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Abstract. In the Danish part of the North Sea monopile platforms with a cylindrical shaft have
been used at the exploitation of marginal fields. In the paper a new principle for active vibration
control of such structures is suggested. The principle is based on a control of the boundary layer
flow around the cylinder of the platform, so the drag force in the generalized Morison equation
is increased whenever it is acting in the opposite direction of the cylinder motion, whereas an
unchanged drag force is applied, whenever it is acting co-directionally to the cylinder motion. The
inertial force of the wave load is not subjected to control. The increased drag force is obtained by
forcing the boundary layers to separate by blowing air into the boundary layer from the inside
through small holes in the cylinder surface placed at a relatively large distance from the water
surface. The control is specified by the sign of the fluid velocity relative to the platform, and only
this quantity need to be measured, which is easily performed by a flow meter fixed to the platform.
The efficiency of the described closed loop control system has been verified by model tests in a
wave flume in both regular and irregular wave conditions, where reductions in the vibration level
of up to 50% have been registered.

Key words: Active vibration control, Offshore structures, Monopile, Boundary layer flow, Wave
mechanics

1 Introduction

In the Danish sector of the North Sea it has been found that marginal fields
can be exploited using monopile offshore platforms as the one shown in fig. 1
with significant advantages with respect to the costs involved in fabrication and
installation, which can tip the economic balance favourably. The monopile platform
has been developed for approximately 35 m water depth and is assumed to be
remotely operated. This means that the dynamic responses, which in any case is
relatively small, can be ignored with respect to collapse and comfort criteria. Only
fatigue life is affected by the dynamic or quasi-static response of the platform.
Recently, there has been a wish to use the monopile concept on 75 m water depth.
At such water depths significant dynamic problems can be anticipated. Further,
the platform is now assumed to be manned, so comfort criteria also have to be
considered. Therefore, it can be necessary to use an active vibration control system
to reduce the vibration levels. Various active vibration systems have been proposed
in the literature such as tendon control and actively controlled mass dampers,
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Fig. 1. Typical monopile offshore structure used in the Danish sector of the North Sea.

Soong (1990). Tendons will reduce the access to the platform by supply vessels
significantly, and it can be difficult to locate actively controlled mass dampers on a
platform with severe space limitations. In all cases such systems rely on a relatively
large power supply system, which also takes up room. In order to get around these
problems an active close loop vibration control system has been devised, which
requires that the velocity in the oscillatory flow outside the boundary layer relative
to the platform is measured. This can be measured using a sensor attached to the
subdued part of the cylinder of the platform. Besides the velocity of the platform
needs to be measured. The wave-induced load on the cylinder is composed by a
drag component and an inertial component. The idea is to apply a numerically
large drag force to the cylinder whenever this force is acting in opposite direction
of the cylinder motion, whereas an unchanged drag force is applied, whenever it
is acting co-directionally to the cylinder motion. The inertial component of the
load is not subjected to control. A large drag force is brought forward by forcing
the boundary layers to separate upon blowing air through holes in the cylinder
surface. The advantage of the system is that the control forces are generated by the
surrounding flow, so no external power supply of significance is needed in contrast
to other control systems {tendon control, actively controlled mass dampers etc.).
Another advantage is that no movable mechanical devices are used to control the
boundary flow as is the case in alternative variable geometry approaches. Further,
the instrumentation of the system is rather limited. The disadvantage is that the
cylinder must be kept free from marine growth at the position of the valves in
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order to insure free passage of the air blown out, which may be a problem since
the optimal position of holes for blowing out air is shown to be at a relatively
large water depth. The details of the control concept are further explained in the
following section.

2 'Theory

It is well known that the force per unit length on a vertically placed flexible cir-
cular cylinder subjected to wave action may be modelled by the socalled extended
Morison formula, see e.g. Sarpkaya and Isacson (1981)

f(Z,t)=fD(Z,t)+f[(Z,t) (1)

F(,1) = 5CopDlits (2, e (2,) (2)

Fi(z,t) = ch-ZD%z(z, t) — (Cm — 1) p%Dzii(z, ) (3)
Ur(z,t) = u(z,t) — 0(2,t) (4)

where fp(z,t) and fr(z,t) are the drag force and the inertial force per unit length
at the vertical position 2z at the time ¢. u,(2,t) is the fluid velocity relative to
the cylinder, and 4(z,t) and i(z,t) and ¥(z,t), and 4(z,t) are the velocity and
acceleration of the fluid and the cylinder. Cp and C)s are the socalled drag and
inertia coefficents, D is the diameter of the cylinder and p is the density of water.

The signs of 1u,(z,t) and 9(z,t) may be different during a part of a vibration
period. In such cases the drag force is acting in opposite direction of the cylinder
velocity. Hence, it will be favourable that the drag coefficient is large in such cases.
Leaving the dragcoefficent unchanged in cases, where the drag force is acting in
the direction of the cylinder, a net damping effect is registered during a period of
vibration. Hence the following control law is applied

ur{2,t)0(z,t) <0 : Increase Cp (5)
tr(2,t)o(z,t) >0 : Leave Cp unchanged

Normally, the drag coefficient is of magnitude 0.6 for a cylinder, Sarpkaya and
Isacson (1981). However, the magnitude of the drag coeflicient will be significant-
ly larger, if the boundary layer is forced to separate. As mentioned this will be
achieved upon blowing air through the perforated surface of the cylinder. This is
the opposite of the well-known principle in aeroplane design that the drag force
can be reduced by suction. The velocity ¥(z,t) of the undisturbed fluid relative to
the platform can easily be measured by a sensor placed in some distance from the
platform and fixed to this. The suggested control law (5) is of the simple on/off
type. This choice can be motivated in several ways. First of all the reaction time of
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the valves are several orders of magnitude less than the fundamental eigenvibration
period of the platform or the significant wave period, as well in the propotype as
in the model scale. Secondly, only very little air (or water) need to be blown out,
before the boundary layers separate. Hence, the control forces can be expected to
work almost instantanously, when requested. This was also registrated during the

model tests described below.
3 Description of experiments

The following section outlines the experiments which were performed in order
to investigate the proposed control approach.

3.1 EXPERIMENTS IN FLOwW CHANNEL

Fig. 2. Test model placed in flow channel.

The possibility of increasing the drag coefficient in the described way was first
investigated by the authors by tests in a flow channel with stationary flow condi-
tions, Nielsen et al. (1996). Fig. 2 shows a picture of the produced test model for
this part of the test programme. The model consists of a 0.5 m high steel cylinder
with a diameter of 0.16 m which is closed at the bottom with a steel plate. The
cylinder is mounted on a steel beam across the flow channel with a2 0.16 m long,
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0.03 m width and 0.003 m thick steel plate. The cylinder is 0.2 and 0.24 m from
the top of the cylinder perforated with 12 holes with equidistant distance, i.e the
cylinder is perforated with 24 holes. Compressed air can be blown out of these
holes since each hole is connected with a rubber tubing. It is possible to open and
close each rubber tubing with a valve. All the 24 valves are placed on a connection
box which is connected to one high-pressure rubber tubing having a manometer
and a valve. This implies that it is possible to regulate the pressure of the air
submitted to the connection box and to the 24 rubber tubings.

The test programme was divided into two parts. The first part without water in
the flow channel consisted of eigenvibration tests in order to estimate the structural
parameters of a single-degree-of-freedom (SDOF) model of the test setup. The
second part of the test consisted of free decay tests with stationary water flow in the
flow channel and different air pressure out of the holes in the cylinder. These tests
were used to estimate the drag coefficient during flow conditions. The flow velocity
was measured using an ultrasonic flow meter. The accelerations of the cylinder
and the flow signal were both recorded using a data acquisition system based on
a personal computer with an add-on A/D 16 bit simultaneous data acquisition
board. The signals were sampled at 135 Hz with a time series length of 30 s.
Notice, that since the undisturbed flow is stationary in this case, no attempt had
been done to control the drag force according to (5), i.e. the valves were opened
throughout the free decay tests.

The tests were performed in a 2-dimensional flow channel. The water level was
0.355+0.01 m and the distance from the bottom of the cylinder to the lowest holes
in the cylinder was 0.238 m. The free decay tests were performed by giving the
cylinder a deflection corresponding to approximately the same value each time.

Estimates of the drag coefficient were made from the free decay tests based on
an extended Kalman filter, Soderstrém and Stoica (1989), Ljung (1989). In figs. 3
and 4 the relative increase -C-.QD— of the drag coefficient from the referential value

Cp,o is shown as a function of the pressure of the air blowing out of the valves for
fluid velocities of ¢ = 0.1 & and 4 = 0.2 T, respectively. The arrows on the figures
indicate the position of those valves whlch were opened during the experiment. As
seen from figs. 3¢ and 4c the maximum effect is obtained, when only the valves in
the downstream positions are opened and the upstream valves are all closed.
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FIG. 3c: Downstfeam valves opened. FIG. 3d: Upstream valves opened.
=017 =015

3.2 EXPERIMENTS IN WAVE FLUME

The observation made on the optimal opening of the valves were applied in
the final tests performed in a wave flume. Since the flow is now oscillatory down-
and upstream flow conditions are defined based on the present sign of the relative
flow velocity 1,. Depending on upstream- or downstream condition, all valves on
each half of the cylinder surface are simultanously closed or opened by a magnetic
valve. The new model is shown in fig. 5, and the two magnetic valves are seen
at the top of the model at the extreme left and right. For these tests the model
was modified in order to have the possiblity to blow out air in the entire length of
the subdued part of the cylinder. The intention was to investigate the dependence
of the damping force on the vertical position of the valves, for which reason the
valves were grouped in three layers of equal width.
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FIG. 4c: Downstream valves opened. FIG. 4d: Upstream valves opened.
=02 2. u=02%

Three tests were performed, one where the valves in all three layers were opened,
one where the valves in the the two lowest layers were opened, and one where only
the valves in the lowest layer were opened. Additionally, two tests were performed,
where only the valves in the middle layer and the top layer opened. The eigenperiod
of the test model in water was measured to Tp = 1.25 s, the diameter of the cylinder
was unchanged D=0.16 m, and the water depth in the flume was h = 0.48 m. Three
different wave periods, T=0.7 s, 1.1 s, 1.5 s, and two different wave heights, H=0.02
m, 0.04m, were considered. Unfortunately, it was not possible to perform tests with
larger wave periods or larger wave heights than indicated. The air was blown out
at two different pressure levels, which will labelled "low” and "high”, respectively.
The air pressure was in both cases so low, that the gain of the vibration damping
cannot be attributed to jet repulsion. The data acquisition was performed as for
the stationary flow tests in the wave channel tests. Additionally some tests in
irregular waves were performed.
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FIG. 5: Test model. FIG. 6: Model placed in wave flume.

With h=0.48 m, T=1.5 s and H=0.04 m linear wave theory predicts the maxi-
mum horizontal fluid velocity to 4, =0.118 £. Then the Keulegan-Carpenter num-
ber becomes K = 9‘51 = 0.885. The indicated Keulegan-Carpenter is the largest
considered during the tests. From this it is concluded that the load on a fixed
cylinder is strongly inertially dominated. Nevertheless, the control system works
satisfactorily under certain conditions. The only explanating seems to be that the
inertial part of the load is reduced significantly simultanously with the increase of
the drag force at the separation of the boundary layers.

The standard deviation (rms-value) of the cylinder displacement was estimated
based on a 3 min. time series in tests with regular waves and on a 10 min. time
series in tests in irregular waves. The efficiency was then expressed as the standard
~ deviation of the controlled cylinder in proportion to the standard deviaton of the
uncontrolled cylinder.

Tables 1 and 2 show the results when all valves are opened at "Low” and "High”
air pressure, respectively. As also registered in the tests in the wave channel with
stationary flow the pressure level of the air blown out of the valves has some impor-
tance. The effect is definitely not linear, and can merely be attributed to the fact
that larger parts of the boundary layer are blown off at high pressure than at low
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pressure.

T(sec) H=002m H=004m

T(sec) H=002m H=004m

0.7 0.72 0.86
1.1 0.91 0.95
1.5 0.87 0.77

0.7 0.58 0.74
1.1 0.90 0.93
1.5 0.81 0.75

TABLE 1: All valves opened.
Air Pressure "Low”.

TABLE 2: All valves opened.
Air pressure "High”.

T(sec.) H=002m H=004m

T(sec) H=002m H=004m

0.7 0.52 0.57
1.1 0.78 0.87
1.5 0.92 0.74

0.7 0.61 0.70
1.1 0.68 0.75
1.5 0.93 0.80

TABLE 3: Valves in the two lowest layers
opened. Air pressure "Low".

TABLE 4: Air valves in the lowest layer
opened. Air pressure "Low”.

T(sec) H=002m H=004m

T(sec) H=002m H=004m

0.7 0.67 0.71
1.1 0.89 0.94
1.5 0.98 1.01

0.7 0.84 0.91
1.1 0.97 0.98
1.5 0.92 0.98

TABLE 5: Valves in the middle layer
opened. Air pressure "Low”.

TABLE 6: Valves in the upper layer
opened. Air pressure ”Low”.

H, T, (sec.) Peak enhancement1 Peak enhancement 10

0.028 0.9 0.83
0.057 1.2 0.91

0.90
0.96

TABLE 7: Irregular waves. Air pressure "Low”.
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As seen in tables 1 and 2 the vibration reduction factors are smaller for wave-
periods T=0.7 s, than for the longer periods T'=1.1 s and T=1.5 s. Since the
eigenperiod of the test setup is To=1.25 s, the larger wave periods cause resonant
vibrations of setup resulting in a phase locking between the fluid velocity & and the
cylinder velocity v. Then, the control condition (5) is not fulfilled for a relatively
larger part of a vibration period, and a poorer vibration reduction is observed.
Typically, for prototype implementations T' = 3 — 5Ty, which is far out of the
resonance domain. For such wave periods the gain is assumed to be at least as
favourable as registered for the short periodic test with T=0.7 s.

Tables 3 and 4 show the effect of only blowing air out of the two lowest layers
and the lowest layer of valves, respectively. The hypothesis was that air blown
out from the lower regions would also destroy also the boundary layers in the
upper layer as the air bubbles move to the surface. If so, these tests should give
results with reduction factors comparable to those in table 1. The results seem to
confirm this hypothesis, and are even better in several cases. This effect is further
investigated in the tests reported in tables 5 and 6, which show the reduction when
only the valves in the middle layer and the toplayer are opened. The reduction
factors shown in table 5 are significantly larger than those shown in table 4, and
the reduction factors in table 6 are in turn larger than those of table 5. Together
with the observations made from tables 1 and 3 this suggests that a relatively
small number of valves are necessary if only these valves are placed at a relatively
long distance from the water surface.

Table 7 shows the results of tests with irregular waves modelled with a JON-
SWAP spectrum. In the table the reduction factor for the standard deviation of the
cylinder displacement is shown as a function of the significant wave height H,; and
the peak period Tp,. The peak enhancement is a bandwidth parameter, where the
small value indicates a narrow banded, and a large value indicates a broad band-
ed spectrum. The results confirm the results in the regular wave. The reduction
factor for tests with the peak period T,=1.2 s, which is close to the eigenperiod of
the model, is larger than those with the smaller peak period T, = 0.9 s. Further,
the test with the broad-banded spectrum provided a larger reduction factor than
those with the narrow-banded spectrum, which is attributed to a larger number
of harmonic components (larger number of waves in the signal) in resonance with
test model.

4 Conclusions

In this paper a new principle for active vibration control of monopile offshore
structures has been proposed. The principle is based on a control of the drag force
component in Morison’s formula which is increased whenever it is acting in the
opposite direction of the cylinder motion. The increase of the drag force is obtained
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forcing the boundary layers to separate upon blowing air through the surface of
the subdued part of the cylinder.

In an initial test with a monopile model in a flow channel with stationary flow
condition it was demonstrated that it is possible to increase the drag force in the
indicated way. Further it was demonstrated that the optimal increase of the drag
force is obtained when the valves in the wake of the flow is opened whereas the
upstream valves are closed. Further, the increase depends on the pressure of the
air.

Next, the testing was extended to oscillatory flow in a wave flume, where both
regular and irregular plane wave conditions were considered. By the use of two
magnetic valves the opening and closing af all valves on each half of the cylinder
surface of the model were controlled based on the signs of the relative flow velocity
and the velocity of the cylinder. Again, the results showed an increased effect
in case of high pressure air compared to low pressure air conditions, which was
attributed to the fact that larger parts of the boundary layers are blown off at
high air pressure. The reduction of vibrations is smaller for waves close to the
eigenfrequency of the system, which is attributed to a phase locking of the fluid and
cylinder velocities at resonance, so the control condition is very seldom invoked. It
is demonstrated that the air blown out from the lower valves will also destroy the
boundary layers at upper parts of the cylinder. From this it is concluded that a
relatively small number of valves are needed, and these should be placed relatively
far from the free water surface. The results from tests in irregular sea states confirm
the results obtained in regular waves. The system is working better in case the
eigenperiod of the system is well separated from the dominating frequencies in
the excitation around the peak period in the spectrum. Further, the tests seem to
indicate that the applicability of the principle is not restricted to drag dominated
systems, as may be anticipated at first sight. Actually the Keuligan-Charpenter
numbers for the model setup were all below 0.885. The explanation can only be
that the inertial force is reduced at the same time as the drag force is increased.

It should be noticed that the aim of the study has merely been to demonstrate
the principle, and no consideration on the design of a possible full scale implemen-
tation has been attempted. However, in such an implementation the advantage of
the system is that the control forces are generated by the surrounding flow, so no
external power supply besides that of maintaining the air pressure and opening
and closure of the valves is needed. Further, the instrumentation of the system
is rather limited. The disadvantage is that the cylinder must be kept free from
marine growth at the position of the valves, which may be a problem if the opti-
mal position of the holes at relatively large water depths is to be achieved.
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