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Diffuse Scattering Model of Indoor
Wideband Propagation

Ondřej Franek, Member, IEEE, Jørgen Bach Andersen, Life Fellow, IEEE, and Gert Frølund Pedersen

Abstract—This paper presents a discrete-time numerical algo-
rithm for computing field distributions in indoor environments
by diffuse scattering from the walls. Calculations are performed
for a rectangular room with semi-reflective walls. The walls
are divided into 0.5 × 0.5 m segments, resulting in 2272
wall segments in total and approximately 2 min running time
on average computer. Frequency independent power levels at
the walls around the circumference of the room and at four
receiver locations in the middle of the room are observed. It is
demonstrated that after a finite period of initial excitation the
field intensity in all locations eventually follows an exponential
decay with the same slope and approximately the same level
for given delay. These observations are shown to be in good
agreement with theory and previous measurements—the slopes
of the decay curves for measurement, simulation and theory
are found to be 18 dB, 19.4 dB and 20.2 dB per 100 ns,
respectively. The remaining differences are further discussed and
an additional case of a spherical room is used to demonstrate the
influence of the room shape on the results. It is concluded that
the presented method is valid as a simple tool for use in indoor
radio coverage predictions.

Index Terms—Indoor radio communication, diffuse fields,
numerical methods, propagation

I. INTRODUCTION

IN order to achieve a high degree of quality of service in
wireless communication systems, the mobile device needs

to maintain sufficient level of signal strength from the base
station at all possible locations. This brings about a need
for predicting the radio coverage from the base station, so
that we can choose adequate radiated power and optimize the
position of the base station antenna, or reduce their number if
multiple access points are necessary in the given conditions.
The character of the problem and its solution depends on the
scale and complexity of the propagation environment, and two
distinct scenarios, indoor and outdoor, are usually considered
when choosing the appropriate method.

This work is focused on prediction of radiowave propagation
in indoor environments, with application to personal commu-
nication systems in the centimeter-wave frequency range. Var-
ious methods have been employed to solve similar problems,
the most prominent likely being ray tracing [1]. However, ray
tracing accounts only for propagation by means of specular
reflections or diffractions, but not diffuse scattering, which we
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see as more important, if not crucial, taking into consideration
the commonly used wavelengths of wireless systems (cm)
and comparable sizes of common room obstacles and surface
structures. Drawbacks of the ray tracing approach with respect
to diffuse scattering prediction are discussed in [2].

There have also been attempts to tackle the coverage prob-
lem with the finite-difference time-domain (FDTD) method,
most recently in [3]. Nevertheless, the FDTD method is, in
spite of steadily increasing computer speed and memory, still
very demanding in terms of computational resources. As a
result, FDTD studies are usually limited to two-dimensional
algorithms and employ frequency reduction techniques in
order to keep sufficient sampling per wavelength without
memory exploding [3].

In a recent work [4], the concept of room electromagnet-
ics was introduced, in analogy to room acoustics, a well-
established discipline of predicting a sound field in a room.
The idea is based on similarity of the wavelengths for both
audio frequencies and microwave frequencies, whereas the
size of the room and the roughness of the walls are expected
to produce similar reverberation effects. Trying to obtain a
numerical model to support the theory, we chose the radiosity
method, which is based on purely diffuse scattering and has
been successfully used in the acoustics discipline [5], as well
as in computer graphics and architectural lighting [6]. The
radiosity approach has also been employed in radio coverage
prediction in outdoor studies [7]–[9] and in combination with
ray tracing in indoor environment [10]. Among its advantages
we would like to highlight the relative simplicity and speed of
the algorithm, while the lack of any information on specular
reflections might be seen as a disadvantage. It is also a power
based method, in the sense that all phase and polarization
information is missing. However, these are supposed to have
random character anyway in most common scenarios of rooms
with rough surfaces.

It should be noted that the observed similarity between the
acoustic and electromagnetic waves is purely mathematical,
not physical. Propagation effects are governed by the wave
equation in both cases, and the relation of free space veloc-
ities and used frequencies results in comparable wavelengths
and thus comparable propagation effects. Nevertheless, media
different from air (e.g. walls, floors, water, ground) will, of
course, have different propagation properties for either type
of wave and cannot be interchanged.

Another difference is that electromagnetic waves are trans-
verse and exhibit polarization effects, whereas acoustic waves
are longitudinal. However, both polarizations are represented
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Fig. 1. Ray paths in a rectangular room (dashed: direct rays from transmitter
to segments, dotted: scattering between segments, continuous: rays from
transmitter and segments towards receiver).

equally in diffuse field and therefore can be treated together.
In a real situation, the receiving antenna will usually pick up
only one polarization of the incoming wave and the measured
field may then be up to 3 dB lower than levels predicted by
the radiosity model.

The goal of the present paper is to demonstrate that the
radiosity method, despite some differences between its original
domain and electromagnetics as described above, can be suc-
cessfully applied to radiowave coverage prediction in indoor
environments. The novelty of the work lies in application
of the method to the important communication bands in the
microwave and millimeter region. The results are compared
with measurement around 6 GHz in realistic environment.

The paper is organized as follows. In Section II the diffuse
scattering model is described and the formulas necessary
for implementing the numerical algorithm are given. Sec-
tion III then presents a simple numerical example together
with impulse responses in discrete points in the room, angular
responses and responses at the walls along the circumference
of the room. Mean power quantities are shown, and measure-
ment results from earlier paper are also included. Section IV
proceeds with discussion of the results and their comparison to
theoretical expectations from the field of acoustics. The work
is concluded in Section V and some remarks about a successful
implementation are drawn.

II. PROBLEM DESCRIPTION

The walls of the room are divided into segments of area
∆S. We assume Lambertian diffuse scattering in lack of better
information and the same scattering coefficient from each
segment, although this is not a condition for the model. Lam-
bertian scattering means that the scattering cross sections are
proportional to cosine to the angle measured from the normal.
This means that there is no scattering between segments along
the same wall. The algorithm may be explained with reference
to Fig. 1.

At time t = 1∆t, where ∆t is the time step and number 1
represents the first discrete time instance, the transmitter (Tx)

sends out an impulse. The shape of the impulse is not critical,
as the radiosity algorithm does not support dispersion and all
power contributions are simply added; the pulse width should
only be short compared with the length of the time step. Next,
the strengths of scattering sources are determined by simple
free space radiation from Tx to segment i as ray 1 and ray 2
for segment k, denoted by dashed lines in Fig. 1. These are the
incident fields and they are stored under the relevant delays 1
and 2, which are quantized so that all rays falling within the
same time span ∆t are added together in power. Segment k
is also illuminated by segment i via ray 3 with the delay 1+3,
and vice versa. The process keeps going on with diminishing
values. When all the segment values have been determined up
to a suitable total delay, the intensity at any point in the room
may be determined by simple summation over Tx and all the
wall segments (solid lines in Fig. 1). The numerical process
is fast since it is only simple forward stepping in time.

The coupling between the segments is given by a square
symmetric matrix S with elements

Sik =
ρ

π
cos θi cos θk

1

R2
ik

∆S (1)

where ρ is the power scattering (reflection) coefficient (0 ≤
ρ ≤ 1), θi and θk are the angles from the normals of the
respective segments i and k, and Rik is the distance between
segment centers. The size of the segments ∆S should be small
enough to represent the geometry of the room with reasonable
accuracy, but too small size would result in a high number of
segments and correspondingly in high memory demands and
running time. The time stepping algorithm for power of i-th
element in time t, P (t, i), is then

P (t, i) = Pd(t, i) +

M∑
k=1

P (t− τik, k)Sik, (2)

t = n∆t, n = {1, . . . , N}, i = {1, . . . ,M},

where all delays are rounded to the nearest multiple of ∆t
(the time resolution). The algorithm is running for N time
steps, basically until all the powers drop below certain agreed
level, which can represent the noise floor. The summation is
over all M segments in the room—it encompasses segments
on all reflecting walls and obstacles. The delay τik is the
delay between segments i and k. The summation over k is
performed for each value of t and i, ensuring that all the
multiple interactions are taken into account. Pd is the power
of the direct signal from Tx, which is non-zero only at time
instant τi corresponding to time delay between Tx and the
segment i with distance Ri, assuming a gain of 1

Pd(τi, i) = cos θi
1

4πR2
i

∆S, (3)

i = {1, . . . ,M}.

The field at an arbitrary point inside the room is determined
analogously to the update scheme (2), where the receiver
stands for additional scattering segment (without re-scattering
though) having the incident directivity constant over all angles,
cos θ = 1, and equivalent surface of λ2/4π with λ being the
wavelength at the center frequency of the pulse. Note that this
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is the only place where frequency appears in the theory, and
it only influences the levels of the received power, not the
shape of the response. Also, a real antenna directivity could
be added, if wanted.

To avoid any energy losses, the following inequality must
be satisfied

minR ≥ c∆t

2
, (4)

that is, the shortest distance between any two segments must
be at least as long as half the distance which the wave travels in
one time step. This condition serves to ensure that all delays
between segments will be nonzero after rounding to integer
number of time steps. Zero delay would give rise to infinite
values of power at the affected segments, or would have to be
neglected otherwise, leading to nonphysical dissipation.

One theoretical limitation of the model is the extent of
roughness of the walls. A room with perfectly smooth walls
will not be characterized satisfactorily, in such a case ray
tracing should be used instead. Also, the scattering cross
sections of the walls are not known exactly and we use simpli-
fied assumptions of uniform diffuse scattering and absorption
coefficient. Last but not least, polarization effects are entirely
neglected in the present version of the algorithm.

III. NUMERICAL EXAMPLE

In the following, a numerical simulation of a rectangular
room at frequency 5.9 GHz is performed, with receiver lo-
cations chosen in various distances from the transmitter. The
room dimensions are width 11 m, length 19 m and height
2.5 m. Segment size has been chosen 0.5 × 0.5 m and the
timestep ∆t is 2 ns, obeying (4) in the corners. Transmitter
location is at (xTx,yTx) = (2,6) near the left wall and receiver
locations are (xRx,yRx) = (4,6), (8,6), (12,6), (16,6). In all
instances, the z (vertical, height) coordinates are 1.5 m. The
coordinate origin (x,y,z) = (0,0,0) is at the lower left corner.
Both the transmitter and the receivers are omnidirectional
in our simulations, although adding the respective radiation
patterns into the computation is straightforward. The scattering
coefficient ρ is 0.5. Fig. 2 shows the responses at the receiver
locations and Fig. 3 shows P (t, i) along the circumference
of the room at the height of 1.25 m.1 All power levels are
expressed in dBW with unit reference (1 W Tx output power).

The first 60 ns are dominated by the incident fields—all
of the curves in Fig. 2 show similar behavior in that there
is a gap between the direct path (the first arrival) and the
diffuse power reflected from the walls. However, the gap
is not so deep at the receivers farthest away, indicating the
influence of the floor and ceiling scatter. After that, the power
falls off approximately exponentially with approximately the
same power level at all receiver locations and also along the
complete circumference (Fig. 3). This is in agreement with the
theory and the experimental results. The decay rate is about
19 dB/100 ns. The slope could be changed by choosing another
effective value of ρ. The simulation involved a total of 2272

1This height corresponds to the centers of the 0.5 × 0.5 m panels, into
which the walls are discretized, at approximately the same height as the
transmitter. To obtain the responses at the exact height of the transmitter would
need some kind of interpolation, which we wanted to avoid for simplicity.
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Fig. 2. Impulse responses at different distances from the transmitter.
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Fig. 3. Impulse responses along the circumference of the room at height
1.25 m.

wall segments and took approximately 2 min. on an average
computer with Pentium 4 at 2.8 GHz.

For comparison, in Fig. 4 we also show the power delay
profiles at various positions around the room obtained by mea-
surement published in [4]. The room has the same dimensions
as in the present numerical model, although it has windows and
several obstacles scattered around it. The power distribution
at all probe positions is again practically uniform after 60 ns
and follows similar decay rate of 18 dB/100 ns. The absolute
power levels are not directly comparable, as the calibration
for the measurement was slightly different, namely the time
integration window was larger resulting in higher magnitudes
of power.

1) Power distributions and Rice factor: Since the direct
line-of-sight (LOS) path is available as well as the diffuse
part, it is possible to calculate the Rice factor, which is the
ratio of the coherent and the integrated incoherent power. The
LOS power is given as the peak value of the power delay
profile

PLOS = maxP (t) = P (tmax) (5)
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Fig. 4. Impulse responses at various positions around the room obtained by
measurement [4].

occuring at time instant tmax and the diffuse part is calculated
as a sum of all values following tmax

Pdiff =

N∑
τ=tmax+1

P (τ). (6)

The Rice factor K is then their ratio

K =
PLOS

Pdiff
, (7)

whereas the total power is their sum

Ptot = PLOS + Pdiff . (8)

These indicators are shown in Fig. 5 in dB scale. The Rice fac-
tor is approximately leveled for the three outermost receivers,
whereas the LOS and the tail decay at the same rate, which is a
direct outcome of the presence of vertical scattering. However,
between the first and the second receivers, the Rice factor is a
decaying function of distance because the diffuse power (lower
curve) decreases more slowly than the LOS power. Overall,
the Rice factor is very small, indicating that the propagation
channel follows rather Rayleigh fading, or, expressed differ-
ently, the distance is larger than the reverberation distance.

2) Angular response: For MIMO (multiple-input and
multiple-output) applications the angular response is relevant,
and this is easily found since all the scattering strengths and
corresponding angles from the receiver are known from (2),
see Fig. 6. It is noted that the angular spreading is almost
uniform after about 100 ns. Before that the response is
dominated by the single scattering.

3) Mean power: Finally, Fig. 7 shows the distribution of the
mean power, i. e. the power integrated over the whole impulse
response, across the room at height 1.5 m from the ground
(the same height as the transmitter). As expected, the power
decreases monotonically with distance from the transmitter,
although there is apparent sign of leveling at the opposite
wall, caused probably by multiple reflections. However, this
view illustrates the potential of the algorithm for coverage
predictions.
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Fig. 5. Rice factor (7) in dB, the diffuse power (6), the total power (8), and
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The discretization of the walls into 0.5 m segments has
been chosen in order to achieve sufficient accuracy of the
algorithm while keeping the computational burden low. If we
choose double resolution, i.e. 0.25 m, the segments will be 4×
smaller and the total number of segments M 4× larger. Hence,
the scattering matrix S (1) will have 16× more elements
with corresponding memory demands. Moreover, the update
sequence (2) will be expected to take 32× more time as a
result of the increased number of elements and the necessity
to halve the time step as well due to (4). These projections of
the running time are of course purely theoretical and the actual
timing might differ, nevertheless it gives the programmer an
important idea about the scaling of the algorithm.

Apart from the presented algorithm, we also tried a sim-
plified 2.5-dimensional version where only the circumference
walls were taken into account and floor and ceiling virtually
did not exist. The 2.5D version had even smaller computational
demands, but the physical interpretation of the results was
problematic, despite quite remarkable qualitative similarities
to full 3D. We therefore concluded that the 3D algorithm is
preferable, it is resonably fast and this would only improve
with computer developments.

IV. DISCUSSION

As can be seen in Fig. 2, as well as in experimentally ob-
tained Fig. 4, the slopes of the response curves are everywhere
the same inside the room. They are related to reverberation
time T known from acoustics theory:

W = W0e−
t
T (9)

Here, W stands for energy in the room with initial value
W0, and t is the time variable. The reverberation time can
be obtained from

T =
4V

cηA
, (10)

which is commonly referred to as Sabine’s law [11]. V
and A are the volume and total surface area of the room,
respectively, c is the velocity of light and η is the absorption
coefficient of the walls, η = 1 − ρ. Generally, Eq. (10)
is only an approximation for small η; larger values can be
accommodated by Eyring formula, which results from (10)
when η is substituted by

η′ = − log(1− η). (11)

Formulas (10) and (11) assume equal probability for all ray
paths, which is not generally true for rectangular rooms.
Kuttruff proposes further correction by

η′′ = η′
(

1− γ2

2
η′
)
, (12)

where γ2 is a parameter that accounts for the shape of the
room. It can be obtained from numerical calculations and its
values vary between 0.3–0.6 for rectangular rooms [11].

Our room has η = 0.5 and the slope of the decay curve in
Fig. 2 is 19.4 dB/100 ns. The closest to this result is Kuttruff’s
correction by (12) giving 20.2 dB, while Eyring formula (11)
gives 24.5 dB and Sabine’s law alone (10) 17.7 dB. The γ2

parameter was taken 0.51 after [11], where this value has
been obtained by Monte Carlo method for room with relative
dimensions 1:5:10, similar to our room.

Fig. 8 shows the power at three walls of the room (the other
three are symmetric) after 300 ns from the initial pulse launch.
The contour values are in dB with respect to the reference
at the center of the floor, where the power level dropped to
−108.8 dBW. It can be seen that even after a long time from
the initial excitation the power distribution around the room
is not entirely homogeneous, although it gradually drops with
the same decay rate, in this case 19.4 dB/100 ns. In fact, in this
simulation, the relative power distribution remained unchanged
after capturing the field in Fig. 8, only the overall level was
decreasing. We can see that the power at the walls is stronger
on the longer ends of the room, whereas the floor and the
ceiling have the lowest levels, and the power distribution has
its maximum in the centers of the walls and is diminishing
towards the corners. From here it follows that (10) and (11) can
indeed be only approximative, since they rely on homogeneity
of the field across the room.

It should be noted that Fig. 8 also shows one unphysical
artifact, namely that the power levels are elevated in the
corners of the room. This effect comes from the approximative
nature of (1), in which coupling is strongly overestimated for
segments very close to each other.

For comparison, an exact solution of the reverberation time
is available for a sphere of diameter D, given by [12], [13]:

η = 1− 1

2
µ
[
µ−1 + eµ

(
1− µ−1

)]−1
, (13)

where µ = D/cT . Although this formula was derived for
the sound waves, it is as well applicable to electromagnetic
wave propagation provided that it obeys Lambertian diffuse
scattering and polarization effects are neglected, which is the
case that is studied in the present paper. The reverberation time
is obtained by solving (13) implicitly and gives 6.5 dB/100 ns.

Numerical calculation was carried out for sphere of diameter
20 m, see Fig. 9. The source is positioned in the center of
the sphere, and the responses are taken by omnidirectional
probes at distances 2, 4, 6 and 8 m from the center. The time
step is again 2 ns and the mesh size is at least 0.5 m, and
smaller towards the poles as it follows spherical coordinates.
The frequency was again 5.9 GHz, but it is in fact irrelevant,
because in this example we are interested in the decay rate
only. The slope of the decay is 6.4 dB/100 ns, which we
consider as a very good match and a proof of validity of the
algorithm.

The calculations presented in this section are carried out
for rooms with constant reflection (and, correspondingly,
absorption) coefficient along the walls, which was also the
case of the numerical examples. Realistic rooms will, of
course, have different coefficients for various materials in the
room (carpets, bookshelves, windows) and the responses will
show irregularities, but the overall trends in decay will be
similar. The conclusions should therefore be understood rather
qualitatively, or in the sense of rooms with all coefficients
averaged.
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V. CONCLUSION

It has been shown that the radiosity method is capable of
predicting electromagnetic reverberation times which fit well
with theory, the difference between the simulation and Kut-
truff’s corrected reverberation formula is only 0.8 dB/100 ns.
The presented room responses are also noted to be in agree-
ment with previous measurements in an office space of similar
dimensions [4], although the equivalent value of the absorption
coefficient (0.5) for the practical case is debatable. Validity of
the algorithm has been verified by comparing the results to
exact solution for a spherical cavity, where excellent match
within 0.1 dB has been obtained. However, we conclude that
the theoretical values for reverberation given by Sabine and
Eyring are only informative when it comes to rectangular
rooms and, by generalization, rooms of arbitrary shape. Lim-

ited accuracy of the theoretical formulas thus highlights the
importance of the presented algorithm for general, complicated
shapes of rooms.

Even though the numerical experiment involved an empty
rectangular room only, the algorithm can be easily applied
to more complex indoor and also outdoor scenarios, and the
computational burden is not expected to be tremendous. Only
2272 wall segments with 0.5 × 0.5 m size were used, being
quite large with respect to the wavelength of 5 cm at frequency
5.9 GHz, and still achieving very good accuracy. This is a clear
advantage to other methods (FDTD for example) which rely
on sufficient spatial discretization of the waves and usually
need many samples per wavelength.

The numerical algorithm is also general enough to ac-
commodate objects of arbitrary shape in the room (people,
furniture), which will be represented by additional scattering
segments. Nevertheless, the presence of such obstacles is
already included in the diffuse characteristics of the walls and,
therefore, adding them into the simulation as separate objects
might not yield substantially different result. The numerical
model is indeed very simple, yet it agrees very well with
theory and experimental results, and, therefore, provides useful
prediction of radiowave coverage in rooms.
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