reduce pumping losses and improve fuel
economy. Or, again, to deactivate half cylinders to improve fuel
economy, simultaneously increasing low-speed torque. More
in general, the following advantages can be addressed to the
introduction in the vehicle of the VVA system:

• high charge trapping efficiency over the entire speed range
through a wide modulation of valve lift;

• throttle-less engine operation, through direct air control at
the valves resulting in a reduction of pumping work and
fuel consumption;

• dynamic control, cylinder by cylinder and stroke by
stroke, of the inlet charge aimed at an improvement of
emissions, driveability and fuel consumption in transient
operation.

In this work, it is presented an analysis on the interaction
between the VVA application and the idle control through the
mid-ranging strategy. Idling control is one of the most impor-
tant closed loop control functions for an internal combustion
engine. In particular, modern engine control software provides
the opportunity to stop the engine and cleverly to restart it
when it is necessary, this function is called Stop and Start.
This operation doesn’t reduce the idle control relevance but,
increases it, especially with the introduction of new devices
such as CVCP (Continuously Variable Cam Phaser), VVA,

Fig. 6. Mid-ranging control scheme. A slow control loop driven by R1 forces
the control input u2 to a steady-state desired value.

Turbo groups and so on.
The presence of the VVA can cause uncertainty for engine

fueling rate in order to control the air-fuel ratio during the
combustion and, consequently, to optimize the performance
of idle management. In fact the different profiles of the VVA,
full lift, early closing, late opening and multi lift, determinate a
variable air mass flow depending by VVA control, as described
in details in the following. So it is critical to manage the
engine speed and its fluctuations around the desired value
and at designing suitable control strategies to compensate this
uncertainty.

For the simulations here presented, the VVA on the engine
has been conceived to operate only on the intake valves and
in un-throttled mode, except for cut-off condition. About the
VVA control mode here considered, it has been applied the
Early Closing of the intake valve as shown in Figure 5. In this
way, the intake valve closing reduces the fresh air charge for
every single stroke. So, the charge, torque and power of the
engine can be controlled only with VVA control.

IV. MID-RANGING IDLE CONTROL

In the control field, there are numerous practical examples
of control algorithms where, in order to meet the control objec-
tives, two input must be manipulated to control a single output
(9). In some cases, this may be achieved by manipulating
one input at the time. Such strategies are often referred to
as split ranging. In other situation, it may be desirable or
even necessary to simultaneously manipulate the inputs. For
example, consider the situation shown in Figure 6, where the
speed ! is controlled by a combination of two controllers
in parallel. In particular, a slow control loop driven by R1
forces the control input u2 to a steady-state desired value.
This is called Mid-Ranging technique. Today, the Mid-Ranging
technique is largely used for idle speed control of spark
ignition engines, usually controlled by commercial Electronic
Control Unit (ECU) based on ”Torque Based” architecture
(10).

Idling is one of the most often used functionalities in
the modern car. This is especially the case in city traffic,
where there are frequent stop and go situations. Therefore,
improvements of the control performance for the idle speed
control unit has always been a high priority. That is, keep



Fig. 7. The Mid Ranging Idle Speed Control scheme.

the engine speed at a desired setpoint value, ensure good
disturbance rejection while maintaining low fuel consumption.
Typical disturbances that are to be rejected by the controller
are loads from the air-conditioning system or power-steering.
Obviously, the ECU compensates such disturbances on engine
torque by using the throttle, however due to the slow dynamics
of the air mass in the intake manifold, this would generate an
unacceptably slow disturbance rejection. For this reason the
spark advance is used as a second control signal, by advancing
or retarding the ignition and obtaining an instantaneous torque
variation from the engine. However, a deviation from the
optimal spark ignition will result in higher fuel consumption.
Thus the use of this signal should be kept at minimum and
used only for improving the speed of the disturbance rejection.
From control point of view this is a difficult problem since
the system in question is nonlinear, multivariable (two inputs)
and time varying. Moreover, the throttle control channel has a
slower dynamics than the spark advance event. In the literature
this problem is usually approached by treating the two control
channels separately (one control signal is set to constant while
the other is modified), leading to performance degradation.
Some other approaches treat linearized models resulting in lo-
cal designs. There exist approaches where both control signals
are treated in the same time (multivariable control), however
the resulting controllers are highly complex and difficult to
tune. This article proposes the usage of a simple technique
originally used in process control, called Mid-Ranging ’series’,
to analyze the idle speed control problem. The particular of this
scheme is that the throttle is governed directly by the error
between the desired and actual spark advance, while the spark
advance is governed by the engine speed error, as reported in
Figure 7. Moreover, the technique is particularly suitable for
processes where one of the inputs has faster dynamics than the
other, this is precisely true for the idle speed control problem
in traditional SI engine. In the Figure 7 the spark advance
control loop is the fast control loop, it takes as reference
value the desired engine speed. The second loop contains the
slower dynamics, where the air path controller adjusts the
throttle angle such that in stationarity the spark advance will
converge to the desired value. Traditionally the mid-ranging
schemes are based on PID controllers, which will be used here
too. This idea is correctly based on experimental observation,
the time delay between the spark advance application and

Fig. 8. The Modified Mid Ranging Idle Control Scheme.

the engine torque response is relatively small, symmetrical
and predictable, if compared with the engine torque response
from the intake manifold filling/emptying gas dynamics. This
control concept, depicted in Figure 7, is simple and robust for
a standard spark ignition engine, as demonstrated in (10) and
in commercial ECU present on the market.

V. MID-RANGING ALGORITHM WITH VVA SYSTEM

In this work, the authors, starting from the comparison
with Mid-Ranging ’series’ scheme, have realized an analogue
control scheme for an engine model equipped with VVA
system. In the traditional engine, the air path is considered the
slow via to regulate the engine torque, otherwise, in the modern
engine equipped with VVA system the engine torque response,
for any valve closing change, is able to exhibit a time delay
comparable with the engine torque response to spark advance
variation. For this reason, the Mid Ranging control scheme
has been changed from its traditional form with two input in a
’parallel’ scheme with only an input, as shown in Figure 8. The
advantage of this scheme is to avoid severe interaction between
the inner and outer control loops of the serial scheme. In this
way, both the control loops are driven from the same rpm error
without control interactions, improving the advantages about
the authority, quickness and steady state performance.

For the experiments has been used the engine model previ-
ously described with VVA application, and the same standard
controllers for spark advance and air path. In this experiment,
the controllers are able to guarantee the same tuning easiness
as the serial scheme, without any loss of performance.

The experiments have been realized applying the control
strategy to the four stroke internal combustion engine model.
In Figure 9 is reported a simulation for engine speed based
on two Mid-Ranging control schemes, the results define the
quality and robustness of the idle speed control for both
techniques. The good quality of the idle control and engine
behavior has been obtained by using only a Proportional-
Derivative controller for the spark advance control loop and a
Proportional-Integral controller for the engine air path control
loop.

In Figure 10 the spark advance behavior of two kind
of control scheme is depicted, showing the good preserved
robustness, slightly improved by the opportunity to use a more
high spark advance during the engine work and so to improve
the fuel consumption. Moreover, it should be noted that the
general improvement partly depends by the better cylinder



Fig. 9. Engine speed: comparison between the Mid-Ranging ’parallel’ scheme
(red-solid line) and Mid-Ranging ’series’ scheme (blue-dotted line).

Fig. 10. Spark advance: comparison between the Mid-Ranging ’parallel’
scheme (red-solid line) and Mid-Ranging ’series’ scheme (blue-dotted line).

Fig. 11. Throttle valve opening: comparison between the Mid-Ranging
’parallel’ scheme (red-solid line) and Mid-Ranging ’series’ scheme (blue-
dotted line).

filling efficiency, that un-throttled VVA systems usually allows,
as reported in Figure 11, where is possible to note that the
throttle valve is used only for cut-off occurrence.

VI. CONCLUSION

A standard Mid Ranging scheme for idle speed control
in spark ignition engine has been investigated on a realistic
four cylinder engine model. A similar control scheme, here
named ”parallel” Mid Ranging scheme, specific for engine
equipped with VVA has been deducted and tested in similar
conditions, showing similar and slightly better properties in

terms of performance quality and tuning easiness. The ability
of the parallel Mid Ranging control scheme for idle speed
control in internal combustion engines inspire to think that
even other kinds of control variables, such as instantaneous
air/fuel ratio, could be added in order to obtain a more robust
idle controller, without increases the tuning procedure. In such
a way, the idle control for a spark ignited engine will be more
hopefully able to fulfil the future requirements in terms of
emission reduction, fuel consumption, disturb rejection, and
driver satisfaction. With three charge/torque control variables
(air, spark advance, air/fuel ratio) or even more (injection phase
for direct fuel injection systems), the challenge will be the
implementation of relatively simple, modular and separated
control loop laws, with simple and almost separated tuning
procedures.
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Abstract—This paper deals with a computational approach 
to find the optimal control for nonlinear systems with 
polynomial vector fields. The approach involves four steps to 
find global optimality. First, local optimal control is found for 
the linearized part of the system and the quadratic part of the 
given performance index. Second, the density function method 
is used to find a stabilizing polynomial control for the nonlinear 
system. Third, the corresponding Lyapunov function is found 
for the control. Finally, the pair of control and its Lyapunov 
function are iteratively updated, using SOSTOOLS, for global 
optimal control. Numerical examples illustrate the effectiveness 
of the design approach. 
 

Keywords—nonlinear systems, optimal control, sum of 
squares 

I. INTRODUCTION 
In recent years, many researchers have shown interest in 

the sum of squares (SOS) technique introduced by Parrilo 
[1]. The fundamental method behind this technique is that 
the SOS problems can be converted into a convex 
optimization problem, which can be solved efficiently using 
semidefinite programming (SDP). This technique has been 
applied in many fields of control systems including stability 
analysis of a nonlinear systems [2] and [3]. Some control 
applications have also been discussed in [4] and [5].  

In general, in order to obtain a nonlinear optimal control, 
one needs to solve the Hamilton Jacobi inequality 
corresponding to a given performance index [6]. Although, 
the exact solution may not be available, a local optimal 
control and its Lyapunov function exist if the nonlinear 
system has a controllable Jacobi linearization and the 
performance index has a Taylor series expansion with 
quadratic leading term [7] and [8].  

Our objective is to obtain the nonlinear optimal control 
that matches the linear optimal control law for the linearized 
system to guarantee local optimality. The method in [9] can 
be used to solve the Hamilton Jacobi inequality 
simultaneously for finding both the nonlinear controller and 
its corresponding Lyapunov function, iteratively, where the 
nonlinear system is represented in a parameter dependent 
form. However, the original iterative algorithm requires an 
initial stabilizing controller and a corresponding Lyapunov 
function in order to be applied. The linear optimal control 

law and its Lyapunov function will not be iterated during the 
iterative algorithm.  

 
 

Here, the density function method [10] is used to find an 
initial stabilizing polynomial controller, using SOS 
technique [2].  Some examples of this method have been 
shown in [11] and [12]. Next, using the Hamilton Jacobi 
inequality and the SOS method, a Lyapunov function is also 
found for the initial stabilizing control. Then, given a 
quadratic performance index (cost), an iterative procedure 
utilizing the SOS technique is considered so as to find the 
optimal stabilizing polynomial control that minimizes the 
cost.  

 Polynomial parameters used in this paper can be mainly 
separated into two parts which are linear and nonlinear parts. 
The linear part of the system is denoted by a subscript “l”, 
such as , which is the optimal control for the linearized 
system. All higher order functions in the system are denoted 
with a subscript “h” such as , which is the nonlinear 
part of the optimal control. 

( )lu x

( )hu x

The remainder of the paper is organized as follows. A 
brief introduction to the SOS formulation is presented in 
Section II. Locally optimal control design and its Lyapunov 
function are presented in Section III. Nonlinear controller 
design using the density function is discussed in Section IV. 
In Section V, the search for the Lyapunov function is 
discussed and then, given a cost, an iterative algorithm for 
global optimal control design is explained later in this 
section. Section VI presents examples. Finally, the 
conclusions are summarized in Section VII. 

II. SUM OF SQUARES POLYNOMIALS 
The main computational method used in this paper is 

based on sum of squares (SOS) decomposition of 
multivariate polynomials [1]. The multivariate polynomial 

1( ) ( ,..., )np x p x x  is a sum of squares if there exist 
polynomials ( ),i 1,...f x i m  such that 

2

1
( ) ( )

m

i
i

p x f x
 

 ¦   (1) 

The existence of sum of squares representation for 
is sufficient condition for its non-negativity by the 

following proposition. 
( )p x

Proposition 1, [2]:  Let  be a polynomial in ( )p x nx R� of 
degree . In addition, let 2d ( )Z x  be a column vector, which 
is a properly chosen vector of monomials in x  with 
polynomials of degree no greater than . Then  is a d ( )p x
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sum of squares iff there exists a positive symmetric 
semidefinite matrix  such that  Q

( )x( ) ( )Tp x Z x QZ  (2) 
When  is a sum of squares, matrix  can be 

found using semi-definite programming (SDP) technique.  
( )p x 0Q t

III. LOCALLY OPTIMAL CONTROL DESIGN 

A. Problem formulation 

Consider the nonlinear system in the form of 
( ) ( )x f x g x �� u   (3) 

where nx R�  is the state and  is the control input. 
We assume that 

( ) mu x R�

( )f x  and ( )g x  are sufficiently smooth and 
that  and (0) 0 f (0) lg B  where .  lB R�

The objective is to find the optimal control, with 
respect to a performance index  

( ),u x

2

0
( ) ( ( ) ) )t q Ru x-

f
 �³ (x

(

dt   (5) 

In order to guarantee local optimality, we first separate 
the linear part of the system (3) using linearization method, 
which can be written as 

( ) ) ( )( )l h l l h h l hx A x f x u u g x u u � � � �� B�  (4) 

where
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, ( ) ( ) ,h lf x f x A x � (0) lB g

( ) ( )h lg x g x � B ( ) ( )l hu x u x u � and .  ( )x

We then decompose the integrand in (5) to include a 
quadratic term in .x  Then (5) can be rewritten as [7] 

2

0
( ) ( ( ) ( ( ) ( )) )T

l ht x q x R u x u x-
f

� �³ l hQ x � dt   (6) 

where  is positive-definite with ( )q x
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B. Finding Local Optimal Control 

The objective here is to find the locally optimal control 
 for the linear part of the system (3) lu

l lx A x B u ��   (7) 
to minimize the quadratic part of  the performance 
index/cost  

2

0
( ) ( ( ) )T

l l lt x Ru x-
f

³ Q x � dt   (8) 

We can then write the Hamilton Jacobi-Bellman (HJB) 
equation as 

2( )
T

0l
l l l l

V
A x Bu Q x Ru

x

w
�  

w

l

Tx� �  (9) 

The optimal cost (the Lyapunov function) is given by [13] 
( ) T

lV x x P x   (10) 
where,  is a symmetric and positive definite matrix. Thus, lP

2V
lP xx

w
w  

) 0

. Moreover, (9) can be reduced to the standard 

Riccati equation as 
1(T T T

l l l l l l l l lx A P P A Q P B R B P x�� � �    (11) 
which is true for all x  and reduces to the Algebraic Riccati 
Equation (ARE) 

1 0T
l l l l l l l l lA P P A Q PB R B P� T� � �    (12) 

Finally, the local optimal control will be given by 
( )lu x K xl   (13) 

where, 1 T
l l lK R B P� �   

IV. STABILIZING NONLINEAR CONTROL DESIGN 
A nonlinear control design used in this paper is based on 

density function, a dual of Lyapunov’s stability theorem, 
which was proposed by Rantzer [10]. In general, for a 
nonlinear system, a major difficulty is a lack of a symmetric 
method in finding a stabilizing control  and a 
corresponding Lyapunov function  simultaneously. 
The problem is that, for a nonlinear system 

( )u x

( )V x

( ) ( ) ( ),x f x g x u x ��  the set { ,  satisfying the Lyapunov 
inequality 

}V u

[ ( ) ( ) ( )] 0V f x g x u x� � �   (14) 

is generally not convex, where [ ,..., ]
i n

TV V V
x x xV w w w
w w w�   . 

However, in [10] it is shown that a dual problem, based 
on density function ,U has much better convexity properties. 
In fact, the set { , }uU U satisfying the inequality  

> @( )( ( ) ( ) ( )) 0x f x g x u xU�� � !   (15) 

is convex, where by definition 
1 i

n f
xi

f w
w 

� �  ¦  . 

Hence, for systems with polynomial vector fields, we can 
use the SOS technique to find the pair { , }uU U  satisfying the 
inequality (15). The design strategy is based on the 
following result [10]. 
Theorem 1, [10]: Given the equation ( ) ( ( ))x t f x t �  where 

1( , )n nf C R R�  and (0) 0,f  suppose there exists a non-

negative function  such that the term  1( \{0}nC RU � , R )n

( ) ( ) /x f x xU   (16) 

is integrable on { :nx R x 1}� t  and for almost all x  

[ ( ) ( )] 0x f xU� � !   (17)  
Then, for almost all initial states (0)x  the trajectory ( )x t  
exists for [0, )t� f and tends to zero as . Moreover, 
if the equilibrium 

t of
0x   is stable, then the conclusion 

remains valid even if U  takes negative values.  Ŷ 
To apply this theorem to find a nonlinear stabilizing 

control, let us first consider the system (4) with 
, then we have 1( ) T

lu x R B P x� � l l

h
1 1T T

l h l l l h l l l h hx A x f B R B P x g R B P x B u g u� � � � � � �� (18) 
If we let 

1 1( ) T
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then, since ( ) ( ) �l hg x B g x  , (18) can be rewritten as 
( ) ( ) hx F x g x u ��   (20) 

Consider the following parameterization for { , }huU U  [11]: 
( ) ( )( ) , ( ) ( )

( ) ( )h

a x c x
x u x x

b x b xD DU U    (21)
 

here  and  are positive polynomials,  is a 
polynomial and 

( )a x ( )b x ( )c x

D  is chosen such that the integreability 
condition (16) in Theorem 1 is satisfied. Then (15) can be 
written as 
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b

b Fa gc b Fa gc
b

D

D

U

D�

� � �  � � �

 � � � � � � � ]

0

 (22) 

Since  is positive, we only need to satisfy ( )b x

( ) ( )�� � � � � � !b Fa gc b Fa gcD  (23) 
Therefore, (23) is in polynomial form and we can use 

SDP to search for the solution that makes the left-hand side 
a sum of squares. A stabilizing control can then be defined 
as  

( )
( )( ) c x

h a xu x   (24) 

Moreover, if  is chosen to be a constant real number, 
(e.g., 

( )a x

1D  ), then from (21), the corresponding stabilizing 
control will be a polynomial, given as  

( ) ( )hu x c x  (25) 

V. OPTIMAL POLYNOMIAL CONTROL DESIGN 

A. Finding the Lyapunov Function 

Let us define system (4) in the state dependent form as [2] 
( ) ( ) ( ) ( )x A x Z x B x u x ��  (26) 

where ( )A x  and  are polynomial matrices in ( )B x ,x  and 
( )Z x  is an  vector of monomials in 1N u ,x  (e.g., terms of 

the form 1 2 nx x xD D" D ), satisfying the following assumption. 
Assumption 1: iff ( ) 0Z x  0.x   

Now, let  be a  polynomial matrix whose  ( )M x N nu
(i, j)-th entry is given by 

)()( x
x

Z
xM

j

i
ij w

w
  (27) 

where i = 1, ...,N, j = 1, ..., n, and also denote 
mjjjJ ,...,,{ 21 | jth row of equals 0}  (28) ( )B x

Our primary objective here is to find a Lyapunov function 
corresponding to the nonlinear terms,  that satisfies 
the Hamilton Jacobi inequality for the control  

( ),hV x

( ) ( ) ( )l hu x u x u x �   (29)  
However, note that (29) can also be written in the form of  

( ) ( ) ( )u x K x Z x   (30) 
Hence, the closed-loop system can be written as  

[ ( ) ( ) ( )] ( )x A x B x K x Z x ��   (31) 

Moreover, the performance index can also be written as 

0
( ) ( ( ) ( ) )T Tt Z x QZ x u Ru-

f
 �³ dt   (32) 

where Q  and R  are symmetric positive definite matrices.  
Consider a Lyapunov function that consists of two terms 

( ) ( ) ( ) 0l hV x V x V x � !   (33) 
where  found in Section III  and  represents the 
Lyapunov function for the nonlinear part. 

( )lV x ( )hV x

Therefore, (33) can be rewritten in the form of a parameter-
dependent Lyapunov function as  

( ) ( ) ( ) ( ) 0TV x Z x P x Z x � !   (34) 
where )~(xP is a symmetric positive definite polynomial 
matrix and 

1 2
( , ,..., )

mj j jx x x x �  with 1 2, ,..., mj j j J�  as 

stated in (28). Finally, let (j )A x denote the j-th row of 
. )(xA

Therefore, we have 
( ) T T TV x Z PZ Z PZ Z PZ � �� � � �   (35) 

Then for the function in (35) to represent the minimum 
of the performance index (32) over the set of all control 
functions  the expression for  in (35) should be 
written as  

( )V x

( ),u x ( )V x�

1

( ( )) [( ) ( )

( )] 0

T T T

m
T

j
j j

V
x t Z A BK M P PM A BK

t
P

Q K RK A Z Z
x 

w
 � � �

w
w

� � � �
w¦

 (36) 

or equivalently as, 

 
1

( ) ( ) ( )
 

w 0� � � � � � �
w¦

m
T T T

j
j j

P
A BK M P PM A BK Q K RK A Z

x
 

 (37) 
If the inequalities (34) and (37) are satisfied, the closed-loop 
system (31) will be asymptotically stable at zero 
equilibrium. The polynomial inequalities (34) and (37) can 
now be viewed as sum of squares constraints, which can be 
solved for P and K using SOSTOOLS [14].  

B. Pre-procedure for the Iterative Algorithm 

Let us define system (23) in a parameterized form [9], as  
( , ) ( ) ( , )x A x Z x B x uT T ��   (38) 

where ( , )A x T  and ( , )B x T  are polynomial matrices in x , 
as 

1 1 2

1 1 2

( , ) ( ) ( )
( , ) ( ) ( )

2

2

A x A x A x

B x B x B x

T T T
T T T

 �
 �

  (39) 

such that the uncertain parameters  are 

constant and satisfy 
> @ 2

1 2
T

RT T T �

1 20, 0T Tt t 1 2 1. and T T�   The 
corresponding Lyapunov function also is rewritten as 

( , ) ( ) ( , ) ( )TV x Z x P x Z xT T �   (40) 
where 1 1 2( , ) ( ) ( )P x P x P x 2T T T �� � � . Moreover, let 



  

2

1 1

( , ) ( ( , ) ( , ) ( )) ( ) ( , )
( , ) ( )( ( , ) ( , ) ( , ))

( , )( ( , ) ( ))

T T

m
i

ij
i j j

x A x B x K x M x P x

P x M x A x B x K x

P
x A x Z x Q

x

T T T
T T T T

T T
  

)  �
� �

w
� �

w¦¦

�
�

�

T

�

�

0

 (41) 

Also apply Schur complement to (37), then we get 

1

( , ) ( )
0

( )

Tx K x

K x R

T
�

ª º)
�« »�¬ ¼

  (42) 

Let us define 
T

i i i i i iN A P P A P Q � �� �� �� � �     (43) 
for i = 1,2, and  

3 1 2 2 1 2 1 1 2 3 2T TN A P P A A P P A P Q � � � �� �� � � �� � � � �   (44) 

where  , , [ ]
0 0
�ª º

 « »
¬ ¼

� i i
i

M A B K
A

0
0 0
ª º

 « »
¬ ¼

� i
i

P
P

1�

ª º
 « »�¬ ¼
�

TQ K
Q

K R
, 

1
( ) 0

0 0
 

ª º ½w° °
« »® ¾�  w« »° °¯ ¿
« »
¬ ¼

¦�
m

i
ij

ji j

P
A Z

P x , 
1 2

2 1
13

( ) ( ) 0

0 0
 

ª º ½w w° °�« »® ¾�  w w« »° °¯ ¿
« »
¬ ¼

¦�
m

j j
j j j

P P
A Z A Z

P x x , 

for i = 1,2. Then (42) can be written as 
2 2

1 1 2 2 1 2 3 0N N NT T T T� � �  (45) 
However, (45) is clearly not convex. Therefore, let us 
transform (45) into two separate inequalities as stated in 
Theorem 2 given below. 
Theorem 2, [9]: Assume that there exist a polynomial 
control  and symmetric polynomial 
matrices  and  such that 

( ) ( ) ( )u x K x Z x 

1 2( ) 0, ( ) 0P x P x! !� � ( ) 0sY x !

3 0sN Y� �   (46) 

1

2

2
0

2
ª º

�« »
¬ ¼

s

s

N Y

Y N
  (47) 

where  are given in (43) and (44). Then the 
closed-loop system (31) is asymptotically stable. 

1 2, ,N N N3

Proof: see [9] 
 

However, the matrix inequalities (46) and (47) are still not 
convex because they still include the product of ( )K x  and 

( , ).P x T�  Theorem 3 provides a relaxed method of solving 
this problem by adding additional positive semi-definite 
polynomial matrices which tend to zero at the end of the 
iterative algorithm. Let us define the following positive 
semi-definite polynomial matrices. 

1 1 1 2 2 2 2 3 1 1 32 T T TB B B B:  ' ' � ' ' � ' 'T T

@ ,

  (48) 

1 1 2 2
2 1 1

3 31 1

0 00 0
0 0 0 0
' ' ' ' ª º ª ºª º ª ºª º ª º ª º ª º

:  � � � « » « »« » « »« » « » « » « » ' '' '¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

TTT T

T TB B B B2 2

  (49) 
where > @ >1 0 2 1 10( ) 0 , ( ) 0T T

K K P P'  � '  �

> @20( ) 0 .T
P P M�

M  and 

 By adding the above positive semi-
definite polynomial matrices (48) and (49) to inequalities 
(46) and (47), respectively, we get 

3 2'  

3 1 0N Y� � : �   (50) 

1
2

2

2
0

2
ª º

� : �« »
¬ ¼

N Y

Y N
  (51) 

where 

11 21

21 22

( ) ( )
( ) ( )

TY x Y x
Y

Y x Y x

ª º
 « »
¬ ¼

  (52) 

It is clear that if (50) and (51) are satisfied, then (46) and 
(47) are satisfied. Let us define the following symmetric 
matrices  

11 11
1

21 22
1

1 2

2 1

* *
2 2 *

0 *
0 0

�

� *
*

ª º
« »� � �« »6  
« »� �
« »

� �¬ ¼

T T

T T

E Y

K Y R Y

K B M P I

K B M P I

  (53) 

and 
1

1

11 21 2
2 1

21 22

1 1

2 2

* * * *
* * *

2 2 * *
2 2 *

0 0 0
0 0 0 0

�

�

*
*
*
*
*

ª º
« »�« »
« »

6  « »
�« »

« »� �
« »

� �« »¬ ¼

T

T T

T T

E

K R

Y Y E

Y Y K R

K B M P I

K B M P I

 (54) 

where * indicates the symmetric entries of the matrices, and 

11 1 2 2 1 2 1 1 2

1 2
2 1

1 1

1 2 2 10 10 2 2 1 0

2 1 1 20 20 1 1 2 0

10 2 2 10 20 1 1 20 0 0

( ) ( ) 2

2

2

2

T T T T

m m

j j
j jj j

T T T T T

T T T T T

T T T T T

E A M P P MA A M P PMA

P P
A Z A Z Q

x x

PMB B M P P MB B M P K K

P MB B M P P MB B M P K K

P MB B M P P MB B M P K K

  

 � � �

 ½  ½w w° ° ° °� � �® ¾ ® ¾
w w° ° ° °¯ ¿ ¯ ¿

� � �

� � �

� � �

¦ ¦

  (55) 

and 

1

0 0

0 0 0 0 0 0

( )
m

T T i
i i i i i ij

j j

T T T T
i i i i i i i i

T T T T T
i i i i

P
E A M P PMA A Z

x

PMB B M P P MB B M P

K K K K P MB B M P K K Q

 

 ½w° ° � � ® ¾
w° °¯ ¿

� �

� � � � �

¦

 (56) 

for i = 1,2. Now we have the following theorem.  
Theorem 3, [9]: Consider the nonlinear system (38) and the 
performance index/cost (32). Given a stabilizing polynomial 
control gain matrix 0 ( )K x and a corresponding Lyapunov 
function with symmetric positive definite matrices  
and  suppose that there exist a different set of 
polynomial control gain matrix 

10 ( )P x�

20 ( ),P x�
( )K x

2 0,! !�
 and symmetric 

polynomial matrices  and  such 
that 

1( )P x 0, ( )P x� ( )Y x ! 0

1 1 2 10 20 0( , , , , , , ) 0P P K Y P P K6 �   (57)  

2 1 2 10 20 0( , , , , , , ) 0P P K Y P P K6 �   (58) 
Then the closed-loop system (31) is asymptotically stable 

and the corresponding cost (32) will be smaller for all x . 
Proof: see [9] 

 
By applying Schur complement to the inequalities (50) and 



  

(51), it is clear that the inequalities (57) and (58) are convex 
and are equivalent to (50) and (51), respectively. Therefore 
we can now e sem nite programming us idefi  to find the 
solution for ( )K x  and ( ),V x  simultaneously.  

uadratic 

 poly
find  using the 

 the degree of the polynomial for 

properly sel

C. Iterative algorithm procedure 

Step 1:  Find the linearized part of system (3), and find the 
local optimal control ( )lu x  corresponding to the q
part of the performance index/cost (8) in Section III 
Step 2:  Define the degree and form of the nomial for 
the nonlinear controller ( ),hu x  then ( )hu x

density function shown in Section IV. 
Step 3:  Define ( ),h x  

and consider ( ) ( ) ( ) ( ) ( ) � �T
l hV x V x V Z x P x Z x  for 

( ).

V

( )  x

ected basis Z x  Also nsider 
( ) ( ) ) ( ) ( ) �  l hu x u x K x Z x . Then find )

c
(u x

o
~(xP , and 

equivalently ( )hV x , using Lyapunov stability analysis stated 
in Sectio  V.A
Step 4:  Let 10 20( ) ( ) ( )P x P x P x  � � �  an ( ) ( ),

n . 
d 1 1 1

0K x K x  

ion, minimize [trace( )then at the i-th iterat ~(1 xPi )] subject to 

1 2( ) 0, ( ) 0P x P x! !� � , the SOS conditions (52), (57), and 
(58).  Note that, the parameters ted in t ep are only 
parameters corr nding t ( )x  and ( )hV x  which are 
embedded in (u x d ( )V respectively. Parameters 
corresponding to ( )lu x  and ( )lV x  will be fixe

 itera
espo o hu

)  an x , 

his st

d at all time 
during the iteration. Then, stop the iteration if  
| trace( )~(10 xPi ) - trace( 10Pi� )~(1 x ) | < İ, where İ is some 
small positive real number.  

VI. SIMULATION RESULTS  

Consider a 2nd-order polynomial nonlinear system [15].  
A. Example 1 

1 2
3

x x

2 1x x u ��
 a rmance index (5) with 

 �
 (59) 

Also, consider perfo
2 21
1 22( ) ( )q x x x �  and 0.5R  . Note that for this system the 

optimal control is known exactly in analytical form [15]. 
However, the goal is to find the optimal control using the 

rol and its Lyapunov function 
for the linearized system, as   

e the stabilizing polynomial control to be o
3rd-ord

proposed method.  
Step 1: Find the optimal cont

1 21.732lu x x � � , 2 2
1 1 2 20.866 0.866lV x x x x � �   (60) 

Step 2: Defin f 
er as 2 2 3

1 2 3 1 2 4 2x k x x k x� � . Let ( ) 1,a x3
1 1 2hu k x k x �   

8,D   and 1 2( )b x x x �  for the ns n. Then 
solve the inequality 

de ity f
(23) for jk ,  j

unct

SOSTOOLS, to obtain  

Step 3: Choose olynomial of 4th-order and selec

io
4 , using 1,...,

[ 5.936, , 4.270, 4.936]jk  � �  (61)  

( )h x as a p t 

4.270

V
T> @( ) 1 2Z x  x x , so that ( ) ( ) ( ) ( )T

l hV x V V Z x P x Z x �  � , 
where  

2

2 2 2 2
1 1 2 1 2 3 2 4 1 5 1 2 6 2

2 2 2
4 1 5 1 7 1 8 1 2 9 2

0.866 0.5

0.5 866

p x p x x p x p x p x x p x
P

p x p x x p x p x x p x2 6 2 0.p x

ª º� � � � � �
 « »

� � � � ��« »¬ ¼
 

and , 1,...,9.ip R i�   Also ) u 

Then the parameters ip , 1,...,9 i , in ( ) ( , , )l iP x P x V p

let ( ( ) ( )l hu x u K x Z x�  . 
 �  

can be found, using SOSTOOLS, to satisfy the inequality 
(37), which results in  

 (62) 

 4: Select 

[4.484, -2.904, 0.828, 2.322, 3.062,ip  
 

-6.636, 2.235,  9.608, 2.637]

Step 2 0.5
 

1T T   and let 1 1
10 20( ) ( ) ( )P x P x P x  � � �  

and 1
0 ( ) ( ).K x K x  The optimal be fou  

finding new sets of matrices 1 2( ), ( ),P x P x� �  and ( )
 control can nd by

,K x  
iteratively, using SOSTOOLS, that satisfy the inequalities  

1 2 1 20, 0, ( ) 0, ( ) 0, ( ) 0P x P x Y x¦ ! ¦ ! ! ! !� �  (63) 
After 10 iterations, the final results for ( )K x  and 

( ) ( , , )l iP x P x V p � for , 1,...,9i   are found as  

2

2 2
1 1 2 2

2 2
1 1 2

1 0.531 0.116 0.014
( )

1.732 0.116 0.014 0.126
T x x x x

K x
x x x x

ª º� � � �
 « »

� � � �« »¬ ¼
  (64) 

and 

(65)  

with the optimal polynomial control given by
2
1 2  (66) 

[3.109, -3.066, 1.231, 1.507, 1.192,ip  

-0.496, -0.040,  0.540, 1.630]
  

 
3

1 2 1
2 3

1 2 2

( ) 1.732 0.531 0.232

0.027 0.126

u x x x x x x

x x x

 � � � �

� �

 
Figure 1. Comparison of the control, states, and cost between the 
e  and the prop

onding to the 

xact solution (dashed line) osed solution (solid line) 

For the initial states (0) [1, 2]x  � , Figure 1 shows the 
optimal control, the states, and the optimal cost for the 
proposed algorithm as well as those corresp



  

exact optimal control, which is given by [15] 
3 4 2 4
1 1 1 2 1 1*( ) 1 2 2 1 1u x x x x x x x � � � � � � �  (67

Clearly the optimal solution using the proposed metho

) 

d is 
ery close to the exact optimal control solution (67).  

Consider a polynomial nonlinear system with dynamics  
3
2

v
 

B. Example 2 

3 2 2
1 2 1 1 1 20.5 2

2 1

x x x x x x x � � � ��
x x u ��

The optimal control

 (68) 

 is to be found so as to minimize the 
performance index  

e Lyapu ov. Nex  density functi

2 2 2
1 20

( ) ( )t x x u dt-  � �³  (69) 

We first linearize system (68) and find the optimal control 
and th n t, using on technique 
with ( ) 1,a x   10,

f

D   an e 

control in the form of 1 1hu k ,  
using SOSTOOLS. Then, fo ( ) ( ) ( )l hx u u K x Z x �   
and defi ial ( )hV x  to be of 4

 > @1( )

d , find  th
3

selec

1 2( ) ( )b x x x �
3 2

2 1 2x k x x� �

m u

2
3 1 2 4 2k x x k x�

r
th-order and ne th

t

e polynom

2
T

Z x x OLS to find 

( ) 0!

1 2 0.5

x .

( )V x

 The

( )Z x . Next, let 

n, use SOSTO

( )T P x Z x �( )�P x  so that 

T T  , 1 1
10 20( ) ( ) ( )P x P x P x  � � � , and 1

0 ( ) ( ).K x K x  
The optimal c  determ y finding new sets 
of matrices 1 2( ), ( ),P x P x� �  and ( ),

ontrol is then ined b
K x  iteratively, using 

SOSTOOLS, that would satisfy the inequality constrain
(63). After 14 iterations, the final control is 

2
1 2   

Figure 2 shows the results of the proposed algorithm for 
.  

ts 

3
1 2 1

2 3

( ) 2.414 2.414 0.527 0.235u x x x x x x � � � �

1 2 20.157 0.211x x x� �
(70) 

(0) [ 3,2]x  �

 
Figure 2. Solutions of the proposed algorithm 

equently, the proposed 
procedure results in an approximate global optimal control 

y, Pasadena, CA, 2000.  

loszek, R. Feeley, W. Tan, K. Sun, and A. Packard,  

. 12-15, 2005. 

, 1992. 

 “Nonlinear Optimal 

on, pp. 1710-

(8), Mar. 2000. 
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y, 2000.  

 B.M. Lewis, H.T. Tan, “Nonlinear Feedback Controllers 
and Compensators: A State-Dependent Riccati Equation Approach,” J. 
Computational Optimization and Applications, vol. 37, no. 2, pp. 177-
218, 2007. 

VII. CONCLUSIONS 
 In this paper, a computational procedure is developed 

to solve the nonlinear optimal control problem with 
guaranteed local optimality. The procedure begins with 
finding the local optimal control for the linearized system 
and the quadratic part of the given performance index. Then 
a nonlinear stabilizing polynomial control and its 
corresponding Lyapunov function are found using density 
functions. Subsequently, an iterative algorithm is employed 
to find a nonlinear optimal control that minimizes the given 
performance index (cost). Cons

 
ptimality.   with guaranteed local o
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Abstract—We consider a star-shaped network with N strings
that are coupled at one end and subject to a feedback control at
the other end. Each feedback control is switched on and off by
a time-dependent switching signal. We provide conditions on the
switching laws that guarantee the exponential decay to zero of
the system velocity. These sufficient conditions for stability ensure
that at each moment in time only one wave arrives at the coupling
note of the network or, alternatively, that at each moment in time
only one wave is reflected at the controlled ends.

I. INTRODUCTION
We consider a star-shaped network of N strings of finite

length that are governed by the wave equation. At the boundary
point zero the strings are coupled. At the other end of each
string a feedback law is prescribed that requires the time
derivative at this point to be proportional to the space derivative
at this point. For a single string, this feedback law has been
considered in [5], and it has been shown that the energy
vanishes in finite time. In [7] it is shown that the result from
[5] is stable in the sense that also with moving boundaries,
the energy is driven to zero in finite time. In this paper we
show that also on the network, the energy is driven to zero in
finite time if the feedback control is active on all N boundary
nodes for a sufficiently long time. Our particular interest in this
paper is the question: What happens if at one of the nodes the
feedback control becomes inactive? This need not be a fixed
boundary node on the whole time interval but the inactivity
may switch between different boundary nodes in time. The
idea is that at each moment, it may happen that one of the
N controlers is inactive, and we still want to have a stable
system.
The boundary control of the wave equation has been studied

by many authors (see e.g. [17], [16], [11], [12], [2], [20]
and the references therein). A problem of optimal switching
boundary control of a single string to rest in finite time has
been considered in [8], where a single string with boundary
control at both ends has been considered and, at each moment,
at most one of the controls is allowed to be active. The
corresponding problem for the heat equation has been analysed
in [19] using an adapted adjoint calculus.
Networks of strings have been considered for example in

[14], [15], [1], [13], [18] and an overview is given in [6].

In these works about networks, the nodes where a feedback
control acts on the system are constant during the control
process.
In contrast to this situation, in this paper we consider a

system where these nodes may change as time proceeds. We
are interested in the question: How many feedback controls
must be switched on at each moment in time to achieve
exponential decay? We show that N �1 controls are sufficient.
It is essential that the choice of the inactive control need not
be constant but can vary in a quite general way with time.
In a similar spirit, the notion on how often the control

should be active in order to stabilize a string (with interior
damping) was studied in [9]. Analogous questions have been
addressed in [3], [4] for finite dimensional systems.
This paper has the following structure: First we define the

problem of switching feedback boundary stabilization of a
network of strings. Then we state our main results, which
are two sufficient conditions for exponential decay of the
derivatives in our system. First we state a backwards in time
condition and then we state a forward condition.
For the proof of the backwards condition, we transform

the initial boundary value problem in such a way that we can
state it in terms of Riemann invariants. We show that if at each
moment in time only one wave arrives at the coupling note of
the network, the partial derivatives of the solution go to zero
exponentially fast. This is the case if at each moment, at most
one of the feedback nodes is switched off.
The proof of the forward condition is stated in the last part

of the paper. It is based upon a Lyapunov function and thus
uses a completely different method.

II. THE SYSTEM
Let N � 3 and consider N strings of length Li > 0 (i 2

{1, 2, . . . , N}). Define L = max{L
1

, L
2

, . . . , LN}. Let the
corresponding wave speed c > 0 be given. For i 2 {1, . . . , N}
define the sets ⌦i = (0, 1) ⇥ (0, Li). Define the set

B = {(y(i)
0

, y(i)
1

)N
i=1

: @xy(i)
0

2 L1(0, Li), y
1

2 L1(0, Li),

i 2 {1, ..., N}, y(i)
0

(0) = y(j)
0

(0), i, j 2 i 2 {1, ..., N}}.

For i 2 {1, . . . , N}, let �i : (0, 1) ! {0, 1} be a
measurable function. The equation �i(t) = 0 will indicate that
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at time t the feedback at the end of string i is not active,
whereas �i(t) = 1 means that the feedback is active.
For (y(i)

0

, y(i)
1

)N
i=1

2 B we consider the system (S) given
by the equations

v(i)(0, x) = y(i)
0

(x), x 2 (0, Li), i 2 {1, . . . , N} (1)

v(i)
t (0, x) = y(i)

1

(x), x 2 (0, Li), i 2 {1, . . . , N} (2)

v(i)
tt (t, x) = c2 v(i)

xx(t, x), (t, x) 2 ⌦i, i 2 {1, . . . , N} (3)

v(i)(t, 0) = v(j)(t, 0), t 2 (0, 1), i, j 2 {1, . . . , N} (4)

v(1)

x (t, 0) + v(2)

x (t, 0) + · · · + v(N)

x (t, 0) = 0, t 2 (0, 1) (5)

cv(i)
x (t, Li) = ��i(t) v(i)

t (t, Li), t 2 (0, 1), i 2 {1, . . . , N}.
(6)

III. MAIN RESULTS
In this section we state the main results of this paper, which

provide conditions on the switching functions �i that guarantee
exponential decay of the derivatives in system (S).
Theorem 1: [Switching feedback stabilization of (S): Back-

ward Condition] Consider system (S) defined in (1)–(6). Let
� = L/c.
If

NX

i=1

�i

✓
t � Li

c

◆
� N � 1 almost everywhere on (0, 1) (7)

then the system state converges exponentially fast to a constant
state, in the sense that for t almost everywhere on (0, 1) we
have the inequality

ess sup{|v(i)
x (t, x)|, |v(i)

t (t, x)| : x 2 (0, Li), i 2 {1, ..., N}}
 C exp

⇣
ln(f)

2� t
⌘

(8)
where f = max{ 2

N , N�2

N }. The decay is uniform with respect
to �, that is the constant C in (8) is independent of the choice
of � verifying (7).
Proof. The proof is given in Section V.
Theorem 2: [Switching feedback stabilization of (S): For-

ward Condition] Consider system (S) defined in (1)–(6).
If

NX

i=1

�i

✓
t +

Li

c

◆
� N � 1 almost everywhere on (0, 1) (9)

then the energy of the state converges exponentially fast to
zero, in the sense that

E(t) =
1

2

NX

i=1

Z Li

0

 
v(i)

t (t, x)2

c2

+ v(i)
x (t, x)2

!
dx

satisfies
E(t)  C

1

exp (�C
2

t)E(0), (10)

for some C
1

, C
2

> 0. The decay is uniform with respect to �
and the initial condition, that is, the constants C

1

and C
2

in
(10) are independent of (y(i)

0

, y(i)
1

)N
i=1

and of the choice of �
verifying (9).

Proof. The proof is given in Section VI.
Remark. Conditions (7) and (9) in Theorems 1 and 2,

respectively, cannot in general be relaxed by taking N � 2
instead of N � 1. Indeed, let us consider the case in which L

1

and L
2

are rationally dependent, that is, L
1

/L
2

2 Q. It is well
known that there exist non-constant periodic solutions to the
uncontrolled wave equation on the network (with Neumann
boundary conditions) which are supported on the union of
the first two strings. They are still solutions of (S), therefore,
provided that �

1

, �
2

⌘ 0. We proved the existence of solutions
of (S) with

PN
i=1

�i(t ± Li/c) ⌘ N � 2 that do not converge
to any constant function.

IV. TRANSFORMATION OF THE PROBLEM
In this section we solve the initial boundary value problem

(1)–(6) for given initial data. Let (y(i)
0

, y(i)
1

)N
i=1

2 B be given.
We write the solution of the wave equation in the form of the
d’Alembert solution

v(i)(t, x) = ↵i(x + ct) + �i(x � ct), (11)

which means that we describe our solution in terms of the
Riemann invariants or, in other words, as the sum of travel-
ing waves. For an introduction to waves see [10]. For i 2
{1, . . . , N} the initial conditions (1), (2) yield the equations

y(i)
0

(x) = ↵i(x) + �i(x), x 2 (0, Li) (12)
y(i)
1

(x) = c [↵0
i(x) � �0

i(x)], x 2 (0, Li). (13)

Hence we have

y(i)
0

(x) + (1/c)

Z x

0

y(i)
1

(s) ds = 2↵i(x) � k(i)
1

, (14)

y(i)
0

(x) � (1/c)

Z x

0

y(i)
1

(s) ds = 2�i(x) + k(i)
1

, (15)

for x 2 (0, Li), where the real constants k(i)
1

can be chosen
as zero, which implies

↵i(x) =
1

2
y(i)
0

(x) +
1

2c

Z x

0

y(i)
1

(s) ds, (16)

�i(x) =
1

2
y(i)
0

(x) � 1

2c

Z x

0

y(i)
1

(s) ds, (17)

for x 2 (0, Li). These representations imply that ↵0
i, �0

i 2
L1(0, Li). We have shown that if (11) satisfies the initial
conditions (1), (2) then with the normalization k(i)

1

= 0 (which
is equivalent to ↵i(0) = �i(0)) equations (16), (17) hold. The
converse also holds: If ↵i, �i satisfy (16), (17), the initial
conditions (1), (2) are valid for v(i) given by (11).
Writing the boundary condition

cv(i)
x (t, Li) = ��i(t) v(i)

t (t, Li)

in terms of ↵0
i and �0

i in the two cases �i = 0 and �i = 1,
yields the equation

↵0
i(ct) =


�i

✓
t � Li

c

◆
� 1

�
�0

i (2Li � ct) , t 2
✓

Li

c
, 1
◆

.

(18)



The node conditions (4), (5) imply that
0

BBB@

�0
1

(�ct)
�0

2

(�ct)
...

�0
N (�ct)

1

CCCA
= A

0

BBB@

↵0
1

(ct)
↵0

2

(ct)
...

↵0
N (ct)

1

CCCA
(19)

with the orthogonal symmetric reverberation matrix

A =
N � 2

N

0

BBBBB@

1 2

2�N
2

2�N . . . 2

2�N
2

2�N 1 2

2�N . . . 2

2�N
...

. . .
...

2

2�N . . . 2

2�N 1 2

2�N
2

2�N
2

2�N . . . 2

2�N 1

1

CCCCCA
. (20)

Equations (18) and (19), together with the initial conditions
(16) and (17), define ↵ and � uniquely once the switching
laws �i are given. Moreover, for what concerns their regularity,
an induction argument shows that ↵0

i 2 L1(0, 1) and �0
i 2

L1(�1, Li). Let us check that, for ↵ and � constructed in
this way, the functions v(i) obtained through (11) solve system
(S). First we have
0

BBBB@

1

cv(1)

t (t, 0)
1

cv(2)

t (t, 0)
...

1

cv(N)

t (t, 0)

1

CCCCA
=

0

BBB@

↵0
1

(ct) � �0
1

(�ct)
↵0

2

(ct) � �0
2

(�ct)
...

↵0
N (ct) � �0

N (�ct)

1

CCCA
=

=
N � 2

N

0

B@

2

N�2

2

N�2

. . . 2

N�2

...
...

...
2

N�2

2

N�2

. . . 2

N�2

1

CA

0

BBB@

↵0
1

(ct)
↵0

2

(ct)
...

↵0
N (ct)

1

CCCA
,

which implies the equation v(i)
t (t, 0) = v(j)

t (t, 0) for t 2
(0, 1) and i, j 2 {1, . . . , N}. Due to the definition of the
set B, this implies that (4) is valid. Moreover, we have
0

BBBB@

v(1)

x (t, 0)

v(2)

x (t, 0)
...

v(N)

x (t, 0)

1

CCCCA
=

0

BBB@

↵0
1

(ct) + �0
1

(�ct)
↵0

2

(ct) + �0
2

(�ct)
...

↵0
N (ct) + �0

N (�ct)

1

CCCA
=

=

0

BBBB@

2N�2

N � 2

N . . . � 2

N

� 2

N

. . .
...

...
. . . � 2

N

� 2

N . . . � 2

N
2N�2

N

1

CCCCA

0

BBB@

↵0
1

(ct)
↵0

2

(ct)
...

↵0
N (ct)

1

CCCA
,

which implies the equation v(1)

x (t, 0) + v(2)

x (t, 0) + · · · +
v(N)

x (t, 0) = 0 for t 2 (0, 1), hence (5) holds.

V. PROOF OF THEOREM 1

We start the proof of Theorem 1 by the following auxiliary
result.

Lemma 3: Assume that condition (7) is satisfied. Then the
following inequality holds for all natural numbers k:

ess sup
s>2kL

max
i2{1,...,N}

{|↵0
i(s)|, |�0

i(�s)|}


p

N fkess sup
s2(0,2L)

max
i2{1,...,N}

|↵0
i(s)| (21)

where f = max{ 2

N , N�2

N }.
Moreover, for all t � (2k + 1)� the following inequality

holds:

ess sup{|v(i)
x (t, x)|, |v(i)

t (t, x)| : x 2 (0, Li), i 2 {1, ..., N}}
 max{1, c}

⇣
1 +

p
N
⌘
fk maxj2{1,...,N} k↵0

j(s)kL1
(0,2L)

.

(22)
Proof. The idea of the proof is that for all s > 2kL we can

go backwards in (0, s) until a point in the interval (0, 2L) is
reached in at least k steps that are less than or equal to 2L. In
each of these steps, the essential supremum is reduced at least
by a factor f .
This can be seen in the following way. Condition (7) implies

that there exists at most one number k 2 {1, . . . , N} with
↵0

k(ct) 6= 0. For the other N �1 dervivatives we have ↵0
j(ct) =

0, j 6= k. Due to (18), we have the inequality

|↵0
k(ct)|  |�0

k(�c(t � 2Lk/c))|.
Due to (19) we have

0

BBB@

�0
1

(�ct + 2Lk)
�0

2

(�ct + 2Lk)
...

�0
N (�ct + 2Lk)

1

CCCA
= Aw.

If we apply (18) for the time t̃ = t � 2Lk/c, we see that
also the vector

w =

0

BBB@

↵0
1

(ct � 2Lk)
↵0

2

(ct � 2Lk)
...

↵0
N (ct � 2Lk)

1

CCCA

can have at most one nonzero component.
On account of the definition (20) of the matrix A this yields

the inequality

|�0
k(�ct + 2Lk)|  f max

l2{1,...,N}
|↵0

l(ct � 2Lk)|.

Hence we have the inequality

max
l2{1,...,N}

|↵0
l(ct)| = |↵0

k(ct)|  |�0
k(�c(t � 2Lk/c))|

 f max
l2{1,...,N}

|↵0
l(ct � 2Lk)|.

For s
0

almost everywhere in (2L, 1) this yields the inequality

max
i2{1,...,N}

{|↵0
i(s0

)|}  f max
i2{1,...,N}

k↵0
i(s)kL1

(0,s0�ˆL)

,

where
L̂ = min{L

1

, . . . , LN}.



By induction for |↵0
i(s)| we obtain the inequality

ess sup
s>2kL

max
i2{1,...,N}

{|↵0
i(s)|}  fk max

i2{1,...,N}
k↵0

i(s)kL1
(0,2L)

.

(23)
Due to (19) and the fact that the matrix A is orthogonal we

have

max
l2{1,...,N}

|�0
l(�s)| 

vuut
NX

l=1

|�0
l(�s)|2 =

vuut
NX

l=1

|↵0
l(s)|2


p

N max
l2{1,...,N}

|↵0
l(s)|

hence also the inequality (21) including the factor
p

N for
|�0

i(s)| follows.
If x+ct � 2kL and x�ct  �2kL for all i 2 {1, 2, .., N}

we have

max{|v(i)
x (t, x)|, |v(i)

t (t, x)|}
 max{1, c} [|↵0

i(x + ct)| + |�0
i(x � ct)|]

 max{1, c}
⇣
1 +

p
N
⌘

fkess sup
s2(0,2L)

max
j2{1,...,N}

|↵0
j(s)|.

This implies inequality (22). ⇤
In order to complete the proof of Theorem 1 let us define

⇢(t) as

ess sup{|v(i)
x (t, x)|, |v(i)

t (t, x)| : x 2 (0, Li), i 2 {1, . . . , N}}.

Due to (??) we have

⇢(t)  max{1, c} ess sup{|↵0
i(x + ct)| + |�0

i(x � ct)| :
x 2 (0, Li), i 2 {1, . . . , N}}.

We claim that ⇢ satisfies

⇢(t)  C
0

, t 2 (0, 3�), (24)
⇢(t)  C

1

fk, t > (2k + 1)�, k 2 N (25)

with C
0

and C
1

only depending on the initial condition
(y(i)

0

, y(i)
1

)N
i=1

and not on the choice of � verifying (7).
For x 2 (0, Li), the values of ↵i(x) are given by (16) and

the values of �i(x) are given by (17). Hence the constant

C⇤ = 2 max{1, c} ess sup{|↵0
i(x)|, |�0

i(x)| :
x 2 (0, Li), i 2 {1, . . . , N}}

only depends on the initial condition and satisfies ⇢(0)  C⇤.
For x 2 (Li, 2Li), equation (18) yields the inequality

|↵0
i(x)|  |�0

i(2Li � x)|  C⇤/2, x 2 (Li, 2Li).

Hence for all x 2 (0, 2Li) we have |↵0
i(x)|  C⇤/2. Since A

has the matrix norm kAk1 = 3 � 4

N , the node condition (19)
implies that

|�0
i(�ct)| 

✓
3 � 4

N

◆
max{|↵0

j(ct)| : j = 1, . . . , N} (26)

for t 2 (0, 1).
Moreover, due to (18) we have

|↵0
i(x)| 

✓
3 � 4

N

◆
max{|↵0

j(x � 2Li)| : j = 1, . . . , N}

for x > 2Li. Hence, by recurrence, if x < 2kL̂ for some
integer k, then

|↵0
i(x)|  C⇤

2

✓
3 � 4

N

◆k�1

.

As a consequence, if t < 2kL̂/c and x 2 (0, Li), then

|↵0
i(ct + x)|  C⇤

2

✓
3 � 4

N

◆k

,

|�0
i(x � ct)|  C⇤

2

✓
3 � 4

N

◆k

,

where the second inequality uses (26). It follows that

⇢(t)  max{1, c}C⇤

✓
3 � 4

N

◆k

, if t < 2kL̂/c.

Now we choose k̄ such that 3L < 2k̄L̂ and set

C
0

= max{1, c}C⇤

✓
3 � 4

N

◆
¯k

.

If t > (2k + 1)� for some integer k inequality (22) implies

⇢(t)  max{1, c}
⇣
1 +

p
N
⌘

max
j2{1,...,N}

k↵0
j(s)kL1

(0,2L)

fk

 max{1, c}
⇣
1 +

p
N
⌘

C
0

fk.

Hence we choose

C
1

= max{1, c}
⇣
1 +

p
N
⌘

C
0

.

Since ⇢(t) satisfies (24) and (25), it can be bounded from
above by
f�2 max{C

0

, C
1

} exp
⇣

ln(f)

2� t
⌘
. ⇤

VI. PROOF OF THEOREM 2
Let " > 0 and define, for i = 1, . . . , N ,

⌅i =

8
<

:x 2 RN :
X

j 6=i

x2

j < "x2

i

9
=

; .

Hence, ⌅i is a cone with axial symmetry with respect to the
axis spanned by the i-th vector of the canonical basis of RN .
Let ⌅ = [N

i=1

⌅i.
Lemma 4: There exists k

1

> 0 depending only on " such
that, if x belongs to RN \ ⌅, then

min
i=1,...,N

X

j 6=i

x2

j � k
1

kxk2. (27)

Proof. Let i be the index achieving the minimization in
(27). Since x 62 ⌅i, then

X

j 6=i

x2

j � 1

2

X

j 6=i

x2

j +
"x2

i

2
� min

✓
1

2
,
"

2

◆
kxk2

and the lemma is proved. ⇤
Define ⇥ as the set of non-negative times t such that

�0(�ct) 2 ⌅.



Lemma 5: Let k
2

2 (0, min{2, N � 2}/N). Then, for
every " > 0 small enough, almost every t 2 ⇥ and every
i = 1, . . . , N ,

|↵0
i(ct)| � k

2

k↵0(�ct)k. (28)

Moreover, for almost every t 2 {⌧ | ⌧ � 4�, ⌧ 2 ⇥}, either
↵0(ct) = 0 or t � 2Li 2 ⇥ for at most one i 2 {1, . . . , N}
and �l(t � Ll/c) = 0 for every l 2 {1, . . . , N}.
Proof. Let

⌥ = {x 2 RN : |xi| � k
2

kxk for every i = 1, . . . , N}.

In order to prove the first part of the statement, we have
to show that for every " > 0 small enough and almost every
t 2 ⇥, ↵0(ct) 2 ⌥.
Since A is idempotent and because of (19), ↵0(ct) 2 A⌅

for almost every t 2 ⇥. Notice that A⌅ is the union of the N
cones with axial symmetry with respect to the columns of A
and with the same aperture as the ⌅i’s.
We have to show that for every " > 0 small enough A⌅ is

contained in ⌥. It suffices to notice that the boundary of ⌥ is
invariant by multiplication by a scalar and that the each vector
corresponding to a column of A is in the interior of ⌥. (Indeed,
if x is a column of A, then kxk = 1 and |xi| = (N � 2)/N or
|xi| = 2/N .) Then for " small enough every vector of A⌅\{0}
belongs to the interior of ⌥.
As for the second part of the statement, take t 2 ⇥ such

that t � 4� and ↵0(ct) 6= 0. Because of the first part of the
lemma, ↵0

l(ct) 6= 0 for every l 2 {1, . . . , N}. It follows from
(18) that �0

l(2Ll � ct) 6= 0 and �0
l(2Ll � ct) = 0 for every

l 2 {1, . . . , N}.
Assume now by contradiction that t�2Li/c, t�2Lj/c 2 ⇥

with i 6= j. In particular, both �0
i(2Li � ct) and �0

j(2Lj � ct)
are nonzero. Hence, ↵0(ct�2Li) and ↵0(ct�2Lj) are nonzero.
Since t�2Li/c, t�2Lj/c 2 ⇥, we can apply again the first part
of the lemma and (18), deducing that �i(t � (2Lj + Li)/c) =
�j(t � (2Li + Lj)/c) = 0.

t � 2Li/c 2 ⇥

LjLi0

�j(t � Lj/c) = 0

�i(t � Li/c) = 0

t 2 ⇥

�i(t � (2Lj + Li)/c) = 0

�j(t � (2Li + Lj)/c) = 0

t � 2(Li + Lj)/c

t � 2Lj/c 2 ⇥

Fig. 1. Contradiction argument for t � 2Li/c, t � 2Lj/c 2 ⇥.

This contradicts condition (9) when we take as t the time
t � 2(Li + Lj)/c and concludes the proof of the lemma. ⇤

Let us complete the proof of Theorem 2.
The time-derivative of the energy E(t) can be computed

using equations (3)–(6) and is given by

Ė(t) = �1

c

NX

i=1

�i(t)
⇣
v(i)

t (t, Li)
⌘

2

for almost every t. In particular, E is non-increasing. Notice
that v(i)

t (Li) = c(↵0
i(Li + ct) � �0

i(Li � ct)) (see (11)) and
that ↵0

i(Li + ct) = 0 if �i(t) = 1 (see (18)). Therefore,

Ė(t) = �c
NX

i=1

�i(t)�i(Li � ct)2.

Let

F (t) =
NX

i=1

E

✓
t +

Li

c

◆
.

Then

Ḟ (t)  �c
NX

i=1

�i

✓
t +

Li

c

◆
�i(�ct)2.

Lemma 4 and condition (9) guarantee that if t 62 ⇥, then

Ḟ (t)  �ck
1

k↵0(ct)k2.

On the other hand, according to Lemma 5, for almost every
t 2 ⇥ such that t � 4�, either ↵0(ct) = 0 or for all but possibly
one i 2 {1, . . . , N} we have
Ḟ (t � 2Li/c)  �ck

1

k↵0(ct � 2Li)k2

= �ck
1

k�0(2Li � ct)k2

 �ck
1

|�0
i(2Li � ct)|2

= �ck
1

|↵0
i(ct)|2  �ck

1

k2

2

k↵0(ct)k2.

Let G(t) = F (t) +
PN

i=1

F (t � 2Li/c). Then, for almost
every t � 4�,

Ġ(t)  �(N � 1)ck
1

k2

2

k↵0(ct)k2, (29)

where we used the inequality (N � 1)k2

2

 1.
Notice that

2(↵0
i(x + ct)2 + �0

i(x � ct)2) =
= (↵0

i(x + ct) + �0
i(x � ct))2 + (↵0

i(x + ct) � �0
i(x � ct))2

= v
(i)
t (t,x)

2

c2 + v(i)
x (t, x)2.

Thus we have

E(t) 
Z L

0

�k↵0(x + ct)k2 + k�0(x � ct)k2

�
dx

=

Z L

0

�k↵0(x + ct)k2 + k↵0(ct � x)k2

�
dx

= c

Z t+�

t��

k↵0(cs)k2ds.

If t � 5� this and (29) imply the inequality

G(t + �) � G(t � �)  �(N � 1)k
1

k2

2

E(t).

By monotonicity of E and definition of G,

G(t)  (N + 1)F (t � 2�)  N(N + 1)E(t � 2�)



so that

G(t + �) � G(t � �)  � N � 1

N(N + 1)
k
1

k2

2

G(t + 2�).

Hence G(t) decays exponentially to zero as t goes to
infinity. Moreover, G(5�)  N(N + 1)E(0). Since k

1

, k
2

,
N and � do not depend on the initial conditions nor on �,
we have that G(t)  C

1

exp (�C
2

t)E(0) with C
1

and C
2

independent of (y(i)
0

, y(i)
1

)N
i=1

and of the choice of � verifying
(9).
Inequality (10) follows and this concludes the proof of

Theorem 2. ⇤
VII. CONCLUSION

For a single string it is well known that a velocity feedback
at one end with a special feedback parameter steers the solution
to a constant state in finite time; the semigroup describing
the corresponding solution is nilpotent. In this paper we
prove that a similar situation occurs for star-shaped networks
with boundary feedback at all boundary nodes: The partial
derivatives of the solution vanish after finite time and the
system state becomes constant.
If the feedback is switched off at one of the boundary nodes

in such a way that at each moment of the delayed time axes
shifted by the corresponding travel time of the signals to the
coupling node at least N�1 of the feedback controls are active,
then the partial derivatives of the solution decay exponentially
fast. Note that the node where the control is switched off need
not be constant but can vary with time.
This result may be interpreted in the following way: In the

boundary feedback stabilization of a star-shaped network the
exponential decay property is not destroyed if at each moment
one of the feedback controllers does not work.
It is an open question whether the corresponding result

holds for a tree-shaped network of strings with control at all
boundary nodes. For the analysis of this problem, the most
promising approach appears to be the consideration of the
dynamics of the energy on the whole tree.
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Abstract—The problem of robust controller design under
PWM feedback is discussed in terms of Filippov’s average model
where control variable is a duty ratio function. The proposed
controller is an extension of PI/PID control scheme under PWM
feedback. The presented design methodology guarantees desired
output transient performance indices by inducing of two-time-
scale motions in the closed-loop system. Stability conditions
imposed on the fast and slow modes and sufficiently large mode
separation rate between fast and slow modes can ensure that
the full-order closed-loop nonlinear system achieves the desired
properties in such a way that the output transient performances
are desired and insensitive to external disturbances and plant’s
parameter variations. The method of singular perturbations is
used throughout the paper in order to get explicit expressions
for evaluation of the controller parameters. Simulation results of
tracking control for magnetic levitation system are presented as
an example of the application for the discussed PWM control
design methodology.

I. INTRODUCTION

There are many control systems with pulse-width modula-
tion (PWM) in feedback loop that are widely used in appli-
cations where the most important ones are power converters
and motor control systems [1]-[4]. The great improvement
of power electronic switching device characteristics and the
drastic decreasing of switching device production cost give
a possibility to provide a high sampling frequency in PWM
control systems. Therefore, among various PWM techniques
the principle of equivalent areas [5] is efficiently used where
the continuous-time or discrete-time control algorithms are
designed at the beginning, and then ones should be re-designed
in order to be implemented in a PWM feedback loop [6].

Theoretical problems of stability and oscillations for non-
linear pulse-modulated systems are investigated based on av-
eraging method and Lyapunov function method with help of
V.A.Yakubovich’s frequency theorem in [7], [8].

The existence of an equivalence between sliding modes
of variable structure control and PWM control responses
under the high frequency sampling gives other possibilities
for PWM controller design [9]. It was shown in [10], if PWM
controller is not saturated and the sampling frequency tends
to infinity, then the response of discontinuously controlled
system coincides with Filippov’s average model [11] where
control variable is represented by duty ratio function. Hence,
various type of continuous-time or discrete-time controllers
can be designed based on the Filippov’s average model, for

instance, proportional-integral (PI) or proportional-integral-
derivative (PID) controllers.

Problems of PI (PID) control system analysis and design
are treated in a huge set of publications, for instance, [12],
[13], that are only few ones. For example, the well known
Ziegel-Nichols tuning rules [14] or its various modifications
are widely used for selection of controller parameters. In the
presence of plant uncertainty, in order to fetch out the best
PI and PID controllers in accordance with the assigned design
objectives, a set of tuning rules, identification and adaptation
schemes has been developed [15], [16]. The main disadvantage
for the most part of the existing procedures on PI or PID
controller design is that the desired transient performances can
not be guaranteed in the presence of nonlinear plant parameter
variations and unknown external disturbances.

The objectives of this paper are the analysis and design
of control systems with PWM feedback loop for nonlinear
plant model in the presence of plant’s parameter variations,
and unknown external disturbances. The discussed approach
to controller design is based on the design methodology
presented in [17], that guarantees desired output transients by
inducing of two-time-scale motions in the closed-loop system.
Stability conditions imposed on the fast and slow modes and
sufficiently large mode separation rate between fast and slow
modes can ensure that the full-order closed-loop nonlinear
system achieves the desired properties in such a way that
the output transient performances are desired and insensitive
to external disturbances and plant’s parameter variations. The
stability of fast-motion transients in the closed-loop system is
provided by proper selection of controller parameters, as well
as slow-motion transients correspond to the stable reference
model of desired mapping from reference input into controlled
output. The method of singular perturbations [18]-[23] is used
throughout the paper.

The paper is a continuation of [24] and one is organized as
follows. First, the control design objectives are stated. Second,
the Filippov’s average model for nonlinear nonaffine-in-control
system under high-frequency sampling is introduced. Third, the
generalized structure of feedback controller, which is called as
a universal controller, for nonlinear systems of an arbitrary de-
gree is presented where the proposed controller is an extension
of PI/PID control scheme. Fourth, the two-time-scale motions
analysis of the closed-loop system properties is discussed. Such
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questions as conditions for not saturated behavior of pulse-
width modulator and attenuation of high-frequency chattering
caused by the switching mode of the pulse-width modulator
are addressed as well. Finally, simulation results of tracking
control for magnetic levitation system are presented as an
example of the application for the proposed PWM control
design methodology.

II. CONTROL PROBLEM STATEMENT

Consider the SISO nonlinear system of the following form:

x(n) = f(X, w, u) (1)

where X = [x, x(1), . . . , x(n�1)]T is the state vector and x is
the measurable output of the system (1).

It is assumed that f(X, w, u) is an unknown scalar con-
tinuous bounded function of X , w, and u on a bounded set
⌦X,w,u := ⌦X ⇥ ⌦w ⇥ ⌦u.

Remark 1: The discussed nonlinear system given by (1), in
general, can be nonaffine-in-control system, that is an explicit
inversion of the function z = f(X, w, u) with respect to
control variable u is impossible for given z, x, and w. For
instance, the system given by ẋ = x3 + u(1 � u2) is the non-
affine in control one.

Let u(t) is the scalar control variable, where u takes one
of two possible values in ⌦u := {u�, u+}.

Assume that the pulse-width modulated control for the
system (1) is defined as the switching function u(t) given by

u =

⇢
u+ for t� < t  t� + �(t�)Ts

u� for t� + �(t�)Ts < t  t� + Ts
(2)

where Ts is the sampling period of the pulse-width modulation,
� is the duty ratio function which takes values in the interval
[0, 1], �(t�) is the duty ratio function at the time instance t�,
t� = �Ts, and � = 0, 1, 2, . . ..

A control system is being designed so that the condition

lim
t�1

x(t) = r (3)

holds, where r = const. Moreover, the output transients
of x(t) should have the desired performance indices. These
transients should not depend on nonlinearity of the system (1),
the external disturbance or varying parameter represented by
w(t).

The block diagram of the discussed control system is shown
in Fig. 1, where the plant (P) is represented by (1), the pulse-
width modulator (PWM) is given by (2), and the controller (C)
should by designed later on.

Fig. 1. Block diagram of the control system.

III. CONTROL VIA TIME-SCALE SEPARATION

A. Filippov’s Average Model

Denote

f+(X,w) := f(X, w, u+), f�(X, w) := f(X, w, u�).

Then the system (1)-(2) can be rewritten as

x(n) = ⌫f+(X, w) + (1 � ⌫)f�(X, w) (4)

where ⌫ is defined as the ideal switching function

⌫ =

⇢
1 for t� < t  t� + �(t�)Ts

0 for t� + �(t�)Ts < t  t� + Ts
(5)

Assumption 1: The pulse-width modulator given by (2) is
not saturated, that is the following condition 0 < � < 1 holds.

Assumption 2: The sampling period Ts is assumed to be
sufficiently small in comparison with time constants associated
with the dynamics of the system (1).

In accordance with Assumptions 1 and 2, by following
to the Filippov’s approach [11], the geometric approach to
PWM control [9], and Theorem A.1 in the paper by [10], the
response of discontinuously controlled system given by (1) and
(2) coincides with Filippov’s average model

x(n) = �f+(X, w) + (1 � �)f�(X,w) (6)

where � is the duty ratio and � 2 (0, 1) by Assumption 1.
The closed-loop system properties will be treated below

based on the average model (6), that is rewritten as

x(n) = f�(X, w) + [f+(X,w) � f�(X, w)]�. (7)

Remark 2: The nonlinear non-affine in control system (1)
with the high-frequency pulse-width modulator (2) yields the
average model (7) which is affine in control system.

B. Control Law

By following to the design methodology [17], [24], consider
the universal controller given by

µq �(q) + dq�1

µq�1�(q�1) + · · · + d
1

µ �(1)

= k[F (X, r) � x(n)] (8)

where µ is the small positive parameter, q � n, and

F (X, r) = �a0

n�1

T
x(n�1) � · · · � a0

1

Tn�1

x(1) +
1

Tn
[r � x].

The controller parameters a0

n�1

, . . . , a0

1

, T are selected such
that the polynomial

Tnsn + a0

n�1

Tn�1sn�1 + · · · + a0

2

T 2s2 + a0

1

Ts + 1 (9)

has the desired root distribution inside the left part of the
s-plane, where roots of the polynomial (9) are defined by
the requirements imposed on the desired output transient
performance indices of x(t) in the system (1).



Remark 3: The control law (8) can be expressed in terms
of transfer functions, that is

�(s) =
k

µ(µq�1sq�1 + dq�1

µq�2sq�2 + · · · + d
2

µs + d
1

)

⇥
⇢

[r(s)�x(s)]

sTn
�(sn�1+· · ·+ a0

2

s

Tn�2

+
a0

1

Tn�1

)x(s)

�

where this controller is proper and one is implemented without
an ideal differentiation of x(t) or r(t) due to q � n.

Remark 4: The conventional PI controller results from (8)
when q = n = 1. The PI controller with an additional lowpass
filtering results from (8) when q > n = 1. The proper PID
controller with an additional lowpass filtering results from (8)
when q > n = 2.

Remark 5: If q � n, then the controller (8) can be rewritten
as the system of state space differential equations given by

U̇� = A
c

U� + B
c

x + E
c

r

� = C
c

U� + D
c

x
(10)

where U� 2 Rq . Note, the relation between the duty ratio
function �(t) and the control variable u(t) is defined by the
switching function (2).

C. Time-Scale Separation

Consider the closed-loop system equations given by the
average model (7) and controller (8), that are

x(n) = f�(X, w) + [f+(X, w) � f�(X, w)]�

µq �(q) + dq�1

µq�1�(q�1) + · · · + d
1

µ �(1)

= k[F (X, r) � x(n)].

The replacement of x(n) in (8) by the right member of (7)
yields the closed-loop system equations in the form

x(n) = f�(X,w) + [f+(X, w) � f�(X, w)]�

µq �(q) + dq�1

µq�1�(q�1) + · · · + d
1

µ �(1) (11)
+k[f+(X, w) � f�(X,w)]� = k[F (X, r) � f�(X, w)].

Denote x
1

= x, x
2

= x(1), . . ., xn = x(n�1), �
1

= �, �
2

=
µ�(1), . . ., �q = µq�1 �(q�1). Then the closed-loop system
(11) may be rewritten as the following system of singularly
perturbed differential equations:

ẋi = xi+1

, i = 1, 2, . . . , n � 1

ẋn = f�(X,w) + [f+(X, w) � f�(X, w)]�
1

µ �̇j = �j+1

, j = 1, 2, . . . , q � 1 (12)
µ �̇q = �k[f+(X,w) � f�(X, w)]�

1

� d
1

�
2

� · · · � dq�1

�q + k[F (X, r) � f�(X,w)]

where two-time-scale motions are forced as µ ! 0. Hence, fast
and slow modes are artificially forced in the closed-loop system
and the time-scale separation between these modes depends on
the parameter µ.

In order to enable usage of the standard technique for two-
time-scale motions analysis, take t = µt

0

. Hence, from (12),

the system
dxi

dt
0

= µxi+1

, i = 1, 2, . . . , n � 1

dxn

dt
0

= µ[f�(X, w) + [f+(X,w) � f�(X, w)]�
1

]

d�j

dt
0

= �j+1

, j = 1, 2, . . . , q � 1 (13)

d�q

dt
0

= �k[f+(X, w) � f�(X, w)]�
1

� d
1

�
2

� · · · � dq�1

�q + k[F (X, r) � f�(X,w)]

results. By setting µ = 0 we get the system given by
dxi

dt
0

= 0, i = 1, 2, . . . , n

d�j

dt
0

= �j+1

, j = 1, 2, . . . , q � 1 (14)

d�q

dt
0

= �k[f+(X, w) � f�(X, w)]�
1

� d
1

�
2

� · · · � dq�1

�q + k[F (X, r) � f�(X, w)]

Then the inverse replacement t
0

= µ�1t yields the fast-motion
subsystem (FMS) given by

µ �̇j = �j+1

, j = 1, 2, . . . , q � 1 (15)
µ �̇q = �k[f+(X, w) � f�(X, w)]�

1

� d
1

�
2

� · · · � dq�1

�q + k[F (X, r) � f�(X, w)]

where X and w are treated as the frozen variables during the
transients in (16). Finally, the equations (15) can be rewritten
as

µq �(q) + dq�1

µq�1�(q�1) + · · · + d
1

µ �(1)

+k[f+(X, w)�f�(X, w)]� = k[F (X, r)�f�(X, w)]. (16)

Assumption 3: Assume that k, d
1

,. . . , dq , u+, and u� are
selected such that the condition

k[f+(X, w) � f�(X, w)] > 0

holds for all (X,w) 2 ⌦X,w and the transients of the FMS
(16) are exponentially stable.

The rate of transients in (16) depends on the parameter
µ. Hence, if µ is small enough, then, in accordance with
Assumption 3, after the rapid decay of transients in (16), we
get the steady state (more precisely, quasi-steady state) for the
FMS, where �̇ = 0 and �(t) = �id(t). From (16), we find

�id =
F (X, r) � f�(X, w)

f+(X, w) � f�(X, w)
(17)

where �id is exactly the inverse dynamics solution.
Substitution of � = �id into (7) yields the slow-motion

subsystem (SMS) given by

x(n) = F (X, r) (18)

that is the reference model of the desired behavior in the
following form:

Tnx(n) + a0

n�1

Tn�1x(n�1)

+ · · · + a0

2

T 2x(2) + a0

1

Tx(1) + x = r.



The main qualitative property of the singularly perturbed
systems is that: if the equilibrium point of the FMS is
exponentially stable, then there exists µ⇤ > 0 such that for
all µ 2 (0, µ⇤) the trajectories of the singularly perturbed
system approximate to the trajectories of the SMS [18], [19],
[20], [21], [22], [23]. So, if a sufficient time-scale separation
between the fast and slow modes in the closed-loop system
and exponential convergence of FMS transients to equilibrium
are provided, then after the damping of fast transients the
desired output behavior prescribed by (18) is fulfilled despite
that f(X,w) and g(X, w) are unknown complex functions.
Thus, the output transient performance indices are insensitive
to parameter variations of the nonlinear system and external
disturbances, by that the solution of the discussed control
problem (3) is maintained.

Let ⌧fms be the time constant of the FMS (16) where
⌧fms = µ/ q

p
� and � = k[f+(X, w) � f�(X,w)]. The

requirement for degree of time-scale separation between the
fast and slow modes in the system (12) can be represented by

⌧fms  ⌧sms/⌘ (19)

where ⌧sms = T and, for example, ⌘ � 10. The inequality
(19) yields the upper bound for µ given by

µ  µ
max

= T q
p

�
min

/⌘

where

�min = min
�(X,w)2⌦X,w

k[f+(X, w) � f�(X,w)].

D. Control Variable Range
From (17) it follows, the not saturated behavior of �id(t)

can be provided by proper selection of the pulse-width
modulator parameters u+ and u�, it means that the value
|f+(X,w)�f�(X, w)| can be increased through the selection
of u+ and u�.

In order to keep the condition � 2 [0, 1] for the transient
behavior of the FMS (16), the control system should be
supplemented by an additional limiter as shown in Fig. 2.

Fig. 2. Block diagram of control system which is supplemented by the limiter.

E. High-Frequency Chattering Attenuation
The high-frequency chattering, caused by the switching

mode of the pulse-width modulator (2), is induced in the
closed-loop system. The main effect is produced by the sam-
pling frequency !s where !s = 2⇡/Ts. The maximum impact
of the pulse-width modulation on the amplitude of the high-
frequency chattering with the sampling frequency !s in the
behavior of the output variable x(t) can be estimated by

Ax(!s) ⇡ 2

⇡!n
s

| f+(X, w) � f�(X,w) | (20)

under assumption that � = 0.5.
Accordingly, the maximum impact of the pulse-width mod-

ulation on the amplitude of the high-frequency chattering with
the sampling frequency !s in the behavior of the duty ratio
function �(t) can be estimated by

A�(!s) ⇡ k

µq!q�n
s

Ax(!s) (21)

where q � n.
Note, the accuracy of the estimations given by (20) and (21)

increase when !s ! 1.
From (20) and (21), we have Ax(!s) ! 0 and A�(!s) ! 0

as Ts ! 0. Hence, the high-frequency chattering attenuation
can be provided in the closed-loop system when Ts ! 0.

The effect of the generated high-frequency harmonics and
subharmonic of unknown frequencies can be neglected in
comparison with the effect of the sampling frequency !s due
to a low-pass filtering property of the system (1).

Remark 6: From (21) it follows, the high-frequency chat-
tering of the duty ratio function �(t) can be reduced without
decrease in Ts, by increasing q in comparison with n.

IV. EXAMPLE: CONTROL OF MAGNETIC LEVITATION
SYSTEM

A. Model of Magnetic Levitation System
In this section the problem of tracking control for magnetic

levitation system is discussed as an example of the application
for the presented above PWM control design methodology.
Let us consider a simplified model of the magnetic levitation
system given by the following differential equations [25]:

ẋ
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= x
2

ẋ
2
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3

x
1

(22)
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3
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L
u

where x
1

is the mass position relative to the electromagnet,
x

2

is the mass velocity, x
3

is the electric current in the
electromagnet coil, ga is the gravity acceleration, M is the
mass, R and L are the resistance and inductance of the
electromagnet coil.

Assume that x
1

is the measured output variable and the
scalar control variable u(t) takes one of two possible values
in ⌦u := {u�, u+} where the pulse-width modulated control
for the magnetic levitation system (22) is defined as the
switching function u(t) given by (2). Accordingly, from (22)
the Filippov’s average model
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results. Denote
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Assume that the conditions y
1

> 0, x
3

> 0 hold, then

y
3

< ga. (25)

Hence, in accordance with (23)-(25), the Filippov’s average
model can be rewritten as

ẏ
1

= y
2

ẏ
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ẏ
3

= f(y
1

, y
2

, y
3

, u�) + g(y
1

, y
2

, y
3

, u�, u+)�

where

f(y
1

, y
2

, y
3

, u�) =


y
2

y
1

+
2R

L

�
(ga � y

3

) � 2
p

ga � y
3p

ML
p

y
1

u�

g(y
1

, y
2

, y
3

, u�, u+) =
(�1)2

p
ga � y

3p
ML

p
y
1

[u+ � u�]

B. Controller for Magnetic Levitation System
In accordance with (8), consider the controller given by
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In order to practical implementation, the discussed control law
(27) can be rewritten in the form given by
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where
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Then, from (28), we may get the equations of the controller
in the state space form (10), that are
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C. Selection of Initial Conditions
In order to avoid excitation of transients caused by the

initial condition mismatching between (22) and (29), let the
initial conditions of the magnetic levitation system (22) and
the controller given by (29) have been selected such that
the steady-state of the closed-loop system composed of the
Filippov’s average model (23) and controller (29) takes place
when t = 0. Hence, from (23) under assumptions ẋ

1

(0) = 0,
ẋ

2

(0) = 0, ẋ
3

(0) = 0, and y
1

(0) = x
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> 0, it follows
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Then, from (29) under assumptions �̇
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result.

D. Simulation Results

The parameters of the discussed magnetic levitation system
(22) are taken from [25] where we have

M = 0.1 kg, ga = 9.8 m/s2, R = 6 ⌦, L = 0.1 H.

Assume that the pulse-width modulated control is defined by
(29) with the switching function u(t) given by (2) where

Ts = 0.006 s, u+ = 2.2 V, u� = 0.2 V.

The controller parameters are selected as

T = 0.1 s, a0

1

= a0

2

= 3, d
1

= 15,

d
2

= 8, µ = 0.0067 s, k = �0.015

The initial conditions for numerical simulation are selected in
accordance with (30) and (31) where x

1

(0) = 0.07 m.
The simulation results of the closed-loop magnetic levi-

tation control system (22), (29) with the switching function
(2) are shown in Figs. 3–5. The simulation results confirm
the presented above analytical investigations. In particular,
the transient response of x

1

(t) coincided with the transient
response of the reference equation assigned by

T 3

...
x

1

+ a0

2

T 2ẍ
1

+ a0

1

T ẋ
1

+ x
1

= r.

From (20) and (21), we have Ax(!s) ⇡ 10�6 and A�(!s) ⇡
0.0524. One can see, the calculated value of A�(!s) coincided
with the high-frequency chattering of the duty ratio function
�(t) shown in Fig. 5.

Fig. 3. Plots of r(t) and x1(t) in the system (22), (29) with the switching
function (2) where t 2 [0, 2] s.



Fig. 4. Plot of u(t) in the system (22), (29) with the switching function (2)
where t 2 [1.7, 1.78] s.

Fig. 5. Plots of �(t) in the system (22), (29) with the switching function
(2) where t 2 [0, 2] s.

V. CONCLUSION

The main advantage of the discussed singular perturbation
technique for control system analysis and design is that the
parameters of the controller for nonlinear systems in the pres-
ence of a pulse-width modulation in feedback loop can be ana-
lytically derived in accordance with such indirect performance
objectives as the desired root placement of the reference model
characteristic polynomial, while the desired root distribution
is defined by such direct output performance objectives as
settling time and overshoot. The application of the singular
perturbation technique in the presented design methodology
allows to get desired output transient performance indices for
nonlinear systems under uncomplete knowledge about external
disturbances and plant’s parameter variations.

The next step of investigation will be an implementation
of the discussed magnetic levitation control system in an

experimental prototype in the laboratory.
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Abstract—In this paper we consider the robust controller
synthesis problem for a group of identical agents which have
to fulfill a common goal. To achieve this, the agents have the
capability to communicate with each other. The communication
structure is modeled as a directed graph and is affected by time
delays and changes in the communication topology. These time
delays differ depending on whether they affect also an agent‘s own
states and not only the communicated states of the other agents.
For both cases, a synthesis method that guarantees stability of the
formation is proposed. The design of a controller that guarantees
stability in the face of self-delays is the main contribution of
this paper and an extension to previous work. A comparison of
the controller design method for communication delays with and
without self-delays has been carried out by a simulation of a
formation flight of quad-rotor helicopters.

I. INTRODUCTION

The problem of developing cooperative control strategies
for multi-agent systems consisting of identical agents has
received considerable interest in the control community over
the last several years due to its broad applications in mobile
robotics, autonomous underwater vehicles, automated highway
systems, microsatellite clustering, unmanned aerial vehicles,
etc. [1], [2], [3], [4]. In all these applications it is important to
design appropriate control strategies based on local information
such that the overall goal of the multi-agent system can be
fulfilled. To obtain the required information from other agents,
communication has to be considered as a necessary part in real
applications and has to be taken into account in the control
strategy.
There are two important aspects of communication which

shall be examined here. First, there is the effect of changing
communication topologies due to range limitations, obstacles,
packet losses or failures of the communication equipment.
Another aspect is the delay introduced by communication over
a certain channel. Since the aspect of changing communication
topologies has already been covered in previous work [5],
[6], in this paper we will concentrate on communication time
delays. A lot of research effort has been directed to the study
of communication delays. Multi-agent systems consisting of
single integrator agents were considered in [7], [8], [9]. But
also higher order agent dynamics were considered in [10], [11],
[12], [13]. In contrast to these works and a previous result
obtained in [6], in this paper the effect of two implementations
of time delays shall be analysed and a local controller synthesis

method taking these two different time delays into account
is proposed. In the first case, the time delay only affects the
states of other agents, such that the formation error signal will
be composed of the difference of an agent‘s actual state and
the delayed transmitted outputs of the other agents. However,
in practice it is more realistic to consider the formation error
as the difference between one agents‘ delayed outputs and the
delayed outputs of the other agents which are delayed by the
same amount. In both cases the time delays are allowed to be
different. For both implementations the controller synthesis is
carried out using methods from robust control.
This paper is organized as follows. In Section II a review

of the multi-agent system framework is given and the different
implementations of time delays is presented. In Section III
the robust controller design approach for the two different
implementations of time delay is given. Section IV presents
a numerical example applied on a linear time-invariant model
of a quad-rotor helicopter. Section V concludes this paper and
addresses future work.
The following notation will be used throughout the paper:

Ip denotes the p ⇥ p identity matrix; Rp⇥q , Cp⇥q are, cor-
respondingly, the sets of p ⇥ q real and complex matrices;
diag (x

1

, . . . , xn) indicates an n⇥n diagonal matrix with the
elements x

1

to xn on the diagonal;⌦ is the Kronecker product;
FL(P (s), K(s)) denotes the lower linear fractional transfor-
mation of P (s) with K(s), see, e.g., [14]. D⌧ represents the
delay operator such that D⌧v(t) = v (t � ⌧) for a continuous
function v(t).

II. STABILITY OF THE MULTI-AGENT SYSTEM AND
FORMATION MODELING

In this section a review of the proposed formation control
framework is given and results from graph theory which
are used to model the communication topology are breifly
recalled. Furthermore we will extend the description of the
communication topology by time delays.

A. Description of a Single Agent
We consider a formation of N identical agents which have

the ability to communicate with each other. Each agent can
be modeled as a LTI system and has a two-degree of freedom
controller as shown in Fig. 1. The controller consists of two
components:

© VCC 2010 - Aalborg University



• KL is a feedback controller which is used to internally
stabilize the agents, e.g., in case of loss of all communi-
cation.

• KF (s) is a controller which uses signals that are of
interest on formation level and influences the formation
behaviour.

vi

KF (s)
Agent i

KL

ei

H(s)

ui
⌘iP (s)

PF (s)

Figure 1. Single agent and its controller

Here, vi 2 Rp, i = 1, . . ., N , are the transmitted signals that
are of interest for the formation of agents, whereas ⌘i 2 Rm

are outputs that can be used to stabilize the agent internally.
Considering for example an unmanned aerial vehicle as will
be done in Section IV, the transmitted signals may consist of
the positions in cartesian coordinates of the vehicles whereas
the internal singals may include additional information - such
as angles, velocities or angular velocities. This also reduces
the communication requirements that are needed to maintain
a prescribed formation. The formation-level control error ei 2
Rp will be defined in the next subsection. The control signal
ui 2 Rh is the input for agent i.
The transfer function from ei to vi is H(s). The agents are

defined to be locally stable if the eigenvalues of the system
matrix of H(s) are located strictly in the open left half plane
P := {↵|↵2C,Re {↵} < 0}.
B. Formation-Level Error and Communication Topology
For simplicity we first assume that there are no communica-

tion delays. The formation-level control error shall be defined
as in [2]. It is the equally weighted sum of errors of the
sensed neighbors. The set of sensed neighbors is given as
Ji and consists of all agents k from which agent i receives
information. |Ji| is the cardinality of this set.

ei =
1

|Ji|
X

k2Ji

eik, (1)

where

eik = (ri � vi) � (rk � vk) = r̄ik � (vi � vk) (2)

is defined as the error between the i-th and k-th agent. The
term r̄ik 2 Rp defines the intended formation of the multi-
agent system and consists of the difference between ri 2 Rp

and rk 2 Rp which are the reference input for agent i and
k, respectively. Note that the signals are weighted equally but
the results in this paper can also be generalized if the weights
in each communication channel are different as long as ei is
normalized.

The communication topology can be represented as a di-
rected graph, where the nodes represent the agents and the
vertices indicate communication links. To formally describe
the communication topology one can use the normalized graph
Laplacian matrix [15] which is defined as

L := [lik]N⇥N , lik =

8
<

:

1, if i = k
� 1

|Ji| , k 2 Ji

0, k /2 Ji.
(3)

C. Formation stability
Now we are able to construct the closed-loop formation

shown in Fig. 2. Let L
(p)

= L ⌦ Ip, r =
⇥
rT

1

. . . rT

N

⇤
T

, e =⇥
eT

1

. . . eT

N

⇤
T and v =

⇥
vT

1

. . . vT

N

⇤
T. Using the definition of

the normalized Laplacian one can define r as a reference signal
that provides a commanded value for the outputs of the agents
whereas r̄ can be used as a reference signal for relative errors
of the agents.

e = L
(p)

ẽ = L
(p)

(r � v) = r̄ � L
(p)

v, (4)

where ẽ describes an absolute error of the outputs. Since the

r

H(s)

H(s)

- L
(p)

...
ẽ e

e
1

eN

v
1

vN

v

Figure 2. Closed-loop representation of the formation

normalized Laplacian L is not invertible, there are infinitely
many absolute references r for the same relative reference r̄.
For the closed-loop interconnection of the multi-agent system
given in Fig. 2 we can define stability of the formation.

Definition 1 A multi-agent system is called stable if the system
matrix of the closed-loop transfer function from e to v has all
its poles in the left half plane P .
The closed-loop system PF (s) formed by each agent and its
stabilizing local controller KL shall be described as

⇠̇i = A⇠i + Bui

vi = C⇠i i = 1, . . . , N
(5)

where A 2 Rn⇥n, B 2 Rn⇥h and C 2 Rp⇥n. ⇠i 2 Rn

represent the states of an agent. With this definition the
following result is taken from [2], Theorem 3.

Theorem 1 The controller KF stabilizes the closed-loop for-
mation 2 if and only if it simultaneously stabilizes the set of
N systems

˙̃⇠i = A⇠̃i + Bũi

ṽi = �iC ⇠̃i i = 1, . . . , N
(6)



where �i denotes an eigenvalue of L. Note that due to the
transformation (e.g., eigenvalue or Schur transformation, see
[2] for details) of the system matrices the states, inputs and
outputs are different from those in (5).

D. Time delay modeling
In this section the modeling of the communication time

delays is presented. First we assume that the communication
time delay between agent i and agent k is ⌧ik 2 R

+

for
i, k = 1, . . . , N, i 6=k. This means that the ouptut signal from
each agent to itself is not delayed (agents without self-delay,
[13]). The delay-dependent normalized graph Laplacian can be
described as

Ld :=
⇥
ldik

⇤
N⇥N

, ldik =

8
<

:

1, if i = k
� 1

|Ji|e
�s⌧ik , k 2 Ji

0, k /2 Ji.
(7)

With this definition the error between the i-th and k-th agent
(2) changes to

ed
ik (t) = r̄ik (t) � (vi (t) � vk (t � ⌧ik)), (8)

and the closed-loop formation can be shown to be as in Fig. 3,
where Gd

(p)

= (IN ⌦ Ip) � Ld
(p)

is the normalized adjacency
matrix affected by communication time-delays and augmented
with the number of outputs p.

G

d
(p)

H(s)

H(s)

...

e
1

eN

v
1

vN

v
IN⌦Ip-

-r eẽ

Figure 3. Formation with communication delays

The main contribution of this paper is an extention to the
previous robust controller design approach given in [5], [6]
to include agents with self-delays. This is a more realistic
assumption in practice because one would not compare the
actual position of one agent with the delayed postion of
other agents which may lead to problems, e.g., concerning the
avoidance of collisions between the agents. In this case the
formation-level control error (2) becomes

es
ik (t) = r̄ik (t) � (vi (t � ⌧ik) � vk (t � ⌧ik)). (9)

Note that in both cases the relative reference input is not
delayed since this would not change any of the obtained results.

III. ROBUST CONTROLLER DESIGN
The robust controller design approach which is used here is

proposed in [5] and [6]. In contrast to the methods proposed
in [16] and [17] which consider only state feedback control,
we rely on output feedback. Another distributed controller

design method is proposed in [18] but this approach can be
computationally expensive for large formations or agents with
many states.
First we use a synthesis method already proposed in [5], [6]

and incorporate communication time delays into the frame-
work, see [19]. Then we extend this approach with another
result from robust control theory [20] to stabilize formations
including self-delays which is known to be a more challenging
problem, see [13], [21].

A. Time-Varying Topologies and Communication Delays
In order to synthesize a robust controller we need to

recall that the eigenvalues �i, i = 1. . .N , of the normalized
Laplacian L defined in (3) belong to the set [15]

⇤ := {1 + ��|�� 2 C, |��| 1}. (10)

Proof: Communication delays without self-delays influ-
ence only the off-diagonal elements of Ld. In Fig. 3 the
eigenvalues of the normalized adjacency matrix G are mul-
tiplied by a factor e�s⌧ which means that the magnitude of
the eigenvalues do not change but only the phase according to
the time-delay ⌧ . Therefore all eigenvalues of Ld still belong
to the set defined in (10).
Now we can apply a standard approach from robust control

[14] already applied in [6], [19] and represent the group of N
agents as a single one with uncertainty ��.

Theorem 2 A controller KF (s) stabilizes the closed-loop
formation in Fig. 3 for any number of agents and any fixed
communication topology if KF (s) stabilizes the following
system Gd(s) (see Fig. 4(a))

˙̃⇠ = A⇠̃ + Bũ

z� = C� ⇠̃

ṽ = C ⇠̃ + D�w�

w� = ��Ipz�

(11)

for all |��|  1, where D�C� = C.

Consider now a norm bounded uncertainty � 2 �

� := {� | � 2 Cq⇥q, k�k  1}
acting on Gd(s), w� = �z� and accounting for the structure of
the uncertainty (i.e., � = ��Ip) the following theorem enables
the controller design using µ-synthesis with static D-scaling.

Theorem 3 A controller KF (s) stabilizes the closed-loop
formation in Fig. 3 for any number of agents and any fixed
as well as time-varying communication topology with any
time-varying communication delays if there exists an invertible
matrix Dd 2 Rp⇥p such that

kDdT d(s)Dd�1k1 < 1,

where T d(s) = FL

�
Gd(s), �KF (s)

�
as shown in Fig. 4(a).

The lengthy proof of this theorem is presented in [19], Theo-
rem 3 and is omitted here due to space limitations.
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Figure 4. LFT interconnection for robust stability design

B. Incorporating Self-Delays
In this section we show the main result of this paper:

how to incorporate self-delays in the presented framework and
design a controller that guarantees stability of the formation.
In contrast to Section III-A we use (9) to incorporate self-
delays into the framework. Here we assume that the time
delays are uncertain and may vary within a given range to
be upper-bounded and this upper bound is considered to be
known. Furthermore, we assume that the difference between
one agent‘s own state and the state of an neighboring agent are
delayed by the same amount. In practice this can be achieved if
the communicated outputs of the agents include a time-stamp.
Then the time delays can be modelled as an output complex
multiplicative uncertainty where the tightest bound l(!) of the
multiplicative uncertainty weight can be described as [22]

l(!) =

⇢ ��e�(j!)⌧ � 1
�� , 8! < ⇡/⌧

2, 8! > ⇡/⌧.
(12)

For controller synthesis purposes we need to find a ratio-
nal weight W⌧ (s) that gives an upper bound for l(!), i.e.��e�(j!)⌧ � 1

�� < |W⌧ (s)|. One easy way is to model the time
delay as a first order weight W⌧ (s) given in Appendix A. In
Fig. 5 the irrational bound for the time delay and the first-order
approximation is shown. One can see that the first order weight
is very close to the irrational bound at low frequencies. At
high frequencies there is a bigger difference but it has already
been shown in [22] that W⌧ (s) is a simple and reasonably
good approximation of the time delay. The next theorem is
adapted from Theorem 2 and a direct result of including
the communication time delays with self-delays in the output
channels ṽ. Then the output equation in (6) changes to

ṽi = �iD⌧ikIpC ⇠̃i

= D⌧ikIpC⇠i + �iD⌧ikIpC⇠i.
(13)

Following the same resoning as in Theorem 2 we are now
ready to describe the group of N agents as a single one, now
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Figure 5. Multiplicative weight for time delay uncertainty ⌧

using �� as an uncertainty describing the unknown communi-
cation topology and �⌧ (s) as an uncertainty which corresponds
to the unknown but upper bounded time delay ⌧ .

Theorem 4 A controller KF (s) stabilizes the closed-loop
formation in Fig. 3 and including self-delays for any number of
agents, any fixed communication topology and any fixed time
delay ⌧ if KF (s) stabilizes the following system Gs(s) (see
Fig. 4(b))

˙̃⇠ = A⇠̃ + Bũ

z� = C� ⇠̃

ṽ = C ⇠̃ + D�w�

w� = �⌧ (s)Ipz� + ��Ipz� + ��Ip�⌧ (s)Ipz�

(14)

for all |��|  1, k�⌧(s)k1  1 where D�C� = C.

Now using the same line of argument as in Theorem 3 and the
results given in [20], the following theorem holds

Theorem 5 A controller KF (s) stabilizes the closed-loop
formation in Fig. 3 for any number of agents and any fixed
as well as time-varying communication topology with any
time-varying communication delays if there exists an invertible
matrix Ds 2 R3p⇥3p such that

kDsT s(s)Ds�1k1 < 1,

where T s(s) = FL (Gs(s), �KF (s)) as shown in Fig. 4(b).

This theorem leads to a scaled H1 condition and can be used
for controller synthesis using standard robust control tools.

C. Performance Requirements
As has been shown in [6], stability by itself does not

lead to a satisfactory control scheme. To have a meaningful
formation-level controller, performance requirements have to
be incorporated into the design. In this paper we will use a
mixed-sensitivity approach. The generalized plant G(s) aug-
mented with exogeneous inputs wP and performance outputs
zP is shown in Fig. 6. In this figure, ePF (s) describes a state



space model of a system given in Theorem 1. To construct the
generalized plant, one has to augment Gd(s) or Gs(s) with
sensitivity WS(s) and control sensitivity WK(s) filters. Here
we consider the exogeneous input wP as a reference signal r.
Note the fictitious input w� which accounts for the time delay
uncertainty and the time-varying communication topology. To
cope with unknown self-delays, we also introduce the filter
W⌧ (s) to augment the system Gs(s) (see Fig. 6).

G(s)

ṽ

WK(s)

WS(s)
ũ

w�

wP

ẽ-

W⌧ (s)

zP

z�

z⌧

ePF (s)

Figure 6. Generalized plant with additional channels

In this configuration the generalized plant G(s) imposes a
penalty on the relative error ẽ of the agent in the formation but
this can also be modified to establish a penalty on the absolute
error.

IV. NUMERICAL EXAMPLE

This section shows an application of the proposed design
method in Section III. We will both show the robustness
against time delay uncertainties as well as changes in the
communication topology. The first simulation will include
time delays in the communication channel without self-delays.
Unknown but upper-bounded self-delays will be added in the
second simulation example
As an example of a multi-agent system we use a forma-

tion of quad-rotor helicopters. The number of agents in our
simulation is N = 5. The linearized model of the quad-
rotor helicopters has already been introduced in [6] together
with the stabilizing local state feedback LQR controller KL

guaranteeing stability of one quad-rotor in case of a total
communication loss. The formation controller is synthesized
using µ-synthesis with static D-scaling. The sensitivity and
control sensitivity filters and the filter for imposing an upper
bound on the time delay uncertainty are given in Appendix
A. In all simulations the communication topology changes
randomly three times at 25, 50 and 75s. The communication
time delay is assumed to be varying between 0 and 1.5s and it
is assumed that the time delays for every agent are different.
To force the quad-rotors to approach an absolute position we
introduce a target waypoint with no dynamics which is known
to at least one of the quad-rotors. In both simulations we
restrict the figures to show the results only for the x-axis
because there are no remarkable differences compared to the
other axes.

The first simulation uses the controller synthesis approach
suggested in Section III-A which leads to a 19th order con-
troller. Fig. 7 shows the results of the simulation. Although
there are some oscillations at the beginning of the simulation,
the formation remains stable and also reaches the desired
waypoint with a small steady state error. If we introduce even
moderate self-delays (e.g., 0.75s) according to (9) into the
closed-loop formation of quad-rotor helicopters it becomes
unstable.
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Figure 7. Simulated x-Positions of the formation without self-delays using
synthesis method described in Section III-A

To cope with self-delays in the next simulation we apply
the controller synthesis method proposed in Section III-B
which leads to a 22nd order controller due to the introduction
of the first order filter W⌧ (s) as an upper bound for the
maximum time-delay ⌧ . Fig. 8 shows the simulation results
of the formation flight example. In this figure one can see
that the controller is able to stabilize the formation despite
changes in the communication topology and communication
time delays. The oscillations which were also present in Fig. 7
can also be observed in this simulation. In addition also the
performance of this controller is slightly worse compared to
the simulation where self-delays were not considered. This can
also be explained intuitively because adding time delays tends
to destabilize and degrade the performance of a system.

V. CONCLUSIONS AND FUTURE WORK

This paper is concerned with the design of robust controllers
for a formation of identical vehicles subject to communication
and self-delays. The main contribution is the local controller
synthesis for agents with self-delays that guarantee robust-
ness against unknown but upper-bounded delays. Our design
method is confirmed in a case study - in a numerical example
a multi-agent system consisting of quad-rotor helicopters shall
perform a formation flight.
In this framework the agents itself are stabilized inter-

nally by a local controller. Stability of the whole formation
is guaranteed by local formation controllers that take into
account time-varying communication topologies and arbitrary
communication time delays. If the communication time delays
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Figure 8. Simulated x-Positions of the formation including self-delays using
synthesis method described in Section III-B

are assumed to be upper-bounded and this bound is known, the
formation controller can also handle self-delays. Performance
requirements are also incorporated into this design using
mixed-sensitivity loop shaping.
Future research will concentrate on enhancing the perfor-

mance of the robust controller design. This may be done
by incorporating a prediction scheme. For this purpose the
predictor then has to be robustified against uncertainties in the
communication time delays.

APPENDIX
The sensitivity and control sensitivity weighting filters are

given as

WS = I
3

⌦
✓

0.333

s + 0.01

◆
, WK = I

4

⌦
✓

10
s + 103

s + 106

◆
.

The filter that describes the upper bound for the time-delay
uncertainty is given as (see Fig. 5)

W⌧ = I
3

⌦
✓

3.465⌧s

⌧s + 3.465

◆
.
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Abstract—Let x = (xt)t�0 be a scalar observed process with
control u = (ut)t�0 described by the stochastic differential
equation

dxt = �xtdt + utdt + dwt, t � 0,

driven by the standard Wiener process (wt)t�0. Assume the
parameter � to be unknown.
The problem solved in this paper is to approximate the process

x to the stable Ornstein-Uhlenbeck process x0
= (x0

t )t�0 with
the given dynamic parameter a < 0, satisfying the equation

dx0
t = ax0

t dt + dwt, t � 0,

by choosing the control process u.
More precisely, based on continuous observation of x, for given

� > 0 an adaptive control law u�
= (u�

t )t�0 is constructed, such
that the corresponding observed process x�

= (x�
t )t�0, x�

t =

xt(u
�
) satisfies the following relations

sup

t�0
E(x�

t )
2 � L

and
sup

t�t�

E(x�
t � x0

t )
2 � �,

where L is some constant (independent of �) and t� is an
unboundedly increasing as � � 0 non-random function.
The first relation ensures the stability of the object x�.
The rate ��1

ln ��1 of increase of t� is obtained.
A similar problem is solved for a stochastic delay differential

equation with an unknown parameter.

Keywords: Adaptive control; continuous-time stochastic
systems; delay equations; unknown parameters

I. INTRODUCTION AND PROBLEM STATEMENT

This paper is devoted to control problems of continuous-
time stochastic processes with unknown parameters. A signifi-
cant progress has been achieved in constructing the regulators
with feedback for stochastic discrete and continuous time
systems with unknown parameters, see e.g. [1],[2],[4]-[8],
[11]-[20] among others. The adaptation to unknown parameters
by using control leads to rather complicate analytical questions.
Therefore it is quite natural to solve first the problem of
estimating the unknown parameters of the object and then to
use these estimators step by step in the algorithm of adaptive
control.
In many cases the control aim can be given as ’a target

inequality’

Q(x, t)  M, (1)

where Q(·, ·) is a destination function, x = (xt) is a controlled
process, M - a (given) threshold quantity, see [7], [8]. It is
obvious, that for uncertainty systems (e.g. for the systems with
unknown parameters) this inequality can be not fulfilled for all
t. In such case the target inequality (1) can be changed by ’the
limit target inequality’

lim
t�1

Q(x, t)  M. (2)

Thus the control problem of an uncertain object can be
formulated as follows: we have to find a control law which
does not depend on unknown parameters such that the limit
target inequality (1) or (2) is fulfilled (similar problems have
been considered, e.g. in [7] Chap. 6, [8] Chap. 6, [19] Chap.
12, see the references therein as well).
This paper presents an adaptive control method for the

following two problems.

Problem I.
Consider the stochastic differential equation with control

given by

dxt = �xtdt + utdt + dwt, t � 0. (3)

Here (wt)t�0

denotes a realvalued standard Wiener process on
some probability space (⌦, F , P ) with respect to a filtration
F = (Ft, t � 0) from F . We shall suppose in the sequel, that
the initial value x

0

is zero mean Gaussian and F
0

-adapted.
The control function (ut)t�0

is supposed to be (Ft)-adapted
and satisfying for some constant K the inequalities |ut| 
K · |xt|, t � 0 (this condition ensures the existence of a strong
solution of the equation (3)).
The parameter � is supposed to be unknown but from the

interval [�
0

, �
1

], where �
0

, �
1

are known numbers. Obviously,
the process x can be unstable.
Consider the problem of approximation of the object

x = (xt)t�0

to the stable Ornstein-Uhlenbeck process x0 =
(x0

t )t�0

(called a reference process) with a given dynamic
parameter a < 0 satisfying the equation

dx0

t = ax0

t dt + dwt, x0

0

= x
0

, t � 0. (4)

It is clear, that in the case of known parameter � the control
law of the form

ut = (a � �)xt, t � 0 (5)
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transform the equation (3) to (4) exactly.
It should be noted, that the linear structure (with respect to

x) of the control function is usually used for quadratic type
criteria. We shall use the quadratic cost criteria of the control
performance as well, see formulae (7) and (8) below. Thus
it is natural to use the function (5) for the case of unknown
parameter � with some non-anticipative estimator �̂t instead
of � :

ut = (a � �̂t)xt, t � 0. (6)

Our main purpose is to obtain for a given positive " a control
law u� = (u�

t )t�0

from the admissible set of controls u =
u� of the type (6) with a Ft-adapted dependent of " process
(�̂�

t )t�0

, �̂�
t 2 [�

0

, �
1

], such that the corresponding observed
process x� = (x�

t )t�0

, x�
t = xt(u�) is stable in the following

sense

sup
t�0

E(x�
t )

2  L, (7)

where L is some constant (independent of "), and approximate
the reference process x0 in the following way

sup
t�t�

E(x�
t � x0

t )
2  ". (8)

Here t� is an unboundedly increasing as " ! 0 non-random
function with a known rate of increase if " decreases to zero.

Problem II.
Consider the stochastic delay differential equation with

control given by

dxt = �xt�rdt + utdt + dwt, t � 0. (9)

We shall suppose in the sequel, that the parameters �, and
r > 0 are real numbers; the initial process x(0) = (x

0

(s), s 2
[�r, 0]) also defined on (⌦,F , P ) is cadlag and all x

0

(s), s 2
[�r, 0] are zero mean Gaussian and F

0

�adapted.
The parameter � is supposed to be unknown but such that

� 2 [�
0

, �
1

], where �
0

, �
1

are known bounds. The parameter
r is known.
Consider the problem of approximation of the object (9)

to the stable process x0 = (x0

t )t�0

, satisfying the following
stochastic delay differential equation with given dynamic pa-
rameters a and b :

dx0

t = ax0

t dt + bx0

t�rdt + dwt, t � 0 (10)

and with the initial process x(0).
Similar to Problem I we will use the obvious structure of

the non-adaptive control law of the form

ut = axt + (b � �)xt�r, t � 0

for the construction of an adaptive one:

u�
t = a�

txt + (b � �̂�
t )xt�r, t � 0, (11)

where bounded Ft-adapted functions a�
t and �̂�

t 2 [�
0

, �
1

],
t � 0 are such that the corresponding observed process x�

should satisfy the relations (7) and (8) with an unboundedly

increasing as " ! 0 non-random function t�.

The method used for solving both problems can be roughly
described as follows.
First we shall construct an increasing sequence of stopping

times and construct corresponding sequential maximum likeli-
hood estimators of the parameter � calculated at these times.
Secondly we define, using these estimators, a piecewise

constant function �� = (��
t )t�0

(and (a�
t ) for Problem II) and

a corresponding control function u� of the type (6) (and (11)).
It should be noted that an analogue method of parameter

estimation was used in adaptive control and non-parametric es-
timation problems for discrete-time systems, see, for example,
[21]-[24].

II. MAIN RESULTS

A. Construction of the control law for Problem I
We shall define a control law satisfying (7) and (8) as

follows.
Let (cn,�)n�0

be unboundedly increasing sequences of pos-
itive numbers, satisfying some special conditions (an example
see after Corollary 2.1) and (⌧n,�)n�0

be the sequences of
stopping times

⌧n,� = inf{T > 0 :

TZ

0

(x�
t )

2dt = cn,�}, n � 0.

Define a sequence of sequential estimators (�̃n,�)n�0

of the
parameter � as

�̃n,� =
1

cn,�

⌧n,�Z

0

x�
t (dx�

t � u�
tdt), n � 0

and the piecewise-constant function (��
t )t�0

:

��
t =

⇢
�

1

, 0  t < ⌧
0,�,

�n,�, ⌧n,�  t < ⌧n+1,�, n � 0

with
�n,� = (�̃n,� � �

1

) � �
0

, n � 0.

Here and in the sequel a � b =min(a,b), a � b =max(a,b).
From the definition of the sequential plans (⌧n,�, �n,�), n �

0 of estimation of the parameter � it follows that all the
stopping times ⌧n,� are almost surely finite and according to
the Burkholder-Gundy inequality with the smallest coefficient
C(✓) = (8✓)� (see, e.g. [3], [26]), for every ✓ � 1 and n � 0
we have

E|�n,� � �|2�  c�2�
n,� E

0

@
⌧n,�Z

0

x�
tdwt

1

A
2�

 C(✓)c��
n,�. (12)

As the control law u� we define

u�
t = (a � ��

t ) · x�
t , t � 0. (13)

Our aim is to show that inserting u�
t from (13) into (3) the

inequalities (7) and (8) are ensured.



To this end we decompose x�
t � x0

t into two parts:

x�
t � x0

t = ��
t + ��

t , t � 0 (14)

and derive upper bounds for the second moments of ��
t and

��
t . Here

��
t = y�

t � x0

t , ��
0

= 0,

��
t = x�

t � y�
t , ��

0

= 0, t � 0

and y� = (y�
t )t�0

is given by the SDE

dy�
t = A�

ty
�
t dt + dwt, y�

0

= x
0

.

The auxiliary process (A�
t )t�0

is defined in a somewhat
complicate way to ensure the desired estimators for (��

t ) and
(��

t ).
First we choose a piecewise-constant function (��

t )t�0

as
follows:

��
t =

⇢
�

1

� �
0

, 0  t < ⌧
0,�,

"1/2�n,�, ⌧n,�  t < ⌧n+1,�, n � 0,
(15)

where (�n,�)n�0

is a decreasing sequence of non-random
positive numbers, " > 0.
Without restriction of generality we choose a number "⇤

0

such that for all "  "⇤
0

the following inequalities hold

"1/2�
0,�  ⇡(") < �a, (16)

where ⇡(") = (ln(e + "�1))�1.
Now define the auxiliary process (�

�

t )t�0

by �
�

t = � � ��
t

and introduce (A�
t )t�0

and (B�
t )t�0

by

A�
t = a + �

�

t · �{|��
t |���

t }, B�
t = �

�

t · �{|��
t |>��

t }, t � 0,

where �{a<b} = 1 if a < b and 0 otherwise.
By the definition, for the processes (��

t ) and (��
t ) the

following equations hold

d��
t = A�

t�
�
tdt + b�

tx
0

t dt, t � 0, (17)

where b�
t = �

�

t · �{|��
t |���

t }, and

d��
t = A�

t�
�
t dt + B�

t x�
tdt, t � 0. (18)

Note, that according to the condition (16) and the definitions
of (A�

t ) and (��
t ), the process (A�

t ) is, for "  "⇤
0

uniformly
bounded from above

A�
t  �a�, t � 0,

where a� = �(a + ⇡(")) is positive. As follows, the funda-

mental function  �(s, t) = e

tR
s

A�
l dl

of the processes (17) and
(18) can be estimated from above:

 �(s, t)  e�a�
(t�s), 0  s  t. (19)

To prove (7) and (8) we can derive, using (19), estimators
of the second moments of the processes (��

t ) and (��
t ).

Define for every ✓ � 1 the numbers

C
0

x(✓) = sup
t�0

E(x0

t )
2�, C0

x(✓) = sup
t�0

E(x0

t )
2�,

C(✓, ") =
2

µ4

�a
�

· (
2

3
C

2
�
1

(✓) + C
2
�
2

(✓)),

C
1

(✓) =
1

2

✓
32(�

1

� �
0

)✓

a2

◆�

· C
0

x(✓),

C
2

(✓) =
1

4

✓
4(�

1

� �
0

)

a2

◆�

· (C
0

x(2✓) + Ex4�
0

),

f
0

= � 1

2(a + � � �
1

)
, µ� = f

0

· ⇡("),

t̃� = [c
0,� · (f

0

� µ�)
�1] � [8(a�)�1],

where c
0,� is a special chosen number;

for t � t̃� and ✓ > 2 the function

�(t̃�, t, ✓) =
1

a�
· (C0

x(
✓

✓ � 2
))

��2
� ·

·{ 1

a�
(�

1

� �
0

)2e�a�
(t�˜t�) +

C(✓, ")

t2
}.

Set the number

�
0

= 8ef�1

0

a�2 · (Ex2

0

� 1

2a
) (20)

and define the time

t� = inf{t � t̃� : �(t̃�, t, 2⇡�1("))  ⇡2(") · "}. (21)

Theorem 2.1: Let u� be a control law of the object (3) as
well as the number �

0

and the time t� are defined by the
formulae (13), (20) and (21) respectively.
Then for the object (3) for " small enough the relations

sup
t�0

E(x�
t )

2  L

and
sup
t�t�

E(x�
t � x0

t )
2  "

are fulfilled. The time t� has the following rate of increase

" · [t� � �
0

· "�1 ln "�1] = O(1) as " ! 0. (22)

Corollary 2.1: Using the definition of the stopping time
⌧
0,� and Theorem 2.1 the following limiting relation can be
proved:

lim
��0

⌧
0,�

t�
= 1 a.s.

Example 2.1: The sequences (�n,�) and (cn,�) can be taken
as follows:

�n,� = �
0,� · �{n=0} + �

1,� · n�� · �{n�1},

cn,� = c
0,� · �{n=0} + c

1,� · n↵ · �{n�1},

where �
0,�, �

1,�, c
0,� and c

1,� are some special chosen numbers
and ↵ > 2⇢ > 0.
Remark 2.1: The time t̃� depends on the unknown param-

eter � and can be estimated from above, using the inequality
f
0

� 1

2(�
1

� �
0

� a)
, by the known time t� � t̃� defined as

t� = [2(�
1

� �
0

� a)c
0,� · (1 � ⇡("))�1] � [8(a�)�1].



Thus the relation (8) for the object (3) is fulfilled for the known
time t� defined in (21) with t� instead of t̃�.
In this case the following limiting equality holds true:

" · [t� � �
1

"�1 ln "�1] = O(1) as " ! 0,

where �
1

is a known number:

�
1

= 16(�
1

� �
0

� a)ea�2 · (Ex2

0

� 1

2a
).

B. Construction of the control law for Problem II
Consider the process of the type (9)

dx�
t = �x�

t�rdt + u�
tdt + dwt, t � 0

with a control function u�, for which we shall prove that (7)
and (8) hold, defined as follows.
It should be noted that solutions of SDDE’s have essentially

more complicate asymptotic behavior in comparison with
linear SDE’s, see [9]. Thus, in particular, the adaptive control
algorithm, constructed similar to the previous section II-A for
the system without delay is more difficult for investigation.
Let (c̃n,�)n�0

be an unboundedly increasing sequence of
positive numbers, satisfying some general conditions and ⌧̃� =
(⌧̃n,�)n��1

be the sequence of stopping times

⌧̃n,� = inf{T > 0 :

TZ

0

(x�
t�r)

2dt = c̃n,�}, n � 0, ⌧̃�1,� = 0.

Define the sequence (�̃n,�)n�0

of sequential estimators of
� by

�̃n,� =
1

c̃n,�

⌧̃n,�Z

0

x�
t�r(dx�

t � u�
tdt), n � 0

and the sequence (�n,�)n�0

:

�n,� = (�̃n,� � �
1

) � �
0

, n � 0.

Define b̃(�) = b + � � �, � =
�

0

+ �
1

2
. The real number

ã� will be chosen in such a way, that the equation

dx�
t = ã�x�

tdt + b̃(�)x�
t�rdt + dwt, 0  t < ⌧̃

0,� (23)

admits a stationary solution for all � 2 [�
0

, �
1

] (and that more-
over we have (ã�, b̃(�)) ! (a, b) if " ! 0 and �

1

� �
0

! 0).
The condition on ã� is difficult because the set of parameters
(a, b), where the equation

dxt = axtdt + bxt�rdt + dwt (24)

has a stationary solution is more complicate than in the
Ornstein-Uhlenbeck case I (see, e.g. [9]).
In [9] the region of all parameters (a, b), such that the

process (24) with r = 1 is stable, is characterized by using
a function u(a), a < 1, defined as follows:
introduce a parametric curve (a(⇠), b(⇠)), ⇠ > 0, ⇠ 6= ⇡, 2⇡, . . .
in R2 by

a(⇠) = ⇠ cot ⇠, b(⇠) = �⇠/ sin ⇠,

then b = u(a) is the branch of this curve corresponding to
⇠ 2 (0, ⇡).

Define the numbers �
1

= b � �
1

� �
0

2
, �

2

= b +
�

1

� �
0

2
and the number ↵ for the case �

1

 r�1 as a solution of the
equation u(↵r) = �

1

r.
Now we are ready to define the parameter ã� as follows:

ã� =

8
>>>>>><

>>>>>>:

a · �{↵�⇡(�)�a} + (↵ � ⇡(")) · �{↵�⇡(�)<a},
�

2

 r�1,
a · �{↵��2�⇡(�)�a} + (↵ � �

2

� ⇡("))·
�{↵��2�⇡(�)<a}, �

1

< r�1 < �
2

,
a · �{�2�⇡(�)�a} + (�

2

� ⇡(")) · �{�2�⇡(�)<a},
�

1

� r�1.

It is clear, that (23) with such parameters has a stationary
solution.
For the defined function ã� and the number �, we introduce

the piecewise-constant functions (a�
t )t�0

and (��
t )t��r by

a�
t =

⇢
ã�, 0  t < ⌧̃

0,�,
a, t � ⌧̃

0,�;

��
t�r =

⇢
�, 0  t < ⌧̃

0,�,
�n,�, ⌧̃n,�  t < ⌧̃n+1,�, n � 0.

As the control law u� we now define

u�
t = a�

tx
�
t + (b � ��

t�r)x
�
t�r, t � 0. (25)

Similar to the previous section the main idea is to construct
an appropriate decomposition (26) below for the object (9)
with the control process (25).
Define auxiliary processes (A�

t )t�0

, (b�
t )t�0

and (B�
t )t�0

as follows

A�
t = b+b�

t , b�
t = �

�

t�r�{|��
t�r|��̃�

t }, B�
t = �

�

t�r�{|��
t�r|>�̃�

t },

where �
�

t = ����
t , t � �r and (�̃�

t )t�0

is a piecewise constant
function defined similar to (15).
Now we write the equation (9) with the control (25) in the

form

dx�
t = a�

tx
�
tdt + A�

tx
�
t�rdt + B�

t x�
t�rdt + dwt, t � 0.

Define the auxiliary process (a�
t )t�0

, a�
t = a�

t � a as well
as processes (y�

t )t��r, (��
t )t��r and (��

t )t��r, satisfying the
equations:

dy�
t = a�

ty
�
t dt+A�

ty
�
t�rdt+dwt, y�

s = x
0

(s), s 2 [�r, 0],

��
t = y�

t � x0

t , ��
s = 0, s 2 [�r, 0],

��
t = x�

t � y�
t , ��

s = 0, s 2 [�r, 0], t � 0.

Then the observed process x�, similar to the Problem I can
be represented in the form

x�
t = x0

t +��
t + ��

t , t � �r. (26)

By the definition, the processes (��
t ) and (��

t ) satisfy the
following equations

d��
t = a�

t�
�
tdt + A�

t�
�
t�rdt + a�

tx
0

t dt + b�
tx

0

t�rdt,



d��
t = a�

t�
�
t dt + A�

t�
�
t�rdt + B�

t x�
t�rdt, t � 0

and are stable.
To prove (7) and (8) we can derive, similar to the previous

section, estimators of the second moments of the processes
(��

t ) and (��
t ).

Similar to Problem I, we have defined a function t⇤� and a
number �⇤

0

satisfying the following relation:

" · [t⇤� � �⇤
0

· "�1 ln "�1] = O(1) as " ! 0. (27)

Theorem 2.2: For the constructed u� for some number L⇤

independent from " it holds

sup
t�0

E(x�
t )

2  L⇤

and for " small enough

sup
t�t⇤

�

E(x�
t � x0

t )
2  ".

III. SUMMARY

This paper presents a certainty equivalence design method
with application for two continuous-time stochastic systems
with unknown parameters. The main aim is to approximate
the observed processes by choosing the control process (ut)t�0

to the stable Ornstein-Uhlenbeck process (Problem I) and to
the stable related process satisfying SDDE (Problem II) in the
sense of the inequality (8). In comparison with the often used
as a criterion limit target inequality (2), we have found the time
t� (" is a threshold quantity) after that our target inequality (8)
is fulfilled. It is shown that the time t� in (8) has equal rates
of increase "�1 ln "�1 in both problems. Moreover, the target
inequality (7), which ensures the stability of the controlled
processes is established.
In Problem I the time t� agrees closely with the time

of obtaining of the first estimator with a given accuracy of
the unknown parameter � of the object for " small enough.
Moreover, in Problem I this time has known upper bound
and in Problem II the limiting constant �⇤

0

(see (27)) can be
estimated.
The constructed control law works in a real time. Simul-

taneously the problem of estimation with guaranteed in the
sense (12) accuracy of the unknown parameter � in both the
problems is solved.
The method presented in the paper can be easily applied

for the special type multidimensional systems considered, e.g.
in [25]. Similar problem for more general controlled multidi-
mensional systems can be solved using sequential estimators
of unknown parameters, presented in [10].
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[9] A. A. GUSHCHIN, AND U. KÜCHLER, Asymptotic inference for a linear
stochastic differential equation with time delay, Bernoulli, 5(6) (1999),
pp. 1059–1098.
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Abstract—In [1][2], a new systematic design method for
fractional order proportional and derivative (FOPD) controller
is proposed for a class of typical second-order plants. Simulation
and experimental results show that the dynamic performance and
robustness of the position ramp response at normal speed with
the designed FOPD controller outperforms that with the ITAE
optimized traditional integer order proportional and integral
(IOPI) controller. Furthermore, we found that, for the ultra low
speed position tracking with significant friction effect in the same
experimental system in [2], the tracking performance using the
designed FOPD controller is much better than that using the
optimized IOPI controller. In this paper, using the describing
function method and the Bode plots analysis, the observed
advantage of the designed FOPD controller for the nonlinear
low speed position tracking system with friction effect over the
optimized IOPI controller is explained, which is consistently
demonstrated by our extended experimental results.

I. INTRODUCTION
Friction is the force resisting the relative lateral motion of

solid surfaces, fluid layers, or material elements in contact.
This common nonlinear phenomenon has an universal impact
in all regimes of operation in mechanisms and produces unde-
sirable behaviors in control systems such as the tracking errors,
and limit cycles [3]. Especially, in the high-precision position
control systems, the performance is inherently affected by the
friction effect. Compensation for the friction and attenuation
of its effects has been addressed in many papers over the
years [3], [4], [5], [6]. The describing function method (DF)
is widely used as a common tool for the nonlinear system
analysis [7], [8], [9], [10], [11]. In [6], using the describing
function method, different approaches for the prediction of
limit cycles in control systems with friction are discussed
based on a simple stick-slip motion example. The existing
limit cycles cannot be predicted using the describing function
for only the friction nonlinearity part. But the describing
function combining part of the plant with the friction model
can capture the behavior of the friction with zero velocity,
and the limit cycles can be predicted. However, this describing
function depends on three parameters, the amplitude, frequency
and offset, comparing with the normal two parameters, the
amplitude and frequency.
On the other hand, the application of fractional calcu-

lus attracts increasing attentions in control domain in recent

years [12], [13], [14]. It is remarkable to see the increasing
number of studies related to the theory and applications of
fractional order controllers (FOC), especially, the fractional
order PID controller. In [1][2], a new systematic design method
for fractional order proportional and derivative (FOPD) con-
troller is proposed for a class of typical second-order plants.
The tuned FOPD controller can ensure that the given gain
crossover frequency and phase margin are fulfilled, and the
phase derivative w. r. t. the frequency is zero, i.e., phase Bode
plot is flat, around the given gain crossover frequency. So that
the closed loop system is robust to gain variations. Simulation
and experimental results show that the dynamic performance
and robustness of the position ramp response at normal speed
with the designed FOPD controller outperforms that with the
ITAE optimized traditional integer order proportional and inte-
gral (IOPI) controller. Furthermore, we found that, for the low
speed position tracking with significant friction effect in the
same experimental platform in [1][2], the tracking performance
using the designed FOPD controller is much better than that
using the optimized IOPI controller. Based on this favorable
experimental phenomenon, the theoretical analysis is needed
for the clear understanding.
In this paper, using the describing function method and the

Bode plots analysis, the observed advantage of the designed
FOPD controller for the nonlinear low speed position tracking
system with friction effect over the optimized IOPI controller is
explained, which is consistently demonstrated by our extended
experimental results.

II. LOW SPEED POSITION TRACKING USING FOPD AND
IOPI

In this section, the main idea of the FOPD controller design
and the performance comparison with the ITAE optimized
IOPI controller in [1][2] are introduced briefly. The experiment
comparison for the low speed position tracking with significant
friction effect using the designed FOPD and the optimized
IOPI are presented.

A. Introduction to the FOPD Design of the Position Tracking
without Considering the Friction Effect
A new systematic design method for FOPD controller is

proposed for a class of typical second-order plants without



considering the friction effect in [1][2]. The key points of
this FOPD controller systematic design scheme are that the
designed FOPD controller can ensure that the given gain
crossover frequency and phase margin are fulfilled, and fur-
thermore the phase derivative w. r. t. the frequency is zero. So
that, the closed loop system is robust to gain variations.
For FOPD controller design, a class of second-order plants

P (s) is described by (1),

P (s) =
K

s(Ts + 1)
, (1)

which can approximately model a DC motor position servo
system. The experimental platform of the dynamometer for
the position tracking in [2] was identified as the second-order
system as (1) with K = 1.52 and T = 0.4.
The FOPD controller has the following form of transfer

function,
C(s) = Kp(1 + Kds

µ), (2)

where µ 2 (0, 1].
Three specifications are proposed to design the FOPD

controller.
(i) Phase margin specification

Arg[G(j!c)] = Arg[C(j!c)P (j!c)] = �⇡ + �m,

where the �m and !c are the desired phase margin and gain
crossover frequency, respectively.
(ii) Robustness specification to the plant gain variations

(
d(Arg(C(j!)P (j!)))

d!
)!=!c = 0,

with the condition that the phase Bode plot is flat, around the
gain crossover frequency. It means that the system is more
robust to gain changes and the overshoots of the response are
almost the same.
(iii) Gain crossover frequency specification

|G(j!c)|dB = |C(j!c)P (j!c)|dB = 0.

With these specifications, the gain crossover frequency is
set as !c = 10(rad/s), and the desired phase margin is set
as �m = 70�. Moreover, the robustness to gain variations
is required. Using the dynamometer experimental model, ac-
cording to the numerical method in [1], we can obtain the
parameters of the FOPD controller as µ = 0.844, Kd = 0.368
and Kp = 13.860. Meanwhile, the parameters of the ITAE
optimized IOPI controller are designed as Kp = 2.6531 and
Ki = 1.1662 [1][15].
Simulation and experimental results show that, the dynamic

performance and robustness of the position ramp response at
normal speed with the designed FOPD controller outperforms
that with the ITAE optimized IOPI controller [1][2].

B. Low Speed Position Tracking Performances with the FOPD
and IOPI Controllers
In the same experimental plant, and using the same designed

FOPD and optimized IOPI controllers as in [1], if the position
ramp is generated by the integration of a normal reference

speed without considering the real friction except the viscous
part, the experimental system can be described in Fig. 1, which
is equal to the system in Fig. 2. If both the nonlinear unmod-
elled friction effect and the viscous friction are considered in
the system model, the closed-loop system can be shown in
Fig. 3 with C as the designed FOPD or the optimized IOPI.

1/s C 1/(Js+B) 1/s

-

+v0 T XVX0

Fig. 1. Position tracking control diagram with constant speed reference
without considering friction

1/s C 1/(Js+B)

-

+v0 T V

Fig. 2. Position tracking control equivalent diagram with constant speed
reference without considering friction

Fig. 3. Position tracking control equivalent diagram with constant speed
reference and friction

When the reference speed used for the position ramp
tracking is reduced to a very small value as 0.05 rad/s,
then, the friction effect is significant and not negligible. So,
Fig. 3 should be used to describe the closed-loop experimental
system. Figs. 4(a), 4(b), 5(a) and 5(b) show speed and position
output of the position tracking with constant ultra low-speed
reference, it is obvious that, the tracking performance using
the designed FOPD in Fig. 4(b) is much better than that using
the optimized IOPI in Fig. 4(a).

III. STATIC / DYNAMIC MODELS OF FRICTION AND
DESCRIBING FUNCTIONS FOR FRICTION MODEL

In this section, the different friction models and two un-
coupling methods of the linear part and nonlinear part are
presented.

A. Static and Dynamic Models of Friction
In general, the friction models are described by a dis-

continuous relation between the relative velocity in between
the surfaces contacted and the resulting friction force. The
friction force can be briefly divided into the traditional static
models which are expressed by the static equations and the
combinations of coulomb friction, viscous friction and so
on [16]. The friction force can be also be modeled by the
dynamic models proposed in the last few decades with the



(a) IOPI (b) FOPD

Fig. 4. Speed output of position tracking with constant speed reference using
optimized IOPI and designed FOPD

(a) IOPI (b) FOPD

Fig. 5. Position output of position tracking with constant speed reference
using optimized IOPI and designed FOPD

differential equations [5][17]. Many models are defined with-
out considering the velocity zero. For this particular velocity,
the friction force depends on the applied force. As presented
in [5], the proposed LuGre dynamic friction model combines
the stiction behavior, i.e., the Dahl effect, with arbitrary steady
state friction characteristics which can include the Stribeck
effect and the zero velocity friction. The typical LuGre model
is useful for various control tasks, and is given by [5],

ż = v � |v|
g(v)

z, (3)

F = �
0

z + �
1

ż + �
2

v, (4)
�

0

g(v) = FC + (FS � FC)e�(v/vs)

2

, (5)

where the average deflection of the bristles is denoted by z; v
is the relative velocity between the two surfaces; the function
g is positive and depends on many factors such as material
properties, lubrication and temperature; �

0

is the stiffness, and
�

1

, �
2

are damping coefficients; FC is the Coulomb friction
level; FS is the level of the stiction force, and vs is the Stribeck
velocity.

B. Describing Functions for Friction Models and Two Uncou-
pling Methods of Linear and Nonlinear Parts
The experimental platform for the position tracking with

consideration of the friction effect is shown in Fig. 3. Using
the describing function method, the transfer function of the
nonlinear block is described by the relationship between the
output response y(t) and the frequency !. In the output
response, only the first harmonic y

1

(t) with the same frequency
as that in the input signal is considered,

y
1

(t) = a cos!t + b sin(!t) = c sin(!t + '), (6)

where

a =
2

⇡

Z ⇡

0

y(t) cos(!t)d(!t),

b =
2

⇡

Z ⇡

0

y(t) sin(!t)d(!t),

c =
p

a2 + b2, ' = arctan(b/a). (7)

The describing function of the nonlinear block can be ex-
pressed by the gain and phase shift between the first harmonic
of the output and the sinusoid input as below,

NI(A, !) =
c

A
ej'. (8)

In order to use the describing function method to analysis
the system performance, we need to get the approximation
closed-loop system with uncoupled linear and nonlinear parts
as in Fig. 6, from the position tracking system with friction
nonlinear effect in Fig. 3. There are two methods for uncou-
pling the linear and nonlinear parts as shown in Fig. 7(a) and
Fig. 7(b). The straightforward way is to treat only the friction
as the nonlinear part, and the other items as the linear part
in Fig. 7(a). Following the analysis in [6], with the simple
example of the stick-slip motion, it can be seen that, the
velocity is the input and the friction is the output for the
describing function analysis.Then, the nonlinear part will not
be affected by the behavior of the friction force with exact zero
velocity. So, the intricate behavior of the friction with zero
velocity is neglected unfortunately. Meanwhile, the Nyquist
curves for the linear and nonlinear parts are plotted in [6]. It
is figured out that there is no intersection which the limit cycle
frequency can be obtained from, for the two curves except the
origin point. So, the analysis with the uncoupling method in
Fig. 7(a) doesn’t predict any limit cycle [6] in spite of the
average velocity v

0

, frequency ! and amplitude A.
For the other uncoupling method in Fig. 7(b), the force T

is the input and the velocity is the output of the nonlinear
part which includes not only the friction but also the system
dynamic G. In this case, the friction force has the possibility
to counteract the applied force and keep the velocity as zero.
During one period of the sinusoid input, sticking may occur.
Therefore, the essential characteristics of the friction can be
captured in the describing function of the nonlinear part in
Fig. 7(b). This time, a mean value of the force T have to
be included as one of the input parameters for the nonlinear
block [6]. So, this method in Fig. 7(b) are chosen to uncouple
the linear and nonlinear parts of our experimental nonlinear
system. The describing function will hence depend on three
parameters, the amplitude A, the frequency ! and the mean
force T

0

. The output will be an oscillation with a mean value
different from zero. The describing function under this case
should be notated as below,

N(A, !, T
0

) = [|N |e�, va],

where the |N | and � are the gain and phase shift of the
describing function, va is the average value of the output
velocity of the nonlinear part.



Fig. 6. Approximation closed-loop system with linear and nonlinear parts
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Fig. 7. Two methods of uncoupling linear and nonlinear parts

From Figs. 4 and 5, we can see the output signals of the
nonlinear part, using the uncoupling method in Fig. 7(b) with
IOPI or FOPD controller, for the low speed position tracking
in the example introduced in Sec. II. It can be seen that, both
the outputs with IOPI and FOPD have limit cycles.

IV. BODE PLOT COMPARISON WITH IOPI AND FOPD
CONTROLLERS USING DESCRIBING FUNCTION

In order to reveal the potential advantage of the designed
FOPD controller for the nonlinear low speed position tracking
system with friction effect over the optimized IOPI controller,
the Bode plot analysis with the describing function is used.
First, the Bode plots of open-loop transfer functions are

drawn in Fig. 8 using IOPI and FOPD without considering
friction, for the position tracking system. It can be seen
that, when the frequency around the gain crossover frequency,
and !>0.2rad/sec, the amplitude with FOPD is bigger than
that with IOPI. Meanwhile, the phase delay with FOPD is
much smaller than that with IOPI, which means that the
relative stability of the system is significant improved by the
designed FOPD controller comparing with the optimized IOPI
controller.
Second, for the block diagram as shown in Fig. 7(b), the

mean forces T
0IOPI and T

0FOPD of the input signals T of the
nonlinear block with IOPI and FOPD are measured as 0.577
and 0.622, respectively. So, the describing function of the non-
linear part can be calculated following the method introduced
in Sec. III-B. Using IOPI with T

0IOPI = 0.577 N ⇤ m, the
3D/2D Bode plots of the amplitudes and phases w. r. t. !
and A are drawn in Fig. 9 and Fig. 10, respectively; using
FOPD with T

0FOPD = 0.622 N ⇤ m, the 3D/2D Bode plots
are drawn in Fig. 11 and Fig. 12, respectively. From Fig. 9
and Fig. 11, and their enlarged 2D Bode plots Fig. 13(a) and
Fig. 13(b), it is obvious that, the amplitude with the designed
FOPD is bigger than that with the optimized IOPI, in low speed

position tracking with the limit cycle as shown in Fig. 4(a)
and Fig. 4(b). So, the tracking performance with the designed
FOPD will be better than that with the optimized IOPI. At the
same time, comparing Fig. 10 and Fig. 12, the phase delay
with the designed FOPD is much smaller than that with the
optimized IOPI, thus, the tracking system with the designed
FOPD controller is more stable.

V. EXPERIMENT
In this section, extended experimental tests for the varying

low speed position tracking are presented to validate the
theoretical analysis. This experiment is performed on the same
experimental platform – dynamometer, as in [2].
The varying low speed (±0.05 rad/s) position reference

for tracking is shown in Fig. 14, and it can seen that, the
position tracking performance with the designed FOPD in
Fig. 15(b) is much better than that with the optimized IOPI
in Fig. 15(a). It is more clear to see the difference of the
position tracking performance in Fig 16(a) and Fig 16(b) for
the position tracking errors, which can also be supported by
the speed outputs in Fig 17(a) and Fig 17(b) for the IOPI and
FOPD, respectively.

VI. CONCLUSION
In [2], simulation and experimental results show that the

dynamic performance and robustness of the servo system
tracking the normal speed with a designed FOPD controller
outperforms that with the ITAE optimized IOPI controller. In
this paper, using the describing function method and the Bode
plots analysis, the observed advantage of the designed FOPD
controller in [2] is explained for the nonlinear ultra low-speed
position tracking system with friction effect over the optimized
IOPI controller, which is consistently demonstrated by our
extended experimental results.
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Fig. 9. 3D/2D Bode plot of the amplitude w. r. t. ! and A using IOPI with
T0IOPI = 0.577 N ⇤ m
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(a) IOPI (b) FOPD

Fig. 15. Position tracking outputs with varying low speed reference using
IOPI / FOPD

        
(a) IOPI (b) FOPD

Fig. 16. Position tracking errors with varying low speed reference using IOPI
/ FOPD

(a) IOPI (b) FOPD

Fig. 17. Speed output with varying low speed position tracking reference
using IOPI / FOPD
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