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Summary 

 

“It's surely our responsibility to do everything within our power to create 

a planet that provides a home not just for us, but for all life on Earth” (Sir 

David Attenborough, 2016). 

As a part of the response to challenges related to climate change, it is necessary to 
transition from fossil-based linear economies towards circular bioeconomies. This 
requires the development of technologies to use the world’s biomass resources 
efficiently, minimising waste production. However, another challenge, soil and water 
salinisation, is also becoming more prevalent worldwide. Indeed, we are required to 
enhance the use of biomass, and, at the same time, soils are becoming toxic for the 
majority of plants to sustain their growth and accessible freshwater resources are 
depleting. This is happening at an increasing rate due to salinisation and the higher 
occurrence of droughts and heat waves. Only approximately 1 % of the world’s known 
flora are halophytes, naturally salt-tolerant plants that thrive in saline environments, 
and harnessing these plants for agricultural use has been suggested as one of the key 
implementations to face the upcoming challenges. 
 
In this explorative PhD project, halophyte species suggested for biosaline agriculture, 
namely, Crithmum maritimum, Salicornia europaea, Salicornia ramosissima, and 
Tripolium pannonicum, were evaluated for their potential towards green biorefinery 
applications. In green biorefineries, which have been developed to produce feed 
protein from grass biomass and agro-residues, biomass is fractionated into green juice 
and fibres, and these fractions are processed separately. In this project, the effect of 
the cultivation salinity on the fractionation performance and distribution of primary 
metabolites in halophytes was assessed, and significant effects were observed. 
 
After fractionation with a screw press, the protein precipitation from saline halophyte 
green juice was investigated using methods established for forage-based green 
biorefineries: heat coagulation, acidification, and lactic acid fermentation. 
Afterwards, the production of protein-enriched concentrate by lactic acid fermentation 
of S. ramosissima juice with probiotic bacterial strain was studied further in a 
bioreactor setting. The use of halophytes for the production of functional animal feed 
supplements could help to diversify the source of protein and decrease the dependency 
on imported feed by providing a local source, especially in the arid and semi-arid 
regions, where the cultivation of forages and crops is limited. 
 
Halophytes produce high concentrations of bioactive secondary metabolites as their 
response to environmental stress, such as high salinity, UV radiation, extreme 
temperatures, drought, and waterlogging. These compounds, also known as 
phytochemicals, have various biological activities and health benefits, which have 
made them interesting for biopharmaceuticals, nutraceuticals, food additives, and 
cosmetic applications. Therefore, bioactive compounds found in halophytes were 
reviewed.  Phytochemicals can be extracted from the fibre residue, and the extracts 
obtained from the screw-pressed halophyte fibres were analysed for their content of 
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phenolic compounds using different absorption spectroscopy assays and 
chromatographic methods. Bioprospecting towards high-value bioproducts was done 
by analysing the extract for their in vitro antioxidant properties, cytotoxicity, and 
inhibition activity towards enzymes linked to neurodegenerative diseases, metabolic 
diseases, and hyperpigmentation. Targeting products for these sectors can improve 
integrated biorefinery economics, provide maximum feedstock valorisation in a 
cascading process, and contribute towards a sustainable circular bioeconomy.  
 
Extractives-free halophyte biomass, consisting of relatively pure lignocellulose, was 
subject to hydrothermal pretreatment and enzymatic hydrolysis. The enzymatic 
convertibility was tested in order to estimate the pretreatment severity needed to break 
the lignocellulosic structure for potential biochemical or bioenergy production.   
 
Overall, this PhD project provided a comprehensive general view of the potential 
processes and target products of halophyte-based green biorefinery, and the results 
can be used as a basis for further investigations. The interdisciplinary project also 
contributes to closing the gap between process engineering and other related scientific 
disciplines, which must be done to develop efficient and meaningful biomass 
processing systems and bring the green transition forward.



9 

Resumé 

I lyset af de udfordringer, der er forbundet med klimaforandringer, er det afgørende 
at foretage en omstilling fra en lineær, petroleum-baseret økonomi til en cirkulær 
økonomi baseret på biomasse. Dette kræver udvikling af avancerede teknologier, der 
kan udnytte verdens biomasseresourcer på en effektiv måde, samtidig med at 
affaldsproduktionen minimeres. En anden presserende problemstilling, der påvirker 
hele verden, er tilsaltning af jord og vand. Det er derfor nødvendigt at øge udnyttelsen 
af biomasse, samtidig med at dyrkningsjorden bliver tilsaltet og dermed uegnet til 
dyrkning af de fleste almindelige afgrøder. Desuden svinder kilderne til rent 
ferskvand ind med øgende hastighed, både på grund af tilsaltning og en stigning i 
forekomsten af tørke og hedebølger. Kun omkring 1 % af verdens flora består af 
halofytter, som er naturligt salttolerante planter, der trives i salte miljøer. 
Anvendelsen af disse planter som afgrøder er blevet foreslået som en del af løsningen 
på de fremtidige udfordringer. 

 
I dette ph.d.-forskningsprojekt evalueres halofytarterne Crithmum maritimum, 
Salicornia europaea, Salicornia ramosissima og Tripolium pannonicum i tilsaltet 
landbrug med henblik på deres anvendelsesmuligheder i grønne bioraffinaderier. 
Grønne bioraffinaderier er designet til at producere proteinholdigt foder fra græsser 
og restprodukter fra landbruget. Biomassen opdeles i to fraktioner - juice og fibre - 
som processeres separat. I dette projekt blev kvaliteten af fraktioneringen og 
fordelingen af primære metabolitter undersøgt i biomasse dyrket under varierende 
grader af saltmættelse. 

 
Efter fraktionering ved hjælp af skruepresse blev proteinudfældningen fra den salte, 
grønne halofytjuice undersøgt ved hjælp af metoder, der er etableret for græsbaserede 
bioraffinaderier, herunder varmekoagulering, forsuring og mælkesyrebakterie 
fermentering. Der blev foretaget yderligere undersøgelser af produktionen af 
proteinberiget koncentrat fra mælkesyrefermentering af S. ramosissima juice ved 
hjælp af en probiotisk bakteriestamme i en bioreaktor. Anvendelsen af halofyter til 
produktion af funktionelle fodertilskud kan potentielt bidrage til at diversificere 
proteinkilder og reducere behovet for importeret foder, idet halofyter kan dyrkes 
lokalt. Dette er særligt relevant i tørre og tørkeramte områder, hvor 
dyrkningsmulighederne for græsningsområder og konventionelle afgrøder er 
begrænsede. 

 
Halofyter producerer høje koncentrationer af bioaktive sekundære metabolitter som 
respons på miljømæssige stressfaktorer såsom høj salinitet, UV-stråling, ekstreme 
temperaturer, tørke og vådlægning. Disse metabolitter, også kendt som 
fytokemikalier, har adskillige biologiske funktioner og sundhedsfordele, hvilket gør 
dem interessante som lægemidler, kosttilskud og tilsætningsstoffer i fødevarer, foder 
og kosmetik. De bioaktive stoffer i halofyter er derfor blevet undersøgt. 
Fytokemikalier kan ekstraheres fra overskydende fibre. Ekstrakter udvundet fra 
skruepressede halofytfibre blev analyseret for deres indhold af fenoler ved hjælp af 
forskellige absorptionsspektroskopiske assays og kromatografiske metoder. Der blev 
foretaget en søgen efter bioaktive højværdiprodukter ved at analysere ekstrakternes 



EXPLORING THE POTENTIAL OF HALOPHYTE BIOMASS FOR GREEN BIOREFINERY APPLICATIONS 

10 

in vitro antioxidantegenskaber, deres cellegiftighed og hæmning af enzymer relateret 
til neurodegenerative sygdomme, fordøjelseslidelser og hyperpigmentering. 
Målrettet ekstrahering af stoffer, der kan være til gavn for disse sektorer, kan øge det 
økonomiske incitament for integrerede bioraffinaderier, maksimere værdien af 
biomassen og bidrage til en bæredygtig cirkulær bioøkonomi. 

 
Ekstraktiv-fri halofytbiomasse, bestående af relativt ren lignocellulose, blev udsat for 
hydrotermisk forbehandling og enzymatisk hydrolyse. Den nødvendige intensitet af 
forbehandlingen for at nedbryde lignocellulosestrukturen til potentiel anvendelse i 
produktionen af bioenergi eller biokemiske produkter blev estimeret ved hjælp af 
konverteringsgraden efter enzymatisk hydrolyse.  
 
Overordnet set har dette PhD-projekt givet et dybdegående og generaliseret indblik i 
de potentielle processer og produkter, der kan produceres i det halofytbaserede 
bioraffinaderi, og resultaterne af projektet vil fungere som et springbræt for videre 
forskning på området. Dette interdisciplinære projekt bidrager også til at bygge bro 
mellem processteknik og andre relaterede videnskabelige discipliner, hvilket er en 
nødvendighed for at udvikle effektive og betydningsfulde systemer til 
biomasseudnyttelse og fremme af den grønne omstilling. 

  



11 

Thesis Details 

The  main body of this thesis is based on the following research articles: 

 
I. Hulkko, L.S.S., Turcios, A., Kohnen, S. et al. Cultivation and 

characterisation of Salicornia europaea, Tripolium pannonicum and 

Crithmum maritimum biomass for green biorefinery applications. Sci Rep 

12, 20507 (2022). 
 

II. Hulkko, L.S.S.; Chaturvedi, T.; Thomsen, M.H. Extraction and 

Quantification of Chlorophylls, Carotenoids, Phenolic Compounds, and 

Vitamins from Halophyte Biomasses. Appl. Sci. 2022, 12, 840.  
 

III. Hulkko, L.S.S.; Rocha, R.M.; Trentin, R. et al. Bioactive Extracts from 

Salicornia ramosissima J. Woods Biorefinery as a Source of Ingredients for 

High-Value Industries. Plants 2023, 12, 1251.  

 

IV. Hulkko, L.S.S.; Chaturvedi, T.; Custódio, L.; Thomsen, M.H. Harnessing 

the value of Tripolium pannonicum and Crithmum maritimum halophyte 

biomass through green biorefinery. Mar. Drugs 2023, 21(7), 380. 

 

V. Hulkko, L.S.S.; Chaturvedi, T.; Thomsen, M.H. Valorisation of Residual 

Biomass Fractions from Biosaline Agriculture Through Green Biorefinery. 

Submitted manuscript. 

 
The thesis based on the listed papers has been submitted for assessment for partial 
fulfilment of the  PhD degree. The scientific papers are included directly or indirectly 
in the dissertation, and readers are referred to them for more details. As part of the 
assessment, co-author statements have been made available to the assessment 
committee and are also available to the faculty. 
 
In addition, the following contributions in scientific papers and conferences were 
made during the PhD project period; however, they are not presented as a part of the 
dissertation: 
 
 

• Giordano, R.; Saii, Z.; Fredsgaard, M.; Hulkko, L.S.S.; Poulsen, T.B.G.; 
Thomsen, M.E.; Henneberg, N.; Zucolotto, S.M.; Arendt-Nielsen, L.; 
Papenbrock, J.; Thomsen, M.H.; Stensballe, A. Pharmacological Insights 
into Halophyte Bioactive Extract Action on Anti-Inflammatory, Pain Relief 
and Antibiotics-Type Mechanisms. Molecules 2021, 26, 3140.  
 



EXPLORING THE POTENTIAL OF HALOPHYTE BIOMASS FOR GREEN BIOREFINERY APPLICATIONS 

12 

• Chaturvedi, T.; Hulkko, L.S.S.; Fredsgaard, M.; Thomsen, M.H. Extraction, 
Isolation, and Purification of Value-Added Chemicals from Lignocellulosic 
Biomass. Processes 2022, 10, 1752.  

 

• Cybulska, I.; Brudecki, G. P.; Brown, J. J.; Hulkko, L. S. S.; Al Hosani, S.; 
Thomsen, M. H. Comparative study of chemical composition of the 
halophyte species native to the Persian (Arabian) gulf. BioResources 2021 
16(3), 5524-5537. 

 

• Hulkko, L.S.S.; Chaturvedi, T.; Turcios, A.; Papenbrock, J.; Thomsen, M.H. 
Halophyte-based green biorefinery: potential biomass feedstocks and 
processing routes. Oral presentation at 30th  European Biomass Conference 
and Exhibition. Online in 10 May 2022. 

 

• Hulkko, L.S.S.; Chaturvedi, T.; Custódio, L.; Thomsen, M.H. Bioactive 
extracts from Salicornia ramosissima, Tripolium pannonicum and 
Crithmum maritimum as value-added products in halophyte-based 
biorefinery. Poster presentation at 18th International Conference on 
Renewable Resources & Biorefineries. 1-3 June 2022 in Bruges, Belgium. 

 

• Hulkko, L.S.S.; Chaturvedi, T.; Thomsen, M.H. Valorisation of Salicornia 
waste biomass through green biorefinery. Poster presentation at 9th 
International Symposium on Energy from Biomass and Waste. 21-23 
November 2022 in Venice, Italy. 

 



13 

Table of Contents 

Preface ........................................................................................................... 5 

Summary ....................................................................................................... 7 

Resumé .......................................................................................................... 9 

Thesis Details ............................................................................................... 11 

Chapter 1. General Introduction .............................................................. 17 

1.1. Background and relevance of the project .......................................... 17 

1.1.1. Green transition and circular bioeconomy .................................. 17 

1.1.2. Soil salinisation ........................................................................... 19 

1.2. Halophytes and their potential applications ....................................... 20 

1.2.1. Salt-loving plants ........................................................................ 20 

1.2.2. Halophyte cultivation .................................................................. 21 

1.2.3. Halophytes as energy crops ......................................................... 23 

1.3. Green biorefinery concept ................................................................. 23 

1.4. Project overview and objectives ........................................................ 25 

1.4.1. The AQUACOMBINE project .................................................... 25 

1.4.2. Key project objectives ................................................................. 26 

1.4.3. Halophyte-based green biorefinery: potential future process? .... 27 

1.4.4. Overview of included studies ...................................................... 28 

1.4.5. Sustainable development goals ................................................... 30 

Chapter 2. Methodology ............................................................................ 31 

2.1. Halophyte biomass ............................................................................. 31 

2.2. Proximate composition analysis ........................................................ 32 

2.3. Extraction methods ............................................................................ 33 

2.4. Pretreatment and enzymatic saccharification of fibres ...................... 34 

2.5. Analysis of phytochemicals ............................................................... 35 

2.5.1. Total contents of phenolic compounds ........................................ 35 



EXPLORING THE POTENTIAL OF HALOPHYTE BIOMASS FOR GREEN BIOREFINERY APPLICATIONS 

14 

2.5.2. Total contents of photosynthetic pigments .................................. 36 

2.5.3. Untargeted analysis of selected metabolites ................................ 36 

2.6. Biological activity of extracts ............................................................ 36 

2.6.1. Antioxidant activity ..................................................................... 36 

2.6.2. Enzyme inhibition activity .......................................................... 37 

2.6.3. Cytotoxicity ................................................................................. 37 

2.7. Protein precipitation methods ............................................................ 38 

Chapter 3. Composition of Halophytes .................................................... 41 

3.1. Introduction to the nutritional composition of halophytes ................. 41 

3.2. Findings on the composition of halophyte biomass ........................... 43 

3.2.1. Cultivation and characterisation of Salicornia europaea, 

Tripolium pannonicum and Crithmum maritimum biomass for green 

biorefinery applications ......................................................................... 43 

3.2.2. Processing of the fibre residue fraction ....................................... 46 

3.2.3. Fatty acid profiles ........................................................................ 49 

Chapter 4. Bioactivity of Plant Extracts ................................................... 51 

4.1. Review on bioactive compounds in halophyte extracts ..................... 51 

4.2. Findings on the bioactive properties of halophytes ........................... 56 

4.2.1. Annotated bioactive compounds from extracts ........................... 56 

4.2.2. Bioactive Extracts from Salicornia ramosissima J. Woods 

Biorefinery as a Source of Ingredients for High-Value Industries ........ 60 

4.2.3. Harnessing the value of Tripolium pannonicum and Crithmum 

maritimum halophyte biomass through integrated green biorefinery ... 63 

4.2.4. Cytotoxicity of plant extracts ...................................................... 67 

Chapter 5. Protein from Green Juice ....................................................... 69 

5.1. Introduction to protein precipitation methods.................................... 69 

5.2. Selection of lactic acid bacteria for fermentation .............................. 71 

5.3. Findings on the protein precipitation from halophyte juice ............... 76 

5.3.1. Precipitation and separation of protein-enriched concentrate from 

S. ramosissima and T. pannonicum green juice .................................... 76 



15 

5.3.2. Fermentation experiments in bioreactor ...................................... 78 

Chapter 6. Conclusions and Future Work ............................................... 81 

References ................................................................................................... 85 

List of Papers ............................................................................................. 117 

Paper I ........................................................................................................ 118 

Paper II ...................................................................................................... 132 

Paper III .................................................................................................... 150 

Paper IV .................................................................................................... 170 

Paper V ...................................................................................................... 191 

Paper VI .................................................................................................... 192 

Paper VII ................................................................................................... 208 

Paper VIII ................................................................................................. 209 

 





17 
 

Chapter 1.  General Introduction 

1.1. Background and relevance of the project 

1.1.1. Green transition and circular bioeconomy 

Climate change and biodiversity loss are modern humankind's greatest challenges and 
threats. According to the Intergovernmental Panel on Climate Change (IPCC) report, 
to achieve the goals set by the Paris Agreement and limit global warming to 1.5 °C 
above pre-industrial levels, society has to aim for net-zero CO2 emissions by 2050 
[1,2]. This green transition requires significant changes in global production and 
consumption systems and actions, and to enforce the change, new legislations have 
been initiated, e.g., the European Green Deal in the European Union (EU) with several 
national policies, and the Green New Deal in the United States [3–5]. One of the key 
implementations is to transition from a linear fossil-based economy towards circular 
bioeconomies. Concerns about food security of the world’s increasing population and 
the need for bio-based products and bioenergy are the key drivers leading to an 
increased demand for biomass, which consequently requires sustainable agricultural 
intensification to meet [6–8]. In order to ensure the efficient use of biomass resources, 
the development of circular bioeconomies should lay on the following key principles 
[6,9–12]: 
 

• Sustainable resources (e.g., use of waste, residues and circular feedstocks) 

• Integrated biorefineries and cascading processes 

• Maximising feedstock valorisation and minimizing waste production 

• Positive sustainability, environmental, and social aspects. 
 
Circular bioeconomies should also avoid the depletion of resources, such as 
agricultural land and freshwater, and aim to apply regenerative practises, such as 
bioremediation [10]. According to the report by the International Energy Agency 
(IEA) from 2022, the highest number of biorefineries was found in the United States, 
followed by France, Germany, China, and the Netherlands [5]. Out of the analysed 
biorefineries, 50.3 % used primary biomass (e.g., starch crops, oil cops and 
lignocellulose from grasslands and forestry) in their processes, whereas secondary 
biomass (e.g., agricultural and forestry residues) was used by 27.7 %, and only 2.4 % 
of the biorefineries reported to use multiple feedstocks [5]. Besides, 61.4 % of the 
analysed biorefineries reported bioenergy as their main product type, followed by 
biomaterials (24.3 %) and biochemicals (10.6 %) [5]. Therefore, there is room for 
improvement for the biorefinery sector to meet the principles of sustainable 
bioeconomies regarding the source of biomass, conversion methods, and target 
products. According to Muscat et al. [10], the target products of focus need to be 
shifted from bioenergy production by encouraging the development of bioproducts. 
In integrated biorefinery systems, a multitude of products, as well as bioenergy, are 
produced from the used feedstock to maximise the material valorisation and minimise 
the waste stream. Even though optimisation is required to find the most suitable 
processing routes and target compounds for each type of biomass, these multi-product 
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systems often help to improve process economy and biorefinery competitiveness, 
which is often a challenge in single-product systems, and they are considered the most 
robust option for the future and an important factor for sustainable biomass use and 
circularity [9,11,13–15]. Oftentimes, products of high-value applications, such as 
pharmaceuticals, food and feed additives, and fine materials, are suggested as value-
added products for biorefineries to increase process profitability [6,9,15,16], 
cascading based on the bioproduct value pyramid (Figure 1). 
 

 

Figure 1 Value pyramid of bioproducts presented in Paper IV [17]. The original illustration was 
adapted from Stegmann et al. [9] and Zabaniotou [6]. 

High-value bioproducts have significant potential within circular bioeconomies [9]. 
Indeed, there is an urgent need to find alternatives to the variety of products and goods 
currently obtained from petrochemical sources. However, with the increased demand 
and limited biomass resources comes prioritisation. Muscat et al. [10] argued that the 
highest priority should be for bioproducts fulfilling basic human needs, such as 
nutrition and well-being, and sectors with limited sustainable alternatives, such as 
biochemicals, in order to use the limited biomass resources effectively. Hence, 
screening new biorefinery feedstocks for their potential for these applications could 
be seen as an inseparable part of integrated biorefinery design  [17].   
 
Bioprospecting, meaning the search for biological resources with economic potential, 
is becoming increasingly important as the green transition moves forward. The 
process can be driven by finding the best potential use for available feedstock, such 
as agro-residue, or by the demand for a certain type of product or application (Figure 
2). Both approaches are of high importance in finding alternative sources for day-to-
day goods. Currently, large amounts of valuable biomass, especially agro-residues 
and residues from food processing, end up in the production of bulk chemicals, 
bioenergy, compost, or even in landfills [18–21]. Manhongo et al. [21] reviewed the 
waste production from fruit processing and showed that up to 80 % of the fresh fruit 
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weight could en up to residue streams. Intensive research has been carried out in recent 
years to valorise these residual streams from agricultural and food processing 
industries for more high-value applications, such as the production of bioactive and 
functional compounds, in order to improve the sustainability of the sectors [18,21,22].  
 

 
Figure 2 Bioprospecting driven by available feedstock (a) or desired target product or 
application (b).  

1.1.2. Soil salinisation 

Soil salinisation has been reported to be one of the main reasons for the degradation 
of arable land and a major threat to biodiversity and ecosystems, especially in arid and 
semi-arid regions [23–25]. According to the Food and Agriculture Organization of the 
United Nations (FAO) definition, the soil is considered saline when the electric 
conductivity of soil extracts is equal to or higher than 4 dS/m, corresponding to 
approximately 40 mM NaCl [26]. Degradation of agricultural land creates challenges 
in producing enough food to meet the demand of the world’s increasing population 
and threatens food security, as most of the conventional and important food crops are 
salt-sensitive glycophytes. Soil salinities of 80 mM NaCl, 100 mM NaCl and 120 mM 
have been shown to cause a 50 % loss in yields of rice, durum wheat, and barley, 
respectively, and salinities less than 20 mM NaCl have shown a significant 12 % loss 
in yields of corn and potato [27,28]. 
 
Natural causes for soil salinisation (primary salinisation) are seawater intrusion, 
geological deposits, salt deposition by wind or rainfall, and weathering of the parent 
rock [26,29,30]. However, salinity is often caused or accelerated by human activity 
(secondary salinisation) via unsustainable agricultural actions, such as over-irrigation, 
insufficient draining and extensive use of fertilisers, as well as deforestation and poor 
water management [23,26,27,29,30]. Climate change also affects soils, as the higher 
annual temperatures, alteration in precipitation patterns, and sea level increase in 
coastal areas increase the risk of soil salinisation [29,31]. Irrigated areas, which cover 
1.5 % of the total area of the EU, are at a higher risk for human-induced salinisation 
[31]. Globally, 20 – 50 % of irrigated soils have estimated to have increased salt 
content [25], creating a massive challenge for agriculture systems. 
 
The issue is global and extensive, as 8.7 % of the world’s soils are estimated to be 
salt-affected [25]. In 2015, the estimate of the total area of saline and sodic soils 
worldwide was 1 billion hectares, affecting more than 100 countries [26]. The total 
area of salinised soils in the EU is uncertain, and the estimates vary between 1 – 4 
million hectares [31]. Soil salinisation causes significant limitations to plant growth 
potential (Figure 3), decreases water quality, and makes land areas prone to erosion 
[25]. Annually, soil salinisation takes 1.5 million hectares of agricultural land out of 
production and decreases the production potential by 46 million hectares [25]. This 
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comes with a high economical cost, as the annual loss in agricultural productivity 
caused by salinity is estimated to be 31 million USD, and on top of that, the report by 
European Commission [31] estimates the costs caused by overall soil degradation, 
including salinisation, to exceed 50 billion EUR per year only in the EU. 
 

 
Figure 3 Saline and sodic soils and soil limitations to plant growth. Data from FAO Global Soil 
Information System and Excess Salts dataset provided by Harmonized World Soil Database 
(HWSD) [25,32]. No or slight limitations: 80 – 100 % growth potential, moderate limitations: 
60 – 80 %, severe limitations: 40 – 60 %,  very severe limitations: < 40 %.  

 

1.2. Halophytes and their potential applications 

1.2.1. Salt-loving plants 

By definition by Flowers and Colmer [33], halophytes are plants that can complete 
their full lifecycle and reproduce under salinities of 200 mM or more, and these salt-
loving plants constitute approximately 1 % of the known flora. In nature, halophytes 
can be found in marshlands (Figure 4), seashores, saline deserts, and other saline 
habitats, where the growth of salt-sensitive plants, glycophytes, is limited. Halophytes 
can be roughly divided into two categories: obligatory halophytes, which require salt 
for optimal growth, and facultative halophytes, which can tolerate salt but have their 
optimal growth in non-saline or low-salinity conditions. Thus, plants have developed 
various salt tolerance mechanisms to thrive in saline habitats, including but not limited 
to morphological adaptation such as succulence and specialised features for salt 
excretion, osmolyte accumulation, antioxidant regulation, and compartmentalisation 
and restricted uptake of sodium ions [34,35]. These adaptations allow halophytes to 
hold their osmotic pressure and maintain homeostasis even under extreme 
environmental conditions [36–38].  
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Figure 4 Marsh is a natural habitat of halophytes: Wadden Sea national park, Denmark (a) and 
Ria Formosa natural park, Portugal (b). Photos by Laura Sini Sofia Hulkko. 

In their region of origin, fresh shoots of edible halophytes are used for culinary 
purposes [39–45]. Accogli et al. [45] reviewed edible halophytes in Southern Italy and 
their culinary use, highlighting their significance in traditional cuisine, the most 
important species being capers, sea beet, Silene vulgaris, Allium monatum, Crithmum 
maritimum, and Salicornia and Sarcocornia species. Salicornia and Sarcocornia 
species are sold as vegetables in the Mediterranean region and the Middle East, and 
they have increased interest due to their organoleptic properties, crunchy texture and 
salty, tangy taste, and they are typically consumed pickled in salads, stir-fries, and 
garnish [40,43,45–48]. Due to its resemblance with commonly used spinach, 
Tripolium pannonicum (sym. Aster tripolium) is also increased interest as an 
alternative vegetable and cash crop [27,49]. Several Atriplex species are used as herbs 
and garnish [27]. C. maritimum has also increased interest as a crop due to its wide 
use in ethnobotanical and ethnopharmacological use [44]. 
 
Indeed, various halophytes are traditionally used as medicinal herbs. Due to their 
pronounced exposure to abiotic stresses, such as salinity, extreme temperatures, strong 
UV radiation, drought or waterlogging, halophytes produce high concentrations of 
protective secondary metabolites, also called phytochemicals [50–56]. This is a 
structurally and functionally diverse group of chemicals; however, especially phenolic 
compounds have increased interest in previous years due to their wide use in high-
value applications [57–62]. These compounds have various biological activities and 
functionalities, and they often contribute to the health benefits of plant extracts, such 
as antioxidant and anti-inflammatory effects, antimicrobial and anti-viral properties, 
and potential protective effects against cardiovascular diseases, neurogenerative 
diseases, and cancer. [41,53,64–72,54,56–61,63]. Bioactive compounds found in 
halophytes were reviewed in Paper II and discussed in detail in Section 4.1. In 
traditional ethnopharmacological medicine, species in Salicornia and Sarcocornia 
genera have been used to treat digestive issues, and they have been associated with 
diuretic effects, making them useful towards kidney-related issues [40,53]. C. 
maritimum has been used as a treatment for scurvy, whooping cough and cold, various 
digestive issues and as an anti-parasitic agent [44,53,73]. 
 

1.2.2. Halophyte cultivation 

The development of biosaline agriculture is crucial in regions with saline soils or 
scarcity of freshwater, and domestication and cultivation of halophytes have a key 
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role in restoring the marginal land area to agricultural production [35,74]. Halophyte 
cultivation can yield as much as conventional crops; however, biomass production 
depends on the optimal salinity of cultivated species [75–77]. Especially 
dicotyledonous halophytes can grow at high rates, even though a susbtaintial amount 
of energy is used for salt-tolerance mechanisms and osmotic adjustments, such as ion 
accumulation and compartmentalisation [33]. Reported annual yields of halophytes 
cultivated in field conditions are 14 kg/m2 for T. pannonicum, 15 kg/m2 for Salicornia 
persica, and 28.0 kg/m2 for Sarcocornia fruticosa [75,78]. Salt-accumulating 
halophytes have also been suggested for crop rotation and intercropping systems due 
to their potential to reduce soil salinity via salt uptake to aerial biomass [79]. Some 
halophytes with reported desalting potential in crop rotation are liquorice (Glycyrrhiza 
glabra), Arthrocnemum macrostachyum, and Sesuvium portulacastrum, whereas 
Sueda salsa has shown potential for intercropping in field trials [79]. Restoring and 
rehabilitating marginal land areas while increasing agricultural productivity 
prominently in arid and semi-arid regions could have significant socio-economic 
benefits regarding rural area development and local food and water security 
[35,79,80].  
 
Besides salt, some halophyte plants are tolerant of other toxic compounds, such as 
heavy metals, which makes them interesting for bioremediation of polluted soils 
[35,81–83]. Halophytes can uptake heavy metals from the soil and accumulate them 
in aerial parts by excreting them through salt glands to the surface of the leaves or 
producing osmoprotectant and antioxidant compounds [81,82]. Indeed, the 
mechanisms for halophytes to tolerate heavy metals are the same as those used to 
protect plants from salinity and drought. Some species with phytoremediation 
potential are T. pannonicum, Salicornia sinus-persica (syn. Salicornia iranica), and 
Salicornia ramosissima, which have shown uptake and translocation of cadmium, 
lead, and nickel [82–84]. However, plants with accumulated toxins and contaminants 
cause a food safety risk if consumed [70,84]; thus, phytoremediation limits the 
potential use of cultivated biomass.  
 
Many halophytes can also be efficiently grown in soilless systems, and hydroponic 
cultivation has increased its importance due to resource efficiency. Singh et al. [85] 
achieved slightly higher Salicornia dolichostachya yield in hydroponic systems 
compared to sand cultivation. For Sueda glauca, a 5.7 kg/ m2 yield was reported from 
hydroponic cultivation [86]. Pairing saline agriculture with aquaculture and using 
halophytes to biofilter effluents has increased interest in recent years, and especially 
the potential of saline recirculating aquaculture systems (RAS), marine aquaponics, 
and constructed wetlands have been studied [87–90]. Using constructed wetlands, 
Shpigel et al. [88] reported S. persica plantation effectively uptake 53 – 71 % of total 
dissolved nitrogen from gilt-head sea bream aquaculture effluents under high nutrient 
loads. Vlahos et al. [91] combined brackish water gilt-head sea bream culture and C. 
maritimum aquaponic cultivation and reported good fish and plant performance and 
efficient nutrient removal from water. Brown et al. [92] also reported an average of 
98.8 % total nitrogen and 99.7 % total phosphorus removal from water by Suaeda 
esteroa, Salicornia bigelovii and Atriplex barclayana. Besides nutrients, halophytes 
can also remove other compounds, such as antibiotic residues, from aquatic 
environments [93]. 
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1.2.3. Halophytes as energy crops 

Using halophytes for bioenergy has also been studied, and bioenergy production of 
biomass processing waste streams could help to close the loop and emphasise the 
circular approach for cascading systems. Using the residues of halophytes could help 
to establish environmentally sustainable production systems [94]. Considering liquid 
biofuels, Makkawi et al. [95] tested bio-oil production of S. bigelovii seeds via 
pyrolysis and recovered 35.2 % of the initial biomass to bio-oil fraction, organic 
fraction covering nearly 80 % of the pyrolysis liquid. A similar result, 31.4 % bio-oil 
production from S. bigelovii seeds, was also achieved in another study [96]. Folayan 
et al. [97] achieved 92.8 % and 81.3 % bio-oil conversion to biodiesel from S. bigelovii 
and Salicornia brachiata seed oils, respectively, which corresponded to 29.8 % and 
21.6 % of the initial seed biomass, respectively. Bioethanol, which can be produced 
by fermenting the carbohydrates released from the lignocellulosic fraction with micro-
organisms, is also a suggested fuel product from halophytes. Cybulska et al. [98] 
achieved 77 – 100 % and approximately 77 – 81 % of theoretical bioethanol yield 
from S. bigelovii pretreated fibres and pretreatment liquid, respectively. Similarly, 
Alassali et al. [99] reached approximately 70 % bioethanol yield from S. sinus-persica 
juice and up to 76.9 % from hydrothermally pretreated fibres. From Atriplex 
crassifolia enzymatically pretreated sample, 16.3 g ethanol/100 g was obtained [100]. 

Joshi et al. [101] also reviewed halophyte biofuel production and summarised several 
species from Cyperus, Suaeda, Panicum, and Phagmites genera to be considered for 
bioethanol production.  
 
Turcios et al. [102] studied the effect of salinity on the anaerobic digestion of T. 
pannonicum and reported up to 554 mL/g volatile solids (VS) and 447 mL/g VS yields 
of biogas and biomethane, respectively. Kumar et al. [103] studied the biogas potential 
of wild herbs and reported 487.9 mL/g VS, 441.3 mL/g VS and 291.3 mL/g VS biogas 
yields for Avicennia marina, Tamarix nilotica, and Zygophyllum album, respectively, 
and suggested the potential use of residual digestate as fertilizer. Cayenne et al.  [104] 
measured the biomethane potential of  Salicornia europaea and S. ramosissima to be 
up to 250 mL CH4/g VS and 300 mL CH4/g VS, respectively. Nawaz et al. [105] 
reported de-lignification with deep eutectic solvent to increase biomass yield from 
Atriplex crassifolia by making it less recalcitrant and accessible for micro-organisms 
and measured biogas yield of 32.2 mL/g  from the fresh solvent-treated sample. 
Akinshina et al. [106] studied the biogas potential of wild and cultivated halophytes 
and emphasised their importance for the development of marginal and salt-affected 
environments in Central Asia, Karelinia caspia being the most promising species with 
biogas potential of 310.6 mL/g VS. 
 

1.3. Green biorefinery concept 

Green biorefinery processes are typically developed for grass and fodder crops, such 
as alfalfa, clover, and perennial ryegrass, to provide a source of feed not only for 
ruminants but also monogastric animals, mainly pigs and poultry. In recent years, the 
use of green leafy agricultural residues with high moisture content, such as beet and 
cassava leaves, has been investigated in order to valorise fractions previously 
considered as waste [107–110]. Proteins are the main compounds to be valorised in 
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green biorefineries, whereas traditional lignocellulosic refineries often focus on 
processing carbohydrates [11]. There is a high demand for locally produced protein-
rich feed products in the EU, as the number of livestock has been estimated to be 1.63 
billion poultry birds and  142 million pigs, and the numbers are increasing [111,112]. 
Currently, farmers in the EU heavily depend on imported protein sources for their 
livestock, namely soybean or soybean meal [113]. Similarly, besides terrestrial 
livestock, aquaculture systems are developing fast to meet the increased demand for 
fish, and producers depend on fish meal for feeding [87,90,114]. Green biorefineries 
often aim for the multi-products approach for maximum feedstock valorisation, and 
some of the typical target products are presented in Figure 5. 
 

 
Figure 5 Simplified structure of the potential products from a typical green biorefinery system. 

One of the key processes differentiating green biorefineries from others is the wet 
fractionation of green, fresh biomass, where the plant material is split into green juice 
and fibre residue. Various milling methods have been tested for fractionation over the 
years, but separation with a single- or twin-auger screw press has become predominant 
and is typically used in large-scale applications [115,116]. The use of a pneumatic 
press has also been recently studied [117]. Some studies suggest using alkali in the 
screw press to enhance cell disruption and adding water to better flush out the 
compounds of interest [115]; however, the disadvantages of such processes are 
chemical cost and increased freshwater usage.  
 
The protein fraction is separated from the green juice after the screw press, and is 
typically obtained in the form of protein-enriched concentrate (PEC). Several methods 
have been developed to precipitate proteins from green juice, including but not limited 
to heat coagulation, acidification, the addition of flocculants, filtration, and 
fermentation with lactic acid bacteria (LAB), and these methods are described in detail 
in Section 5.1. The protein from grass or leafy biomass can be divided into green 
protein, which is chloroplastic lipoprotein typically used for feed application, and 
white protein, which is the cytoplasmic protein with higher digestibility and 
functionality, thus potential applications in food, cosmetics, and biomaterials 
[116,118]. These two fractions can be produced separately in a sequential system in 
order to target several different applications or together as a total protein concentrate 
for feed, and the latter approach was also chosen for this project.  
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The separation of chlorophyll and carotenoids from green protein has been studied; 
however, it may be hard to justify the use of organic solvents required for pigment 
removal, especially in large-scale systems targeting food and feed products [116,119]. 
After protein precipitation, the remaining nutrient-rich juice, often called brown juice, 
could be used as a fermentation medium to produce organic acids, such as lactic acid, 
caproic acid, and butyric acid, which are important platform chemicals [86,87,90,91]. 
An alternative approach is to use the juice for a process aiming for the production of 
single-cell protein [120]. 
 
The fibre fraction is typically used directly as fodder for ruminants. However, there 
has been an increasing interest in valorising this fraction for biomaterials, including 
biocomposites, packaging materials, insulation, and nanocellulose [74,118,121,122]. 
The fibre fraction can also be processed as in typical lignocellulosic biorefineries 
targeting biochemical and bioethanol production or digested into biogas, typically 
together with the juice residue [16,99,104,118,123,124]. 
 

1.4.  Project overview and objectives 

1.4.1. The AQUACOMBINE project 

This PhD project was done as a part of the AQUACOMBINE project [125], which 
demonstrates combined aquaculture and halophyte farming with an integrated 
biorefinery of waste fractions, creating internal value and novel products according to 
the principles of a circular economy. Excess nutrients from on-land aquaponic 
systems, which can be placed in marginal land in rural regions, fertilise halophyte 
plants, and water is circulated back to aquaponics through a microbial water treatment 
system. The fresh shoots and leaves from the edible species can be harvested for 
culinary use; however, as plants mature, they undergo lignification [46,126,127], 
becoming unpalatable and unsuitable for culinary consumption. The halophyte 
biomass was harvested at two different non-food growth stages: partly lignified 
succulent or completely lignified shrubs after seed production (Figure 6). These 
biomasses were targeted for green biorefinery processing and extraction-based 
lignocellulose biorefinery, respectively. 
 

 
Figure 6 Partly lignified S. ramosissima tips (a)  and completely lignified shrubs (b). 

Using these two separate processing routes, the AQUACOMBINE project 
demonstrates the production of various value-added products: fine chemicals, 
aquaculture feed and feed supplements, dermo-cosmetics, functional food products 
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and ingredients, prebiotic polysaccharides, and biochar (Figure 7). Bioenergy 
production from the residual fractions is considered for maximum circularity.  
 
 

 

Figure 7 The AQUACOMBINE project is European Union Horizon 2020 funded research and 
innovation action. Original concept illustration by Mette Hedegaard Thomsen, 2019. The 
project consortium consisted of 17 partners, including eight academic partners, seven small and 
medium-sized enterprises, and two cluster organisations, and the project ran from October 2019 
until December 2023. 

1.4.2. Key project objectives 

The project objectives were formatted to study the biorefinery potential of selected 
halophyte species, namely Crithmum maritimum, Salicornia europaea, Salicornia 
ramosissima and Tripoium pannonicum, and meet the overall goals of the 
AQUACOMBINE project targeting halophyte-based green biorefinery. The three key 
objectives for the PhD project are stated as follows: 
 

• Determine the chemical composition of halophytes cultivated in different 
salinities to gain knowledge if modifying cultivation salinity could be used 
to enhance the concentration of desired compounds. 

• Evaluate the green fractionated biomass in terms of value by analysing the 
biological activities and contents of polyphenolic compounds and pigments 
to help find the potential target products and applications. 
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• Investigate the green biorefinery approach and protein precipitation from 
halophyte biomass to learn if technologies well established to forage and 
grass biomass could be applied to halophytes. 

 

1.4.3. Halophyte-based green biorefinery: potential future process? 

The utilisation of halophytes in green biorefinery applications has not been widely 
studied, and only a handful of studies were found to consider the juice or screw-
pressed fibres from Salicornia species [99,104,128,129]. Introducing halophytes to 
this type of processing could provide a novel biomass feedstock, increasing the 
biodiversity in agricultural production either in field cultivation in marginal land areas 
or marine aquaponics. When cultivated in this type of system, halophyte production 
does not compete for the arable land area with conventional food crops. Coastal 
halophytes could also contribute to developing sustainable blue-green bioeconomies 
[130]. By valorising the non-food fraction of plants, the biomass used for bioproducts 
is not taken from food resources (primary biomass). 
 
After screw-press, the green juice covers a large fraction of the initial weight of fresh 
biomass, especially from succulent halophytes, and a significant fraction of the total 
crude protein (CP) can be found in the juice [34,128,131,132]. As halophytes are 
naturally rich in various compounds beneficial for animal health, and if these 
compounds could be transferred to the concentrate, the halophyte-based supplement 
could provide a novel feed source for aquacultures and terrestrial livestock and 
improve animal welfare [133–136]. Protein concentrates may have various functional 
properties [137], and due to the presence of bioactive secondary metabolites, these 
properties could be more pronounced when using halophytes. Besides producing 
green protein for monogastric animals, the fibre fraction after the screw press is 
typically used for fodder to ruminants in green biorefinery systems. However, due to 
high salt content and low animal acceptance, halophyte biomass can be only partially 
implemented with other feedstuff, typically with a 20 – 30 % blending fraction 
[128,138,139]. However, Ahmed et al. [140] showed that up to 50 % of berseem hay 
fodder could be replaced with Atriplex nummularia and Acacia saligna for the lamb 
diet. For aquaculture,  Belal et al. [87] showed that up to 40 % of traditional fish meal 
can be replaced with Salicornia bigelovii meal without affecting the growth or 
composition of Nile tilapia, one of the most common species in fish farming. Studies 
disagree with the suitability of Salicornia for poultry feed: Jiao et al. [141] reported 
an enhanced growth performance and meat quality poultry chicken, whereas Attia et 
al. [142] report a significant depression in the growth rate and suggest additional 
cholesterol supplement of overcome the issue.   
 
There is a need to find alternative applications for halophyte fibres. However, before 
the production of bulk materials or bioenergy, the halophyte fibres could be utilised 
for producing bioactive botanical extracts for biopharmaceuticals, nutraceuticals, and 
cosmetics applications; in other words, products on top of the bioproduct value 
pyramid (Figure 1). The potential of halophytes for these applications has been 
widely studied [53,56,63,65,143,144], but implementing the extraction step to an 
integrated green biorefinery system has been rather unexplored. Sustainable 
production of high-value ingredients could help to create added value and improve 
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the process economics, diversify the source of active molecules, and provide a way to 
maximum feedstock valorisation. The extraction process could also prepare the 
remaining lignocellulosic biomass for further processing, including potential 
bioenergy production [94,98,129]. Batog et al. [74] tested halophyte biomass for 
biocomposite production and discussed the potential of halophytes for the production 
of biomaterials. Dong et al. [145] tested biochar, a useful soil amendment, from 
different halophyte feedstocks and found biochar from Tamarix chinensis suitable to 
improve soil quality with the minimum adverse effect of increased soil salinity.   
 
Considering this PhD project, the simplified schematic of the halophyte-based green 
biorefinery is visualised in Figure 8. Halophyte-based biorefineries could offer 
solutions for developing arid and semi-arid rural regions, where grass biomass or other 
lignocellulosic feedstock typically used for biorefineries, such as cereals straws and 
other agro-residues, cannot be produced sustainably [146]. Alassali et al. [99] also 
highlight the value of green juice as a water source for biomass processing in regions 
with freshwater sparsity. Halophytes can also provide a bioenergy source for rural arid 
regions, with low costs and no competition for land use and freshwater [94]. 
 

 

Figure 8 Halophyte-based green biorefinery with soilless biomass cultivation. Adapted from 
Paper V [132]. Figure created with BioRender.com. 

1.4.4. Overview of included studies 

Contributing to the project objectives listed in Section 1.4.2, five manuscripts in total 
were produced during the project period: 
 

I. This study assessed the effect of cultivation salinity on the chemical 
composition of S. europaea, T. pannonicum, and C. maritimum with a focus 
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on macronutrients carbohydrates, fats, and protein and their distribution to 
fractions after screw pressing.   
 

II. The review study incorporated the recently published literature reporting the 
concentration of phenolic compounds, pigments, and vitamins in halophytes, 
as well as used extraction and analysis methods, and combined the state-of-
the-art knowledge in the field. 

 
III. The first study considering the bioactivity of the selected species focused on 

different fractions and extracts obtained from S. ramosissima and determined 
the contents of different types of phenolic compounds and photosynthetic 
pigments in the extracts, antioxidant activity, and inhibition activity towards 
enzymes related to some emerging lifestyle diseases, such as diabetes and 
neurodegenerative diseases.  

 
IV. In this study, the bioactivity of T. pannonicum and C. maritimum fractions 

and extracts was assessed by measuring the content of bioactive compounds 
and biological activities as described above. The role of plant extracts in 
circular bioeconomies and integrated biorefineries for maximum feedstock 
valorisation was discussed. 

 
V. Protein is one of the target products of green biorefinery, and in this study, 

different methods for protein precipitation from green juice fractions of S. 
ramosissima and T. pannonicum were tested.  

 
 

 
Figure 9 Overview of the studied themes, related papers, and outline of the dissertation. Figure 
created with BioRender.com. 

In addition to the listed studies, the cytotoxicity of the extracts was tested using 
mammalian cell lines to learn about the extracts’ safety and potential anti-cancer 
properties. Using an untargeted, explorative approach with liquid chromatography and 
mass spectrometry (LC-MS), the analysis of selected metabolites, such as flavonoids 
and phenolic acids, was carried out for extract samples.  
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Considering the refinery of extractives-free fibres, lignocellulose pretreatment and 
enzymatic convertibility were briefly explored. The protein precipitation from S. 
ramosissima green juice by lactic acid fermentation was further studied by conducting 
experiments in a bioreactor in a batch. These experiments were carried out to better 
understand the acidification process, its efficacy, and potential limitations. 

 

1.4.5. Sustainable development goals 

This project contributes, directly or indirectly, to several of the sustainable 
development goals (SDGs) defined by the United Nations [147]. “Responsible 
Consumption and Production”, SDG no. 12, targets the sustainable use of natural 
resources, a decrease in the environmental footprint of produced goods, and waste 
reduction. This goal is one of the most directly linked to the PhD project, as this 
project studies the concept of halophyte-based biorefinery, which could be 
implemented in marginal land areas and provide multiple products through 
sustainable processing routes and maximum feedstock valorisation according to the 
principles of the circular economy.  
 
Fertilising halophyte cultivation with aquaculture effluent and producing functional 
protein-enriched feed supplements could help reduce aquaculture's harmful effects, 
such as the released amount of excess nutrients and potential antibiotic residues, into 
blue ecosystems while improving animal health. Hence, protecting “Life Below 
Water” and contributing to SDG no. 14.  
 
SDG no. 3, titled “Good Health and Well-Being”, targets the development of effective 
and affordable medicines for non-communicable and infectious diseases. 
Bioprospecting plants to discover their potential medicinal properties contribute 
towards this goal. Finally, extractives-free fibres could be processed for bioenergy, 
such as bioethanol or biogas, allowing the project to contribute to SDG no. 7, 
“Affordable and Clean Energy”. 
 

 
Figure 10 Sustainable development goals [147] to which the research contributes.  
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Chapter 2. Methodology 

2.1. Halophyte biomass 

In total, four different halophyte species were used in the project for bioprospecting: 
Crithmum maritimum (Apicaceae), Salicornia europaea and Salicornia ramosissima 
(Amaranthaceae), and Tripolium pannonicum (Asteraceae). All samples were 
harvested non-food grade at a vegetative partly-lignified stage before seed production, 
except C. maritimum from seed plants, which was harvested at the flowering stage. S. 
europaea and T. pannonicum are widely distributed across the Nothern hemisphere, 
whereas C. maritimum and S. ramosissima are found mainly on the coasts of the 
Mediterranean Sea and Western Europe [148].  

 
Table 1 Origin and cultivation of Crithmum maritimum, Salicornia spp. and Tripolium 
pannonicum biomass used in the project. Biomass producers are the Institute of Botany of 
Leibniz University Hannover, Germany (LUH), Riasearch Lda., Portugal (RSR), and Les 
Douceurs du Marais, France (LDM). 

Species Origin Description Harvest 

C. maritimum LUH 

Hydroponic cultivation in a greenhouse with 

various cultivation salinities. 
03-2021 

Seed plants cultivated in the soil in a 

greenhouse. 
09-2021 

S. europaea LUH 
Hydroponic cultivation in a greenhouse with 

various cultivation salinities. 
10-2020 

S. ramosissima 

RSR 

Cultivation in the soil in a greenhouse with 

irrigation and fertilisation with aquaculture 

effluent with a salinity of 250 mM NaCl. 

09-2020 

09-2021 

LDM 
Organic open-field cultivation on marshland 

with seawater irrigation. 

05-2021 

10-2022 

T. pannonicum LUH 
Hydroponic cultivation in a greenhouse with 

various cultivation salinities. 

11-2020 

06-2021 

 

Plant biomass used in the projects was fractionated to green juice and fibre residue 
using a screw press coupled with a coarse filter, and both a laboratory-scale single-
auger juicer and a pilot-scale twin-auger juicer were used. Biomass was not chopped 
prior to pressing due to the relatively small size of the received plant material. 
Separated fractions were weighed, and green juice was frozen immediately after the 
fractionation. The fibre residue fraction was dried at 60 °C, size-reduced, and stored 
at room temperature. Due to low biomass yields, C. maritimum and T. pannonicum 
grown in high salinities were not fractionated; instead, these plants were considered 
whole shrubs. For the studied halophyte biomasses, the green juice fraction 
constituted 67 – 90 % of the fresh weight (FW) of the biomass, the fraction being 
largest in S. europaea cultivated at 684 mM NaCl (40 g/L) salinity and smallest in C. 
maritimum cultivated at 171 mM NaCl (10 g/L) salinity [34]. The distribution of 
fractions in each biomass is described in papers [17,34,48,132]. 
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The fractionation process was later successfully performed on a demonstration scale 
at the grass processing facility of Aarhus University in Foulum, Denmark, for S. 
ramosissima (batch from 10-2022). Separation performance comparable to small-
scale processes was achieved, and from the fresh biomass, approximately 80 % was 
recovered in juice fraction and 20 % as wet fibres with approximately 38 % dry matter 
content. Therefore, a fractionation technology used in grass biorefinery systems could 
also be transferred to green halophyte-based biorefineries, paying attention to the 
material selections to tolerate the saline biomass.  

 

 

Figure 11 Halophyte species: Salicornia europaea (a), Salicornia ramosissima (b), Tripolium 
pannonicum (c), and Crithmum maritimum (d). Photos by Laura Sini Sofia Hulkko. 

2.2. Proximate composition analysis 

All biomass samples were determined for their contents of ash, carbohydrates, Klason 
lignin, lipids, crude protein, and organic acids. For dry matter (DM) and ash content, 
structural carbohydrates and Klason lignin, and organic acids, methods described by 
National Renewable Energy Laboratory (NREL) were used [149–151]. Weak acid 
hydrolysis, sometimes called dilute acid hydrolysis, was performed for juice fractions 
to determine the total amount of carbohydrates in liquid fractions. For crude protein 
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(CP) content, the amount of total nitrogen was determined from dried samples using 
an elemental analyser and applying the Jones’ conversion factor of 6.0 [152]. Lipids 
were extracted using a conventional Soxhlet extraction with n-hexane for fibre 
residues and liquid-liquid extraction for green juice fractions. All methods used to 
determine the composition of biomass fractions are described in detail in Paper I [34]. 
The transesterification and determination of the fatty acid (FA) profile were carried 
out as described in Paper III and Paper IV [17,48].  
 

2.3. Extraction methods 

The plant extracts were prepared with a conventional laboratory-scale Soxhlet system 
(Figure 12). Soxhlet extraction is a commonly used, reliable and replicable method 
for solid-liquid extraction, and the principle of continuous evaporation, simultaneous 
condensation, and cyclic siphoning of extract allows the production of concentrated 
extract without mass transfer limitations [16]. The extraction chamber has a volume 
of 100 mL, and 250 mL of solvent was used for the extraction. The extraction time 
was 8 h for water extracts, and 6 h for ethanol and n-hexane extracts, and the obtained 
amount of extractive material was determined by using a protocol by NREL [153]. 
 

 

Figure 12 Soxhlet extraction setup with cooling water recirculation.  

Two types of extraction methods were applied for solid biomass fractions (Figure 
13). First, extractions with water, 70 % aqueous ethanol, and n-hexane were carried 
out as parallel experiments. This extraction method was used for fibre residues of C. 
maritimum (09-2021), S. ramosissima (05-2021) and T. pannonicum (06-2021), and 
the extracts were used in bioactivity studies included in Paper III and Paper IV [17,48]. 
In another approach, extractions with water and absolute ethanol were performed 
sequentially using the same initial 15 g sample. This method was applied for the same 
T. pannonicum and S. ramosissima biomass as the previously described method, as 
well as for another S. ramosissima batch (09-2021) and C. maritimum (09-2021) 
whole plant biomass. These extracts were used to test the cytotoxicity and run the 
untargeted analysis of selected metabolites.  
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Figure 13 Parallel (a) and sequential (b) extraction methods 

2.4. Pretreatment and enzymatic saccharification of fibres 

After the sequential extractions, extractives-free fibres from S. ramosissima and T. 
pannonicum were used for hydrothermal pretreatment and enzymatic hydrolysis. 
Samples of 5 g were weighed into 250 mL flasks, 100 mL of demineralised water was 
added, and samples were mixed to ensure all fibres were submerged (5 w/v% DM 
loading). Samples were then treated in an autoclave under subcritical conditions at 
121 °C for 30 min, corresponding to moderate severity factor 2.4, previously used as 
a hydrothermal pretreatment for lignocellulosic halophyte fibres from wet 
fractionation [131]. For comparison, S. ramosissima fibres were also pretreated at 190 
°C for 10 min in a pilot-scale pretreatment reactor with active cooling and constant 
stirring, using 25 g extractives-free biomass and 500 mL water. This pretreatment 
condition corresponds to a higher severity factor of 3.7, previously tested for both wet 
fractionated and completely lignified Salicornia shrubs [98,128]. After cooling, the 
liquid was separated by vacuum filtration (MontaMil 0.45 μm PVDF membrane filter, 
Frisenette). However, due to membrane fouling, the T. pannonicum pretreatment 
liquid was filtered through a more coarse filter paper, with particle retention of 12 – 
15 μm. The obtained pretreated fibres were dried at 60 °C overnight before their 
hydrolysation. 
 
The pretreatment liquid was analysed for the contents of possible sugar degradation 
products. The concentrations of furfural and 5-hydroxymethylfurfural (HMF) were 
determined using an HPLC with a C18 column (InfinityLab Poroshell 120 EC-C18, 
Agilent Technologies), a mobile phase consisting of 80 % phosphoric acid (0.2 %) 
and 20 % acetonitrile, and diode array detector.  
 
The convertibility of lignocellulosic residual fibres was tested using a 6 % enzymatic 
dosing (Cellic® CTec3 HS, Novozymes). Pretreated fibres were mixed with 0.05 M 
acetate buffer (pH 5.0) to 10 w/w% DM loading in 250 mL baffled flasks, and 0.18 g 
of enzyme solution was added. The enzymatic saccharification was carried out by 
incubating flasks at 50 °C with 150 rpm shaking for 24 h. Afterwards, the samples 
were centrifuged to separate the undigested fibres, and hydrolysate samples were 
diluted with ultrapure water with a 1:2 ratio and filtered through a 0.45 μm syringe 
filter in order to measure the free sugar monomers released in the saccharification.  
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2.5. Analysis of phytochemicals 

2.5.1. Total contents of phenolic compounds 

Samples were analysed for their contents of total phenolic compounds (TPC), total 
flavonoids (TFC), total condensed tannins (TCT), also called proanthocyanidins, and 
total anthocyanidins (TAC), using absorption spectroscopy [154–157]. The methods 
adapted to 96-well plates were carried out as described in detail in Paper III and Paper 
IV [17,48], and the results are given as a concentration of reference compounds 
equivalent, determined using a calibration curve (Figure 14). The reference 
compounds used for calibration were gallic acid for total phenolic compounds, 
quercetin for total flavonoids, catechin for total condensed tannins, and cyanidin 
chloride for total anthocyanidins (Figure 15). 
 

 
Figure 14 Calibration curves obtained for using gallic acid (a), quercetin (b), catechin (c), and 
cyanidin chloride (d). Calibration curves were used to calculate the total contents of phenolics, 
flavonoids, proanthocyanidins, and anthocyanidins, respectively. 

 

 
Figure 15 Chemical structures of phenolic compounds used as reference compounds in assays: 
gallic acid (a), quercetin (b), catechin (c), and cyanidin chloride (d). 
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2.5.2. Total contents of photosynthetic pigments 

The approximated total amounts of photosynthetic pigments, chlorophylls (CHL) and 
carotenoids (TCA), were determined for juice fractions and ethanol extracts using a 
spectrophotometric method described by  Lichtenthaler and Wellburn  [158] using the 
following equations: 
 
CHL 𝑎 = 13.95 × A665 − 6.88 × A649   
CHL 𝑏 = 24.96 ×  A649 − 7.32 ×  A665   
TCA =  (1000 ×  A470 − 2.05 × CHL 𝑎 − 114.8 × CHL 𝑏) 245⁄  
 

2.5.3.  Untargeted analysis of selected metabolites 

Water and ethanol extracts dissolved to corresponding solvents with a 2 mg/mL 
concentration were analysed using HPLC coupled with high-resolution mass 
spectrometry. Separation was done using ultra-high performance liquid 
chromatography (UltiMate 3000, Thermo Scientific), RP-18 column (Accucore, 2.1 
x 100 mm, 2.6 µm, Thermo Scientific) and mobile phase containing water (A) and 
acetonitrile (B), both supplemented with 0.1 % formic acid. The solvent gradient 
started with 100 v/v% A for 2 min, after which B linearly increased 30 v/v% in 30 
min and v/v100 % in 16 min. In the end, the mobile phase was returned to 100 v/v% 
A for an additional 5 min. The flow rate inside the system was 0.3 mL/min, and the 
sample injection volume was 10 µL. 
 
Mass analysis was carried out with a mass spectrometer (Orbitrap Elite, Thermo 
Scientific) with heated electrospray as an ionisation source. The following parameters 
were used: spray voltages of 3.7 kV (positive) and 4.0 kV (negative), 40 arbitrary 
units of sheath gas and 10 arbitrary units of auxiliary gas, and heater and capillary 
temperatures of 300 °C and 350 °C, respectively. Compounds were detected within a 
range of 100 – 1000 m/z, and fragmentation spectra were obtained using data-
depended mode with dynamic exclusion. Obtained data were analysed using software 
(Compound Discoverer 3.3, Thermo Scientific) and compounds annotated using 
mzCloud, Arita Lab 6549 Flavonoid Structure Database, EFS HRAM Compound 
Database, Endogenous Metabolites database of 4400 compounds, LipidMaps 
Structure database 2021-09-13, and Natural Products Atlas 2020-06. 
 

2.6. Biological activity of extracts 

2.6.1. Antioxidant activity 

In order to evaluate the in vitro antioxidant properties of the samples, three radical-
based assays and three metal-based assays were carried out. The radical scavenging 
activity was tested against the following radicals: 2,2-diphenyl-1-picrylhydrazyl 
(DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and nitric 
oxide (NO) [159–161]. For metal-based assays, iron and copper chelating activities 
(ICA and CCA, respectively), as well as ferric reducing antioxidant power (FRAP), 
were tested [162]. The assays are described in detail in Paper III and Paper IV [17,48]. 
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Gallic acid, a known antioxidant, was used as a positive control and reference 
compound for DPPH and ABTS assays at 1 mg/mL concentration, and metal chelator 
ethylenediaminetetraacetic acid (EDTA) at 1 mg/mL was used as a positive control 
sample in ICA and CCA assays. 
 

2.6.2. Enzyme inhibition activity 

In vitro enzyme inhibition activity was tested against enzymes associated with type 2  
diabetes mellitus (α-amylase and α-glucosidase), obesity and acne (lipase), 
hyperpigmentation (tyrosinase), and neurodegenerative diseases, such as Alzheimer’s 
disease (acetylcholinesterase and butyrylcholinesterase) [163–167]. The protocols are 
described in detail in Paper III and Paper IV [17,48]. The results are expressed as 
percentages of inhibition at 10 mg/mL concentration based on the negative control. 
For comparison, the results were benchmarked against medicinal compounds 
currently in the market: galantamine (dementia drug), arbutin (used in cosmetics to 
reduce dark spots and hyperpigmentation), acarbose (diabetic drug), and orlistat (used 
to support weight loss in obese subjects). 
 

2.6.3. Cytotoxicity 

The cytotoxicity of the extracts to mammalian cells was tested using three cell lines 
provided by the Centre of Marine Sciences of the University of Algarve: S17 (healthy 
mice murine bone marrow stromal cells), HepG2 (human hepatocarcinoma), and 
RAW 264.7 (mice leukemic macrophage). Cells were maintained in a DMEM culture 
medium supplemented with 10 % inactivated fetal bovine serum, 1 %  2 mM L-
glutamine, and 1 % 50 U/mL penicillin/50 μg/mL streptomycin at 37 °C humidified 
atmosphere with 5 % CO2. Cells were passaged when 70 – 80 % confluence was 
reached, and a minimum of two cell division cycles with minimal observed 
morphological modifications were passaged before using the cells in assays.  
 
Cytotoxicity assay was carried out for extracts obtained from fibre residue of S. 
ramosissima (09-2021) and T. pannonicum (06-2021), and whole C. maritimum plant 
biomass (09-2021). The cell viability was tested using a colourimetric assay with 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as described by 
Rodrigues et al. [65]. Cells were seeded to 96-well plates with a density of 5x103 
cells/well (S17 and HepG2) and 10x103 cells/well (RAW 264.7) and incubated for 24 
h. When cells were attached to the bottom of the wells, extracts were applied with a 
concentration of 200 μg/mL, and plates were further incubated for 72 h. Afterwards, 
20 μL of 5 mg/mL MTT in phosphate-buffered saline was added, and plates were 
incubated for 2 h. Viable cells converted MTT to purple crystals, which were then 
dissolved into 150 μL DMSO. Absorbance was read at 590 nm (Biotek Synergy 4, 
Biochrom), and results were expressed as a percentage of cell viability based on the 
negative control cells with no added extract. Extracts exhibiting cell viability below 
75 % were considered cytotoxic at the tested concentration.  
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Figure 16 Mammalian cell lines used in the study: SP17 (a), HepG2 (b), and RAW 264.7 (c). 

Undesirable morphological modifications were observed in some RAW 264.7 cells (d). Cells 

are 200 times magnified and photographed with a camera linked to a Zeiss Axio microscope. 

2.7. Protein precipitation methods 

Different methods were tested to precipitate the protein from the S. ramosissima (09-
2021) and T. pannonicum (06-2021, 120 mM NaCl salinity) juice fractions: heat 
coagulation, acidification with HCl, and fermentation with lactic acid bacteria (LAB). 
The heat coagulation was carried out as described by Christiansen et al. [128]. In brief, 
200 mL green juice samples were heated in a water bath until 80 °C, kept at that 
temperature for an additional minute, and cooled down in an ice bath before separating 
the protein-enriched concentrate by centrifugation. Acidification to pH 3.5 was done 
by slowly adding < 1 mL of 7.7 M HCl at room temperature under constant stirring. 
 
Protein was precipitated from juice also by using the LAB fermentation method 
adapted from one developed by Kiel et al. [168]. First fermentations were carried out 
in baffled shake flasks, where 180 mL of the green juice was inoculated with 10 v/v% 
overnight LAB pre-culture. Flasks were flushed with nitrogen, and fermentation was 
carried out at 37 °C for 48 h in a shaking incubator.  A fairly large inoculate was used 
to ensure that the fermentation was taken over by the inoculated LAB and not an 
acidifier naturally present in the unsterilised juice medium.  
 
Fermentation experiments for S. ramosissima juice were also carried out in a 
bioreactor (Biostream BioBench) with a 1 L working volume, nitrogen flushing, 
temperature control at 37 °C, and constant pH and dissolved oxygen measurements. 
Green juice (900 mL) was inoculated with 10 v/v% LAB pre-culture, and levels of 
available sugars and produced metabolites were determined by hourly sampling. 
Samples were cooled immediately to inhibit the LAB growth, filtered through 0.45 
µm syringe filters, and sugars, acetic acid, lactic acid, and ethanol concentration were 
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measured using HPLC and protocol by NREL [149]. Fermentation was stopped when 
the target pH was reached. 
 
The PEC was separated by centrifugation at 4000 rpm for 20 min. Brown juice was 
decanted and discarded. PEC was dried overnight in a 60 °C fan oven and 
homogenised. Recovery of DM and CP from juice to PEC were calculated as follows: 
 
DM recovery [%] = DM in PEC [g] DM in juice [g] × 100 %⁄    
CP recovery [%] = CP in PEC [g] CP in juice [g] × 100 %⁄    
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Chapter 3. Composition of Halophytes 

3.1. Introduction to the nutritional composition of halophytes 

Especially Salicornia species are known for their high phenotypic plasticity, meaning 
their ability to adapt to changing environmental conditions,  which causes significant 
differences in the visual attributes of plants and the chemical composition of different 
ecotypes [85,169–172]. Indeed, one notable characteristic of halophyte biomass is the 
high ash content, the inorganic material in the plant matrix, which can constitute up 
to 30 – 50  % of the dry plant mass, especially in succulent species using sodium-ion 
accumulation and compartmentalisation strategies as their salt-tolerance mechanism 
[33]. Differences in chemical composition have also been observed in some 
halophytes of the Amaranthacaea family in different phenotypic stages, such as a 
decrease in crude protein (CP) content in the red-purple stage [173,174]. Succulent 
halophytes have been shown to produce these protective pigments in response to 
biotic and abiotic stresses, such as high salinity and high UV radiation intensity [173–
176]. However, the occurrence of red-purple pigments tends to be in more mature 
plants, and the later harvest stage has been linked to decreasing protein content not 
only in halophyte S. europaea [177] but also in conventional forage biomass [178]. 
Intra-specific variations were also noted in this project: S. ramosissima biomass batch 
(05-2021) cultivated in an open field with high salinity exhibited succulent texture, 
high juice content (> 80 % of initial FW) and extremely high juice ash content (81.8 
g/100g DM), whereas the batch cultivated in a greenhouse in brackish water (09-2020) 
was more lignified in texture, had lower juice content (66.7 % of initial FW) and lower 
ash content [48,132]. S. ramosissima from open-field cultivation was also partly red 
in colour, likely due to higher exposure to abiotic stresses. 
 
The average CP content of herbaceous plants and green fodder commonly used as 
feed is 11.5 g/100g DM and 12.2 g/100g DM, respectively, and 9 – 19 g/100g DM CP 
content has been reported for crops typically used in green biorefineries [179,180]. 
Many edible halophytes have reported protein content within range. The lipid content 
of the vegetative fraction of halophytes, especially succulent shrubs, is typically low 
[181], and reviewed studies report lipids contents of 1.1 – 5.9 % for halophyte 
biomass, excluding Arthrocnemum indicum and Suaeda fruticosa. Agudelo et al. 
[144] also reported only up to 1.1 g/100g DM, 1.2 g/100g DM and 2.3 g/100g DM 
lipid content for Atriplex halimus, Salicornia fruticosa, and Cakile maritima. 
However, the halophyte seeds may be a notable source of lipids, and Joshi et al. [101] 
reviewed the reported oil concentration of seeds from different species, which varies 
between 6 – 44 %. 
 
The lignocellulose from succulent halophytes is typically characterised by low lignin 
content. Abideen et al. [182] studied the lignocellulosic fraction of various halophyte 
plants and reported a lignin content of 2.3 – 8.3 % out of the lignocellulose fraction. 
For comparison, wood biomass has reported a lignin content of  15 – 4  %, depending 
on the species [183]. Similar low lignin contents were also reported in studies 
reviewed by Joshi et al.  [101], and the same study shows how the fraction of cellulose 
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and hemicellulose varies greatly between different species. Trucios et al. [177] studied 
the changes in S. europaea composition over the growth period and showed the 
lignocellulose fraction to increase with age (lignification). Cybulska et al. [146] 
studied the composition of ten halophyte species and found the highest total 
carbohydrate concentrations in Cornulaca aucheri (34.3 g/100g DM) and S. sinus-
persica (33.4 g/100g DM). In some studies, the carbohydrate fraction is determined 
as neutral detergent fibre (NDF), which includes most of the structural plant material, 
or total dietary fibre (TDF), which includes polysaccharides, lignin and other 
associated plant compounds but not potential sugars available as starch. Indeed, most 
available studies focus on the nutritional quality of edible plant fractions. 
 
The nutritional composition of some edible halophytes is summarised in Table 2. For 
comparison, C. maritimum from non-saline hydroponic cultivation, S. ramosissima 
(09-2020), S. europaea cultivated in 342 mM NaCl salinity, and T. pannonicum from 
non-saline cultivation were added from the biomass batches considered in this study. 
However, the compositions are discussed in detail in Section 3.2.1 and Section 5.3.1. 

 
Table 2 Proximate (nutritional) composition of some edible halophytes. Dry matter is 
determined as [g/100g FW], whereas other constituents are determined as [g/100g DM]. FW: 
fresh weight, DM: dry matter, CP: crude protein, * determined as total dietary fibre, ** 
determined as neutral detergent fibre. 

Biomass DM Carbohydrates CP Lipids Ash Ref. 

Arthrocnemum indicum 19.9 50.3* 15.6 13.1 15.1 [174] 

Atriplex lampa n/a 35.5** 14.0 n/a 30.6 [184] 

Crithmum maritimum 
12.4 59.1 12.7 5.9 22.4 [44] 

11.1 26.4 23.1 1.9 16.0 [34] 

Halminione portulacoides 22.0 40.5* 9.5 2.1 27.7 [185] 

Inula crithmoides 11.9 15.5 23.2 3.1 35.8 [186] 

Mesembryanthemum 

nodiflorum 
11.9 12.2 16.4 5.6 39.1 [186] 

Salicornia bigelovii 15.1 17.2 7.5 n/a 39.0 [128] 

Salicornia europaea 8.0 22.5 14.4 2.6 42.2 [34] 

Salicornia herbacea 26.1 51.3 7.7 1.1 23.4 [187] 

Salicornia ramosissima 

10.1 8.4* 20.9 4.8 47.9 [188] 

15.5 22.5** 5.2 1.9 29.2 [189] 

13.7 37.2 9.6 2.7 26.4 [132] 

Sarcocornia fruticosa 9.0 9.3* 12.6 5.6 43.4 [190] 

Sarcocornia perennis 14.2 34.1** 6.9 2.3 23.3 [189] 

Suaeda fruticosa 25.6 39.5* 17.2 19.1 10.5 [174] 

Suaeda maritima 10.4 12.8* 17.7 5.6 31.0 [190] 

Triglochin maritima 9.9 49.8 27.8 2.5 27.8 [191] 

Tripolium pannonicum 
7.9 45.56 16.8 2.9 34.7 [192] 

8.1 30.2 25.9 2.5 23.1 [34] 
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3.2. Findings on the composition of halophyte biomass 

3.2.1. Cultivation and characterisation of Salicornia europaea, Tripolium 

pannonicum and Crithmum maritimum biomass for green biorefinery 

applications  

This section summarises the key findings and discussions of Paper I,  titled 
“Cultivation and characterisation of Salicornia europaea, Tripolium pannonicum and 
Crithmum maritimum biomass for green biorefinery applications” and published in 
Scientific Reports [34],  which studies the effect of cultivation salinity on the chemical 
composition of halophytes and the distribution of plant primary metabolites to the 
juice and fibre residue fractions. The results could aid in finding optimal cultivation 
conditions and potential process routes for halophyte biomass. 
 
Biomass was cultivated in hydroponic systems under various salinities at the Institute 
of Botany, Leibniz University Hannover, Germany. Cultivation salinity significantly 
affected the biomass yield in all species, with S. europaea exhibiting the highest yield 
in 342 mM NaCl (corresponding to 20 g/L NaCl), whereas both T. pannonicum and 
C. maritimum had their highest biomass production in non-saline conditions. These 
results align with existing literature, as previous studies report the optimal salinity of 
obligatory halophyte Salicornia to be within 200 – 400 mM NaCl [193–196]. 
Similarly, significant growth inhibition of facultative halophytes T. pannonicum and 
C. maritimum under increased salinity has been observed previously [55,82,197–200]. 
Whereas both S. europaea and T. pannonicum are hydrohalophytes found in coastal 
marshlands, C. maritimum is a chasmophyte with a natural habitat in rocky seashores 
[201], which explains the observed lower salt tolerance and biomass production. 
 
T. pannonicum and C. maritimum grown in salinities > 171 mM (corresponding to 10 
g/L NaCl) exhibited too low biomass yields for the fractionation process, and they 
were considered whole shrubs. Other obtained biomass was screw-pressed, yielding 
84.6 – 90.2 % green juice. The juice DM content was 4.7 – 5.8 % in S. europaea, 3.9 
– 4.2 % in T. pannonicum and 5.4 – 7.4 % in C. maritimum. As the DM of the fibre 
fractions is highly dependent on the performance of the fractionation equipment, it 
was similar for all species, varying between 21.1. – 27.7 %. The total DM of plants 
increased as the salinity increased, except in S. europaea, which had no significant 
changes in the total DM content.  In general, the cultivation salinity had a greater 
effect on the composition of S. europaea, whereas in T. pannonicum and C. 
maritimum, the increased salinity affected the biomass yield rather than the biomass 
composition. The tested compounds were ash, carbohydrates and Klason lignin, CP, 
lipids, and organic acids. The composition of S. europaea, T. pannonicum, and C. 
maritimum whole plant biomass from different salinities are presented in Figure 17. 
The fraction constituents, sugar profiles, and minerals present in the ash are reported 
in detail in Paper I [34].  
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Figure 17 Effect of cultivation salinity on the composition of whole shrubs of partly lignified 
Salicornia europaea (a), Tripolium pannonicum (b), and Crithmum maritimum (c) [34], adapted 
and reproduced with permission from Springer Nature. The composition of fractionated 
biomass can be found in the original research paper.  
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Effect of salinity on the composition of S. europaea 
In S. europaea, the cultivation salinity significantly affected all tested biomass 
constituents in whole plant biomass, as well as both green juice and fibre fraction. The 
protein content was highest in the plants cultivated in non-saline conditions, and 
besides plants cultivated in 513 mM NaCl (corresponding to 30 g/L NaCl), > 60 % f 
the initial CP was found in the juice fractions. High protein content in the vegetative 
part of a plant is typically linked to younger development stages [177,178], which 
could be the case in S. europaea cultivates at 0 and  684 mM NaCl (corresponding to 
40 g/L NaCl) due to growth inhibition in unfavourable conditions (too low and high 
salinity). Similar CP concentrations have been reported for other Salicornia species 
[99,188,196]. High-succulence Salicornia species accumulate sodium ions in their 
tissues, and an increase in total ash content by salinity and the highest Klason lignin 
content close to the optimal cultivation salinity have been previously reported for S. 
bigelovii and  S. ramosissima [188,202]. Considering juice fractions, S. europaea also 
had significantly lower concentrations of free sugar monomers compared to two other 
species, the highest concentrations being 3.7 g/100g DM, 26.1 g/100g DM, and 40.8 
g/100g DM for S. europaea, T. pannonicum, and C. maritimum, respectively. Besides 
lignification by age, the largest lignocellulose fraction is linked to the larger plant size 
and highest biomass yield from optimal cultivation salinity [172,196], which was 
observed in both S. europaea and T. pannonicum samples. 
 

Effect of salinity on the composition of T. pannonicum 
In T. pannonicum samples, significant differences amongst all samples were observed 
only in total lipid, carbohydrate, and CP content. The ash content was significantly 
different in plants grown at 0 and 684 mM NaCl. According to Ludwiczak et al. [203], 
the first response of T. pannonicum to salinity stress is to produce high levels of 
antioxidant metabolites to balance the excess production of reactive oxygen species, 
whereas the accumulation of ions is a slower response. The used mechanism depends 
on the type and species of plant, growth stage, and intensity and duration of the stress, 
which leads to varying salt tolerance seen in nature [33,34,203]. T. pannonicum also 
had the highest CP concentration of all studied species, up to 29.97 ± 0.20 g/100g 
DM. Whereas differences in CP content of the whole plant biomass were significant 
between salinity conditions, no significant differences were observed when juice and 
fibre fractions from 0 and 171 mM NaCl (corresponding to 10 g/L NaCl) were 
considered separately. The CP content was higher than previously reported for 
Asteraceae species [102,204]; however, the presence of other nitrogen-containing 
compounds, such as nitrate, chlorophyll and non-protein amino acids, may cause an 
overestimation of protein content. A high content of xylose observed in both T. 
pannonicum makes it an interesting species for the production of hemicellulose-
derived biochemicals, such as xylitol, furfural, or prebiotic oligosaccharides [16,34]. 
 

Effect of salinity on the composition of C. maritimum 
Significant differences were observed in the contents of ash, CP, and lignocellulose 
constituent in C. maritimum from different cultivation salinities. Especially plants 
cultivated at 86 mM NaCl (corresponding to 5 g/L NaCl) were rich in total 
carbohydrates (34.71 ± 2.86 g/100g DM in whole plant) and available glucose (18.21 
± 0.47g/100g DM in juice). An inverse relationship between salinity and CP content 
of C. maritimum was also observed, whereas differences in CP content of fibre 
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fraction were non-significant. Ash from C. maritimum has a high calcium content, and 
calcium has a protective role in the salt tolerance of plants [205].  

 

3.2.2. Processing of the fibre residue fraction 

Extraction yields 
From parallel extractions, the yield of different extracts is reported in Table 3. The 
highest concentration of both water and ethanol extractives was found in S. 
ramosissima fibres, with 33.7 g/100g DM and 31.5  g/100 gDM, respectively. On the 
contrary, the lowest content of water and ethanol extractives was found in C. 
maritimum, with 16.5 g/100g DM and 13.6 g/100g DM, respectively. Very low lipid 
content (n-hexane extractives), which is typical for succulent halophytes in the 
vegetative stage, was observed in all species. Similar low lipid contents, 1.6 – 4.8 
g/100g DM, were also observed in other studied halophyte fibre fractions [34].  
 
Table 3 Content of extractive material [g/100g DM] obtained from parallel extractions with 
solvents with increasing polarity.  

Species 
Water 

extractives 

Ethanol 

extractives 

Hexane 

extractives 
Ref. 

C. maritimum 16.54 ±0.33 13.56 2.20 ± 0.10 [17] 

S. ramosissima 33.68 ±2.31 31.45 ± 0.59 1.13 ± 0.06 [48] 

T. pannonicum 18.73 ± 0.50 25.88 ± 2.47 2.87 ± 0.04 [17] 

 
Besides biological and environmental factors (discussed in detail in studies presented 
in Chapter 4), the extraction yield highly depends on the used extraction methods, 
biomass pre-processing and storage, and used solvent and its purity [16,206–210]. 
Commonly used solvent extraction methods are maceration, infusion, decoction, and 
Soxhlet extraction. The benefit of Soxhlet extraction is that the extraction is not 
limited by mass transfer constraint, as the solvent is gradually introduced to the 
biomass through extraction cycles [16]. However, some compounds of interest in 
plant extracts are sensitive to elevated temperatures or are unstable in neutral or 
alkaline pH [16,211–213]. Therefore, the benefits of prolonged extractions in these 
conditions should be evaluated for each biomass and compound of interest. Ultrasoun-
assisted and microwave-assisted extractions, pressurised-liquid extraction, and other 
unconventional methods have been tested in recent years to improve extraction yields 
and reduce the extraction time in potentially undesired conditions [209,211,214,215]. 
 
In subsequential extractions (Figure 18), the highest content was extractives was 
found in C. maritimum, likely due to the use of whole, non-fractionated plant biomass 
in these extractions. Considering the total water and ethanol extractive material, the 
results are comparable to those of ash-free extracts reported by Cybulska et al. [146] 
for ten different halophyte species. This may indicate that when water-soluble salts, 
which the halophyte ash mainly constitutes, end up with the juice fraction after the 
screw press, while the majority of the potentially valuable extractives remain in the 
fibre fraction. The amount of water extractives was highest in C. maritimum, 27.00 ± 
0.54 %, followed by S. ramosissima and T. pannonicum, with 23.61 ± 0.49 % and 
10.75 ± 1.16 %, respectively. The highest content of ethanol extractives, 5.38 ± 0.22, 
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was found in T. pannonicum, and low (< 5 %) ethanol extractive content was also 
previously found in most of the different halophytes tested in a previous study [146]. 
The hydrothermal pretreatment with higher severity subritical conditions allowed the 
better extraction of compounds from lignocellulose matrix, the amount of released 
increasing from 3.77 ± 0.14 % to 19.51 ± 3.76 % when changing the pretreatment 
conditions from SF 2.4 to SF 3.7.  
 

 

Figure 18 Amount of extractives after subsequential Soxhlet extractions of halophyte dry 
matter. CM: Crithmum maritimum, SR: Salicornia ramosissima, TP: Tripolium pannonicum 
(120 mM NaCl), SF: severity factor. CM fibres were not pretreated. SF 2.4: 121 °C 30 min, SF 
3.7: 190 °C 10 min.  

Convertibility of fibres 
The recoveries of sugars from the pretreated lignocellulosic fibres to hydrolysate after 
enzymatic saccharification are shown in Figure 19. In a previous study carried out for 
S. sinus-persica, Alassali et al. [131] reached the highest cellulose recovery to 
pretreated de-juiced fibres with SF 2.4 and also achieved > 60 % ethanol yields with 
simultaneous enzymatic saccharification and fermentation of pretreated fibres with 
Saccharomyces cerevisiae, showing good sugar convertibility. However, this was not 
the case with extractives-free S. ramosissima, as the convertibility of fibres treated 
with SF 2.4 was close to those without hydrothermal pretreatment and recovery of all 
the sugars to hydrolysate was < 10 %. For S. ramosissima, 70 – 80 % sugar recoveries 
were achieved using pretreatment with a higher severity factor. Christiansen et al. 
[128] also tested SF 3.7 pretreatment for de-juices S. bigelovii fibres and reached > 80 
% glucose and xylose and > 40 % arabinose recovery to hydrolysate based on the 
content of carbohydrates in untreated fibres. These high pentose recoveries indicate 
only low levels of sugar degradation during pretreatment. For completely lignified S. 
bigelovii, pretreatment at SF 3.7 has also shown high cellulose recovery to fibres, 
efficient xylose release to pretreatment liquids with minimum furfural production, and 
high fibre convertibility and ethanol yields [98,216]. Differences in the results may be 
due to variations between closely related species and differences in the biomass 
growth stage and processing methods. On the other hand, the pretreatment with  SF 
2.4 significantly enhanced the glucose recovery from T. pannonicum fibres to 
hydrolysate, reaching 73.0 %, whereas the convertibility of pentose sugars was not 
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significantly affected. Overall, the results highlight the importance of pretreatment 
optimisation for each specific type of biomass. 
 

 
Figure 19 Sugar recovery from pretreated fibres to hydrolysate after enzymatic 
saccharification. SR: Salicornia ramosissima, TP: Tripolium pannonicum (120 mM NaCl), SF: 
severity factor.. SF 2.4: 121 °C 30 min, SF 3.7: 190 °C 10 min. 

In pretreated S. ramosissima fibres, the fraction of available glucose in the fibres 
increased from 39.0 g/100g DM to 70.9 g/100 g DM, moving from lower to higher 
severity, and only < 0.5 g/100g DM glucose monomers were found in SF 3.7 
pretreatment liquid, showing high cellulose recovery to fibres. However, the xylose 
fraction in the fibres decreased from 26.9 g/100g DM to 10.4 g/100g DM and 
arabinose from 3.3 g/100g DM to 0.7 g/100g DM due to pentose sugar release to a 
liquid fraction. Therefore, the high recoveries of xylose and arabinose to the 
hydrolysate obtained in this study have been from significantly lower initial sugar 
content in pretreated fibres. The pretreatment liquid from SF 3.7 was rich in free 
pentose sugars, with xylose and arabinose concentrations of 10.07 ± 0.53 g/100g DM 
and 12.83 ± 0.32 g/100g DM, respectively. However, whereas nearly all of the total 
glucose and arabinose were recovered in pretreatment fractions, > 55 % of the xylose 
was lost due to degradation. Heating and cooling rates of the used equipment can have 
a significant role in the pretreatment performance by affecting the time the biomass 
has been exposed to elevated temperatures, and the effect may be more pronounced 
when moving from laboratory-scale vessels to larger-scale systems.  
 

Sugar degradation products 
Considering the sugar degradation products, < 0.5 g/100g DM of HMF was measured 
from both S. ramosissima pretreatment liquids (Figure 20). On the contrary, 41.95 ± 
5.35 g/100g DM of furfural was measured from S. ramosissima pretreatment liquid 
from SF 3.7, whereas no furfural was detected from SF 2.4 pretreatment liquid. 
Indeed, more than 40 % of the SF 3.7 pretreatment liquid DM was furfural and 
pretreatment at SF 3.7 could be considered too severe and harsh for S. ramosissima 
fibres. From the T. pannonicum pretreatment liquid, neither furfural nor HMF was 
measured. A pretreatment optimisation study is needed to find the conditions to 
achieve high sugar release and recoveries with the minimum production of toxic 
degradation products, which in high can concentrations can be inhibitory agents in the 



CHAPTER 3. COMPOSITION OF HALOPHYTES 

49 

biorefinery targeting sugar fermentation to bioethanol [131]. On the other hand, 
furfural can also be a desired compound of interest, as it is already commercially 
produced and used as a platform chemical in, for example, furfuryl alcohol and 2-
furoic acid production [16].  
 

 
Figure 20 Salicornia ramosissima fibres and pretreatment liquid obtained from hydrothermal 
treatment of extractives-free fibres at 190 °C for 10 min (SF 3.7). 

3.2.3. Fatty acid profiles 

Fatty acid profiles were determined from the n-hexane extract from fibre residues. In 
C. maritimum, the lipids constituted 49.9% polyunsaturated fatty acids (PUFA), 36.7 
% saturated fatty acids (SFA), and 13.4 % monounsaturated fatty acids (MUFA), the 
main FA being linoleic acid (34.4%) [17]. In S. ramosissima, the corresponding values 
were 58.2 % PUFA, 41.0 % SFA, and 34.5 %, with the same predominant FA  linoleic 
acid (34.5 %) [48]. In T. pannonicum, the amount of PUFA was significantly higher, 
78.2 %, followed by 20.6 % SFA and 1.2 % MUFA, and the main FA was α-linolenic 
acid with 53.2 % relative concentration [17]. Very-long chain fatty acids arachidic 
acid, behenic acid, and lignoceric acid were only found in S. ramosissima. Obtained 
results are aligned with the existing literature reporting the FA profiles from different 
fractions for the species of interest [192,217–220]. 
 
All samples exhibited the ω-6 and ω-3 ratio < 5 reported to contribute to the anti-
inflammatory properties of PUFA and reduced risk of cardiovascular diseases and 
cancer [221,222]. The ω-6 and ω-3 ratios were 2.2, 1.5, and 0.5 for C. maritimum, S. 
ramosissima, and T. pannonicum, respectively [17,48]. FA profiles are presented in 
Table 4. Even if the FA profile may be important for some nutraceutical or feed 
applications, due to the very low total content of lipids described in the previous 
section, the role of health-beneficial PUFA for biorefinery added value creation may 
not be significant. 
 
Table 4 Relative concentrations of fatty acids (FA) in obtained lipids [% FA/total FA] from S. 
ramosissima [48], and C. maritimum and T. pannonicum [17]. SFA: saturated fatty acids, 
MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids. 

Fatty acid C. maritimum S. ramosissima T. pannonicum 

Myristic acid 1.5 ± 2.2 0.4 ± 0.4 n.d. 

Palmitic acid 28.9 ± 1.8 30.9 ± 2.3 19.0 ± 0.2 

Palmitoleic acid 1.9 ± 2.7 n.d. n.d. 

Stearic acid 6.3 ± 0.3 2.7 ± 0.1 1.6 ± 0.0 
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Oleic acid 11.5 ± 0.2 1.3 ± 0.1 1.2 ± 0.5 

Linoleic acid 34.4 ± 1.8 34.5 ± 0.7 24.9 ± 0.2 

α-Linolenic acid 15.5 ± 0.7 23.7 ± 1.4 53.2 ± 0.3 

Arachidic acid n.d. 1.0 ± 0.9 n.d. 

Behenic acid n.d. 3.9 ± 0.1 n.d. 

Lignoceric acid n.d. 2.1 ± 1.8 n.d. 

Σ SFA 36.7 ± 4.3 41.0 ± 0.9 20.6 ± 0.2 

Σ MUFA 13.4 ± 2.9 1.3 ± 0.1 1.2 ± 0.5 

Σ PUFA 49.9 ± 1.2 58.2 ± 2.0 78.2 ± 0.5 

ω-6 / ω-3 2.2 ± 0.2 1.5 ± 0.1 0.5 ± 0.0 
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Chapter 4. Bioactivity of Plant Extracts 

4.1. Review on bioactive compounds in halophyte extracts  

This section summarises Paper II titled “Extraction and Quantification of 
Chlorophylls, Carotenoids, Phenolic Compounds, and Vitamins from Halophyte 
Biomasses“ and published in MDPI Applied Sciences [223], which considers the 
phenolic compounds, proanthocyanidins, pigments and vitamins in halophytes and the 
related extraction and analytical methods. This study aimed to gather the existing 
knowledge of the concentration of compounds of interest found in different halophyte 
species and the protocols used in their extraction and determination. For this section, 
the review was extended to cover the reported concentrations of total flavonoids and 
consider the main specific polyphenols found from the halophyte species of interest.  
 

Polyphenolic compounds in halophytes 
Phenolic compounds are a diverse group of phytochemicals, including flavonoids, 
phenolic acids, lignans, and their various derivatives. These compounds can be 
effectively extracted from biomass using methanol or acetone as a solvent, and the 
majority of the reviewed studies used either of these as solvents to achieve the highest 
phenolic yields [223]. Aqueous extracts have also been studied [143,206,224–226], 
key drivers being chemical safety and a wide range of extract applications. The total 
contents of different phenolic groups can be determined using established absorption 
spectroscopy assays, also used in this PhD project for Paper III and Paper IV, and 
different chromatographic methods are developed to detect and quantify the 
concentration of specific phenolic compounds in the extracts.  
 
Polyphenols are the phytochemicals linked to the biological activities and health 
benefits of plants, including antioxidant and anti-inflammatory properties, prevention 
of cardiovascular and metabolic diseases, and antimicrobial, anti-viral and anti-cancer 
effects, amongst others [50,62,66,71]. The group of phenolic acids constitute 
hydroxybenzoic and hydroxycinnamic acids and their derivates. Flavonoids can be 
divided into various sub-classes, including flavanones, flavanols, flavonols, 
isoflavones, flavones, and anthocyanidins [61].  Both phenolic acids and flavonoids 
are compounds of interest due to their various potential applications in biomedicines, 
nutraceuticals, and cosmetics [61,62,66,211,227]. Proanthocyanidins are polymerised 
flavonoids found in various plant fractions, giving them astringent, bitter and sour 
taste [228,229]. These compounds yield anthocyanidins, responsible for the red, 
purple and blue colour of plants under acidic oxidative conditions [227].  In nature, 
proanthocyanidins protect plants from insects, parasitic nematodes, fungal infections 
and other diseases, and they have recently increased interest due to their potential 
pharmacological use [228–231].  
 
Considering the species of interest for this PhD project, the main phenolic acids 
quantified and identified from Salicornia species extracts are p-coumaric acid, gallic 
acid, protocatechuic acid, chlorogenic and ferulic acid, and main flavonoids catechin, 
myricetin, rutin, isorhamnetin, and some quercetin derivatives [206,208,232–234]. 
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Extracts from T. pannonicum are less studied for the concentration of specific 
compounds; however, quercetin, luteolin, apigenin, and several quercetin and 
kaempferol derivates have been identified in this species [235]. C. maritimum has 
been characterised to be especially rich in phenolic acids, mainly chlorogenic acid and 
its isomers neochlorogenic acid and cryptochlorogenic acid, but also trans-ferulic acid 
and other phenolic acid derivatives  [44,143,236–238]. Various other polyphenols 
were also reported in lower concentrations from extracts of the studied halophytes and 
reported concentrations vary between studies. There are thousands of naturally 
occurring polyphenols in plants, and their diverse structures and complex derivates 
make them difficult to identify and quantify [66,239]. 
 
The concentration of TPC, TFC, and TCT depends on biological factors, such as 
genotype and the plant's growth stage, but also on the specific plant organ used for the 
extraction. Extracts from Limonum algarvense and Tamarix gallica flowers have been 
shown to contain significantly higher concentrations of phenolics compared to leaves 
and other plant organs [240,241]. Similarly, from Limonium delicatulum, S. europaea, 
and C. maritimum, higher content of phenols was obtained in plants in the flowering 
growth stage compared to the vegetative stage [238,242]. High polyphenolic contents 
were also found in other species with distinctive flowers (Figure 21), such as T. 
pannonicum (syn. Aster tripolium), Retama raetam, and Mesembryanthemum edule 
(syn. Carpobrotus edulis) [63,226,243,244]. High polyphenolic content in later 
growth stages has also been reported for Salicornia species [177,245]. On the 
contrary, the opposite was observed in Salsola kali, which had a higher phenolic 
content in leaves compared to flowers and the highest polyphenolic content at the end 
of the vegetative stage before flowering [246,247]. As many polyphenols are 
produced to adapt to environmental stressors, their concentrations are also highly 
dependent on temperature, water and soil salinity, drought or flooding conditions, 
light exposure and the strength of UV radiation [66,82,188,190,247]. Due to multiple 
factors affecting the production of polyphenols in plants, a large variation in 
concentrations of TPC, TFC, and TCT between studies using the same species can be 
observed. The total contents of different types of polyphenols and pigments in 
halophytes are collected in Table 5. 
 

 
Figure 21 Blooming halophytes: Hottentot Fig (Carpobrotus edulis) (a) and Tamarisk (Tamarix 
gallica) (b), both by Phil Sellens, are licensed under CC BY 2.0 [248] and Retama raetam (c) 
by Mitch Van Dyke and Limonium algarvense (d) by Lies Van Rompaey are licensed under CC 
BY 4.0 [249]. 
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Photosynthetic pigments in halophytes 
Chlorophylls and carotenoids are considered photosynthetic pigments. Chlorophylls 
a and b are pigments responsible for the green colour of plants, which in human 
nutrition not only make products more desirable for consumption but have antioxidant 
and potential chemopreventive properties [39,171,273,274]. Carotenoids are yellow 
and orange pigments protecting plant photosystems, and they can be divided into 
carotene and xanthophylls [126,275]. Carotenoids are linked to many health benefits, 
including pro-vitamin A activity, immunomodulation, improvement of cognitive 
functions, and prevention of cardiovascular and degenerative disorders [275–277]. 
Sarcocornia fruticosa has shoen to be rich in β-carotene, as well as lutein [190,255]. 
Cultivation salinity has been shown to affect the pigment concentration of plants. 
Some studies show an inverse relationship between salinity and pigment content 
[126,255,262,264], but increased pigment content or no significant change has also 
been reported for halophytes [126,171,188]. Pigment content has also been shown to 
be highest in plants at the younger growth stage [173]. 
 

Vitamins in halophytes 
Vitamins are essential nutrients required for the average growth and health of humans. 
Thus they are highly commercialised for functional food additives and nutraceuticals, 
as the key sources of vitamins, such as vegetables, fruits, unrefined cereals and nuts, 
are often lacking, especially in the Western pattern diet [276,278]. Different 
chromatography methods are typically used to determine the concentration of 
vitamins in plant extracts [223]. Phenotypic stage and cultivation conditions, such as 
salinity, and storing conditions, have been shown to affect the nutritional composition 
of halophytes [174,188,260]. Considering water-soluble vitamins, ascorbic acid 
(vitamin C) is a potent antioxidant, having various roles, such as preventing cellular 
damage and oxidative stress, improving skin health, improving the immune system, 
and preventing cardiovascular diseases [266,271,279]. The shoots from S. fruticosa 
and Suaeda maritima have been shown to be rich in vitamin C [190], and leaves of 
Thespesia populnea could fulfil the daily vitamin C intake requirements of a healthy 
adult [271]. Vitamins in B complex group are essential co-enzymes and antioxidants 
supporting various processes, such as carbohydrate and protein metabolism, nucleic 
acid synthesis, and enhancing the cell growth, bone health, and function of neurons  
[188,276,280]. Mesembryanthemum nodiflorum, S. fruticosa and S. maritima have 
exhibited higher pyridoxine (vitamin B6) content than conventional green vegetables, 
asparagus and watercress [190]. Cobalamin (vitamin B12) is scarce in plants, and 
supplementation is often necessary for individuals following a strictly plant-based diet 
to ensure sufficient intake. Interestingly, Suaeda aegyptiaca has exhibited higher 
cobalamin content than sea buckthorn, one of the richest known sources of vitamin 
B12 among plants [280,281]. 
 
Tocopherols (vitamin E) and retinyl acetate (vitamin A) are lipid-soluble vitamins. 
Tocopherols have been reported to prevent cardiovascular diseases, different types of 
degenerative disorders and cancer, and their potent antioxidant activity protects cell 
membranes and lipoprotein from lipid peroxidation [39,276,277]. Arthrocnemum 
macrostachyum has shown vitamin E content comparable to conventional green 
vegetables, kale and broccoli [39]. The content of lipids is highest in halophyte seeds, 
and Salicornia and Teucrium seed oils have been shown to have high concentrations 
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of tocopherols [282–284]. Few studies report the concentration of retinyl acetate 
(vitamin A) in plant extracts, likely due to humans’ ability to convert β-carotene, an 
important plant-based nutrient, to vitamin A. The concentrations of vitamins found in 
halophytes are summarised in Table 6.  
 
Table 6 Vitamin content [mg/100g DM] reported for halophytes. Studies were first reviewed in 
Paper II [223]. The considered water-soluble vitamins were thiamine (B1), pyridoxine (B6), 
folate (B9), cobalamin (B12), and ascorbic acid (C), and lipid-soluble vitamins retinyl acetate 
(A) α-tocopherol (E). * Unit in fresh weight (FW) basis, n.d.: not detected, n/a: not available. 
For Teucrium spp., the seed oil fraction was considered [282]. 

Species Vitamin A Vitamin B Vitamin C Vitamin E Ref. 

Arthrocnemum indicum n/a n/a 19.2* 2.1 [174] 

Arthrocnemum 

macrostachyum 
n/a n/a n/a 8.7 [39] 

Aster tripolium n/a n/a 13.7* n/a [49] 

Cakile maritima n/a n/a n/a 20 [252] 

Halocnemum strobilaceum n/a n/a 7.4* 3.4* [174] 

Mesembryanthemum  

nodiflorum 
4.5 24 (B6) 500 n.d. [190] 

Salicornia bigelovii n/a n/a 5.8* n/a [260] 

Salicornia ramosissima n/a 
0.03* (B1); 

0.003* (B6) 
n/a 0.2* [188] 

Salvadora persica n/a n/a 68.0 n/a [266] 

Sarcocornia fruticosa n/a 10 (B6) 1000 18 [190] 

Sarcocornia perennis n/a n/a n/a 1.1 [39] 

Suaeda aegyptiaca n/a 

18.1 (B6); 

11.8 (B9); 

46.6 (B12) 

n/a n/a [280] 

Suaeda fruticosa n/a n/a 2.5* 11.4 [174,190] 

Suaeda maritima 5.4 9.5 3000 12.5 [190] 

Suaeda vera n/a 

10.2 (B1); 

11.8 (B6); 

27.1 (B12) 

n/a n/a [280] 

Thespesia populnea n/a n/a 44.3 n/a [271] 

Teucrium alopecurus n/a n/a n/a 31.6 [282] 

Teucrium polium n/a n/a n/a 27.7 [282] 

Teucrium nabli n/a n/a n/a 29.6 [282] 

 

4.2. Findings on the bioactive properties of halophytes 

4.2.1. Annotated bioactive compounds from extracts 

Various interesting compounds were annotated after the untargeted LC-MS analysis; 
however, an analysis using standard compounds would be needed to identify and 
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quantify the metabolites. For the annotated compounds, the deviation of the measured 
and theoretical mass (Δmass) was -5.0 ≤ Δmass ≤ 5.0, the mzCloud Best Match score 
was ≥ 85 % and had matches in one or more of the used compound databases. The 
bioactive compounds found and annotated from water extracts are summarised in 
Table 7. Not all annotated metabolites were reported, and besides the reported 
compounds, several types of compounds were found in water extracts, including 
benzoic acid derivatives, nucleic acid derivatives, peptides, compounds related to 
amino acid metabolism, and some unknown flavonoids. Phenolic compounds often 
linked to biological activities of extracts were found from all species: flavonoids, 
phenolic acids, coumarins, and their derivatives. Similarly, vitamin B2, riboflavin, 
and vitamin B5, pantothenic acid, were detected in all water extracts. Vitamin B9 was 
found in C. maritimum extracts in the form of folinic acid, one of the natural forms of 
folate. A previous study by Lima et al. [188] reported vitamins B1 and B5 found in S. 
ramosissima methanol-ammonium acetate extract. 
 
Table 7 Some of the bioactive metabolites annotated in water extracts after LC-MS analysis, 
organised by m/z values. RT: retention time, CM: Crithmum maritimum, SR: Salicornia 
ramosissima, TP: Tripolium pannonicum, +: presence in extract, -: absence. 

Compound m/z [M-H]+1 m/z [M-H]-1 RT 

[min] 
CM SR TP 

4-Hydroxybenzoic acid n/a 137.02439 13.87 + + + 

5-Methoxysalicylic acid n/a 167.0348 9.77 - + - 

Isovanillic acid n/a 167.0349 7.81 - + - 

Isoferulic acid 177.0544 n/a 11.03 + + - 

Caffeic acid n/a 179.0347 12.79 - - + 

Azelaic acid n/a 187.0972 14.66 + + + 

Quinic acid n/a 191.05558 10.63 + - + 

Scopoletin 193.0496 n/a 13.16 + + + 

Ferulic acid n/a 193.0502 13.35 + + - 

Pantothenic acid 220.1181 n/a 6.09 + + + 

Dodecanedioic acid n/a 229.1441 20.43 - + + 

Apigenin n/a 269.0452 19.54 - + - 

Xanthosine n/a 283.0680 5.56 - + - 

Luteolin n/a 285.0399 16.78 - + - 

Isokaempferide 301.0702 n/a 19.87 + + - 

Quercetin 303.0496 n/a 14.23 - + + 

Isorhamnetin 317.0655 n/a 15.27 - + + 

Aesculin n/a 339.0711 9.60 + + + 

Chlorogenic acid n/a 353.08658 10.65 + - + 

Neochlorogenic acid n/a 353.0867 8.64 + - + 

3-O-Feruloylquinic acid n/a 367.1022 12.43 + - - 

Riboflavin 377.1452 n/a 11.88 + + + 

Nobiletin 403.1383 n/a 22.34 + + + 

Syringaresinol n/a 417.1543 14.47 - + - 

Kaempferol-3-O-

rhamnoside 
n/a 431.09705 16.19 + - - 

Apigenin 7-glucuronide 447.0916 n/a 15.39 - + - 

Astragalin n/a 447.0921 15.08 - + + 

Kaempferol-3-galactoside 449.1077 n/a 15.09 - - + 
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Kaempferol 3-

glucuronide 
463.0869 n/a 14.31 - + - 

Quercetin-3β-D-glucoside 465.1022 n/a 14.24 - + + 

Folinic acid 474.1731 n/a 9.56 + - - 

Miquelianin n/a 477.0661 14.21 - - + 

4,5-Dicaffeoylquinic acid n/a 515.1177 14.59 + - + 

Rutin n/a 609.1442 13.92 + - + 

Hesperidin n/a 609.1802 14.88 + - - 

Diosmin 609.1812 n/a 15.31 + - - 

 
Some fatty acids, fatty acid conjugates and their derivates, such as fatty acid amides 
(not reported), were found in ethanol extracts. The role of different fatty acids in non-
polar extracts of studied species is discussed in published papers [17,48]. Many of the 
annotated flavonoids and other bioactive compounds were present in both water and 
ethanol extracts; however, some interesting flavonoid derivatives were found only in 
ethanol-based samples, likely due to their lower solubility in water.  In addition, some 
unknown flavonoid compounds were also found. Interestingly, some flavonoids were 
present in both water and ethanol extracts from S. ramosissima but were found only 
in ethanol extracts of C. maritimum and T. pannonicum. Some potential explanations 
are low compound concentrations below the detection limit, or longer extraction time 
and solvent required to access potentially conjugated compounds from biomass with 
higher lignin content [214,285]. The annotated compounds from ethanol extracts are 
summarised in Table 8.  
 
Table 8 Metabolites annotated in ethanol extracts after LC-MS analysis, organised by m/z 
values. RT: retention time, CM: Crithmum maritimum, SR: Salicornia ramosissima, TP: 
Tripolium pannonicum, +: presence in extract, -: absence. 

Compound m/z [M-H]+1 m/z [M-H]-1 RT 

[min] 
CM SR TP 

4-Hydroxybenzoic acid n/a 137.02438 7.97 + + + 

Methyl salicylate n/a 151.04 9.75 + + + 

Suberic acid n/a 173.0818 12.43 + + + 

D-Mannitol n/a 181.0716 1.96 + - - 

Azelaic acid n/a 187.0971 14.63 + + + 

Isoferulic acid n/a 193.0501 12.29 - + - 

Ferulic acid n/a 193.0502 10.99 + - - 

Dodecanedioic acid n/a 229.1439 20.41 + + + 

Palmitic Acid n/a 255.23232 26.37 + + + 

Apigenin n/a 269.0447 19.54 + + + 

Galangin 271.0602 n/a 19.55 + + - 

Naringenin n/a 271.0603 18.82 - + - 

Cardamomin 271.09637 n/a 23.67 - + - 

γ-Linolenic acid n/a 277.2166 24.44 + + + 

α-Linolenic acid 279.23136 n/a 28.99 + - + 

Pinolenic acid 279.23209 n/a 26.44 - + - 

Linoleic acid n/a 279.2322 25.41 + + + 

Oleic acid 283.26303 n/a 31.88 - + - 

Stearic acid n/a 283.2634 28.58 + + + 
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Luteolin n/a 285.0397 17.94 + + + 

Sakuranetin 287.09113 n/a 18.91 - + - 

Isokaempferide 301.07074 n/a 19.83 - + + 

Hesperetin n/a 301.07104 19.35 + - - 

Quercetin 303.04963 n/a 14.22 - + + 

N-Feruloyloctopamine 312.12265 n/a 14.08 - + - 

Isorhamnetin 317.06542 n/a 15.24 - + - 

Neochlorogenic acid n/a 353.0868 9.67 + - - 

Chlorogenic acid n/a 353.087 10.65 + + + 

3-O-Feruloylquinic acid n/a 367.1025 12.51 + - - 

Riboflavin 377.14523 n/a 11.85 - - + 

Nobiletin 403.13812 n/a 22.29 + + + 

Kaempferol-3-O-

rhamnoside 
n/a 431.09708 16.15 + - - 

Astragalin n/a 447.09225 15.07 - + + 

Kaempferol-3-galactoside 449.1073 n/a 15.06 - - + 

Quercetin-3β-D-glucoside 465.1021 n/a 14.23 - + + 

18-β-Glycyrrhetinic acid 471.34549 n/a 25.99 - + - 

Miquelianin n/a 477.0657 14.19 - - + 

4,5-Dicaffeoylquinic acid n/a 515.11829 14.94 + - + 

Diosmin 609.1804 n/a 15.30 + - - 

 

Discussion on found phytochemicals 
As described previously in Section 4.1, flavonoids have long been known to be 
beneficial for human health, and their antioxidant and anti-inflammatory properties 
are highlighted [286]. These compounds are also potent anti-diabetic agents, and from 
the annotated compounds, apigenin, isorhamnetin, quercetin, quercetin-3β-D-
glucoside, rutin,  and sakuranetin have been reported to contribute to the anti-diabetic 
properties of plant extracts by inhibiting α-glucosidase, improving insulin sensitivity, 

and reducing oxidative stress [287]. Flavanone naringenin and its derivate 
sakuranetin, annotated only from S. ramosissima ethanol extract, have been described 
as anti-cancer and anti-viral agents [288,289]. Commonly found in citrus fruits, 
flavanone hesperetin, its derivate hesperidin, and flavone glycoside diosmin have also 
previously detected form halophytes, including C. maritimum [290–294]. Diosmin 
and hesperidin are used in the medical industry to treat chronic venous disorders, 
including reticular and varicose veins, swelling, stasis dermatitis, and ulcers 
[293,295,296]. Flavonol galangin, annotated from C. maritimum and S. ramosissima 
extracts, and flavone luteolin, found in all species, have been compounds of interest 
in recent years due to their therapeutic properties towards various types of cancer 
[297,298]. Folinic acid, also found in C. maritimum, is already used in the medical 
industry to improve the effects of chemotherapy on cancer patients [299]. Flavonoids 
kaempferol-3-galactoside, and miquelianin were detected only in T. pannonicum 
extracts, of which the latter has been recently studied for its potential as an 
antidepressant and inhibition of allergic responses [300,301]. Miquelianin also has 
been shown to inhibit the formation of β-amyloid peptides, which have been linked to 
the development of Alzheimer’s disease together with oxidative stress and a decrease 
in the level of neurotransmitters [301,302]. Galanging and apigenin have been 
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reported to be strong BuChE inhibitors in vitro, whereas quercetin has a high 
inhibition activity towards AChE [303]. 
 
Besides flavonoids, phenolic acids are an abundant group of polyphenols known for 
their antioxidant and potential therapeutic properties [50,60,227,276,304]. 
Chlorogenic acid, one of the dominant compounds in C. maritimum extracts 
[143,305–307], is especially known for its anti-diabetic properties by regulating both 
sugar and lipid metabolism [308–310]. Its isomer, neochlorogenic acid, has been 
shown to have strong anti-inflammatory activity [311,312]. Caffeic acid, found in T. 
pannonicum water extract, is used in cosmetics due to its antioxidant and anti-ageing 
properties and has shown potential for treating dermal diseases [304]. Recently, 
caffeic acid has increased interest due to its activity against hepatocarcinoma [313]. 
Ferulic acid is commonly found in plants and was detected from C. maritimum and S. 
ramosissima extracts.  It is commercially used in cosmetics due to its antioxidant 
properties, but it has shown other medicinal properties, such as protection against 
cardiovascular diseases [314,315]. Caffeic acid, chlorogenic acid, and ferulic acid 
have all also shown anti-viral properties [71]. 
 
Quinic acid derivative 4,5-dicaffeoylquinic acid, found in C. maritimum and T. 
pannonicum extracts, has previously been shown to be a strong a-glucosidase inhibitor 
and contributing to the anti-hyperglycemic potential of plant extract [316]. Found only 
in water extracts, 5-methoxy salicylic acid has previously been shown to contribute to 
the inhibition of tyrosinase activity [317], and lignan syringaresinol has shown 
significant anti-inflammatory properties both in vitro and in vivo [318]. Scopoletin is 
a coumarin found in all tested water extracts, which has exhibited anti-cancer 
properties, amelioration of metabolic and inflammatory diseases, and potent effects 
against neurological diseases in vitro and in vivo [319]. Found in S. ramosissima 
ethanol extract, triterpenoid saponin glycoside 18-β-glycyrrhetinic acid has also 
exhibited tyrosinase inhibition, but also antioxidant and anti-inflammatory properties 
and inhibition activity against an enzyme connected to acne [320]. D-mannitol, a 
polyalcohol with antioxidant and diuretic properties, have previously been found to 
be a predominant compound in C. maritimum [191]. 
 
Indeed, various interesting secondary metabolites were found in the studied extracts. 
Technologies like bioguided fractionation [321] could be utilised to find compounds 
responsible for biological activities of interest. Overall, residual fibres from screw-
press halophytes have shown to be a potential source of valuable secondary 
metabolites; hence, extraction processes should be considered as a part of green 
biorefineries. 
 

4.2.2. Bioactive Extracts from Salicornia ramosissima J. Woods Biorefinery as a 

Source of Ingredients for High-Value Industries  

In this section, the results and discussion from Paper III, titled “Bioactive Extracts 
from Salicornia ramosissima J. Woods Biorefinery as a Source of Ingredients for 
High-Value Industries” and published in MDPI Plants, are summarised [48]. The 
paper considers the different extracts and fractions from S. ramosissima, their contents 
of phenolic compounds and pigments, their biological activities, and how these 
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bioactive extracts could be used in high-value applications. Besides juice fractions 
(05-2021 and 09-2021) and extracts from S. ramosissima fibre (05-2021) residue, a 
water extract obtained from completely lignified plants is also included in the study. 
This section focuses on the result considering the phenolic compounds, pigments, and 
bioactivity assays, as the amount of extractives and the fatty acid profiles have been 
presented in Section 3.2.2 and  Section 3.2.3, respectively. 
 

Total bioactive compounds in S. ramosissima extracts 
The ethanol extract from fibres had the highest TPC content, 41.1 mg GAE/g DM, 
followed by the extract from completely lignified plants with 30.1 mg GAE/g DM. 
All extracts had similar TFC content, 3.2 – 3.9 mg QE/g DM, whereas flavonoids 
were not detected from juice fractions. Proanthocyanidins were not detected from any 
of the S. ramosissima samples, and despite the bright red colour of the juice from 
French phenotype (05-2021), anthocyanidins were detected only in water extracts 
with low concentration < 1.5 mg CCE/g DM. This may indicate that the red colour of 
the juice comes from betalains, also known as betacyanins, previously detected from 
other Salicornia and Suaeda species [173,175]. The total chlorophyll and carotenoid 
content of ethanol extract were 1446 µg/g DM and 262 µg/g DM, respectively. In the 
juice from the French phenotype, only 15 µg/g DM chlorophyll was found, whereas 
the carotenoid content of juice was 73 µg/g DM. The juice from the Portuguese 
phenotype (09-2021) had a higher concentration of chlorophyll, 39 µg/g DM, but a 
lower amount of carotenoids, 52 µg/g DM. 
 
The phytochemical content of S. ramosissima and many other halophytes is strongly 
influenced by cultivation conditions, specifically, the biotic and abiotic stresses the 
plants have been exposed to [52,61,190,263,264,322–325]. Potential halophyte-based 
biorefinery processes need to be designed to be robust enough to withstand a certain 
degree of intraspecific variation. The growth stage [245] and processing methods, 
such as extraction, drying and storage conditions [206,208,260], also play a role in the 
nutritional value of plants and extract composition. Therefore, the TPC concentration 
reported for S. ramosissima extracts varies between studies, 6 – 74 mg GAE/g DM 
[48,134,188,189,206,208,223,326]. This variation can also be seen in the contents of 
TFC and proanthocyanidins [56,63,188].  
 

Antioxidant activity of S. ramosissima  
Plants produce phytochemicals to protect tissues from cellular damage caused by the 
excessive production of reactive oxygen species triggered by environmental stressors; 
hence, these compounds hold potent antioxidant properties [144,277]. The antioxidant 
properties of S. ramosissima juice and extracts are presented in Figure 22. The 
aqueous extract from screw-pressed fibres had the highest DPPH and ABTS radical 
scavenging activities at 10 mg/mL, 47.7 % and 60.1 %, respectively, and the EC50 
value of ABTS activity of 2.5 mg/mL is lower than previously reported to acetone 
extract from S. ramosissima grown in similar salinity [188]. Antioxidant activity was 
also high on the metal-based assays, and aqueous extracts also showed lower EC50 
values in FRAP and ICA assays than those previously reported for S. ramosissima 
ethanol extract [39]. Achieving high antioxidant activity of extract without organic 
solvents is desirable for biorefinery applications to avoid high costs related to 
purchasing and handling hazardous material. Samples also exhibited NO scavenging 



EXPLORING THE POTENTIAL OF HALOPHYTE BIOMASS FOR GREEN BIOREFINERY APPLICATIONS 

62
 

activity, which is linked to potential anti-inflammatory properties [161], which, 
together with antioxidant activity, have made Salicornia an interesting ingredient for 
dermo-cosmetics in recent years [68,73,326,327].  
 

 

Figure 22 Antioxidant activity of S. ramosissima juice and extracts at 10 mg/mL concentration. 
EC50 values [mg/mL] are marked in call-out boxes for samples exhibiting activity > 50 %. 
Figure combined and adapted from ones in Paper III [48] licenced with CC BY 4.0 [249]. 
DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2'-azinobis-(3-ethylbenzothiazoline-6-
sulfonic acid), NO: nitric oxide, FRAP: ferric reducing antioxidant power, ICA: iron chelating 
activity, CCA: copper chelating activity. Standard compounds are gallic acid at 1 mg/mL for 
DPPH and ABTS and ethylenediaminetetraacetic acid at 1 mg/mL for ICA and CCA. 

Enzyme inhibition activity of S. ramosissima  
Juice fractions and extracts were tested for their enzyme-inhibitory activities. One 
type of treatment for type II diabetes mellitus is to prevent hyperglycemia by 
regulating the activity of enzymes responsible for the digestion of complex 
carbohydrates to available glucose: α-glucosidase and α-amylase [328,329]. The 
ethanol extract exhibited a 68.6 % α-glucosidase inhibition at 10 mg/mL, whereas the 
benchmark compound acarbose had an inhibition activity of 85.6 % at the same 
concentration. There was no significant difference between α-glucosidase inhibition 
of aqueous extracts, with measured activities of  34.1 % and 38.9 % of extract from 
screw-pressed fibres and lignified plants, respectively. Purifying the raw extract and 
increasing the content of phytochemicals could yield a halophyte-based α-glucosidase 
inhibitor competitive to the commercial drug. However, acarbose also has inhibition 
activity towards α-amylase (61.2 %), whereas aqueous samples had very low 
inhibition (< 5 %). Measuring the inhibition activity of ethanol extract was not 
possible due to sample precipitation, even if some colour change in the assay due to 
α-amylase inhibition was visually observed.  
 
The increased prevalence of obesity, and its effects on metabolic health and risk of 
developing various diseases, has led to a search for natural compounds regulating lipid 
absorption [330]. Lipase inhibitors also have applications in dermo-cosmetics for 
treating acne, as skin inflammation may be partly caused by bacterial lipase breaking 
the sebum fats to free fatty acids [331]. The ethanol extract had a moderate lipase 
inhibition activity of 41.7 % at 10 mg/mL concentration. Interestingly, the water 
extract from de-juiced fibres had no detected activity, whereas juice fractions and 
aqueous extract from lignified plants all had similar activities between 19.2 – 21.4 %. 
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Ethanol extract from S. ramosissima exhibited high tyrosinase inhibition activity, 71.9 
% at 10 mg/mL, compared to the benchmark compound arbutin, with 41.5 % 
inhibition activity at 1 mg/mL. Tyrosinase inhibition activity of Salicornia has also 
been previously studied: S. bigelovii ethyl acetate extract has shown > 50 % inhibition 
activity at 60 mg/mL, S. europaea ethanol extract 21 % at 1 mg/mL, and aqueous S. 

herbacea extract > 50 % at 0.1 mg/mL [324,332,333]. Tyrosinase inhibitors are 

compounds of interest in the food, cosmetics, and pharmaceutical sectors. In food, 
they are used to prevent undesired browning in cut fresh plant products caused by 
polyphenol oxidases, including tyrosinase [334,335]. In cosmetics, tyrosinase 
inhibitors are used as skin-whitening agents, and their potential to treat 
hyperpigmentation and skin cancer melanoma has been studied [64,336–338]. 
 
Increasing the levels of neurotransmitters by inhibiting the enzymes responsible for 
their degradation is one of the potential therapeutic approaches to target symptoms of 
dementia and neurodegenerative diseases, such as Alzheimer’s and Parkinson’s 
disease [339,340]. Due to the ageing population and the late-onset nature of 
neurodegenerative diseases, the number of people suffering from these conditions has 
been projected to increase, presenting major health concerns and financial burdens to 
healthcare systems [341].  Therefore, the inhibition activity of S. ramosissima samples 
towards acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was tested.  
The highest AChE inhibition activity, 68.4 %, was observed in the ethanol extract, 
whereas the juice fraction from the Portuguese phenotype had the highest BuChE 
inhibition activity of 46.3 % at 10 mg/mL. For reference, the dementia drug used as a 
benchmark had AChE and BuChE inhibition activities of 88.9 % and 41.4 % at 1 
mg/mL, respectively. The aqueous extracts from screw-pressed and lignified plants 
showed no inhibition activity towards AChE or BuChE. The neuroprotective 
properties of Salicornia have also been previously studied in vitro [342,343], and S. 
europaea has shown positive results also in animal models and a small clinical trial 
[343,344]. Interspecific and intraspecific variations could explain the varying activity 
between studies, but different processing methods can also play a role in extracting 
and preserving the compounds responsible for the activity.  
 
Previous studies considering the bioactivity and phytochemical composition of 
Salicornia have focused mainly on fresh edible fractions and their nutritional 
qualities. This study showcases the potential of partly and completely lignified plant 
fractions, often considered agricultural waste, for the production of ingredients for 
high-value industries, such as cosmetics, nutraceuticals, and even biopharmaceuticals. 
Residual fractions of S. ramosissima could be considered in future studies related to 
the therapeutic properties of this medicinal plant. Utilising the residues could help 
maximise the valorisation of the available feedstock and potentially bring additional 
value to the Salicornia farmers in the future. 
 

4.2.3. Harnessing the value of Tripolium pannonicum and Crithmum maritimum 

halophyte biomass through integrated green biorefinery  

This section summarises the key points and results of Paper IV, titled “Harnessing the 
value of Tripolium pannonicum and Crithmum maritimum halophyte biomass 
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through integrated green biorefinery” published in MDPI Marine Drugs [17].  The 
article considers the bioactivity of juice fraction and extracts from species mentioned 
above and discusses the role of halophyte-based biorefinery targeting high-value 
compounds in future sustainable circular economies. Similar to Paper III summarised 
in Section 4.2.2 [48], juice and extract samples were analysed for their contents on 
different types of phenolic compounds and pigments, as well as in vitro antioxidant 
and enzyme-inhibitory properties. Existing literature regarding the bioactivity of C. 
maritimum is heavily focused on the edible fraction and the essential oils of the plant, 
and the bioactivity of  T. pannonicum is still rather unexplored for bioprospecting.  
Similar to Section 4.2.2, this section focuses on phytochemical contents and 
bioactivity assay results. 
 

Total bioactive compounds in C. maritimum and T. pannonicum extracts 
The highest concentration of TPC, 64.7 mg GAE/g DM, was observed in C. 
maritimum ethanol extract, followed by 45.2 mg GAE/g DM in T. pannonicum 
ethanol extract. Water extract from both species had nearly the same concentration of 
TPC, slightly above 30 mg GAE/g  DM, and a low concentration of TPC was also 
found in C. maritimum juice.  The highest concentration of TFC was found in T. 
pannonicum ethanol and water extract, with concentrations of 6.6 mg QE/g DM and 
5.4 mg QE/g DM, respectively. Previous studies have also shown that phenolic acids, 
such as chlorogenic acid and neochlorogenic acid, are the predominant phenolics in 
C. maritimum [345], which may explain the lower TFC content of C. maritimum water 
extract, 4.9 mg QE/g DM. Anthocyanidins were found in concentrations of 1.9 mg 
CCE/g DM and 4.4 mg CCE/g DM from C. maritimum and T. pannonicum water 
extracts, respectively. Photosynthetic pigments, namely chlorophylls a and b and 
carotenoids, were mainly present in the ethanol extracts. Especially T. pannonicum 
was rich in total chlorophylls and carotenoids, with concentrations in ethanol extract 
being 3632 µg/g DM and 299 µg/g DM, respectively, and > 0.1 mg/g DM of 
carotenoids were also found in the juice fraction. In C. maritimum ethanol extract, the 
total chlorophyll and carotenoid contents were approximately 1439 µg/g DM and 262 
µg/g DM, respectively. 
 
The phenolic content of C. maritimum varies greatly between studies, and extracts 
from plant leaves have shown a significantly higher content of bioactive compounds 
compared to extracts from other plant organs, such as stems [143,237,306,346]. As 
our C. maritimum extracts have been prepared from biomass containing both leaves 
and stems, as well as some flowers, the difference in the phenolic content compared 
to edible leaves is expected. Besides intraspecific variation, the effect of cultivation 
conditions and stress on the content of phenolics and pigments has been highlighted 
in various studies [49,76,82,188,190,217,237]. Different biomass processing 
conditions may also have a role in the concentration of bioactive compounds, as 
extraction and drying in elevated temperatures could cause degradation and instability 
of the sensitive compounds [211,347]. 
 

Antioxidant activity of C. maritimum and T. pannonicum 
Different antioxidant activity mechanisms were tested for juice fractions at the initial 
concentration of 10 mg/mL. C. maritimum water extract had the highest DPPH 
scavenging activity (71.2 %), followed by the corresponding ethanol extract (68.9 %) 
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and T. pannonicum water extract (67.2 %). ABTS scavenging activity was similar in 
all tested extracts, varying between 72.0 – 79.4 %, and high ABTS scavenging activity 
was also observed in C. maritimum juice (60.8 %). Juice and water extract from C. 
maritimum exhibited NO scavenging activity of 22.5 % and 24.6 %, respectively, 
indicating potential anti-inflammatory properties. On the contrary, T. pannonicum 
samples exhibited more pronounced activity in metal-based antioxidant activity 
assays, showing lower EC50 values in ICA and CCA assays (Table 9). 
 
Table 9 Antioxidant properties of C. maritimum and T. pannonicum juice and extracts [17], 
given as half-maximum effective concentrations (EC50) [mg/mL]. DPPH: 2,2-diphenyl-1-
picrylhydrazyl, ABTS: 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), NO: nitric 
oxide, FRAP: ferric reducing antioxidant power, ICA: iron chelating activity, CCA: copper 
chelating activity, n.d.: no activity detected, n/a: not available. 

Species Extract DPPH ABTS NO FRAP ICA CCA 

C. maritimum 

Juice > 10 4.59 > 10 3.46 > 10 6.79 

Water 3.53 4.36 > 10 1.13 > 10 7.03 

Ethanol 2.84 3.95 n/a < 10 3.10 3.32 

T. pannonicum 

Juice n.d. > 10 > 10 > 10 > 10 3.18 

Water < 10 2.24 > 10 1.91 < 10 3.40 

Ethanol 7.67 4.86 n/a 1.66 1.15 2.37 

 
For both C. maritimum and T. pannonicum, antioxidant activities with lower EC50 
values have been reported in previous studies [54,210,307]. As mentioned before, the 
studies on C. maritimum have focused on the edible leaves rich in bioactive 
compounds, which may explain some of the differences together with growth stage, 
biotic and abiotic stresses, and whether used plant material has been cultivated or 
harvested from the wild. As many phytochemicals are produced to help plants to 
withstand different stressors, plants cultivated in controlled conditions have been 
shown to have lower concentrations of these secondary metabolites [190,348]. 
Different antioxidant properties of T. pannonicum have not been widely studied, but 
different caffeoyl esters and flavonoids, quercetin, apigenin, and luteolin, have been 
shown to be pronounced in extract fractions with radical scavenging activity [235]. 
These flavonoids were also later found in our T. pannonicum ethanol extract. 
Technologies such as bioguided fractionation could help to identify and separate 
compounds responsible for certain bioactivities, which may be desired when targeting 
products for biomedicines and cosmetics. However, the interactions and potential 
synergistic effects of complex matrices of bioactive compounds and other health-
beneficial factors, such as probiotics, have been acknowledged but little understood 
and hereby should not be overlooked [349–352].  
 

Enzyme inhibition activity of C. maritimum and T. pannonicum 
Enzyme inhibition activities of C. maritimum and T. pannonicum samples are 
presented in Figure 23. Considering the inhibition of AChE, an enzyme responsible 
for the degradation of the neurotransmitter acetylcholine and linked to the 
pathogenesis of neurodegenerative diseases, C. maritimum ethanol extract at 10 
mg/mL concentration exhibited an inhibition activity of 86.7 %, which is nearly the 
same as benchmark compounds galantamine at 1 mg/mL (88.9 %). AChE inhibition 
activity of T. pannonicum ethanol extract was also high, 71.5 %. Interestingly, both 
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water extracts had AChE inhibition activity < 10 %, whereas juice fractions had 
significantly higher activity > 40 %, indicating that the compounds responsible for the 
AChE inhibition activity of the species are likely mostly ethanol-soluble, or 
compounds that can be flushed to the juice fraction in the initial screw press. Drug 
development to treat the symptoms of neurodegenerative diseases targets the 
inhibition of AChE but also BuChE, an enzyme whose activity has been shown to 
correlate with abnormal β-amyloid peptide deposition, which is another characteristic 
of Alzheimer’s disease [353]. The highest BuChE inhibition activity of the tested 
samples was observed with T. pannonicum ethanol extract at 10 mg/mL (34.3 %).  
 

 
Figure 23 Enzyme inhibition activity of C. maritimum (CM, a) and T. pannonicum (TP, b) at 
10 mg/mL. Data obtained and figure adapted from Paper IV [17] licenced with CC BY 4.0 
[249]. Reference compounds were galantamine at 1 mg/mL for AChE and BuChE, arbutin at 1 
mg/mL for tyrosinase, acarbose at 10 mg/mL for glucosidase and amylase, and orlistat at 1 
mg/mL for lipase.  

Potential anti-diabetic and anti-obesity properties were tested by measuring the 
inhibition of key enzymes related to sugar (α-glucosidase and α-amylase) and fat 
(lipase) metabolism. Ethanol extracts from C. maritimum and T. pannonicum had 
moderate α-glucosidase inhibition activity of 51.0 % and 55.2 %, respectively, 
whereas juice fractions and water extracts showed low α-glucosidase and α-amylase 
inhibition activities. Many plant phytochemicals, including flavonoids, phenols, 
alkaloids, curcuminoids, and terpenoids, have shown potent α-glucosidase inhibition 
activity; however, the inhibition activity of specific compounds may vary whether the 
enzyme is from the fungal, bacterial or mammalian origin [328]. The lipase inhibition 
activity of ethanol extracts was 21.4 % and 41.3 % for C. maritimum and T. 
pannonicum, respectively, and low activity was observed using water extracts. The 
benchmark compound, orlistat, had an inhibition activity of 82.3 % at 1 mg/mL. 
Orlistat is the only anti-obesity drug currently in clinical use that does not enter the 
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bloodstream or act on the central nervous system, and the interest in finding lipase 
inhibitors from secondary metabolites, such as polyphenols, saponins, alkaloids and 
terpenoids, has increased in recent years due to their low toxicity and diversity 
[330,354]. 
 
Both ethanol extracts at 10 mg/mL exhibited tyrosinase inhibition activity the same 
or higher than the benchmark compound arbutin at 1 mg/mL (41.5 %): for T. 
pannonicum extract, the activity was 41.2 %, whereas C. maritimum reached 55.1 % 
tyrosinase inhibition. The tyrosinase inhibition activity of other samples was low at 
the tested concentration, 8 – 14 %. Both C. maritimum and T. pannonicum 1:1 water-
ethanol extracts have shown 30 – 40 % tyrosinase inhibition at 10 mg/mL [355], which 
is aligned with the results obtained in this study. 
 
As value-added products for human nutrition and health are highly important in future 
sustainable bioeconomies [2,98], and using plant-derived bioactive compounds for 
medicinal purposes against chronic conditions has increased interest in recent years 
[73,211,328,354,356,357], bioprospecting novel feedstock for these purposes could 
be seen as an inseparable part of tomorrow’s biorefinery design. Extracting 
compounds with antioxidant and other biological properties from sustainable sources 
could be beneficial not only to process economics but also to the overall 
socioeconomic impact of biorefinery. 
 

4.2.4. Cytotoxicity of plant extracts 

The severe effects and impact of cancer on society are apparent, being a major health 
problem and one of the leading causes of death globally [57,58,358,359]. Despite the 
significant advances in understanding and treating this group of diseases, there is a 
constant demand for new research and more effective drugs, as the number of cases 
is forecast to increase, ageing population and risk factors of unhealthy lifestyles being 
some of the drivers in developed countries [58,358,360,361]. Chemotherapy is one of 
the most common approaches for metastasised tumour therapy; however, many 
chemotherapeutic agents have high costs, limited effectiveness due to drug resistance, 
and cause severe adverse drug reactions and immune deficiency [58,359,361–363]. 
Therefore, there is an urgent demand for anti-cancer agents with fewer and less-
harmful side effects. Safety is a key concern in drug discoveries, and potential anti-
cancer agents should exhibit high selectivity towards malignant cells, meaning that 
the compound is more toxic to cancerous cells and non-toxic to normal, healthy cells 
[364,365]. This is measured with the selectivity index, which compares the cell 
viability IC50 values of cancerous cells to their healthy counterpart [365].  
 
Cell viability below 75 % is considered cytotoxic; therefore, extracts exhibiting lower 
viability were also tested with a lower concentration. None of the extracts showed 
clear selectivity between healthy S17 cells and tumoral HepG2 cells with the tested 
concentration; however, half maximal inhibitory concentration (IC50) values were not 
determined to extracts that did not exhibit cytotoxicity at tested concentrations. On 
the contrary, the ethanol extracts showed significantly lower RAW 264.7 cell viability 
at 200 μg/mL. Each cell line and tissue has different susceptibilities to the compounds 
present in the extract, which translates to the differences in cell viability between cell 
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lines; hence, the results should be considered only as preliminary screening.  Cell 
viabilities after extract inclusion are presented in Table 10. 
 
Table 10 Cell viability [%] after incorporating extracts with 200 μg/mL concentration. * Cell 
viability at 100 μg/mL, ** cell viability at 50 μg/mL. S17: healthy mice murine bone marrow 
stromal cells, HepG2: human hepatocarcinoma,  RAW 264.7: mice leukemic macrophage. 

Species Extract S17 HepG2 RAW 264.7 

C. maritimum 

Water 94.49 ± 4.43 84.07 ± 8.35 
70.26 ± 6.02 

98.36 ± 6.83* 

Ethanol 
60.82 ± 8.40 

79.88 ± 5.88 * 
78.49 ± 5.90 

17.31 ± 5.63 

65.00 ± 4.41* 

89.86 ±6.47** 

S. ramosissima 

Water 91.67 ± 9.54 96.87 ± 3.75 90.55 ± 6.94 

Ethanol 83.39 ± 4.50 83.54 ± 7.72 
13.95 ± 1.71 

79.52 ± 6.46* 

T. pannonicum 

Water 102.84 ± 5.16 96.27 ± 5.68 76.74 ± 1.88 

Ethanol 78.93 ± 14.25 88.24 ± 3.90 
18.10 ± 4.51 

99.84 ± 7.81* 

 
According to the American National Cancer Institute, raw extracts should exhibit IC50 

values below 30 μg/mL for them to be relevant for use in anti-tumoral applications, 
and this criterion is commonly used in studies related to cancer drug discovery [58]. 
None of the tested extracts filled this criterion, as all samples had IC50 values > 100 
μg/mL. Lopes et al. [63] tested 80 % aqueous acetone extracts from S. ramosissima 
and T. pannonicum for their cytotoxicity at 125 μg/mL against S17, HepG2, and THP1 
(human leukemic monocyte) and showed cell viability results comparable to those 
obtained in this study. Gnocchi et al. [366] also showed in a preclinical study that 
ethyl acetate extract from C. maritimum combined with a reduced dose of traditional 
chemotherapeutic drug effectively inhibited the growth of HepG2 cells while reducing 
the toxic effects. Methanolic extracts from S. brachiata and S. europaea have 
exhibited IC50 > 250 μg/mL towards HepG2 and IC50 > 100 μg/mL towards MCF7 
(breast carcinoma), respectively [367,368]. 
 
The research on plant-derived compounds has led to the discovery of phytochemical 
cancer drugs currently in clinical use, including alkaloids from Catharanthus roseus 
used to treat leukaemias and lymphomas, and terpenes from Taxus brevifolia used for 
solid tumours [57,58,361]. Pronounced biosynthesis of antioxidant and other 
bioactive compounds has made halophytes an interesting and valuable source of 
potential medicinal phytochemicals [58,358]. Plant metabolites with reported 
cytotoxic properties include alkaloids, flavonoids and other phenolics, terpenes and 
terpenoids, lignans and carotenoids [57,227,359,362]. The potential of flavonoids and 
polyphenols as adjuvants for immunotherapy has also been briefly explored [358]. 
Regardless of the potential of plant extracts shown in vitro, animal models, and early 
clinical trials, there is no approved polyphenol medicine in the market due to 
regulatory issues related to the complex nature of plant extracts [227,362]. Extensive 
studies are still needed to understand which compounds in novel plant extracts are 
responsible for the cytotoxic effect and the potential interactions between plant 
metabolites and drugs [362].  
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Chapter 5. Protein from Green Juice 

5.1. Introduction to protein precipitation methods 

Heat coagulation is one of the most well-established methods for high-efficacy protein 
precipitation, which is demonstrated and used in large-scale applications 
[122,369,370]. The green juice is heated to 60 – 90 ° C, typically with heat exchangers 
or direct stem injection, which triggers the opening of the hydrophobic sites in the 
protein surface and protein denaturation [115,116,371–374]. As different types of 
protein have different denaturation temperatures, step-by-step heat coagulation allows 
the separation of green protein, which denature in temperatures 50 – 60 °C, and more 
water-soluble white protein when increasing the temperature up to 75 – 90 °C 
[115,370,373,375]. One of the main disadvantages of heat coagulation is the high 
energy input required to heat a large volume of juice to high temperatures [116,376]. 
A Maillard reaction between amino acids and sugars may occur, formatting undesired 
reaction products if a temperature in the system gets too high locally [377]. Also, even 
if high protein recoveries to concentrate have been achieved with heat coagulation, 
irreversible changes due to denaturation may affect protein functionality, solubility, 
and digestibility [115,373].  
 
Acidification, sometimes called isoelectric precipitation, has been suggested to be a 
gentler method to preserve protein quality and yield concentrate with the highest 
content of essential amino acids [116,371]. The pH level of the green juice is 
decreased using acid to an isoelectric point, which is the pH where proteins have an 
equal negative and positive charge and minimum solubility to water [115]. For green 
leafy biomass protein, this level is typically between pH 3.5 – 4.5 [115,116,375,378]. 
Existing literature shows divergent results considering the effect of final acidification 
pH on protein yields. Damborg et al. [375] reported non-significant differences in 
protein yields from white clover, alfalfa, and perennial ryegrass juices within the pH 
range of 3.0 – 5.0, whereas protein yield from red clover juice was dependent on the 
final pH. On the contrary, Miller et al. [379] showed a significant increase in protein 
yield when acidification pH was decreased from 4.5 to 3.5. Acidification can also be 
combined with heat treatment to enhance the precipitation or to separate the green and 
white protein fractions [373,380]. Decreasing the pH below 4.0 can also improve the 
juice stability and preserve it from contamination, thus lengthening the potential 
storage time [381]. However, chemical costs, as well as storing and handling 
hazardous materials, can limit the potential of acidification for scale-up applications. 
 
Flocculants are chemicals that promote the agglomeration of suspended particles in 
the liquid to larger clusters, and their use in protein precipitation has been studied for 
easier and more efficient separation of aggregated proteins [371,374,382,383]. 
Flocculants are usually combined with acidification, heat coagulation, or both, but 
Knuckles et al. [383] reported cationic flocculants to improve green protein separation 
from alfalfa juice even without elevated temperature. Baraniak [371] also tested 
anionic and cationic flocculants as separate methods to precipitate protein from alfalfa 
juice and obtained concentrates with slightly lower protein content than those from 
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heat coagulation and acidification. The use of calcium salt has also been shown to 
allow lower temperatures for heat coagulation without compromising the protein yield 
[382]. La Cour et al. [374] were able to promote the total nitrogen recovery from grass 
and clover juices to concentrate by using lignosulfonates; however, a high dosage was 
needed for significant improvement. As the addition of chemicals increases the 
operational costs of the biorefinery, the use of flocculants on a large scale may not be 
economically feasible and justified without significant process development. 
 
Fermentation with lactic acid bacteria (LAB) uses the same principle as acidification, 
but the pH decrease is achieved with lactic acid produced by bacterial metabolism 
instead of adding concentrated acid. In this method, developed by Kiel et al. [180], 
the green juice is inoculated with LAB, which consumes the available carbohydrates 
in the juice and produces lactic acid, which acidifies the juice to the protein isoelectric 
point. Fermentation has been shown to have high efficacy in separating protein from 
various forages [178,180], and it has been tested on a demonstration scale for the 
mixture of grass and clover [384]. Plant enzymes present in the juice may also convert 
the complex carbohydrates to sugar monomers usable by bacteria [377]. Also, 
produced lactic acid, an important platform chemical with various applications, could 
provide additional value for the processing [385,386], whereas bacterial biomass in 
the concentrate could increase the final product's functionality. Potential challenges 
could be microbial consumption of protein, as well as extended residence time in 
slightly elevated temperatures [116]. 

 
Ultrafiltration has also been tested for protein separation, especially to separate the 
more water-soluble white protein [372,373]. However, due to the long process time 
and costs related to membrane fouling, the potential of filtration in large-scale 
processes is still to be evaluated [116]. The separation of protein using solvents, such 
as acetone, butanol and isopropyl alcohol, has been tested [119,387,388]; however, 
these methods are not viable as they require large quantities of toxic and costly organic 
solvents. Precipitated proteins are typically separated from juice using centrifugation 
and decantation, but different filtration techniques can also be applied. The crude 
protein (CP) content of protein-enriched concentrate (PEC) and CP recoveries 
achieved with different methods are summarised in Table 11. 

 
Table 11 Crude protein content of dried concentrates and recovery of crude protein (or total 
nitrogen) from green juice to concentrate of different biomass. CP: crude protein, PEC: protein-
enriched concentrate. 

Biomass Method 
CP in PEC 

[%] 

CP recovery 

[%] 
Ref. 

Alfalfa 

L. salivarius fermentation ~ 42 38.6 [180] 

Ultrafiltration n/a ~ 51 
[372] 

Heat coagulation 

n/a ~ 52 

n/a 54.9 [375] 

53.0 n/a 

[371] Flocculents 42.7 – 45.0 n/a 

Acidification pH 3.5 42.9 n/a 

Acidification pH 4.0 38.8 n/a [378] 

Cassava leaf Acidification pH 4.0 n/a 48.7 [108] 
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45.1 n/a 

[107] Heat coagulation 42.2 n/a 

Spontaneous fermentation 40.4 n/a 

Chicory L. salivarius fermentation 28.7 – 32.8 72 – 86 [178] 

Clover grass L. salivarius fermentation ~ 40 51.7 
[180] 

Oilseed radish L. salivarius fermentation ~ 45 43.7 

Orchardgrass 
Heat coagulation + 

Acidification pH 3.3 
n/a ~ 30 [380] 

Perennial 

ryegrass 

Ultrafiltration n/a ~ 59 
[372] 

Heat coagulation 

n/a ~ 45 

33.9 n/a [389] 

n/a 58.5 [375] 

31.6 ~ 35 

[374] Flocculents 25.7 ~ 44 

Acidification pH 4.0 – 4.5 30.4 ~ 37 

Acidification pH 4.0 24.4 n/a [378] 

Red clover 

L. salivarius fermentation 
35.0 – 41.5 72 – 80 [178] 

~ 39 66.7 [180] 

Heat coagulation 
n/a 60.6 [375] 

43.6 ~ 45 

[374] Acidification pH 4.0 – 4.5 46.8 ~ 46 

Flocculents 39.0 ~ 51 

S. bigelovii Heat coagulation n/a 46 – 57 [128] 

Sugar beet 

leaves 
Heat coagulation 29.9 n/a [110] 

Switchgrass 
Heat coagulation + 

Acidification pH 3.3 
n/a ~ 23 [380] 

Timothy L. salivarius fermentation 19.3 – 23.2 76 – 86 [178] 

White clover 
Acidification pH 4.0 34.7 n/a [378] 

Heat coagulation n/a 59.4 [375] 

 

5.2. Selection of lactic acid bacteria for fermentation 

This section elaborates on the process of selecting the LAB for the experiments. Lactic 
acid can be produced using micro-organisms through anaerobic bacterial fermentation 
or aerobic fungal fermentation [390]. In this study, fermentation using LAB is 
considered, and the final product is targeted for feed production, which sets limitations 
for the used strain; however, the majority of LAB are generally recognised as safe 
(GRAS) organisms [391]. From a technical point of view, Morlon-Guyot et al. [392] 
determined the criterion for bacteria used for silage fermentation, which is partly 
applicable to choosing the acidifying organism for green biorefinery [377]. According 
to the aforementioned criterion, the used LAB strain should have the following 
properties [377,392]: 
 

• Rapidly growing strain able to outcompete other micro-organisms. 

• Lactic acid is the main metabolic product (homofermentative). 

• Tolerant to acidic conditions and able to decrease the medium pH ≤ 4.0. 
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• Capable of using glucose, fructose, sucrose, and preferably other types of 
sugars, such as pentoses, as substrate. 

• Not using or having any action on organic acids. 
 
Unlike in silage fermentation, thermophilic strain with tolerance to high temperatures 
is not necessary for protein precipitation, and mesophilic bacteria thriving in moderate 
temperatures can be used. Using lower process temperatures is also beneficial due to 
its lower energy consumption. Homofermentative strains are preferred for commercial 
use and applications aiming at maximum lactic acid production [390,393] as they 
produce lactic acid as their main product of glucose metabolism, whereas 
heterofermentative strains produce lactic acid together with acetic acid or ethanol. The 
homofermentative Embden-Meyerhof metabolic pathway is the most common in 
LAB, producing two lactic acid molecules from one glucose molecule under 
anaerobic conditions [390]. LAB are commonly anaerobes, but they can tolerate 
oxygen (microaerophilic) and some strains, such as L. plantarum, have shown to be 
capable of aerobic growth; however, exposure to oxygen may affect the used 
metabolic pathways of the micro-organism [375,377,394].  
 
The key parameters considering the growth of LAB are the possible presence of 
oxygen, sufficient availability of essential nutrients, temperature and pH level 
[393,395,396]. Additionally, considering the fermentation of halophyte juice, the 
strain tolerance to NaCl and saline conditions is of great importance. The use of 
halophilic LAB Tetragenococcus halophilus, commonly used in the food industry to 
produce high salt content condiments, with optimal salinity of 7.5 – 12. 5 w/v% was 
considered. However, it was omitted due to a longer lag phase and slower growth, 
heterofermentative nature, and limited literature considering its probiotic properties; 
in other words, it did not fill the set criterion [397,398]. Studies report L. plantarum 

and closely related Lactiplantibacillus pentosus to tolerate 6 – 10 % NaCl in culture 
media and being able to grow at minimum pH of 3.0 – 4.5 [395,399–401]. Robust L. 
salivarius has been shown to tolerate the approximate media salinity of 5 % [402,403], 
and it has also been previously used for fermentation in green biorefineries [178,180]. 
Reddy et al. [404] showed that both L. plantarum and L. salivarius could tolerate 
acidic conditions to pH as low s 2.5 and had high survival rates through spray-drying, 
which could be a desired quality for industrial applications. Lactococcus lactis, which 
produces the antimicrobial peptide nisin, has been shown to tolerate up to 4 % NaCl 
culture media salinity and grow at minimum pH of 3.0 – 4.0 [405–407]. 
 
In order to improve the potential functionality of the separated PEC, the search for 
LAB strains was focused on those with reported probiotic properties. Probiotics are 
micro-organisms which provide several health benefits for the host by either 
colonising the host’s gastrointestinal tract or creating unfavourable conditions for 
pathogens, for example, by producing antimicrobial bacteriocins [408]. Indeed, 
probiotic LAB could be used as a more safe and sustainable replacement for antibiotic 
supplements in animal feed for aquacultures and terrestrial livestock, and several 
studies with animal models have been carried out reporting the probiotic effects of 
novel LAB supplementation, which are summarised in Table 12. The focus of this 
study is on novel probiotics, as some of the most commonly used and known probiotic 
LAB, e.g., Lactobacillus acidophilus and Lacticaseibacillus casei, are sensitive to 
saline conditions [399,409]; hence, they are not suitable for fermenting the halophyte 
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juice. Supplementation is commonly done using live bacteria, but some studies show 
probiotic potential and protective effects against diseases with dead bacteria [410–
412] or using only some specific protein of bacterial cells [413]. In aquacultures, 
probiotic LAB supplementation has shown a protective effect against several 
pathogens [410,414–420], attenuation of the effect of some toxins, e.g. pesticides 
[421], decrease the accumulation of heavy metals in fish tissues [422], and improved 
stress capacity in acute exposure to changing salinity [411,423]. In addition, several 
studies reported enhanced growth rate and feed utilisation in probiotic-fed subjects 
compared to subjects with basal diets under challenged conditions 
[410,414,415,417,420,424]. For mono-gastric terrestrial livestock, the LAB 
supplement has shown a protective effect against various pathogens, including 
common Salmonella and Escherichia coli [425–429], as well as enhancing the gut 
microflora and immune system of healthy animals [430–433]. 
 

Screening experiments 
Based on the studies existing literature, the selected strains for experiments were L. 
salivarius, L. plantarum, L. pentosus, and L. lactis. Initial tests in flasks and bioreactor 
were run to show their acidification potential and viability in saline halophyte juice. 
In the first test, the LAB was grown in MRS broth, an optimised media for LAB, in a 
batch system where the optical density (OD) at 600 nm and the pH of the culture were 
measured hourly (Figure 24). All tested strains, except L. lactis, were able to acidify 
the juice to final pH < 4.0 within 14 – 20 h before inhibition. In the second initial test, 
the LAB viability in juice samples was tested by fermenting fresh and pasteurised 
juice samples; pasteurised samples were used as a control, as the acidification could 
also be enhanced by micro-organisms naturally present in the juice. All selected 
strains were able to ferment the juice from the Portuguese phenotype of S. 
ramosissima. However, no acidification was observed in the juice from the French 
phenotype of S. ramosissima, likely due to extremely high salt content, as the ash 
content of the juice was 81.83 g/100g DM [48]. Finally, L. salivarius and L. plantarum 
were selected to be used for further experiments based on the screening and reported 
probiotic properties.  
 

 
Figure 24 Optical density (OD) at 600 nm (a) and pH (b) of lactic acid bacteria culture in MRS 
media for the first 8 hours of the fermentation. 
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5.3. Findings on the protein precipitation from halophyte juice 

5.3.1. Precipitation and separation of protein-enriched concentrate from S. 

ramosissima and T. pannonicum green juice 

This section summarises the concept, results, and discussion of Paper V, a submitted 
manuscript titled “Valorisation of Residual Biomass Fractions from Biosaline 
Agriculture Through Green Biorefinery” [132]. Green biorefinery targeting the 
production of protein-enriched concentrate (PEC) from juice fractions for animal feed 
applications has been well-established for grasses and other leafy biomass, and the 
process is currently run on a demonstration scale [370,384,389,442,443]. However, 
there is a gap in knowledge regarding the potential and suitability of succulent 
halophyte biomass for this type of processing, and only one study conducted with 
Salicornia bigelovii was found in the literature [128]. In this study, protein 
precipitation from S. ramosissima and T. pannonicum juices was tested using different 
precipitation methods: heat coagulation, acidification with HCl, and fermentations 
with Lactiplantibacillus plantarum and Ligilactobacillus salivarius to shed light on 
the potential of halophytes for green protein production. 
 
Screw-press has shown to separate 55 – 60 % of the inherent liquid in biomass like 
alfalfa, clover, and grass [444], and green juice fractions of  40 – 71 % have been 
reported for different biomass commonly used in green biorefineries [178,180,384]. 
However, halophytes often hold more water leading to a larger green juice fraction 
(67 – 90 % ) with lower DM content (4 – 14 %) [34,128,131,132]. The DM contents 
of tested S. ramosissima and T. pannonicum juices were  6.47 ± 0.21 % and 4.01 ± 
0.04 %, respectively, and the constituents are presented in Figure 25 [132].  
 

 

Figure 25 Composition of the green juice dry matter (DM) from S. ramosissima (a) and T. 
pannonicum (b). Values are given as [g/100g DM], and standard deviations are marked in 
brackets. Data from Paper V, in which the composition of fibre fraction is also available [132]. 

The different methods were tested on a small scale in flasks, and the protocols were 
described earlier and in Paper V [132]. Both LAB species were able to acidify the 
juice media to average final pH of 3.5, consuming 83.4 – 99.9 % of the available 
glucose in juice samples. The final pH is within the pH range of 3.2 – 4.5, in which 
proteins from plant leaves typically have minimal solubility in water (isoelectric 
point) [116,178]. From S. ramosissima samples, 7.3 – 12.8 % of the initial juice weight 
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was recovered to wet PEC, with DM contents in the 18.0 – 21.6 % range. The largest 
PEC fraction was achieved with acidification with HCl, whereas the smallest fraction 
was obtained with L. plantarum fermentation. On the contrary, fermentation with L. 
plantarum yielded the PEC with the highest DM content, 21.6 %, followed by the 
sample fermented with L. salivarius. In the T. pannonicum samples, the wet PEC 
constituted 10.7 – 29.4 % of the initial juice mass; however, the centrifuge cake 
crumbled during the decantation of some samples, leading to PEC with low DM 
content, 4.6 – 9.4 %.  
 
Considering DM and CP recoveries from juice to PEC, differences in the results 
between precipitation methods and control samples were non-significant, excluding 
the acidification of S. ramosissima juice. In S. ramosissima, DM recoveries varied 
from 24.2 %, obtained using L. salivarius fermentation, to 35.3 % from acidification. 
In T. pannonicum samples, the DM recovery was 12.2 – 34.4 %. Average mass 

balances (Table 13) were calculated from the data presented in the paper [132]. 
Besides the selected protein precipitation methods, the role of pre-processing, like 
efficient fractionation and potential filtering steps, should not be overlooked. Previous 
studies show that adding water to the screw press could help the compounds to flush 
out and improve the protein recovery to the liquid fraction [445,446]. However, 
adding freshwater to the processing would counter-effect the benefits of using the 
saline biomass, as the key argument for halophyte processing is to reduce the amount 
of freshwater needed. Also, fibrous solid particles suspended in the juice were not 
removed by filtration, as some of the phytochemicals present in the fresh biomass [48] 
could potentially enhance the functionality of the PEC product in feed applications. 
 
Table 13 Fresh weight, dry matter, and crude protein mass balances, averaged from the data 
from all tested precipitation methods. PEC: protein-enriched concentrate. *Calculated using 
fractionation and dry matter data from 171 mM NaCl cultivated T. pannonicum [34]. 

Species Whole Fibres 
Green 

juice PEC 
Juice 

residue 

Fresh weight  [w/w%] 

S. ramosissima 100 33.3 66.7 6.2 60.5 

T. pannonicum 100 17.5 * 82.5 * 14.4 68.1 

Dry matter [w/w%] 

S. ramosissima 100 69.7 30.3 8.6 21.7 

T. pannonicum 100 58.2 * 41.4 10.7 31.1 

Crude protein [w/w%] 

S. ramosissima 100 72.6 27.4 18.4 9.0 

T. pannonicum 100 42.5 57.5 16.5 41.0 

 
The obtained results for the CP recoveries and CP contents (Table 14) in PEC were 
compared to those reported in the existing literature on forage-based green 
biorefineries (Section 5.1). For S. ramosissima, the achieved CP recoveries, 61.7 – 
81.8 %, are comparable to some of the biomasses with the highest reported CP 
recoveries, such as chicory, red clover, timothy, and white clover [178,180,375]. 
However, the challenge regarding the process feasibility lies in the low initial CP 
content of the plant, which can be seen in the lower CP content of the PEC, 19.0 – 
22.1 %. As the protein content of the plant may vary significantly depending on the 
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cultivation conditions, growth stage, and harvest time [34,108,178,447], optimisation 
in this regard could be beneficial. In T. pannonicum juice, the initial CP content was 
higher, which was reflected in the higher CP content of the PEC, 27.4 – 33.9 %, which 
are similar to those reported to perennial ryegrass, chicory, and sugar beet leaves 
[110,178,374]. On the other hand, the CP recovery from juice to PEC was low, only 
12.8 – 36.8 %. Similar low results have been previously reported for switchgrass and 
orchardgrass [380]. Low CP recovery could indicate that the juice is rich in other non-
protein nitrogen-containing compounds, such as nitrate, which can not be precipitated 
but affect the total nitrogen measurement. Overall, based on this screening study, S. 
ramosissima and T. pannonicum could be seen as interesting species for green protein 
production; however, significant process development and optimisation are needed. 
 
Table 14 Crude protein content of dried concentrates and recovery of crude protein from green 
juice to concentrate of S. ramosissima and T. pannonicum. CP: crude protein, PEC: protein-
enriched concentrate. Data from Paper V [132]. 

Biomass Method CP in PEC [%] CP recovery [%] 

S. ramosissima 

Heat coagulation 19.0 ± 1.0 62.1 ± 2.5 

Acidification pH 3.5 20.1 ±1.3 81.8 ± 7.8 

L. plantarum fermentation 21.6 ±1.5 63.3 ±3.0 

L. salivarius fermentation 22.1 ± 0.9 61.7 ± 0.0 

T. pannonicum 

Heat coagulation 27.4 ±1.5 36.8 ±12.1 

Acidification pH 3.5 29.0 ± 0.7 34.1 ± 5.5 

L. plantarum fermentation 31.4 ± 1.9 12.8 ±0.8 

L. salivarius fermentation 33.9 ±1.9 29.8 ±12.4 

 

5.3.2. Fermentation experiments in bioreactor 

S. ramosissima juice was fermented in a bioreactor to study the consumption of sugars 
and production of different metabolites during the process and to see if there is a 
difference in DM and CP recoveries when the juice is acidified to pH 4.0 and pH 3.5. 
In previous studies, a target pH within the range of 3.3 – 4.5 has been used for direct 
acidification [107,371,374,378,380], as well as LAB fermentations [178,180]. With 
the used 10 v/v% L. plantarum inoculate (average OD 600 nm of 1.1206), the final 
pH of 3.5 was reached within 9 h 30 min ± 40 min, whereas acidification to pH 4.0 
was achieved in an average time of 5 h 30 min ± 15 min. However, the starting pH 
was slightly lower in the experiment targeting pH 4.0, likely due to a higher 
concentration of lactic acid injected into the media with the pre-culture. The lower 
inoculate volume (4 - 5 v/v%) used for forage biomass [178,180,385] should also be 
investigated for halophyte juice in order to reduce costs related to the purchase, 
processing, and handling of pre-culture media, especially in scale-up applications. 
During the fermentation to target pH of 3.5, on average, 58.7 % of the available 
glucose was used, whereas only 11.6 % of available sugar was used to each pH of 4.0. 
The concentrations of glucose and metabolites in the media throughout the 
fermentation are presented in Figure 26. Free xylose was not detected from the juice.  
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Figure 26 Sugars and metabolites in S. ramosissima juice fermented to final pH of 3.5 (a) and 
4.0 (b) with 10 v/v%  L. plantarum inoculate. The reported values are averages of two runs. 

After fermentation, the wet PEC constituted 5.2 ± 0.3 % and 6.1 ± 0.8 % of the initial 
fresh juice weight with target pH of 3.5 and 4.0, respectively, and results are slightly 
lower than those previously obtained in flask fermentations presented in Paper V 
[132]. However, similar CP contents of PEC were obtained in a bioreactor, values 
being 22.07 % and 20.9 % for target pH 3.5 and 4.0, respectively, and there were no 
significant differences between the results. Both DM and CP recoveries from juice 
PEC were significantly lower in bioreactor experiments than in flask fermentation 
trials [132]. DM recoveries were 14.7 ±  0.5 % and 15.3 ± 1.0 % for target pH 3.5 and 
4.0, respectively. Finally, CP recoveries from juice to PEC were 35.8 %and 36.9 %, 
and the differences between results were non-significant. Potential explanations for 
lower recoveries could be partial hydrolysis of some suspended solid particles in the 
acidic conditions in the bioreactor, smaller amount of bacterial biomass, and losses 
due to biomass handling. These experiments provide an interesting first sight to PEC 
production from S. ramosissima, but significant process optimisation would be needed 
to reach higher CP recoveries and make the protein precipitation by fermentation of 
halophyte juice a viable process option for integrated biorefineries. 
 

 
Figure 27 Fermentation setup with a 2 L bioreactor vessel (a) and an example of protein-
enriched concentrate obtained after precipitation, centrifugation and oven drying (b). 
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Chapter 6. Conclusions and Future Work 

In this PhD project, the potential of selected halophyte species for green biorefinery 
processing was studied in an exploratory manner. The overview of the studied process 
and general mass balance of S. ramosissima is provided in Figure 28. The research 
carried out during the PhD project period led to the development of process 
technologies, which are currently in the patent application filing process or under 
investigation for their patentability.  
 

 
Figure 28 Overall mass balance of halophyte green biorefinery, the case of S. ramosissima (09-
2021), combined from the data obtained during the PhD project period. DM: dry matter, LAB: 
lactic acid bacteria, PEC: protein-enriched concentrate. 

The key research objectives, introduced in Section 1.4.2, were met as studies 
contributing to these goals were performed.  Firstly, the biomass of unedible aerial 
parts of C. maritimum, S. europaea, and T. pannonicum was characterised, and the 
effect of cultivation salinity on the chemical composition of selected species was 
investigated. This study showed selected species having different responses to the 
increasing salinity, and cultivation salinity affected especially the composition of S. 
europaea. The study highlighted the importance of optimising cultivation conditions 
and processes for each type of biomass, especially when using plant species known 
for their phenotypic plasticity, such as Salicornia and Sarcocornia genera.  
 
Halophytes are super-producers of bioactive secondary metabolites with increased 
interest in high-value industries, such as biopharmaceuticals, nutraceuticals, food and 
feed additives, and cosmetics. The concentration of phenolic compounds, pigments 
and vitamins found in halophyte plants was reviewed. In order to evaluate the potential 
value of fractionated halophyte biomass, juice fractions and the extractive material 
from C. maritimum, S. ramosissima, and T. pannonicum were used for bioprospecting, 
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where their potential for high-value application was assessed by testing antioxidant 
activity, enzyme inhibition activity and cytotoxicity in vitro. Also, the total 
concentrations of polyphenolic compounds and pigments were tested with absorption 
spectroscopy assays and from the extracts, specific bioactive compounds were 
annotated using untargeted chromatographic methods.  
 
Indeed, the results showed interesting properties of C. maritimum, S. ramosissima, 
and T. pannonicum. Plant extracts exhibited high antioxidant activities and possible 
anti-diabetic, neuroprotective, and tyrosinase-inhibitory properties. This brings new 
insights into the potential of these species as feedstock for cascading, multi-product 
biorefinery, and using screw-pressed fibres to extract and produce bioactive 
compounds could be seen as an intriguing processing option in halophyte-based green 
biorefinery. Using bio-guided fractionation technologies, finding the fractions and 
specific compounds responsible for the bioactivities of interest could be a study of 
interest in the future.  
 
The extractives-free, relatively pure lignocellulose fibres were pretreated and tested 
for their enzymatic convertibility, which is essential if there is a desire to use 
lignocellulose-derived sugars for biofuels or biochemical production. Neither of the 
tested pretreatment conditions gave the desired results, as only low sugar recoveries 
were achieved at milder severity, and a high concentration of toxic furfural was 
produced at higher severity. Therefore, optimising hydrothermal pretreatment 
conditions and the simultaneous enzymatic saccharification and fermentation to 
bioethanol could also be interesting, considering the biorefinery process design. 
 
Finally, the protein precipitation from S. ramosissima and T. pannonicum juice 
fraction was tested with methods well-established for green biorefineries using grass 
as feedstock. Heat coagulation, acidification with hydrochloric acid, and fermentation 
with lactic acid bacteria were tested. Out of these two species, S. ramosissima 
exhibited higher crude protein recovery from juice to the protein-enriched concentrate 
and better suitability for such a process; however, challenges related to the low initial 
protein content of the plant are something to overcome.  As the PEC obtained from 
green juice processing is often targeted to be used in animal feed supplements, 
determining the true protein content and amino acid profile of the PEC product would 
be necessary to evaluate its nutritional qualities. Testing potential juice pre-processing 
options, and optimising the fermentation process, complemented by feeding trials 
with animal models to evaluate the product’s functionality and bioavailability, would 
also be essential. The juice fraction from halophytes also exhibited biological 
activities, and possible further valorisation of the residual juice fraction after protein 
separation could be investigated. 
 
Considering future work, process simulation and techno-economical assessment of 
the process are of high importance in order to evaluate the economic feasibility of the 
suggested halophyte-based biorefinery. The challenges regarding the assessment lie 
in determining the price for halophyte extracts, as the market value is highly 
dependent on extract purity, potency, and targeted use. Identifying and quantifying 
the bioactive compounds using mass spectrometry with analytical standards would 
provide important information regarding the target markets of different extracts.  
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Halophytes can have a significant role in the development of biosaline agriculture and 
valorising marginal lands in arid and semi-arid rural regions. They can provide a novel 
source of food and biomass feedstock for cascading integrated biorefineries. This 
project provided a comprehensive general view of utilising selected species in green 
biorefinery applications and studied species can be seen as potential raw materials for 
further investigations and process development towards establishing said 
biorefineries.  Overall, one of the aims of the interdisciplinary PhD project was also 
to narrow the gap between process engineering, botany, phytochemistry, 
pharmacology, and other associated research fields. Communication and 
collaboration between scientific disciplines are crucial for the development of 
sustainable, efficient and effective biomass use,  new production systems for essential 
goods, and in the end, a circular bioeconomy.
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