
Aalborg Universitet

On Optimal Filter Designs for Fundamental Frequency Estimation

Christensen, Mads Græsbøll; Jensen, Jesper Højvang; Jakobsson, Andreas; Jensen, Søren
Holdt
Published in:
IEEE Signal Processing Letters

DOI (link to publication from Publisher):
10.1109/LSP.2008.2003987

Publication date:
2008

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Christensen, M. G., Jensen, J. H., Jakobsson, A., & Jensen, S. H. (2008). On Optimal Filter Designs for
Fundamental Frequency Estimation. IEEE Signal Processing Letters, 15, 745-748.
https://doi.org/10.1109/LSP.2008.2003987

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/LSP.2008.2003987
https://vbn.aau.dk/en/publications/b6da9d00-6ded-11dd-b00b-000ea68e967b
https://doi.org/10.1109/LSP.2008.2003987


1

On Optimal Filter Designs for Fundamental
Frequency Estimation

Mads Græsbøll Christensen∗, Jesper Højvang Jensen, Andreas Jakobsson, and Søren Holdt Jensen

Abstract— Recently, we proposed using Capon’s minimum
variance principle to find the fundamental frequency of a
periodic waveform. The resulting estimator is formed such that
it maximises the output power of a bank of filters. We present
an alternative optimal single filter design, and then proceed to
quantify the similarities and differences between the estimators
using asymptotic analysis and Monte Carlo simulations. Our
analysis shows that the single filter can be expressed in terms of
the optimal filterbank, and that the methods are asymptotically
equivalent, but generally different for finite length signals.

I. I NTRODUCTION

Bandlimited periodic waveforms can be decomposed into
a finite set of sinusoids having frequencies that are integer
multiples of a so-called fundamental frequency. Much research
has been devoted to the problem of finding the fundamental
frequency, and rightfully so. It is an important problem in
many applications in, for example, speech and audio pro-
cessing, and the problem has become no less relevant with
the many interesting new applications in music information
retrieval. The fundamental estimation problem can be math-
ematically defined as follows: a signal consisting of a set
of harmonically related sinusoids related by the fundamental
frequency ω0 is corrupted by an additive white complex
circularly symmetric Gaussian noise,w(n), having variance
σ2, for n = 0, . . . , N − 1, i.e.,

x(n) =

L∑

l=1

αle
jω0ln + w(n), (1)

whereαl = Ale
jψl , with Al > 0 andψl being the amplitude

and the phase of thelth harmonic, respectively. The problem of
interest is to estimate the fundamental frequencyω0 from a set
of N measured samplesx(n). Some representative examples
of the various types of methods that are commonly used
for fundamental frequency estimation are: linear prediction
[1], correlation [2], subspace methods [3], frequency fitting
[4], maximum likelihood (e.g., [5]), Bayesian estimation [6],
and comb filtering [7]. The basic idea of the comb filtering
approach is that when the teeth of the comb filter coincide
with the frequencies of the individual harmonics, the output
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power of the filter is maximized. This idea is conceptually
related to our approach derived in [5]; however, here we
design optimal signal-adaptive filters reminiscent of beam-
formers for coherent signals, e.g. [8], for the estimation of
the fundamental frequency. In particular, we consider two
fundamental frequency estimators based on the well-known
minimum variance principle [9]. The two estimators are based
on different filter design formulations with one being basedon
a bank of filters and the other on only a single filter. The first of
these estimators was recently proposed [5], while the second
one is novel. The estimators are compared and the asymptotic
properties of the estimators are analyzed and their finite length
performance is investigated and compared in Monte Carlo
simulations. For simplicity, we will here consider only the
single pitch estimation problem but the presented methods can
easily be applied to multi pitch estimation as well (see [5]).

The remainder of this paper is organized as follows. First,
we introduce the two filter designs and the associated es-
timators in Section II. Then, we analyze and compare the
estimators and their asymptotic properties in Section III.Their
finite length performance is investigated in Section IV, before
we conclude on our work in Section V.

II. OPTIMAL FILTER DESIGNS

A. Filterbank Approach

We begin by introducing some useful notation, definitions
and review the fundamental frequency estimator proposed in
[5]. First, we construct a vector fromM consecutive samples
of the observed signal, i.e.,x(n) = [ x(n) x(n−1) · · · x(n−
M+1) ]T with M ≤ N and with(·)T denoting the transpose.
Next, we introduce the output signalyl(n) of the lth filter
having coefficientshl(n) asyl(n) =

∑M−1
m=0 hl(m)x(n−m) =

hHl x(n), with (·)H denoting the Hermitian transpose and
hl = [ hl(0) . . . hl(M − 1) ]

H . Introducing the expected
value E {·} and defining the covariance matrix asR =
E
{
x(n)xH(n)

}
, the output power of thelth filter can be

written as

E
{
|yl(n)|2

}
= E

{
hHl x(n)xH(n)hl

}
= hHl Rhl. (2)

The total output power of all the filters is∑L

l=1 E
{
|yl(n)|2

}
=

∑L

l=1 hHl Rhl. Defining a matrix
H consisting of the filtershl asH = [ h1 · · · hL ], we can
write the total output power as a sum of the power of the
subband signals, i.e.,

∑L

l=1 E
{
|yl(n)|2

}
= Tr

[
HHRH

]
.

The filter design problem can now be stated. We seek to
find a set of filters that pass power undistorted at specific
frequencies, here the harmonic frequencies, while minimizing
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the power at all other frequencies. This problem can be
formulated mathematically as the optimization problem:

min
H

Tr
[
HHRH

]
s.t. HHZ = I, (3)

whereI is theL×L identity matrix. Furthermore, the matrix
Z ∈ C

M×L has a Vandermonde structure and is constructed
from L complex sinusoidal vectors as

Z = [ z(ω0) · · · z(ω0L) ], (4)

with z(ω) = [ 1 e−jω · · · e−jω(M−1) ]T . Or in words, the
matrix contains the harmonically related complex sinusoids.
The filter bank matrixH solving (3) is given by (see, e.g.,
[10])

H = R−1Z
(
ZHR−1Z

)−1
. (5)

This data and frequency dependent filter bank can then be
used to estimate the fundamental frequencies by maximizing
the power of the filter’s output, yielding

ω̂0 = arg max
ω0

Tr
[(

ZHR−1Z
)−1
]
, (6)

which depends only on the covariance matrix and the Vander-
monde matrix constructed for different candidate fundamental
frequencies.

B. An Alternative Approach

We proceed to examine an alternative formulation of the
filter design problem and state its optimal solution. Suppose
that we wish to design a single filter,h, that passes the
signal undistorted at the harmonic frequencies and suppresses
everything else. This filter design problem can be stated as

min
h

hHRh s.t. hHz(ω0l) = 1, (7)

for l = 1, . . . , L.

It is worth stressing that the single filter in (7) is designed
subject toL constraints, whereas in (3) the filter bank is
formed using a matrix constraint. Clearly, these two formu-
lations are related; we will return to this relation in detail
in the following section. Introducing the Lagrange multipliers
λ = [ λ1 . . . λL ], the Lagrangian dual function associated
with the problem stated above can be written as

L(h,λ) = hHRh −
(
hHZ − 1T

)
λ (8)

with 1 = [ 1 . . . 1 ]T . Taking the derivative with respect
to the unknown filter impulse response,h and the Lagrange
multipliers, we get

∇L(h,λ) =

[
R −Z

−ZH 0

] [
h

λ

]
+

[
0

1

]
. (9)

By setting this expression equal to zero, i.e.,∇L(h,λ) = 0,
and solving for the unknowns, we obtain the optimal Lagrange
multipliers for which the equality constraints are satisfied as
λ =

(
ZHR−1Z

)−1
1 and the optimal filter ash = R−1Zλ.

By combining the last two expressions, we get the optimal
filter expressed in terms of the covariance matrix and the
Vandermonde matrixZ, i.e.,

h = R−1Z
(
ZHR−1Z

)−1
1. (10)

The output power of this filter can then be expressed as

hHRh = 1H
(
ZHR−1Z

)−1
1, (11)

which, as for the first design, depends only on the inverse
of R and the Vandermonde matrixZ. By maximizing the
output power, we readily obtain an estimate of the fundamental
frequency as

ω̂0 = arg max
ω0

1H
(
ZHR−1Z

)−1
1. (12)

III. A NALYSIS

We will now relate the two filter design methods and the
associated estimators in (6) and (12). It is perhaps not clear
whether the two methods are identical or if there are some
subtle differences. On one hand, the optimization problem in
(3) allows for more degrees of freedom, sinceL filters of
lengthM are designed while (7) involves only a single filter.
On the other hand, the former design is based onL2 constraints
as opposed to the latter approach only involvingL. Comparing
the optimal filters in (5) and (10), we observe that the latter
can be written in terms of the former as

h = R−1Z
(
ZHR−1Z

)−1
1 = H1 =

L∑

l=1

hl, (13)

so, clearly, the two methods are related. Using this to rewrite
the output power in (11), we get

hHRh =

(
L∑

l=1

hHl

)
R

(
L∑

m=1

hm

)
(14)

as opposed toTr
[
HHRH

]
=
∑L

l=1 hHl Rhl for the filterbank
approach. It can be seen that the single-filter approach includes
the cross-termshHl Rhm for l 6= m, while these do not appear
in the filterbank approach. From this it follows that the cost
functions are generally different, i.e.,

1H
(
ZHR−1Z

)−1
1 6= Tr

[(
ZHR−1Z

)−1
]

(15)

hHRh 6= Tr
[
HHRH

]
. (16)

This means that the two filters will result in different output
powers and thus possibly different estimates. Next, we will
analyze the asymptotic properties of the cost function

lim
M→∞

M1H
(
ZHR−1Z

)−1
1. (17)

In doing so we will make use of the following result (see, e.g.,
[11])

lim
M→∞

(AB) =
(

lim
M→∞

A
)(

lim
M→∞

B
)

(18)

where it is assumed that the limitslimM→∞ A and
limM→∞ B exist for the individual elements ofA and B.
Using (18) to rewrite the limit ofI = AA−1, we get

lim
M→∞

I =
(

lim
M→∞

A
)(

lim
M→∞

A−1
)
. (19)

Next, suppose we have an analytic expression for the limit of
limM→∞ A, say, Ā, then we haveI = Ā

(
limM→∞ A−1

)
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from which we conclude that(limM→∞ A−1) = Ā−1 and
thus (

lim
M→∞

A−1
)

=
(

lim
M→∞

A
)−1

. (20)

Applying (18) and (20) to the cost function in (23), yields

lim
M→∞

M1H
(
ZHR−1Z

)−1
1 = 1H

(
lim
M→∞

(
1

M
ZHR−1Z

))−1

1.

(21)

We are now left with the problem of determining the limit
limM→∞

1
M

(
ZHR−1Z

)
. In doing so, we will make use of

the asymptotic equivalence of Toeplitz and circulant matrices.
For a given Toeplitz matrix, hereR, we can construct an
asymptotically equivalent circulantM ×M matrix C, under
certain conditions, in the sense that [12]limM→∞

1√
M
‖C −

R‖F = 0, where‖ · ‖F is the Frobenius norm and the limit
is taken over the dimensions ofC andR. A circulant matrix
C has the eigenvalue decompositionC = QΓQH whereQ

is the Fourier matrix. Thus, the complex sinusoids inZ are
asymptotically eigenvectors ofR. This allows us to determine
the limit as (see [12], [13])

lim
M→∞

1

M

(
ZHRZ

)
= diag ([ Φ(ω0) · · · Φ(ω0L) ]) (22)

with Φ(ω) being the power spectral density ofx(n). Similarly,
an expression for the inverse ofR can be obtained asC−1 =
QΓ−1QH (again, see [12] for details). We now arrive at the
following (see also [13] and [14]):

lim
M→∞

1

M

(
ZHR−1Z

)
= diag

(
[ Φ−1(ω0) · · · Φ−1(ω0L) ]

)
.

(23)
Asymptotically, (12) can therefore be written as

lim
M→∞

M1H
(
ZHR−1Z

)−1
1 =

L∑

l=1

Φ(ω0l), (24)

which is simply the sum over the power spectral density
evaluated at the harmonic frequencies. Similar derivations for
the filterbank formulation yield

lim
M→∞

M Tr
[(

ZHR−1Z
)−1
]

=

L∑

l=1

Φ(ω0l). (25)

which is the same as (24). Note that for a finiteM the
above expression still involves only the diagonal terms (due
to the trace), only the diagonal terms are not the power
spectral densityΦ(ω) evaluated in certain points. From the
above derivations, we conclude that the two cost functions are
different for finiteM and may yield different estimates, but
are asymptotically equivalent.

IV. EXPERIMENTAL RESULTS

The question remains to be answered whether there are any
important differences for finite length covariance matrices and
filters, and we will now seek to answer that question with
some experiments, specifically using Monte Carlo simulations
with synthetic signals generated according to (1). For each
realization, the sample covariance matrix is estimated asR̂ =

1
N−M+1

∑N−M
n=0 x(n)xH(n) which is used in place of the
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Fig. 1. RMSE as a function of the SNR forN = 50.
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Fig. 2. RMSE as a function the number of samplesN for SNR = 20 dB.

true covariance matrix. Since both methods require thatR̂ is
invertible, we obviously have thatM < N

2 and in practice we
useM =

⌊
2
5N
⌋
, a value that has been determined empirically

to yield good results. First, we will investigate the accuracy
of the obtained fundamental frequency estimates measured in
terms of the root mean square estimation error (RMSE). We do
this forω0 = 0.6364 with L = 3, unit amplitudes, and random
phases drawn from a uniform probability density function. In
Figure 1, the RMSE is plotted forN = 50 as a function
of the signal-to-noise ratio (SNR) (as defined in [3] for the
problem in (1)). The RMSE was estimated using 200 different
realizations. Similarly, the RMSE is shown as a function of
the number of samples,N , in Figure 2 for an SNR of 20 dB.,
again for 200 realizations. In both figures, the Cramér-Rao
lower bound (CRLB), as derived in [3], is also shown. Both
figures suggest that, all things considered, there is very little
difference in terms of accuracy for the estimated parameters,
with both estimators performing well. The methods seem to
have different thresholding behaviour, though. We note that our
simulations also show that the methods perform similarly asa
function ofω0, but in the interest of brevity, this figure has not
been included herein. Next, we will measure the differences
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Fig. 3. Power ratio in dB as a function of the filter lengthM .

of the estimated output powers. We measure this using the
following power ratio (PR):

PR = 10 log10

E

{
Tr

[(
ZHR̂−1Z

)−1
]}

E

{
1H
(
ZHR̂−1Z

)−1

1

} [dB], (26)

which is positive if the output power of the filterbank exceeds
that of the single filter and vice versa. It should be noted
that the expectation is taken over the realizations of the
sample covariance matrix̂R. The power ratio (averaged over
1000 realizations) is shown in Figure 3 as a function of
the filter lengthM for an SNR of 10 dB. The filter length
is related to the number of samples asM =

⌊
2
5N
⌋
. The

fundamental frequency was drawn from a uniform distribution
in the interval[0.1571; 0.3142] with L = 5 in this experiment
to avoid any biases due to special cases. The true fundamental
frequency was used in obtaining the optimal filters. In Figure
4, the same is plotted forN = 100, this time as a function
of the number of harmonicsL with all other conditions being
the same as before. Interestingly, both Figures 3 and 4 painta
rather clear picture: for low filter lengths and high number of
harmonics, the single filter design method actually leads toa
better estimate of the signal power while for high filter orders
and few harmonics, the methods tend to perform identically.
This suggests that the single filter design method is preferable.

V. CONCLUSION

We have presented two different optimal filter designs
that can be used for finding high-resolution estimates of the
fundamental frequency of periodic signals. The two designs
differ in that one is based on the design of a filterbank while
the other is based on a single filter. We have shown that
the optimal single filter can in fact be obtained from the
optimal filters of the filterbank and that the methods are in fact
different for finite lengths, but are asymptotically equivalent.
Experiments indicate that the single filter leads to superior
results in terms of estimating the output power.
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