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ABSTRACT 

The main drawback of Membrane Bioreactors (MBRs) is the fouling of the membrane. One way 

to reduce this fouling is through controlling the hydrodynamics of the two-phase slug flow near 

the membrane surface. It has been proven in literature that the slug flow pattern has a higher 

scouring effect to remove particulates due to the high shear rates and high mass transfer 

between the membrane surface and the bulk region. However, to calculate the mass transfer 

coefficient in an efficient and accurate way is not straightforward. Indeed, for accurate 

determination, numerous complex experimental measurements are required. Therefore, this 

work proposes an alternative method that uses already existing heat transfer relationships for 

two phase flow and links them through a dimensionless number to the mass transfer coefficient 

(Sherwood number) to obtain an empirical relationship which can be used to determine the 

shear stress. 
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1. INTRODUCTION 

Bearing in mind the more stringent effluent quality standards imposed by the EU Water 

Framework Directive (EU-WFD), wastewater treatment efficiencies need to be improved. These 

improvements can be achieved both in terms of biological removal efficiency as well as in the 

sludge-water separation step. For the last step two types of technologies exist, the Conventional 

Activated Sludge (CAS) systems where the separation is brought about by gravity and the 

Membrane Bioreactors (MBR) where the separation is achieved by filtration. The last one has 

proven to be a good alternative to achieve high effluent quality compared to the CAS system.  

A common problem encountered with MBR systems is the fouling of the membrane resulting in 

a need for its frequent cleaning and replacement [1]. Membrane fouling is the main bottleneck of 
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full-scale application of membrane bioreactors (MBRs) and has restricted its market 

breakthrough due to the reduction of productivity and increased maintenance and operational 

cost. Literature has shown that, next to the composition of the sludge, the hydrodynamics near 

the membrane surface play an important role. In search for better control of fouling, literature 

has focused on the determination of the fouling constituents. However, it has been shown that 

the hydrodynamics near the membrane surface play an as important role. To reduce the fouling 

on the membrane air is often introduced in the sludge flow to create a gas-liquid two-phase 

cross-flow, to increase the surface shear stress to remove foulants that are already attached 

and to increase the mass transfer between the cake layer and the bulk region [2]. However, the 

governing mechanisms are not yet completely understood, which results in a trial and error 

approach to optimize hydrodynamic control of fouling 

 

Due to the complexity involved in mass transfer measurements for two-phase flows, some 

studies have focused on developing relationships between heat and mass transfer. This is 

possible because of the analogies between heat and mass transfer models in dimensionless 

form which are based on the transport of momentum, mass, heat and energy, and more 

specifically in the Lewis number ( Le ). The latter is a dimensionless number defined as the ratio 

of thermal to mass diffusivity [3,4]: 
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where Sh , Nu , Sc  and Pr  are the Sherwood, Nusselt, Schmidt and Prandtl numbers 

respectively. They are defined in Tab. 1. In Tab. 1, h  is the convection coefficient, d  is the tube 

diameter, 
ck  is the thermal conductivity, 

pc  is the specific heat,   is the viscosity, 
mk  the mass 

transfer coefficient, 
fD  is the diffusion coefficient and   is the density. 

 

These kinds of analogies are commonly used in cases where it is easier to obtain heat transfer 

data rather than mass transfer data. The work presented here focuses on a better 

understanding of the mass transfer coefficient near the membrane surface using a heat transfer 

analogy for two-phase slug flow for side-stream MBR. 

 

2. MATERIAL AND METHODS 

 

2.1 Description of the setup 

A description of the setup that was used to collect shear stress information is given in Fig. 1. A 

plexiglas tube with a length of 2 m and an inner diameter of 9.9 mm was used. This tube is 

similar in geometry to the airlift tubular membranes of interest. A flow cell, located in the middle 

of the plexiglas tube (1 m) has two electrochemical shear probes, which are used to measure 



surface shear stresses. A temperature controlled water bath (20°C) is used to keep the 

temperature of the electrolyte solution flowing through the system constant. A peristaltic pump 

(Masterflex LS, USA) is used to recirculate the electrolytic solution from the gas-liquid separator 

tank to the plexiglass tube at controlled liquid flow rates. Two flow meters (Cole-Parmer, N082-

03, USA) are used to monitor the liquid and gas flow rates. Five liquid flow rates (0.1, 0.2, 0.3, 

0.4 and 0.5 L min
-1
) and three gas flow rates (0.1, 0.2 and 0.3 L min

-1
) were investigated, resulting 

in a total of 15 combinations. These ranges of flow rates correspond to those expected in full-scale 

airlift tubular membrane systems [5]. For each experimental condition, surface shear stresses are 

measured for a period of 10 seconds, and recorded at a frequency of 1000 Hz [6]. All experimental 

conditions are replicated six times. 

 

The electrochemical probes are made from two platinum wires imbedded flush to the inside 

surface of the tube wall to avoid them having an effect on the flow field. A detailed description of 

the directional electrochemical probes is presented in [7]. Measurements from the directional 

electrochemical probes are measured as volt and can be converted to a mass transfer 

coefficient (
mk ), which can be used to calculate shear stresses using the following equation [7]: 
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where 
ed  is the diameter of the probe (m), 

fD  is the diffusion coefficient of ferricyanide 

(7.14·10
-10

 m
2
 s

-1
 [8]) and 

L  is the dynamic viscosity of the solution (= 0.001 Pa s). The 

detailed procedure to obtain Eq. (2) can be found in [5]. Eq. (2) correlates mass transfer to 

shear stress, which is the objective of this work. 

 

2.2 Slug flow 

To reduce the fouling on the membrane, air is introduced to create a two-phase flow. In vertical 

tubes, there are four specific flow patterns: bubbly, slug, churn and annular flow. Their 

respective structure depends on the superficial velocities, surface tension and densities of the 

fluids. It was found that the setup under study is operated in the slug flow region (Taylor 

bubbles). In the slug flow that typically builds up, three different zones can be distinguished (Fig. 

2): 1) the falling film zone, i.e. the zone where the bubble is passing, 2) the wake zone, i.e. the 

zone just behind the bubble where mixing of liquid and gas takes place and 3) the liquid zone 

[2]. 

 

2.3 Mass Transfer Coefficient 

Single-phase flow: During the filtration process, the separation between the sludge and the 

solute occurs at the membrane, giving an increase in the solute concentration near the 

membrane surface. This is called concentration polarization [9] which is function of the mass 



transfer coefficient. The latter can be obtained by electrochemical methods as presented in 

section 2.1 or by using dimensionless relationships function of the Sh  and depending on the 

flow regime (Tab. 2). However, it is important to note that the relationships are for smooth tubes 

only and they are not defined in the transition regime (2000<Re<4000). A weighting factor 

approach can be used here to determine the Sh  number in the transition regime [10].  

 

Two-phase flow: In a slug flow, each zone has its own mass transfer coefficient. Fig. 3 illustrates 

the mass transfer coefficients for each zone. It is possible to observe that if the flow would be 

single phase the value of the mass transfer coefficient in the liquid slug would be lower 

compared to the falling film and wake zone due to higher liquid velocities. Therefore, the mass 

transfer coefficient increases due to the two-phase cross flow. [2] and [11] proposed equations 

for each zone based on hydrodynamics models and mass balances of slug flow. However, 

these models require extensive experimental measurements and mathematical derivation. 

 

2.4 Heat Transfer Coefficient 

Single-phase flow: The heat transfer for single phase flow in a tube depends on the Nu  number 

and the flow regime (Tab 2). The Nu  number is the ratio of convective to conductive heat 

transfer normal to the boundary and the Pr  number is the ratio of the momentum diffusivity and 

the thermal diffusivity. They are the thermal counterpart for the Sh  and Sc  the number. 

Comparing the heat and mass transfer analogies for single phase flow, it is possible to observe 

that the structure is the same but coefficients in the equations are slightly different (Tab. 2). 

  

Two-phase flow: The Nu  number for two phase flow (
tpNu ) is defined by 

tpctptp kdhNu ,  [12]. 

Where 
tph  is the heat transfer coefficient for two-phase flow and 

tpck ,
 is the thermal conductivity 

coefficient for two-phase flow, which is defined by   GcLctpc kxkxk ,,, 1  . Here, 
Lck ,
 and 

Gck ,
 are 

the thermal conductivity of the liquid and gas respectively and x  is the vapour quality. The heat 

transfer coefficient for two-phase flow is defined by [13]: 
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where 
pF  is the flow pattern factor (dimensionless), 

Lh  is the heat transfer coefficient for the 

liquid and *I  is the inclination factor (dimensionless). The definition of these parameters can be 

found in [13]. The subscripts G  and L are gas and liquid respectively. The heat transfer 



coefficient for the liquid (
Lh ) in single phase flow are given in Tab 2 as function of the Nu  

number. The liquid (
LRe ) and superficial gas (

SGRe ) Reynolds numbers are defined by: 
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This liquid Reynolds number gives a better representation for the liquid phase heat transfer (
Lh ) 

and it works well in their two-phase heat transfer relationship for various gas-liquid combinations 

and flow patterns. Eq. (3) is valid for 
LRe  from 750 to 1.3·10

5
 and 

SGRe  from 14 to 2.1·10
5
. 

 

2.5 Heat-and-Mass Transfer Analogy 

The Lewis number (Eq. (1)) can be used for both laminar and turbulent regimes. Moreover, it 

allows to determine either the heat or mass transfer, given one of them is known as the Lewis 

number can be computed independently. The exponent n  is usually 31 . When there is filtration, 

it is possible to assume that the filtration has no effect on the hydrodynamics due to the fact that 

the permeate flow is less that 1 % of the cross-flow and it is assumed that it does not affect the 

slug flow. Therefore, the filtration process is not taken into account to develop a relationship for 

the mass transfer coefficient. 

 

3. RESULT AND DISCUSSION 

 

3.1 Shear profiles 

Single-phase flow: Initial measurements were performed for single-phase flow to calibrate the 

wall shear stress with theoretical equations using the friction factor (Tab. 2). The friction factor is 

used in internal flow calculations and it expresses the linear relationship between mean flow 

velocity and shear stress at the wall. The mass transfer coefficient obtained from the 

electrochemical setup was converted into shear stress (Fig. 4a). Also, it was found that the flow 

was in laminar regime. Subsequently, the Sh  number was computed and compared to the 

relationship for single phase flow (Tab. 2) to check the validity of the Leveque equation (Fig. 

4b). Using SPSS v15 to estimate the coefficient, the proposed model becomes: 
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which is 8% lower compared to the theoretical model and can be used as a starting point for the 

analysis of the two-phase flow. 



 

The mass transfer coefficient for the probe was defined in Eq. (2), form which is necessary to 

extrapolate to the mass transfer coefficient for the tube as follows: 
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Now the objective is to determine the wall shear stress from the heat transfer point of view 

(using the Nu  number). It is possible to write the wall shear stress as function of the Sh  number 

as follows: 
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The Lewis number can be written as: 
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Combining Eq. (8) and (9) yields: 
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This is a general equation valid for single phase flow. Nevertheless, the behaviour of two-phase 

flow is different and, hence, some corrections are needed. 

 

Two-phase flow: Typical voltage results obtained using the electrochemical shear probes, and 

the corresponding shear stresses, are presented in [5] and will not be shown here. It is important 

to highlight, nevertheless, that gas slugs rising in vertical tubes were observed to periodically 

coalesce when trailing slugs reached the wake of the leading slugs, accelerating the tailing 

slugs to finally coalesce with the leading slug. For this reason, the shear stress profiles induced 

by successive slugs were not exactly the same. As a result, the profile of shear stresses in 

successive shear events, induced by rising gas slugs, varied considerably over time. Shear 

Stress Histograms (SSH) were used to explore the effect of the different experimental 

conditions investigated (Fig. 5) on the resulting shear stresses [5]. 

 



From Fig. 6, it is possible to distinguish two peaks in the SSH: one peak occurs at positive shear 

value and is caused by the liquid slugs and a second peak occurs at a negative shear value and is 

caused by the gas slugs. The magnitude of the frequency for both peaks is, however, different for 

the different gas-liquid flow rate combinations.  

 

Therefore, Eq. (10) can be written for two zones, instead of 3 zones for simplicity (Fig. 2 and 3): 

One zone for the liquid slug ( ls ) and one zone for the gas slug ( gs ) (this zone will include the 

falling film zone and the wake zone, because in the SSH, the wake zone cannot be 

distinguished): 
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From the SSH, it is possible to get the average shear stress for the liquid and the gas slug 

peaks to feed Eq. (11) and (12) respectively. Due to the fact that the length of the bubbles is 

different, caused by coalescence, the values obtained from the SSH distribution are just 

averages. Therefore, a correction factor needs to be added. This correction factor should 

consider the fact that the hydraulic diameter changes in the falling film zone. The correction 

factor is function of the Reynolds number as follows: 
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This empirical factor considers several characteristics of the flow, such as: coalescence of 

bubbles, bubble length, hydraulic diameter and transition regime, as the transition regime is not 

defined. Eq. (11) and (12) become: 
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It is important to highlight that the power 3 in the t  coefficients of Eq. (14) and (15) is just to 

maintain the same exponent of the Nu  number. For simplicity, the first term of the equation is 

grouped in a constant.  
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Re-writing Eq. (14) and (15) and combining with (13) yields: 
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The correction factor can now be determined from fitting Eq. (17) and (18) to experimentally 

gathered data. This was done through a power-law regression with the software SPSS v15 

using: 
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The problem now arises as to which Reynolds number to use (liquid or superficial gas Reynolds 

number) in the correction factor. For this purpose, the R
2
 can be used as goodness of fit criteria. 

Results are summarized in Tab. 3.  

 

From Tab. 3, the values that are in bold provide the best fit to the experimental data. Both liquid 

and gas slugs were found to be more dependent of the 
LRe  rather than the 

SGRe . The 
LRe  

considers the mixture velocity and the void fraction of the gas slug which is clearly important to 

account for the liquid and gas slugs. On the other hand, the 
SGRe  was expected to yield a bad 

correlation for the liquid slug (i.e. no liquid velocity is included in the Reynolds number). 

However, it was expected that it would provide a good correlation for the gas slug, which is 

clearly not the case. The reason for that could be that it should include the combined liquid and 

gas velocities to account for the increase in gas velocity due to buoyancy effects. Therefore, it 

was chosen to use 
LRe  in Eq. (19) and (20). Fig. 6 shows the power-law relationships for the 

liquid and gas slug. 

 

From Fig. 6, it is possible to observe that the liquid Reynolds number is adequate to fit the 

empirical Eq. (19) and (20) to experimental data. The recovered parameters for Eq. (17) and 

(18) are shown in Tab. 4. 

Therefore the final expressions of Eq. (17) and (18) have the form: 



 

  33295.0

, Re900.48 LLlsw Nu


                                  (21) 

  33196.1

, Re741.138 tpLgsw Nu


                                  (22) 

 

From Fig. 6, it is possible to observe that the results of the heat-and-mass transfer relationship 

are adequate to predict the shear stress for the liquid and gas slug. The above analysis 

indicates that relatively simple dimensionless models can be used to describe the shear stress 

in the slug flow. Note that since the relationships presented in Eq. (21) and (22) are empirical, 

care must be taken when using them for design purposes. It is worth mentioning that this kind of 

analogies assume Newtonian behaviour. Given that sludge only exhibits slight non-Newtonian 

behaviour (flow behaviour index close to unity it is assumed).  

 

CONCLUSIONS 

To determine the mass transfer coefficient experimentally is an arduous task and requires a lot 

of time and experimental work. Besides, it can only be done for solutions where the mass 

diffusion coefficient and the chemical reactions are well known. Therefore, to apply it in an 

activated sludge, which is a heterogeneous mixture causes severe difficulties. To overcome 

this, a setup with shear probes and an electrolytic solution was used to measure the shear 

stress and the mass transfer coefficient. Based on that, a heat transfer relationship, which is 

well studied in the literature, is suggested, to determine the shear stress using the Sherwood 

number. A validation with experimental measurements was made and proved that this type of 

analogy is valid. The outcome of the mass transfer coefficient was validated and an empirical 

expression was developed in function of the Nusselt number. 
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NOMENCLATURE 

C   Concentration, g L
-1

 

pc   Specific heat, kJ kg
-1

 K
-1

 

d   Tube diameter, m 

ed   Probe diameter, m 

fD   Diffusion coefficient, m
2
 s

-1
 



pF   Flow pattern factor, dimensionless 

h   heat transfer coefficient, W m
-2

 K
-1

 

*I   Inclination factor, dimensionless 

J   Flux, m
2
 s

-1
 

ck   Thermal conductivity, W m
-1

 K
-1

 

mk   Mass transfer coefficient, m s
-1

 

Nu   Nusselt number, dimensionless 

Pr   Prandtl number, dimensionless 

Re   Reynolds number, dimensionless 

Sc   Schmidt number, dimensionless 

Sh   Sherwood number, dimensionless 

t   Correction factor, dimensionless 

x   Vapour quality, dimensionless 

 

Greek symbols 

   Void fraction, dimensionless 

   Density, kg m
-3

 

   Viscosity, Pa s 

  Wall shear stress, Pa 

 

Subscript 

B   Bulk 

G   Gas 

gs   Gas slug 

L   Liquid 

ls   Liquid slug 

M   Membrane 

SG   Superficial gas 

tp   Two-phase 

W   Wall 
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Table 1. Dimensionless heat and mass transfer numbers 
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Table 2. Relationship among wall shear stress, mass and heat transfer 

 Mass transfer Wall friction Heat transfer 
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* The subscripts B  and W  are for the bulk and wall respectively. 
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Table 3. R
2
 of the different Reynolds number. 

 lt  gt  

LRe  0.973 0.955 

SGRe  0.163 0.102 

 

Table 4. Parameters of Eq. (17) and (18) 

 Liquid slug Gas slug 

1a  545.738 1508.757 

2a  -0.295 -1.196 

3a  0.00072 0.00077 

 

 

 

 


