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Abstract

In various network services remote access to dynamically changing information ele-
ments is a required functionality. Three fundamentally different strategies for such
access are investigated in this paper: (1) a reactive approach initiated by the request-
ing entity, and two versions of proactive approaches in which the entity that contains
the information element actively propagates its changes to potential requesters, ei-
ther (2) periodically or (3) triggered by changes of the information element. This
paper develops probabilistic models for these scenarios, which allow to compute a
number of performance metrics, with a special focus on the mismatch probability.
In particular, we use matrix-analytic methods to obtain explicit expressions for the
mismatch probability that avoid numerical integration. Furthermore, limit results
for information elements spread over a large number of network nodes are provided,
which allow to draw conclusions on scalability properties. The impact on mismatch
probability of different distribution types for the network delays as well as for the
time between changes of the information element are obtained and discussed through
the application of the model in a set of example scenarios. The results of the model
application allow for design decisions on which strategy to implement for specific
input parameters and specific requirements on the performance metrics.
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1 Introduction

Timely, remote access to dynamically changing information elements is a com-
mon problem for a large range of functionalities in different layers of modern
telecommunication networks:

• On the link-layer, efficient radio-resource management at base-stations re-
quires information about channel state and buffer filling as measured in
mobile devices, [1].

• On the network layer, routing decisions require the knowledge about the ex-
istence and the characteristics of links between remote intermediate nodes.
This is particularly relevant when topology changes are rather frequent such
as in wireless multi-hop networks [14].

• Network services, such as dynamic distributed data-bases as used in cer-
tain name-services in mobile networks, require knowledge about (remotely
performed) updates of the name to address mapping [15].

• Context-sensitive services require access to typically remotely obtained con-
text information. Context information may thereby be used both during
service execution [20] as well as for the service discovery process [8].

• For highly dependable networks and services, resilience is obtained by repli-
cation of services, which requires state-updates at remote replicas in order
to avoid inconsistency [21,6,4] .

Common to all these use-cases of access to remote information is that basic
design decisions on how to efficiently implement such access need to be taken.
Efficiency is thereby typically measured by access delay, probability of using
’correct’ information, and network traffic overhead created by the remote ac-
cess strategy. In order to quantitatively support such design decisions, this
paper presents the analysis of a set of important base cases for such remote
information access. The abstracted scenario is thereby shown in Figure 1.

Interconnecting

network (e.g. IP)

1

2

N

...

Information provider

nodes

Remote

computation

node

R

Fig. 1. Abstracted scenario for remote information access.
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The node, called requester, on the left-hand side of Figure 1 has to execute
a computation for which it needs N input variables, which are dynamically
changing and whose values are known at corresponding N remote nodes. The
change happens due to certain external events. The nodes sensing these events
are called information providers in this paper. The information provider can
send messages to the requester (downstream) through an interconnecting net-
work, which imposes a delay and possible message loss and re-ordering of the
downstream messages. If needed, the requester can also send messages to the
information providers, here referred to as ’upstream’ communication.

Two basic types of solutions for such remote access are well known, see e.g.,
[12,17]:

(1) Reactive, ’on-demand’ access: Whenever the requester needs a certain
piece of remote information, it sends a request message to the information
provider, which responds by sending the value of the information element.
This in principle implements a client-server architecture.

(2) Proactive distribution of information: The information provider will
proactively distribute updates of the value of the information element
to potential ’requesters’. Thereby, two underlying sub-strategies can be
distinguished
(a) Event-driven proactive updates: Whenever the information element

changes value, an update is triggered.
(b) Periodic proactive updates: After certain time-intervals, the current

value of the information element is distributed to potential request
processes.

In this paper we consider the following three performance metrics in relation
to the access strategies:

(1) Network overhead: The amount of data transmitted on the network
for the remote access strategy.

(2) Access delay: The time interval from the moment when the N informa-
tion elements are needed at the requester until they are finally available
for use. For the proactive access strategies, this delay is zero. Processing
times are neglected (or assumed to be included in the communication
delays) in this paper.

(3) Mismatch probability (mmPr): The probability that any of the N
values of the information elements that are used at the requester does not
match the current true value at the remote location. The consequence of
such a mismatch depends on the specific application.

Depending on the requirements of the specific use-case, the goal may be to
minimize one of these metrics while constraining the others, see [25] for an
example of optimization in a such scenario. Other scenarios which makes use

3



of mismatch probability has been shown in [22,23].

The assumptions in this paper regarding the specific type of information are
rather general, in particular, no assumptions on the semantics are made:

• The information element at the information provider changes value at dis-
crete points in time. Thereby two cases are distinguished later: (1) The
information element never changes back to a previous value, as e.g. occur-
ring for monotonous changes such as time and (2) the information element
takes a finite set of values and can also possibly change back to a previously
taken value.

• Neither the requester nor the information provider can influence the tim-
ing of the changes of the information element. This is e.g. the case for
environment information provided by sensor devices, and it needs to be dis-
tinguished from cases of distributed implementations of shared variables,
which can benefit from commitment or concurrency control protocols [11].

• It is irrelevant for the analysis in the paper whether the information element
is a single-valued integer variable or a complex data-structure.

• The information provider will mark messages with a monotonously increas-
ing sequence number, which is used by the requester to reorder received
messages accordingly.

The rest of the paper is organized as follows: In Section 2, we define our
notation and describe some mathematical preliminaries. The first strategy
we describe are the proactive event-driven and periodic strategies which are
treated in Section 3 and Section 4, respectively. This is followed by the reactive
access strategy which is treated in Section 5. Finally, the paper provides and
discusses a set of numerical results in Section 6 and concludes with a summary
and outlook in Section 7.

2 Mathematical preliminaries

Let τ = {Ti, i ∈ Z} be the times of occurrences of some phenomenon, where
Ti is an increasing sequence of event times numbered such that T0 is the event
just before 0. If we put Xi = Ti − Ti−1, i ∈ Z and assume that the sequence
of Xi’s are independent and identically distributed (i.i.d.) then τ is called a
renewal process, see [7].

With an abuse of notation, a random variable with the same distribution as
the Xi’s is denoted generically as X. We denote the cumulative distribution
function (cdf) and the complementary cdf of X by FX and FX = 1− FX , re-
spectively. If the probability density function (pdf) of the distribution function
exists, it is denoted by fX .
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We call τ stationary, if for every r = 1, 2, . . . and all bounded (Borel) subsets
A1, . . . , Ar of the real line the joint distribution of [|A1 + t|, . . . , |Ar + t|] does
not depend on t (−∞ < t < ∞), [7, Definiton 3.2.I]. We define the forward
recurrence time V = T1 and the backward recurrence time U = −T0 and
their distribution functions as BX(t) = IP(V ≤ t) and AX(t) = IP(U ≤ t).
Whenever τ is stationary the distribution of the backwards recurrence time is
the same as the forward recurrence time, [2, p. 150]. Moreover,

bX(t) =
FX(t)

IE(X)
and aX(t) =

FX(t)

IE(X)
. (1)

2.1 Matrix-exponential distributions

Consider now a vector-matrix pair < p,B > and a row-vector ε of ones (ε′

as the transposed form). A distribution with cdf F , and pdf f which can be
expressed as

F (t) = 1− p exp(−tB)ε′, f(t) = pB exp(−tB)ε′

is said to have a matrix-exponential representation with generator or repre-
sentation < p,B >, see [16,13]. Notice that we use the notation of [13] in
which B has a positive diagonal, and is negative or zero outside the diagonal.
Its moments are expressed as

IE(Xk) = k!pVkε′, V = B−1.

Special cases of matrix-exponential distributions are Hyper-Exponential dis-
tributions and Erlangian distributions. A special version of the former, namely
truncated Power-Tail (TPT) distributions [10], are used in Section 6 to illus-
trate the mmPr behavior for scenarios with high variance in inter-event and
downstream delay processes, see Appendix A. The Erlangian distributions are
used to illustrate the behavior when the variance of participating distributions
is decreasing in Section 6.

In case of delay offsets, which frequently happens to some extend, a shifted
delay distribution is considered in Appendix B.

2.2 Kronecker product and sums

The integral representations of mmPr for Phase-type distributed event and
delay processes in later sections can in some cases be written in integral-free
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form utilizing Kronecker product representations. We follow here the notation
for Kronecker-Products and Kronecker-Sums, with A ∈ Rm×m and B ∈ Rn×n,
as used in [9]:

A⊗B :=




a11B . . . a1mB
...

...

am1B . . . ammB




,

A⊕B := A⊗ Idim(B) + Idim(A) ⊗B.

Using these Kronecker representations, integrals of products of Matrix-exponential
distributions can be simplified as follows,

∫
p1 exp(−B1t)ε

′
1p2 exp(−B2t)ε

′
2dt = p1⊗p2

∫
exp(−(B1⊕B2)t)dtε′dim(B1)·dim(B2),

which is later used to achieve integral-free representations of the mismatch
probability.

3 Analytic results for the proactive, event-driven access strategy

Now we introduce the first of the three access strategies. We start by presenting
the abstracted model, and define the involved stochastic processes, whereafter
we describe the performance metrics involved. In this study, we first investigate
the case of N = 1 information provider, followed by the case of N > 1.

3.1 Abstraction model of event based update

The proactive, event-driven access strategy assumes that the requester has
subscribed to the information providers, which will notify the requester when
their part of the information element changes value. Figure 2 shows the ab-
stracted model for this access strategy.

At discrete points in (continuous) time the requester needs the value of the
information element consisting of the N parts, E(n)(t), n = 1, ..., N . The time
of requests are identified by

the request process, R = {Rk, k ∈ Z}.
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Timex x

Di+2
(1)

Di
(1)

Di+1
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Dj
(N)

Dj+1
(N)

Fig. 2. Proactive event-driven update: the request at time Rk results in a correct
value, while Rk+1 leads to a mismatch for E(1), since the update is in transit at
request time. This is not the case for E(N) though. For Rk+2 the opposite is the
case.

At the information provider, the needed information element changes value at
certain points in time, determined by

the event process, E(n) = {E(n)
i , i ∈ Z}, n = 1, ..., N ,

where E
(n)
i is an increasing sequence of event times, numbered such that E

(n)
0

is the event just before 0. For the N event processes.

The time between sending a notification from the information provider until
receiving it at the requester is described by

the downstream delay, D(n) = {D(n)
i , i ∈ Z}, n = 1, ..., N .

These delays correspond to the end-to-end delays between information provider
n and the requester. Message drops can be included via degenerated distribu-
tions (with probability mass at infinity).
Unless otherwise specified, we assume joint independence between the event
and delay processes, as well as joint stationarity.

Sub cases: With respect to the content of the update messages, we need to
further distinguish between [17]

• Incremental updates: Only the difference of the value of the information
element since the previously sent update is transmitted.

• Full updates: The complete information element is provided in each update.

In both cases we assume that the ordering of the messages at the requester
does not matter (e.g. if for the incremental case, the updates are commutative)
or that re-ordering of messages is performed via sender sequence numbers.

Notation: We introduce a Kendall-alike notation using | for describing the
access strategy, and the respective process specification, based on specify-
ing first the event process, the delay process, and the number of information
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providers as E|D|N . This part is the always present pre-fix, e.g., M |M |1
for the single information provider, Poisson event process, and exponentially
distributed downstream delays. Otherwise, the prefix can be extended as
E|D|N |RS|US, where ’RS’ is the request strategy and US indicates the con-
tent of the update messages. For the proactive, event-driven case, RS=’event’.
The update strategy ’US’ is by default ’full’, but can also be specified to be
’incr’ (incremental). If ’RS’ and ’US’ are not specified, then by default, an
event-driven strategy with full update is assumed.

For instance, ME|ME|4|event|incr specifies a remote access to four infor-
mation providers, at which the event processes and the corresponding down-
stream delays are matrix-exponential renewal processes; the system uses an
event-driven access strategy with incremental updates.

The value of the information element by default never changes back to previous
assumed values. In order to allow for other cases (which we here call ’recurrent
event processes’), later we also allow the value of the information element to
be described by the state of an ergodic Markov Process; this type of event
process is denoted by ’MP’. If we only consider the times when the Markov
process leaves a state, but the information element does not take any previous
values (e.g. because its value increases monotonically) we call it a Markov
Jump process (MJ).

3.2 Access delay and network overhead

The network overhead of the proactive, event-driven strategy is determined by
the event process and the amount of information providers sending updates
denoted by sd

V[G|G|N |event|{incr,full}] =
N∑

i=1

s
(i)
d

IE(E(i))
. (2)

Depending on the data structure of the information element, typically the
incremental update will lead to less traffic than the full update, since in most
cases s

(i)
d (Incr) ≤ s

(i)
d (Full). Since the requester will get the locally stored

update at time of request, the access delay is zero.

3.3 Mismatch probability for a single information provider (N=1)

Now we turn our attention to the mismatch probability, which needs to be
treated differently whether full or incremental updates are used.
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3.3.1 Mismatch probability using full updates

If a single update message contains all information so that previous updates
are not needed at the requester, it is only important that the update message
of the last event has reached the requester. The probability of no mismatch
for the request at time Rk is derived by conditioning on the situation that no
event has happened in the interval [t, Rk] and that the message is not delayed
more than Rk − t time units, consequently by stationarity and inter-change
of integration, with BE(t) being the cdf of the backward recurrence time, and
BE its complement (see Section 2):

mmPr[G|G|1|event|full] = 1−
∞∫

0

IP(Di ≤ t|B = t)BE(dt)

= 1−
∞∫

0

t∫

0

FD(ds)BE(dt)

= 1−
∞∫

0

BE(s)FD(ds)

= 1/IE(E)

∞∫

0

FD(t)FE(t)dt. (3)

For Matrix-Exponential Event and Delay processes, Equation (3) results in:

mmPr[ME|ME|1|event|full]

=
1

pEVEε′E

∞∫

0

pD exp(−BDt)ε′DpE exp(−BEt)ε′E dt,

=
pD ⊗ pE

pEVEε′E
[BD ⊕BE]−1 ε′dim(BD)·dim(BE). (4)

For the expression using a shifted time delay, see Appendix B.

Under the assumption that the event process, E, is a Poisson process with
rate λ we can obtain from Equation (3):

mmPr[M |GI|1|event|full] = 1−
∫

e−λtFD(dt)

= 1− L{FD}(λ) (5)

where the last term is the Laplace-Stieltjes transform of the cdf of the down-
stream delay, evaluated at λ. For the cases of a deterministic delay of value
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1/ν, and for exponential delay with rate ν, the mmPr can be expressed as
[17]:

mmPr[M |D|1|event|full] = 1− e−λ/ν

mmPr[M |M |1|event|full] =
λ

λ + ν
.

Note that the ratio of the previous two expressions for ν → ∞ converges to
1, i.e. the case of exponential and deterministic downstream delay show the
same limit behavior for small delays.

3.3.2 Mismatch probability using incremental updates

When update messages only contain incremental information, the requester
accesses the correct information, only if all update messages from previous
events have been successfully received. In this case, a mismatch would occur,
if any of the update messages is still in transit.

The transmission network itself can be viewed as a G/G/∞-queueing model,
for which the arrival process is the event process (as at these moments, an
update message is sent out by the information provider). The service time
of the queueing system is the downstream delay, and as delays imposed by
the network to the downstream messages are independent of the number of
messages in transit, an infinite server queue has to be used. Therefore, the
transmission network can be modeled by an E/D/∞ queue.

Let the stochastic process Qt denote the number of updates in transit at
time t. Thus, a customer being served models an update message in transit.
Henceforth, the mismatch probability at request Rk is the probability that
QRk

is strictly greater than zero. By stationarity we have that

mmPr = IP(QRk
> 0) = IP(Q0 > 0).

Utilizing the well-known results for the queue-length probabilities of the M/GI/∞
queue, [2], [18], the M |GI|1|event|incr access strategy, with Poisson assump-
tions on E (with rate λ) and general independent (GI) assumptions for the
downstream delay (with mean D̄), results in a mismatch probability of

mmPr[M |GI|1|event|incr] = 1− exp(−λD̄). (6)
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3.3.3 Scenarios without message loss and reordering

In case of deterministic downstream delay, the mmPr is actually identical
for the event-driven incremental strategy and the event-driven full update
strategy, since no reordering and no message loss can occur. Thus the mmPr
can be derived from Equation (3), which becomes

mmPr[ME|D|1|event|{incr,full}] =
pEVE(I− exp(−BED̄))ε′

pEVEε′E
. (7)

This equation provides the integral-free expression to the ME|D|1|event|incr
scenario, which is identical to the ME|D|1|event|full. Later in Section 5, we
will see that the reactive strategy also has the same mmPr, hence as conclusion:
In scenarios in which no message loss and no packet reordering can result
(i.e. the transmission network shows first-in-first-out behavior), these three
strategies lead to the same mmPr.

3.4 Mismatch probability for multiple information providers (N>1)

In the case where more than one information element is required, a mismatch
is obtained if at least one of the information providers yields a mismatch. As
all 2N +1 participating stochastic processes are considered pairwise mutually
independent, the probability of mismatch can be obtained by the following
function of the individual mismatch probabilities

mmPr[GI|GI|N |event|.] = 1−
N∏

i=1

(1−mmPr
(i)
[GI|GI|1|event|.]). (8)

Mismatch probability limits for multiple information providers

Analyzing the behavior of the mismatch probability for large N is useful for
two purposes: (1) it provides insight on scaling properties of the systems, and
(2) such limit results can be used for computationally efficient approximations
of the mmPr for scenarios with large N . These are in particular useful for on-
line calculations of the mmPr by participating nodes, see [22,23] for examples.
The computational gain by these approximations turns out to be in fact larger
for other access strategies, see Section 5.3.

Consider the case that the event process is Poisson and that for increasing N ,
the Poisson rate of the individual event processes is scaled down as λN = λ/N .
Then, this scaling of the event-rate in the limit creates a scenario, in which
the update messages sent by the same information provider are not subject
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to reordering any more, since the time interval between updates becomes in-
finite as N goes to infinity. As a result, the proactive event-driven full and
incremental strategies are in the limit equivalent, if there is no message loss.
Therefore we obtain using Equation (8) and (6):

lim
N→∞

mmPr[M |GI|N |event|incr] = mmPr[M |G|N |event|full]

= 1−
N∏

i=1

(1− (1− exp(−λND̄)))

= 1− e−λD.

4 Proactive, periodic update

Now we turn our attention to the case when updates are sent periodically.
In the following we present first the abstracted model of the access strategy,
followed by the performance analysis of the case with N = 1 information
providers, and subsequently the case of N > 1 for where we are evaluating the
limit cases which allows simpler computations for potential online evaluation
of multiple information provider scenarios.

4.1 Abstraction model of periodic update

The requester has made a subscription to the information provider, which will
subsequently send updates to the requester in periodic intervals as illustrated
in Figure 3.

Rk Rk+1

Ei Ei+1
Time

Time

x x

x x

Ij Ij+1 Ij+2

Request

Process

Event

Process 1

Event

Process N

Ip Ip+1Eq+1
x

(N)
(N)

(N)

(1) (1) (1) (1) (1)

Time

Dj
(1)

Dp
(N)

Dj+1
(1) Dj+2

(1)

Dp+1
(N)

pj+1 pj+2 pp+1pppj

Fig. 3. Proactive, periodic update: Rk results in mismatch from E(1), while Rk+1

leads to a correct result for the case N = 1, but leads to a mismatch, if E(N) is also
needed.

In this scenario the information provider reads out the information element
and sends update messages to the request process at the moments described
by the stochastic

update process I(n) = {I(n)
j , j ∈ Z}, n = 1, ..., N .
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These N update processes are assumed jointly independent to the event, de-
lay, and request processes. We consider the case when updates contain all
information (full updates), and are ordered by the requestor using sequence
numbers.

Notation: For this strategy we use in our Kendall-alike notation E|D|N |RS|US
the identification ’periodic(I)’for the ’RS’ field. Thereby, I is specifying the up-
date time interval process, e.g. M |M |4|Periodic(M) stands for N = 4 Poisson
event processes, exponentially distributed downstream delays, and proactive
periodic access strategies with Poisson periods.

4.2 Access delay and network overhead

Network overhead is for this case entirely determined by the time interval
between updates being used, i.e.

V[G|G|N |Periodic(G)] =
N∑

i=1

s
(i)
d

IE(I(i))
. (9)

The access delay is zero as the information is obtained from a local cache at
the requester.

4.3 Mismatch probability for single information provider (N=1)

Formally, we consider a system consisting of the marked point processes {(Ij, Dj), j ∈
Z} and {(Ei, E(Ei)), i ∈ Z}, with E(Ei) denoting the value of the informa-
tion element at time Ei. Define for any t the number, pt, to be the index of
the last correctly received update before time t

pt = max{n| In + Dn ≤ t}.

Consider an event process which is a stationary renewal process, whose back-
wards recurrence time has cdf AE. Then, IpRk

is the last correctly received
information before time Rk. Without loss of generality (by stationarity) we
assume the request time is 0 and consider the point process of useful up-
dates correctly received before 0. Then we have the following probability of
mismatch upon request at time Rk:

mmPr[G|GI|1|Periodic(G)] = IP(E(IpRk
) 6= E(Rk))
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= IP(E(Ip0) 6= E(0))

=

∞∫

0

IP(no correct update received in [0,t])AE(dt).

We shall focus on a system which uses a Poisson distributed random update
time interval to reflect that updates being transmitted may not happen ex-
actly at deterministic time intervals, but will be exposed to different aspects
such as clock drift, operating system scheduling delays, etc., or following our
notation the G|GI|1|periodic(M)|full system. For this model we assume i.i.d.
downstream delays with cdf FD, and the updates are assumed to be a sta-
tionary Poisson point process with intensity τ . A point originating at time t
provides a correct update if the delay time is no longer than t. This happens
with probability 1−FD(t). Henceforth, the useful updates can be viewed as a
thinned non-stationary Poisson point process where the thinning probability
at time t is given by FD(t). The intensity function of the thinned Poisson point
process is given by

τ(t) = τFD(t). (10)

Hence, by the formula for void probabilities for in-homogenous point processes

IP(no useful update received in [0,t]) = exp


−

t∫

0

τ(s) ds


 . (11)

Remark that the application of void probabilities is a well-known method in
applied probability, see e.g. [7] and [19] for a similar application in resequenc-
ing.

The general formula for the mismatch probability under Poisson assumption
for the process of sending updates becomes

mmPr[G|GI|1|Periodic(M)] =

∞∫

0

exp


−

t∫

0

τFD(s) ds


 AE(dt). (12)

For matrix-exponential delay distributions, the inner integral in Equation (12)
can be simplified to

mmPr[G|ME|1|Periodic(M)] =

∞∫

0

exp
[
−τ(t− D̄ + pDB−1

D exp(−BDt)ε′)
]
AE(dt),
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which under matrix-exponential assumption on the event process can be rewrit-
ten as

mmPr[ME|ME|1|Periodic(M)] =
eτD̄

Ē

∞∫

0

e−τt · exp
[
−τpDB−1

D exp(−BDt)ε′D
]
·

[pE exp(−BEt)ε′E] dt.

This expression can be simplified further using Kronecker products, however
without getting rid of the integral completely. Therefore, we use numeric inte-
gration later in Section 6 for evaluation. Note that in some cases, with a special
structure on BD, it may be possible to express the matrix-exponential as a
closed-form expression involving exponential functions and thereby integral-
free expressions can be derived.

Poisson event process and exponential downstream delays: Under
further assumptions on the event and delay process, Equation (12) specializes
to

mmPr[M |M |1|Periodic(M)] = λ

∞∫

0

exp
(

τ

ν

(
1− e−νt

))
exp(−(τ + λ)t) dt, (13)

with the event process being a Poisson process with intensity λ and the down-
stream delays are i.i.d. exponentially distributed with mean 1/ν.

The expression in (13) can alternatively be expressed as (by change of variable
t with e−νt, and using the notation φ = λ/ν; ψ = τ/ν)

mmPr[M |M |1|Periodic(M)] = φeψ Γ (ψ + φ)

ψψ+φ
FΓ(ψ+φ,ψ)(1), (14)

where FΓ(a,b) is the cdf of a gamma distribution with parameters a and b.

Dominating the function (1− e−νt) in (13) by νt we get by Lebesgue’s Domi-
nated Convergence Theorem the following conclusion from (13). Then for very
short downstream delays (large ν’s) the mismatch probability approach a limit
of

lim
ν→∞mmPr[M |M |1|Periodic(M)] =

λ

λ + τ
.
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4.4 Mismatch probability for multiple information providers (N>1)

Keeping the assumption of events at each information provider being indepen-
dent of each other, delays and request process, the mismatch probability for
accessing multiple information from the requester, is calculated in the same
way as for the proactive event-driven strategy, given in Equation (8), but
leading to different limits.

Limits for multiple information providers

If we consider a Poisson event process with rate λ and i.i.d. exponentially
distributed delays with rate ν, and scale down the individual event processes
with rate λN = λ/N we obtain from Equations (8) and (14) (with φ = λ/ν;
ψ = τ/ν)

lim
N→∞

mmPr[M |M |N |Periodic(M)] = 1−
N∏

i=1

(1− λ

Nν
)
Γ (ψ + λ/(Nν))

ψψ+λ/(Nν)
·

FΓ(ψ+λ/(Nν),ψ)(1) (15)

= 1− exp

(
−φeψ Γ (ψ)

ψψ
FΓ(ψ,ψ)(1)

)
. (16)

Hence, in this case, we obtain the above limit for increasing N when scaling
down the rate of the individual event process linearly with N .

5 Analytic results for reactive on-demand access

Finally we now present the reactive access strategy, in which the communica-
tion is initiated by the requester. First we introduce the abstraction models,
whereafter we present the performance models for the cases, N = 1, N > 1
and the case when information elements may return to previous values.

5.1 Abstracted model of reactive access

For the reactive strategy, it is the request process that sends a request message
to the information provider. Upon receiving the request message, the informa-
tion provider reads out the value of the information element and sends it in a
response message. Figure 4 shows the abstracted model for the reactive case.
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Fig. 4. Reactive access: In the example, the k’th access, Rk, leads to a ’correct’
value, while the k + 1’th access causes a mismatch event.

In this scenario, we consider only the case when the full information element
is sent in each response. The communication time between the requesting
entity and the information provider is described by the stochastically vary-
ing upstream and downstream delays. Compared to a reactive strategy, the
additional stochastic processes,

the upstream delay, U (n) = {U (n)
k , k ∈ Z}, n = 1, ..., N ,

are introduced, under the assumption of joint stationarity and joint indepen-
dence.

Notation: We use ’react(U)’ to specify this access strategy in the Kendall-
like notation, where U specifies the type of the upstream delay process. For
instance, MJ |ME|1|React(G) denotes a reactive access strategy, in which
the single event process is a Markov Jump process, the downstream delay
distribution is matrix-exponential, and general upstream delay.

5.2 Access delay and network overhead

The network overhead is determined by the request process and the sizes of
request and response messages

V[G|G|N |React(G)] =
1

IE(R)

N∑

i=1

(s(i)
u + s

(i)
d )

where, su is the size of the upstream request message, and sd the size of the
downstream response message.
The mean access delay is determined by the upstream and downstream delays,
i.e.

A[G|G|N |React(G)] = IE( max
i=1,...,N

{U (i) + D(i)}).
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5.3 Mismatch probability using single or multiple information provider (N≥1)

For the reactive access strategy a mismatch happens if an event occurs while
the response is in transit to the requester. This is exactly the same situation as
for the proactive, event-driven scenario using full updates (see Section 3.3.1).
Hence, the general mismatch probability for the reactive strategy has already
been given in Equation (3), which thus also covers all G|G|1|react(G) cases.
Note that the upstream delay process does not influence the mmPr due to
the stationarity and independence assumptions. In the case that more than
one information is needed, i.e. N > 1, the requesting entity sends a request to
each of the Information providers. The requests are sent out at the same time-
instant (multi-cast), but may arrive at the information providers after different
upstream delays. As the requester is in need of all information, it has to wait
until all responses have arrived to carry out its computation. Assume t = 0
is the time of sending out the request. Then the information will be finally
processed at the requester at time M̃N = max(U

(1)
1 + D

(1)
1 , ..., U

(N)
1 + D

(N)
1 ),

see Figure 4. The mismatch probability is given by:

mmPr[G|G|N |React(G)]

= 1− IP(E
(1)
1 (M̃N) = E

(1)
1 (U1), . . . , E

(N)
1 (UN) = E

(N)
1 (M̃N))

= 1−
∞∫

0

IP(E
(1)
1 (t− U1) = E

(1)
1 (0), . . . , E

(N)
1 (t− UN) = E

(N)
1 (0)|M̃N = t)

F
M̃N

(dt).

As M̃N is dependent on the Ui’s it seems difficult to simplify this expression.
However, if we assume that the same upstream delay is imposed on all request
messages for all information providers, i.e. the request reaches all information
providers at the same time instant, we can obtain rather explicit results and
also limit theorems based on weak convergence and extreme value theory,
which will be addressed in the coming.

For the G|G|N |react(D)-case, if MN denotes max{D1, ..., DN} and mN de-

notes min{E(1)
1 , . . . , E

(N)
1 } (maximum of the forward recurrence times for the

N information elements), we get the following general formula

mmPr[G|G|N |React(D)]

= 1−
∞∫

0

IP(E
(1)
1 (t) = E

(1)
1 (0), . . . , E

(N)
1 (t) = E

(N)
1 (0)|MN = t)FMN

(dt)

= 1−
∞∫

0

IP(E
(1)
1 ≥ t, . . . E

(N)
1 ≥ t)FMN

(dt)
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= 1−
∞∫

0

FmN
(t)FMN

(dt). (17)

If we utilize our standing assumption of independent delay and inter-event
times between information providers, we get

FMN
(t) = FD(t)N and FmN

(t) = BE(t)N ,

which by differentiation of FMN
implies fMN

(t) = NFD(t)N−1fD(t), whenever
FD has a pdf fD. This in turn yields

mmPr[GI|GI|N |React(D)] = 1−N

∞∫

0

BE(t)NFD(t)N−1fD(t) dt. (18)

Limit behavior for multiple information providers

Now we focus on the limits of the mmPr expressions for the reactive scenario.
Here, as it will be shown, under the right assumptions, the computational effort
in calculating the mmPr will be reduced, which is in particular interesting for
online computation of the mmPr, see e.g. [22,23] for use cases.

Delays are i.i.d. with exponential tails: As opposed to the proactive
approaches, the scaling properties of the reactive schemes are different. As-
sume for instance the delays to be i.i.d. with exponentially decaying tails, i.e.
FD(x) ∼ e−νx, as x → ∞. If we recall that a sequence of random variables
XN is said to converge weakly to a random variable X if limN→∞ IEf(XN) =
IEf(X), for any bounded and continuous function f ,[3, (10)]. Then it has been
proven in [5] that

MN − bN

aN

with aN = 1/ν, bN = log(N)/ν,

converges weakly to a Gumbel distributed random variable with cdf

F (x) = e−e−x

.

Hence, if we scale down the individual event processes by

λN :=
λ

N log(N)
, (19)
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we obtain the following limit behavior of the mismatch probability (using
Slutky’s Theorem, i.e. if XN converges weakly to X, aN → 0, and bN → b,
then XNaN + bN converges weakly to b, see e.g. [3] for more details)

lim
N→∞

mmPr[M |GI|N |React(D)]

= 1−
∞∫

0

e−NMnλN FMN
(dt) (20)

= 1− lim
N→∞

IE

(
exp

( −λ

log(N)

((
MN − bN

aN

)
aN + bN

)) )

= 1− e−λ/ν . (21)

Note, that this limit closely resembles the proactive cases, but under different
scaling.

Delays are i.i.d. with polynomial tails: Now, alternatively assume the
delays to be i.i.d. with polynomially tails, i.e. for some α > 0, FD(x) ∼ x−α

as x →∞. This case can conveniently be noted as M |GI|N |React(D), where
the GI has polynomially decaying tails. Then it has been proved in [5] that

MN − bN

aN

with aN = N1/α, bN = 0,

converges in distribution to the Frechet distribution, with cdf

F (x) = e−x−α

.

Hence, if we scale down the individual event processes by

λN :=
λ

N1+1/α
, (22)

and assume X has the Frechet distribution with cdf F , then we obtain the
following limit behavior of the mismatch probability (by use of aweak conver-
gence result similar to the one leading to Equation (21))

lim
N→∞

mmPr[M |GI|N |React(D)] = 1− IE(e−λX)

= 1− α

∞∫

0

e−(λx+x−α)x−α−1dx. (23)
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5.4 Recurrent Event Processes with one information provider (N=1)

Now we remove the assumption that information element cannot change back
to a previous value. Instead, one single information element is assumed to be
described by the state of a Markov process with generator matrix Q.

In the reactive approach, the access leads to a mismatch, if after the down-
stream delay time, the Markov process, represented by a state transition rate
matrix, Q, and state probability vector, π, is in a different state as at the time
when the update was sent out (assumed here to be t = 0). Due to stationarity,
the probability of being in state i at time t = 0 is just the steady-state prob-
ability πi. Hence, by conditioning on the downstream delay time, we obtain
the following

mmPr[MP (rec)|GI|1|React(G)] = 1−
∞∫

t=0

S∑

i=1

πi [exp(Qt)]i,i fD(t)dt (24)

General matrix-exponential downstream delay: If the downstream de-
lay is a matrix-exponential renewal process, integral-free expressions for Eq.
(24) can be obtained as follows:

mmPr[MP |ME|1|React(G)] = 1−
∞∫

t=0

S∑

i=1

πi [exp(Qt)]i,i pDBD exp(−BDt)ε′Ddt

= 1−
S∑

i=1

πi

∞∫

t=0

ei exp(Qt)ei
′ pDBD exp(−BDt)ε′Ddt

= 1−
S∑

i=1

πi [ei ⊗ (pDBD)] [(−Q)⊕BD]−1 [ei
′ ⊗ ε′D] . (25)

Hereby, ei is a row vector with all components zero excepts for the i-th com-
ponent, which is equal to one.

Exponential downstream delay: Further simplifications result if the down-
stream delay is exponentially distributed with rate ν. Equation (24) can be
reduced to

mmPr[MP |M |1|React(G)] = 1− ν
S∑

i=1

πi



∞∫

t=0

exp ([Q− νI]t) dt




i,i
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= 1− ν
S∑

i=1

πi

[
(Q− νI)−1

]
i,i

.

6 Numerical results

This section uses the models from Sections 3, 4, and 5 to obtain and discuss
numerical results for selected example scenarios.

6.1 Single information provider, non-recurrent event process

The analytic models derived allow to compute the mmPr for the scenario of
N = 1 information providers, at which the information element never changes
back to a previous value.

We consider in the following numerically the case of a single information
provider, with different distributions of the inter-event process and down-
stream delay process.

6.1.1 Exponential network delays and Poisson event process

The first scenario we focus on the case of a Poisson event process together
with exponential or deterministic downstream delay of varying rate, i.e. the
M |M |1|x and M |D|1|x cases: Figure 5 shows the results for the mmPr as
computed by the analytic models for the different remote access strategies,
for the assumption of a Poisson event process with rate λ = 1. In the proac-
tive periodic case, the period is i.i.d. exponentially distributed with varying
rate τ = 10−2, 0.1, 1, 10. As the analysis in Section 3.3.1 shows, the reactive
and the proactive event-driven strategy with full updates lead to exactly the
same mmPr (dotted curve). The proactive event-driven strategy with incre-
mental updates shows a slightly higher mmPr (solid curve). According to the
analysis in Section 3.3.2, the mmPr in the event-driven incremental case for
the considered Poisson event case is insensitive of the delay distribution; con-
sequently, the M |D|1|event|incr case is also represented by the same solid
curve. Furthermore, according to Section 3.3.3, the event-driven strategy with
full updates and hence the reactive strategy with deterministic downstream
delay are also captured in this solid curve. Hence, only two curves are needed
to represent the six cases for reactive strategies and proactive event-driven
strategies.

An additional set of dashed-dotted curves reflects the mmPr of the periodic
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Fig. 5. Comparison of mismatch probabilities in the different remote access strategies
for a Poisson event process and varying downstream delay [17].Notice the topmost
curve for the periodic case with τ=0.01.

cases, M |M |1|periodic(M), with different rate τ of the period. The following
additional observations can be made from Figure 5:

• The reactive strategy in the case of deterministic downstream delays, D ≡
1/ν, (solid line) leads to a higher mmPr than in the case of an exponentially
distributed delay with same mean (dashed line). In contrast to intuition from
other analytic models, e.g. in queueing models in which deterministic delays
typically lead to shorter waiting times, here the deterministic case is not the
best case scenario. This observation is investigated further in Section 6.1.2
via the use of Matrix-exponential distributions.

• For very short downstream delays (large ν) the mmPr of both the reac-
tive and the proactive event-driven strategies decay asymptotically to zero,
see Section 3.3. This is explainable with the arguments that no message
reordering will occur for infinitely fast networks.

• For the case of the periodic update strategy, it was shown in Section 5.3
that for small downstream delays (large ν) the mmPr converges to the value
λ/(λ + τ) > 0. Consequently, for large ν eventually, the periodic approach
will at some point always perform worse than the event-driven and reactive
approaches.

Figure 5 shows only the mmPr. One approach to make a fair comparison
between the respective strategies and their resulting mmPr in Figure 5, is
to compare scenarios in which the network overhead and access delay are
identical. However, for the reactive strategy the access delay is always larger
than zero, hence is always larger than for the proactive strategies. A caching
strategy may be applied at the cost of an increased mmPr in order to decrease
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the mean access delay, see [25]. For the network overhead, each strategy should
produce same amount of traffic, which happens if µ(sd+su) = λsd = τsd, which
for the scenario shown in Figure 5 happens i.e. for τ = 1 and µ = 0.5 (when
assuming equal sizes of the update messages).

6.1.2 Matrix-Exponential network delays

To investigate numerically the impact of different distribution types, we use
in the following the Erlangian distributions to represent delay distributions
with smaller variance than exponential. At the other end for large variance,
we use Truncated Power-Tail (TPT) distributions, see Appendix A, with a
tail-exponent of α = 1.4 which leads to unboundedly growing variance for
increasing number of phases.
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Fig. 6. Mismatch Probability for reactive and the two different proactive strategies
for downstream delay process which are renewal processes with matrix-exponential
representation: Shown for Erlangian and TPT distributions with increasing number
of phases along the x-axis.

Figure 6 shows the impact of different network delay distributions. For the
reactive strategy, M |ME|1|react(G), two curves are shown in the bottom of
the figure, which are identical for the proactive event-driven strategy with full
updates, M |ME|1|event|full. Since the downstream delay distribution is irrel-
evant for the proactive event-driven incremental strategy, M |GI|1|event|incr,
it results in a horizontal line, shown dashed-dotted in the figure.

The upper of the two curves for the reactive strategy (marked with circles) rep-
resents the case of an Erlangian-T delay distribution in the reactive/proactive-
event-driven-full approach, i.e. with increasing T on the x-axis, the coefficient
of variation is reduced. This decrease in variance actually results in an in-
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creased mmPr. The lower curve (marked with ’x’) shows the mmPr for a
TPT-T distributed network delay. The mmPr decays with increasing T but
appears to converge to a value slightly below 25%.

The upper two curves in Figure 6 show the periodic case, M |ME|1|periodic(M),
with a Poisson rate of τ = 2 for the period. For this choice of τ , the mmPr
values are always higher than for the other strategies. The qualitative behav-
ior when increasing the number of phases of the Erlangian and TPT delay
distribution is the same as for the reactive strategy, namely with increasing
variance (TPT case), the mmPr drops but converges to a value slightly above
0.45; for decreasing variance (Erlangian case), the mmPr increases and con-
verges towards a value close to 0.6, which can also be confirmed by using a
deterministic distribution in Equation (12).

The fact that the mmPr increases for deterministic delays, while decreasing for
highly varying delays, can be explained in the following way: Consider an event
at some point in time which would lead to a mismatch for a deterministic delay,
then for the same event there is a probability that the information is matching
if it stochastic. For a delay equal, or longer than the deterministic, obviously,
there will be a mismatch, but for a smaller delay it may not necessarily be a
mismatch. Over time, the randomness leads to a reduction in the mmPr as
shown in Figure 6.

6.1.3 Matrix-exponential network delays and event process
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Fig. 7. Mismatch Probability for reactive and proactive (full) strategy for event
process which are renewal processes with matrix-exponential representation: Shown
for Erlangian and TPT distributions.

Similar qualitative behavior as in the previous section is observed when the
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distribution of the inter-event times is varied in Figure 7. The change from
exponential towards a deterministic distribution (Erlangian with many phases)
results in a significant increase of the mmPr for all strategies, while the use
of TPT distributed inter-event times actually reduces the mmPr. The middle
two curves (.|D|1|(rect = event|inc = full)) thereby represent the case of
deterministic downstream delays, in which four of the strategies are actually
equivalent, see Section 3.3.3.
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Fig. 8. Mismatch Probability for reactive and proactive (full) strategy for event and
delay processes which are renewal processes with matrix-exponential representation:
Shown for Erlangian and TPT distributions.

When both processes, the event and the downstream delay, are represented
by TPT respectively Erlangian distributions, the impact on the mmPr is
strongest, i.e. the worst case in the considered candidate set occurs, when
both distributions are Erlangian with large number of phases, i.e. close to the
D|D|1|x case, see Figure 8. This case is interesting in the sense that, some
combinations of delay and event times may lead to situations where informa-
tion is always wrong mmPr = 1 which happens for example if the delay is
larger than the event inter-arrival times, i.e. when we are certain at least one
event happens in the downstream period.

6.2 Multiple information providers, non-recurrent event process

For scenarios involving more than one information element, the information
consists of a vector spread over N > 1 information providers. For an execution
of a computation at the requester, all N parts of this vector are required, and
a mismatch results if any of them does not correspond to the true current
value. Those scenarios where investigated in Sections 3.4, 4.4 and 5.3, for the
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proactive event-driven, periodic and reactive access strategy, respectively.

For the proactive cases, under assumption of mutual independence of the N
downstream delay processes and the N event processes, the mmPr can simply
be computed from a product expression, Equation (8). For the reactive case,
under similar independence assumption and given that the upstream delays
are identical for the request to reach all N nodes, Equation (18) allows to
compute the mmPr, in most cases involving numerical integration.
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Fig. 9. Mismatch Probability for multiple information providers, all Processes are
Poisson. The event-rate per IP is scaled down by a factor of N so that the total
event rate remains constant.

We show in Figure 9 the numerical results for multiple information providers,
N > 1, where we restrict ourselves to exponential distributions, i.e. M |M |N |x
cases. In the same time we also show the derived limits of the different cases,
to show the empirical accuracy of the approximations increased at the benefit
of lower complexity of calculating the mmPr. Note that although the reactive
case results in the same mmPr as the proactive event-driven case with full
updates for N = 1, this is not the case any more for larger N . In fact, for the
applied linear scaling in the figure, the mmPr of the reactive case grows to 1
when N → ∞. For the proactive cases, the difference in using the limits and
the exact expressions becomes very small as N increases, giving an opportu-
nity for saving computational effort in e.g. realtime calculations of mmPr in
situations with many information sources. Similar with the reactive case, but
the effect is less profound as seen.
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6.3 Single information provider, recurrent event process

The numerical results so far assumed information elements that can never
change back to a previously taken value. Now we remove this assumption, so
that the information element can change back to previous values, as described
by a continuous time Markov process. We focus our numerical analysis on
the reactive case, as described in Section 5.4. For this evaluation we use the
example of a binary information element, e.g. the state of a device being
either busy or idle, here also called ON and OFF. Therefore, the event process
is a two-state continuous time Markov chain, where the average change rate is
kept consistent with the parameter settings at the end of the previous settings,
namely, ON + OFF = 2 so that the average inter-event time is still kept at
Ē = 1. However, ON-and OFF state leaving rates are varied so that they show
different holding times, i.e. we vary the ratio

κ =
OFF

ON

while keeping their sum constant.
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Fig. 10. Mismatch Probability for reactive strategy for an event process which is an
ON/OFF process with same average duration of the ON+OFF cycle.

Figure 10 shows the resulting mmPr for three different delay distributions:
Erl-20 in the upper set of curves, exponential in the intermediate curves,
and TPT-20 in the lower curves. For each delay distribution, three curves
are given: the recurrent MP process (solid) which shows a lower mmPr than
a Markov Jump process (dashed), since there is some probability that an
even number of changes has happened since sending the response, which then
would lead to a match of the remote information element. The mmPr has a
maximum when ON and OFF period show same average duration, at which
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point the information element changes form a homogeneous Poisson process,
i.e. the MJ |ME|1|react case is equivalent to a M |ME|1|react case at κ = 1.
The latter is shown as dotted horizontal line in Figure 10. Notice that for
the ON/OFF element used here, we do not care whether the state is ON or
OFF, but focus on whether we get mismatching information or not. This state
symmetry leads to mmPr(κ) = mmPr(1/κ).

When κ goes to zero or infinity, the mmPr approaches zero, since in these
limit cases, the ON/OFF process is actually only dominated by one of the two
states, namely OFF if κ = 0, and ON for κ →∞.

7 Summary and outlook

This paper has developed a methodology and explicit analytic solutions for the
quantitative analysis of different strategies for remote access to dynamically
changing information elements.

The analytic results lead to the following conclusions:

• For a single information provider and monotonous-type event processes, the
mmPr of the reactive strategy and the proactive-event-driven strategy with
full updates are identical.

• The mmPr of the proactive event-driven strategy with incremental updates
is greater or equal to the full update case. In the case of a Poisson Event
process the mmPr is independent of the downstream delay and described
by the busy probability of an M/G/∞ queue.

• For networks without loss and re-orderings (FIFO type networks), the re-
active strategy and all proactive event-driven strategies lead to the same
mmPr.

• For the proactive, periodic strategies, an explicit solution Equation (12) has
been obtained for the scenario, when the instances of sending updates form
a Poisson process. Integral-free solutions (14) result, when all participating
processes are Poisson.

• The mmPr for the reactive case in case of recurrent Markov Event processes
(which may change back to previous values) is obtained in general integral-
free form, Equation (25).

• The case of multiple information providers is treated for all strategies and
limit results are obtained that allow to identify interesting differences in
scaling behavior as well as allow to obtain computationally efficient approx-
imation expressions.

The analysis has subsequently been applied to scenarios with general matrix-
exponential distributed inter-event times and network delays. The numerical
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results show that for the given settings, the high-variance case (truncated
Power-tail distributions for the events/delays) actually leads to smaller mis-
match probability than the exponential case, except for the case of event-
driven incremental updates, which is insensitive to the delay distribution for a
Poisson event process. Analogously, the use of Erlangian distributions and in
the limit deterministic distributions increases the mismatch probability for all
schemes. Furthermore, the case of multiple information elements has been an-
alyzed numerically, showing the different scaling behavior of the reactive strat-
egy (factor N log N in case of exponential delays) and the proactive strategies
(factor N), and the accuracy of approximations that were obtained from the
limit theorems.

Finally, the analysis was applied to the case of a binary information element,
which toggles between two values, e.g. an ON/OFF process. The mismatch
probability is in this case smaller than for a monotonous-type event process
and it is largest, if the average of the ON duration and OFF duration are
identical.

Other relevant scenarios, e.g. when ordering update messages according to re-
ceive time as opposed to using sequence numbers created at the information
provider, will be considered in future work. Furthermore, the proactive cases
for recurrent event processes have to be analysed. Finally, the application of
the mmPr analysis to the actual use-cases of routing, context-sensitive net-
working, and replica consistency for optimistic replication strategies will likely
lead to further model refinements.
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A Truncated power-tail distribution

In order to model distributions with large variance, frequently hyper-exponential
distributions are used, whose pdf is a linear combination of different exponen-
tial densities. Choosing the weights and the rates of the exponential phases in
a special way, namely both geometrically decaying, but with different factors,

RYT
(x) =

1− θ

1− θT

T−1∑

i=0

θi exp

[−µT

γi
x

]
, (A.1)
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the resulting complementary distribution functions show Power-law behavior,
R(x) ∼ x−α for some orders of magnitude before they drop off exponentially,
see [10]. The higher the number of phases, T , the later the drop-off occurs.
The exponential drop-off is characterized in more detail in [24] by the so-called
Power-Tail Range.

The variable θ can be chosen freely in the range 0 < θ < 1. For larger value
of θ, more phases are necessary to obtain the same PT Range as for lower θ.
In order to show Power-Law behavior with exponent α, and to have mean x̄,
the other constants in (A.1) have to be (see [10]):

γ =
(

1

θ

)1/α

,

µT =
1− θ

1− θT

1− (θγ)T

1− θγ

1

x̄
.

The truncated powertail distribution admits the following matrix-exponential
representation:

pT =
1− θ

1− θT

[
θ0, . . . , θT−1

]
.

BT = µT




1/γ0 0
. . .

0 1/γT−1




.

B Shifted delay distribution

In certain scenarios, time shifted delays may need to be considered. For this
type of scenario, the stochastic delay variable Dv, is offset by a constant delay
d0, leading to a total delay D given by

D = d0 + Dv

whereby

fD(t) =





0 for 0 ≤ t < d0

fDv(t− d0) for t ≥ d0.

33



Utilizing such shifted delay distribution, e.g., for the cases ME|ME|1|event|full
and ME|ME|1|react(G), Equation (3) yields a mismatch probability of:

mmPr = 1− 1

IE(E)

∞∫

0




∞∫

t+d0

FE(s)ds


 fDv(t)dt,

which in the matrix-exponential case becomes

mmPr = 1− (pEVE exp [−BEd0])⊗ (pDBD)

pEVEε′E
[BE ⊕BD]−1 ε′dim(BE)·dim(BD).
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