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Abstract. We consider Schrödinger operators H = −d2/dr2 + V on L2([0, ∞))
with the Dirichlet boundary condition. The potential V may be local or non-local, with
polynomial decay at infinity. The point zero in the spectrum of H is classified, and
asymptotic expansions of the resolvent around zero are obtained, with explicit expres-
sions for the leading coefficients. These results are applied to the perturbation of an
eigenvalue embedded at zero, and the corresponding modified form of the Fermi golden
rule.
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1. Introduction

This paper is a continuation of [5, 7], where expansions of the resolvents of Schrödinger
type operators at thresholds, as well as the form of the Fermi golden rule (which actually
goes back to Dirac), when perturbing a nondegenerate threshold eigenvalue, were obtained.
While the methods and results in [5, 7] are to a large extent abstract, the examples discussed
were restricted to Schrödinger operators in odd dimensions with local potentials. The aim
of this paper is to show that the methods in [5, 7] allow to treat the non-local potentials in
exactly the same manner as the local ones, although the properties of the corresponding
operators can be quite different. For example, one can have zero as an eigenvalue in
one dimension, or eigenfunctions for the zero eigenvalue with compact support (in this
connection see e.g. [2]).

Let us briefly describe the results. Let HD
0 denote −d2/dr2 on H = L2([0, ∞)) with

the Dirichlet boundary condition. Let V be a potential, which can be either local or non-
local. We assume that V is a bounded selfadjoint operator on H. Let Hs = L2,s([0, ∞))

denote the weighted space. Then we assume that V extends to a bounded operator from
H−β/2 to Hβ/2 for a sufficiently large β > 0. Since we are concerned with thresh-
old phenomena, the first step is to study the solutions of the equation H� = 0. The
result is that under the above conditions, for the solutions of H� = 0 there are four
possibilities:
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376 Arne Jensen and Gheorghe Nenciu

(i) No non-zero solutions. In this case zero is called a regular point for H .
(ii) One non-zero solution in L∞([0, ∞)), but not in L2([0, ∞)). In this case zero is

called an exceptional point of the first kind for H .
(iii) A finite number of linearly independent solutions, all belonging to L2([0, ∞)). In this

case zero is called an exceptional point of the second kind for H .
(iv) Two or more linearly independent solutions, which can be chosen such that all but

one belong to L2([0, ∞)). In this case zero is called an exceptional point of the third
kind for H .

Let us note that if V is multiplication by a function, i.e. (Vf )(r) = V(r)f (r) for some
function V(r), then only cases (i) and (ii) occur.

In all cases we obtain asymptotic expansions for the resolvent of H around the point
zero. It is convenient to use the variable κ = −i

√
z in these expansions. We have

(H + κ2)−1 =
p∑

j=−2

κjGj + O(κp+1)

as κ → 0, in the topology of the bounded operators from Hs to H−s for a sufficiently
large s, depending on p and the classification of the point zero for H . We compute a few
of the leading coefficients explicitly.

These results on asymptotic expansion for the resolvent, and the explicit expressions for
the coefficients, are the main ingredients for the application of the results in [7], concerning
the perturbation of an eigenvalue embedded at the threshold zero. The main result from [7]
in the context of the Schrödinger operators on the half line considered above is as follows.
Let H = HD

0 + V , where V satisfies Assumption 3.3 for a sufficiently large β. Let W be
another potential satisfying the same assumption. We consider the family H(ε) = H +εW

for ε > 0. Assume that 0 is a simple eigenvalue of H , with normalized eigenfunction �0.
Assume

b = 〈�0, W�0〉 > 0, (1.1)

and that for some odd integer ν ≥ −1 we have

Gj = 0, for j = −1, 1, . . . , ν − 2 and gν = 〈�0, WGνW�0〉 �= 0.

(1.2)

Then Theorem 3.7 in [7] gives the following result (the modified Fermi golden rule) on
the survival probability for the state �0 under the evolution exp(−itH(ε)), showing that
for ε sufficiently small the eigenvalue zero of H becomes a resonance.

There exists ε0 > 0, such that for 0 < ε < ε0 we have

〈�0, e−itH(ε)�0〉 = e−itλ(ε) + δ(ε, t), t > 0. (1.3)

Here λ(ε) = x0(ε) − i�(ε) with

�(ε) = −iν−1gνb
ν/2ε2+(ν/2)(1 + O(ε)), (1.4)

x0(ε) = bε(1 + O(ε)), (1.5)

as ε → 0. The error term satisfies

|δ(ε, t)| ≤ Cεp(ν), t > 0, p(ν) = min{2, (2 + ν)/2}. (1.6)
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As an application of the results on asymptotic expansion of the resolvent of H near zero
we explicitly compute the coefficient gν in two cases.

The contents of the paper is as follows: In §2 we introduce some notation used in the
rest of the paper. Section 3 forms the core of the paper and contains our results on the
resolvent expansions for the free Schrödinger operator on the half line, and then for the
Schrödinger operator with a general class of potentials, including non-local ones. In §4
we illustrate the general results by giving an explicit example with a rank 2 operator as
the perturbation. Finally, §5 contains the results on the modified Fermi golden rule for the
class of operators considered here.

Let us conclude with some remarks on the literature. Resolvent expansions of the type
obtained here are typical for Schrödinger operators in odd dimensions, when the potential
decays rapidly. Such results were obtained in [4, 3, 8]. More recently, a unified approach
was developed in [5, 6]. It is this approach that we use here. Another approach to the
threshold behavior is to use the Jost function. See for example [1, 11]. See also the cited
papers for further references to results on resolvent expansions around thresholds.

2. Notation

Let H be a self-adjoint operator on a Hilbert space H. Its resolvent is denoted by R(z) =
(H − z)−1. In the sequel we will often look at operators with essential spectrum equal to
[0, ∞), such that 0 is a threshold point. We will look at asymptotic expansions around this
point for the resolvent. It is convenient to change the variable z by introducing z = −κ2,
with Re κ > 0.

In the half line case there is a type of notation common in the physics literature that
is very convenient. The resolvent will have an integral kernel k(r, r ′), r, r ′ ∈ [0, ∞). We
introduce the two functions

r> = max{r, r ′}, r< = min{r, r ′}. (2.1)

We note a few properties for future reference

r> + r< = r + r ′, r> − r< = |r − r ′|, r> · r< = r · r ′. (2.2)

The weighted L2-space on the half line is given by

Hs = L2,s([0, ∞)) =
{
f ∈ L2

loc([0, ∞))

∣∣∣∣
∫ ∞

0
|f (r)|2(1 + r2)sdr < ∞

}
,

(2.3)

for s ∈ R. We write H = H0 = L2([0, ∞)). We use the notation B(s1, s2) for the bounded
operators from Hs1 to Hs2 .

The inner product 〈·, ·〉 on H is also used to denote the duality between Hs and H−s .
We use the bra and ket notation for operators from Hs to H−s . For example, the operator
f �→ ∫ ∞

0 f (r)dr · 1 from Hs to H−s for s > 1/2 is denoted by |1〉〈1|.
In the asymptotic expansions below there will be error terms in the norm topology

of B(s1, s2) for specified values of the parameters s1 and s2. Here κ ∈ {ζ | 0 < |ζ | <

δ, Re ζ > 0} for a sufficiently small δ. We will use the standard notation O(κp) for these
error terms.
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3. Resolvent expansions

In this section we first obtain the resolvent expansion of the free Schrödinger operator
on the half line, and then for the Schrödinger operator with a general class of potentials,
including non-local ones.

3.1 The free operator with the Dirichlet boundary condition

We denote by HD
0 the operator with the domain and action given by

D(HD
0 ) = {f ∈ H | f ∈ AC2([0, ∞)), f (0) = 0}, HD

0 f = − d2

dr2
f.

(3.1)

Here the space AC2 denotes functions f that are continuously differentiable on [0, ∞),
with f ′ absolutely continuous (see [10]). It is well-known that this operator is self-adjoint.

The resolvent RD
0 (z) = (HD

0 − z)−1 has the integral kernel (using z = −κ2 as above)

KD
0 (κ; r, r ′) = − i

κ
sin(iκr<)e−κr>, (3.2)

which can be rewritten as

KD
0 (κ; r, r ′) = − 1

2κ
(e−κ(r>+r<) − e−κ(r>−r<)). (3.3)

Using the Taylor expansion we can get the following result, as in [4, 3, 8].

PROPOSITION 3.1

The resolvent RD
0 (−κ2) has the following asymptotic expansion. Let p ≥ 0 be an integer

and let s > p + 3
2 . Then we have

RD
0 (−κ2) =

p∑
j=0

GD
j κj + O(κp+1) (3.4)

in the norm topology of B(s, −s). The operators GD
j are given explicitly in terms of their

integral kernels by

GD
j :

(−1)j

2(j + 1)!
((r> + r<)j+1 − (r> − r<)j+1). (3.5)

Let s1, s2 > 1
2 with s1 + s2 > 2. Then GD

0 ∈ B(s1, −s2). For s > 3
2 we also have

GD
0 ∈ B(Hs , L∞([0, ∞))).
If j ≥ 1 and s > j + 1

2 , then GD
j ∈ B(s, −s).

Proof. The straightforward computations and estimates are omitted. �
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Remark 3.2. For future reference we note the expressions

GD
0 : r<, (3.6)

GD
1 : −r<r> = −r · r ′, (3.7)

GD
2 :

1

2
r<r2

> + 1

6
r3
<, (3.8)

GD
3 : −1

6
(r3

>r< + r>r3
<) = −1

6
(r3 · r ′ + r · (r ′)3). (3.9)

3.2 The potential and the factorization method

We now add a potential V to HD
0 and find the asymptotic expansion of the resolvent of

H = HD
0 + V around zero. We will allow a rather general class of potentials, so we

introduce the following assumption. We consider only bounded perturbations, however it
is possible to extend the results to potentials with singularities.

Assumption 3.3. Let V be a bounded self-adjoint operator on H, such that V extends to a
bounded operator from H−β/2 to Hβ/2 for some β > 2. Assume that there exists a Hilbert
space K, a compact operator v ∈ B(H−β/2, K), and a self-adjoint operator U ∈ B(K)

with U2 = I , such that V = v∗Uv.

Remark 3.4. The factorization leads to a natural additive structure on the potentials.
Assume that Vj = v∗

j Ujvj , j = 1, 2, satisfy Assumption 3.3. Let K = K1 ⊕ K2. Using
matrix notation we define

v =
[
v1
v2

]
, U =

[
U1 0
0 U2

]
. (3.10)

Then it follows that V = V1 + V2 has the factorization V = v∗Uv with the operators v

and U defined in (3.10) and the space K = K1 ⊕ K2.

Example 3.5. We give two examples, the first one a local perturbation, and the second one
a non-local perturbation.

(i) Let V be multiplication by a real-valued function V(r). Assume that

|V(r)| ≤ C(1 + r)−β

for some β > 2. Take K = H and let v = v∗ denote multiplication by |V(r)|1/2.
Let U denote multiplication by 1, if V(r) ≥ 0, and by −1, if V(r) < 0. Then all
conditions in Assumption 3.3 are satisfied.

(ii) Let ϕ ∈ Hβ/2 and γ ∈ R, γ �= 0. Let V = γ |ϕ〉〈ϕ|. It has the following factorization.
Let K = C. Let v : H−β/2 → K be given by v(f ) = |γ |1/2〈ϕ, f 〉, and U multiplica-
tion by sign(γ ). Then v∗(z) = z|γ |1/2ϕ, and we have V = v∗Uv. The generalization
to an operator of rank N follows from Remark 3.4.

Write H = HD
0 + V with V satisfying Assumption 3.3. We note the following result.

Lemma 3.6. Let V satisfy Assumption 3.3. Then V is HD
0 -compact.
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Proof. We have

V (HD
0 + i)−1 = [V (1 + r)β/2][(1 + r)−β/2(HD

0 + i)−1].

The first factor [· · · ] is bounded by the assumption and the second factor [· · · ] is compact
by well-known arguments. �

We now briefly recall the factorization method, as used in [5], but here extended to cover
the non-local potentials. The starting point is the operator

M(κ) = U + v(HD
0 + κ2)−1v∗,

which is now a bounded operator on K. The factored second resolvent equation is given by

R(−κ2) = RD
0 (−κ2) − RD

0 (−κ2)v∗M(κ)−1vRD
0 (−κ2). (3.11)

The first step in obtaining an asymptotic expansion forR(−κ2) is to study the invertibility
of M(κ) and the asymptotic expansion of the inverse. Inserting the asymptotic expansion
(3.4) we get

M(κ) =
p∑

j=0

κjMj + O(κp+1), (3.12)

provided β > 2p + 3. Here

M0 = U + vGD
0 v∗ and Mj = vGD

j v∗, j = 1, . . . , p. (3.13)

3.3 Analysis of ker M0

We analyze the structure of ker M0 and the connection with the point zero in the spectrum
of H .

Lemma 3.7. Let Assumption 3.3 be satisfied with β > 3.

(i) Let f ∈ ker M0. Define g = −GD
0 v∗f . Then Hg = 0, with the derivatives in the

sense of distributions. We have that g ∈ L∞([0, ∞)) ∩ C([0, ∞)), with g(0) = 0.
We have g ∈ H, if and only if

〈vr, f 〉K = 0. (3.14)

(ii) Assume g ∈ H−s ∩C([0, ∞)), s ≤ 3/2, satisfies g(0) = 0 and Hg = 0, in the sense
of distributions. Let f = Uvg. Then f ∈ ker M0.

(iii) Assume additionally that V is multiplication by a function. Let f ∈ ker M0, f �= 0.
Then 〈vr, f 〉 �= 0, and dim ker M0 = 1.

Proof. Let f ∈ ker M0, and define g = −GD
0 v∗f . Then we have

g(r) = −
∫ ∞

0
r ′(v∗f )(r ′)dr ′ −

∫ ∞

r

(r − r ′)(v∗f )(r ′)dr ′.
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Since v∗f ∈ Hs for some s > 3/2, the second term belongs to H. The first term is a
constant. Thus part (i) follows. For part (ii), assume g ∈ H−s ∩ C([0, ∞)), s ≤ 3/2,
satisfies g(0) = 0 and Hg = 0, in the sense of distributions. Then f = Uvg ∈ K. By
assumption and definition we have

d2

dx2
g = Vg = v∗f.

The mapping properties of v∗ imply that v∗f ∈ Hs for some s > 3/2. Thus we can define

h(r) = −
∫ ∞

r

(r − r ′)(v∗f )(r ′)dr ′.

Hence

d2

dx2
h = v∗f.

We conclude that d2

dr2 (h − g) = 0 in the sense of distributions, and thus for some a, b ∈ C
we have g(r) = h(r) + a + br . Since g ∈ H−s , s ≤ 3/2, and h ∈ H, we conclude that
b = 0. Since g(0) = 0 by assumption, we have

a = −h(0) = −
∫ ∞

0
r ′v(r ′)f (r ′)dr.

Thus we have shown that

g(r) = −
∫ ∞

0
r ′v(r ′)f (r ′)dr −

∫ ∞

r

(r − r ′)(v∗f )(r ′)dr ′ = −(GD
0 v∗f )(r),

such that

Uf = UUvg = vg = −vGD
0 v∗f,

or M0f = 0.
Assume now that V is multiplication by a function V, and that the factorization is chosen

as above in Example 3.5. To prove part (iii), assume that f ∈ ker M0 and that 〈vr, f 〉 = 0.
Let g = −GD

0 v∗f . Then M0f = 0 implies f = Uvg. Using 〈vr, f 〉 = 0, we find that g

satisfies the homogeneous Volterra equation

g(r) = −
∫ ∞

r

(r − r ′)V(r ′)g(r ′)dr ′.

It follows by a standard iteration argument that g = 0, and then also f = 0. To prove
the final statement, assume that we have fj ∈ ker M0, and fj �= 0, j = 1, 2. Define
gj = −GD

0 v∗fj . Then we can find α ∈ C, such that 〈vr, f1〉+α〈vr, f2〉 = 0. Thus we get

(g1 + αg2)(r) = −
∫ ∞

r

(r − r ′)V(r ′)(g1 + αg2)(r
′)dr ′.

It follows again by the iteration argument that g1 + αg2 = 0, and then as above also
f1 + αf2 = 0. This concludes the proof of part (iii). �
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Remark 3.8. Let us note that for a local potential it suffices to assume β > 2 for the results
in Lemma 3.7 to hold, since in this case we can use the mapping property of GD

0 given in
Proposition 3.1.

We need the following result, which is analogous to Lemma 2.6 of [4]. We include the
proof here.

Lemma 3.9. Assume that fj ∈ K, such that (3.14) holds for fj , j = 1, 2. Then we have
that

〈f1, vGD
2 v∗f2〉 = −〈GD

0 v∗f1, G
D
0 v∗f2〉. (3.15)

Proof. Let gj = −GD
0 v∗fj . Since (3.14) holds, we have that gj ∈ L2([0, ∞)). Further-

more, we have

d2

dr2
gj = v∗fj (3.16)

in the sense of distributions. We denote the Fourier transform on the line by ·̂. From (3.16)
it follows that we have

ξ2ĝj (ξ) = −(v∗fj )̂ (ξ).

Since v∗fj ∈ Hs for some s > 3/2, the Fourier transform (v∗fj )̂ is continuously differ-
entiable, by the Sobolev embedding theorem. Since ĝj ∈ L2(R), we must have

(v∗fj )̂ (0) = 0,
d

dξ
(v∗fj )̂ (0) = 0. (3.17)

It follows from (3.7) that GD
1 v∗fj = 0. Thus we have

〈f1, vGD
2 v∗f2〉 = lim

κ→0

1

κ2
〈v∗f1, ((H

D
0 + κ2)−1 − GD

0 )v∗f2〉.

Now compute using the Fourier transform:

1

κ2
〈v∗f1, ((H

D
0 + κ2)−1 − GD

0 )v∗f2〉

= 1

κ2

∫ ∞

−∞
(v∗f1)̂ (ξ )

(
1

ξ2 + κ2
− 1

ξ2

)
(v∗f2)̂ (ξ )dξ.

=
∫ ∞

−∞
(v∗f1)̂ (ξ )

−1

(ξ2 + κ2)ξ2
(v∗f2)̂ (ξ )dξ.

It follows from (3.17) that

1

ξ2
(v∗fj )̂ (ξ) ∈ L2(R).

Thus we can use dominated convergence and take the limit κ → 0 under the integral sign
above, to get the result. �
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3.4 Resolvent expansions: Results

Let us now state the results obtained. We use the same terminology as in [4], since we
have the same four possibilities for the point zero. We say that zero is a regular point
for H , if dim ker M0 = 0. We say that zero is an exceptional point of the first kind, if
dim ker M0 = 1, and there is an f ∈ ker M0 with 〈vr, f 〉 �= 0. We say that zero is
an exceptional point of the second kind, if dim ker M0 ≥ 1, and all f ∈ ker M0 satisfy
〈vr, f 〉 = 0. In this case zero is an eigenvalue for H of multiplicity dim ker M0. Finally,
we say that zero is an exceptional point of the third kind, if dim ker M0 ≥ 2, and there is
an f ∈ ker M0 with 〈vr, f 〉 �= 0.

We introduce the following notation. Let S denote the orthogonal projection onto ker M0.
Then M0 + S is invertible in B(K). We write

J0 = (M0 + S)−1. (3.18)

Theorem 3.10. Assume that zero is a regular point for H . Let p ≥ 1 be an integer. Assume
that β > 2p + 3 and s > p + 3

2 . Then we have the expansion

R(−κ2) =
p∑

j=0

κjGj + O(κp+1) (3.19)

in the topology of B(s, −s). We have

G0 = (I + GD
0 V )−1GD

0 , (3.20)

G1 = (I + GD
0 V )−1GD

1 (I + V GD
0 )−1. (3.21)

The kernels of the operators GD
0 and GD

1 are given in (3.6) and (3.7), respectively.

Theorem 3.11. Let p ≥ 0 be an integer, and let V satisfy Assumption 3.3 for some
β > 2p + 7. Assume that zero is an exceptional point of the first kind for H . Assume that
s > p + 7

2 . Then we have an asymptotic expansion

R(−κ2) =
p∑

j=−1

κjGj + O(κp+1) (3.22)

in the topology of B(s, −s). We have

G−1 = |�c〉〈�c|, (3.23)

where

�c = 〈f, vr〉
|〈f, vr〉|2 GD

0 vf,

for f ∈ ker M0, ‖f ‖ = 1.

Theorem 3.12. Let p ≥ 1 be an integer, and let V satisfy Assumption 3.3 for some
β > 2p + 11. Assume that zero is an exceptional point of the second kind for H . Assume
that s > p + 11

2 . Then we have an asymptotic expansion

R(−κ2) =
p∑

j=−2

κjGj + O(κp+1) (3.24)
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in the topology of B(s, −s). We have

G−2 = P0, (3.25)

G−1 = 0, (3.26)

G0 = GD
0 − GD

0 v∗J0vGD
0 − GD

0 v∗J0vGD
2 V P0 − P0V GD

2 v∗J0vGD
0

+ P0V GD
4 V P0 + P0V GD

2 + GD
2 V P0, (3.27)

G1 = GD
1 − GD

1 v∗J0vGD
0 − GD

0 v∗J0vGD
1 + GD

3 V P0 + P0V GD
3

+ GD
1 v∗J0vGD

2 V P0 + P0V GD
2 v∗J0vGD

1 . (3.28)

Here P0 denotes the projection onto the zero eigenspace of H , and the operator J0 is
defined by (3.18).

Theorem 3.13. Let p ≥ 0 be an integer, and let V satisfy Assumption 3.3 for some
β > 2p + 11. Assume that zero is an exceptional point of the third kind for H . Assume
that s > p + 11

2 . Then we have an asymptotic expansion

R(−κ2) =
p∑

j=−2

κjGj + O(κp+1) (3.29)

in the topology of B(s, −s). We have

G−2 = P0, (3.30)

G−1 = |�c〉〈�c|. (3.31)

Here P0 is the orthogonal projection onto the zero eigenspace, and �c is the canonical
zero resonance function defined in (3.50).

Remark 3.14. It is instructive to compare the results above with the results in the case
of dimension d = 3 (see [4]). The operator we consider here is the angular moment
component � = 0 of −� + V on L2(R3), provided V commutes with rotations. In
particular, we can only get zero as an eigenvalue for non-local V , and the expansion in the
second exceptional case has coefficient G−1 = 0 (and in the third exceptional case this
coefficient only contains the zero resonance term), consistent with the result in [4], where
in the radial case this term lives in the � = 1 subspace (see [4] Remark 6.6).

3.5 Resolvent expansions: Proofs

We now give some details on the proofs of the resolvent expansions.

Proof of Theorem 3.10. We give a brief outline of the proof. Since by assumption M0 is
invertible in K, and since we assume β > 2p + 3, we can compute the inverse of M(κ)

up to an error term O(κp+1) by using the Neumann series and the expansion (3.12). This
expansion is then inserted into (3.11), leading to the existence of the expansion up to terms
of order p, and to the two expressions

G0 = GD
0 − GD

0 v∗M−1
0 vGD

0
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and

G1 = (I − GD
0 v∗M−1

0 v)GD
1 (I − v∗M−1

0 vGD
0 ).

Now we carry out the following computation:

I − GD
0 v∗M−1

0 v = I − GD
0 v∗(U + vGD

0 v∗)−1v

= I − GD
0 v∗U(I + vGD

0 v∗U)−1v

= I − GD
0 v∗Uv(I + GD

0 v∗Uv)−1

= I − GD
0 V (I + GD

0 V )−1

= (I + GD
0 V )−1.

Using this result, and its adjoint, we get the expressions in the theorem. It is easy to check
that the above computations make sense between the weighted spaces.

Proof of Theorem 3.11. We assume that zero is an exceptional point of the first kind.
Thus we have that dim ker M0 = 1. Take f ∈ ker M0, ‖f ‖ = 1. Let S = |f 〉〈f | be
the orthogonal projection onto ker M0. Assume β > 2p + 7. Let q = p + 2. Then by
Proposition 3.1 we have an expansion

M(κ) =
q∑

j=0

κjMj + O(κq+1) = M0 + κM̃1(κ). (3.32)

We now use Corollary 2.2 of [5]. Thus M(κ) is invertible, if and only if

m(κ) =
∞∑

j=0

(−1)j κjS
[
M̃1(κ)J0

]j+1
S, (3.33)

is invertible as an operator on SK. We also recall the formula for the inverse from
Corollary 2.2 of [5],

M(κ)−1 = (M(κ) + S)−1 + 1

κ
(M(κ) + S)−1Sm(κ)−1S(M(κ) + S)−1.

(3.34)

It is easy to see that we have an expansion

m(κ) =
q−1∑
j=0

κjmj + O(κq),

where

m0 = SM1S, (3.35)

m1 = SM2S − SM1J0M1S, (3.36)

m2 = SM3S − SM1J0M2S − SM2J0M1S + SM1J0M1J0M1S. (3.37)
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Using (3.7) we see that

m0 = SM1S = −|Svr〉〈Svr| = −|〈f, vr〉|2S. (3.38)

Since 〈f, vr〉 �= 0, it follows that m0 is invertible in SK. The Neumann series then yields
an expansion

m(κ)−1 = m−1
0 +

q−1∑
j=1

κjAj + O(κq).

The coefficients Aj are in principle computable, although the expressions rapidly get very
complicated. This expansion is inserted into (3.34). We also use the Neumann series to
expand

(M(κ) + S)−1 = J0 +
q∑

j=1

κj M̃j + O(κq+1).

This leads to an expansion

M(κ)−1 = 1

κ
Sm−1

0 S +
q−2∑
j=0

κjBj + O(κq−1),

where we also used that SJ0 = J0S = S. We now use (3.11) together with the expansion
above and the expansion of RD

0 (−κ2) from Proposition 3.1 to conclude that we have an
expansion

R(−κ2) = − 1

κ
GD

0 v∗Sm−1
0 SvGD

0 +
q−2∑
j=0

κjGj + O(κq−1).

This concludes the proof of the theorem.

Proof of Theorem 3.13. Assume that zero is an exceptional point of the third kind for H .
Thus dim ker M0 ≥ 2, and there exists an f ∈ ker M0 with 〈vr, f 〉 �= 0. We repeat the
computations in the proof of Theorem 3.11, although the assumptions are different. As
above, S denotes the orthogonal projection onto ker M0. Given p ≥ 0, assume β > 2p+11,
and let q = p + 4. Then β > 2q + 3, and for this q we have the expansion (3.32). We
also have the expansion (3.33) and the expressions for the first three coefficients given in
(3.35), (3.36) and (3.37), respectively. We have

m0 = SM1S = −|Svr〉〈Svr|,
which by our assumption is a rank 1 operator. The orthogonal projection onto ker m0 is
given by

S1 = S + 1

α
|Svr〉〈Svr|, α = ‖Svr‖2

K,

and by assumption S1 �= 0. Now we use the main idea in [5], the repeated application of
Corollary 2.2. Applying it once more, we get

m(κ)−1 = (m(κ) + S1)
−1

+ 1

κ
(m(κ) + S1)

−1S1q(κ)−1S1(m(κ) + S1)
−1 (3.39)
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with

q(κ) = q0 + κq1 + · · · + O(κq−1)

= S1m1S1 + κ[S1m2S1 − S1m1(m0 + S1)
−1m1S1]

+ · · · + O(κq−1). (3.40)

Here the · · · are terms, whose coefficients can be computed explicitly. We must have that
q0 is invertible in S1K. Otherwise, we can iterate the procedure, leading to a singularity in
the expansion of R(−κ2) of type κ−j with j ≥ 3, contradicting the self-adjointness of H .
Thus we have

q(κ)−1 = q−1
0 − κq−1

0 q1q
−1
0 + · · · + O(κq−1). (3.41)

It remains to perform the back-substitution, and to compute the coefficients. The back-
substitution leads to

R(−κ2) = 1

κ2
G−2 + 1

κ
G−1 + · · · + O(κq−4),

with expressions

G−2 = −GD
0 vS1q

−1
0 S1vGD

0 , (3.42)

G−1 = GD
0 vS1q

−1
0 S1m2S1q

−1
0 S1vGD

0

− GD
0 v(S − S1q

−1
0 S1m1)(m0 + S1)

−1(S − m1S1q
−1
0 S1)vGD

0 .

(3.43)

These expressions can be simplified. The computations are similar to the ones in [7],
although there are some differences. Let P0 denote the projection onto the eigenspace for
eigenvalue zero for H .

Let us start by reformulating the result in Lemma 3.7. Let

T = −GD
0 v∗S1 and T̃ = UvP0. (3.44)

The operator T is a priori only bounded from K to H−s for s > 1/2, but Lemma 3.7
shows that it is actually bounded from K to H, with Ran T = P0H. We also have that T̃

is bounded from H to K, with Ran T̃ = S1K. Now Lemma 3.9 implies that

T T̃ = P0 and T̃ T = S1. (3.45)

The adjoint T ∗ is the closure of the operator −S1vGD
0 . These observations lead to the result

S1q
−1
0 S1 = −T̃ T̃ ∗. (3.46)

Now insert into (3.42) to get

G−2 = T T̃ T̃ ∗T ∗ = P0.

Then we note that

GD
0 vS1q

−1
0 S1m2S1q

−1
0 S1vGD

0 = 0. (3.47)
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This result holds, since S1m2S1 = S1G
D
3 v∗S1 = 0, as can be seen from the kernel (3.9)

and the condition (3.14), which holds for all functions in the range of S1. As for the last
term in (3.43), from (3.38) and (3.40) it follows that

(m0 + S1)
−1 = S1 − 1

α4
|Svr〉〈Svr|, (3.48)

(S − S1q
−1
0 S1m1)S1 = 0. (3.49)

Define

�c = 1

‖Svr‖2
(GD

0 v|Svr〉 − P0V GD
2 v|Svr〉). (3.50)

Then a computation shows that we have

G−1 = |�c〉〈�c|. (3.51)

This concludes the proof of Theorem 3.13.

Proof of Theorem 3.12. We will not give the details of the proof of this theorem. It follows
along the lines of the previous proofs. More precisely, if as above S is the orthogonal
projection onto ker M0, then (3.34)–(3.37) hold true with m0 = 0, and the argument
leading to the invertibility of q0, (see (3.40)), gives the fact that M1 is invertible. Then
expanding in (3.34) and carrying the computation far enough, one finds the expressions in
(3.25)–(3.28) for the first four coefficients explicitly, which are of interest in connection
with the Fermi golden rule results below.

4. A non-local potential example

We will illustrate Theorem 3.13 by giving an explicit example, using a rank 2 perturbation.
The example is constructed such that H has zero as an exceptional point of the third kind.

Let us define two functions in L2([0, ∞)) as follows:

φ1(r) =




0, for 0 < r ≤ 3

1, for 3 < r < 4

0, for 4 ≤ r < ∞
,

φ2(r) =




0, for 0 < r ≤ 1

1, for 1 < r < 2

− 3
5 , for 2 ≤ r ≤ 3

0, for 3 < r < ∞

.

We have ∫ ∞

0
rφ1(r)dr �= 0 and

∫ ∞

0
rφ2(r)dr = 0. (4.1)

As our potential we take

V = − 3

10
|φ1〉〈φ1| − 75

28
|φ2〉〈φ2|. (4.2)
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For the factorization we take K = C2, and define v ∈ B(H, K) by

v(f ) =



√
3

10 〈φ1, f 〉√
75
28 〈φ2, f 〉


 . (4.3)

We let U = −I , where I is the identity operator on K. Then we have V = v∗Uv. Next
we compute M0. Direct computation shows that

vGD
0 v∗ = I.

The constants in V were chosen to obtain this result. Thus M0 = 0. Take

f1 =
[

1

0

]
and f2 =

[
0

1

]
.

Then

〈vr, f1〉 �= 0 and 〈vr, f2〉 = 0,

due to (4.1). Thus zero is an exceptional point of the third kind for H with this potential.
We can also find the resonance function and an eigenfunction explicitly. An eigenfunction
is given by −GD

0 v∗f2. Carrying out the computations, one finds after normalization

�0(r) =
√

375

98




− 2
5 r, for 0 < r ≤ 1

1
2 r2 − 7

5 r + 1
2 , for 1 < r < 2

− 3
10 r2 + 9

5 r − 27
10 , for 2 ≤ r ≤ 3

0, for 3 < r < ∞

. (4.4)

6

1

0.8

5

0.6

0.4

4

0.2

0
3210

Figure 1. Canonical zero resonance function �c.
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32

0.6

0.4

1

0.2

0 654

0.8

0

Figure 2. Normalized zero eigenfunction −�0.

Using this function and the expression (3.50) one gets

�c(r) =




− 52
343 r, for 0 < r ≤ 1

375
686 r2 − 61

49 r + 375
686 , for 1 < r < 2

− 225
686 r2 + 773

343 r − 2025
686 , for 2 ≤ r ≤ 3

− 1
7 r2 + 8

7 r − 9
7 , for 3 < r ≤ 4

1, for 4 < r < ∞

. (4.5)

The plots of the two functions are shown in figures 1 and 2, respectively.
The computations in this example have been made using Maple, the computer algebra

system.

5. Application to the Fermi golden rule at thresholds

We recall the main result from [7] in the context of the Schrödinger operators on the half line
considered above. Let H = HD

0 + V , where V satisfies Assumption 3.3 for a sufficiently
large β. Let W be another potential satisfying the same assumption. We consider the family
H(ε) = H + εW for ε > 0. Assume that 0 is a simple eigenvalue of H , with normalized
eigenfunction �0. Assume

b = 〈�0, W�0〉 > 0. (5.1)

The results in [7] show that under some additional assumptions the eigenvalue zero becomes
a resonance for H(ε) for ε sufficiently small. Here the concept of a resonance is the time-
dependent one, as introduced in [9]. The additional assumption needed is that for some
odd integer ν ≥ −1 we have

Gj = 0, for j = −1, 1, . . . , ν − 2 and gν = 〈�0, WGνW�0〉 �= 0.

(5.2)
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Here Gj denotes the coefficients in the asymptotic expansion for the resolvent of H

around zero, as given in either Theorem 3.12 or Theorem 3.13. The main result in [7]
gives the following result on the survival probability for the state �0 under the evolution
exp(−itH(ε)). There exists ε0 > 0, such that for 0 < ε < ε0 we have

〈�0, e−itH(ε)�0〉 = e−itλ(ε) + δ(ε, t), t > 0. (5.3)

Here λ(ε) = x0(ε) − i�(ε) with

�(ε) = −iν−1gνb
ν/2ε2+(ν/2)(1 + O(ε)), (5.4)

x0(ε) = bε(1 + O(ε)), (5.5)

as ε → 0. The error term satisfies

|δ(ε, t)| ≤ Cεp(ν), t > 0, p(ν) = min{2, (2 + ν)/2}. (5.6)

We state two corollaries to the results in this paper and in [7].

COROLLARY 5.1

Let H = HD
0 + V be a Schrödinger operator on the half line, with V satisfying Assump-

tion 3.3 for some β > 17. Assume that zero is an exceptional point of the second kind
for H . The zero eigenfunction is denoted by �0 and is assumed to be simple. Let W also
satisfy Assumption 3.3 for some β > 17. Assume that

b = 〈�0, W�0〉 �= 0, (5.7)

g1 = 〈�0, WG1W�0〉 �= 0. (5.8)

Let H(ε) = H + εW , ε > 0. The results (5.3)–(5.6) hold with ν = 1.

We note that an expression for g1 can be obtained from (3.28).

COROLLARY 5.2

Let H = HD
0 + V be a Schrödinger operator on the half line, with V satisfying Assump-

tion 3.3 for some β > 9. Assume that zero is an exceptional point of the third kind for
H . The zero eigenfunction is denoted by �0 and is assumed to be simple. The canonical
resonance function is denoted by �c. Let W also satisfy Assumption 3.3 for some β > 9.
Assume that

b = 〈�0, W�0〉 �= 0, (5.9)

g−1 = 〈�0, WG−1W�0〉 = |〈�0, W�c〉|2 �= 0. (5.10)

Let H(ε) = H + εW , ε > 0. The results (5.3)–(5.6) hold with ν = −1.

This second Corollary is particularly interesting, since we can check the conditions (5.9)
and (5.10) in the example given in § 4. It is easy to see that one can get both 〈�0, W�c〉 �= 0
and 〈�0, W�c〉 = 0, for both local and non-local perturbations W . Only in the first case
can one apply directly the results from [7], due to the condition (5.2). The other case has
not yet been investigated in detail.

One can also use the results on resolvent expansions to give examples using two channel
models, as in [7]. We omit stating these results explicitly.
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