Vibrational thermodynamics of nanocrystalline materials

Stankov, S.; Miglierini, M.; Chumakov, A. I.; Sergueev, I.; Yue, Yuzheng; Sepiol, B.; Svec, P.; Hu, L.; Rüffer, R.

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Vibrational thermodynamics of nanocrystalline materials

S. Stankov, M. Miglierini, A. I. Chumakov, I. Sergueev, Y. Z. Yue, B. Sepiol, P. Svec, L. Hu and R. Rüffer

1Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
2Department of Nuclear Physics and Technology, Slovak University of Technology, 81219 Bratislava, Slovakia
3Center for Nanomaterials Research, Palacky University, 77146 Olomouc, Czech Republic
4European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
5Section of Chemistry, Aalborg University, 9000 Aalborg, Denmark
6Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, 250061 Jinan, China
7Faculty of Physics, University of Vienna, 1090 Vienna, Austria
8Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia

Abstract:

The vibrational thermodynamics of nano-scale materials has attracted a lot of attention due to the observed striking differences of their atomic vibrations relative to the bulk counterparts [1]. The observed anomalies are the enhancement of their density of phonon states (DOS) at low and high energies and broadening of the phonon peaks. In addition, the energy dependence of the low-energy part of their DOS has been a source of long-standing debates. The experimental and theoretical results are contradictory reporting linear, power low, and Debye-like behavior.

In order to further clarify this issue we have studied the vibrational properties of a nanocrystalline Fe90Zr7B3 alloy prepared by crystallization of an amorphous precursor. The atomic vibrations of the nanograins were separated from those of the interfaces for a wide range of grain sizes and interface thicknesses. Surprisingly, the results show that the atomic vibrations of the nanograins do not vary with their size and even down to 2 nm closely resemble those of the bulk [2]. The observed anomalies of the vibrational and thermodynamic properties originate solely form the atoms located at the nanocrystalline interfaces [3].