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Affordance Segmentation Using Tiny Networks
for Sensing Systems in Wearable
Robotic Devices

Edoardo Ragusa™, Member, IEEE, Strahinja Dosen™, Member, IEEE,
Rodolfo Zunino, and Paolo Gastaldo

Abstract—Affordance segmentation is used to split object
images into parts according to the possible interactions,
usually to drive safe robotic grasping. Most approaches to
affordance segmentation are computationally demanding;
this hinders their integration into wearable robots, whose
compact structure typically offers limited processing power.
This article describes a design strategy for tiny, deep neural
networks (DNNs) that can accomplish affordance segmenta-
tion and deploy effectively on microcontroller-like processing
units. This is attained by specialized, hardware-aware neural
architecture search (HW-NAS). The method was validated by
assessing the performance of several tiny networks, at differ-
ent levels of complexity, on three benchmark datasets. The

outcome measure was the accuracy of the generated affordance maps and the associated spatial object descriptors

(orientation, center of mass, and size). The experimental

results confirmed that the proposed method compared

satisfactorily with the state-of-the-art approaches, yet allowing a considerable reduction in both network complexity
and inference time. The proposed networks can, therefore, support the development of a teleceptive sensing system to
improve the semiautomatic control of wearable robots for assisting grasping.

Index Terms— Affordance segmentation, embedded systems, grasping, microcontrollers, tiny convolutional neural

networks (CNNs), wearable robots.

. INTRODUCTION

FFORDANCE segmentation consists in detecting [1] and
identifying potential functional interactions that an object
can afford, and segmenting that object into parts accord-
ingly. Successful methods for affordance segmentation used
RGB cameras, deep learning (DL), and powerful computing
units [2], [3], [4], [5]. The literature, however, seems to lack
implementations relying on limited computational resources.
This ultimately hinders applications to wearable robots that
can assist, restore, or augment grasping function, such as

prostheses, exoskeletons, and supernumerary limbs [6].
These devices are mechatronically advanced systems with
multiple degrees of freedom, but effective user control is still
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a challenge. Normally, the user needs to control all func-
tions of the device by generating explicit commands, which
can be slow and cognitively taxing, and wearable assistive
robots are, therefore, rarely used outside of the laboratory,
or they are often rejected by their users [7]. One approach
to addressing this challenge is to enhance wearable robots
with teleceptive sensing capabilities (the sensing that occurs
without physical contact with the object being tested [8]).
Teleceptive sensing can be used to implement semiautonomous
control, which can substantially reduce the users’ physical and
mental efforts while controlling these devices [6], [9]. For
instance, a wearable robot (e.g., a prosthesis) can be endowed
with a camera, so that the device can “see” the target object.
An image analyzer then estimates the object properties and
directly configures the robotic hand for grasping, without any
additional input from the user [10], [11], [12].

Affordance segmentation can be useful in this sce-
nario, as it can highlight the graspable parts of an object
(see Fig. 1), hence allowing the image analyzer to focus
only on the relevant segments of the object. However,
to enable this application, novel resource-aware methods
for affordance segmentation that can be deployed onto
the embedded controller of a wearable robot need to be
developed.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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The key contribution of this article lies in applying
hardware-aware neural architecture search (HW-NAS) meth-
ods to the enhancement of teleceptive sensing systems. As a
result, inexpensive, low-resolution cameras integrated with
low-performance computing units can support affordance seg-
mentation using tiny networks. The HW-NAS framework
applies an evolutionary algorithm to perform a blockwise
search in a hardware-friendly search space (SS), to pinpoint
the best-performing network architecture that satisfies the
specified constraints. To address the set of candidate networks
compatible with the target device, the design approach pre-
sented here relies on an empirical model of the inference time.

The experimental assessment of the developed method on
three established benchmarks [1], [2], [13] demonstrated that
good accuracy was achieved by the resulting networks, even in
the presence of a considerable reduction in the networks’ sizes.
The tiny neural models compared satisfactorily with much
more complex solutions reported in the literature [14], whereas
the required computational power for the run-time operation
was reduced substantially. For assessing potential application,
the affordance maps were also used to estimate the relevant
parameters for hand-based grasping, namely, the barycenter
of the graspable area, as well as its size and orientation. The
experiments also addressed the impact of the image resolution
on the estimates of the object properties.

The contribution of this article can be summarized as
follows:

1) the development of advanced teleceptive devices sup-
ported by commercial microcontrollers, equipped with
deep neural networks (DNNs) for real-time affordance
segmentation;

2) a software-hardware codesign strategy based on
HW-NAS for teleceptive implementations;

3) a strategy based on the empirical relationship between
the number of required Flops and the associate inference
time, thus yielding efficient, configurable implementa-
tions of the HW-NAS;

4) a set of tiny DNNs for affordance segmentation, hosted
by an stm32f746g-disco board, featuring a latency
smaller than 0.25 s;

5) tests on established benchmarks, confirming the overall
effectiveness of the developed method.

[I. RELATED WORKS

A. Grasp Affordance Prediction

Understanding an object’s affordance at the pixel level
is denoted as “affordance segmentation,” “affordance detec-
tion,” or “object part labeling.” It is closely related to grasp
selection [15], in particular, to segmentation-based grasping
methods. The two problems overlap in defining the graspable
regions of the object, since a suitable grasp depends on the
function afforded by the object [3]. Convolutional neural
networks (CNNs) are a popular approach to that task [2].
In [2], a DL object detector improved the affordance detection
accuracy by automatically selecting objects within images.
The work presented in [16] considered the intrinsic depen-
dence of affordance on the task, whereas [17] involved a

rank-based strategy of affordances. Occlusions due to human—
object-robot interactions were modeled in [18] and with a
generalization to consider unseen objects in [19]. When apply-
ing multitask learning [4], a CNN reconstructed 3-D objects
and predicted their affordable parts at the same time. The
research described in [5] introduced a new formulation of the
affordance prediction problem for RGB images with multiple
objects. Likewise, [20] augmented affordance segmentation
with keypoint detection. A simulator included in [21] gen-
erated a collection of grasping sequences, while [13] involved
a large dataset with RGB-D information. Synthetic images
were also considered in [22]. The approaches discussed above
mostly neglect computational constraints that, however, can
severely limit the inclusion of affordance segmentation in
wearable systems.

B. Semiautonomous Control of Grasping

Semiautonomous control was used to improve performance
and user experience when interacting with a variety of wear-
able robots for assistance or restoration of grasping, including
supernumerary limbs [6], exoskeletons [23], and arm and hand
prostheses [24]. This approach makes the devices smart, so that
they can accomplish some tasks independently. The users
can, therefore, perform complex functions by using simple
commands, which improves control and practical utility, while
decreasing the cognitive load.

The application in prosthetics is particularly interesting for
this article, as these are compact battery-powered systems
that need to work over a prolonged period (hence, both
physical and computational constraints). RGB cameras [25],
[26], stereopairs [27], and depth sensors [11] were added to or
even integrated [28], [29] into robotic prosthetic hands. Image
and point cloud analysis was then used to estimate object
properties (shape and size—width and height) and, based
on this information, decide on the convenient grasp strategy
using a simple set of rules (e.g., heuristically constructed
decision trees) [11], [27]. Alternatively, the image data were
processed using CNNs to support grasping classification [30],
object segmentation [28], [29], and hand-pose estimation for
bimanual interaction [31]. The uncertainty introduced by par-
tial occlusions was modeled in [10]. A hardware-amenable
DNN supported the segmentation of the affordable parts of
objects [14], further extended by object-recognition abilities
in [32].

C. Tiny Deep Networks

In modern, smart sensors equipped with DL, sensing nodes
can mine sophisticated information at the local level [33].
This requires specialized software—hardware co-optimization
to identify the best CNN architecture. When applying NAS
[34], one should define an SS, namely, the set of admissible
candidate networks. The popular MNAS was built from the
MobileNet [35] design space.

Practical implementation may, however, exhibit a crucial
issue: networks having the same number of Flops and param-
eters [36] may differ in latency values when they are ported
on different devices. This is due to specific inference engines
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that may interfere with optimization techniques [37]. If opti-
mization is not matched by hardware resources, this may
even worsen the resulting performances. Likewise, running
models with an arbitrary quantization on microprocessors can
slow down execution, if the instruction set fails to support
that representation [38]. The microcontroller unit network
(MCUnet) applied a comprehensive optimization procedure
to select the architecture and set up the computing layer,
yielding excellent performances [39]; the custom software
layer, however, made it difficult to use and customize the
model [40].

The major issues when applying NAS stem from its com-
putational cost and the diversity in target platforms, since
effective approaches for designing tiny networks are mostly
tailored to specific devices. Super networks span all the pos-
sible architectures spanned by an SS [41] and may represent
a viable solution to the computational problem. Conversely,
wearable devices host heterogeneous computing platforms and
sometimes embed proprietary software, which might com-
plicate the formulation of a general strategy. The approach
presented in this article, therefore, keeps a high level of
abstraction, to derive a design procedure for networks that
may comply with heterogeneous computing platforms.

[1l. MATERIAL AND METHODS
The tiny DNNs run on microcontrollers and work out
affordance segmentation maps from raw RGB images. This
section first describes the smart sensing system and then
outlines the NAS design approach.

A. Smart Sensing Device

Fig. 1 illustrates the overall conceptual solution: a general
wearable grasping robot hosts an RGB/RGB-D camera to
allow teleceptive sensing and a microcontroller. The acquired
frames are stored in the memory of the microcontroller, which
processes raw images, executes the control algorithm to select
the grasp strategy, and prompts the resulting commands to the
embedded actuators.

Electromyography (EMG) signals (not shown in the figure)
trigger and drive the control pipeline of the semiautonomous
system, to support volitional control. The EMG-based user
interface prompts a volitional command (muscle contraction)
to indicate the user’s intention to grasp an object. Then, the
teleceptive sensor acquires an RGB image of the target, and
the tiny DNN estimates the associated affordance map. The
map allows the system to focus on the object parts that are
labeled as graspable (highlighted in blue) and estimate the
properties relevant for selecting the grasping strategy. For
instance, simple processing can yield the dimensions of the
graspable area, its barycenter (yellow) and orientation (red).
Nongraspable parts are marked in green.

The map information can be directly fed into subsequent
sections of the semiautonomous control pipeline in combina-
tion with the output of other sensing devices to select the grasp
preshape using, for instance, decision trees [11]. Affordance
maps can be employed to estimate the width and height of
the graspable area, and the previous work showed that this
information can be used for the effective selection of grasp

Wearable Robot

MicroController

Map Post
Processing

/

Fig. 1.

Overall scheme of the proposed sensing system.

modality, as explained in Section II-B. The estimate of object
orientation can drive a gripper orientation to properly align the
hand to the object for grasping.

In summary, the result of tiny network processing can
enhance the analysis of data provided by the camera, thus
endowing the smart sensor with the capability of detecting the
position and shape of the graspable object part.

B. Defining a Suitable HW-NAS for Affordance
Segmentation

State-of-the-art approaches to the design of tiny DNNs for
embedded systems use HW-NAS procedures. The existing
works on the deployment of specialized segmentation models
require a co-optimization of the software layer that runs on the
embedded device [39]. The research presented here yields an
HW-NAS strategy for affordance segmentation that does not
involve any tuning of the low-level software layer, yet enables
to deploy effective networks on very constrained devices. This
enhances general applicability and timing effectiveness.

Three main aspects characterize any HW-NAS strategy: the
SS, of admissible candidates, the search algorithm (SA), and
an evaluation criteria (EC). In this article, the basic architecture
schema relies on the conventional backbone head structure
adopted in the segmentation literature. The set of possible
backbones only includes a linear combination of parametric
building blocks, i.e., a single-branch neural network [36]. A set
of six parameters characterizes each building block, adher-
ing to the MobileNetV2 model. Lite reduced-atrous spatial
pyramid pooling (LR-ASSP) [42] supports the segmentation
head; it includes a few upsampling layers and connects to
the two layers of the backbone. One architectural parameter,
namely, the number of filters in the last convolutional layer,
does not affect the size of the output mask, and therefore,
only that parameter of the segmentation head enters the search
procedure. In addition to the architecture blocks, the size of
the input image is included in SS, as that quantity can affect
accuracy, memory, and Flops significantly.

A standard evolutionary algorithm supports SA; to explore
candidate architectures, it applies random mutations on a
parent architecture A, according to a function R,

A, = Ry (4)). )

R, () randomly performs one of a set of possible actions: 1)
changing the input size; 2) changing the number of building
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blocks; 3) altering a building block in one of its parameters
(kernel size, number of filters, expansion factor, activation
function, and stride); and 4) changing the number of filters
in the segmentation head.

The procedure starts with a preset parent architecture, A,
which is initialized to a minimal configuration, holding the
smallest number of blocks to prioritize fast networks [43]. The
algorithm completes a fixed number, N, of iterations. At each
iteration, a set of N, children architectures is spawned

Co={A}), i=1,....,Ns Ai=Rn(4,). )

The architectures in C are all trained on a labeled training
set {X;,Y,},t =1,..., Z, where X, is the input image and Y,
is the affordance segmentation mask. A penalty function Py
allows to pinpoint the best child A,

Ap = argmin Py (A;), A; € Cs. 3)

The best child, Ay, takes the place of its parent, A,, in (2)
and spawns the subsequent generation; hence, SA can scan a
wide selection of candidates. Eventually, the best architecture,
A*, is the one that scored the smallest value of P, from among
all comparisons.

C. Empirical Modeling of the Computational Cost

The evaluation function, Py, typically includes two penalty
terms: one that considers the error on the validation set, Ly,
and the other that penalizes the computational cost L¢. Such a
reasonable approach, however, might not best fit the problem
at hand, especially when tight constraints are involved.

A viable solution might lie in modeling the correlation
between latency and network architecture in SS, for the target
embedded system. The general procedure consists in drawing
a set of networks randomly from SS; that set needs to be
large enough to ensure a large variability of both quantities.
In the present research, inference time ranged from less than
1 s to more than 15 s, thus covering any possible application
considered for the target device; the actual values shall be
set depending on the application domain and the specific
HW platform adopted. Then, one deploys the DNNs on the
target device and measures the inference time, thus building an
empirical model of the Flops/time relationship. This analysis
can turn the specific NAS design into a decision-based prob-
lem, removing the computational penalty term from Pr: any
network featuring a number of Flops higher than a threshold
can be discarded.

In practice, the designer sets the largest admissible inference
time and retrieves the associate number of Flops by inverting
the experimental modeling relation. The latter quantity sets the
threshold for network candidate rejection, while the accepted
networks can be compared on validation errors only. The
selection constraint enters the generation mechanism (2) of the
set C,. The procedure avoids to prioritize smaller networks as
soon as the networks meet the constraint.

IV. EXPERIMENTAL SETUP
The experimental setup covered several aspects. A prelim-
inary analysis completed the modeling of the computational
cost, as described in Section III-C. A subsequent assessment

®20f e
Wl e
s 10} P *
0 it . . .
0 100 200 300 400
FLOPS(M)

Fig. 2. Relationship between MFlops and inference time when using
Cortex-M7 32-bit reduced instruction set computer (RISC) core.

compared the obtained affordance segmentations with bench-
marks. An additional experiment considered to what extent the
“low-resolution” affordance maps affected the estimation of
grasp parameters (object descriptors). A final empirical session
addressed the actual computational performance, by measur-
ing the real-time performances obtained after deploying the
created networks on the target microcontroller.

A. Computational Cost Model

In the case of the STM32F746NG board, the microcontroller
unit (MCU) hosts a single-precision floating-point unit. The
amount of RAM and flash memory in that target device is an
order of magnitude lower than in standard devices, and the
single floating point unit prevents parallelism.

In the analysis described in the previous section, the infer-
ence time constraint proved dominant, as no configuration in
the spanned SS ever met the latency constraints, when involv-
ing an excessive memory footprint. Fig. 2 shows the measured
relationship between MFlops and inference time. The markers
refer to the values measured for the various deployments,
supporting a linear regression model. The following equation
expresses the relationship between time and MFlops:

time = (Flops/10°) x 0.054 + 0.2648. )

That linear relation yielded an estimate of the inference
timing for every candidate DNN; hence, one needed not to
optimize the model with the STM32 tool chain. This made
making the selection process much faster and more stable.

A final remark concerns the main aspects determining the
eventual inference time, namely, multiply-accumulate (MAC)
operations and memory access. The above analysis only
involves external RAMs, which seems a reasonable assump-
tion when dealing with portable electronics. Memory access
time may, therefore, show up larger as compared with cases
in which all operations are supported by on-chip memories.
In practice, this trend becomes an upper bound for small
DNNSs; moreover, exact information about internal memory
management is not often available, which greatly affects the
general applicability of design strategies.

B. Generalization Performance

This article aims to prove that tiny networks can sup-
port affordance segmentation in the conditions in which the
affordances are well defined. Therefore, the problem at hand
focused on foreground objects with good framing settings.
The Univerity of Maryland (UMD) [1] is a well-known
benchmark that contains 28.843 RGB-D images of seven
categories of objects that fulfill the aforementioned require-
ments. The dataset includes many framing angles for each
object, providing valuable insights about the capability of
the models to handle the framing issues. Two additional
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datasets have been included to evaluate the impact of fac-
tors that may complicate the segmentation, for instance,
more object classes with ambiguous affordance definitions
and heavy occlusions. The multi-view (MV) dataset [13]
accounts for 23 605 RGB-D images collected using 37 classes
of objects. This dataset contains ambiguous affordances as
the collection contains objects, such as boxes, balls, and
books, where the borders between graspable and nongraspable
surfaces are not self-evident. Finally, the Italian Institute of
Technology (IIT) dataset [2], which contains 8835 images
featuring different framing and resolutions, was used for
the assessment. In summary, the three datasets contain very
different sets of objects, providing de facto three different
benchmarks. The validation sets were generated from the
training set using a standard holdout procedure. The test
patterns were never involved in the tuning of any parameters or
hyperparameters.

Following the approach proposed in [14], all the grasp-
ing affordances were grouped into a unique class named
grasp, while the other affordances were assigned to “do not
grasp” class. The learning problem, therefore, consists of a
three-class pixelwise classification where the predictor should
discriminate among grasp, do not grasp, and background.
The foreground images of the object were extracted using
the corresponding segmentation masks extracting the bounding
box containing the object. Different objects led to boxes with
different eight-width ratios. The image ratio was adjusted to
a square ratio using zero padding to fit the network’s input
size. After the processing, training size and test size were
23.708 and 5135 for UMD, 9186 and 1969 for IIT, and
12.401 and 5888 for MW, respectively.

Five baseline solutions were considered. The version of
MobileNetV3 (MobV3) presented in [14] for affordance seg-
mentation features the lowest computational requirements,
compared with the models used previously [14], while main-
taining satisfactory accuracy on the benchmarks. A tiny model
for object segmentation [28] intended for implementation
on prosthetic hands, not designed for affordance segmenta-
tion, sets the reference for models developed specifically for
application in prosthetics. Then, two models based on Effi-
cientNetB0O (EFF) and VGG16, paired with Unet segmentation
head, were selected to provide a reference for large-scale
robotics approaches and related learning problems, such as
grasp selection. The architecture uses a segmentation head
connected to four feature maps corresponding to as many
layers of the backbone. We opted for these two general
configurations with respect to single instances of recent solu-
tions from robotics literature, because their target setup is
substantially different, making the comparison unfair [44].
The last baseline was SegFormer [45]. This model is based
on Transformer architectures [46] that are proving to be
valuable alternatives to CNNs for computer vision tasks.
Among the existing Transformer-based segmenters (e.g., Swin
Transformer, Mask2Former, and Mask DETR with improved
denoising anchor boxes (MaskDINO) [46]), the SegFormer
balances computational costs and generalization performance,
and this makes it an interesting comparison for the proposed
approach.

The NAS executed 100 generations for every dataset. Seven
values of the threshold parameter were used. The first one was
13 400 KFlops, which yielded an expected inference time close
to 1 s. The remaining six thresholds were obtained by multi-
plying this threshold by 6,4, 2, 0.5, 0.33, and 0.25, respectively.
Hereafter, we will call the different models propaS, where
o indicates the multiplication factor. As explained before,
the threshold did not necessarily coincide with the inference
time, because the selected architecture could have a lower
inference time compared with that given by the threshold.
All networks were trained for ten epochs following the early
stop strategy [35]. The best architecture as selected by NAS
was then trained for a maximum of 100 epochs with an
initial learning rate of 1073, the learning rate reduction on
the plateau, and early stopping using the validation loss as the
metric. The generalization performance was measured using
the test set.!

C. Estimating Grasp Relevant Parameters

As explained in Section III-A, the affordance maps pro-
vide useful information for selecting an appropriate preshape,
as they allow focusing the analysis on the graspable surface
of an object. However, the decrease in the complexity of the
networks that predict the affordance map inevitably leads to
a lower accuracy, which can produce errors when estimating
the grasp relevant descriptors (dimensions, barycenter, and
orientation). To assess this, we computed the error when
estimating the three descriptors from the generated affordance
maps. This analysis also considered the impact of image
resolution, which plays an important role in the quality of
estimation.

The tests were performed using the images extracted from
the UMD dataset. This set was selected, because none of
the datasets provided information about the object size in
physical units. The UMD dataset, however, uses a fixed camera
that frames the object always from the same position, and
therefore, in this case, the object’s size could be estimated
with high accuracy using the depth maps. The other two
datasets used different framing angles and positions, making
the reconstruction of the physical properties more challenging.

The first considered descriptor was the barycenter of the
graspable surface, computed as the average position of the
pixels marked as “graspable.” The second was the physical
dimension of the object including its width (W) and height
(H) computed as the maximum and minimum coordinates of
the pixels classified as belonging to the object, as shown in
Fig. 1. The last descriptor was the orientation estimated as the
angle of the principal component (PC) of the mask containing
the graspable pixels. Fig. 1 shows this information using a
red segment superimposed on the image. This descriptor is
useful when the object under analysis has an elongated shape
(e.g., a handle), while the orientation angle is undefined for
approximately spherical objects. The orientation was, there-
fore, computed only for classes of objects containing handles
or having elongated shapes.

'Generated  architecture  available  at

unige/IEEESensorsJournal2023.

https://github.com/SEAlab-
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TABLE |
GENERALIZATION PERFORMANCE FOR UMD, MW, AND IIT
model [ back. [ grasp [ don’t gr. [ H7 [ KFlops | Params
UMD

Propls 0.980 | 0.827 0.863 v 12.46M 10.8K(10.4K)
Prop0.5 0.989 | 0.820 0.880 v 7.02M 18.9K(18.5K)
TinySeg 0.99 0.598 0.636 v 63.44M 4K(N.A.)
MobV3 0.985 | 0.833 0.930 v 0.2GM 196K (184K)
SegFor. 0.979 | 0.872 0914 X 8.4G 3.8M(3.4M)

EFF 0.989 | 0.886 0.941 X 1.32G 13M(4M)
VGG16 0.996 | 0.825 0.857 X 10.94G 20M(15M)

MW

Propls 0.970 | 0.804 0.618 v 13.65M | 50.8K(49.7K)
Prop0.5 0.967 | 0.813 0.563 v 5.91M 15.5K(14.7K)
TinySeg 0.987 | 0.853 0.041 v 63.44M 4K(N.A.)
MobV3 0.980 | 0.857 0.550 v 0.2G 196K (184K)
SegFor. 0.980 | 0.851 0.777 X 8.4G 3.8M(3.4)

EFF 0.988 | 0.900 0.810 X 1.32G 13M(4M)
VGG16 0.988 | 0.862 0.606 X 10.94G 20M(15M)

1T

Propls 0.970 | 0.459 0.686 v 12.63M | 55.3K(54.7K)
Prop0.5s | 0.970 | 0.421 0.654 v 6.66M 27.4K(26.8K)
TinySeg | 1 0 0 7 [ 6344M | 4K(NA.)
MobV3 0.977 | 0.647 0.808 v 0.2G 196K(184K)
SegFor. 0.981 | 0.832 0917 X 8.4G 3.8M(3.4M)

EFF 0.990 | 0.890 0.953 X 1.32G 13M(4M)
VGG16 0.992 | 0.856 0.923 X 10.94G 20M(15M)

D. Deployment

The models generated using the proposed procedure were
deployed on the target board, the stm32f746g-disco. The
deployment was performed in two steps. First, the network was
converted via TFLite; then, the STM32 X-Cube-Al suit was
exploited to optimize the model. The memory indexing was
tuned to use the external memory, when necessary, to host the
tensors during the propagation along the layers of the network.
Data representation was set to 32 bit, because STM32 X-
Cube-Al supports 8-bit representation only for fully connected
layers, but the architectures tested do not use these operators.
Eventually, one can consider that the measured performance
corresponds to the worst-case analysis, considering that the
quantization can decrease latency. All the measurements were
performed by using the STM32 design suite utility for testing.

V. RESULTS
A. Generalization Performance Analysis

Table I reports the results obtained when testing the net-
works on the UMD, MW, and IIT datasets. The columns
indicate the model, three pixelwise accuracies for the different
classes, the capability of the target microcontroller to support
the model, the number of Flops, and the number of parameters,
respectively. The last column, between the brackets, reports the
number of parameters of the encoder/backbone summarizing
the distribution of the weights inside the networks. Only the
intermediate thresholds 1 and 0.5 s were considered.

The UMD dataset confirms the suitability of tiny models
when framing conditions are good, highlighting small dif-
ferences with respect to computationally demanding models
from robotic literature. All models tested on MW exhibited
a significant gap between the performance obtained on the
validation set and that achieved on the test set. This behavior,
which was not observed for other datasets, is probably due to

—¥— back. NAS

80 - back. MN3 (12.55)

— — —back. EFF

75 | —¥— grasp NAS

grasp MN3 (12.5S)

— — —grasp EFF

70 —3— do not grasp NAS

do not grasp MN3 (12.5S)
— — —do not grasp EFF

Classwise pixel accuracy (%)

65 I I I I I
0 0.5 1 15 2 25 3 3.5 4

Inference time (s)

Fig. 3. Performance for the dataset UMD. NAS stands for the generated
networks, while MobV3 and EFF denote the benchmark.

a bias in the labeling process rather than a limitation of the
trained DNNs. The IIT dataset contains heterogeneous images,
and in this case, the labeling also introduced a non-negligible
amount of noise. The results confirm that this dataset was
indeed the most challenging, as the gap between larger nets
and the tiny networks is most pronounced. However, the drop
in accuracy is very likely due to features that fall outside
the scope of this article, for example, occlusions and diffi-
cult framing settings. Nevertheless, this result establishes the
boundaries of the proposed work: the generated tiny networks
can support affordance segmentation on foreground images
and can be useful blocks in the overall control pipelines
but should not be considered as a stand-alone solution. The
analysis of parameters and Flops provides a quantitative char-
acterization of the distinction between the models supported
by the target microprocessor and the other solutions. This
clarifies the gap in terms of computing requirements that
hinders the deployment of the latter models. In addition, the
distribution of the weights illustrates the major role played by
the encoder/backbone for the tiny networks.

Fig. 3 displays the pixelwise accuracy versus inference time
for the UMD dataset. The x-axis shows the estimated inference
time for the NAS-generated models. The accuracy of the
benchmark solution (MobV?3) is indicated as a constant (full
line) with the inference time written in the legend. TinySeg
is not included, because the results are much worse com-
pared with the other options. Between the three unconstrained
solutions, that are not supported by the target platforms, EFF
was selected, because it scored better. The y-axis shows the
accuracy for the three classes (background, do not grasp, and
grasp) plotted using different colors.

The results demonstrate that for the classes grasp and
background, the inference time can be substantially decreased
(almost ten times) with respect to the MobV3, i.e., the largest
model supported by the target platform, without the noticeable
loss of performance. The drop in accuracy arises only for
the smallest of networks. The accuracy for class do not
grasp, however, remains consistently smaller when using the
tiny networks compared with that achieved with MobV3.
Nevertheless, this class is not relevant for estimating the
grasp parameters. Interestingly, the largest architecture tends
to become suboptimal, i.e., as shown in the figure for no
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Fig. 4. Performance for grasp parameters. NAS stands for the gener-
ated networks, while MobV3 and EFF denote the benchmark.

grasp class, the largest network does not lead to the best
performance. This result can be explained by the structure of
the proposed SS, because the segmentation head is designed to
minimize hardware requirements, which then limits its scaling
capability. In addition, the admissible backbones can have
many layers. However, the proposed SS neglects those building
blocks that could significantly enhance the performance of
medium size networks but are less important for tiny net-
works, e.g., skipped connections. Eventually, EFF sets a gold
standard that cannot be achieved using networks supported by
constrained devices.

B. Grasp Parameters Analysis

Fig. 4 shows the average errors in the estimation of the
grasp relevant parameters. The x-axis and the representation
of the performance of MobV3 and EFF are the same as
in Fig. 3. EFF establishes the performance that one could
reach without considering computational constraints. The first
subplot reports the orientation error, in degrees, defined as
the difference between the angles of the PC of the reference
graspable mask, i.e., the ground-truth mask provided in the
dataset, and the PC of the predicted mask. The average error
was lower than 16° for all tiny networks tested, and this
confirms the suitability of the proposed approach in retrieving
object orientation. Considering the envisioned application, the
estimation of object orientation is robust to some deviations,
since they can be compensated by the user of a wearable robot.
For instance, the user of a prosthesis can slightly rotate the
arm from the shoulder to compensate for some misalignment
between the hand and object orientation. The standard error
(SE) has been computed to evaluate the statistically significant
of the proposed results. The difference between the predictor
was always larger than two times the sum of the SE, confirm-
ing that average error is a reliable estimator.

The central plot is the percent error in estimating the
barycenter position, computed as the error in pixels divided

Fig. 5. Examples of the I/O relationship for Prop(1/6)S (left) and MobV3
(right).

by the total number of pixels of the image, which depends on
the input resolution of the network selected by the NAS. Two
colors indicate the two coordinates of the barycenter. Overall,
the average estimation error is small (<7%), and the plots
reveal an interesting trend, where the tiny networks with the
longer inferences time (>1.5 s) score better accuracy (with a
difference larger than the three times the sum of the SE) than
the benchmark (MobV3), despite the latter is still the most
demanding architecture. SE analysis confirmed the statistical
significance of the results.

The bottom plot shows the relative error in estimating object
dimensions, namely, height (H) and width (W), computed
as the difference between the estimates and the true value
retrieved by the dataset labels in pixels. The error is nor-
malized with respect to the number of pixels of the image.
The trend is similar to that obtained for the prediction of the
barycenter. The error difference between the proposals and the
baseline is less than 2%, and for the longer inference times,
the tiny networks outperform the benchmark.

Fig. 5 shows a few representative examples of input—output
(I/0) results. Each row contains four figures divided into pairs.
The first column shows the input image and the affordance
map estimated using the smallest network tested, i.e., the
network obtained by setting the inference time threshold to
(1/6)S. The second column shows the same information for
MobV3. The images were resized in postprocessing to 620 x
620 for the sake of visualization. The examples clearly show
the different granularity of the input and output images that the
networks use and generate, respectively. Importantly, despite
the low-quality input images, the tiny networks successfully
distinguished the parts of the objects in the foreground. The
output is a low-resolution affordance map that, nevertheless,
still contains enough information to estimate the most impor-
tant geometrical features of the objects. The spoon in line 3
represents a case where the tiny network failed to correctly
segment the object parts, but it, nevertheless, successfully
recognized the silhouette of the object.

C. Computational Performance

Fig. 6 summarizes the results of the deployment tests. The
plots are organized in a 2 x 2 grid. The first row contains plots
showing memory occupation in KiB, while the second row
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refers to inference time in seconds. The first column comprises
the plots with the total number of parameters on the x-axis,
while the second one shows KFlops on the x-axis.

The four plots aim to show the relationship between the
two features characterizing the network complexity, namely,
the number of parameters and Flops, shown on the x-axis
and computed using standard DL tools, and the three main
constraints for real-time performance on embedded devices,
i.e., inference time, RAM, and flash occupation, shown on the
y-axis. The stars represent the models generated with the pro-
posed NAS procedure. Blue and red colors indicate the
quantities compared in each subplot, i.e., flash and RAM
occupation, or estimated and measured inference time.

The figure highlights that the inference time linearly
increases with the Flops and the number of parameters
in agreement with the model presented in (4). In a few
cases, a slight increase in the number of parameters yields a
faster inference. This somewhat counterintuitive result can be
explained by the fact that the number of Flops is not set only
by the number of parameters in CNNs but depends also on
the exact network architecture, for instance. This confirms that
simple models of the inference time can yield useful a priori
measures for the behavior of a model when deployed on a
microcontroller-like device in combination with the proposed
SS. Memory occupation, however, is less predictable for small
models, while the dependency seems to be linear for larger
models. A second important observation is that the figure
confirms that the model generated with the proposed approach
always satisfies the memory constraints for both flash and
RAM. Therefore, good results can be obtained without exter-
nal memories, thereby reducing power and weight. Similarly,
the measured inference time for the selected models is always
significantly smaller than the upper bound set by the threshold.

Fig. 7 investigates the role of input image size on the hard-
ware measures. The x-axis shows the selected input sizes. Note

that each input size can have several associated architectures
(hence, more points above each size in the plot). The y-axis
shows the measures, i.e., inference time in seconds and the two
memories in KiB. Accordingly, the figure is divided into three
plots, one per descriptor. As shown in the figure, the NAS
procedure opted for small input sizes ranging between 36 and
48 pixels independently of the threshold. The measures do not
show particular trends probably, because even though the input
resolution is important, other variables, such as network depth
and kernel size, have a more decisive impact.

VI. DISCUSSION

This work shows that tiny DNNs generated by a tailored
HW-NAS procedure can run on embedded microcontrollers
to estimate fine-grained information about target objects. The
resulting affordance masks segment the object into nongras-
pable and graspable parts. By estimating the spatial properties
of the graspable segments (orientation, position, and size),
a semiautonomous control system can select a suitable grasp-
ing strategy. This research, therefore, aims to fill a gap in
the literature, which mostly focuses on large-scale robotics.
When addressing wearable robots, processing capabilities can,
in fact, be rather limited. An additional important contribution
lies in applying HW-NAS to support specific constraints of
target applications.

The research only considered RGB inputs, although one
might note that, in segmentation tasks, RGB-D inputs can
improve accuracy [47]. In a recent study about the impact of
depth information on UMD and MW datasets, however, the
results exhibited a negligible improvement when compared
with RGB-only approaches, at the expense of a significant
increment in computational cost [48]. This work focused on
RGB, because domain seemed to yield the most convenient
scenario. In addition, the available benchmarks were not really
designed to highlight the benefits of RGB-D inputs. Never-
theless, the described design methodology can easily cover
RGB-D data by extending the structure of the SS accordingly.

The analysis of generalization ability considered three estab-
lished datasets, with various types of images, mostly to get a
comprehensive assessment of the generated network models.
As the main goal was to assess the network’s ability to perform
affordance with limited processing resources, the analysis did
not involve framing, occlusion, and illumination issues, which
anyway remain important tasks for future work. The results
on the IIT and UMD datasets proved that, in the presence
of those issues, the performance of the solutions degraded
with respect to larger networks, which was especially true
for tiny networks. At the same time, one should consider
that the affordance module developed in this research will
integrate into well-designed control pipelines. Those complex
systems typically include components designed to mitigate
some of the abovementioned issues (e.g., by including an
object detector [32]). These modules would also need to be
downscaled and tuned to the desired inference time.

In the envisioned application of wearable robotics, satisfac-
tory framing quality can be obtained by training the user to use
the system for aiming. It is likely that users can attain effective
framing strategies after short periods of training. The presented
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research has shown that effective framing can boost the
performances of tiny networks to benchmark levels, even when
the network complexity and inference time are limited. This
aspect requires further investigation by a specific assessment,
in which participants would use a wearable robot equipped
with the proposed smart teleceptive module to accomplish
functional tasks. The assumption in this work was that the
user will position the wearable robot close to and in front of
the object, and therefore, the analysis of the input image size
did not consider the possibility of distant objects.

The results demonstrated that the tiny DNNs can estimate
the affordance map with an accuracy that is comparable to
that of the benchmark, especially regarding the grasp class.
This is an encouraging result, as the correct identification of
the graspable part of the object is indeed the most relevant
to decide the grasping strategy. The do not grasp class, for
instance, was estimated with the lowest accuracy, but this
information is less relevant for the grasp selection.

Next, we have also demonstrated that the estimated affor-
dance maps allow extracting the “physical” dimensions of
the object with good accuracy, as the difference between the
estimation error of the proposed networks and the baseline
for position and object size was all lower than a few percent.
Correctly estimating object orientation was, however, more
challenging, but this parameter is also less sensitive, as the
errors can be tolerated. The angle of the hand does not need
to be perfectly aligned with the object tilt for successful
grasping, and the potential discrepancy can be corrected eas-
ily by the user through compensatory motion. The simple
physical descriptors estimated in this study were selected,
because they can be calculated using low-computational cost.
Even the extraction of the PC (orientation descriptor) has
a computational cost that is negligible with respect to that
involved in evaluating the CNNs. In addition, similar descrip-
tors were already used to inform the grasp-type selection in
semiautonomous control [27]. Overall, the methods proposed
in this work can lead to the development of a smart teleceptive
system that can make the semiautonomous control pipeline
more precise and versatile. By focusing the processing on the
graspable segment of an object, the grasp-type selection can
be responsive to the finer details of the object morphology.
For instance, instead of modeling the object as a whole, the
computer vision system enhanced with the affordance mask
can focus the processing on the relevant part of an object (e.g.,
the handle in Fig. 1). This processing could be based on the
RGB image, as demonstrated in this study, but one could also
analyze the point cloud “hidden” behind the affordance mask.
The latter analysis could provide 3-D measures, enabling
thereby a more sophisticated approach to grasp selection.

The deployment results confirm that the network generated
using the proposed algorithm can be executed in real time on
the target device. The smallest generated network achieved
an inference time of 0.21 s. In this context, we considered
real-time inference duration smaller than 0.5 s, because the
actual timing constraints are application-dependent. We think
that this delay is a good starting point for a large set of
semiautonomous control applications, where some additional

latency in the system response can be tolerated in exchange
for a decreased cognitive load on the user. As expected, the
measured inference time is always lower than the estimated
value, because the generated network did not require external
RAM usage. We opted to maintain this possibility, because
the same exact methodology could be applied to many related
problems. Some applications could require a larger input
resolution. Empirical evidence confirms that external RAM
memories are required for larger input sizes.

The previous studies [14] used a hardware accelerator
or high-range portable microprocessor. The empirical model
related to the number of Flops developed in this study could
be as well used in these cases, but it needs to be updated
considering the peculiarities of the deployment tools ranging
from the software libraries to the physical organization of the
memories and cores. All the models generated would achieve
a very high frame rate when deployed in this kind of device.
As highlighted by Fig. 3, the proposed SS could be suboptimal
in this case. A reasonable strategy, if possible, would be
to switch to a larger SS, including more building blocks or
branches in the architecture, ensuring better feature extraction
capabilities.

VIlI. CONCLUSION

This article presented a novel approach to the design of
tiny CNNs for affordance segmentation. The resulting neural
models can fulfill the hard constraints imposed by the micro-
controllers that are typically embedded in wearable robotic
devices (prostheses, exoskeletons, and supernumerary limbs).
A tailored HW-NAS procedure generated the networks while
relying on an empirical model to express the relationship
between network complexity and inference time. The experi-
ments confirmed that the resulting tiny DNNs showed accuracy
comparable to those attained by existing solutions, but could
run on microcontrollers and complete their task in less than
250 ms.

Future research steps will include a thorough treatment of
the framing issue, as well as the integration of affordance
detection within the full semiautonomous control pipeline
equipped with other sensing sources (e.g., depth camera).
Clinical campaigns will investigate how the user framing skills
can impact performance and if these skills can be improved
by dedicated training sessions.

REFERENCES

[11 A. Myers, C. L. Teo, C. Fermiiller, and Y. Aloimonos, “Affordance
detection of tool parts from geometric features,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2015, pp. 1374-1381.

[2] A.Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis, “Object-
based affordances detection with convolutional neural networks and
dense conditional random fields,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2017, pp. 5908-5915.

[3] M. Hassanin, S. Khan, and M. Tahtali, “Visual affordance and function
understanding: A survey,” ACM Comput. Surveys, vol. 54, no. 3,
pp. 1-35, Apr. 2022.

[4] Z. Jiang, Y. Zhu, M. Svetlik, K. Fang, and Y. Zhu, “Synergies between
affordance and geometry: 6-DoF grasp detection via implicit represen-
tations,” 2021, arXiv:2104.01542.



RAGUSA et al.: AFFORDANCE SEGMENTATION USING TINY NETWORKS FOR SENSING SYSTEMS

23925

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

E. Corona, A. Pumarola, G. Alenya, F. Moreno-Noguer, and G. Rogez,
“GanHand: Predicting human grasp affordances in multi-object scenes,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 5030-5040.

Z. Tang, L. Zhang, X. Chen, J. Ying, X. Wang, and H. Wang, “Wearable
supernumerary robotic limb system using a hybrid control approach
based on motor imagery and object detection,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 30, pp. 1298-1309, 2022.

S. Salminger et al., “Current rates of prosthetic usage in upper-limb
amputees—Have innovations had an impact on device acceptance?”
Disability Rehabil., vol. 44, no. 14, pp. 3708-3713, Jul. 2022.

N. E. Krausz and L. J. Hargrove, “A survey of teleceptive sensing for
wearable assistive robotic devices,” Sensors, vol. 19, no. 23, p. 5238,
Nov. 2019.

Y. Sun, T. Fei, X. Li, A. Warnecke, E. Warsitz, and N. Pohl, “Real-time
radar-based gesture detection and recognition built in an edge-computing
platform,” IEEE Sensors J., vol. 20, no. 18, pp. 10706-10716, Sep. 2020.
B. Zhong, H. Huang, and E. Lobaton, “Reliable vision-based grasping
target recognition for upper limb prostheses,” IEEE Trans. Cybern.,
vol. 52, no. 3, pp. 1750-1762, Mar. 2022.

M. N. Castro and S. Dosen, “Continuous semi-autonomous prosthesis
control using a depth sensor on the hand,” Frontiers Neurorobot., vol. 16,
Mar. 2022, Art. no. 814973.

J. Zheng, J. Zhang, K. Yang, K. Peng, and R. Stiefelhagen, “MateR-
obot: Material recognition in wearable robotics for people with visual
impairments,” 2023, arXiv:2302.14595.

Z. Khalifa and S. A. A. Shah, “Towards visual affordance learning:
A benchmark for affordance segmentation and recognition,” 2022,
arXiv:2203.14092.

E. Ragusa, C. Gianoglio, S. Dosen, and P. Gastaldo, “Hardware-aware
affordance detection for application in portable embedded systems,”
IEEE Access, vol. 9, pp. 123178-123193, 2021.

H.-S. Fang, C. Wang, M. Gou, and C. Lu, “GraspNet-1Billion:
A large-scale benchmark for general object grasping,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 11444-11453.

P. Ardon, E. Pairet, R. P. A. Petrick, S. Ramamoorthy, and K. S. Lohan,
“Learning grasp affordance reasoning through semantic relations,” IEEE
Robot. Autom. Lett., vol. 4, no. 4, pp. 4571-4578, Oct. 2019.

F.-J. Chu, R. Xu, L. Seguin, and P. A. Vela, “Toward affordance detection
and ranking on novel objects for real-world robotic manipulation,” IEEE
Robot. Autom. Lett., vol. 4, no. 4, pp. 4070-4077, Oct. 2019.

S. M. Hussain. S, L. Liu, W. Xu, and C. Lu, “FPHA-afford: A domain-
specific benchmark dataset for occluded object affordance estimation in
human-object-robot interaction,” in Proc. IEEE Int. Conf. Image Process.
(ICIP), Oct. 2020, pp. 1416-1420.

A. Zeng et al., “Robotic pick-and-place of novel objects in clutter with
multi-affordance grasping and cross-domain image matching,” Int. J.
Robot. Res., vol. 41, no. 7, pp. 690-705, Jun. 2022.

R. Xu, F-J. Chu, C. Tang, W. Liu, and P. A. Vela, “An affordance
keypoint detection network for robot manipulation,” IEEE Robot. Autom.
Lett., vol. 6, no. 2, pp. 2870-2877, Apr. 2021.

F. Vasile, E. Maiettini, G. Pasquale, A. Florio, N. Boccardo, and
L. Natale, “Grasp pre-shape selection by synthetic training: Eye-in-hand
shared control on the hannes prosthesis,” 2022, arXiv:2203.09812.
F.-J. Chu, R. Xu, and P. A. Vela, “Learning affordance segmentation
for real-world robotic manipulation via synthetic images,” IEEE Robot.
Autom. Lett., vol. 4, no. 2, pp. 1140-1147, Apr. 2019.

M. A. Vélez-Guerrero, M. Callejas-Cuervo, and S. Mazzoleni, “Arti-
ficial intelligence-based wearable robotic exoskeletons for upper limb
rehabilitation: A review,” Sensors, vol. 21, no. 6, p. 2146, Mar. 2021.
J. W. Sensinger and S. Dosen, “A review of sensory feedback in upper-
limb prostheses from the perspective of human motor control,” Frontiers
Neurosci., vol. 14, p. 345, Jun. 2020.

S. Dosen and D. B. Popovié¢, “Transradial prosthesis: Artificial vision
for control of prehension,” Artif. Organs, vol. 35, no. 1, pp. 37-48,
Jan. 2011.

P. Weiner, J. Starke, S. Rader, F. Hundhausen, and T. Asfour, “Designing
prosthetic hands with embodied intelligence: The KIT prosthetic hands,”
Frontiers Neurorobotics, vol. 16, Mar. 2022, Art. no. 815716.

M. Markovic, S. Dosen, D. Popovic, B. Graimann, and D. Farina,
“Sensor fusion and computer vision for context-aware control of a multi
degree-of-freedom prosthesis,” J. Neural Eng., vol. 12, no. 6, Dec. 2015,
Art. no. 066022.

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

F. Hundhausen, D. Megerle, and T. Asfour, “Resource-aware object
classification and segmentation for semi-autonomous grasping with
prosthetic hands,” in Proc. IEEE-RAS 19th Int. Conf. Humanoid Robots
(Humanoids), Oct. 2019, pp. 215-221.

J. Starke, P. Weiner, M. Crell, and T. Asfour, “Semi-autonomous control
of prosthetic hands based on multimodal sensing, human grasp demon-
stration and user intention,” Robot. Auto. Syst., vol. 154, Aug. 2022,
Art. no. 104123.

G. Ghazaei, A. Alameer, P. Degenaar, G. Morgan, and K. Nazarpour,
“Deep learning-based artificial vision for grasp classification in myoelec-
tric hands,” J. Neural Eng., vol. 14, no. 3, Jun. 2017, Art. no. 036025.
E. Ragusa, C. Gianoglio, R. Zunino, and P. Gastaldo, “Data-driven
video grasping classification for low-power embedded system,” in Proc.
26th IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Nov. 2019,
pp. 871-874.

T. Apicella, A. Cavallaro, R. Berta, P. Gastaldo, F. Bellotti, and
E. Ragusa, “An affordance detection pipeline for resource-constrained
devices,” in Proc. 28th IEEE Int. Conf. Electron., Circuits, Syst. (ICECS),
Nov. 2021, pp. 1-6.

S. S. Saha, S. S. Sandha, and M. Srivastava, “Machine learning for
microcontroller-class hardware: A review,” IEEE Sensors J., vol. 22,
no. 22, pp. 21362-21390, Nov. 2022.

H. Benmeziane, K. El Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba,
and N. Wang, “A comprehensive survey on hardware-aware neural
architecture search,” 2021, arXiv:2101.09336.

M. Tan et al.,, “MnasNet: Platform-aware neural architecture search
for mobile,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2820-2828.

L. L. Zhang, Y. Yang, Y. Jiang, W. Zhu, and Y. Liu, “Fast hardware-
aware neural architecture search,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp. 692-693.
M. Li et al., “The deep learning compiler: A comprehensive sur-
vey,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 3, pp. 708-727,
Mar. 2021.

C. Li et al., “HW-NAS-bench: Hardware-aware neural architecture
search benchmark,” 2021, arXiv:2103.10584.

J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han,
“On-device training under 256 kb memory,” in Proc. Annu. Conf. Neural
Inf. Process. Syst. (NeurIPS), 2022, pp. 1-14.

C. Banbury et al., “MicroNets: Neural network architectures for deploy-
ing TinyML applications on commodity microcontrollers,” in Proc.
Mach. Learn. Syst., vol. 3, 2021, pp. 517-532.

Z. Guo et al., “Single path one-shot neural architecture search with
uniform sampling,” in Computer Vision—ECCV 2020 (Lecture Notes
in Computer Science), vol. 12361, A. Vedaldi, H. Bischof, T. Brox,
and J. M. Frahm, Eds. Cham, Switzerland: Springer, 2020. [Online].
Available:  https://link.springer.com/chapter/10.1007/978-3-030-58517-
4_32#chapter-info, doi: 10.1007/978-3-030-58517-4_32.

A. Howard et al., “Searching for MobileNetV3,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1314-1324.

W. Jiang, L. Yang, S. Dasgupta, J. Hu, and Y. Shi, “Standing on the
shoulders of giants: Hardware and neural architecture co-search with hot
start,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 11, pp. 4154-4165, Nov. 2020.

Y. Li, P. Wang, R. Li, M. Tao, Z. Liu, and H. Qiao, “A survey of multi-
fingered robotic manipulation: Biological results, structural evolvements,
and learning methods,” Frontiers Neurorobot., vol. 16, p. 53, Apr. 2022.
E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“SegFormer: Simple and efficient design for semantic segmentation with
transformers,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 12077-12090.

X. Li et al., “Transformer-based visual segmentation: A survey,” 2023,
arXiv:2304.09854.

X. Hu, K. Yang, L. Fei, and K. Wang, “ACNET: Attention based network
to exploit complementary features for RGBD semantic segmentation,” in
Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2019, pp. 1440-1444.
E. Ragusa, M. P. Ghezzi, R. Zunino, and P. Gastaldo, “Affor-
dance segmentation using RGB-D sensors for application in
portable embedded systems,” in Applications in Electronics Per-
vading Industry, Environment and Society (Lecture Notes in Elec-
trical Engineering), vol. 1036, R. Berta and A. De Gloria, Eds.
Cham, Switzerland: Springer, 2023. [Online]. Available: https://link.
springer.com/chapter/10.1007/978-3-031-30333-3_14#chapter-info, doi:
10.1007/978-3-031-30333-3_14.


http://dx.doi.org/10.1007/978-3-030-58517-4_32
http://dx.doi.org/10.1007/978-3-031-30333-3_14

23926

IEEE SENSORS JOURNAL, VOL. 23, NO. 19, 1 OCTOBER 2023

Edoardo Ragusa (Member, IEEE) received the master’s (cum laude)
degree in electronic engineering and the Ph.D. degree in electronic
engineering from the University of Genoa, Genoa, ltaly, in 2015 and
2018, respectively.

He is currently a Researcher with DITEN, University of Genoa,
where he teaches digital systems electronics and machine learning.
He coauthored more than 45 refereed papers in international journals
and conferences. His research interests include machine learning in
resource-constrained devices, convolutional neural networks, and deep
learning applications.

Dr. Ragusa was the Technical Program Chair of the conference
“System-Integrated Intelligence: Intelligent, Flexible and Connected
Systems in Products and Production,” Genoa, in 2022. He is a reviewer
for several IEEE, Springer, and Elsevier journals and conferences. He is
contributing as a Guest Editor to Future Generation Computer Systems
(Elsevier) and Electronics Multidisciplinary Digital Publishing Institute
(MDPI).

Strahinja Dosen (Member, IEEE) received the Diploma of Engineering
degree in electrical engineering and the M.Sc. degree in biomedical
engineering from the Faculty of Technical Sciences, University of Novi
Sad, Novi Sad, Serbia, in 2000 and 2004, respectively, and the Ph.D.
degree in biomedical engineering from the Center for Sensory-Motor
Interaction, Aalborg University, Aalborg, Denmark, in 2008.

From 2011 to 2017, he was a Research Scientist with the Institute
for Neurorehabilitation Systems, University Medical Center Géttingen,
Gottingen, Germany, and then as an Associate Professor with the
Department of Health Science and Technology, Aalborg University. He is
currently a Full Professor of Rehab Robotics with the Department of
Health Science and Technology, Aalborg University, where he leads
the Research Group on Neurorehabilitation Systems. He is a Principal
Investigator for Aalborg University (AAU) and Department of Health
Science and Technology (HST) in several European (EU) (Tactility,
Wearplex, Sixthsense, and SimBionics) and nationally (Robin, Remap,
and Climb) funded projects. He has published more than 90 manuscripts
in peer-reviewed journals. His main research interests include the
closed-loop control of movements and assistive systems, including
human-machine interfacing, control of bionic limbs and rehabilitation
robotics, artificial sensory feedback, and functional electrical stimulation.

Rodolfo Zunino received the Laurea (cum laude) degree in electronic
engineering from the University of Genoa, Genoa, Italy, in 1985.

From 1986 to 1995, he was a Research Consultant with the Depart-
ment of Biophysical and Electronic Engineering (DIBE), University of
Genoa. He is currently a Full Professor with DITEN, University of Genoa,
where he teaches embedded systems and cybersecurity. He coauthored
more than 260 refereed papers in international journals and confer-
ences. His main scientific interests include efficient models for data
representation and learning, intelligent electronic systems for neural
networks, intelligent systems for security, and advanced methods for
multimedia data processing.

Prof. Zunino participated in the scientific committees of several inter-
national conferences on neural networks and their applications. He has
chaired the master’s course (Il lev) in cyber security at the University of
Genoa.

Paolo Gastaldo received the Laurea degree in electronic engineering
and the Ph.D. degree in space sciences and engineering from the
University of Genoa, Genoa, ltaly, in 1998 and 2004, respectively.
Since 2004, he has been with the Department of Biophysical and
Electronics Engineering, University of Genoa, where he was a recipient
of a Research Grant on Intelligent Systems for Visual Quality Estimation
sponsored by Philips Research Labs, Eindhoven, The Netherlands, until
2008. From 2011 to 2019, he was a Researcher with the University of
Genoa. He is currently an Associate Professor with DITEN, University of
Genoa, where he teaches computer architecture and sensors for elec-
tronic systems. His main research areas include embedded machine
learning, computational intelligence, embedded systems for advanced
signal interpretation in robotics and prosthetics, and cryptography.

Open Access funding provided by ‘Universita degli Studi di Genova’ within the CRUI CARE Agreement



