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On Optimal Filter Designs for Fundamental
Frequency Estimation

Mads Graesbgll Christensenlesper Hgjvang Jensen, Andreas Jakobsson, and Sgren étwdnJ

Abstract— Recently, we proposed using Capon’s minimum power of the filter is maximized. This idea is conceptually
variance principle to find the fundamental frequency of a related to our approach derived in [5]; however, here we
periodic waveform. The resulting estimator is formed such that design optimal signal-adaptive filters reminiscent of beam

it maximises the output power of a bank of filters. We present f f h t si | 81 for th timatid
an alternative optimal single filter design, and then proceed to ormers for coherent signals, e.g. [8], for the estimatidn o

quantify the similarities and differences between the estimators the fundamental frequency. In particular, we consider two
using asymptotic analysis and Monte Carlo simulations. Our fundamental frequency estimators based on the well-known

analysis shows that the single filter can be expressed in terms of minimum variance principle [9]. The two estimators are lbase
the optimal filterbank, and that the methods are asymptotically 4, gfferent filter design formulations with one being based
equivalent, but generally different for finite length signals. a bank of filters and the other on only a single filter. The fifst o
these estimators was recently proposed [5], while the gkcon
. INTRODUCTION one is novel. The estimators are compared and the asymptotic

Bandlimited periodic waveforms can be decomposed infjOPerties of the estimators are analyzed and their finfigtte
a finite set of sinusoids having frequencies that are imeglét?rformance is investigated and compared in Monte Carlo
multiples of a so-called fundamental frequency. Much resea simulations. For simplicity, we will here consider only the

has been devoted to the problem of finding the fundamengtd!€ Pitch estimation problem but the presented methads ¢
frequency, and rightfully so. It is an important problem if2Sily be applied to multi pitch estimation as well (see.[3])

many applications in, for example, speech and audio Ioro_The remainder of this paper is organized as follows. First,

cessing, and the problem has become no less relevant Wi introduce the two filter designs and the associated es-

the many interesting new applications in music informatiofinators in Section Il. Then, we analyze and compare the

retrieval. The fundamental estimation problem can be maffStimators and their asymptotic properties in SectioriTHieir

ematically defined as follows: a signal consisting of a sdfit€ length performance is investigated in Section IV coef
of harmonically related sinusoids related by the fundamientVe® conclude on our work in Section V.
frequency wy is corrupted by an additive white complex

circularly symmetric Gaussian noisey(n), having variance Il. OPTIMAL FILTER DESIGNS
o forn=0,...,N -1, ie, A. Filterbank Approach
L ' We begin by introducing some useful notation, definitions
xz(n) = Zalew"l" + w(n), (1) and review the fundamental frequency estimator proposed in
1=1 [5]. First, we construct a vector from/ consecutive samples

wherea; = A;e?¥t, with 4, > 0 and v, being the amplitude °f the oster.ved signal, i.ex(n) = [é?(") w(n—=1) - x(n—
and the phase of tHéh harmonic, respectively. The problem of\/ +1) |” with M < N and with(-)" denoting the transpose.
interest is to estimate the fundamental frequengyrom a set Next, we introduce the output signgj(n) of the ith filter
of N measured samples(n). Some representative example§aving coefficients, (n) asyi(n) = 3,y hu(m)z(n—m) =
of the various types of methods that are commonly usdd x(n), with (-7 denoting I’glhe Hermitian transpose and
for fundamental frequency estimation are: linear predicti v = [A(0) ... hy(M —1)]7. Introducing the expected
[1], correlation [2], subspace methods [3], frequencyrigti value E{-} and defining the covariance matrix & =
[4], maximum likelihood (e.g., [5]), Bayesian estimatiod],[ E {x(n)x"(n)}, the output power of thdth filter can be
and comb filtering [7]. The basic idea of the comb filtering/ritten as
approach is that when the teeth of the comb filter coincide E{|u(n)?} = E{bfx(n)x" (n)h;} = hf’Rh,. (2)
with the frequencies of the individual harmonics, the otitpu

The total output power of all the filters s
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the power at all other frequencies. This problem can B@#e output power of this filter can then be expressed as
formulated mathematically as the optimization problem:

hRh =17 (Z'R'Z) "1, (11)
min Tr [H'RH| st HYZ =1, ®) , , , ,
H which, as for the first design, depends only on the inverse
wherel is the L x L identity matrix. Furthermore, the matrixof R and the Vandermonde matri¥. By maximizing the

Z ¢ CM*L has a Vandermonde structure and is constructedtput power, we readily obtain an estimate of the fundaedent

from L complex sinusoidal vectors as frequency as
Z =[z(wo) -+ z(wol) |, 4) & = argmax 17 (ZHR_1Z)71 1. (12)
wo
with z(w) = [ 1 e 7% .. ¢ 3*(M=D T Or in words, the
matrix contains the harmonically related complex sinusoid I1l. ANALYSIS
The filter bank matrixH solving (3) is given by (see, e.g., We will now relate the two filter design methods and the
[10]) ) associated estimators in (6) and (12). It is perhaps not clea
H=R'Z(Z"R7'Z) . (5) whether the two methods are identical or if there are some

This data and frequency dependent filter bank can then %\;btle differences. On one hand, the optimization problem i
e

used to estimate the fundamental frequencies by maximizi allows for more degre_es of -freedom, sinﬁefi!ters O.f
the power of the filter's output, yielding gth M are designed while (7) involves only a single filter.

On the other hand, the former design is based ®oonstraints
~ _ -1 . .
&o = arg max Tr [(ZHR 17) } 7 (6) as opposed to the latter approach only involvingComparing
wo the optimal filters in (5) and (10), we observe that the latter
which depends only on the covariance matrix and the Vandein be written in terms of the former as
monde matrix constructed for different candidate fundasalen

L

frequencies. h=R'Z(Z"R'Z) '1=H1=) h, (13)
=1

B. An Alternative Approach so, clearly, the two methods are related. Using this to tewri

We proceed to examine an alternative formulation of thtbe output power in (11), we get
filter design problem and state its optimal solution. Suppos I I
that we wish to design a single filteh, that passes the hRh = (Z hﬁ) R (Z hm> (14)
signal undistorted at the harmonic frequencies and supgses =1 e

everything else. This filter design problem can be stated as L )
as opposed tdr [HRH] = }_," , h/ Rk, for the filterbank

min h"Rh st h'z(wl) =1, (7)  approach. It can be seen that the single-filter approachdesl
for 1=1.. L the cross-terma/’Rh,, for [ # m, while these do not appear
B in the filterbank approach. From this it follows that the cost
It is worth stressing that the single filter in (7) is designeflinctions are generally different, i.e.,
subject to L constraints, whereas in (3) the filter bank is

11 —1p\ 1
formed using a matrix constraint. Clearly, these two formu- 17 (Z"R7'Z) 1#Tx [(ZHR 'z) } (15)
!ations are .related;.we will retu.rn to this relation in .détai hRh # Tr [HHRH]. (16)
in the following section. Introducing the Lagrange muitps
XA = [\ ...\ ], the Lagrangian dual function associatedhis means that the two filters will result in different outpu
with the problem stated above can be written as powers and thus possibly different estimates. Next, we will
analyze the asymptotic properties of the cost function
L(h,A) = h"Rh — (h¥Z — 17) A ® YMPIOTe prop 1
: H Hp -1 -
with 1 = [ 1 ... 1]T. Taking the derivative with respect ]\4hi>noo MIT(2PR™7Z) L. (7
to the unknown filter impulse response,and the Lagrange |n doing so we will make use of the following result (see, €.g.
multipliers, we get [11])
R -7 h 0 . . .
o[ B Z] 00 @ mane () (ms) o

By setting this expression equal to zero, i¥L(h,A) = 0, Where it is assumed that the limitsim .. A and
and solving for the unknowns, we obtain the optimal Lagrang@ia—oo B exist for the individual elements oA and B.
multipliers for which the equality constraints are satifies Using (18) to rewrite the limit of = AA~", we get
A= (Z"R7'Z) 1 and the optimal filter a& = R™'ZA. lim T — ( lim A) ( lim A‘l).

By combining the last two expressions, we get the optimal M—c0 M—o0 M—0o0

filter expressed in terms of the covariance matrix and thext, suppose we have an analytic expression for the limit of

Vandermonde matri¥Z, i.e., lima/—o0 A, say, A, then we havd = A (lim]\/lﬂoo A—l)

h=R'Z(Z"R'Z)"" 1. (10)

(19)



from which we conclude thaflimy; .., A=) = A~! and 10 oeRl

thus . —e— Filterbank
( lim A‘l) = ( lim A) . (20) 102l = Single Filter]|
M—oo M —oo E

Applying (18) and (20) to the cost function in (23), yields

-1 10
_ 1
lim M17 (ZPR'Z) " 1 =14 ( lim (ZHR—12>> 18
(21) 107
We are now left with the problem of determining the limit
limp/—oo 77 (ZFR'Z). In doing so, we will make use of 10k

the asymptotic equivalence of Toeplitz and circulant neasi
For a given Toeplitz matrix, her®, we can construct an

-6

asymptotically equivalent circulant/ x M matrix C, under 10, s 10 15 20 25 30 35 a0
certain conditions, in the sense that [18h /0 \/#MHC - SNR [dB]

R||r = 0, where|| - ||r is the Frobenius norm and the limit_ _
is taken over the dimensions 6 andR. A circulant matrix "9 1+ RMSE as a function of the SNR fof = 50.
C has the eigenvalue decompositich= QI'QY where Q
is the Fourier matrix. Thus, the complex sinusoidsZirare

-=--CRLB

asymptotically eigenvectors &. This allows us to determine g f"TFi.“e:ba”.:(
the limit as (see [12], [13]) Single Filter
. 1 H L ”
Mhinoo i (Z"RZ) = diag ([ ®(wo) -+ P(wol)]) (22) 107

with ®(w) being the power spectral densityofn). Similarly,
an expression for the inverse Bf can be obtained a6 ~! =
QI 'Q¥ (again, see [12] for details). We now arrive at the =
following (see also [13] and [14]):

L
0
=
o

. L he—1 . -1 -1
Mhm i (Z"R7'Z) = diag ([ @ ' (wo) -~ ® H(wol)]).
(23) N
Asymptotically, (12) can therefore be written as 10,0 "3 40 50 6 70 80 90 100

L

. _ —1

A}linoo M1 (ZHR 1Z) 1= Z ®(wol), (24) Fig. 2. RMSE as a function the number of sampiésor SNR = 20 dB.
=1

which is simply the sum over the power spectral density _ _ _ o

evaluated at the harmonic frequencies. Similar derivatfon true covariance matrix. Since both methods require as

the filterbank formulation yield invertible, we obviously have thal/ < % and in practice we

useM = |2N |, a value that has been determined empirically

L
. Hyp—1\—11 to yield good results. First, we will investigate the acaoyra
fim M Tr [(Z R Z) } N ;q)(wol)' (25) of the obtained fundamental frequency estimates measured i
o . terms of the root mean square estimation error (RMSE). We do
which is the same as (24). Note that for a finilé the yhis¢or ., — 0.6364 with L — 3, unit amplitudes, and random
above expression still involves only the diagonal termse(dlbhases drawn from a uniform probability density functiam. |
to the trace),_ only the diagonz_il terms_, are not the pow?fgure 1, the RMSE is plotted foN = 50 as a function
spectral density®(w) evaluated in certain points. From theof the signal-to-noise ratio (SNR) (as defined in [3] for the

apove derivat.io.ns, we conclude _that the two cost.functimes Broblem in (1)). The RMSE was estimated using 200 different
different for f!n|te M apd may yield different estimates, butq)izations. Similarly, the RMSE is shown as a function of
are asymptotically equivalent. the number of samplesy, in Figure 2 for an SNR of 20 dB.,
again for 200 realizations. In both figures, the Cramér-Rao
IV. EXPERIMENTAL RESULTS lower bound (CRLB), as derived in [3], is also shown. Both
The question remains to be answered whether there are figyres suggest that, all things considered, there is vétg li
important differences for finite length covariance masiead difference in terms of accuracy for the estimated pararsgeter
filters, and we will now seek to answer that question wittvith both estimators performing well. The methods seem to
some experiments, specifically using Monte Carlo simutetio have different thresholding behaviour, though. We notedha
with synthetic signals generated according to (1). For easimulations also show that the methods perform similarlp as
realization, the sample covariance matrix is estimateRRas function ofwg, but in the interest of brevity, this figure has not

ﬁmzrf;(fw x(n)xH (n) which is used in place of the been included herein. Next, we will measure the differences

M—o0
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Fig. 3. Power ratio in dB as a function of the filter length. Fig.

of the estimated output powers. We measure this using the
following power ratio (PR): 1]

E{Tr{(ZHf{ 1Z>_11” @8, (6)
E{lH(ZHR—1Z> 1}

which is positive if the output power of the filterbank exceed
that of the single filter and vice versa. It should be noted‘l
that the expectation is taken over the realizations of the
sample covariance matriR. The power ratio (averaged over [5]
1000 realizations) is shown in Figure 3 as a function of
the filter lengthM for an SNR of 10 dB. The filter length [6]
is related to the number of samples &6 = |ZN|. The
fundamental frequency was drawn from a uniform distributio
in the interval[0.1571; 0.3142] with L = 5 in this experiment
to avoid any biases due to special cases. The true fundamenta
frequency was used in obtaining the optimal filters. In Fégur (8]
4, the same is plotted faN = 100, this time as a function

of the number of harmonicg with all other conditions being [9]
the same as before. Interestingly, both Figures 3 and 4 paint
rather clear picture: for low filter lengths and high numbgr
harmonics, the single filter design method actually leada tg11]
better estimate of the signal power while for high filter asde [12]
and few harmonics, the methods tend to perform identically.
This suggests that the single filter design method is priefera [13]

—

(3]

=

=
k=]

(14]

V. CONCLUSION

We have presented two different optimal filter designs
that can be used for finding high-resolution estimates of the
fundamental frequency of periodic signals. The two designs
differ in that one is based on the design of a filterbank while
the other is based on a single filter. We have shown that
the optimal single filter can in fact be obtained from the
optimal filters of the filterbank and that the methods are @ fa
different for finite lengths, but are asymptotically equévrs.
Experiments indicate that the single filter leads to superio
results in terms of estimating the output power.

Power Ratio [dB]

2 4 6 8 10 12 14 16 18 20
Number of Harmonics

-0.2 I

4. Power ratio in dB as a function of the number of harmotics
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