
Aalborg Universitet

Centralized Cooperative Positioning and Tracking with Realistic Communications
Constraints

Mensing, Christian; Nielsen, Jimmy Jessen

Published in:
7th Workshop on Positioning Navigation and Communication (WPNC), 2010

DOI (link to publication from Publisher):
10.1109/WPNC.2010.5651897

Publication date:
2010

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Mensing, C., & Nielsen, J. J. (2010). Centralized Cooperative Positioning and Tracking with Realistic
Communications Constraints. In 7th Workshop on Positioning Navigation and Communication (WPNC), 2010:
Proceedings (pp. 215-223). IEEE Press. https://doi.org/10.1109/WPNC.2010.5651897

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/WPNC.2010.5651897
https://vbn.aau.dk/en/publications/02657b20-2d21-11df-aeaf-000ea68e967b
https://doi.org/10.1109/WPNC.2010.5651897


Downloaded from vbn.aau.dk on: June 18, 2025



Centralized Cooperative Positioning and Tracking

with Realistic Communications Constraints

Christian Mensing

German Aerospace Center (DLR)

Institute of Communications and Navigation

Oberpfaffenhofen, 82234 Wessling, Germany

E-mail: christian.mensing@dlr.de

Jimmy Jessen Nielsen

Aalborg University

Department of Electronic Systems, Networking and Security

Fredrik Bajers vej 7, 9220 Aalborg, Denmark

E-mail: jjn@es.aau.dk

Abstract—In this paper, we investigate the performance of
centralized cooperative positioning algorithms. Compared to
traditional positioning algorithms which solely exploit ranging
information from anchor nodes, cooperative positioning addi-
tionally uses measurements from peer-to-peer links between
the users. Since we are proposing a centralized architecture,
all information has to be collected at a central entity for
position calculation and further provision to the network. Hence,
besides position-relevant metrics like accuracy and coverage also
communications overhead and latency and their impact on the
overall performance will be assessed. As we are considering a
dynamic scenario, the cooperative positioning algorithms are
based on extended Kalman filtering for position estimation and
tracking. Simulation results for ultra-wideband based ranging
information and WLAN based communications infrastructure
show the benefits of cooperative position and tracking for realistic
measurement and mobility models.

I. INTRODUCTION

Services and applications based on accurate location knowl-

edge of mobile stations (MSs) will play fundamental roles in

future wireless systems. Hence, provision and exploitation of

MS position information have become very important features

of communications systems in recent years [1]. To meet

the accuracy and coverage requirements for reliable position

estimation, global navigation satellite systems (GNSSs) —

like the Global Positioning System (GPS) and the future

European Galileo system — can deliver very good position

estimates under optimum conditions [2]. However, especially

in critical positioning scenarios like urban canyons or indoor

environments the performance loss can be very high [3] or

GNSS based positioning is even not possible.

As solution for ‘GNSS-supporting’ or even ‘GNSS-free’ po-

sition estimation, already available communications systems

can be part of the MS localization process [1]. In these

systems, measurements in terms of time of arrival (TOA),

time difference of arrival (TDOA), angle of arrival (AOA), or

received signal strength (RSS), provided by the anchor nodes

(ANs) or the MS can be used. A following hybrid and/or

heterogeneous data fusion (HDF) of these measurements will

give reliable position estimates of the MSs in the network.

For two-dimensional positioning it is required that the MS

can perform measurements with at least three ANs. If links

are blocked (e.g., by walls in dense indoor environments) or

the geometric conditions are restricted the MS might not be

able to determine its position accurately. For such situations a

cooperative approach can be recommended, where MSs can

communicate via peer-to-peer (P2P) links with each other.

On the one hand, that allows the direct exchange of position

information between neighboring MSs. On the other hand,

these P2P links can be used to derive distance information

between these MSs which can be further exploited for position

estimation. This cooperative positioning (CP) approach helps

to improve the performance in terms of accuracy and coverage

compared to conventional HDF techniques.

The concept of CP, mostly applied nowadays to wireless

sensor networks (WSNs), has been recently introduced to

heterogeneous communications systems. However, techniques

proposed for WSN cannot be straightforwardly extended to

mobile communications networks. This is because these net-

works usually operate in a very complex and harsh wireless

environment due to factors such as shadowing, mobility, com-

munications infrastructure, or multiple air-interfaces. Hence,

the heterogeneity of today’s wireless communication networks

can be seen as an additional problem to be addressed.

In principle, there are two different procedures: in the

centralized approach of CP (e.g., [4], [5]) it is assumed that all

information (i.e., the measurements collected by the MSs) is

provided to one central entity. That could be a location server

in a cellular communications system. There, the measurements

are jointly processed and the position for each MS in the

network is determined. Afterwards, this information can be

exploited in the network or sent back to the MSs. As all

measurements are processed jointly in this approach, it is

the optimum procedure from a position estimation accuracy

point of view. However, drawback is that all measurements

have to be collected at a central entity in advance. So as

to cope with scalability in dense large-scale networks or

for MS-centric applications using restricted infrastructure, the

distributed CP approach can also be favored as an alternative

to centralized methods (e.g., [6], [7]). Here, the MSs have only

the information available that they obtain from their neighbors

via P2P links and the measurements with the ANs. Hence, the

position estimation complexity is distributed among the MSs

compared to the centralized approach. An extensive overview

of CP techniques discussed under the framework of Bayesian

inference can be found in [6].



Generally, the communications overhead and extra-

signalling is higher for cooperative approaches than for con-

ventional (non-cooperative) positioning. Furthermore, usually

the overall overhead of distributed schemes is higher than for

centralized schemes. Hence, signal-processing complexity and

training/signalling overhead are two key problems for existing

CP approaches. This problem can be significant especially

for a wireless network accommodating a large number of

MSs. Therefore, an efficient CP scheme should achieve the

best trade-off between communications overhead and position

estimation performance.

In this paper, we investigate the performance of a central-

ized CP scheme under realistic communications constraints

and measurement models from both the positioning and the

communications perspective. The centralized infrastructure is

based on WLAN collecting the measurements between the

ANs and the MSs as well as the P2P measurements between

the MSs. The ranging is realized by ultra-wideband (UWB)

TOA measurements. Additionally, mobility of the users is

exploited by application of tracking algorithms based on

extended Kalman filters (EKFs). Hence, simulation results will

provide a realistic assessment of centralized CP in a high-

mobility environment.

Section II introduces the system model of cooperative posi-

tioning exploiting measurements from ANs and P2P links. In

Section III static and dynamic CP algorithms are described for

a centralized infrastructure. Section IV describes the proposed

communications infrastructure for exchanging MS-MS and

MS-AN measurements including the underlying protocols as

well as the assumed models in this paper. In Section V the

simulation approach for combining the communications part

with the positioning part is presented. Finally, Section VI

discusses the simulation results.

Throughout this paper, vectors and matrices are denoted by

lower and upper case bold letters, the operation ‘⊗’ denotes

the Kronecker product, (·)
T

the transpose operation, and E {·}
expectation. The Euclidean norm is denoted as ‖·‖2, and the

N -dimensional identity matrix is denoted as IN .

II. SYSTEM MODEL

We consider NAN ANs and NMS MSs that are present in

the scenario. The ANs are located at the known and fixed

positions

x(AN) =
[

x
(AN),T
1 x

(AN),T
2 . . . x

(AN),T
NAN

]T

, (1)

where

x(AN)
µ =

[

x
(AN)
µ y

(AN)
µ

]T

, µ = 1, 2, . . . , NAN, (2)

describes the position of the AN µ. The positions of the MSs

x =
[

xT
1 xT

2 . . . xT
NMS

]T
(3)

with

xν =
[

xν yν

]T
, ν = 1, 2, . . . , NMS, (4)

r
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Fig. 1. Cooperative positioning principle

have to be estimated. Note that we restrict to a two-

dimensional scenario in this paper, however, an extension to

three-dimensional approaches is straightforward.

The range between the MS ν and the AN µ can be calculated

as

r(MS-AN)
ν,µ (x) =

√

(

x
(AN)
µ − xν

)2

+
(

y
(AN)
µ − yν

)2

(5)

and the range between the MSs ν and ν′ 6= ν is given as

r
(MS-MS)
ν,ν′ (x) =

√

(xν − xν′)
2

+ (yν − yν′)
2
, (6)

where the dependence on the MS positions is explicitly

denoted by x. An overview of the CP principle with three

ANs and two MSs is depicted in Figure 1.

The ranging error model for the MS-AN measurements can

be written as

r̂(MS-AN)
ν,µ = r(MS-AN)

ν,µ (x) + b(MS-AN)
ν,µ + n(MS-AN)

ν,µ , (7)

where the bias b
(MS-AN)
ν,µ and the residual noise n

(MS-AN)
µ,ν depend

on the LOS/NLOS status and the distance. Whereas the MS

index ν = 1, . . . , NMS includes all MSs in the network, the AN

index for each MS µ = 1, . . . , NAN, Used,ν includes only the

NAN, Used,ν < NAN ANs which can be used for ranging from

MS ν. Equivalently, the ranging error model for the MS-MS

measurements is given as

r̂
(MS-MS)
ν,ν′ = r

(MS-MS)
ν,ν′ (x) + b

(MS-MS)
ν,ν′ + n

(MS-MS)
ν,ν′ , (8)

where ν′ = 1, . . . , NMS, Used,ν includes the available other MSs

of MS ν for performing ranging.

We include all available MS-AN and MS-MS measurements

in the vector

r̂ =
[

r̂(MS-AN),T r̂(MS-MS),T
]T

(9)

of dimension

NUsed = NAN, Used + NMS, Used (10)



with

NAN, Used =

NMS
∑

ν=1

NAN, Used,ν (11)

and

NMS, Used =

NMS
∑

ν=1

NMS, Used,ν . (12)

With the equivalent definitions of the range vector r (x), the

bias vector b, and the noise vector n with covariance matrix

Σn =

[

Σ
(MS-AN)
n 0

0 Σ
(MS-MS)
n

]

, (13)

we arrive at the compact measurement model

r̂ = r (x) + b + n. (14)

III. CENTRALIZED COOPERATIVE POSITIONING

ALGORITHMS

A. Static solution

For the static solution of the centralized CP estimation

problem, we follow the weighted non-linear least squares

approach [8], [9] according to

x̂ = argmin
x

(r̂ − r (x))
T

Σ−1
n (r̂ − r (x)) . (15)

In the general case, there exists no closed-form solution

to this non-linear 2NMS-dimensional optimization problem,

and hence, iterative approaches are necessary. A standard

approach to deal with (15) is based on the Gauss-Newton (GN)

algorithm [8], [9]. The GN algorithm linearizes the system

model about some initial value x(0) yielding

r (x) ≈ r
(

x(0)
)

+ Φ (x)






x=x
(0)

(

x − x(0)
)

, (16)

with the elements of the NUsed × 2NMS Jacobian matrix

Φ (x)=∇T
x

⊗ r (x) , (17)

where

∇x =

[

∂

∂x1
,

∂

∂y1
, . . . ,

∂

∂xNMS

,
∂

∂yNMS

]T

. (18)

Afterwards, the linear least squares procedure is applied re-

sulting in the iterated solution

x(k+1) = x(k) +
(

ΦT
(

x(k)
)

Σ−1
n Φ

(

x(k)
))−1

· ΦT
(

x(k)
)

Σ−1
n

(

r̂ − r
(

x(k)
))

.

(19)

The GN algorithm provides very fast convergence and accurate

estimates for good initial values. For poor initial values and

bad geometric conditions the algorithm results in a rank-

deficient, and thus, non-invertible matrix for certain geometric

constellations of MSs and ANs.

For the considered approach, the initial value for the indi-

vidual MSs is defined by the mean value of the positions of

the visible ANs, i.e., corresponding to

x(0)
ν =

1

NAN, Used,ν

NAN, Used,ν
∑

µ=1

x(AN)
µ . (20)

B. Extended Kalman filter

Usually the MSs are moving along certain tracks in the

scenario. Clearly, there are strong correlations between the

positions of the MSs over time. This information will be

integrated in the overall position determination process and

will help to improve the overall estimates in average. The

Kalman filter (KF) [8] is a flexible and well-known algorithm

for providing such positioning estimates in the context of

MS tracking applications. However, the standard KF only

performs optimum if the criterions on linearity and Gaussianity

are fulfilled, which is usually not the case in practical MS

tracking applications. Even if these conditions are not fulfilled

completely, the KF gives reliable and robust estimates.

The main drawback of the linear KF is that it requires a

linear state-space equation and a linear observation model (in

addition to zero-mean Gaussian noise processes) to perform

optimum. Clearly, for tracking only the position of the MS

based on recent position estimates and the mobility model

would result in such a linear relation. However, if we want

to include direct range measurements that have a high non-

linear property w.r.t. the current positions, the linear KF is not

a reasonable approach to solve this problem.

Therefore, we propose an EKF implementation [8], [10].

The inherent combination of CP and tracking has the further

advantage that also recent estimates are considered in the po-

sition estimation process corresponding to the chosen mobility

model. The EKF is based on a linearized KF and gives a good

trade-off between accuracy, robustness, and complexity [8].

The state-space and observation models are

s [k] = As [k − 1] + u [k]

r̂ [k] = h (s [k]) + n [k] ,
(21)

where

s [k] =
[

xT
1 vT

1 xT
2 vT

2 . . . xT
NMS

vT
NMS

]T
(22)

is the 4NMS-dimensional state-space vector in each time-step

k ∈ N, including two-dimensional positions and velocities of

each MS as parameters that have to be estimated. The vector

r̂ [k] includes the ranging measurements for each time-step

and changes over time depending on the availability of the

measurements. The matrix

A =

(

I4 +

([

T 0
0 T

]

⊗

[

0 1
0 0

]))

⊗ INMS
(23)

includes apriori information about the MS movements with

timing updates every T time-steps. The vector u [k] is com-

posed of state-space noise with the diagonal covariance matrix

Q, and n [k] is composed of the observation noise with the

covariance matrix Σn [k]. The covariance matrix can change

dynamically over time depending on number and type of

available measurements. Finally, the function h (·) describes

the non-linear relation between the state-space vector and the

measurements.

The equations for the state-space and observation models

in (21) are then used to set-up the EKF. It starts with the



prediction, where knowledge of the MS movement model is

applied to obtain

ŝ [k|k − 1] = Aŝ [k − 1|k − 1] , (24)

with the estimate of the previous time-step ŝ [k − 1|k − 1].
Similarly, the corresponding minimum mean square error

(MMSE) matrix after that prediction step is

M [k|k − 1] = AM [k − 1|k − 1]AT + Q. (25)

Note that the EKF iterations are initialized by a static solution

at the beginning. Further, we observe that in the chosen

implementation the mobility of the different MSs is decoupled,

i.e., for the filter equations it is assumed that the MSs move

independently of each other. The Kalman gain matrix includes

a weighting between the predicted estimates and the current

measurements. It is given as

K [k] = M [k|k − 1]HT [k]

·
(

Σn [k] + H [k]M [k|k − 1] HT [k]
)−1

,
(26)

where — equivalent to Σn [k] — the dimensions can change

over time. In the classical KF equations the matrix H [k] in-

cludes a linear relation between state-space and measurement

model. Since for positioning applications we usually have a

non-linear dependency, the observation equation is linearized

around the predicted state-space vector, i.e.,

h (s [k]) ≈ h (ŝ [k|k − 1]) + H [k] (s [k] − ŝ [k|k − 1]) ,

(27)

where the Jacobian observation matrix is

H [k] =
∂h (s [k])

∂s [k]

∣

∣

∣

∣

s[k]=ŝ[k|k−1]

, (28)

which easily can be derived from Φ (x). Hence, it includes the

derivations of the observation equation w.r.t. the variables of

the state-space vector. Finally, the correction step combines the

predicted estimates with the current measurements weighted

with the Kalman gain matrix. This results in the final estimate

of the state-space vector

ŝ [k|k] = ŝ [k|k − 1] + K [k] (r̂ [k] − h (ŝ [k|k − 1])) . (29)

The corresponding MMSE matrix is obtained as

M [k|k] = (I4NMS
− K [k]H [k])M [k|k − 1] . (30)

The EKF is designed in a flexible way, i.e., different numbers

of measurements can be exploited. They also can change

online for the different time-steps. Even the situation that

no AN or other MS is visible for a certain time can be

handled by this approach. In that situation, the movement

model compensates the missing measurements.

IV. REALISTIC COMMUNICATION CONSTRAINTS

We evaluate the conventional and cooperative localization

algorithms described above under realistic communication

constraints by considering: 1) the timing of measurement

exchanges and availability of measurements through accurate

simulations, as well as 2) realistic error model of UWB based

P2P ranging, and finally 3) a group mobility model that mimics

correlated user movements.

For both the conventional and the cooperative approaches

for localization that are considered in this work we have

defined protocols that are responsible for collection of mea-

surements and provision of a location estimate. In the follow-

ing we describe these protocols. In addition to collecting the

measurements in the localization server, we assume that the

location estimate is needed by an application at the MS, which

polls the location every µloc seconds.

A. Measurement collection for device-based conventional lo-

calization

In this case, the localization algorithm uses only measure-

ments from the MS-AN links as sketched in Fig. 2 which

shows an example scenario with 4 ANs. As the MS holds all

measurements necessary to compute the location estimate, we

assume the localization/tracking algorithm is run in the MS.

Link measurements are obtained from IEEE 802.11 MAC

beacons that are being broadcast in an unsynchronized manner

from the ANs every µbeacon seconds. Further, we assume that

the transmit power Ptx is fixed, known and equal for all ANs.

Depending on the transmit power level and the density of

ANs used in a given scenario, the number of ANs within

communication range of the MS and hence the number of

received beacons will vary.

t0 t3

t2
t1

Fig. 2. Message flow in device-based conventional positioning.

Since the link measurements are obtained directly in the

MS from the beacons transmitted from the ANs, the only

factor that attributes to the localization delay is the application

location request interval µloc.

B. Measurement collection for centralized cooperative local-

ization

In addition to MS-AN link measurements, the cooperative

localization algorithms uses MS-MS ranging measurements

and centralized computation of location estimates. In order to

realize the collection of both types of measurements, as well

as send back the location estimate to the MS, the message

flow sketched in Fig. 3 is used.

In order to show the message flow more clearly, we consider

the subflows individually in the following.

Like the conventional algorithms, the cooperative algorithms

rely on periodically transmitted beacons (every µbeacon sec-

onds) for MS-AN measurements. As before, we assume that

the transmit power Ptx is fixed, known and equal for all



t0
t3

t2t1

t4, t5t6
t7

tproc

t8

t9Loc-server

Fig. 3. Message flow in centralized cooperative positioning.

ANs. Fig. 4 shows how beacons transmitted from the ANs

are first received and used for ranging at the MS. Hereafter a

measurement packet, which contains the ranging measurement,

is sent to the nearest AN and thereafter to the localization

server, which is assumed to be connected to the AN by a

wired infrastructure.

beacon

periodic
beaconing

meas. pkt. meas. pkt.

Fig. 4. Message flow for beacon measurements in cooperative localization.

In addition to MS-AN measurements, the cooperative algo-

rithms rely on MS-MS measurements. The flow of messages is

shown in Fig. 5. Whenever an MS senses another MS within

dcoop meters, a P2P ranging measurement is made and sent

to the localization server through the nearest AN. However,

to reduce the amount of measurement packets being sent,

P2P measurements are buffered and sent in a bundle every

µcoop seconds. As with the MS-AN measurements, the AN is

assumed to be connected to the localization server by a wired

infrastructure.

P2P ranging
meas. pkt.meas. pkt.

periodic, contains P2P-
meas. from nearby MSs

Fig. 5. Message flow for P2P measurements in cooperative localization.

Having both MS-AN and MS-MS measurements at the

localization server, we now need to provide the calculated

position estimate to the MS. This is done by unicasting a

message with the current location estimate of an MS to that

MS, whenever a beacon from the nearest AN is received, as

sketched in Fig. 6.

The results in section VI shows the delays and transferred

bytes for each of the message collection protocols.

loc. info

periodic unicast
of MS location

loc. info

processing

Fig. 6. Message flow for location info message in cooperative localization.

C. 802.11a WiFi network model

The 802.11a WiFi network is simulated using ns-21 based

on the mobility trace and the scenario specific parameters

listed in Table II. We use the 802.11ext module to simulate

realistic 802.11a behavior. This ns-2 version includes a Nak-

agami fading model which has been parameterized according

to Table II with model parameters Γ = n and m = (K+1)2

2K+1 ,

where K is the Ricean K-factor, to approximate a Ricean

fading environment.

Table I shows the sizes of the used messages. We have made

the following assumptions regarding the used messages. The

beacon is a standard 802.11 MAC frame, which follows the

frame layout defined in [12]. The beacon measurement is a

802.11 data frame with a payload consisting of the MAC id

(6 bytes) of the AP and the estimated range (2 bytes). The

P2P measurement bulk message size depends on the number

of P2P neighbors in range. It is based on a data frame (28

bytes) where the payload is a 6 bytes MAC id and 2 bytes

ranging value for each neighbor node. Finally, the location

information message is a data frame with the node coordinates

(x,y) encoded with 8 bytes each.

Message type MPDU size (bytes)

802.11 MAC beacon 52

Beacon measurement 42

P2P measurement bulk 28 + (6 + 2) · NMS in range

Location information 44

TABLE I
MESSAGE TYPES

D. Measurement model

For modeling the ranging errors, we make use of a pre-

liminary version of the models presented in [13]. It models

bias and residual noise conditioned on distance, orientation,

and LOS/NLOS status of the connection. The average standard

deviation of noise and the average bias are depicted in Figure 7

over the distance for LOS and NLOS conditions.

E. Group mobility model

A variation of the random waypoint that mimics group

mobility is used in this work. In each group of nodes, one of

the nodes acts as the reference node. For this node a waypoint

and speed is chosen as usual for the random waypoint model

(see [14]). For the remaining nodes in the group the same

1The ns-2 simulation is based on [11], which has been updated with the
author’s patch from June 5th, 2009.
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Fig. 8. Group mobility simulation example.

speed is used and a their waypoints are chosen, so that they

are randomly placed within dspread of the reference node’s

waypoint. An example of the resulting mobility tracks is

shown in 8 in a 100x100m2 scenario. In this example there

are 6 groups with 4 nodes in each group, shown with a unique

color for each group.

V. EVALUATION METHODOLOGY

The considered localization algorithms have been evaluated

with realistic communications constraints in a 4-step process

as sketched in Fig. 9. Initially, a common Mobility simula-

tion is run, which results in a trace file that describes the

AN positions and MS movements according to the random

waypoint group mobility model described in section IV-E.

This mobility trace is then used as a basis for simulating

the message collection protocols in the ns-2 based Network

Network 

simulation

Mobility 

simulation

Measurement 

generation

Positioning 

simulation

Movement trace

Movement trace

Measurement 

availability

Measurement values, 

timestamps

Positioning metrics: 

positioning/tracking 

accuracy

Network metrics: overhead, delay

Fig. 9. Simulation overview.

simulation. The output of this step is first the network-related

performance metrics, and secondly this block also delivers a

trace file specifying time stamps for when measurements are

obtained and have been collected, according to the collection

protocol. Using this trace file in combination with the mobility

trace, the actual measurement values for the MS-AN and MS-

MS links are being generated in the Measurement generation

block using the models described in section IV-D. Finally,

the Positioning simulation is run and positioning metrics are

computed for the considered conventional and cooperative

localization algorithms.

VI. SIMULATION RESULTS

The baseline simulation parameters are concluded in Ta-

ble II.

Parameter Value

Time 100 s

Size 100x100m2

Number of ANs (NAN) 30

Number of MS groups (Ngroups) 6

Number of MSs per group (NMS/group) 4

Max spread relative to ref. MS in group (dspread) 20 m

Movement speed (|v|) 2 m/s

AN beacon interval (µbeacon) 1 s

P2P ranging interval (µcoop) 1 s

P2P ranging distance (dcoop) 20 m

Location information update interval (µloc-info) 1 s

MS application request interval (µloc) 1 s

Localization processing time (µproc) 0.1 s

Path loss exponent (n) 2.9
Rician K-factor (K) 6
Transmit power (Ptx) 5 mW

802.11a PHY mode 6 Mbit/s, BPSK

Bandwidth 20 MHz

Frequency 5.18 GHz

Carrier Sense Threshold −92 dBm

Noise floor −106 dBm

TABLE II
NETWORK SIMULATION PARAMETERS

We start with the evaluation of communications metrics.

Next we consider the positioning algorithms; first assuming

perfect communications, i.e., error-free and instantaneous ex-

change of all required information, and secondly we introduce

the realistic communications constraint.

A. Communications part

Initially we consider the effect of varying the transmit

power. Fig. 10 confirms that the number of ANs within



carrier sense for each MS range increases with the transmit

power, as expected. Notice that the curves for conventional

and cooperative are (unsurprisingly) identical.
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Fig. 10. The number of ANs within carrier sense range for varying transmit
power level.

In Fig. 11 we show the average fraction of occupied channel

time per AN. This metric is calculated by summing the time

spent on transmissions within carrier sense range of each AN.

The AN may overhear multiple simultaneous transmissions,

since the considered 100x100m2 scenario does not constitute

a single collision domain. In this plot it is clearly shown

that the amount of occupied channel around each AN for

the conventional measurement collection is much less than

for the cooperative. Since the number of ANs and MSs is

similar for conventional and cooperative, we can conclude

that the conventional algorithm uses much less capacity for

signaling, as we would expect. Further, all entities seem to be

within the same collision domain for both Ptx = 0.015 and

Ptx = 0.030 since the fraction of occupied channel does not

change between these two parameter settings.
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Fig. 11. Average channel occupancy within carrier sense range for varying
transmit power level.

We now consider the effect of varying the number of ANs.

Fig. 12 shows how the increasing number of ANs causes

more traffic in the network. The average occupied channel

around the AN can exceed 1 because not all entities are in

the same collision domain. That is, multiple transmissions can

be ongoing simultaneously if they are spatially well-separated

[15].
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Fig. 12. Average channel occupancy within carrier sense range for varying
number of ANs.

Fig. 13 shows the average localization delays for the con-

ventional measurement collection and for the two types of

measurements in the cooperative measurement collection. The

localization delay is the time it takes from a measurement

(received beacon or P2P ranging) is obtained at the MS, until

the polling application on the MS has an updated location

estimate. The delay for the conventional collection protocol

does not change, since its delay only depends on the polling

interval of the application µloc. On the other hand, the delay of

the cooperative collection protocol seems to increase slightly

with the increase of the number of ANs. If we look at Fig.

12 we see that the channel occupation also increases with

the number of ANs, thus the increase in delay may be due

to a high level of contention among the network entities. On

the other hand, the MS-MS measurements do not seem to

be similarly affected by the increasing number of ANs. The

reason for the MS-AN measurements being more sensitive to

the number of ANs, could also be that many MSs receive the

same beacon from an AN and followingly attempt to forward

a beacon measurement at the same time. In case the level of

contention is already high, the MSs must wait a considerable

time to access the channel before the measurement can be

delivered to the localization server.

Having presented the behavior of the network when consid-

ering realistic communications constraints, we now focus our

attention on the positioning algorithms and how the realistic

communications constraints affect them.

B. Positioning part

Performance metric is the cumulative distribution function

(CDF). The CDF is defined as the probability that the absolute

two-dimensional position error is below the value εerror, i.e.,

CDF (εerror) = Prob (‖x̂ − x‖2 ≤ εerror) , (31)
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Fig. 13. Average localization delay for varying number of ANs.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε
error

 [m]

C
D

F
(ε

e
rr

o
r)

 

 

Conventional, static solution

Conventional, EKF

CP, static solution

CP, EKF

Fig. 14. Conventional vs. cooperative positioning using static solution and
EKF.

where it was averaged over all MSs in the scenario and

several noise realizations. We further assume that the MS-MS

connections are always LOS, whereas the MS-AN connections

are NLOS in 50% of the cases.

Figure 14 shows the CDF for conventional (non-

cooperative) and cooperative positioning for both static so-

lution and tracking with EKF. We observe that for the static

solution more than 10% of the MSs cannot be localized (e.g.,

due to limited access to ANs or bad geometric conditions).

This can be reduced by application of the EKF resulting in an

error being smaller than 10 m in 90% of the cases. If we allow

cooperation between the MSs this can further be improved to

around 3 m.

Figure 15 includes additionally the results with realistic

communications constraints. Here, we observe that the ac-

curacy is decreased by 1 m in the conventional schemes,

whereas it is reduced by around 2 m and 3 m for CP using

static solution and EKF, respectively. As expected, the loss
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Fig. 15. Conventional vs. cooperative positioning using static solution and
EKF with realistic communications constraints.
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Fig. 16. CP using EKF with realistic communications constraints and
different numbers of MS per group.

by communications is higher for the CP scheme compared to

the conventional approach. Nevertheless, assuming CP and an

EKF the 90%-error is still below 5 m.

To evaluate the dependency on the MS-MS connectivity, in

Figure 16 the number of MSs per group is varied. Note that

an increased number of MSs per group automatically results

in an increased overall number of MSs NMS since the number

of groups is kept constant. We observe that with only one

MS per group no noteworthy gains can be achieved by CP

compared to the conventional approach. Reason for that is

that the connectivity between the groups is only limited. If we

increase the number of MSs per group, e.g., to 10, cooperation

can be exploited and we achieve an 90%-error of around 4 m

in this scenario. If we increase it further to 20, it can be seen
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Fig. 17. CP using EKF with realistic communications constraints and
different numbers of ANs.

that the performance drops down rapidly, and — in average

— around 12% of the MSs cannot be localized. This could

be explained by an increased communications overhead for

performing CP with the NMS = 120 MSs and the resulting

latency or packet-loss effects.

Figure 17 depicts the dependency on the MS-AN connec-

tivity. For a low number of ANs in the scenario (e.g., 10),

several MSs cannot determine their position. In that situation

also the cooperation gain is restricted since overall too less

ANs are available. On the other hand, if the number of ANs is

too high (e.g., 70), the coverage by the ANs limits additional

cooperation gains. Therefore, the number of ANs has to be

chosen according to the expected MS-MS connectivity in the

scenario.

VII. CONCLUSIONS

In this paper, we have analyzed cooperative positioning

and tracking algorithms under realistic communications con-

straints. These constraints were modeled here based on a

WLAN infrastructure and error models based on empirical

measurements. It was shown that the introduction of realistic

communications constraints resulted in an added delay, which

had a significant effect on the positioning performance, espe-

cially for the cooperative algorithms. This is mainly due to

the more complex measurement exchange that is necessary to

realize the centralized cooperative positioning algorithms. We

found that the static solution and the EKF algorithms were

similarly affected by the realistic communications constraints.

Further, we observed that increasing the number of cooperating

MSs had a positive impact on the positioning performance,

as expected due to added cooperation possibilities. However,

this was only until a tipping point was reached and the

performance became worse with additional cooperating MSs.

This tipping point is likely a result of the communication over-

head becoming large, which in turn leads to increased delays.

Nevertheless, in most cases the cooperative approach strongly

outperforms the conventional (non-cooperative) approach.
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