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Abstract. Recently, we have proposed a new design theory for time@ st
This theory, building on Timed I/0O Automata with game ser@nincludes clas-
sical operators like satisfaction, consistency, logicahposition and structural
composition. This paper presents a new efficient algoritbnchecking Biichi

objectives of timed games. This new algorithm can be usett¢agthen the in-

finite behavior of an interface, or to guarantee that therfiate can indeed be
implemented. We illustrate the framework with an infraredsor case study.

1 Introduction and State of The Art

Several authors have proposed frameworks for reasoningt &terfaces of indepen-
dently developed components (e.qg. [20, 13,9, 12]). Moste$¢ works have, however,
devoted little attention to real time aspects. Recentlypvawosed a new specification
theory for Timed Systems (TS) [11]. Syntactically, our dfieations are represented as
Timed I/O Automata (TIOAS) [19], i.e., timed automata whakgcrete transitions are
labeled bylnputandOutputmodalities. In contrast to most existing frameworks based
on this model, we view TIOAs as games between two playersitlapd Output, which
allows for an optimistic treatment of operations on speaffans [13].

Our theory is equipped with features typical of a composéaialesign framework:
asatisfaction relatior(to decide whether a TS is an implementation of a specifiagtio
a consistency checvhether the specification admits an implementation), ame-a
finement (to compare specifications in terms of inclusionet$ ®f implementations).
Moreover, the model is also equipped witlyical compositior(to compute the inter-
section of sets of implementationsjructural compositiorfto combine specifications)
and its dual operatajuotient Our framework also supports incremental design [14]. To
the best of our knowledge, our theory is the first specificatieeory for TS in which
both logical and structural compositions can be computéhimvihe same framework.

Refinement, Satisfaction, and Consistency problems cagcheed to solving timed-
game problems. As an example, assume that inconsistees stag states that cannot
be implemented in reality, since they violate importantiagstions of the abstraction.
Then deciding whether an interface is consistent is eqeitdd checking for the exis-
tence of a strategy that avoids inconsistent states.

* Work partially supported by VKR Centre of Excellence — MTHBAand by an “Action de
Recherche Collaborative” ARC (TP)I
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Fig. 1: Structure of ECDAR's specification theory.

Our theory is implemented in ECDAR [17], a tool that leversgjee game engine
UPPAAL-TIGA [4], as well as the model editor and the simulator of tirPIAL model
checker [5]. The purpose of this paper is to describe enrggtiato our theory, and to
report on the evaluation of the tool on a concrete case s@ulycontributions are:

1. An on-the-fly algorithm for checking Blichi objectives of-yulayer timed games.
The algorithm builds on an existing, efficient method fovsad reachability objec-
tives [8, 4], but it uses zones as a symbolic representatiershow how the method
can be combined with a safety objective. This allows, fonegke, to guarantee that
a player has a strategy to stay within a set of states withlogklng the progress
of time. Similar results were proposed by de Alfaro et al] [t for a restricted
class of timed interfaces and without an implementationttiercontinuous case.

2. Arealistic case studyMost existing interface theories have not been implemented
and evaluated on concrete applications. We use ECDAR to gatvour interface
theory is indeed a feasible solution for the design of pa#inicomplex timed sys-
tems. More precisely, we specify an infrared sensor for nméag short distances
and for detecting obstructions. This extensive case stadyals both the advan-
tages and disadvantages of our theory, which are summanizeid paper.

2 Background: Real Time Specifications as Games

We shall now introduce the basic semantic and syntacticctbjf this paper. These
originate directly in [11]. Our specification theory is, paps, a bit unusual, in the sense
that specifications and models (implementations) are t&ken the same class of ob-
jects, and that they both exist in two flavors: infinite andténFigure 1 summarizes
this structure. We have two dimensions: vertical acrossti®n of satisfaction (di-
vision into models and specifications) and horizontal afiméte abstraction (division
between Timed I/O Transition Systems and Timed 1/O Autoinathis orthogonality
is exploited to treat the intricacies of continuous time dabur separately from those
of the algorithms. Roughly speaking the infinite models Hasen used to develop the
theory, while the finite models serve as a symbolic repregientin the implementation.



In work on timed automata, the finite and infinite represéonatare often referred
to as syntax and semantics respectively, whereas in boitslagd specification the-
ories these two terms are more often used for referring toifpetions and models.
Recognizing this confusion of dimensions, we avoid the ®vos as much as possible
in this paper, and use the concrete names of the objectagihste

Definition 1. A Timed I/O Transition System (TIOTS) is a tufle- (St°, so, 2%, =°),
where St is an infinite set of states, € Stis the initial statey’> = $5@ 55 is a finite
set of actions partitioned into inputs and outputs, antl : St° x (X5 URso) ¥ st’
is a transition relation. We write 2% s’ instead of(s, a, s') € —° and use?, o! andd
to range over inputs, outputs aril-( respectively. Also for any TIOTS we require:

[time determinism] whenever®ss’ ands-2+%" thens’ =s",

[time reflexivity] s 2+°s for all s € St°, and,

[time additivity] for all s,s” € St” and all dy,dy € R>o we haves-4td2 S jff

s-415¢" ands’ 4245 5" for somes’ € St°.

TIOTSs are abstract representations of real time behawWériuseTimed 1/0 Automata
(TIOAS) to represent them symbolically using finite syntax.

LetClk be afinite set oflocks A valuationoverClkis a mapping: € [Clk— R>o].
Givend € R>(, we writeu+d to denote a valuation such that for any clock Clk
we have(u+d)(r) = z+d iff u(r) = x. We writeu[r — 0], for a valuation which
agrees withu on all values for clocks not in, and gives O for all clocks in C CIk. Let
op be the set of relational operatorst = {<, <,>,>}. A guardoverClk is a finite
conjunction of expressions of the form < n, where< € op andn € N. We write
B(CIk) for the set of guards oveZlk using operators in the sep and #2(X) for the
powerset of a seX.

Definition 2. A Timed I/O Automaton(TIOA) is a tuple A = (Loc, qo,CIk E,
Act, Inv) where Loc is a finite set of locationg; € Loc is the initial location, Clk

is a finite set of clocksy C Loc x Actx B(CIk) x Z(CIk) x Loc is a set of edges, Act
is the action set Act Act @ Act,, partitioned into inputs and outputs respectively, and
Inv: Loc— B(CIK) is a set of location invariants.

If (¢,a,9,¢,¢q') € Eis an edge, then is an initial locationa is an action labely is

a constraint over clocks that must be satisfied when the edgeeicuteds is a set of

clocks to be reset, and is a target location. We will give examples of TIOAs in Sect. 4
The expansion of the behaviour of a TIOA = (Loc, ¢y, CIk, E, Act, Inv) is the

following TIOTS[A]sem = (Locx (Clk — R>0), (g0, 0), Act —), whereQis a constant

function mapping all clocks to zero, and is generated by the two rules:

— Each(q,a,p,c,q¢') € E gives rise to(q,u)-%+(¢’,u’) for each clock valuation
u € [Clk = R>¢] such that: = ¢ andu’ = u[r — 0],.c. andu’ |= Inv(q’).

— Each locatiory € Loc with a valuationu € [CIk — R>¢] gives rise to a transition
(q,u)-L5(q,u + d) for each delayl € R such that: + d = Inv(g).

Below, whenever we talk about the states and transitiongtD4, we mean the states
and the transitions of the underlying TIOTS. In particutard as stated above, the states
of this TIOTS are pairs of locations and clock valuations.



The TIOTSs induced by TIOAs satisfy the axioms 1-3 of Defimitil. In order
to guarantee determinism, the TIOA has to be determinisiiceach action—location
pair only one transition can be enabled at the same time.igkistandard check. We
assume that all TIOAs below are deterministic.

Implementationgmodels) are a subclass of specifications, which are amenabl
implementation in a real system. We assume that implementahave fixed timing
behaviour (outputs occur at predictable times) and systamsalways advance either
by producing an output or delaying.

Definition 3. An implementatior® = (St”, po, X¥, ") is a specification such that
for each state) € St” we have:

[output urgencylV p/, p” € St if p25Fp’ andp-4F'p” thend = 0 (and consequently,
due to time determinism,= p’), and,

[independent progresgid>0.p-4F) or (3d€R>o. ol € XL p-dyp’ andp’ 24F)

The above definition introduces implementations as subdsSBEIQI Ss, which simulta-
neously induces a subset of TIOAs space corresponding o (tese that are imple-
mentations when expanded to an infinite TIOTS).

Arun p of a TIOTSS from its states; is a sequence; 5 sy 25 ... 2Ly g
such thatforali € [1..n], s; 2 5,41 is a transition ofS. We writeRuns(s1, S) for the
set of runs ofS starting ins;, andRuns(S) for the set of runs starting from the initial
state ofS. We write States(p) for the set of states o present inp and, if p is finite,
last(p) for the last state occurring in

TIOAs are interepreted as two-player real-time games batvieeoutput player
(the component) and thaput player(the environment). Thaput plays with actions
in X and theoutputplays with actions in’:

Definition 4. A strategyf for the input (resp. output) playet, € {i, o}, on the TIOAA
is a partial function fromRuns([A]sem) to Act U {delay} (resp. Act U {delay}) such
that for every finite rurp, if f(p) € X thenlast(p) J@, o for some state’ and if
f(p) = delay, then3d > 0. 3s” such thatast(p) LN

For a given strategy, we consider behaviors resulting frioenapplication of the
strategy to the TIOA, with respect to all possible strategitthe opponent:

Definition 5 (Outcome [15]).Let A be a TIOA, f a strategy overA for the input
player, ands a state off A]sem TheoutcomeOutcome; (s, f) of f from s is the sub-
set ofRuns(s, [A]sem defined inductively by:

— s € Outcome; (s, f),
— if p € Outcome;(s, f) thenp’ = p —=+ s’ € Outcome;(s, f) if
p’ € Runs(s, [A]sem) @and one of the following three conditions hold:
1. eeAcl,
2. ecAct ande = f(p), LA]
3. e€RspandvV0<e <e. 35" last(p) —— 5" and f(p — s") = delay.
— p€Outcome; (s, f) if pinfinite and all its finite prefixes are i@utcome; (s, f)



Let MaxOutcome; (s, f) be the subset of maximal runs Ofitcome; (s, f), that is
p € MaxOutcome; (s, f) iff p € Outcome;(s, f) and eithep has an infinite number of
discrete actions, gs contains a finite number of discrete actions and either tbist
noe € ActUR>( and no state’ such thap = s’ € Outcome; (s, f), or the sum of the
delays inp is infinite.

For a given TIOA A, a winning condition W for input is a subset of
Runs([A]sem). We say thatV does not depend on the progress of the opponent (here
output) iff whenevep € W andp = p/ = p”, withe € Act, then either there exists
e’ € Act, d € R>o, a states and a rurp’”’ such thaty’ LINPECN p"" € W or there ex-
istsd € R>( and some statesuch thap’ 4, s € W. This restriction means that input
should always be able to ensure progress by itself and thatdtions of the opponent
should not be abused to advance the game, since we cannoteadsat the opponent
will ever make use of them. For a winning condititn, we write Strip(17) to denote
the subset oft” in which the runs not satisfying this condition are removed.

A pair (A, W) is aninput timed gameGiven a winning conditio?¥ for input,

a strategyf of input iswinning from states if MaxOutcome(s, f) C W. A states is
winningfor input, if there exists a winning strategy for input fremThe gamd A, W)

is winningfor input if the initial state ofA is winning for it. For an input timed game
(A, W), we writeW; (A, W) for the set of winning states for input atfd( A, W, s) for
all winning strategies for input from. The winning conditions considered here are:

— Reachability objective: the input player must enforce a@etl of “good” states.
The corresponding winning condition is defined as

WR (Goal) = Strip{p € Runs([A]sem) | States(p) N Goal # 0} (1)

— Safety objective: the player must avoid aBad of “bad” states. The corresponding
winning condition is defined as:

WS(Bad) = {p € Runs([A]sem) | States(p) N Bad = 0} (2)

— Buchi objective: the player must enforce visiticdgal, a set of “good” states, in-
finitely often. The corresponding winning condition is

WB;(Goal) = Strip{p € Runs([A]sem) | States(p) N Goal| = co} 3

We define the outcome3utcome, (s, f) andMaxOutcome, (s, f) of a strategy of
the output player, as well as output timed games and all thtecbnotions, by swapping
Act andAct, in the above definitions.

We now discuss theefinement relationwhich relates two real time specifications,
by saying which one allows more behaviour:

Definition 6. A specifications = (Stg, s0, X, —°) refines a specificatioff = (St, o,
X, =), written S < T, iff there exists a binary relatiod C st’ x St containing
(s0,to) such that for each pair of states, ¢t) € R we have:

1?7

1. if 25Tt for somet’ € St thens-255s' and (s, ') € R for somes’ € St
2. ifs21,5 for somes’ € St thent 25T+ and(s',t') € R for somet’ € St



3. ifs- 455 for d € R>o thent-47t and(s',t') € R for somet’ € St

An automatord; refines automator,, written A; < Ay, iff [A1]sem< [A2]sem If 44
is an implementation then we also say that it satisfieswritten 4; = A,.

Refinement between two automata may be checked by playirfgty game on the
product of their two state spaces, avoiding the error s{atbsre error states are pairs
of states ofS andT" for which one of the above rules is violated). See detailslin |
13]. Since the product can be expressed as a TIOA itselfefireement can be checked
using the safety game as defined above.

Consider two TIOTSsS = (Stis5, £S5 %) andT = (St sT, £ T). We say
that they arecomposabléff their output alphabets are disjoidEs N X7 = . The
productof S andT is the specificatiors ® T = (St @ St, (s5, 1), £58T 5@T),
where the alphabef*®” = x5 U X7 is partitioned into inputs and outputs in the
following way: X577 = (£5\ £T)u (27 \ &%), £59T= %y £T. The transition
relation is generated by the following rules:

sa8s  qe XS\ 2T taly  aeXT\ 55

indep-I indep-r

(S,t)a—>S®T(SI7t) [ p ] (S,t)L)S®T(S,ﬁI) [ p ]
595ty aeRsoUEPTUDINZT)U (25N P fsynd]
= sync

(5. 1) 5 (/. 1)

Let undesirable be a set of error states, where a safety property is violdteax-
ample by starting the engine of an elevator when its door @&pplwo specifications
areusefulwith respect to each other if there exists an environmentéyaavoid unde-
sirable states of their product. Existance of such an engient can be established by
finding a wining strategy in the ganvgS(undesirable) for the product automaton.

The parallel composition of andT is defined asS |T = prung S ® T'), where
the prune operation removes froshe 7" all states which are not winning for the input
player in the gaméS ® T, WS(undesirable)). Parallel composition is defined both for
specifications and implementations, as both are TIOTS Alsimilar construction
can be given on their finite representation, TIOAs [11], ahdan be used in tools.

In[11] we give constructions for two other operators coneglas winning strategies
in time games. For TIOAs (TIOTSdp and C we define conjunctioB A C, which
computes an automaton representing shared implemergaifoB and C, and also
quotientB \ C, which computes a specification describing implementatthat when
composed withC' give a specification refining. Rather than define these operations
explicitly we characterize their essential properties] asfer the reader to [11] for
precise details of the constructions. L&be an implementation. Then:

AE=BAC iff AEBandAE=C (4)
AEB\C iff C|A<B (5)
3 Bichi Objectives

Symbolic On-The-Fly Timed Reachabil{$OFTR) [8] is an efficient algorithm for
solving two-players reachability timed games used PPRAL-TIGA [4]. It operates



on the simulation graph induced by a TIOA representing theegdt follows an estab-
lished principle: begin with all reachable states and pgapathe winning states back-
wards. Its major contribution was the use of zones rather thgions. Zones, which
are unions of regions of Alur and Dill [3], are the most effitieepresentation of clock
valuations known so far. In the following we recall SOTFTRtend it to solve Bichi
objectives, and provide a new algorithm to verify Blichi aafiéty objectives combined.

3.1 Solving Bichi Games with SOTFTR

For a TIOTSS and a set of stateX, write Pred,(X) = {s € St| 3¢’ € X. s %35’}

for the set of alla-predecessors of states ¥. We writeiPred(X) for the set of all
input predecessors, anéred(X) for all the output predecessors &f, soiPred(X) =
Uae 55 Predq (X) andoPred(X) = [J,¢ x5 Preda(X). Also posty 4,(s) is the set of

all time successors of a statghat can be reached by delays less than or equéj:to
postyg 4,1(s) = {s' € St | Id € [0, dy]. s-4+%'}. The safe timed predecessors of a set
X relative to an unsafe sét are the states from which a stateXhis reached after a
delay while avoiding any of the states¥h

cPredy(X,Y) = {s € St ‘ 3dy € R>p.3s" € X.s-d05g' andpost[‘%_’do](s) cY}

Let A be a TIOA and7 a set of “good” states ifid]semthat have to be reached, that
is the objective i8VR (G). Consider the following computation [21, 8]:

HQ “— @
repeat Hy1 « Hy Um(H)UGfor k=0,1,...
until Hk+1 = Hj

wherer(H) = cPred;(iPred(H ), oPred(States(Runs([A]sem)) \ H)). Ther; operator
computes the predecessors of Hethat can enforcé/ in one step, regardless of what
the output player does. It computes the timed predecesgertsi() of the discrete pre-
decessors by input actions &f (iPred), avoiding the discrete predecessors by output
actions 6Pred) of the states not it/ . The fixpoint ofr; is the set of states in which the
input player can enforce reaching@feventually [21, 8]. SOTFTR is a symbolic zone-
based implementation of the above fixpoint. The main difficinl implementation are
handling unions of zones, checking inclusion, and handliegpredecessor operators.

The winning states of the output player can be computed blacemw = with
7o(H) = cPred;(oPred(H ), iPred(States(Runs([A]sem) )\ H)). Thus, in the remainder,
we focus on solving the game for the input player only.

The following algorithm for solving Blichi timed games is ataptation of the
above procedure given in [21], adjusted for a TI@4nd a Bichi objective. The set of
“good” statesGoal, is to be enforced infinitely often:

Wo «+ States(Runs([A]sem))
for j =0,1,...repeat
H() < @
repeat Hy1 < Hj U mi(Hy) U (Goal Nmi(Wy)) for k=0,1,...
until Hk+1 = H,,
W1 < Hy
until Wj+1 = Wj



Observe that a Biichi objective is essentially a closure afahability objective: it
corresponds to finding a subset of ‘godgbal states, which themselves can warrant
controllable reachability to the good subset itself, arehtlolving for reachability of
that good subset. In the above computation, the inner lods ftates that can enforce
a Goal state in at least one discrete step, and uses this informiatidetermine which
Goal states are actually “good” (the intersection witbal). The outer loop removes the
Goal states that are not “good” from the target set of the innep.dw the fixpoint, we
find both the subset of godgbal states and the states that can warrant reaching them.
SOTFTR itself computes the inner loop of this algorithm wigéa: Goal N7 (W),
this observation leads to ttf&ymbolic Timed Biichjames (STB) algorithm:

Wp < States(Runs([A]sem))
repeat W;4, < SOTFTRGoal N m;(W;)) for j =0,1,...
until Wj+1 = Wj

Observe that STB uses exactly the same operations on zoBE€¥T&STR, which means
that it can also be implemented in an efficient manner.

Theorem 1 ([8, 21]).For any input Buchi timed gamed, WB (Goal)), STB terminates
and upon terminatiofiV; = W, (4, WB;(Goal)).

The algorithm of [21] computes over infinite sets of statesr @gorithm is nothing
more than a symbolic implementation of the original. By ¢andion and because of
[8], the above correspondence is obtained directly. Teation is shown in [21].

3.2 Combining Safety and Biichi objectives

We now strengthen the Bichi objective so that not onlyGloel states are visited in-
finitely often, but also the set of unsafe staBes is avoided Bad N Goal = ()):

WBSGoal, Bad) = Strip{p € Runs([A]sem) | States(p) N Bad = () and
|States(p) N Goal| = oo} (6)

Solving such games is of clear interest. For example, onddnike to ensure that the
Inputs have a strategy to avolhd while ensuring that time is elapsing [16], in order
to eliminate the so called Zeno-behaviours. It turns out ih&ad can be expressed as
a finite union of pairs of locations and finite unions of zorteen this objective can be
reduced to the usual Blichi objective by applying the follogviransformation to the
game: (i) add a fresh locatiaB ¢ Goal; (ii) add a freshoutputactionerr ¢ Act; (iii)

for each pair(q,|J,_, ,, Zi) € Bad such that; is a location ofA and|J,_, , Z; is a
finite union of zones, add edgesE; (i = 0..n) labelled byerr from ¢ to B such that
for all 4, the guard off; is Z;.

Since locationB has no outgoing edges and does not belon@dal, enteringB
means losing the Biichi game. Suppose we want a winning gyréte Input. Observe
that the added edges belong to the opponent. By definitiontobmes, going through
any state irBad means that one of these edges can now be taken by the Outpet pla
and, asB ¢ Goal, the game is lost for the Input player. The following theomtpresses
the correctness of our transformation.



Theorem 2. Let (A, WBS(Goal, Bad)) be a TIOA, andd’ be its modification obtained
by the above construction. Théf(A4, WBS(Goal, Bad)) = F;(A’, WB (Goal))

Proof. By constructionF;(A’, WB;(Goal)) C F;(A, WBS(Goal,Bad)). A winning
strategy inF;(A’, WB;(Goal)) will never satisfy a guard i that allowsBad to be
reached, because these guards lead to the newly-addedialgdocation inA’.

The converse follows directly from the definitions of wingiconditions. Assume a
strategy in%; (A4, WBS(Goal, Bad)). Such a strategy is a winning strategy YiB; (Goal)
by construction sinc8/Bis a weaker condition thaW/BS a

An Application: eliminating Zeno Strategie€onsider a
TIOA A and a seBad of bad states. Our objective is to find it
the set of states from which Input (symmetrically Output@
has a strategy to avoiHad while letting time elapse —
as opposed to, for example, taking infinitely many discrete y=0
transitions without any delay transitions. Fig. 2: Monitor for non-
In order to generate non-zeno strategies consider #emo strategies
productA x Z of A and the TIOAZ of Fig. 2. Then solve
the timed gaméA x Z, WBS(Goal, Bad)), whereGoal is the set of states ol x Z
in which Z is in locationNonZeno. To fulfill this objective, Input needs to avoihd
andensure thalonZeno is visited infinitely often: once ilNonZeno, the only way to
revisit it is to pass throughit. This loop requires that time unit elapses, so repeated
revisit of NonZeno ensures time progress.
Note that this does not prevent the opposing player fromguaispoiling strategy
producing zeno runs to prevent fulfillment of the objective.

NonZeno

Remark 1.0ne problem with the above setup is the effect of addinglselfs. Our
interface theory requires TIOA to be input-enabled. Thisangethat, in any state of
the game, the Input player should always be able to react pofahe Input actions.
This typically means that states have implicit loops on trgmtions when the designer
does not specify any other transition for an input. Now, assthat Output wants to
win the game and guarantee that time elapses. Input coublyalplay such an input-
loop and hence block time. This means that the potentialtiaddof arbitrary inputs
may corrupt the game. A solution to the above problem is tmblénput each time it
plays[16]. Then, the Input loses the game if there is a pditinte after which it is
blamed forever. De Alfaro et al. were the first to use blamesceh also add a monitor
for the blame situation. Another solution, in order to avaditling an extra automaton,
is to use a counter in ECDAR to bound the number of Inputs (@g)pthat can be
played successively.

4 Case Study

The ideas just presented have been implemented in the tddARE10], which sup-

ports graphical modeling of TIOAs, computing compositigrerators (including quo-
tienting), and reachability analysis. For this paper, weetextended ECDAR with sup-
port for Blichi and Buchi with safety objectives. We applyithe analysis of a simple
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but realistic example: a sensor component and the softvweangred to interface with
it.> The case study serves both to elucidate some of the tectdefiaitions and to
demonstrate their practicability.

4.1 Timing diagram model

The Sharp GP2D02 infrared sensor is a small component fosumieg short distances
and for detecting obstructions. Such sensors are incagabirato larger embedded sys-
tems through two communication wires which carry a protaxfolising and falling
voltage levels. The four main components of a sensor sudrsyate shown in Fig. 3a:
an instance of theensor adriver component of a larger systemyim wire controlled
by the driver and read by the sensor, angatwire controlled by the sensor and read
by the driver. The communication protocol between drived aensor is described by
the timing diagram of Fig. 3b.

The timing diagram describes the permissible interactietaeen a driver and a
sensor. It represents a (partial) ordering of events andirtiag constraints between

5 Seehttp://www.tbrk.org/papers/iwadt10.tar.gz for the implementation in ECDAR



them. With careful interpretation, against a backgrounemgineering practice, the
timing diagram can be modeled as the TIOA shown in Fig. 4 amddferth calledr .
Note that constants are multiples @fi ms, so that the smallest constant in the tim-
ing diagram (.2 ms) can be represented by an integer constant (2) in the mbius|
model is the result of several choices and its fidelity cary del justified by informal
argument [6, Chapter 4].

We will now step through the timing diagram and the TIOA moideparallel de-
scribing the meaning of the former and justifying the dstaflthe latter.

The interaction of driver and sensor is essentially quitgpe: the driver requests a
range reading, then after a brief delay the sensor signalstreading has been made,
the driver triggers the sensor to transmit the reading bhibyand, finally, the process
is either repeated or the sensor is powered off. This intieratakes place entirely over
the two communication wires.

The signal controlled by the driver is shown in the top halftef timing diagram.
Its most obvious features are the falling and rising tréors#, these have been mod-
eled in the TIOA as outputs called, respectivelyl! andvinH!. The driver may also
perform two other actions which are not entirely evidentfrthe timing diagram. It
may sample thgoutsignal to read a bit transmitted by the sensor, which we sgmite
by an output calledample!, and it may stop using the sensor, which we represent by
an output calleghowerOff!. The signal controlled by the sensor is shown in the bottom
half of the timing diagram. The rising and falling transit®on this signal are mod-
eled as outputs called, respectivelyutL! andvoutH!. In fact, all of the actions in the
model are outputs because the timing diagram describesadkystem. The model
is thus trivially input-enabled and there is no need for-&mdping input transitions on
each state. Furthermore, the model can be simulated irtimolsince all channels in
ECDAR must be broadcast channels (i.e. outputs are norkibkpc

The driver requests a range reading withL!, i.e. by lowering the voltage level
of vin. The sensor responds withutL!, it then performs the necessary measurements
before signaling completion wittoutH!. The timing diagram guarantees that the sensor
will complete a reading and respond bef@fims or moréave passed, after which the
driver may perform ainH!. This sequence can be seen in the model in the transitions
linking statesTy—T1,. We model the timing constraint by resetting a claclwvhen the
initial vinL! occurs, and adding the location invarianK 700 to statesl}; and7s. By
rights this invariant should be strict, i.e.< 700, but this is not currently permitted in
ECDAR:.For strict compliance with the timing diagram we shioalso add the guard
x > 700 to thevinH! transition betwee’s and Ty, in practice, however, there are
implementations that do not wait the fJll0 ms but rather respond tautH!. Both
possible behaviors will be examined more closely in the sakkection.

After a reading has been made, the driver transfers the bighof the result from
the sensor, from the most (MSB) to the least (LSB) signifitetntor each bit, the sen-
sor sets the level ofoutaccording to the value being transmitted, hence the ‘ctbsse
blocks’ in Fig. 4. The timing diagram could be more preciseudlihe details, but in
our interpretation the driver triggers the next bit valugwéavinL!, the sensor responds
within a bounded time, and then the sensor sayiple! the value and reseftin with
avinH!, in any order, before the next bit is requested. The trigggrinL! appears in



the model fromT, for the first bit and fromis for subsequent bits. The first action
must occur irD.2ms or lesshence the invariant ofi,. The associated transition resets
two clocks:z, for enforcing thelms or moreconstraint across cycles, apdfor con-
ditions on response times within each cycle. It also setsthariablesb, for counting
the number of bits transmitted;, for monitoring the level ofout andchanged, for
limiting oscillations onvout We use thew variable to ensure the strict alternation of
voutL! andvoutH!, an alternative approach is shown later. Two other corstampear
around the loofd5—T5: maxtrans is a limit on the time it takes foroutto change after
a triggeringvinL!, andminspace is the minimum width of pulses ovin. We set both
constants to zero for this case study.

Finally, after transmitting eight bits, the driver and semeeturn their respective
wires to a high level, and, aftdr.5ms or moreeither another reading is requested, or
the sensor is powered off. The timing constraint is expiasean invariant off'9, i.e.

a guarantee on the behavior of the sensor, and guards omiisiitwns fromi'10, i.e. a
constraint on the behavior of the driver. The invariantghticlosed and the guards are
left-open for the same reasons given above for7thiems constraint. Importantly, they
do not overlap, so that time alone can be used to enforce thexing between sensor
and driver actions.

ECDAR is used to verify that the model is a valid (determin)stpecification, and
also that it is consistent, i.e. that it has at least one valjglementation. We can also
show two basic properties of the timing diagram model. Tt fihatvinL! andvinH!
alternate strictly, is expressed using the automatéh shown in Fig. 5b, and verified
by the refinemenf” < V. The second, thatoutL! andvoutH! alternate strictly,
is shown similarly using/°%“¢, shown in Fig.5c, and the refineméeht < V°“. In
fact, both properties can also be shown, using compositigrihe single refinement
T S (V’Ln | Vout).

4.2 Separate driver and sensor models

While the single automaton model of the previous sectionssitable formalization
of the timing diagram, there are at least two motivationsfeating separate but inter-
acting models for the roles of driver and sensor. First, $kisaration emphasizes the
distinct behaviors of each and clarifies their points of $yonization; each of the two
wires is, in effect, modeled separately. Second, each ohtitels may be used in isola-
tion. This possibility is exploited in an appendix of thelfugrsion of this paper where
a separate driver model serves as the specification for almabde implementation in
assembly language.

The components of the models are shown in Fig.5. We discesdriier models
first, then the sensor, before relating them all to the tindiaggram model.

The driver model.As previously mentioned, there are two ways for a driver todve
after it has requested a range reading: it can wait for agigansition on theoutwire,

or it can just wait700 ms regardless. We model each possibility separately, botters
shown in Fig. 5a. The model that responds to the sensor eveaitédD<?, it comprises
all locations except the one labelédl, which should be ignored together with all of its
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Fig. 5: Sensor and driver models

incoming and outgoing transitions. The model that alwayaydsis calledD?¢, it com-
prises all locations except those labetiail andde2whose connected transitions are

also excluded. The models cannot be combined without intriod) non-determinism

Aside from these initial differences the two models behaleniically and their
structures resemble that of the timing diagram model exitegitevents owoutfrom
the sensor are now modeled as the input acti@usL? andvoutH?, and a counter-
part for the statdy is not required. We explicitly model input-enabledness tgliag
self-loops, which, although not mandatory, since actiae@ioon broadcast channels,
are necessary in ECDAR for verifying refinement. Note thahhiriver variants re-
quire little interaction with the sensor, relying insteadtoming assumptions to ensure



synchronization. In fact only ¢ reacts to sensor events directly, through\betH?
transition betwee®{¥ and D$”, though both models do sample the leveVotit

Refinement can be used to show a basic property of both driveels, thatinL!
andvinH! alternate. This property is expressed as the autoniatéyshown in Fig. 5b,
and we use ECDAR to show e’ < V™ andDd < V",

We would also like to claim thabde refinesD®?, i.e. thatD < D®’, sinceD®"
can always wait after receivingutH?, but ECDAR rejects this claim sind@?° does
not guarantee thabutH? will precede its initialvinH!. In fact, this type of refinement
can only be shown in a conditional form where assumptionsherenivironment are
made explicit. We revisit this idea after presenting a mdaiethe sensor that embodies
sufficient assumptions.

The sensor modelThe sensor modé$ is shown in Fig. 5d. Events on then wire
are now modeled as the inputislL? andvinH?, with additional self-loops on certain
states, and the outputsmple! andpowerOff! are not needed. The initial segmesit—
S3, mimics the corresponding part of the timing diagram mobet,the clocking loop
is reduced to a single locatio$y, with five self-looping transitions and one outgoing
transition.

In location Sy, the effect of the inputsyinL? andvoutL?, depends on the time
elapsed since the last request for a bit, as measured bydtieagland the number of
bits remaining to transmit, as tracked by the coubtdihe inputvinL?, which requests
the next bit, is ignored if it occurs (again) within the pefigiven to the sensor to set the
level of vout and also when all bits have been transmitted, i.e. when0. The input
vinH! is ignored until all bits have been transmitted at which tiprevidedmaxtrans
units have elapsed since the lastL?, it triggers an exit front,. The outputsoutL!
andvoutH! may only occur withirmaxtrans units of the lastinL?, and, furthermore,
only at most one output may occur within any cycle, that isveet any two successive
and ‘legal'vinL?s. The former constraint is expressed in the clausemaxtrans, and
the latter using the variablshanged.

Instead of a&hanged variable, an earlier model [6, Figure 4.16] has two stateis wi
three transitions from the firstifanged = tt) to the seconddhanged = ff): one
labeled withvoutL!, another withvoutH!, and the last unlabeled. This lastransition
marks the possibility that the sensor decides not to chamge/altage level, which
occurs when two consecutive bits of a range reading arei@nBesides being more
explicit, the two-state version is also more liberal sirtds ready to acceptinH? and
vinL? as soon as the value gbuthas been set. Even withaxtrans = 0 there is a
difference since in the current model there is always a reyo-delay after a triggering
vinL! before subsequenrinL! or vinH! actions can influence the sensor. In any case,
steps are not permitted in TIOA and replacing them with ariexputput only makes
modeling awkward, and, moreover, it is unnecessary sinealtiver models always
wait and never respond immediatelyviaL! or vinH! whose occurrence is a sufficient
but not necessary indication of a stable valuesont

The sensor model as it stands allows arbitrary interleagingutl! andvoutH!.
This is in contrast to the timing diagram model of Fig. 3b, véha variablew, tracks
the level ofvout, or effectively which ofvoutL! or voutH! occurred most recently, and
is used to constrain output events. The required altergatmavior is recovered using



D yinL! Attacker plays outputs on left f

De .vinL! Defender’s response on right gf
D4 waits 701 ms Attacker may delay on left of
De” waits701 ms Defender’s response on rightof
D9 vinH! Attacker plays outputs on left f
no response Defender loses!

Table 1: Counterexample fdp?¢ < DV

the conjunction operator and the TIOA®“!, depicted in Fig. 5c, giving the complete
sensor specification:S A V°ut). Here, the conjunction operator obviates the need
to update and query a state variable on multiple transitiénspecific constraint is
expressed in a localized and obvious form and the rest of tidehtan be constructed
under the assumption that it will hold. In ECDAR, the two autga,S and Vo4,
execute in parallel and must synchronizevontL! andvoutH!, neither of which may
occur otherwise. Unlike for the timing diagram and the drivedels, there is no need
to separately verify the alternation of outputs—it is gudead by construction.

Relations between the modelow that we have a few different models, we turn our
attention to their interrelationships. It turns out thataf the driver models is more
general than the other under certain assumptions. Aftefyireg that fact, we turn
our attention to validating the composition of the drivedaensor models against the
timing diagram model. We also consider how the quotientaemight be applied.
The two driver models differ only in their initial interaoti with the sensor, after
requesting a range reading?c always wait00 ms wherea®“’ may respond as soon
as the sensor raisesut One could thus suppose that is more general tham ¢,
since it can also refuse to act befai® ms has passed even after receivingatH!.
But, as described earlier, a first, naive attempt to showafieamentD4® < D¢ fails!
The counter-example strategy can be simulated in ECDAR)gthe results shown in
Table 1. There is no guarantee that the inputs needdebwill be provided. We must
make these assumptions on the environment explicit byadsttating the relation as

(Dde | (S/\Vout)) S (Dev | (S/\Vout»'

which is readily validated by ECDAR.The verification fails if D% and D’ are
swappedD*©’ can perform ainH? whenz < 700 while D9 cannot.

The compositions of the driver and sensor models have bemoged as alterna-
tives to the timing diagram model. We state this, for the ngeeeral driver model,
as two properties(D®’ | (S A Vout)) < T, andT < (D¢ | (S A V°ul)). Both of
which are verified almost instantaneously by ECDAR. For ihglar properties with
D4 instead ofD®”, only the version withI" on the right of the refinement holds; as
would be expected.

Even ignoring the conjunction operator, the possibilityvefifying a refinement
with a composition on the right-hand side is interesting;duse it is not possible in

8 In the current version of ECDARS andV °** must be explicitly duplicated.



any existing tools for checking timed automata refinemeat.iffstance, current im-
plementations [7] of the usual construction for checkimgetil trace inclusion [18, 23]
require that the refined specification is an explicit aut@mafhe capability to ad-
dress compositions is one advantage of incorporating tlireeraent verification into
the model-checker itself.

There are limited opportunities to apply the quotient ofmeran this case study,
perhaps because there are only a small number of models armp#rators are not
nested in especially complicated ways. There are, thouwghtytpes of properties that
may be attempted.

The first type of property uses the quotient on the right-hsidé of a refine-
ment instead of composition on the left-hand side. For mstawe can verifyD¢’ <
(T \ (S A Veut))in ECDAR. The right hand side expresses the idea of the tirding
agram modulo certain assumptions on the environment. Gllyréne tool requires the
explicit definition of universal and inconsistent stateswlusing the quotient operator,
and simulations are not possible. These issues will be adédan future versions.

Second, we could try the quotient on the left-hand side ofingment. For instance,
to propose the propertyl’ \ D) < (S A V') as a means of finding out whether
the sensor model is maximal with respect to the timing diaggad driver model. This
cannot work in general, however, since as sooP&scannot do an output from a state,
like vinH! from the initial state for example, the quotient will haverartsition to the
universal state from which any output or delay can be chaseany time, to challenge
the other side of the refinement.

Biichi objectives.Some aspects of specifying liveness are addressed by thetlaigs
presented earlier, and supported in ECDAR. It is possilolegkample, to determine
whether a given combination of a TIOA and a liveness condrakpressed as a Biichi
objective, are consistent; i.e. whether refinement is ptesdBut other important aspects
are not yet addressed satisfactorily. Most notably, theradtion of Blichi constraints
and refinement s limited.

Buchi objectives offer a way to further constrain specifaag. For example, con-
sider adding an additional requirement to the timing diegraodelT": if an initial
range reading is requested, the system must eventuallywered off. We will inter-
pret this to mean that two behaviors are allowed: 1. restingvier inTy, or, 2. termi-
nating in7y;. Our first attempt is to simply try to solve a Biichi objectiee fhe current
model:(T', WB({Ty, T11})). But this is not correct, and ECDAR reports that the model
is inconsistent. While the model startsfiy, and77, is always reachable, the Biichi ob-
jective is only satisfied if either dfy or 71, is reentered infinitely often. Self-looping
output transitions must be addedfp andT7; to allow ‘resting’ in these states. If we
do this—choosing an arbitrary output that will not occur iny @ther models—and call
the modified versiofi”, ECDAR confirms that?’, WB({1},77,})) is consistent.

The modified modelis easily adapted to allow a system tharstops taking range
readings(T’, WB({T}, T{o,T{1}))- This model is obviously consistent since increas-
ing the set of states in the Buichi objective cannot reducséhef possible implementa-
tions. More information can be gained by verifying the cetesicy of 77, WB ({17, })).
which confirms that the model allows unbounded repetitiohthe protocol. Com-
pliance with the Blchi objective is achieved by pruning awlag transition labelled



powerOff!, so this verification does not show that the unadorned mddeloes not
allow termination, only that the model can choose to cycletiooously. Verifying the
consistency of a model with a Biichi objective can be usefal sanity check.

While Buchi objectives in ECDAR are quite useful for cheakzonsistency prop-
erties, they work less well in combination with refinemermtr Fastance, in ECDAR we
can show(T”, WB({T}})) < (T", WB({T{,}))-

This is indeed correct, since any implementation of theHefid side is also an
implementation of the right-hand side, but it could be cdaséd misleading, since
the left-hand side specifies a system that never starts & raagling, while the right-
hand side could be interpreted as specifying a system tlat sps performing range
readings whereas, in fact, it is a system where it is posdilfenot strictly necessary,
to keep performing range readings. The source of this mdmiat that the current
refinementis based on partial observations rather thanledeqgnes, which is adequate
for safety but not for liveness.

The pruning of output transitions that can result from thembmation of a TIOA
and a Buchi objective gives models where a constraint thatigosedly on infinite
behaviors also constrains finite behaviors, which, whitenezessarily bad, is perhaps
not completely reasonable [1]. The methodological impi@res for our theory are not
yet clear, but we note here that this situation can be deterdimg refinement verifica-
tion in ECDAR. Themachine closurg?] of a TIOA A and a Bichi objectivé3 can be
checked by the refinemendt < (A, B), which will fail if a reachable output transition
in A is not presentiA, B).

5 Summary and Future Work

We have shown that ECDAR and the underlying theory, are golemough to handle a
small—in terms of the scale of systems developed by industnyt realistic case study.
The input/output semantics of TIOA works well for open sysée and the game-based
refinement semantics, i.e. the idea of challenging with iefrom the right-hand side
and outputs or delays from the left-hand side, quickly cotnesgem natural. Including
refinement testing in the model checker itself is much moreenient than having to
pass models through an external tool, and the concomitaturieof allowing composed
models on either side of the relation is a powerful one. l§ntde conjunction operator
is a very convenient modeling feature.

Still, several elements could be improved. While Biichi obijes are currently not
without use, a different notion and implementation of refieat is needed to support
more sophisticated applications. The quotient operatsupgported by ECDAR, but its
effectis not easily visualized or simulated. More work ieded to determine how it can
be usefully applied to system development and verificattomsensor case study is too
limited in this regard. ECDAR takes advantage of the matup@AAL user interface,
but strategies, goals, and the effect of pruning are intisremore complicated and
harder to understand than are simple traces, more work thede® understand how
best to compute and communicate this information. Furteenthe new operators and
analyses available in ECDAR make it natural to work with riplédt pairings of system
declarations and properties, but this is not yet well sugabloy the user interface.
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