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Abstract 

In clinical practice the dominant view is that the signs of exaggerated tendon tap 

reflexes associated with muscle hypertonia  are responsible for the spastic movement 

disorder. Consequently, most anti-spastic treatments are directed at reducing reflex 

activity. During the last years an increasing body of evidence suggests a discrepancy 

between clinical spasticity and spastic movement disorder.This is primarily due to the 

different role reflexes play in the passive and active condition, respectively. Today we 

know that a central motor lesion is associated with a loss of supraspinal drive and a 

defective utilization of afferent input with an impaired behaviour of short- and long-

latency reflexes. This leads to a paresis and a mal-adaptation of the movement pattern. 

Secondary changes in mechanical muscle fibre, collagen tissue and tendon properties 

(e.g. loss of sarcomers; sub-clinical contractures) result in spastic muscle tone, which at 

part compensates for paresis. This allows functional movements on a simpler level of 

organisation. Anti-spastic drugs can accentuate paresis and therefore should be applied 

with caution in mobile subjects. 
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Introduction 

Spasticity is a consequence of a central nervous system lesion. It is a well known 

syndrome, most frequently seen after stroke, multiple sclerosis, spinal cord injury, and 

in some traumatic brain injuries. Patients with a spinal or cerebral lesion suffer from a 

spastic movement disorder, with a slowing of stepping and of voluntary limb 

movements. The clinical diagnosis of spasticity is based on the combination of physical 

signs in the relaxed patient, i.e. exaggerated tendon reflexes, and muscle hypertonia ( 

defined as a velocity-dependent resistance of a muscle to stretch, cf. 
1
)   In this review 

the above definition of spasticity will be related to the actual knowledge about the 

mechanisms underlying the associated movement disorder.  

In some studies it is believed 
2-6

, that descending overactivity causing exaggerated 

reflexes are responsible for muscle hypertonia, which then leads to spastic movement 

disorder
2-6

. This view seems to be supported by experiments on the decerebrate cat 
7
: 

the increased muscle tone to stretch becomes considerably reduced after severing the 

nerves involved in the stretch reflex loop of this muscle. Therefore, the intention of 

most treatment approaches is to attenuate / abolish reflex activity and thereby to reduce 

muscle tone (for review 
2, 8

). However, this dominant view does not take into account 1. 

that exaggerated tendon reflexes represent only a small part of the reflex mechanisms 

involved in the control of functional movement, such as walking; 2. that most studies on 

the effect of anti-spastic drugs are focused on isolated clinical signs, such as reflex 

activity and not on the spastic movement disorder that hampers the patient, 3. that 

without the development of spastic muscle tone, e.g. after stroke, some patients would 

be unable to walk due to the paresis and, 4. that a rigid muscle tone immediately occurs 

after decerebration of the cat, while human spasticity develops over weeks after an acute 

lesion. Up to now, no adequate animal model exists for human spasticity. One reason 
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for this might be that the pathophysiology of spasticity is multifactorial. Any changes in 

the neuronal or biomechanical systems, due, for example, to the site and duration of a 

central lesion, are of importance in determining which neural control mechanisms are 

deficient and constribute to the movement disorder
9
. Furthermore, one has to be aware 

that such deviations may already be secondary and compensatory to the primary 

dysfunction of the motor system. There are differences in the appearance of spasticity 

between spinal and supraspinal lesions and their origin, e.g. inflammatory or traumatic. 

However, these factors have only a limited influence on the impairment of function.. 

 

Research on functional movements during recent years has indicated that the clinical 

signs of spasticity are little related to the spastic movement disorder, which hampers the 

patient and should be the focus of any treatment. For example, exaggerated reflexes, a 

dominant sign in the clinical examination, have little impact on the movement 

disorder.The aim of this review is to establish the actual state about reflex behaviour 

and muscle mechanics in the spastic patient, as well as the resulting muscle tone during 

three different conditions: the passive (clinical), the active non-functional (laboratory 

setting) and the functional (walking).  
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Clinical signs: passive condition 

In the clinical setting, muscle tone and tendon tap reflexes are routinely examined in the 

relaxed patient. Exaggerated tendon tap reflexes and an increased resistance of a muscle 

to stretch indicate the presence of spasticity as a sequel of a central motor lesion. 

 

Short-latency stretch reflex  

The nature and mechanisms underlying exaggerated tendon reflex activity (mono- / or 

oligosynaptic segmental reflexes) has been the focus of many studies in spastic subjects. 

This short-latency reflex activity is mediated by fast conducting group Ia nerve fibres 

from the muscle spindles to the spinal cord. A severe acute central lesion is associated 

with a loss of tendon tap reflexes followed by a hyperreflexia due to a neuronal 

reorganisation in both cat 
10

 and humans 
11

. Novel connections may cause changes in 

the strength of reflex excitability. In addition, hypersensitivity caused by the 

denervation may occur 
10

. 

 

Exaggerated reflexes were thought to be due to a hyperactivity of fusimotoneurons 
12, 13

 

controlling the sensitivity of the muscle spindles. Although, only indirect approaches 

were applied, this could never convincingly be shown (cf. 
14-16

). In addition after a 

central lesion it is unlikely that recurrent inhibition of motoneurons via Renshaw cell 

activity is reduced (
17

; but see 
18

) or intraspinal nerve sprouting occurs 
18

 as possible 

mechanisms of enhanced muscle electromyographic (EMG) activity. 

However, in the lower limb there is evidence for a reduced pre-synaptic inhibition of Ia 

afferent fibres (which mediate short-latency reflexes) in paraplegic but not in 

hemiplegic subjects 
20, 21

. In the upper limb reduced Ia inhibition seems to be present on 

the hemiplegic side 
22

. No correlation exists between decreased presynaptic inhibition of 
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Ia afferents and the degree of muscle hypertonia as assessed by the clinical Ashworth’s 

scale
21

.  

In addition, deficient disynaptic reciprocal inhibition 
23

, increased excitability of 

reciprocal Ia inhibitory pathways 
24-26 

, changed post-activation depression 
27

 , and a 

disinhibition of group II pathway 
28-30

 might lead to hyperreflexia in spasticity of spinal 

and supraspinal origin. Probably other mechanisms are involved as well. 
21

.  

 

A severe central motor lesion is followed by a flaccid paresis with a loss of tendon tap 

reflexes. After 1-2 weeks, tendon reflexes and muscle tone reappear. At later stages (4-6 

weeks) clinical signs of spasticity (i.e. exaggerated reflexes and increased muscle tone) 

become established. During the course of a complete spinal cord injury, the H-reflex 

(electrically elicited short-latency reflex excluding muscle spindles) is already present 

during spinal shock when tendon reflexes cannot yet be elicited 
31

. The loss of reflexes 

is attributed to a reduced excitability of alpha- and gamma (innervating muscle spindles) 

-motoneurons due to the sudden loss of input from supraspinal centres. When spasticity 

has developed, the threshold of soleus stretch-reflex is decreased in spastic hemiparetic 

subjects 
32, 33

, possibly due to an increase in motoneurone excitability 
34

. However, 

repetitive clonic muscle contractions are assumed to be more likely associated with an 

impaired interaction of central and peripheral mechanisms, than with a recurrent stretch 

reflex activity
35

 .  

 

Flexor reflex 

The flexor reflex is a polysynaptic spinal reflex which is suggested to be connected with 

spinal locomotor centers 
36

. The dominant view is that flexor reflexes are exaggerated 

after a central nervous lesion and to be responsible for muscle spasms occurring after a 

severe spinal cord injury (cf. 
37

). Also a spontaneous firing of motoneurons during rest 

The Lancet Neurology - Volume 6, Issue 8, August 2007, Pages 725-733 - DOI: 10.1016/S1474-4422(07)70193-X  



06.06.2007 7 

is suggested to lead to the occurrence of muscle spasms 
38

, initially due to a receptor up-

regulation and later due to sprouting neurons 
39, 40

.  

In fact a windup of flexor reflexes occurs in chronic SCI subjects and might represent a 

marker for neuronal plateau potentials 
41

. Furthermore, it seems that the sites where 

flexor reflexes can be elicited become expanded in patients with a spinal or supraspinal 

lesion 
42, 43

. Otherwise a great variability of flexion reflex responses exists in SCI 

subjects 
44

. 

 

After an acute complete SCI, flexor reflex excitability and spastic muscle tone develop 

in parallel after spinal shock 
31

. However, after a few months, there is a divergent course 

in so far that the severity and occurrence of muscle spasms further increases, while 

flexor reflex amplitude decreases 
31

. In line with this, complete chronic SCI individuals 

have a low incidence of the early component of flexor reflex 
44, 45

 and flexion reflexes 

produce smaller leg joint torques compared to healthy subjects 
46

. Recent observations 

therefore suggest that the activity of flexor reflexes is little related the occurrence of 

muscle spasms in spasticity of spinal origin.  

 

Muscle tone 

Muscle hypertonia is clinically assessed by the Ashworth scale, and is defined as a 

velocity-dependent resistance to stretch (see Introduction). This is particularly true for 

the leg extensor 
47, 48

 and arm flexor muscles 
34,49 

, i.e. the anti-gravity muscles. In 

chronic stroke patients, spastic muscle hypertonia (clinically experienced as an 

increased resistance of a muscle to stretch) is associated with muscle EMG-activity, 

which largely exceeds that seen in healthy subjects 
50, 51

. Thus muscle hypertonia in the 

clinical testing condition reflects a combination of intrinsic and reflex mediated muscle 
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stiffness. Also muscles of the non-affected side of stroke patients show some increase in 

muscle tone compared to healthy controls 
52

. 

However, despite the “extra-activity”, the passive stiffness (e.g. muscle contracture) at 

the ankle joint is also increased and contributes to the clinically defined spastic muscle 

hypertonia after stroke 
53-55

. In studies that have used a more complete analysis looking 

at all of the contributing factors, it becomes evident that the abnormal stretch reflex 

activity is insufficient to explain increased muscle tone in subjects suffering from stroke 

or multiple sclerosis. 
51, 56-58

. Reflex mediated stiffness in the ankle plantar flexors 
58

 and 

elbow flexor muscles 
34, 50, 59

 in spastic stroke subjects is within the range of healthy 

controls and seems to be only slightly increased in SCI subjects 
60

.  

More recent studies indicate an increase of passive stiffness of a muscle to stretch in 

spastic stroke subjects due to changes in collagen tissue and tendons 
51, 54, 58

, an 

enhancement of intrinsic stiffness of muscle fibres 
61

 and a loss of sarcomers 
62

, leading 

to (sub-) clinical contractures. In addition, morphometric and histochemical 

investigations show alterations of mechanical muscle fibre properties 
63-65

 that might 

contribute to spastic muscle tone. Consequently, clinical muscle hypertonia in stroke 

subjects appears to be rather associated with subclinical muscle contracture than with 

reflex hyperexcitability 
57, 62, 66

. Alterations of biomechanical parameters of a muscle 

might also have an important effect on the stretch reflex behaviour (possibly via group 

III/IV muscle afferents) in stroke subjects 
67, 68

.  

 

In conclusion, exaggerated stretch or flexor reflexes elicited in the passive muscles, as 

in the clinical bedside examination, are not solely responsible for the increased 

resistance of a spastic muscle to stretch. Secondary changes of intrinsic and extrinsic 

muscle properties contribute to spastic muscle tone. This interpretation is based mainly 

on observations made in stroke patients. Corresponding results are, however, also 
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reported for central motor lesions of different origin (e.g. traumatic SCI and multiple 

sclerosis). 

 

Active muscle in non-functional conditions 

Active muscle function in normal and impaired motor control is frequently investigated 

in a laboratory setting, where subjects can exert a controlled level of voluntary 

contraction. This is believed to allow for a better insight into the neuronal mechanisms 

underlying muscle tone regulation compared to the passive condition.  

Voluntary elbow movements in stroke subjects are rather disturbed by paresis than by 

antagonistic muscle hypertonia, even in subjects with marked spasticity, i.e. increased 

muscle tone 
50, 69

. When background contractions are matched to normal levels in 

spastic subjects, little evidence exists for exaggerated reflex activity 
58, 61, 70

 (for 

exception see 
71

). However, during isotonic leg muscle contractions modulation and 

inhibition of Ib afferents (innervating the force sensitive Golgi tendon organs) is 

reduced 
72

 and some co-contraction of antagonistic arm muscles can occur 
73, 74

. 

Studies that apply joint displacements in voluntarily activated limb muscles show 

basically different results to those obtained in the passive muscle. Most of these studies 

are performed during isometric muscle contractions or isotonic movements of upper 
50, 

59
 and lower 

60, 75-77
 limbs with matched background EMG-activity of corresponding 

muscles of the spastic and non-affected side of hemiplegic stroke subjects. The studies 

show a uniform pattern of compensatory EMG-responses to the displacements. In the 

unaffected muscles, the short-latency reflex is followed by a long-latency reflex EMG-

response 
78, 79

 which never appears in a passive muscle condition (long-latency or 

polysynaptic reflexes are assumed to be mediated mainly by group II fibres on a spinal 

(e.g. during locomotion) and group I fibres on a supraspinal (e.g. hand movements) 

level. Compared to the short-latency reflexes they represent flexible, functionally 
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essential reflex mechanisms; for details about the possible mechanisms and pathways 

underlying the long-latency reflexes see 
80

). On the spastic-paretic side, this long-

latency component is reduced or absent
50, 59, 77

. Nevertheless, the automatic resistance to 

the joint displacement is of similar amplitude on the affected and unaffected side.  

During muscle contractions of healthy subjects, different inhibitory mechanisms on 

short-latency reflexes are removed 
9
. In contrast, in spasticity, presynaptic inhibition, 

post-activation depression, and reciprocal inhibition do not further decrease during 

contraction (figure 1). Therefore, short-latency stretch reflexes in spastic subjects are 

less different in size between the relaxed and active condition compared to healthy 

subjects
9,

 
50

. They are still prominent but show no task-dependent modulation on the 

spastic-paretic compared to the unaffected side of hemiparetic stroke subjects 
50

. This 

behaviour mainly concerns arm flexor 
50

 and leg extensor 
75

 muscles. In the ankle 

dorsiflexor 
77

 and arm extensor 
50

 muscles compensatory EMG responses are reduced or 

absent without a preceding short-latency reflex. 

 

In conclusion, in the voluntarily contracted (non-functional) muscle of healthy subjects, 

the reflex behaviour differs basically from that in the passive (clinical) condition. In 

contrast, in spastic subjects the excitability state remains roughly unchanged in the 

passive and voluntarily activated muscles. In a non-functional perturbation task the 

overall EMG- response is usually reduced on the spastic side despite exaggerated short-

latency stretch reflexes due to the loss of functionally important longer-latency reflex 

components.  

 

 

Functional movement – walking 
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After a central motor lesion subjects suffer from a movement disorder. For an adequate 

treatment, it is therefore of crucial importance to address the mechanisms underlying the 

impaired function. During the last years a number of studies indicated, that the clinical 

signs of spasticity can hardly be related to the movement disorder. Some of the 

mechanisms underlying the impaired movement, such as altered muscle mechanics, will 

be established and discussed in this section. 

 

 

Pattern of leg muscle activation 

During a functional movement such as locomotion, a typical EMG-pattern of leg muscle 

activation is recorded in subjects with spastic hemi- or paraparesis. Spastic gait is 

associated with a reduced leg muscle activity, compared to the unaffected side of 

hemiparetic patients or to healthy subjects 
75, 76, 79

. The reduction depends on the 

severity of paresis. Furthermore, after stroke, gait recovery during rehabilitation is not 

associated with changes in the walking pattern 
81

. The timing of the pattern, i.e. the 

reciprocal activation of antagonistic leg muscles remains basically preserved in 

spasticity of spinal and supraspinal origin 
79, 82, 83

. Only rarely does some co-activation 

of antagonistic leg muscles occur during the stance phase 
84, 85, 86

. A premature leg 

extensor activation during the stance phase of gait, as described elsewhere 
85

, depends 

on the plantar-flexed position of the spastic-paretic foot. In this context one should note 

that premature leg extensor activation in the early stance phase, or even before impact 

also occurs when healthy subjects walk by voluntarily tip-toeing, i.e. the extensor 

activation depends on the foot position before impact. Furthermore, a co-activation of 

antagonistic leg muscles can be recorded in healthy subjects when they are walking with 

slightly flexed knees (unpublished observations of the author VD).  

The Lancet Neurology - Volume 6, Issue 8, August 2007, Pages 725-733 - DOI: 10.1016/S1474-4422(07)70193-X  



06.06.2007 12 

Occasionally, in the spastic subject, the impact of the fore-foot is associated with the 

appearance of stretch reflex potentials 
84

. The leg extensor EMG amplitude modulation, 

which normally is seen in healthy subjects during the stance phase, is reduced or 

lacking
87

 (Figure 2). In line with this, the contribution of afferent feedback to the 

ongoing locomotor soleus activity is depressed in spastic subjects 
88

.  

 

Overall, evidence gained from studies on functional movements show that our clinical 

spasticity measures do not relate to problems in walking after stroke 
89

. Similarly, 

equilibrium control during upright standing is little affected by monosynaptic reflex 

hyperexcitability, but more by reduced long-latency reflex components 
90

.  

 

Reflex behaviour 

In healthy subjects, group Ia afferent input to the spinal cord becomes suppressed 

during the stance phase of gait (for reviews see 
78, 87

). Due to a reduced Ia suppression in 

spasticity, short-latency stretch reflexes often appear in the leg extensor muscles during 

the transition from swing to stance phase of gait, which is rarely the case in healthy 

subjects or the unaffected side of patients with spastic hemiparesis. Furthermore, the 

inability to suppress reflex excitability during the swing phase of gait might contribute 

to impaired walking 
87, 91-96

  

During walking in healthy subjects, H- and short-latency stretch reflexes (both mediated 

by group Ia afferents) in the leg muscles become modulated in a quite specific way (cf. 

91, 92
). In subjects with spastic paresis this physiological reflex modulation is impaired 

92-

96
. Also, the modulation of cutaneous reflexes is reduced during gait 

94
. In line with this, 

the fast regulation of motoneurone discharge, which characterizes functional muscle 

activation, is absent in spasticity 
63, 97

. The quadriceps tendon jerk reflex depression, 

which is present in healthy subjects, is removed in spinal lesion subjects and is 
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associated with a loss of modulation during the step cycle. These changes are less 

pronounced in subjects with cerebral lesions 
92

. Besides this, no other qualitative 

difference in reflex behaviour is known between spasticity of cerebral and spinal 

origin
92

, although direct comparisons were only rarely performed.  

 

During perturbations of gait (e.g. short acceleration impulses of the treadmill during the 

stance phase of stepping) in the unaffected leg, short-latency stretch reflex components 

are followed by large compensatory long-latency (or polysynaptic) EMG reflexes in the 

leg extensor 
80, 87, 98

 and dorsiflexor muscles 
99

. In contrast, in the spastic leg, short-

latency reflexes appear isolated without a significant long-latency EMG component 
75, 

100
. Following stance displacements associated with a stretch of the leg flexor muscles, 

the amplitude of the compensatory tibialis anterior EMG response is smaller on the 

spastic side compared to the unaffected one without a preceding short-latency reflex 

potential 
99, 101

. Thus, a similar reflex behaviour is seen during displacements applied to 

activated limb muscles during non-functional and functional conditions.  

These findings are interpreted as an impaired utilization of afferent input by spinal 

neuronal circuits after a central lesion. The consequence is a reduced adaptation of 

muscle activity to the actual ground conditions 
88

. Together with the reduced capacity to 

modulate reflex activity over the normal range, this might contribute to the spastic 

movement disorder 
70, 87

. 

 

Tension development 

Muscle tone, as defined clinically (see Introduction), cannot be examined during 

movement. However, tension development at the Achilles tendon, resulting from a 

combination of muscle stiffness and EMG-activity, can be recorded. A basically 

different tension development in the affected and unaffected leg occurs in stroke 
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subjects with spastic hemiparesis 
75

. On the unaffected side, changes in tension at the 

Achilles tendon parallel the amplitude of triceps surae EMG activity. In contrast, on the 

spastic side, the tension development is associated with a stretching of the triceps surae 

during the stance phase of gait. During this period, the leg extensor muscles are 

tonically activated with low EMG amplitude 
75

. This is interpreted as a tension 

development on a simpler level of organisation on the spastic side due to changes in 

mechanical properties of the leg extensor muscles. The potential mechanisms 

underlying these changes are outlined above. Thus, secondary to a cerebral or spinal 

lesion a major alteration of the normal muscle joint anatomical relationship takes place 

62, 102, 103
. This allows for support of the body during stepping movements.  

 

In conclusion, recent studies on spastic movement disorder provide evidence that the 

central pattern of leg muscle activation is largely preserved after a central lesion and the 

clinically dominant hyperreflexia is little involved in spastic movement disorder. 

Impaired function and attenuation of long-latency (polysynaptic) reflexes hamper 

walking performance. Secondary to a central lesion, changes in muscle intrinsic, 

ligament and tendon properties occur. No qualitative difference exists between 

spasticity of cerebral and spinal origin. The obvious consequence is the regulation of 

muscle tone on a simpler level. This behaviour of the spastic muscle allows for the 

support of the body during walking. Therefore such changes should not be considered 

as pathological, but rather as adaptive to a primary disorder. They may even be viewed 

as optimal for a given state of the system of movement production 
104

. The knowledge 

about the nature of these alterations in muscle mechanics is still rudimentary. 

 

Cerebral palsy 
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Children with a perinatal lesion of the central motor system share some characteristics 

of spasticity with that observed in adults. However, due to the early onset of the 

damage, impaired motor system development influences the mechanisms contributing 

to spasticity. 

Although neurophysiological studies indicate an inhomogeneous condition of muscle 

tone in children with CP 
105

, typical features exist during walking. The leg muscle 

activity underlying walking of children with congenital cerebral palsy (CP) has 

characteristic signs of impaired maturation of the normal gait pattern,
, 

i.e. it closely 

resembles that of stepping in newborn infants 
106, 107.

. The EMG pattern recorded in 

young adults with CP consists of a co-activation of antagonistic leg muscles with a 

reduced and tonic mode of EMG-activity and the appearance of isolated EMG potentials 

mainly in the leg extensor muscles after ground contact 
108, 109

. Also a short-latency 

reflex irradiation, usually observed in healthy infants under 2 years of age 
110-112

 is 

present in children with CP. This suggests that the early infant stepping pattern persists 

in CP children 
113

. 

Only when the cerebral lesion is acquired at a later stage and the reciprocal mode of leg-

muscle activity is already established (i.e. at around 4 years), reciprocal activation of 

antagonistic leg muscles remains preserved during spastic gait, similar to what is 

observed in stroke patients 
75

. As in adult spastic subjects, there exists no correlation 

between the clinical signs of exaggerated stretch reflexes and spastic muscle tone 
114

. 

Studies indicate abnormalities of muscle visco-elastic properties with intramuscular 

contractures at an early stage 
105, 108

, similar as in adult spastic patients. These 

alterations are suggested to result in a gait equinus, as they can hardly be explained in 

terms of a central paralytic foot drop 
115

. 

In conclusion, CP children share some clinical signs and mechanisms underlying 

movement disorder with spastic adults. Apart from this, an impaired corticospinal input 
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during development, associated with a deficient modulation of spinal interneuronal 

circuits, might lead to the abnormal reciprocal inhibition in CP children during walking. 

Such a mechanism may contribute to the co-activation pattern.  

 

 

 

Therapeutical consequences 

Any treatment of spasticity should focus on the movement disorder which impairs the 

patient. On basis of actual studies, as established above, in most cases the physical signs 

obtained during the clinical examination are an epiphenomenon rather than the cause of 

the functional condition which impairs the patient. Recent studies have shown that 

during functional movements essential reflex mechanisms are involved which are not 

assessed by clinical testing (Figure 3). Nevertheless, site, origin and severity of a central 

motor lesion have an influence on the clinical appearance of spasticity and have to be 

taken into account for the appropriate treatment of an individual subject. 

The dominant view of treatment of spasticity is directed towards a reduction of stretch 

reflex activity. As established in this review, this treatment approach is primarily based 

on studies on muscle tone and reflex activity under passive conditions (although the 

treatment with Botulinum toxin is frequently programmed on the basis of EMG-activity 

during active movements).  

Actual investigations on functional leg and arm movements show no causal relationship 

between exaggerated reflexes and movement disorder following a spinal or supraspinal 

lesion. Impaired walking is thought to be mainly due to a disabling paresis and an 

impaired utilization of afferent input by spinal neuronal circuits. Consequently, anti-

spastic medications that are directed to reduce clinical signs of spasticity, such as 

exaggerated reflexes and muscle tone, do not improve the movement disorder 
116-120

. It 
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even may increase weakness, e.g. 
118, 121, 122

, which might interfere with the ability to 

perform functional movements such as walking. In contrast, cannabinoids improve 

mobility in patients with multiple sclerosis but have no effect on spastic muscle tone 
123

. 

Consequently, it is also of no surprise that in children with spastic diplegia, selective 

dorsal rhizotomy (SDR; reduces afferent input to the spinal cord) combined with 

physiotherapy results in a similar improvement in mobility as is observed in children 

without SDR 
124, 125

. However, some alterations in gait mechanics were reported after 

SDR 
126

. Similarly, the application of Botulinum toxin is assumed to result in a rather 

cosmetic effect on spastic signs often without functional improvement (cf. 
121, 127

). An 

influence on intrafusal fibre function of this toxin was discussed 
128, 129

. Nevertheless, 

there are also reports indicating, that intrathecal baclofen can reduce hyperactive 

reflexes without producing significant weakness 
130-132

. 

 

In conclusion, therapeutic interventions in patients with spastic paresis of either spinal 

or cerebral origin should be focused on the training, re-learning and activation of 

residual motor function
133,134

, and the prevention of secondary complications such as 

muscle contractures. With regard to cerebral palsy, there have been a few controlled 

studies documenting the positive effect of a functional training programme to date 
125, 

136
.  

Anti-spastic drug therapy is thought to be predominantly of benefit for immobilised 

patients by reducing muscle tone and relieving muscle spasms 
137

, which may in turn 

improve nursing care for these patients.  

 

Conclusions  

This review describes the differential roles of background and reflex activity as well as 

muscle fibre function in passive, active and functional movement conditions after a 
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central motor lesion. According to the actual research, exaggerated reflexes play a 

minor role and secondary alterations of mechanical muscle fibre properties a major role 

in their contribution to spastic movement disorder as it might be suggested on the basis 

of the clinical examination. In functional movements, such as walking, changes in 

muscle fibre properties leading to spastic muscle tone are required to compensate for the 

loss of neuronal drive. Further studies are required (i) to understand the regulation and 

importance of spinal and descending control mechanisms during movement in healthy 

and spastic subjects and, (ii) to detail the intra- and extra-cellular modifications of 

skeletal muscle that occur secondary to a spinal or supraspinal lesion. This might help in 

the development of novel therapeutic interventions to improve anti-spastic treatments in 

patients with overshooting spasticity.  
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Search strategy and selection criteria 

References for this review were identified by searches of MEDLINE between 1990 and 

April 2007, and references from relevant articles with the search terms “spasticity”, 

“spastic movement disorder”, “exaggerated reflexes”, “muscle hypertonia”, “central 

motor lesion”. Articles were also identified by thorough searches of the extensive files 

of the authors. More recent publications were preferred. Only papers published in 

English were reviewed. The final list was generated on the basis of originality and 

relevance to the topics covered in the review. 
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Fig. 1. Short-latency reflex behavior in the passive and active muscle of healthy and 

spastic subjects 

In healthy subjects, the stretch reflex activity is low at rest (shown in A). This is 

explained by low excitability of spinal motoneurons, low muscle spindle sensitivity, low 

discharge rate of Ia afferents and pronounced presynaptic inhibition, Ib and Ia reciprocal 

inhibition. During voluntary contraction of the muscle (shown in C) motoneuron 

excitability, spindle sensitivity and Ia afferent discharge increases, whereas presynaptic 

inhibition, Ib inhibition and Ia inhibition decreases. Stretch reflex activity is 

consequently high. In spastic subjects, presynaptic Ib and Ia inhibitions are already 

decreased at rest (shown in B) and stretch reflex activity is consequently high already at 

rest. During voluntary contraction (shown in D) there is only limited change in these 

parameters and the stretch reflex activity is consequently not much different from rest. 

The arrows designate, whether the mechanism is decreased or increased during 

contraction compared to rest. The crosses designate that the mechanism is affected in 

spasticity (modified from 
9
). 
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Fig. 2  Schematic drawing of reflex behaviour during human gait 

A  Physiological condition. Long-latency reflex activity becomes facilitated by 

supraspinal drive. It becomes significantly involved in leg muscle activation to adapt the 

locomotor pattern on the actual ground conditions. Ia afferent mediated inputs are 

inhibited. 

B Proposed situation after spinal/supraspinal lesion. The functionally essential 

activity of long-latency reflexes is impaired due to the loss of supraspinal input 

(modified from 
87

).  
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Fig. 3   Schematic drawing of the mechanisms involved in spastic movement disorder 

A central motor lesion leads to changes in the excitability of spinal reflexes and a loss 

of supraspinal drive. As a consequence, changes in muscle function occur and lead to 

altered mechanical muscle properties. The combination of all sequel of the primary 

lesion leads to the spastic movement disorder (modified from Dietz 
87

).  
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