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A local boundary condition is formulated, representing radiation of elastic waves from an
arbitrary point source. The boundary condition takes the form of a tensor relation between
the stress at a point on an arbitrarily oriented section and the velocity and displacement
vectors at the point. The tensor relation generalizes the traditional normal incidence
impedance condition by accounting for the angle between wave propagation and the surface
normal and by including a generalized sti!ness term due to spreading of the waves.
The e!ectiveness of the local tensor radiation condition is demonstrated by detailed "nite
element time and frequency analysis of a concentrated force in in"nite three-dimensional
space, and by a time analysis of a pulse load in a two-dimensional underground gallery.

( 2001 Academic Press

1. INTRODUCTION

Many problems of elastic wave propagation involve in"nite domains, and the solution of
such problems by "nite element or "nite di!erence methods must therefore account for the
existence of an in"nite medium beyond the "nite part included in the mesh and bounded by
a radiation boundary, introduced in the model; see Figure 1. Di!erent methods exist for
representing the in#uence of the in"nite medium beyond the radiation boundary such as
in"nite elements, coupling to a boundary element representation of the in"nite domain, and
the use of radiation boundary conditions.

The elastic wave propagation problem is governed by the equations of motion

$ ) r!o uK#f"0, (1)

where r is the stress tensor, u the displacement vector, and o the mass density. $ is the
gradient or divergence operator and an overdot indicates time di!erentiation. In
a variational setting, the form of the boundary conditions follows from multiplication of the
"eld equations by a virtual displacement vector u8 , integration over the material volume, and
use of the divergence theorem. The result is

P
S

u8 ) (n; ) r) dS!P
V

(e8 : r#o u8 ) uK!u8 ) f ) d<"0. (2)
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Figure 1. Radiation or scattering of elastic waves.

The boundary conditions are identi"ed from the surface integral in the "rst term. The
traditional boundary conditions are the prescribed displacement vector, whereby u8 "0, or
a prescribed boundary stress vector s"n; )r. In both these cases, the variational surface
integral can be given a value. Within a variational formulation, a radiation boundary
condition must similarly enable the evaluation of the contribution to the boundary integral
from the radiation boundary. This amounts to the establishment of an expression for the
boundary stress vector s in terms of the displacement and velocity vector "elds u and u5 ,
representing radiation from the boundary.

Strictly speaking, the radiation condition involves the full time history of the
displacement "eld up to the current time, and while this can in principle be included via
a boundary element representation of the exterior problem, that would severely complicate
the solution. Therefore, several alternatives have been used. The simplest of these is the use
of isolated dampers, simulating an impedance boundary condition [1, 2]. A recent survey of
this type of boundary condition and some generalizations has been given by Kellezi [3],
who also suggested the use of a spring term to represent spreading of the waves. Improved
solutions can be obtained by introducing non-local boundary conditions, that account for
the variation of the wave "eld. A procedure of this type in which the exterior problem is
represented by a self-similar sequence of "nite elements has been devised by Wolf and Song
[4], and further developed by Paronesso and Wolf [5], who obtained a rational function
representation for the delayed e!ects and recast the problem into an extended system of
equations with the memory represented indirectly via internal variables associated with the
exterior problem.

It is a characteristic of these references, that the radiation boundary conditions are
constructed after the discretization of the "eld equations. A survey of local boundary
conditions for various wave propagation problems including acoustic and elastic waves has
been given by Givoli [6]. In the present paper, the basis of local radiation boundary
conditions is reconsidered, and a set of tensor relations are derived that account consistently
for inclined incidence and "nite distance of the radiating source from the boundary. In cases
where this information is available, the local tensor boundary conditions constitute a simple
means of representing the in"nite medium beyond the radiation boundary, generalizing the
scalar impedance boundary conditions of Lysmer and Kuhlemeyer [1] to non-normal
incidence and diverging waves.

Improved boundary conditions can be developed by elimination of the explicit
dependence on the angle of incidence [6] and recent work has led to a formulation of higher
order radiation boundary conditions for the acoustic problem in accordance with
variational principles, and therefore compatible with conventional "nite element
formulation [7]. An extension of this formulation to elastic waves is in progress, but the
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Figure 2. Plane elastic wave "eld propagating in direction r; .

elastic wave problem is complicated by the tensor character of the equations and the
existence of surface waves. In principle, ideal radiating boundary conditions can be
formulated if an explicit representation of the exterior problem is available, see e.g.,
reference [8], but in elastodynamics surface and interface waves prevent simple
representations except for the ideal scattering problem in an in"nite homogeneous medium.

2. IMPEDANCE TENSOR FOR PLANE WAVES

Figure 2(a) illustrates a plane elastic wave "eld propagating in the direction of the unit
vector r; . The corresponding displacement "eld can be written as the sum of a primary
compression wave "eld u

P
and a secondary shear wave "eld u

S
,

u"u
P
#u

S
. (3)

The primary wave "eld consists of displacements in the direction r; , propagating with wave
speed c

P
,

u
P
"r; u

P
(t!r/c

P
). (4)

The secondary wave consists of transverse motion, here assumed to be in the transverse
direction de"ned by the unit vector t; , propagating with wave speed c

S
,

u
S
"t; u

S
(t!r/c

S
). (5)

The particular form (4) and (5) of the primary and secondary wave "elds leads to the plane
wave identities,

A
L
Lt
#c

P

L
LrB u

P
"0 (6)

and

A
L
Lt
#c

S

L
LrB u

S
"0. (7)

These identities contain the information to be expressed in the so-called radiation
condition.

The radiation condition for plane elastic waves is now expressed as a tensor relation
between the stress vector on an arbitrarily oriented section with outward normal vector n; ,
Figure 2(b), and the velocity vector u5 . The stress contributions from the compression and
shear waves are derived separately and then combined to yield the radiation condition as
a tensor relation between the total stress vector and the total velocity.
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2.1. PLANE P-WAVES

The strain "eld corresponding to the plane P-wave (4) with axial displacement u
P
"r; ) u

P
consists of the uniaxial strain e

r
"Lu

P
/Lr. The strain tensor of the P-wave "eld then is

e
P
"r; r;

Lu
P

Lr
"!r; r;

1

c
P

uR
P
, (8)

where the last result follows from P-wave identity (6). Here and in the following, a group of
two vectors like r; r; , without an operator like the dot denoting scalar product, designates the
vector dyad; see, e.g., Appendix A.

The uniaxial strain "eld can be decomposed into two parts, representing isotropic
compression and deviatoric strain, respectively,

e
P
"![1

3
1#(r; r;!1

3
1)]

1

c
P

uR
P
, (9)

where 1 denotes the second order unit tensor.
For an isotropic elastic material, the stresses follow from the strains by multiplying the

isotropic strain components by 3k, and the deviatoric strains by 2k, where k is the bulk
modulus and k is the shear modulus. The bulk modulus is given in terms of the LameH
parameters j and k as

k"j#2
3

k. (10)

The stress "eld then follows directly from equations (9) and (10) as

r
P
"![k1#2k(r; r;!1

3
1)]

1

c
P

uR
P
"![j1#2k r; r; ]

1

c
P

uR
P
. (11)

It is seen that the isotropic part of the stress "eld contains transverse components,
proportional to j.

The stress vector on a section with unit normal vector n; follows from stress tensor (11) as

s
P
"n; ) r"![jn;#2k (n; ) r; ) r; ]

1

c
P

uR
P
. (12)

When the magnitude of the P-wave velocity is introduced via uR
P
"r; ) u5 , stress vector

relation (12) takes the form

s
P
"!Z

P
) u5 , (13)

where the impedance tensor Z
P

for the P-wave is

Z
P
"

1

c
P

[j n; r;#2k (n; ) r; ) r; r; ]. (14)

The impedance tensor Z
P

gives the stress vector s
P

associated with a plane compression
wave propagating in the direction r; in terms of the total velocity vector u5 . Its role is similar
to the scalar impedance of acoustic waves in a #uid; see, e.g., Pierce [11]. However, the
vectorial nature of the elastic wave propagation problem leads to tensor character of the
impedance, and to explicit dependence on the normal n; of the section on which the stress
vector acts.
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2.2. PLANE S-WAVES

The plane shear wave "eld (5) is associated with transverse displacements of magnitude
u
S
. The corresponding strain tensor is

e
S
"1

2
(t; r;#r; t; )

Lu
S

Lr
"!1

2
(t; r;#r; t; )

1

c
S

u5
S
, (15)

where the last result follows from the S-wave identity (7).
The strain "eld is completely deviatoric, and thus the corresponding stress tensor follows

from multiplication by 2k:

r
S
"!k(t; r;#r; t; )

1

c
S

uR
S
. (16)

The stress vector on a section with unit normal n; is

s
S
"n; )r

S
"!k[(n; ) t; ) r;#(n; ) r; ) t; ]

1

c
S

uR
S
. (17)

When using the velocity vector of the shear wave "eld given as u5
S
"t; uR

S
, the stress vector

(17) can be expressed in terms of the velocity vector u5
S

in the form

s
S
"!

k
c
S

[r; n;#(n; ) r; ) 1] ) u5
S
. (18)

Note, that in this expression, the speci"c transverse direction de"ned by the unit vector
t; does not appear explicitly, and thus the same relation applies to shear waves of any
polarization relative to the normal vector n; .

The "nal step in the derivation of the shear wave impedance formula is to extract the
shear wave velocity vector u5

S
from a general plane wave "eld containing both P- and

S-waves via the transverse projection u5
S
"(1!r; r; ) ) u5 . When this transverse projection is

introduced into equation (18), the "nal relation is

s
S
"!Z

S
) u5 , (19)

where the impedance tensor Z
S

for the S-wave is

Z
S
"

k
c
S

[r; n;#(n; ) r; ) (1!2r; r; )]. (20)

The impedance tensor Z
S

extracts the stress vector associated with any plane shear wave
"eld propagating in the direction r; and is not limited to plane polarization.

2.3. GENERAL PLANE WAVE FIELD

The total stress vector in a plane wave "eld containing both P- and S-waves is found by
the addition of contributions (13) and (19):

s"!Z ) u5 . (21)
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Figure 3. Identi"cation of the transverse unit vector n8 .

The impedance tensor of a plane wave "eld propagating in the direction r; is given by the
sum of equations (14) and (20),

Z"Z
P
#Z

S
"

2k
c
P

(n; ) r; ) r; r;#
k
c
S

(n; ) r; ) (1!2r; r; )#
j
c
P

n; r;#
k
c
S

r; n; . (22)

Symmetry of the impedance tensor is only obtained for normal incidence of the waves on
the section considered, or for a special material parameter combination. The component
form of the impedance tensor is given in Appendix A.

In the special case of normal incidence, n;"r; , the impedance tensor simpli"es
considerably:

Z"

j#2k
c
P

r; r;#
k
c
S

(1!r; r; ). (23)

The wave speeds are given by, e.g., Achenbach [9], as

c2
P
"

j#2k
o

, c2
S
"

k
o

(24)

and impedance tensor (23) for normal incidence can then be written as

Z"o c
P

r; r;#o c
S
(1!r; r; ). (25)

The "rst term is identi"ed as a projection on the direction of propagation multiplied by the
scalar impedance oc

P
of compression waves, and the second term is a projection on

a transverse plane multiplied by the scalar impedance oc
S

of shear waves.
In the case of normal incidence, the impedance tensor is symmetric, while in the general

case of oblique incidence it is not, except for a particular set of material parameters. The
nature of the non-symmetry can be illustrated by rearranging general formula (22) in the
following way:

Z"

j#2k
c
P

(n; ) r; ) r; r;#
k
c
S

(n; ) r; ) (1!r; r; )

#

j
c
P

[n;!(n; ) r; ) r; ] r;#
k
c
S

r; [n;!(n; ) r; ) r; ]. (26)

The terms in the "rst line are simply the normal incidence impedance multiplied by (n; ) r; ).
The vector in the bracket in the second line is the projection of the normal vector n; on the
plane transverse to r; as illustrated in Figure 3. The magnitude of this vector is sin t, where
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Figure 4. Stress contributions in plane P- and S-wave for oblique incidence.

t denotes the angle between n; and r; . When n8 denotes the corresponding transverse unit
vector,

sin t n8 "[n;!(n; ) r; ) r; ] (27)

and general impedance (26) can be written in the form

Z"cos t C
j#2k

c
P

r; r;#
k
c
S

(1!r; r; )D#sin tC
j
c
P

n8 r;#
k
c
S

r; n8 D . (28)

The four terms in the impedance tensor for oblique incidence are the stress vectors acting on
the triangle with side lengths cos t and sin t as illustrated in Figure 4. The "rst two terms in
equation (28) are the stress component on the wave front in P- and S-waves, respectively,
while the last two terms are the stresses on a section along the direction of propagation,
needed to provide the constraints inherent in P- and S-waves respectively. Thus, impedance
approximations for oblique incidence that neglect the constraint terms are inconsistent with
the wave properties.

The general impedance tensor (26) is only symmetric, if the material parameters satisfy
the condition

j/c
P
"k/c

S
. (29)

Substitution of the wave speeds from equation (24) leads to the relations

j"2k, c
P
"2c

S
, (30)

where one relation follows from the other. This condition corresponds to a Poisson ratio of
l"1

3
. According to Achenbach [9], the wave speed ratio is c

P
/c

S
"2)00, 2)03, 1)85 for

copper, aluminum and steel, respectively, and thus the impedance tensor is nearly
symmetric for these materials.

3. SPHERICAL RADIATION FROM A POINT SOURCE

Plane waves translate along the direction of propagation without change in magnitude,
while waves radiating from a source of limited extent have curved wave fronts and decrease
in magnitude with increased distance from the source. These features in#uence the radiation
boundary condition and may impose restrictions on the distance of the radiating boundary
from the source.
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Figure 5. Time-dependent force f (t) in spherical (r, h, u) system.

An idealized case is the radiation of spherical waves from a point source. Due to the
vector character, shear waves cannot have equal magnitude on a spherical wave front. In
order to be speci"c, we therefore start the discussion from the wave "eld generated by point
force f (t) acting at the center of a spherical co-ordinate (r, h, u) system with orthonormal
coordinate vectors r; , h) , u( , shown in Figure 5.

The displacement "eld generated by a time-dependent force f (t) is given e.g., by Aki and
Richards [10, chapter 4], in the following form:

u"
1

4no
1

r3
(3r; r;!1) ) P

r@cS

r@cP

f (t!q) qdq

#

1

4noc2
P

1

r
r; r; ) f (t!r/c

P
)#

1

4noc2
S

1

r
(1!r; r; ) ) f (t!r/c

S
). (31)

In the limit of large distance r, the integral term becomes small relative to the last two terms,
given explicitly in terms of the force at a retarded time. These terms represent the far"eld
P-wave

u
P
"

1

4noc2
P

1

r
r; r; ) f (t!r/c

P
) (32)

and the far"eld S-wave

u
S
"

1

4noc2
S

1

r
(hK hK #uL uL ) ) f (t!r/c

S
), (33)

where r; r;#hK hK #uL uL "1 has been used. The factor r~1 describes the attenuation of the wave
"elds with distance from the source, due to conservation of energy.

In the case of spherical waves, the displacement "elds u
P

and u
S

satisfy the identities

A
L
Lt
#

c
P
r

L
Lr

rB u
P
"0 (34)
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and

A
L
Lt
#

c
S
r

L
Lr

rB u
S
"0, (35)

where the only di!erence from the plane wave identities is the inclusion of the co-ordinate
r inside the spatial di!erential operator.

3.1. SPHERICAL P-WAVES

The P-wave far "eld is a radial displacement of magnitude u
P
"r; ) u. This displacement

gives rise to the axial strain components

e
r
"

Lu
P

Lr
, eh"eu"

u
P
r

. (36)

In addition, gradients along the wave front may produce shear strains, but in the present
formulation variation along the wave front will be considered to be negligible,
corresponding to a uniform spherical compression wave "eld or the situation at points of
maximum intensity, e.g., in the directions $f in equation (32). The strain tensor can then
be expressed as

e
P
"r; r; e

r
#hK hK eh#uL uL eu"r; r; A

1

r

L (ru
P
)

Lr
!

2u
P

r B#1
u
P
r

. (37)

The spatial derivative can now be eliminated by use of the spherical P-wave identity (34),
whereby

e
P
"! r; r; A

1

c
P

Lu
P

Lt
#

2u
P

r B#1
u
P
r

. (38)

The spherical P-wave "eld strain tensor consists of a radial part, of magnitude as de"ned by
the parentheses, plus an isotropic part of magnitude u

P
/r.

The stress vector s on a section with normal n; can be obtained by a simple extension of
the plane wave result (13), in which u5 is replaced by u5 #2c

P
r~1u and the contribution from

the isotropic strain state is added:

s
P
"!Z

P
)Au5 #

2c
P

r
uB#

3k

r
n; r; ) u. (39)

Upon substitution of the bulk modulus from equation (10) and the plane P-wave impedance
tensor from equation (14) the following relation is obtained:

s
P
"!Z

P
) u5 !R

P
) u (40)

with the plane P-wave impedance tensor Z
P

given by equation (14) and the spherical
P-wave radiation sti!ness tensor

R
P
"

2c
P

r
Z

P
!

3k

r
n; r;"

1

r
[4k(n; ) r; ) r; r;!(j#2k)n; r; ]. (41)
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It is observed that the spherical P-wave radiation sti!ness tensor R
P

is not positive de"nite
for all combinations of the material parameters j and k. A more detailed discussion of the
radiation sti!ness tensor for the full spherical wave "eld is given.

3.2. SPHERICAL S-WAVES

Consider shear wave "eld (32) and introduce the spherical co-ordinates such that the
force points towards the pole, whereby h< ) f"!sin h and u( ) f"0. The displacement "eld is
then of the form u

S
"h< u

S
, where u

S
is proportional to sin h. This displacement gives rise to

the shear strain components

2e
rh"2ehr"

Lu
S

Lr
!

2u
S

r
, (42)

where the last term represents the e!ect of curvature of the wave front. The gradient along
the spherical wave front gives rise to axial strain components, not associated with shear
waves. These terms are neglected on the basis of the assumption that the variation along the
wave front is small compared to the variation in the direction of propagation. Thus, the
strain tensor associated with the spherical shear wave is

e
S
"1

2
(h< r;#r; h< ) A

1

r

L (ru
S
)

Lr
!

2u
S

r B"!1
2
(h) r;#r; h) ) A

1

c
S

Lu
S

Lt
#

2u
S

r B , (43)

where the last equality follows from elimination of the spatial derivative by the spherical
S-wave identity (35).

It is seen that a factor 2 appears in the last term, containing equal contributions from
geometric wave attenuation r~1 and curvature of the wave front. In acoustics, there is
a general result that the area of a ray tube is proportional to the sum of the wave fronts two
principal radii of curvature [11, p. 399], and thus the factor of two on the geometric
attenuation term in equation (43) and the similar term in equation (38) for spherical waves
appears to be a special instance of a more general relation.

The stress vector on a section with normal n; for a strain of form (43) without the last term
has already been determined in the plane wave problem in section 2.2. The corresponding
spherical S-wave solution follows immediately by including the full second factor from
equation (42).

s
S
"!Z

S
)Au5 #

2c
S

r
uB . (44)

This is a relation of the form

s
S
"!Z

S
) u5 !R

S
) u (45)

with the plane S-wave impedance tensor Z
S

given by equation (20) and the spherical S-wave
radiation sti!ness tensor

R
S
"

2c
S

r
Z

S
"

2k
r

[r; n;#(n; ) r; ) (1!2r; r; )]. (46)

It is noted that the spherical radiation sti!ness tensor for the shear wave is proportional to
the shear wave impedance tensor, while the spherical radiation sti!ness for compression
waves contains an extra isotropic term.
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3.3. THE SPHERICAL FARFIELD RADIATION CONDITION

Under the condition that gradients along the wave front can be neglected, the stress
vector generated by the compression and shear waves from a point source can be expressed
in terms of the local total velocity and displacement vectors in the form

s"!Z ) u5 !R ) u, (47)

where Z is the impedance tensor and R is an apparent sti!ness tensor, generated by the
spreading of the waves. The impedance tensor Z is identical to equation (22) corresponding
to plane waves. The sti!ness tensor R is given as the sum of the compression and shear wave
contributions (41) and (46):

R"R
P
#R

S
"!

j#2k
r

n; r;#
2k
r

[r; n;#(n; ) r; ) 1]. (48)

The sti!ness decreases with distance from the source as r~1 for a spherical source. The
component form of the sti!ness tensor is given in Appendix A.

The non-symmetry of the impedance tensor was already discussed in section 2.3. The
discussion was facilitated by expressing the tensor in terms of the radial vector r; and the
transverse unit vector n8 . A representation of sti!ness tensor (48) in a form similar to
equation (28) is

R"

cos t
r

[(2k!j) r; r;#2k(1!r; r; )]!
sin t

r
[(2k#j) n8 r;!2kr; n8 ]. (49)

It is seen that for oblique incidence, the sti!ness tensor is non-symmetric for any values of
the elastic parameters. The four terms may be interpreted as for the impedance tensor with
reference to Figure 4. It is interesting to observe that the &&axial sti!ness'' is cos t (2k!j)/r,
and therefore vanishes in the special case of j"2k, for which the general impedance tensor
is symmetric. This corresponds to c

P
"2c

S
, and thus the &&axial sti!ness'' is seen to be

positive for c
P
(2c

S
and negative for c

P
'2c

S
.

4. FREQUENCY RELATIONS AND THE NEAR FIELD

The tensor boundary condition (47) is formulated in the time domain as a relation
between the stress vector, the velocity vector and the displacement vector. However, in
many problems it is of interest to analyze the response to a harmonic load. It is therefore of
interest brie#y to discuss the harmonic solution corresponding to the time-convolution
formulation (31) for a concentrated force in an in"nite medium. In a numerical solution,
based on the approximate local radiation condition (47), the harmonic response will include
the accumulated e!ect of repeated re#ections from the "ctitious boundary, caused by the
approximate nature of local relation (47). Thus, the harmonic response is expected to
constitute a severe test on the robustness of the local tensor boundary condition.

4.1. HARMONIC TIME VARIATION

Consider a point force f (t) with harmonic time variation with angular frequency u and
the displacement response u (t) of an in"nite homogeneous elastic body. The harmonic time
variation will be represented via the complex notation

f (t)"f1 e~*ut, u (t)"u6 e~*ut. (50)
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The solution is expressed in terms of the wave numbers

k
P
"u/c

P
, k

S
"u/c

S
. (51)

It can be obtained either directly in the frequency domain, or by substituting force (50a)
with harmonic time variation into equation (31). The result is, see e.g., reference
[12, section 5.16],

u6 "
1

4no
1

r G(3r; r;!1)
1

u2

L
Lr C

1

r
(e*kPr!e*kSr)D#

1

c2
P

r; r; *kPr#
1

c2
S

(1!r; r; e)*kSrH ) f1 . (52)

The last two terms are identi"ed as the far"eld P- and S-wave, respectively, and it is easily
veri"ed that the "rst term decreases faster than r~1, and thus becomes of decreasing
importance with increasing distance.

The total power radiated by the P- and S-waves can be evaluated from the last two terms
by integrating the power #ux over a sphere,

SP
P
T"P

S

1
2

c
P
ou2u2

P
dS"

1

3

1

8n
u2f 2

o c3
P

, (53)

SP
S
T"P

S

1
2

c
S
ou2u2

S
dS"

2

3

1

8n
u2f 2

o c3
S

, (54)

where the factors 1
3

and 2
3

are due to the distribution of the P- and S-waves in the polar
direction and around the equator respectively. It is seen that most of the energy is radiated
by the S-wave.

4.2. THE NEAR FIELD

It is observed that ru6 depends only on frequency and distance through the parameter ur,
combining distance and frequency. Thus, the low-frequency domain may equally well be
considered as the near "eld at any frequency. The near "eld is obtained by the expansion of
equation (52) for small values of ur. The two-term expansion is

u6 K
1

4no
1

r C
1

c2
S

r; r;#
1

2 A
1

c2
P

#

1

c2
P
B (1!r; r; )#

iur

3 A
1

c3
P

#

2

c3
S
B 1D ) f1 . (55)

This approximation is representative provided the second term is small relative to the "rst,
i.e., provided ur@c

P,S
.

It is notable that the imaginary part of u6 is "nite at r"0. In fact, the imaginary part at
r"0 determines the velocity of the force, and thereby the power supplied by the force. The
two power contributions (53), (54) in the far "eld can be recognized in the imaginary part of
near "eld (53). Thus, while the imaginary part of the near "eld represents the power to be
radiated through the far "eld, the real part represents the static solution. In the limit u"0,
the near "eld reproduces Kelvin's static concentrated force solution

u"
1

8nk
1

r C2r; r;#
j#3k
j#2k

(1!r; r; )D ) f (56)

as given by Love [13, p. 185].
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5. FINITE ELEMENT IMPLEMENTATION

The practical implementation of the local tensor boundary condition in a
"nite-element-based procedure proceeds in the following steps. The formulation of the
boundary condition is based on the assumption of linear elasticity, i.e., on the existence of
a stress}strain relation of the form r"D :e, where D is the elasticity tensor. When this
relation and the local boundary condition (47) is substituted into weak formulation (2), the
result is

P
V

e8 :D : e d<#P
V

ou8 ) uK d<#P
S=

u8 )Z ) u5 dS#P
S=

u8 )R ) u dS

"P
V

u8 ) f d<#P
S=

u8 ) s d<, (57)

where S
=

is the surface with the radiation boundary condition, while Sq is the part of the
boundary with prescribed stress vector s.

A typical "nite element formulation is obtained by representing the actual and virtual
displacement "elds in the form

u (x, t)"N (x) u (t), u8 (x, t)"N (x) u8 (t), (58)

where N (x) are the spatial shape functions, and u(t) represents the time-dependent nodal
displacement vector. The corresponding actual and virtual strain "elds are

e (x, t)"B (x) u (t), e8 (x, t)"B(x) u8 (t), (59)

where the strain shape functions B (x) are obtained from the displacement shape functions
N(x) by di!erentiation.

The substitution of representations (58), (59) into equation (57) leads to a system of
ordinary second order di!erential equations of the form

MuK#Cu5 #Ku"f (60)

with mass matrix

M"P
V

o NT N d<, (61)

damping matrix

C"P
S=

NTZ N dS, (62)

sti!ness matrix

K"P
V

BTD B d<#P
S=

NT RN dS (63)

and load vector

f"P
V

NT f d<#P
Sq

NT s dS. (64)
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It is seen that the impedance term in the boundary conditions generates a damping matrix,
while the apparent boundary spring sti!ness generates an extra term in the traditional
volume-based sti!ness matrix.

6. EXAMPLES

The performance of the local tensor radiation boundary condition is illustrated by two
examples. The "rst example is the generation of a wave "eld by a time-dependent
concentrated force in an in"nite elastic medium. In this problem, the only natural length
scale is the wavelength(s) associated with the the wave "eld. The quality of the tensor
boundary condition increases with the distance of the radiation boundary from the source,
while the purpose of radiating boundary conditions is to limit the extent of the
computational domain. The example illustrates the quality of the solution for a radiation
boundary as close as 0)7 P-wave length or little more than a full S-wave length. It is an
important feature of the local tensor radiation boundary condition that it is formulated in
the time domain, and the example therefore illustrates the radiation of P- and S-waves from
a time-limited pulse. A frequency analysis is then used to demonstrate that even for a rather
close radiation boundary, there are only very small accumulated e!ects of boundary
re#ections. In this "rst example, analytical solutions are available both in the time and the
frequency domains, and the accuracy of the numerical solution can be demonstrated in
absolute terms. In practice, radiation boundary conditions are to be used in problems where
no analytical solution is available, often in connection with a non-trivial local geometry.
This is illustrated in the second example, providing a time domain analysis of a pulse load
on the #oor of an underground gallery.

The purpose of the time domain analysis is to investigate the ability of the local tensor
boundary condition to let P- and S-waves pass without re#ections or conversion between
wave types. This is best accomplished by selecting a pulse with a well-de"ned duration in
order to enable the identi"cation of arrival times of direct and re#ected waves.

The pulse shape was selected from the polynomial family de"ned by

f (t)"q (1!q2)n, !1(q(1 (65)

with q"2t/¹!1. The total duration of the pulse is ¹, and the integer n leads to vanishing
derivatives of order 0, 1, n!1 at the ends of the pulse. The frequency content of the pulse is
determined from the Fourier transform

F (u)"P
T

V

f (t) e*ut dt. (66)

Using the integral representations of Bessel functions, given e.g., by Abramowitz and Stegun
[14], the following explicit result is found,

F (X)"i¹ e*X
n!

(X/2)n
j
n`1

(X), X"1
2

u¹, (67)

where X is a non-dimensional frequency corresponding to the pulse duration ¹, and j
n
( ) is

the spherical Bessel function of the "rst kind of order n. The complex exponential factor
arises because the pulse is shifted to start at time t"0.

The present analyses are based on n"2, leading to a continuous slope at the ends of the
pulse. This pulse is shown in Figure 6(a), and the corresponding spectral density function is
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Figure 6. Force pulse, n"2: (a) time history; (b) spectral density.

Figure 7. Elastic cube with side length 2¸, and the octant used in the "nite element model.

shown in Figure 6(b). It is seen that the frequency content is centered around 0)8/¹ with
very small side lobes. However, it should be noted that an accurate representation of the
response requires an accurate representation of frequency components up to around 1)5/¹,
imposing requirements on the necessary number of elements per wavelength.

6.1. CONCENTRATED FORCE IN 3-D

The local tensor boundary condition (47) has been tested in the time and frequency
domains by the concentrated force problem illustrated in Figure 7. Ideally, the force f (t)
located at the origin of the co-ordinate system is assumed to act in an in"nite isotropic
elastic continuum. The model consists of a "nite element discretization of the "rst octant
with side length ¸"25 m using simple 8-node elements with linear displacement
interpolation and side length h"1 m. In both types of analyses, the material was speci"ed
with wave speeds c

P
"20 m/s and c

S
"10 m/s, corresponding to the special case of

symmetric impedance matrix. The mass density is o"2000 kg/m3, and the maximum value
of the force is f

max
"1MN.
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Figure 8. Displacement component u
z

at (x, y, z)"(10, 0, 0): (a) ¹"1 s; (b) ¹"2 s. Analytical: **, FEM
(Z#R): } } } }, FEM (Z): ) ) ) ) ) ) .

Figure 9. Displacement component u
z

at (x, y, z)"(0, 0, 10): (a)) ¹"1 s; (b) ¹"2 s. Analytical: **, FEM
(Z#R): } } } }, FEM (Z): ) ) ) ) ) ) .

6.1.1. ¹ime domain analysis

The results in Figures 8 and 9 show the time history of the displacement component u
z
at

three di!erent locations for impedance and combined impedance and sti!ness radiation
boundary conditions, and for two di!erent pulse duration times, ¹"1 and 2 s. With a pulse
duration of ¹"1 s, the dominating P-wavelength is about c

P
¹/0)8"25m, i.e., equal to the

distance ¸ from the center to the sides of the cube. Thus, the radiation boundary condition
is imposed fairly close to the source. For a pulse duration of ¹"2 s, the distance from the
source to the sides is only half of the dominating P-wavelength.

Figure 8 shows the time histories at the point (x, y, z)"(10, 0, 0), a displacement
generated by shear waves in the transverse plane. For the pulse duration ¹"1 s, the
dominating S-wavelength is around 12)5 m. The higher frequency components are therefore
represented by less than 10 elements per wavelength. As a consequence, the ability of the
element mesh to transmit the pulse shape of the shear wave is limited as illustrated in
Figure 8(a). For pulse duration ¹"2 s, the element density per wavelength is double, and
the representation of the pulse shape is much improved as shown in Figure 8(b). The "gures
show the analytical results together with the impedance radiation condition as a dotted line,
and the combined impedance and sti!ness condition as a dash}dot line. In the case of the
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Figure 10. Displacement component u
z

at (x, y, z)"(10, 10, 10): (a) ¹"1 s; (b) ¹"2 s. Analytical:**, FEM
(Z#R): } } } }, FEM (Z): ) ) ) ) ) ) .

Figure 11. P-wave strain energy density in xz plane: (a) t"1)25; (b) 2)5 and (c) 4)0 s.

short pulse the distance to the boundary, measured as a full P-wavelength, is su$ciently
large for both formulations to be accurate, while for the longer pulse with a distance to the
boundary of only half the P-wavelength, the combined impedance and sti!ness condition is
superior. The times t

P
and t

S
in the "gure indicate the arrival of re#ected P- and S-waves,

respectively, from the closest point of the boundary. In this case, there is no direct re#ection
of P-waves from the closest point although there is a small precursor generated by P-waves
at small angle, but even the S-waves do not show any distinct re#ection from the
approximate radiation conditions.

Figures 9 and 10 show the similar results for a point (x, y, z)"(0, 0, 10) ahead of the force
and a point (x, y, z)"(10, 10, 10) on the diagonal of the cube. The pulse shape is better
represented by the "nite element results for the point ahead of the force shown in Figure 9,
because the displacement at this point is due to P-waves with a longer wavelength than the
S-waves dominating the results of Figure 8. Apart from this, the conclusion to be drawn
from the results are the same as before, namely that the combined impedance sti!ness
radiation boundary condition remains accurate, even for boundaries only half
a P-wavelength from the source.

The progress of the waves through the cube for a pulse duration of ¹"2 s is further
illustrated in Figures 11 and 12, showing the strain energy density of the P-waves and the
S-waves, respectively, at times t"1)25, 2)5, 4)0 s. Figures 11(a) and 11(b) clearly show the
angular variation of the P-wave "eld, while the P-wave has nearly left the cube in
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Figure 12. S-wave strain energy density in xy plane: (a) t"1)25; (b) 2)5 s and (c) 4)0 s.

Figure 13. Displacement component u
z

along z-axis: (a) Re[u
z
]; (b) Im[u

z
]. Analytical:**, FEM (Z#R): #.

Figure 11(c). The circular wave front pattern of the S-waves in the transverse plane is
illustrated in Figure 12, where Figure 12(c) shows the undisturbed passage of the radiating
boundary without visible re#ections.

6.1.2. Frequency domain analysis

While a time domain analysis gives an impression of the ability to conserve pulse shape
and wave fronts, a frequency domain analysis can illustrate the accumulated e!ect of
spurious re#ections from the approximate radiation boundary condition. The frequency
domain problem requires solution of the full set of complex equations, and therefore the
octant in the frequency model consists of only 15]15]15 elements with side length
h"1 m.

Figures 13(a) and 13(b) show the real and imaginary part of the displacement component
u
z

along the z-axis for a concentrated force with harmonic time variation with period
¹"1)2 s, calculated using the combined impedance sti!ness radiation boundary condition.
The agreement with the analytical solution is seen to be excellent, indicating negligible e!ect
of spurious re#ections. Similar agreement is found for the displacement component u

z
along

the x-axis, shown in Figure 14.
It is remarkable, that although the element shape functions fail to capture the innermost

two points of the singular real part, the rest of the points agree very well with the analytical
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Figure 14. Displacement component u
z

along x-axis: (a) Re[u
z
]; (b) Im[u

z
]. Analytical:**, FEM (Z#R): #.

Figure 15. Displacement component Du
z
D normalized with value Dub

z
D at the boundary: (a) z-axis; (b) along x-axis.

Analytical: **, FEM (Z#R): #.

solution. The degree of accuracy is illustrated in Figure 15, showing the amplitude on
a logarithmic scale along the z- and the x-axis. Again, the agreement is seen to be good, and
no noticeable e!ect of re#ections is seen.

6.2. WAVES FROM UNDERGROUND GALLERY

An important application of the tensor radiation boundary condition is the design for the
dynamic e!ects of underground structures. An example is the underground gallery shown in
Figures 16 and 17. The total width and height of the gallery are ¸, with only the right half
shown due to symmetry. The computational domain extends ¸ below, above, and to the
side of the gallery. The domain is discretized using bilinear elastic elements with 24 elements
per length ¸. The Poisson ratio is l"0)3, corresponding to c

S
/c

P
"0)55. For this material,

the impedance and radiation sti!ness matrices are non-symmetric.
The loading is a vertical force at the center of the #oor of the gallery with a time variation

described by the pulse shape (65) with n"2 shown in Figure 6(a). The time period is chosen
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Figure 16. P-wave strain energy density: (a) t"¹; (b) 2¹; (c) 3¹ and (d) 4¹.

Figure 17. S-wave strain energy density: (a) t"¹; (b) 2¹; (c) 3¹ and (d) 4¹.

such that c
P
¹"¸. Thus, the full P-wave "ts precisely between the gallery #oor and the

lower boundary of the computational domain. The time t"0 denotes the start of the
pulse, and thus the times t"¹, 2¹, 3¹, 4¹ used in Figures 16 and 17 correspond to
1, 2, 3 and 4 times the time ¹ needed for the P-wave to reach the lower boundary of the
computational domain. The strain energy density of the P-wave is shown in Figure 16. The
plots have been scaled to the range of Figure 16(c) whereby the "rst two plots are shown
with extra contrast. The last two plots show a P-wave folding around the gallery and
demonstrate the absence of re#ections of the P-wave from the computational boundary.
Figure 17 shows similar results for the S-wave energy density. The S-waves spread nearly
horizontally, and the last two plots demonstrate the absence of re#ections from the
computational boundary.
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7. DISCUSSION

Local radiation boundary conditions have been formulated in the form of an impedance
tensor and a sti!ness tensor, linking the stress vector at the radiating boundary to the
velocity and the displacement vectors. While the impedance tensor represents a propagating
plane wave, the e!ect of spreading of the wave is accounted for via an elastic sti!ness tensor.
For non-normal wave incidence, the impedance and sti!ness tensors are non-symmetric,
and the origin of the non-symmetry is explained via the need for transverse stresses in
propagating elastic waves. The basic assumptions of the local boundary condition is that
the general direction of wave propagation is known or estimated, and that gradients along
the wave front can be neglected. The latter assumption is tested by considering radiation
from a concentrated force, and it is demonstrated by "nite element time and frequency
domain calculations that gradient e!ects are negligible, even for radiation boundaries
placed as close as half a P-wavelength from the source. In a recent paper, a generalization of
the local tensor boundary condition to moving loads was demonstrated to work
satisfactorily [15].

The boundary conditions of the present paper are local in the sense that the stress vector
at a point of an internal radiation boundary is expressed in terms of the displacement and
velocity vectors at that particular point. Clearly, the accuracy of this approximation
depends on the dominating direction of propagation of the wave "eld to be radiated. The
concept can be generalized by eliminating the explicit dependence on the dominating
propagation direction. In a recent paper on the scalar wave equation, the elimination of the
propagation direction was accomplished via introduction of suitable di!erential operators
in the plane of the radiating surface, and the relation to previous higher order boundary
condition was established [7]. The method leads directly from the "eld equations to a set of
&&internal variables'' in the radiating surface, and thus relates to the work of Paronesso and
Wolf [5], in which internal variables were introduced on the basis of the discretized global
equations. An extension of the direct "eld equation approach to elastic wave propagation is
in progress.
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APPENDIX A: MATRIX NOTATION

The derivations and results of the main paper have been given in the notation of vector
analysis. In this notation, the scalar product of the unit vectors n; and r; is written as n; ) r; ,
while the vector dyad n; r; without the dot represents an exterior product. In terms of the
Cartesian vector components n;"(n(

1
, n(

2
, n(

3
) and r;"(r(

1
, r(

2
, r(

3
), the corresponding

components of the vector dyad takes the form of a matrix,
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The main results of the paper are the impedance tensor Z in equation (22) with component
form
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and the sti!ness tensor R in equation (48) with component form
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