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Reconfigurability of Piecewise Affine
Systems Against Actuator Faults

S. Tabatabaeipour ∗ M. Gholami ∗∗ T. Bak ∗ H. Schiøler ∗

∗ Section of Automation and Control, Aalborg University, e-mail:{smt,
tba, henrik}@es.aau.dk

∗∗Department of computer science (CISS), Aalborg University,
e-mail:mehdi@cs.aau.dk

Abstract: In this paper, we consider the problem of reconfigurability of peicewise affine
(PWA) systems. Actuator faults are considered. A system subject to a fault is considered as
reconfigurable if it can be stabilized by a state feedback controller and the optimal cost of the
performance of the systems is admissible. Sufficient conditions for reconfigurability are derived
in terms of feasibility of a set of Linear Matrix Inequalities (LMIs). The method is implemented
on a large scale livestock hybrid ventilation model which was obtained during previous research.

1. INTRODUCTION

Performance of modern control systems typically relies on
a number of strongly interconnected components. Compo-
nent malfunctions may degrade performance of the sys-
tem or even result in loss of functionality. In applications
such as climate control systems for livestock buildings,
this is unacceptable as it may lead to the loss of animal
life. Therefore, it is desirable to develop control systems
that are capable of tolerating component malfunctions
whilst still maintaining desirable performance and stability
properties. Such controllers are called fault tolerant. Fault
tolerant control (FTC) is divided generally into two cate-
gories:passive (PFTC) and active (AFTC). In PFTC, the
structure of the system is fixed and pre-designed such that
it can tolerate a set of faults. In AFTC, first the fault is de-
tected using a fault detection and diagnosis (FDD) scheme.
Then, based on information from the FDD the controller
is re-designed or reconfigured in the case of severe faults
such that the overall system stability is preserved and an
acceptable performance is provided. An important step
in designing an AFTC is to analyze reconfigurability of
the system subject to possible faults. Reconfigurability is
the ability of the system to preserve some properties, e.g.
stability or performance, of the system when a fault has
occurred.

Reconfigurability of linear time invariant systems is mea-
sured by controllability and observability Grammians in
Frei et al. (1999). A measure for control reconfigurability of
linear systems is proposed in Wu et al. (2000). The smallest
second-order mode is used as a measure for reconfigurabil-
ity of the system to preserve an acceptable performance in
the presence of a fault. In Staroswiecki (2002), the fault
tolerant property of a configuration with respect to an
actuator fault is investigated. Two cases are considered.
In the first case, only achieving the control objective is
considered, but in the second case the control objective
must be achieved and the control energy must be admissi-
ble. The method uses a Grammian based approach. This
result is extended to the admissibility of a linear quadratic
cost function in Staroswiecki (2003). Khelassi et al. (2009)

defines reconfigurability of the system not only based on
the controllability Grammian, but also based on the sys-
tem reliability. While in the aforementioned methods, the
reconfigurability measures are computed off-line, an online
method for calculation of the controllability Grammian us-
ing input/output data is proposed in Gonzalez-Contreras
et al. (2009).

The above methods are for linear systems. Most com-
plex industrial systems either exhibit nonlinear behavior
or involve both discrete and continuous components. An
attractive modeling framework for such systems is the
framework of piecewise affine systems (PWA). PWA sys-
tems have the capability to approximate nonlinear systems
efficiently. Moreover, they arise in systems that contain
PWA components such as deadzone, saturation, hysteresis,
etc. This framework has been applied to several areas, such
as, switched system, Rodrigues and Boukas (2006), and
multi-zone climate control systems, Gholami et al. (2010).

Recofigurability of a class of linear switched systems is
considered in Yang (2006). Reconfigurability is defined as
the controllability of the system and an algebraic approach
for reconfigurability is given. In our work, we consider
reconfigurability of PWA systems against actuator faults,
where only complete loss is considered. A system subject
to a fault is called reconfigurable if it is not only stabi-
lizable using a state feedback control law, but also the
performance cost of the systems is admissible with any
initial condition in a given bounded region. In other words,
we have considered both stability and admissibility of the
performance of the system as a criteria for reconfigura-
bility. The problem is cast as the feasibility of a convex
optimization problem with LMI constraints. Moreover, the
optimal value of the cost function must be admissible. The
optimization problem can be solved efficiently using avail-
able softwares such as YALMIP/SeDuMe or LMILAB.

The paper is organized as follows. In Section II, the
PWA model and actuator faults are given. In Section
III, reconfigurability is defined and sufficient conditions
for reconfigurability are given. Section IV is dedicated to
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the simulation results for the climate control system. The
conclusion is presented in the Section V.

2. PIECEWISE AFFINE SYSTEMS AND ACTUATOR
FAULT MODELS

2.1 Piecewise Affine Systems

We consider a PWA discrete time system of the following
form:

x(k + 1) = Aix(k) +Biu(k) + bi for x ∈ Xi, (1)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the control
input. {Xi}si=1 ⊆ Rn denotes a partition of the state space
into a number of polyhedral regions Xi, i ∈ I = {1, · · · , s}.
Each polyhedral region is represented by:

Xi = {x|Hix ≤ hi} (2)

The set I is partitioned to I0 ∪ I1, where I0 denotes the
index set of subsystems that contain the origin and I1 is
the index set of the subsystems that does not contain the
origin. It is assumed that bi = 0 for i ∈ I0.

Each polyhedral region Xi can be over-approximated with
a union of li ellipsoids, i.e:

Xi ⊆
`i⋃
j=1

Eij , (3)

where each ellipsoid is represented by the matrix Eij and
the scalar fij such that Eij = {x|‖Eijx + fij‖ ≤ 1}, see
Rodrigues and Boyd (2005). This approximation is used
in this paper to deal with the affine term for subsystems
with i ∈ I1 which helps us to cast the control problem
in terms of LMIs. This approximation is more efficient
for PWA slab systems where the partitioning is defined
as Xi = {x|d1

i ≤ cTi x ≤ d2
i }. For PWA slab systems each

partition Xi is approximated exactly by one ellipsoid with:

Eil =
2cTi

d2
i − d1

i

, (4)

fil = −d
1
i + d2

i

d2
i − d1

i

. (5)

All possible switchings from region Xi to Xj are repre-
sented by the set S:

S := {(i, j)|x(k) ∈ Xi, x(k + 1) ∈ Xj} (6)

The set S can be computed using reachability analysis for
MLD systems, see Cuzzola and Morari (2001).

2.2 Fault Model

In this work, we consider actuator faults. Only complete
loss of actuators is considered. Let ui denote the i′th
actuator and uFi the failed i′th actuator. We model a fault
in an actuator as:

uFi = δiui, δi ∈ {0, 1}, (7)

where δi = 1 presents the case of no fault in the i′th
actuator, and δi = 0 corresponds to complete loss of it.
We define ∆ as:

∆ = diag{δ1, δ2, . . . , δm}. (8)

Then
uF = ∆u. (9)

The PWA model of the system with the fault f is given
by:

x(k + 1) = Aix(k) +Bi∆
fu(k) + bi for x ∈ Xi, (10)

3. STATE FEEDBACK DESIGN FOR PWA SYSTEMS

3.1 Piecewise Quadratic Stability

The problem of piecewise linear state feedback design is to
design a state feedback of the form:

u(k) = Kix(k) for x(k) ∈ Xi (11)

such that the closed loop PWA system

x(k + 1) = Aix(k) + bi, (12)

where Ai = Ai + BiKi, is exponentially stable. The
following theorem gives the conditions for stability of a
Piecewise affine system.

Theorem 1. (Cuzzola and Morari (2001)) The system in
(12) is exponentially stable if there exist matrices Pi =
PTi > 0, ∀i ∈ I, such that the positive definite function
V (x(k)) = xT (k)Pix(k),∀x ∈ Xi, satisfies V (x(k + 1)) −
V (x(k)) < 0.

3.2 PWL Quadratic Regulator (PWLQR)

The aim of the control design problem is to design a
controller of the form (11) such that it stabilizes the system
and provides an upper bound on the following quadratic
cost function associated with the system:

J =

∞∑
k=0

xT (k)Qix(k) + uT (k)Riu(k), (13)

where Qi ≥ 0 and Ri ≥ 0 are given weighting matrices of
appropriate dimensions.

Definition 1. The system (1) subject to fault f is called
reconfigurable if there exist a state feedback control law of
the form (11) which stabilizes the systems and the upper
bound on the cost function (13) is admissible i.e. is less
than a specified given threshold.

In the following, we derive sufficient conditions for a
PWA systems to be stabilizable by a PWL state feedback
controller.

Theorem 2. If there exist symmetric matrices Xi = XT
i >

0 and matrices Yi such that: Xi ∗ ∗
(AiXi +Bi∆

fYi) Xj + µilbib
T
i ∗

EilXi µilfilb
T
i µil(filf

T
il − 1)

 > 0

(14)

∀(i, j) ∈ S, i ∈ I1, l = 1, . . . , `i,[
−Xi (AiXi +Bi∆

fYi)
(AiXi +Bi∆

fYi)
T −Xj

]
< 0, (15)

∀(i, j) ∈ S, i ∈ I0,

then there exist a PWL state feedback control law of the
form (11) for the PWA system (10) such that the closed
loop system is exponentially stable. The piecewise linear
feedback gains are given by:

Ki = YiX
−1
i (16)
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Proof 1. We consider a piecewise Lyapunov candidate
function of the form V (x(k) = x(k)TPix(k), Pi > 0 for
x(k) ∈ Xi. The condition to be satisfied is:

V (x(k + 1))− V (x(k)) < 0, ∀(i, j) ∈ S. (17)

We consider the general case where x(k) ∈ Xi and x(k +
1) ∈ Xj . First, we consider those switchings with i ∈ I1.
To deal with the affine term, we will use the ellipsoidal
approximation of regions. The equivalent of (17) for the
PWA system is:

[(Ai +Bi∆
fKi)x(k) + bi]

TPj [(Ai +Bi∆
fKi)x(k) + bi]

−x(k)TPix(k) < 0, l = 1, (18)

which is equal to:[
x(k)

1

]T [ATi PjAi − Pi ∗
bTi PjAi bTi Pjbi

] [
x(k)

1

]
< 0, (19)

where Ai = Ai + Bi∆
fKi. The ellipsoidal approximation

of Xi can be written as:[
x(k)

1

]T [
ETil ∗
fTilEil f

T
il fil − 1

] [
x(k)

1

]
≤ 0, l = 1, . . . , `i,

(20)
The condition x(k) ∈ Xi is relaxed to the above approxi-
mation. Using the S-procedure, see Boyd et al. (1994), the
equation (19) is satisfied if there exist multipliers λil > 0
such that :

(19)− λil
[
x(k)

1

]T [
ETil ∗
fTilEil f

T
il fil − 1

] [
x(k)

1

]
< 0 (21)

Therefore, the following matrix inequality must be satis-
fied:[
ATi PjAi − Pi ATi Pjbi
bTi PjAi bTi Pjbi

]
− λil

[
ETil ∗
fTilEil f

T
il fil − 1

]
< 0,

(22)
This is equivalent to:[
Pi + λilE

T
ilEil ∗

λilf
T
ilEil λil(f

T
il fil − 1)

]
−
[
ATi
bTi

]
P−1
j [Ai bi] > 0.

(23)
Applying Schur complement to the above equation we
have:Pi + λilE

T
ilEil ∗ ∗

λilf
T
ilEil λil(f

T
il fil − 1) ∗

Ai bi P−1
j

 > 0. (24)

Pre- and Post-multiplying the above equation with

diag{I,
[
0 ∗
I 0

]
}, we have:Pi + λilE

T
ilEil ∗ ∗

Ai P−1
j ∗

λilf
T
ilEil bTi λil(f

T
il fil − 1)

 > 0. (25)

Using Schur complement, it is equivalent to:[
Pi + λilE

T
ilEil ∗

Ai P−1
j

]
− (26)[

λilE
T
il fil
bi

]
λ−1
il (fTil fil − 1)−1

[
λilf

T
ilEil b

T
i

]
> 0, (27)

which is equal to:

[
Pi + λilE

T
ilEil ∗

Ai P−1
j

]
−[

λilE
T
il fil(f

T
il fil − 1)−1fTilEil ∗

bi(f
T
il fil − 1)−1fTilEil λ−1

il bi(f
T
il fil − 1)−1bTi

]
> 0.

(28)

Using the matrix inversion Lemma, we have:

(1− fTil fil)−1 = 1 + fTil (1− filfTil )−1fil. (29)

The inequality (28) can be written as:[
Pi + λilE

T
ilEil ∗

Ai P−1
j

]
−
[
λilE

T
ilEil ∗
0 −λ−1

il bib
T
i

]
+ (30)[

ETil
λ−1
il bif

T
il

]
λil(filf

T
il − I)−1

[
Eil λ

−1
il filb

T
i

]
> 0,

which, by using Schur complement, is equal to:Pi ∗ ∗
Ai P−1

j + µilbib
T
i ∗

Eil µilfilb
T
i µil(filf

T
il − I)

 > 0, (31)

where µil = λ−1
il . Replacing Ai by Ai + Bi∆

fKi, it is
equivalent to: Pi ∗ ∗

(Ai +Bi∆
fKi) P

−1
j + µilbib

T
i ∗

Eil µilfilb
T
i µil(filf

T
il − 1)

 > 0,

(32)
Pre- and post-multiply (32) by diag{P−1

i , I, I}, and defin-

ing Xi = P−1
i , Yi = KiP

−1
i , we get (14). For subsystems

that contain the origin i.e. i ∈ I0, we have filf
T
il − I < 0

which means that the LMI (14) is not feasible. For these
subsystems the LMI (15) is considered and there is no need
to include the region information. Therefore, the following
matrix inequality must be satisfied:

(Ai +Bi∆
fKi)

TPj(Ai +Bi∆
fKi)− Pi < 0 (33)

Using Schur complement, the above inequality is equiva-
lent to: [

−Pi (Ai +Bi∆
fKi)

T

(Ai +Bi∆
fKi) −P−1

j

]
< 0 (34)

By pre- and post-multiplying (34) by diag{P−1
i , I}, then

defining Xi = P−1
i , Yi = KiP

−1
i , we get (15). 2

The above theorem only considers stability. In many
situations, the system might be stabilizable but the cost
of reaching to the origin from the initial state might not
be admissible. To include admissibility of the upper bound
on the cost function we introduce the following theorem.

Theorem 3. If there exist symmetric matrices Xi = XT
i >

0 and matrices Yi and positive constants such that:
Xi ∗ ∗ ∗ ∗

(AiXi + Bi∆
f
Yi) Xj + µilbib

T
i ∗ ∗ ∗

EilXi µilfilb
T
i µil(filf

T
il − 1) ∗ ∗

∆
f
Yi 0 0 R

−1
i ∗

Xi 0 0 0 Q
−1
i

 > 0

(35)

∀(i, j) ∈ S, i ∈ I1, l = 1, . . . , `i,
−Xi ∗ ∗ ∗

(AiXi +Bi∆
fYi) −Xj 0 0

∆fYi 0 R−1
i ∗

Xi 0 0 Q−1
i

 < 0, (36)

∀(i, j) ∈ S, i ∈ I0
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then there exist a PWL state feedback control law of the
form (11) for the PWA system (1) subject to fault f such
that the closed system is exponentially stable. The PWL
feedback gains are given by:

Ki = YiX
−1
i , (37)

and the upper bound on the cost function (13) satisfies:

J ≤ x(0)TX−1
i0
x(0), (38)

where i0 is the region index for the initial condition, i.e.
x(0) ∈ Xi0 .

Proof 2. We consider a piecewise Lyapunov candidate
function of the form V (x(k) = x(k)TPix(k), Pi > 0 for
x(k) ∈ Xi. The condition to be satisfied is:

V (x(k + 1))− V (x(k)) + x(k)TQix(k)+ (39)

x(k)TKT
i RiKix(k) < 0,∀(i, j) ∈ S.

The proof of stability is very similar to the previous
theorem except that to deal with the term x(k)TQix(k) +
x(k)TKT

i RiKix(k) we use the Schur complement two more
times at the end of the proof. To prove that (38) is satisfied
we sum up (39) from k = 0 to k =∞, which results in:

V (x(∞))−V (x(0))+Σ∞0 (xT (k)Qix(k)+uT (k)Riu(k)) < 0
(40)

Because Qi and Ri are positive, hence x(k)TQix(k) +
x(k)TKT

i RKix(k) ≥ 0. Therefore, if (39) is satisfied the
system is stable which means V (x(∞)) = 0. As V (x(0)) =
x(0)TPi0x(0). Therefore we have:
∞∑
k=0

(xT (k)Qix(k) + uT (k)Riu(k)) < xT (0)Pi0x(0). 2

The upper bound found in the theorem (3) is not optimal.
We are interested to minimize this cost to find a controller
with the minimum cost. The upper bound of (13), could
be minimized in the following way. The initial condition is
considered as a random variable with uniform distribution
in a bounded region X . Then, it is tried to minimize the
expected value of the cost function. We have:

E(J) ≤ E(tr(Pi0x(0)xT (0))) ≤
∑
i∈I

σitr(PiLi), (41)

where Li = E(x(0)xT (0)) is the expectation of x(0)xT (0)
corresponding to x(0) ∈ Xi, i ∈ I , tr(·) is the trace
operator and σi is the probability of x(0) ∈ Xi. Then,
the optimization problem is:

J∗ = min
Xi,Yi

∑
i∈I

σitr(X
−1
i Li) (42)

s.t.

 (35)
(36)

Xi = XT
i > 0,

The above optimization problem is non-convex. To convert
it to a convex optimization problem , we introduce new
variables Vi, i ∈ I, which satisfies:[

Vi I
I Zi

]
≥ 0. (43)

Using Schur complement, the above constraint is equiv-
alent to Z−1

i ≤ Vi. Therefore, the objective function in
(42), which is nonlinear in term of Zi, can be converted to∑
i∈I σitr(ViLi). Consequently, the optimization problem

(42) can be transformed to the following convex form:

J∗ = min
Xi,Yi,Vi,εi

∑
i∈I

σitr(ViLi) (44)

s.t.


(35),
(36),
(43),

Xi = XT
i > 0,

In the following theorem we consider the properties for
reconfigurability to be stability and admissibility of the
optimal upper bound on the cost function.

Theorem 4. The system (1) subject to fault f with respect
to admissibility threshold J on the cost function (13) is
reconfigurable if:

• (14) and (15) are satisfied,
• J∗ < J .

Proof 3. Satisfaction of (14) and (15) guarantees that the
system is stabilizable with a PWL state feedback controller
and satisfying J∗ < J is equal to admissibility of the cost.
Therefore, based on definition 1 the system subject to fault
f is reconfigurable. 2

4. EXAMPLE

The method is applied to a climate control systems of a
live-stock building, which was obtained during previous
research, Gholami et al. (2010). The general schematic of
the large scale live-stock building equipped with hybrid
climate control system is illustrated in Figure. 1. In a large
scale stable, the indoor airspace is incompletely mixed;
therefore it is divided into conceptually homogeneous parts
called zones. In our model, there are three zones which
are not similar in size. Zone 1, the one on the left, is
the biggest and Zone 2, the middle one, is the smallest.
Due to the indoor and outdoor conditions, the airflow
direction varies between adjacent zones. Therefore, the
system behavior is represented by a finite number of
different dynamic equations. The model is divided into
subsystems as follows: Inlet model for both windward and
leeward, outlet model, and stable heating system, and
finally the dynamic model of temperature based on the
heat balance equation. The nonlinear model of the system
is approximated by a discrete-time PWA system with 4
regions based on the airflow direction. The model of the
system are derived for the following polyhedral regions:

X1 = {[xT uT ]T |F x1 x+ Fu1 ≥ f1, F
x
2 x+ Fu2 ≥ f2}, (45)

X2 = {[xT uT ]T |F x1 x+ Fu1 < f1, F
x
2 x+ Fu2 < f2}, (46)

X3 = {[xT uT ]T |F x1 x+ Fu1 < f1, F
x
2 x+ Fu2 ≥ f2}, (47)

X4 = {[xT uT ]T |F x1 x+ Fu1 ≥ f1, F
x
2 x+ Fu2 < f2}, (48)

,where

F x1 = [1.0817 −0.0457 −0.9938]

F x2 = [−1.1144 0.0490 1.0187]

Fu1 = [0.2323 −0.0072 0.2323 0.2323 −0.0072

0.2323 −0.072 0.1349 −0.0719 −0.0064] ,

Fu2 = [−0.2558 0.0074 −0.2558 −0.2558 0.0074

−0.2558 0.0742 −0.12 0.0742 0.0074] ,

f1 = 0.4058, f2 = −0.4575 (49)

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

4675



!!!!
!
!
!

!
!

! !
!
!

!

"! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!

#$ "#

#$% "$%&#

"&'()*+ !

"
,"

&! !
'!

"! &!

"!

'! !

())*+,-.!/01!21341-5,6*!,-)4/!2,.-6*!

7-*1/! 816/,-.! 94/*1/!

(,:;*<=!

-. /. 0.

1.1.1.

2. 3. ".

1.1.1.
4. +. 5.

Fig. 1. The top view of the test stable

As one can see from the description of regions, they
are dependent on the input and the state at k. But
u(k) is unknown and is to be calculated based on the
current region. Therefore, it is impossible to calculate the
current mode. To remedy this problem, instead of a PWL
controller, we consider a common controller for all regions,
i.e.

u(k) = Kx(k) (50)

The discrete-time PWA model is described by:

A1 =

[
1.6361 0.0480 −0.7716
1.5782 0.5522 −0.9983
0.7747 0.0462 0.0990

]
, (51)

A2 =

[
1.1145 −0.0300 −1.0590
1.6452 0.1010 −1.4342
0.3008 0.0191 −0.2324

]
, (52)

A3 =

[
1.6340 0.0259 −0.7150
1.5474 0.8335 −1.4790
0.7674 0.0314 0.1456

]
, (53)

A4 =

[
1.6274 0.0049 −0.6987
1.6242 0.8163 −1.4751
0.7623 0.0051 0.1640

]
, (54)

B1 =

[−0.1163 0.0459 −0.1163 −0.1163 0.0459
0.5718 −0.3768 0.5718 0.5718 −0.3768
−0.1147 0.0353 −0.1147 −0.1147 0.0353

−0.1163 0.0018 −0.0567 0.0018 0.0070
0.5718 −0.1518 0.2724 −0.1518 −0.0056
−0.1147 0.0022 −0.0553 0.0022 0.0071

]
, (55)

B2 =

[
0.1137 −0.0044 0.1137 0.1137 −0.0044
−0.0104 0.1057 −0.0104 −0.0104 0.1057
0.0581 0.0258 0.0581 0.0581 0.0258

0.1137 −0.0697 0.2883 −0.0697 0.0023
−0.0104 0.0183 0.8276 0.0183 0.1275
0.0581 0.0097 0.0939 0.0097 0.0273

]
, (56)

B3 =

[−0.0677 −0.0127 −0.0677 −0.0677 −0.0127
0.2031 0.0778 0.2031 0.2031 0.0778
−0.0697 −0.0188 −0.0697 −0.0697 −0.0188

−0.0677 −0.0103 −0.0080 −0.0103 0.0078
0.2031 −0.0594 −0.0506 −0.0594 −0.0012
−0.0697 −0.0098 −0.0087 −0.0098 0.0075

]
, (57)

B4 =

[−0.0393 −0.0380 −0.0393 −0.0393 −0.0380
0.0851 0.1683 0.0851 0.0851 0.1683
−0.0414 −0.0434 −0.0414 −0.0414 −0.0434

−0.0393 −0.0133 −0.0234 −0.0133 0.0086
0.0851 −0.0568 0.0160 −0.0568 0.0029
−0.0414 −0.0130 −0.0241 −0.0130 0.0085

]
, (58)

b1 =

[
0.4749
−0.9236
0.4214

]
, b2 =

[−0.0676
2.2442
0.3784

]
, (59)

b3 =

[
0.2356
0.3694
0.2500

]
, b4 =

[
0.3510
−0.5021
0.3682

]
. (60)

Here, the initial condition is x(0) = [10 10 10]
T

, and the
set of the actuators of the system is {a, b, c, d, e, f, g, h, i, j},
where a, b, c, d, e, f are inlets, g, h, i are fans, and j is
the heating systems. Actuator a, b, c, d, e, f respectively
represent 12, 6, 12, 14, 6, 12 connected inlets. The con-
trol problem is to regulate the temperature of each zone
around 19. To make notations simpler, we only write those
actuator that are healthy. For example, {a, b, c, d} means
that only actuators a, b, c, and d are healthy and the
rest are faulty. Results of the reconfigurability analysis
shows that the system with more than 5 faulty actuators
is not reconfigurable. It also shows that heating system,
actuator j, should be healthy for reconfigurability of the
system. In table 1, different faulty situations with 5 or 6
fault-free actuators are considered. Because of the lack of
space we have just shown some cases to demonstrate the
method. The first column shows the fault-free actuators
and the second column shows the corresponding quadratic
cost. We have only considered the cases that the system
is stabilizable. The admissibility threshold of the cost is
considered as 700. As it can be seen from the table, even
though all the cases are stabilizable, some of them are not
admissible; hence the system is not reconfigurable based
on definition 1. The reconfigurable cases are boldfaced.
Figure. 2 shows temperature of each zone for the fault-free
system. As it is obvious the controller is able to regulate
the temperature around the reference. Figure. 3 shows the
output of the system for the case that the fault-free actu-
ator set is {a, b, g, h, j}. As it can be seen, the controller is
able to track the reference with some degradation in the
performance which is admissible.

5. CONCLUSIONS AND FUTURE WORKS

We presented an approach for reconfigurability of discrete
time PWA systems. Reconfigurability is defined as both
stability and admissibility of the upper bound on the
quadratic cost. Sufficient conditions for reconfigurability
of a system subject to a fault with respect to a given
threshold on the quadratic performance cost are given in
terms of LMI. The upper bound is minimized by solving
a convex optimization problem with LMI constraints.
The approach is applied to the climate control system
of a livestock building. Situations in which the system is
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Table 1. Stabilizable actuator sets and associ-
ated quadratic cost

Fault-free actuators quadratic cost

{a,b,h,i,j} 668.8
{a,b,g,h,j} 668.1
{e,f,h,i,j} 670
{e,f,g,h,j} 669.4
{d,e,f,g,h,j} 675
{a,b,c,g,h,j} 665
{a,b,c,h,i,j} 667.2
{d,e,f,h,i,j} 668.2

{a,f,g,h,j} 129220
{d,e,f,i,j} 271655

{a,b,c,g,i,j} 264750
{d,e,f,g,j} 261355
{a,f,h,i,j} 127770
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Fig. 2. Simulation results with a controller designed for
the fault-free system

reconfigurable with maximum number of actuator outages
are found. The simulation results demonstrates that the
performance of the system is still acceptable. Future works
will consider application of the method in designing an
AFTC with optimal number of control laws.
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