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Estimation of Uncertainty Bounds for the Future Performance of a Power Plant
Peter Fogh Odgaard, Member, IEEE, and Jakob Stoustrup, Senior Member, IEEE

Abstract—Prediction of the future performance of large-scale
power plants can be very relevant for the operators of these plants,
as the predictions can indicate possible problems or failures due
to current operating conditions and/or future possible operating
conditions. A problem in predicting the future performance of
these plants is that available models of the plants are uncertain.
In this brief, three schemes for predicting uncertain dynamical
systems are presented. The schemes estimate upper and lower
bounds on the system performance. Two of the schemes are
statistically based, one only based on recent data and the other
is based on operating points as well. The third proposed scheme
uses dynamical models of the prediction uncertainties, like in
H __-control. The proposed schemes are subsequently applied to
experimental data from a coal-fired power plant. Two sets of data
from an actual power plant are used, one containing normal plant
operation and in the second set, coal is accumulating in the coal
mill due to an unbalance in the operating conditions. These tests
showed that Schemes II and III did bound the real system perfor-
mance, while Scheme I failed doing so. In addition, the plant was
simulated operating under the same conditions with additional
large disturbances. These simulations were used to investigate the
robustness and conservatism of the proposed schemes. In this test,
Schemes I and II failed, while Scheme III succeeded.

Index Terms—Dynamic prediction, power plants, statistical pre-
diction, uncertain dynamical systems, uncertainty models.

I. INTRODUCTION

REDICTIONS of dynamical systems are important in a

large number of applications and fields like: meteorology,
biology, economics, physics, medicine, etc., see [1]-[4]. In
control engineering prediction of dynamic systems represented
by models is a key part of model predictive control, see [5].
Throughout this brief a model is used to represent the real
system. The model is subsequently used to predict the future
performance and behavior of the system. In most of the pre-
vious work on prediction of dynamic systems, the focus has
been on adapting models to be representative at present as well.
These models are subsequently used to predict the expected
time series of the future behavior of the system, see [6] and [7].
Little focus has been on prediction of uncertain models where
uncertainties and uncertain system conditions are taken into
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account in the prediction. A proposed solution for predicting
uncertain systems update the prediction model online, see, e.g.,
[6]. This is, however, not always a good solution to the problem,
since a model identification will give new parameter values,
but would not describe uncertainties due to model structures
etc. Robust model predictive control is an exception, where
worst case performances are included in the optimization, see
[8]-[12]. These, however, do not directly give a prediction
of the uncertainty of the system performance. Instead, they
compute a control law which guarantees acceptable worst-case
system performance.

In case of large-scale plants such as power plants, it is dif-
ficult to develop simple precise models, which do not deviate
with time and thereby increasingly with the prediction horizon.
During operation of these power plants, it would be helpful for
the operator to use the predictor in a “what if” scenario, i.e.
to know how the plant would perform in the future given cer-
tain operating conditions. The predictor should inform the op-
erator if whether the variables of the plant are expected to stay
within given intervals in the future or not. If the prediction indi-
cates that these variables will drop out of the required intervals,
the operators can take action accordingly. Hopefully this action
is consequently taken earlier if these predictions are available,
thereby preventing major plant failures or trips. Expected plant
state performance are, in this case, not sufficient information for
the operators, since these states would probably deviate from
the expected values. Consequently, it would be helpful for the
plant operator to have predictions of upper and lower bounds of
the proper performance, given a certain probability, and these
bounds shall consequently be contained in admissible plant vari-
able intervals.

In a number of conference papers, the authors have proposed
some schemes dealing with these prediction problems. In [13]
and [14], two statistical methods are developed to estimate the
uncertainty of the previous mentioned predictions. The first
method uses statistics of recent windows of predictions, where
a window is formed for each prediction horizon in question.
The second method uses a bank of prediction error statistics
depending on the operating point of the power plant, as well
as on the prediction horizon. For many dynamical systems,
the model uncertainties are deterministic rather than stochastic
meaning it would be better to use a dynamical uncertainty
model instead of a statistical one. In [15], the uncertainties were
proposed computed using dynamical uncertainty models as
used in H . -theory, see [16]. The prediction uncertainty models
are computed using output multiplicative uncertainty models.

In this brief, these three methods are applied to a coal-fired
power plant, using data containing the problem due to the com-
bination of high coal moisture content and high plant load. Two
sets of experimental data are applied to these methods, one be-
fore the coal accumulation is occurring and one during the coal
accumulation. These examples are used to evaluate how well

1063-6536/$25.00 © 2008 IEEE
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Fig. 1. Illustration of model structure.

the future plant performances are predicted in both faulty and
fault-free cases. A reliable prediction is necessary if the oper-
ator should use these predictions of the future plant behavior
and performance.

The degree of conservatism of these estimated uncertainty
bounds are investigated by simulating the system behaviors as a
response to realistic reference variations and disturbances.

In Section II, the coal-fired power plant which is the used
example is shortly described. The proposed schemes for esti-
mating these prediction uncertainty bounds are subsequently
described starting with the statistically based schemes in
Section III and the dynamical based one in Section IV. In
Section V, these methods are applied to an example from a
coal-fired power plant, where the coal flow into the furnace is
limited due to a high coal moisture content and high plant load,
resulting in a violation of an energy flow constraint in the coal
mill. The degree of conservatism of the different estimated un-
certainty bounds are inspected as well. In the end, a conclusion
is drawn in Section VL.

II. SYSTEM DESCRIPTION OF THE COAL-FIRED POWER PLANT

The proposed scheme is designed for predicting the perfor-
mance of a coal-fired power plant, which is represented by an
uncertain closed-loop model. The model used for predicting the
plant performance is a combination of a furnace model found
in [17] and [18], which is extended with a coal mill model,
and controllers. An overview of the model structure can be seen
in Fig. 1. The coal mill pulverizes and dries the coal dust, be-
fore it is blown into the furnace by the primary air flow. m.
denotes the actual coal flow, 7 s denotes the reference/re-
quested coal flow, mn,,, denotes the actual primary air flow, and
Mpa,ref denotes the reference/requested primary air flow. Two
disturbances to the coal mill are considered, these are the out-
side temperature, T, and the coal moisture content . The tem-
perature of the primary air flow is denoted T},,. The primary air
flow is used to dry and lift the coal dust into the furnace, and
is used to keep the coal dust temperature 7}, at 100 °C. In the
furnace, the coal dust is burned and the hot flue gas is used to
heat water to pressurized steam. Two crucial process variables,
the steam temperature 7 and pressure ps are used to control
the plant, since references are given to those. This control re-
sults in coal flow and feed water flow rii¢ requirements. The
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Fig.2. Plots of the measurements of the mille temperature 7,,, the steam tem-
perature T5, and the steam pressure ps.

nonlinear plant model is subsequently linearized and reduced
to a five-state linear model. The outputs of this linear model
are coal mill temperature 7},,, steam temperature 7}, and steam
pressure ps. Controlled inputs are the reference to steam temper-
ature 75 ;¢ and the reference to steam pressure ps rer. A distur-
bance to the system, which is included in the model is the coal
moisture v, is estimated using the method presented in [19].

In this context, acceptable performance of the plant can be
defined as selected plant variables being inside some specified
bounds, meaning that the performance prediction is used to pre-
dict if the plant variable can be expected to be inside these spec-
ified bounds in the future. The nominal prediction model pro-
vides a less usable prediction of the future plant performance
since uncertainties are not taken into account.

The experimental data used in this work contain (sampled
with an interval of 60 s) a load change from a 85% load down to
a 65% load, at sample 65, and up again to 85% load at sample
340. The measured outputs can be seen in Fig. 2. The moisture
content, on the other hand, is increasing during the experiment
from 14% to 15.5% at the time of the second load change. Con-
sequently, not enough energy is available to heat and evaporate
the moisture from the pulverized coal. This can be seen by the
plot of T}, in which decreases below the evaporation point of
the moisture are seen. This is an example of a non-acceptable
performance of the system. A consequence is that these wet coal
particles are too heavy to be lifted up into the furnace by the
primary air flow. Therefore, the coal particles are accumulated
inside the coal mill. As a result, the master controller requests
a higher coal flow. However, this leads to even more coal being
accumulated in the coal mill instead of being blown into the fur-
nace. In this case, the moisture content drops again, resulting in
more coal being blown into the furnace than requested. Such a
situation could result in an overheating of the plant. A safety
stop is, consequently, necessary. Stops of the power plant are
highly costly, so these should be avoided if possible, and pre-
diction of future plant performance might help avoiding this.
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Fig. 3. Overview of the predictor structure, where the observer estimates the
present states and in some cases the disturbances as well. The prediction model
predicts the system behavior and uncertainties & steps into the future.

One should also notice that the references are known in advance
since these are precomputed for guiding the load.

III. STATISTICAL METHODS FOR ESTIMATING PREDICTION
UNCERTAINTY BOUNDS

The two statistically-based predictors used in this brief are
presented in [13] and [14]. These are based on the same gen-
eral structure of the predictor, which is illustrated by Fig. 3,
where the system inputs and outputs are used to estimate the
present state values. These estimated values are fed to the pre-
dictor together with system inputs and outputs in order to predict
the expected values as well as the uncertainty bounds. x[n] and
d[n] denote the estimated state and disturbance vectors for the
time instance n. y[n + k|n] is the vector of the predicted system
output for the time n+k given n, €,[n+ k|n] and €;[n+ k|n| de-
note, respectively, upper and lower bounds on system prediction
for the time n + k given n. The observer and predictor (predic-
tion model) will subsequently be described in more detail.

The closed-loop model is uncertain with respect to the real
system. Consequently, an observer is introduced in order to es-
timate the value of the states at the sample time n

%n] = T (%ln — 1],x[n], y[n)) ()

where I is an operator representing the observer, and X[n] is the
estimated state vector at time n, r[n] is a vector of plant refer-
ences, (the plant model describes a closed-loop system where a
controller closes the loop), and y[n] is a vector of plant outputs.

The estimated states can be used to predict the state and the
output vector a number of samples into the future. It is assumed

T T T T T T T
n ntl nt2 n+3 nt4 nt+5 nt+6 nt7 nt+8

T T b

T T
n—2 n—1

Fig. 4. Principle illustration of the uncertainty in the prediction. The uncer-
tainty at each prediction step is increased as the number of prediction steps
increases.

that the reference is partly known into the future due to a plan of
the expected plant production, such as power plants, where the
general power production is known one day ahead. The distur-
bance might be known up to time 7, e.g., by estimation. Subse-
quently, these are denoted: #[n] and d[n]. The k-step predictor
of the output y[n + k|n] and states x[n + k|n] are computed by

x[n + 1|n] = £ (ﬁ([n], #n), a[n]) 2)
where
x[n + 2|n] = £ (x[n +1|n], £[n], &[n]) 3)

continue this process until x[n+ k& |n] is computed. Furthermore,
compute

¥+ ko] = g (X0 + Kln] 20, dln]) . (4)

Now, where the k-step predictor is defined, it is possible to de-
fine a k-step prediction error residual

k[n + k|n] = y[n + k|n] — y[n + k] (5)

This prediction error defined in (5) can of course only be com-
puted earliest at sample n + k.

As previously stated, the model is assumed to be uncertain in
relation to the real system. The variance of k[n + N + 1|n] is
smaller than the variance of k[n + N + 2|n]. In other words,
the prediction is expected to be more uncertain as the prediction
horizon increases. This is illustrated by Fig. 4. The predicted
system value is drawn with the dashed line, (from sample n + 1
to sample n + 8), the measured system output value is drawn
with a solid line (sample n — 2 to n). The uncertainties at the
predicted values are marked by the vertical markings, with the
small horizontal lines in the ends. The distance between these
end markings represents the uncertainty for the specific pre-
dicted system value.
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In the context mentioned in the introduction (see Section I),
it is in the operator’s interest to predict a region in which the
system variables can be expected to be in, e.g., it is relevant for
the operator to see how one can expect the performance of the
plant to be given the prespecified conditions and references.

In this brief, two different statistically-based methods for pre-
dicting the uncertainty are compared. The first method com-
putes means and variances of a given number of the most recent
prediction errors at the prediction steps in question, see [13].
The advantage of this method is to be found if the model un-
certainty is strongly time varying but independent of operating
points. The second method uses a bank of precomputed mean
and variance of prediction errors at different operating points
(references, disturbances, etc.), see [14]. This method is prefer-
able if model uncertainties are depending on the operating point
and not strongly on time. It is as well possible to adapt the un-
certainty model bank to present prediction errors.

A. Uncertainty Predictor—Method 1

The uncertainty of the prediction can be represented in a
number of ways. In this approach, the prediction error residuals
are assumed to be a normal random process, with a specific
variance and mean depending on the prediction step. The
specific variance and mean will depend on the prediction step,
depending on the vector of references r and the vector of dis-
turbances d. [n + k|n] is the predicted uncertainty at sample
n + k given the estimate at n

E[n + kln] = ©(ok,n, bre,n) (6)

where @ is the normal distributed random process, oy, ,, is the
variance of the k-step prediction error at sample n, and jiy, 5, is
the mean of the k-step prediction error at sample n. These sta-
tistics are computed based on recorded prediction errors, where
only the M most recent time samples are considered.

The variance o, can be computed as

Kn—M+1n—M+1— k]
Ok,n = var . @)

k[n|n — k]
The mean 7y, ,, can be computed in a similar way

Kin—M+1n—M+1—k]
[k, n = Mean . ®)
k[n|n — k]

These normal distributions can be used to compute uncer-
tainty bounds (¢, and €)), on the prediction given a 7 confidence
interval, i.e., the uncertainty bounds limit the possible system
output values given probability of 7.

For both statistical methods, the uncertainty prediction can be
used to compute the upper and lower bounds of the prediction
as

eln + kln] =y[n + kln] + {[n + k|n] ©)
eifn + kln] =y[n + k|n] — {[n + k|n]. (10)

y F w A

- y U
i d G Y %if‘
—_—

Fig. 5. Illustration of the nominal prediction model and multiplicative output
prediction uncertainty model.

B. Uncertainty Predictor—Method I1

In this approach, the uncertainty of the prediction is repre-
sented by a distribution depending on the references and pos-
sibly disturbances as well as the prediction length. This means
that the mean and variance for different prediction steps are
computed and used for different operating points in the refer-
ence and (disturbance). £[n + k|n] is the predicted uncertainty
at sample n + k given estimate at n. Introducing dependency of
the operating point leads to

{[n+kln] =@ (Uf[n+k],d[n+k]7 Mf[n+k],d[n+k]) (In
where & is the normal distributed random process,
af[n k], d[n-+k] is the variance of the k-step prediction error
for reference at time n + k and disturbance at time n + k,
uf k] d[n-Hk] is the mean of the k-step prediction error for
reference at time n + k and disturbance at time n + k.

Uncertainty model parameter bank: The statistics of predic-
tion errors depend on operating points, which can be consid-
ered as uncertainty model parameters are stored in a data base,
ordered accordingly to the depending variables, e.g., r[n + k]
and d[n + k] for k-step prediction. In this model parameter
bank, model parameters are attached for every combination of
depending variables. The simplest way to use these model pa-
rameters is to use the instance in the model bank which is closest
to specified depending variables. However, linear interpolation
between model elements are obvious to use, see [14].

IV. DYNAMICAL METHODS FOR ESTIMATING PREDICTION
UNCERTAINTY BOUNDS

The two previous methods were based on statistical methods,
another way to predict the uncertainties is to use a method based
on dynamical uncertainty models. The third method presented
in this section is such a method.

A. Dynamical Uncertainty Model—Method 111

The third approach proposed in this brief uses output multi-
plicative uncertainty models to model the prediction uncertain-
ties from the nominal prediction model. The output multiplica-
tive model is illustrated in Fig. 5, in which G represents the nom-
inal prediction model fed with y[n], [N |n] and d[N |n]. W [n]
is the dynamical weighting function representing the bounding
uncertainties and a scalar A[n] € {—1 : 1}. The output of
the nominal prediction is §[ NV |n], and the bounding uncertainty
predictions are denoted e,[N|n] and €[N |n] for the upper and
lower bound, respectively. These bounds are defined as the max-
imal and minimal output of the uncertainty model.

These uncertainty predictions can be used to compute the
upper and lower bounds of the prediction as in (9) and (10).
W{n] is defined as a filter bounding the frequency content of
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the past prediction errors. Define a vector of the most recent
predicted system values with specified prediction horizon k as

Yq] = [ijlq + 1|q] (12)

9lg + klq]]

for the time n the most recent vector is Y [n — k]. The corre-
sponding vectors of measured system values can be defined as
(13)

Ylq] = [ylg + 1lq] ylg + klql] -

The vector of most recent prediction errors can be defined as

Elql = Y[q] - Y]ql- (14)

These pairs of relating E[q] and Y|[q] vectors are subse-
quently grouped into different relevant points of operation
given by references and disturbances. For each of these
point-of-operation groups a filter Wn] is computed as a filter
bounding the difference between the nominal estimate and the
measured data

max (FFT(E[q])), VYq€ Qra (15)
where FFT(-) is the fast Fourier transform, Q.. 4 is the set of
pairs contained in the specified group of operating points.

In order to simplify the filter parameter identification the
order and structure of W{n] can be prespecified. In the example
used in Section V, a first-order filter is used, and the parameters
are found using MATLAB’s ident toolbox.

To be certain that the bounds € covers the prediction uncer-
tainties A is set equal to 1. However, in practice this might be
conservative, since A = 1 represents the worst-case model un-
certainty seen in data. Instead, A can be adapted to the present
prediction uncertainty by

_ [FFT(E[n — k]|

Al Wl

(16)

The upper and lower bounds can subsequently be computed as
in (9) and (10). In the case where A is not corrected, (denoted
in the sequel as “NC”), the bounds e is computed as
e[n] = A - Win] - y[n] (17)
and for the corrected A (denoted as “C”), the bounds € is com-
puted as
e[n] = A[n] - W(n] - y[n]. (18)
In case this prediction scheme is used in as system with con-
straints, it should be remarked that non-feasible reference sig-
nals would raise problems for the nominal and uncertainty pre-
diction. The non-feasible reference should be projected onto the
feasible references.

V. EXPERIMENTS WITH DATA FROM A COAL-FIRED
POWER PLANT

The predictor of the uncertain system is applied to two sets
of data from the coal-fired power plant presented in Section II.
The measurements are sampled with intervals of 60 s. The first
data set is during the low load, where the system performance
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Fig. 6. Plot of prediction using the two statistical-based methods for T, pre-
dicted from sample 220 to sample 300. All prediction is performed from sample
220 and 80 samples into the future. The upper plot shows Method I and the lower
plot shows Method II.

is predicted from sample no. 220 to 300. All prediction is per-
formed from sample 220 and 80 samples into the future. At this
time, accumulation of coal is not occurring. The second data set
contains the problem of coal accumulation, where the system
performance is predicted from sample 620 to sample 700. All
prediction is performed from sample 621 and 80 samples into
the future. Notice that in all plots the variables are predicted
from the start value (sample 220 for Example I and 620 for
Example II), and 1-80 steps into the future.

Mill and steam temperatures, as well as the steam pressure,
are included in the prediction model, but in order to limit the
number of plots of the predictions and measured plant perfor-
mance, only the steam temperature, T plots are shown.

Notice that in the plotted predictions, see Fig. 6—13, the un-
certainty bounds do not always contain the nominal prediction
due to the introduction of the mean of the prediction error in the
uncertainty model. This means that if a uncertainty model con-
tains a mean value different from zero, the uncertainty bounds
would be shifted relative to the nominal prediction.

A. Statistically-Based Scheme Applied to the Data Set

In addition to the linear model described in Section II, an ob-
server is used to estimate the state values. An optimal unknown
input observer is used, see [20]. For the used uncertainty predic-
tion methods a confidence interval at 90% is used.

The prediction of the steam temperature T can be seen in
Fig. 6, in which the upper plot shows the predictions using
Method I and the lower plot predictions using Method II. From
Fig. 6, it can again be seen that the uncertainty bounds of
Method II cover the measured system behavior while Method I
does not cover all measurement points, (230-236, 246247,
278-284, 287-300). From this set of experimental data and the
prediction of system performance, it can be seen that Method
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Fig. 8. Plot of T, for Example 1. Both the non-corrected (NC) and corrected
(C) uncertainty bounds contain the measured values.

I, using statistics of recent prediction errors has problems
covering the system behavior. On the other hand Method II
using statistics depending on operating points covers the system
performance. This is a consequence of the model uncertainty
depending more on the operating point than on time.

The attention is now put on the second set of measurements
and predictions, from sample 620. Fig. 7 illustrates the predic-
tions of 7;. It can be seen that only the uncertainty bounds of
Method II covers the measured steam temperature 7.

Using Method II, the uncertainty bounds obtained using
Method II, provides the operator with knowledge on the future
performance of the system, given the specified operating con-
ditions can use these uncertainty predictions. These proposed
schemes for predicting uncertain dynamical systems can be
used in other power plant cases, e.g., start-up of the plant where
specific state values shall be reached in a given time, in this case
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Fig. 9. Plot of T; for Example 2. Both the non-corrected (NC) and corrected
(C) uncertainty bounds contain the measured values.
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Fig. 10. Plot of predictions using the two statistical based methods for T,
predicted from sample 220 to sample 300. All predictions are performed from
sample 220 and 80 samples into the future (Example 1). The upper plot shows
Method I and the lower plot shows Method II.

the operator can use these uncertainty predictions to see how
start-up is proceeding and eventually take action if required.

B. Dynamical-Based Scheme Applied to the Data Set

These experiments are used to validate that the dynamical un-
certainty predictor can estimate the measured system variables
during different plant conditions. The predictor of the uncertain
system is applied to the same two sets of data as the statisti-
cally based schemes were. Again, only the steam temperature is
shown.

The prediction for Example 1 can be seen in Fig. 8, and the
plot of Example II are plotted in Fig. 9. In each of the plots both
the non-corrected prediction bounds and the corrected predic-
tion bounds are plotted.

From these, it can be seen that the computed uncertainty
bounds cover all the measured variables, both in the corrected



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 1, JANUARY 2009 205

Method |

T

480 T T T

T [n°C

prediction
pred. bounds

450 +  system <|

650 660 670 680 690
samples [n]
Method I

630 640 700

T

490 ‘ , ,
480 i _ 1
D (Y AL SUNE RSN S e

O

o . i

E 460+ T TR g e S L]
=7 450 4

+  system
440 +  prediction
pred. bounds

430
620 630 640

650 660 670 680 690
samples [n]

700

Fig. 11. Plot of predictions using the two statistical based methods for 7,
predicted from sample 620 to sample 700. All predictions are performed from
sample 620 and 80 samples into the future (Example 2). The upper plot shows
Method I and the lower plot shows Method II.
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Fig. 12. Plot of T; for Example 1. Both the non-corrected (NC) and corrected
(C) uncertainty bounds contain the measured values.

and non-corrected cases and for both examples. However, the
nominal prediction is not covered for all samples due to low
frequently modeling errors. The corrected uncertainty predic-
tion bounds narrow the uncertainty region as expected, and as
mentioned previously, still contain the measured values.

C. Experiments to Access Conservatism

In order to test the conservatism of the estimated uncertainty
bounds, the experiments are simulated with highly increased
disturbances and measurement noises. An extended nonlinear
simulation model of the power plant is used, see [21]. These
sets of simulated plant data are subsequently used in the same
manner as the experimental data was previously. However, in
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Fig. 13. Plot of T for Example 2. Both the non-corrected (NC) and corrected
(C) uncertainty bounds contain the measured values.

order to limit the number of repeated plots only the steam tem-
peratures 7} are plotted.

In Fig. 10, Method 1 is applied to the statistically-based
schemes. From Fig. 10, it can be seen that the prediction
uncertainty bounds do not cover the simulated output. Fig. 11
shows the statistically-based schemes for Case II, in which
the first approach does not cover the simulated variable, while
Approach II bounds the simulated variable, but the variable
varies close to both the upper and lower bounds, meaning that
it does not seem very conservative. However, since the second
statistic approach did not cover T for the first example as well,
it can be concluded that the statistical method cannot cover
these additional disturbances. In Figs. 12 and 13, the dynam-
ical-based uncertainty estimation scheme is applied to the two
examples. In both cases, T} stays inside the uncertainty bounds,
but do get close to these, meaning that the dynamical-based
scheme is both robust towards these disturbances and as well
not too conservative. The same is valid for the predictions of
the other variables not presented here.

Summary on experiments: From the experiments with the
three proposed schemes it can be seen that the uncertainties
in this case depends on the reference values as well as on
the disturbances. If the uncertainty models are independent
of these, the uncertainty bounds will only cover the system
performance if these bounds are computed very conservatively.
Robustness as well as the degree of conservatism of the com-
puted uncertainty bounds were investigated using additional
disturbances and noises in a simulation model representing the
experiments. From these simulations, it can be concluded that
the two statistically-based schemes were not robust towards
the specific disturbances. The dynamical-based scheme did,
however, cover the system variable in presence of these large
disturbances. In addition it could also be seen that the dynam-
ical computed uncertainty bounds were close to the simulated
system variables meaning that the scheme on the other hand
was not too conservative. All in all, these experiments indicate
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that the proposed dynamical uncertainty bounds scheme has
potential for prediction of the power plant performance.

VI. CONCLUSION

In this brief, three schemes for predicting performance of a
coal-fired power plant, represented by an uncertain dynamical
systems, are presented. The schemes estimate upper and lower
bounds on the system performance. Two of the schemes were
statistically based, one only based on recent data and the other
is based on operating points as well. The third proposed scheme
uses dynamical models of the prediction uncertainties, like in
H . -control. The proposed schemes are subsequently applied
to experimental data from the coal-fired power plant in mind.
Two sets of data from an actual power plant are used, one con-
taining normal plant operation and in the second set coal is ac-
cumulating in the coal mill due to an unbalanced combination
of the operating conditions. These tests showed that Methods II
and III did bound the real system performance, while Method I
failed doing so. In addition, the plant was simulated operating
under the same conditions with additional large disturbances.
These simulations were used to investigate the robustness and
conservatism of the proposed schemes. In this test, Methods I
and II failed, while Method III succeeded. This means that the
dynamical uncertainty prediction scheme can be used to predict
the plant performance.
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