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Figure 3: The different gas/liquid flow paths of the reformer system, also with visible temperature, pressure and gas sample points.
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Figure 7: Gas concentrations of the presented test series. The
hydrogen CO2 and CO measurements shown are based on a gasand a set of different measurement conditions are fixed and imposed on the running system. The hydrogen, CO2 and CO measurements shown are based on a gas
sample where all liquid has been condensed i e dry gas measurement
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sample where all liquid has been condensed, i.e. dry gas measurement.
Whereas TOC shows the methanol content of the wet gas sample.input variables for the system in the presented measurement data are: methanol/water pump flow,

reformer operating temperature evaporator heating air flow and temperature and burner hydrogen The resulting output gas of the reformer show a
Whereas TOC shows the methanol content of the wet gas sample.

reformer operating temperature, evaporator heating air flow and temperature, and burner hydrogen
fl Th lti t t fl d t ti f th t b i fi

The resulting output gas of the reformer show a
h d t t f d 72% i iflow. The resulting temperatures, flows, and gas concentrations of the system can be seen in figure hydrogen content of around 72%, increasing

4,5 and 7. slightly with increasing temperature. An important, s g y c eas g e pe a u e po a
contaminant in the gas is CO which even incontaminant in the gas is CO, which, even in
HTPEM f l ll ff t th f It iFigure 1: The Serenergy H3 350 Mobile

400  

MFC Air Evaporator [L/min]
MFC Air Burner [L/min]

400  

FC exit Air
Evap pipe HTPEM fuel cell affect the performance. It is seenFigure 1: The Serenergy H3-350 Mobile

Battery Charger; an integrated 350W 350

MFC Air Burner [L/min]
MFC H2 Burner [L/min]
Pump flow [mL/hr]

350

Evap pipe
Reformate output
Burner exhaust
FC A d it that the CO content varies between 1-2000 ppm

Battery Charger; an integrated 350W
HTPEM fuel cell system fuelled through a

350 FC Anode exit
Burner temperature
Reformer temperature

I d h i h

pp
to as high as 20000 ppm in the presented

y g
methanol reformer [www.serenergy.dk]. 300 300

Burner/Reformer setpoint

In order to characterize the to as high as 20000 ppm in the presented
measurements These are all within acceptableperformance of the methanol measurements. These are all within acceptable

f h BASF P2100 HTPEM f l ll
250

m
L/

hr
] 250

o  C
]performance of the methanol

reformer in the FC system the ranges for the BASF P2100 HTPEM fuel cells200

/m
in

 , 
m

200ra
tu

re
 [o

reformer in the FC system, the
f d l i t d used in the Serenergy H3-350, but depend muchFl

ow
 [L

/

Te
m

pe
r

reformer module is separated used in the Serenergy H3 350, but depend much
on the reformer temperature and can easily

150

F

150

from the fuel cell stack, to on the reformer temperature, and can easily
d bl it f t if t l f th t i

100 100,
enable more precise measure- double quite fast if proper control of the system is100

enable more precise measure-
ments of the reformer itself not prioritized and taken into consideration. The50

50

ments of the reformer itself, p
same is valid for the unconverted methanol0

disconnecting the influence same is valid for the unconverted methanol,
which affect on fuel cell lifetime is still unclear

0 2000 4000 6000 8000 10000 12000
0

Time [s]
 

0 2000 4000 6000 8000 10000 12000
0

Time [s]
 

Figure 5: The operating temperatures of the methanol reformer system
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Figure 5: The operating temperatures of the methanol reformer system,
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predictions of the important system states isshown in figure 2. predictions of the important system states is

d i h lif i f hshown in figure 2. expected to increase the lifetime of such system,Figure 6: The reformer temperature is controlled by two control loop in a cascade control structure the inner loop controlling the burner temperature
if combined with advanced control strategies.

Figure 6: The reformer temperature is controlled by two control loop in a cascade control structure, the inner loop controlling the burner temperature,
which is has a faster dynamic characteristic than the reformer temperature, which in the outer loop is controlled by slowly adjusting the burnerReformer/BurnerEvaporator heater if combined with advanced control strategies.y p , p y y j g
temperature.

Th i t ti f f l ll t k d th fThe reformer temperature is affected by many disturbances, the burner temperature, the fuel flow, The integration of fuel cell stack and the reformerThe reformer temperature is affected by many disturbances, the burner temperature, the fuel flow,
the methanol conversion process and multiple heat losses in the system In order to control this will play an important role in the next phase of thethe methanol conversion process and multiple heat losses in the system. In order to control this
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imposed on the reformer set point temperat re The air flo to the b rner is adj sted to meet the

Fuel tank Control system p
approaches should be matched to the particularimposed on the reformer set point temperature. The air flow to the burner is adjusted to meet the

Fi 2 A i t l t f th approaches should be matched to the particular
application and its requirementsburner set point temperature. Meanwhile the slower acting reformer temperature controllerFigure 2: An experimental setup of the

methanol reformer including evaporator application and its requirements.p p g p
adjusts the burner set point to finally enable control of the reformer temperature

methanol reformer including evaporator.
adjusts the burner set point to finally enable control of the reformer temperature.
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