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Multiple-Descriptionl1-Compression
Tobias Lindstrøm Jensen, Jan Østergaard,Member, IEEE, Joachim Dahl, Søren Holdt Jensen,Senior Member, IEEE

Abstract—Multiple descriptions (MDs) is a method to obtain reliable
signal transmissions on erasure channels. An MD encoder forms several
descriptions of the signal and each description is independently transmit-
ted across an erasure channel. The reconstruction quality then depends
on the set of received descriptions. In this paper, we consider the design
of redundant descriptions in an MD setup using l1-minimization with
Euclidean distortion constraints. In this way we are able toobtain sparse
descriptions using convex optimization. The proposed method allows for
an arbitrary number of descriptions and supports both symmetric and
asymmetric distortion design. We show that MDs with partialoverlapping
information corresponds to enforcing coupled constraintsin the proposed
convex optimization problem. To handle the coupled constraints, we
apply dual decompositions which makes first-order methods applicable
and thereby admit solutions for large-scale problems,e.g., coding entire
images or image sequences. We show by examples that the proposed
framework generates non-trivial sparse descriptions and non-trivial
refinements. We finally show that the sparse descriptions canbe quantized
and encoded using off-the-shell encoders such as the set partitioning in
hierarchical trees (SPIHT) encoder, however, the proposedmethod shows
a rate-distortion loss compared to state-of-the-art imageMD encoders.

Index Terms—Multiple Descriptions, Sparse Decompositions, First-
order Methods, Convex Optimization

I. I NTRODUCTION

A N important problem in signal processing is themultiple-
description(MD) problem [1]. The MD problem is on encoding

a source into multiple descriptions, which are transmittedover sep-
arate channels. The channels may occasionally break down causing
description erasures, in which case only a subset of the descriptions
are received. Which of the channels that are working at any given
time is known by the decoder but not by the encoder. The problem is
then to construct a number of descriptions, which individually provide
an acceptable quality and furthermore are able to refine eachother. It
is important to notice the contradicting requirements associated with
the MD problem; in order for the descriptions to be individually
good, they must all be similar to the source and therefore, tosome
extend, the descriptions are also similar to each other. However, if
the descriptions are the same, they cannot refine each other.

Let J be the number of channels and letJJ = {1, . . . , J}.
Then IJ = {ℓ | ℓ ⊆ JJ , ℓ 6= ∅} describes the indices of the non-
trivial subsets which can be received. Further, letzj denote thejth
description and definezℓ = {zj | j ∈ ℓ}, ∀ℓ ∈ IJ . At the decoder,
the descriptionszℓ, ℓ ∈ IJ , approximate the sourcey via their
individual reconstructionsgℓ(zℓ) which satisfy the fidelity constraint
d(gℓ(zℓ), y) ≤ δℓ, ∀ℓ ∈ IJ , with d(·, ·) denoting a distortion
measure. An example withJ = 2 is illustrated in Fig. 1.

The traditional MD coding problem aims
at characterizing the set of achievable tuples
(

R(z1), R(z2) · · · , R(zJ), δ{1}, · · · , δ{1,2··· ,J}

)

where R(zj)
denotes the minimum coding rate for descriptionzj , ∀j ∈ JJ ,
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Fig. 1. The MD (l1-compression) problem forJ = 2.

required in order to approximate the sourcey to within the distortion
fidelities δℓ, ∀ℓ ∈ IJ [1]. The problem is then to construct
zℓ, ∀ℓ ∈ IJ , so thatR(zj), ∀j ∈ JJ , are minimized and the fidelity
constraints are satisfied, cf., Fig. 1. This well-known information
theoretic problem remains largely unsolved. In fact, it is only
completely solved for the case of two descriptions, with thesquared
error fidelity criterion and Gaussian sources [2].

Another direction is to form descriptions in a deterministic set-
ting, as opposed to the traditionally MD approach [1]. Algorithms
designed for video and image coding may be based on,e.g., Wiener
filters with prediction compensation [3], matching pursuit[4], [5] or
compressed sensing [6], [7]. Recovery of the latent variables can in
compressed sensing be obtained by sparsity driven methods such as
l1-minimization with known guarantees [8]. There is also results in
the case of quantization [9]–[11].

In this paper we propose a convex problem, which can be used to
obtain sparse descriptions for MD problems usingl1-minimization
with Euclidean constrains on the distortion of the reconstruction. The
proposed MD formulation is flexible in terms of applications(e.g.,
speech, image and video compression), the number of channels J
as well as supporting both symmetric and asymmetric design.We
show how to apply a first-order method to solve the proposed convex
optimization problem using dual decomposition and smoothing [12].
Let ǫ be the desired accuracy of an approximate solution in function
value, in which case the first-order method has iteration complexity
O
(

1
ǫ

)

. The combination of a reasonable iteration complexity and the
low complexity of a single iteration in first-order methods makes it
possible to apply the proposed MD method to large scale problems
such as for entire images or image sequences. The descriptions
are for example represented in discrete wavelet dictionaries but
arbitrary dictionaries are allowed in the original formulation. For
encoding the sparse descriptions it is possible to apply state-of-the-
art methods for wavelet encoding,e.g., set partitioning in hierarchical
trees (SPIHT) [13]. However, we are not able to obtain state-of-the-art
rate-distortion descriptions by the two stage approach of first forming
sparse descriptions and then encode.

The organization of the paper is as follows: we will first propose the
MD l1-compression (MDl1C) problem in Sec. II and then analyze
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and discuss important properties of the problem in Sec. III.Then,
in Sec. IV, we discuss algorithms for solving the proposed convex
problem, and present an efficient first-order method. We analyze the
sparse descriptions in Sec. V and extend the framework to encoding
of MD wavelet coefficient based on well known methods and provide
simulations on compression of images and image sequences inSec.
VI.

II. PROBLEM FORMULATION

An interesting direction of research is in sparse estimation tech-
niques for signal processing based onl1-norm heuristics, where,e.g.,
compressive sampling [8], [14] have gained much attention.The
theory is by now well-established and much is known about cases
where thel1-minimization approach coincides with the solution to
the otherwise intractable minimum cardinality solution, see [15] and
references therein.

One way of obtaining a sparse approximationz of the sourcey is
to solve the so-calledl1-compressionproblem

minimize ‖Wz‖1
subject to ‖Dz − y‖2 ≤ δ,

(1)

where δ > 0 is a given distortion bound,D ∈ R
M×N is an

overcomplete dictionary(N ≥ M), z ∈ R
N is the variable,

and y ∈ R
M is the signal we wish to decompose into a sparse

representation. In a standard formulationW ∈ R
N×N can be selected

asW = I . To improve thel1-minimization approach for minimizing
the cardinality it has been proposed to selectW = diag(w) to
reduce the cost of large coefficients [16], see also [17]. To find w,
the unscaled problem (1) is solved first (i.e., with w = 1). Thenw
is chosen inversely proportional to the solutionz∗ of that problem,
and (1) is solved again with the new weightingw. This reweighting
scheme can be iterated a number of times.

In this work, we cast the MD problem into the framework ofl1-
compression (1).1 Let zj ∈ R

Ñj×1, ∀j ∈ JJ , be the descriptions of
length Ñj . We will define a concatenation operator

X = C
i∈S

Yi =











YS1

YS2

...
YSn











where Yi ∈ R
pi×q , S = {S1, S2, · · · , Sn} has n elements and

X ∈ R

∑
i∈S pi×q. Then zℓ = Cj∈ℓ zj ∈ R

∑
j∈ℓ Ñj×1, ∀ℓ ∈ IJ ,

is the vector concatenation of the descriptions used in the decoding
when the subsetℓ ⊆ JJ is received. For simplicity we will use
zj with the meaningz{j}, j ∈ JJ , which also applies to other
symbols with subscriptedℓ. The matrixDℓ ∈ R

M×
∑

j∈ℓ Ñj , ∀ℓ ∈
IJ , is the dictionary associated with the descriptionzℓ given as

Dℓ =
(

Cj∈ℓ D̄
T
ℓ,j

)T

with D̄ℓ,j ∈ R
M×Ñj . Our idea is to

form the multiple-descriptionl1-compressionproblem using linear
reconstruction functions,i.e., gℓ(zℓ) = Dℓzℓ similar to [6] since it
preserves convexity [20], and the Euclidean norm as the distortion
measure,i.e., d(x, y) = ‖x − y‖2.2 Note that its possible to select
other distortion measures that is convex, but we choose‖ · ‖2 since
it relates to the well known peak signal-to-noise-ratio (PSNR). The
definition is given below.

1This work was presented in part [18], [19].
2Interestingly, in the Gaussian case and for the mean squarederror fidelity

criterion, it has been shown that linear reconstruction functions are sufficient
for achieving the MD rate-distortion function, see [21], [22] and [23] for white
and colored cases, respectively.

Definition II.1. An instance{y, {δℓ}ℓ∈IJ
, {Dℓ}ℓ∈IJ

, {Wj}j∈JJ , {λj}j∈JJ }
of the MDl1C problem is defined by

minimize
∑

j∈JJ

λj‖Wjzj‖1

subject to ‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ ,

(2)

for δℓ > 0, ∀ℓ ∈ IJ , λj > 0, ∀j ∈ JJ and Wj ≻ 0, ∀j ∈ JJ .
For simplicity we sometime usef(z) =

∑

j∈JJ
λj‖Wjzj‖1 for the

primal objective andQp = {z | ‖Dℓzℓ−y‖2 ≤ δℓ, ∀ℓ ∈ IJ} for the
primal feasible set.

The problem (2) amounts to minimize the number of non-zero
coefficients in the descriptions (using convex relaxation)under the
constraint that any combination of received descriptions allows a
reconstruction error smaller than some quantity. The idea is that
the problem (2) can be used to obtain sparse coefficients which
obeys certain bounds on the reconstruction error. Since it has been
shown that bit rate and sparsity is almost linearly dependent [24], the
problem formulation (2) can be used to form descriptions in aMD
framework. In Sec. VI we will discuss in detail how to encode the
sparse coefficients. Note that since|IJ | = 2J − 1, the number of
possible received combinations grows exponential in the number of
channels, and thereby the number of constraints in problem (2).

In Definition II.1 we have introducedλ > 0 to allow weighting of
the l1-norms in order to achieve a desired ratio

‖Wjzj‖1
‖Wj′zj′‖1

, ∀j, j′ ∈

JJ . Note that in the case where we let̄Dj,j , ∀j ∈ JJ , be
orthogonal, we see that the constraints on the side reconstructions
can easily be fulfilled by simply truncating the smallest coefficients
zj = D̄j,j , ∀ j ∈ JJ , to zero separately for the coefficients of
each side description. This will, however, not guarantee the joint
reconstruction constraint‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ\JJ . Thus, the
problem at hand is non-trivial.

In the following sections we will analyse the MDl1C problem
presented in Definition II.1 and give an algorithm to solve large scale
instances of this problem.

III. A NALYSIS OF THE MULTIPLE-DESCRIPTION

l1-COMPRESSIONPROBLEM

In this section we will review and discuss some important proper-
ties of the proposed MDl1C problem.

Definition III.1. (Solvable) The MDl1C problem is solvable if the
problem has at least one feasible point.

Remark (Definition III.1) Since the MDl1C problem is always
bounded below, this is the same definition as in [20].

Proposition III.2. (Solvable conditions) Let̄Dℓ,j = ρℓ,jD̄j,j , ∀ℓ ∈
IJ , j ∈ ℓ with ρℓ,j ∈ R,

∑

j∈ℓ ρℓ,j = 1, ∀ℓ ∈ IJ . Furthermore, let
y ∈ span(D̄j,j), ∀j ∈ JJ . Then the MDl1C problem(2) is solvable.

Proof: There exists zj , ∀j ∈ JJ , such that D̄j,jzj =
y, ∀j ∈ JJ . Then we also have thatDℓzℓ =

∑

j∈ℓ D̄ℓ,jzj =
∑

j∈ℓ ρℓ,jD̄j,jzj = y
∑

j∈ℓ ρℓ,j = y, ∀ℓ ∈ IJ . Hence, z =

Cj∈JJ zj ∈ Qp is a primal feasible solution and the problem (2) is
therefore solvable.

One way to obtain the setup used in Proposition III.2 is to usea
standard MDl1C setup.

Definition III.3. (Standard MDℓ1-compression problem) We denote
an MDl1C problem a standard MDl1C problem if

• D̄j,j , ∀j ∈ JJ , are invertible.

• ρℓ,j =

{

1 if |ℓ| = 1
∑

i∈ℓ\j δ2i

(|ℓ|−1)
∑

i∈ℓ δ2
i

, otherwise
, to weight

the contributions
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• D̄ℓ,j = ρℓ,jDj , (combined with abovēDj,j = Dj , ∀j ∈ JJ ).

Remark (Definition III.3) In the general asymmetric case, its
common to weight the reconstruction of the joint reconstructions
relative to the distortion of the individual reconstruction [25], [26].
Note that in the symmetric case,δℓ = δℓ′ , ∀ℓ, ℓ

′ ∈ IJ , |ℓ| = |ℓ′|, we
have equal weightρℓ,j = ρℓ,i, j, i ∈ ℓ.

Proposition III.4. (Strong duality) Strong duality holds for the
standard MDl1C problem.

Proof: Sinceδℓ > 0, ∀ℓ ∈ IJ , span(Dj) ∈ y, ∀j ∈ JJ , and
∑

j∈ℓ ρℓ,j = 1, ∀ℓ ∈ IJ , there exists a strictly feasible‖Dℓzℓ −
y‖2 = 0 < δℓ, ∀ℓ ∈ IJ , point z such that Slater’s condition for
strong duality holds [20].

In Proposition III.2 we assumed that̄Dℓ,j = ρℓ,jDj , ∀ℓ ∈ IJ , j ∈
ℓ. We will, however, shortly discuss the case whereD̄ℓ,j 6= ρℓ,jDj

for at least one pair(ℓ, j) ∈ IJ × JJ . The interpretation is that
the dictionaries associated with the same description may not be the
same in all reconstruction functions. This can be illustrated with an
example where we will solve a small problem of sizeM = 2, J = 2,
with Dj , ∀j ∈ JJ , being the orthogonal discrete cosine transform.
We will construct another dictionary in the central reconstruction
using a rotation matrix

Rθ =

[

cos θ − sin θ
sin θ cos θ

]

such that we solve problems on the form

minimize ‖z1‖1 + ‖z2‖1
subject to ‖D1z1 − y‖2 ≤ δ1

‖D2z2 − y‖2 ≤ δ2
‖ 1
2
(D1Rθz1 +D2z2)− y‖2 ≤ δ{1,2}

(3)

with solution z̃∗θ . By considering differentθ’s we obtain different
central decoding functions. In Fig. 2 we show the optimal objective
f(z̃∗θ ) from solving problem (3). We investigateθ ∈ [−π/2; π/2] and
only report f(·) and the cardinality card(·) if the problem (3) is
solvable. We chooseδ1 = δ2 = {0.2, 0.02} and δ{1,2} = 0.01.
Observe that for bothδ1 = δ2 = 0.2 and δ1 = δ2 = 0.02,
the objectivef(·) can be reduced if we selectθ 6= 0, i.e., if the
dictionaries associated to the different decoding functions are not
equal. Forδ1 = δ2 = 0.2 the cardinality can also be reduced from
3 at θ = 0 to cardinality2 at θ ≈ −π/8. If ‖D1z1 − y‖2 is required
to be small, we would expect|θ| to be small becauseD1z1 ≈ y and
thenD1Rθz1 ≈ y for θ ≈ 0. Note that if |θ| is too large, then the
problem is not solvable.

This example illustrates that it can be useful to have different
dictionaries in the decoder associated to the same description. To
find such dictionaries a-priori for different applicationsis signal
dependent, and a separate research topic, which will not be treated
in this work.

IV. SOLVING THE MD l1-COMPRESSION PROBLEM

The MDl1C problem (2) can be solved using general-purpose
primal-dual interior point methods. To do so, we need to solve several
linear systems of equations of sizeO(K) × O(K), arising from
linearizing first-order optimality conditions, withK = M |IJ | +
∑

j∈JJ
Ñj . This practically limits the size of the problems we can

consider to small and medium size, except if the problem has a
certain structure that can be used when solving the linear system
of equations [27]. Another approach is to use first-order methods
[12], [28]–[30]. Such first-order projection methods have shown to
be efficient for large scale problems [31]–[34]. However, itis difficult
to solve the MDl1C problem efficiently because the feasible set

0.7

0.8

0.9
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θ

−π/2 −π/4 0 π/4 π/2
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3

4
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card(z̃∗θ )

θ

−π/2 −π/4 0 π/4 π/2

δ1 = δ2 = 0.02

δ1 = δ2 = 0.2

(b)

Fig. 2. (a): optimal objectivef(z̃∗θ ) and (b): the cardinality card(z̃∗θ ) from
solving the problem (3) withM = 2. The distortion bounds areδ1 = δ2 =
{0.2, 0.02}, δ{1,2} = 0.01 and D1 = D2: the discrete cosine transform.
We only reportf(·) and card(·) if the problem (3) is solvable.

‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ , is an intersection of Euclidean norm
balls.

We are interested in solving large-scale instances of problem (2),
and in the following subsections IV-A through IV-E, we will present
an efficient first-order method to handle problem (2).

A. Intersecting Euclidean Norm Balls

In order to illustrate the implications of the overlapping constraints
on the feasible set, consider the following simple example.Let D1=
D2 =W1 =W2 = λ1 = λ2 =1 so thatD1z1 = z1 andD2z2 = z2.
From the joint constraint it may be noticed thatz1 and z2 can be
picked arbitrarily large but of different signs and yet satisfy | 1

2
(z1 +

z2) − y| ≤ δ{1,2}. However, due to the individual constraints|z1 −
y| ≤ δ1 and |z2 − y| ≤ δ2, the feasible set is bounded as illustrated
in Fig. 3.

B. Dual Decomposition

An approach to handle problems with intersecting constraints,
sometimes referred to as complicating or coupling constraints, is by
dual decomposition [29], [35].

Proposition IV.1. (Dual problem) A dual problem of the standard
MDl1C problem can be represented as

maximize −
∑

ℓ∈IJ

(

δℓ‖tℓ‖2 + yT tℓ
)

subject to ‖uj‖∞ ≤ λj , ∀ j ∈ JJ ,
tℓ ∈ R

M×1, ∀ ℓ ∈ IJ\JJ

tj=−



D̄−T
j,j Wjuj +

∑

ℓ∈cj(IJ )\j

D̄−T
j,j D̄T

ℓ,jtℓ



,∀ j ∈ JJ ,

(4)
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z1

z2

δ1

δ2

y

y

2δ{1,2}

Fig. 3. An example of the feasible set (shaded region) inR
(1+1)×1. The

thick line indicates the optimal solutions for the problem of minimizing |z1|+
|z2|.

whereg(t) is the dual objective andQd the dual feasible set.

Proof: The dual function of (2) is given by

ḡ(t, κ) =























∑

j∈JJ

ḡj(t)−





∑

ℓ∈IJ

tTℓ y + δℓκℓ



 ,

if ‖tℓ‖2 ≤ κℓ, ∀ℓ ∈ IJ

−∞, else

, (5)

where
t = {tℓ}ℓ∈IJ

, κ = {κℓ}ℓ∈IJ
,

ḡj(t) = inf
zj

g̃j(t) = inf
zj







λj‖Wjzj‖1+





∑

ℓ∈cj(IJ )

tTℓ D̄ℓ,j



 zj







,

and
cj(I) = {ℓ | ℓ ∈ I, j ∈ ℓ} .

Note that the dual function is now decoupled in the functionsgj(t)
with the implicit constraint‖tℓ‖2 ≤ κℓ, ∀ℓ ∈ IJ . Furthermore,

ḡj(t) =







0, if ‖uj‖∞ ≤ λj , uj = −W−1
∑

ℓ∈cj(IJ )

D̄T
ℓ,jtℓ

−∞, else.
(6)

At this point, we change the implicit domain in (5) and (6), toexplicit
constraints and note thatκ∗

ℓ = ‖t∗ℓ‖2, ∀ℓ ∈ IJ , under maximization
and thereby obtain the dual problem (4).

The equality constraints in (4) are simple because the variables
tj , ∀j ∈ JJ , associated with the side descriptions, only occurs on
the left hand side, while the rest of the variablestℓ, ∀ℓ ∈ IJ \JJ ,
associated with the joint description, are on the right side. We can
then make a variable substitution oftj , ∀j ∈ JJ , in the objective,
but we choose the form (4) for readability.

C. Smoothing

Since the dual problem has simple and non-intersecting constraints
it is possible to efficiently apply first-order projection methods. The
objective of the dual problem (4) is differentiable on‖tℓ‖2 > 0 and
sub-differentiable on‖tℓ‖2 = 0. The objective in the dual problem
(4) is hence not smooth.3 We could then apply an algorithm such
as the sub-gradient algorithm with complexityO(1/ǫ2) or form a

3A smooth function is a function with Lipschitz continuous derivatives [30].

smooth approximation and apply an optimal first-order method to
the smooth problem and obtain complexityO( 1

ǫ
), as proposed in

[12]. The primal feasible set has intersecting Euclidean norm ball
constraints, so we cannot efficiently follow the algorithm [12], since
this approach requires projections in both the primal and dual feasible
set. We will next show how to adapt the results of [12], in the spirit
of [36], using only projection on the dual feasible set and still achieve
complexityO( 1

ǫ
). Consider

‖x‖2 = max
‖v‖2≤1

{

vTx
}

(7)

and the approximation

Ψµ(x) = max
‖v‖2≤1

{

vTx−
µ

2
‖v‖22

}

(8)

=

{

‖x‖2 − µ/2, if ‖x‖2 ≥ µ
1
2µ

xTx, otherwise
, (9)

whereΨµ(·) is a Huber function with parameterµ ≥ 0. For µ = 0
we haveΨ0(x) = ‖x‖2. The functionΨµ(x) has forµ > 0 the
(Lipschitz continuous) derivative

∇Ψµ(x) =
x

max{‖x‖2, µ}
.

The dual objective is

g(t) = −
∑

ℓ∈IJ

(

δℓ‖tℓ‖2 + yT tℓ
)

and we can then form a smooth functiongµ as

gµ(t) = −
∑

ℓ∈IJ

(

δℓΨµ(tℓ) + yT tℓ
)

.

The Lipschitz constant of the gradient isL(∇Ψµ(x)) =
1
µ

and then

Lµ = L(∇gµ(t)) =





∑

ℓ∈IJ

δℓ
µ

+ 1



 =
C

µ
+ |IJ | .

Also, g(t) can bounded as

gµ(t) ≤ g(t) ≤ gµ(t) + µC .

Now, fix µ = ǫ
2C

and let theith iterationt(i) of an algorithm have
the property

g∗µ − gµ(t
(i)) ≤

ǫ

2
. (10)

Then it follows that

g∗ − g(t(i)) ≤ g∗µ + µC − gµ(t
(i)) ≤ ǫ . (11)

By using an optimal-first order algorithm forL-smooth problems

with complexityO

(

√

L
ǫ

)

[30], thent(i) can be obtained in

i = O

(

√

Lµ

ǫ

)

= O
(√

1
µǫ

+ 1
ǫ

)

= O
(√

1
ǫ2

+ 1
ǫ

)

= O
(√

1
ǫ2

+
√

1
ǫ

)

= O
(

1
ǫ

)

+O
(
√

1
ǫ

)

= O
(

1
ǫ

)

(12)

iterations.4

4Seee.g., [37] for a definition of the big-O notation .
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D. Recovering primal variables from dual variables

The primal variables can be recovered as a minimizerzj of g̃j(t),
see [20,§5.5.5]. But since‖ · ‖1 is not strictly convex there will
in general be more than one minimizer. We will instead consider a
different approach.

The Karush-Kuhn-Tucker (KKT) optimality conditions for the
convex problem (2) are































h2(Dℓz
∗
ℓ − y)‖t∗ℓ‖2 − t∗ℓ ∈ 0, ∀ℓ ∈ IJ

κ∗
ℓ (‖Dℓz

∗
ℓ − y‖2 − δℓ) = 0, ∀ℓ ∈ IJ (‖t∗ℓ‖2 = κ∗

ℓ )
∑

ℓ∈cj(IJ )

DT
ℓ,jt

∗
ℓ +Wju

∗
j = 0, ∀j ∈ JJ

‖Dℓz
∗
ℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ

λjh1(Wjz
∗
j )− u∗

j ∈ 0, ∀j ∈ JJ

(13)
with ha(x) = ∂‖x‖a. We have forδℓ > 0, ∀ℓ ∈ IJ ,

{

h2(Dℓz
∗
ℓ − y)‖t∗ℓ‖2 − t∗ℓ ∈ 0

‖t∗ℓ‖2(‖Dℓz
∗
ℓ − y‖2 − δℓ) = 0

⇔ t∗ℓ =
‖t∗ℓ‖2
δℓ

(Dℓz
∗
ℓ − y) if ‖t∗ℓ‖2 > 0 (14)

for all ℓ ∈ IJ . The system














h2(Dℓz
∗
ℓ − y)‖t∗ℓ‖2 − t∗ℓ ∈ 0, ∀ℓ ∈ IJ

κ∗
ℓ (‖Dℓz

∗
ℓ − y‖2 − δℓ) = 0, ∀ℓ ∈ IJ (‖t∗ℓ‖2 = κ∗

ℓ )
∑

ℓ∈cj(IJ )

DT
ℓ,jt

∗
ℓ +Wju

∗
j = 0, ∀j ∈ JJ

(15)
is then equivalent to

∑

ℓ∈cj(IJ )

‖t∗ℓ‖2
δℓ

D̄T
ℓ,jDℓz

∗
ℓ =−Wju

∗
j +

∑

ℓ∈cj(IJ )

‖t∗ℓ‖2
δℓ

D̄T
ℓ,jy, ∀j ∈ JJ .

We can then obtain the equivalent KKT optimality conditions


































∑

ℓ∈cj(IJ )

‖t∗ℓ‖2
δℓ

D̄T
ℓ,jDℓz

∗
ℓ =

−Wju
∗
j +

∑

ℓ∈cj(IJ )

‖t∗ℓ‖2
δℓ

D̄T
ℓ,jy, ∀j ∈ JJ (16.△)

‖Dℓz
∗
ℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ

λjh1(Wjz
∗
j )− u∗

j ∈ 0, ∀j ∈ JJ .
(16)

Let z∗ ∈ Z be a solution to (16) and let̄z ∈ Z̄ be a solution to
(16.△).

Proposition IV.2. (Uniqueness) If the solution̄z to the linear system
(16.△) is unique and there exist a solutionz∗ to problem(1), then
z∗ = z̄.

Proof: We have from the assumption and the system (16) that
∅ 6= Z ⊆ Z̄. If |Z̄| = 1 then |Z| = 1 such that̄z = z∗.

Proposition IV.2 explains when it is interesting to solve the primal
problem by the dual problem and then recover the primal variables
by (16.△). The reason why we will focus on (16.△) is that the
remaining equations in the system (16) are sub-differentiable and
feasibility equations. These are difficult to handle - especially for
large scale problems. On the other hand, the system (16.△) is linear
in z and can easily be solved for invertibleDj , ∀j ∈ JJ .

However, first we will analyze the implication ofκ∗
ℓ = 0. Let

ΩJ = {ℓ | κ∗
ℓ = ‖t∗ℓ‖2 = 0, ℓ ∈ IJ},

with ΩJ ⊆ IJ . Then, solving the original primal problem (2) is
equivalent to solving [20]

minimize
∑

j∈JJ

λj‖Wjzj‖1

subject to ‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ\ΩJ ,

(17)

where we can now remove constraints which are not strongly active.
Similarly, if there is ani ∈ JJ , such that

ci(IJ ) ⊆ ΩJ ,

then this corresponds to minimization over an unconstrained zi. Since
by definitionλi > 0 andWi ≻ 0 thenz∗i = 0. Solving the original
primal problem (2) is, hence, equivalent to solving [20]

minimize
∑

j∈JJ\i

λj‖Wjzj‖1

subject to ‖Dℓzℓ − y‖2 ≤ δℓ, ∀ℓ ∈ IJ\ΩJ

zi = 0 .

(18)

Definition IV.3. (Trivial instance) We will call an instance
{y, {δℓ}ℓ∈IJ

, {Dℓ}ℓ∈IJ
, {Wj}j∈JJ , {λj}j∈JJ } of the MDl1C

problem a trivial instance if it can be reformulated as an MDl1C
problem without coupled constraints.

The reason why we call these trivial instances is because they do
not include coupled constraints and therefore do not include the trade-
off normally associated with MD problems. All trivial instances can
be solved straightforwardly by a first-order primal method because
they do not include any coupled constraints, see [38].

Proposition IV.4. We havez∗ = z̄ for all non-trivial instances of
the standard MDl1C problem withJ = 2.

Proof: Let us represent the system (16.△) by D̃Jz
∗ = ũ and

consider the determinant of this system to analyze under which
conditions there is a unique solution. By factorizing̃DJ and using
the multiplicative map of determinantsdet(AB) = det(A) det(B),
det(AT ) = det(A), det(αA) = αh det(A) for A ∈ Rh×h we
obtain the determinant

det(D̃J ) =





∏

j∈JJ

det(Dj)
2





·det

















∑

ℓ∈IJ
i,j∈ℓ

ρℓ,jρℓ,i
κ∗
ℓ

δℓ









i=1,··· ,J;j=1,··· ,J









M

,

(19)

for the standard MDl1C problem. For our example withJ = 2 we
have

det(D̃2) =det(D1)
2det(D2)

2

(

κ∗
{1}κ

∗
{2}ρ

2

{1},1ρ
2

{2},2

δ{1}δ{2}

+
κ∗
{1}κ

∗
{1,2}ρ

2

{1},1ρ
2

{1,2},2

δ{1}δ{1,2}
+

κ∗
{2}κ

∗
{1,2}ρ

2

{2},2ρ
2

{1,2},2

δ{2}δ{1,2}

)M

.

Sinceρℓ,j > 0, ∀ℓ ∈ IJ , j ∈ ℓ, δℓ > 0, ∀ℓ ∈ IJ and det(Dj) 6=
0, ∀j ∈ JJ , the conditiondet(D̃2) = 0 is determined by whichℓ,
κ∗
ℓ = 0. Let

O2 = {Ω2 |det(D̃2) = 0} .

ThenO2 is given as equation

O2 ={{{1}, {2}},

{{1}, {1, 2}}, {{2}, {1, 2}},

{{1}, {2}, {1, 2}}, } .

Let us consider all the cases:

• {{1}, {2}}. No coupled constraints, which implies a trivial
instance.

• {{1}, {1, 2}} or {{2}, {1, 2}}. Corresponds toz∗1 = 0 or z∗2 =
0. The primal problem can be solved directly overz2 or z1 with
no coupled constraints, which implies a trivial instance.
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• {{1}, {2}, {1, 2}}. Corresponds to an instance withz∗1 = 0
and z∗2 = 0 and no coupled constraints, which implies a trivial
instance.

Remark (Proposition IV.4): All the cases forJ = 2 can be seen
as two descriptions transmitted as one description over onechannel.
It is not easy to analyzeOJ for J ≥ 3 in all cases and compare
them to the definition of trivial instances. However, we willmake
the following partial description on the number of active constraints
to ensure recovery of optimal primal variables.

Proposition IV.5. For a standard MDl1C problem, if

i) all side constraints are strongly active,κ∗
j > 0, ∀j ∈ JJ , then

z∗ = z̄
ii) there are no strongly active constraintsκ∗

ℓ = 0, ∀ℓ ∈ IJ , then
z∗ = 0.

Proof:

i) From (14) we havet∗ℓ =
‖t∗ℓ ‖2
δℓ

(Dℓz
∗
ℓ − y), ∀ℓ ∈ JJ , which

gives a unique solution toz∗ = Cj∈JJ D−1
j

(

t∗j
δj

‖t∗
j
‖2

+ y
)

.

Since a subsystem (JJ ⊆ IJ ) of (16.△) has exactly one point,
then |Z̄| ≤ 1. A standard MDl1C problem is solvable such that
|Z̄| ≥ |Z| ≥ 1. Hence|Z̄| = 1 and from Proposition IV.2 we
then havez∗ = z̄.

ii) If κ∗
ℓ = ‖t∗ℓ‖2 = 0, ∀ℓ ∈ IJ , theng(t∗) = 0 and f(z∗) = 0

according to strong duality. From the definition,Wj ≻ 0, ∀j ∈
JJ andλj > 0, ∀JJ , thenf(z∗) = 0 ⇔ z∗ = 0.

Remark (Proposition IV.5): It is always possible to make all
the inactive side distortion constraints strongly active by adjusting
δj , j ∈ JJ , without significantly changing the original formulation.
With this approach we can always recover the primal variables as
z∗ = z̄.

E. Stopping Conditions

Since we implement a primal-dual first-order method and the prob-
lem has strong duality, a primal-dual stopping criteria is interesting.
From the dual iterates

(

t(i), u(i)
)

we obtain the primal iteratez(i)

as the solution to

∑

ℓ∈cj(IJ )

‖t(i)ℓ ‖2
δℓ

D̄T
ℓ,jDℓz

(i)
ℓ =−Wju

(i)
j +

∑

ℓ∈cj(IJ )

‖t(i)ℓ ‖2
δℓ

D̄T
ℓ,jy,

for j ∈ JJ . We then stop the first-order method at iterationi if

f(z(i))− g(t(i))) ≤ ǫ, z(i) ∈ Qp,
(

t(i), u(i)
)

∈ Qd .

To ensure scalability in the dimensions of the problem, we select
ǫ = JMǫr, where for example we may choose to solve the problem
to medium accuracy,e.g., ǫr = 10−3.

V. A NALYZING THE SPARSEDESCRIPTIONS

In this section we will use an image example and analyze the
sparse descriptions. In particular, we show that it is possible to obtain
a sparse representation which has a lower cardinality for the same
PSNR requirement, or better PSNR for same cardinality, using the
MDl1C approach compared to the simple approach of thresholding.

For images, lety be the column major wise stacked version of a
two-dimensional image of dimensionm×n, M = mn. The images
are normalized such thaty ∈ [0; 1]M and the PSNR is

PSNR(δ) = 10 log10

(

1
1
M
δ2

)

.

We defineD = {Dℓ}ℓ∈IJ
, δ = {δℓ}ℓ∈IJ

, λ = {λj}j∈JJ . We
will denote z̄ = ΦD(y, δ, λ) anǫ-suboptimal solution of the problem
(2) with z̄ = {zj}j∈JJ after 4 reweight iterations. Note that in the
single channel caseJ = 1 we will obtain the problem (1). We will
also define the function̄z = TDj (y, δ) as the thresholding function of
the smallest coefficients ofD−1

j y such that PSNR(‖DjTDj (y, δ)−
y‖2)≈δ.

We now select the two channel caseJ = 2, y the Pirate
standard image (Grayscale,512×512) and as dictionariesD−1

1 : a 2-
dimensional orthogonal Symlet16 discrete wavelet transform (DWT)
with 7 levels, andD−1

2 : a2-dimensional biorthogonal CDF9/7 DWT
with 7 levels. The results are reported in Table I, where we for clarity
will refer to different approaches using the numbering (1)-(4). First,
we obtain z̄ = ΦD(y, δ, λ) (1) and then apply thresholding to the
same signal such that the side PSNRs are the same (2). Notice that
due to the independent thresholding, the refinementℓ = {1, 2} is
not much better than the individual descriptions. Considering the
same setup, but where we selectδ̃j such that the cardinality of each
description is the same card((ΦD(y, δ, λ))j) = card(TDj (y, δ̃j)) (3).
In this case, we have a better side PSNR, but the refinement is still
poor and the central distortion not as good as in the case of the
MDl1C approach. Finally, if we performed thresholding to achieve
the same PSNR on the side distortion as the central distortion (4)
we see that we need an excessive cardinality. We conclude that the
MDl1C framework is able to generate non-trivial descriptions in a
MD framework with respect to both the cardinality of the descriptions
and the refinement.

With the same setup as used in Table I, we also investigate the
first-order iteration complexity for obtaining a solution to the MDl1C
problem, including 4 reweight iterations. Each reweight iteration
has the worst-case iteration complexityO

(

1
ǫ

)

given in (12) which
results in an overall complexity ofO

(

1
ǫ

)

. The results are shown
in Fig. 4. In general, we obtain an empirical complexity slightly
(but not significantly) better than the theoretical worst-case iteration
complexityO

(

1
ǫ

)

. For obtaining anǫ = ǫrJM -suboptimal solution
with ǫr = 10−3 and 4 reweight iterations requires approximately 700
first-order iterations.

10
−4

10
−3

10
−2

10
2

10
3

 

 

O
(

1
ǫ

)

MDl1C

ǫr =
ǫ

JM

i

Fig. 4. Number of first-order iterationsi including 4 reweight iterations as a
function of of the relative accuracyǫr . We also plot the complexity function
O
(

1
ǫ

)

for comparison.

VI. SIMULATION AND ENCODING OFSPARSEDESCRIPTIONS

In this section we will consider an application of the proposed
scheme, where the sparse descriptions are encoded to adapt the sparse
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ID Method
card(z̄j)/N PSNR(‖Dℓz̄ℓ − y‖2)

j = 1 j = 2 ℓ = {1} ℓ = {2} ℓ = {1, 2}

(1) z̄ = ΦD(y, δ, λ) 0.058 0.059 27.0 27.0 33.1
(2) z̄j = TDj

(y, δj) 0.030 0.026 27.0 27.0 27.9
(3) z̄j = TDj

(y, δ̃j) 0.058 0.059 29.3 30.0 30.8
(4) z̄j = TDj

(y, δ{1,2}) 0.128 0.112 33.1 33.1 34.4

TABLE I
COMPARISON BETWEENMDL1C (1),THRESHOLDING TO SAME SIDEPSNR (2)THRESHOLDING TO SAME CARDINALITY (3) AND THRESHOLDING TO

ACHIEVE THE CENTRAL DISTORTION ON EACH SIDE CHANNEL(4).

MD framework to a rate-distortion MD framework.

A state-of-the-art method for encoding images is the SPIHT
encoder [13], which efficiently uses the tree structure of the DWT.
We then denote the encoding of the coefficientsz̄ = D−1y as
ẑ = ΓD(z̄, y, δ), such that‖Dẑ − y‖2 ≤ δ. The encoder applies
baseline SPIHT encoding. We add half a quantization level toall the
significant wavelets transform coefficients when the stopping criteria
‖Dẑ−y‖2 ≤ δ is evaluated, see [39] or [40, Chapt. 6]. The quantized
non-zero coefficients and their locations are further entropy coded
using the arithmetic coder [41].

In order to illustrate the behaviour of encoding we will also
obtain coefficients from solving a series of reweightedl1-compression
problems

minimize ‖Wz‖1
subject to ‖Dz − y‖2 ≤ δ .

An ǫ-optimal solution from the above problem is denotedz̄ =
ΦD(y, δ, 1) (the same notation in the case ofJ = 1).

The encoder can be used in two different wayŝz =
ΓD(D−1y, y, δ) or ẑ = ΓD(ΦD(y, δ − γ, 1), y, δ). When encoding
the coefficientsz̄ = ΦD(y, δ − γ, 1), this corresponds to letting
SPIHT encode the (reconstructed) imageDz̄ ≈ y. Note that we
have introduced a modification of the distortion requirement with the
parameterγ. This is done becausēz = ΦD(y, δ, 1) is on the boundary
of the ball ‖Dz̄ − y‖2 = δ unlessz̄ = 0. However, quantization
slightly degrades the reconstruction quality and it is therefore difficult
to ensures‖Dẑ − y‖2 ≤ δ without requiring that the input̄z to the
encoder ensure‖Dz̄ − y‖2 ≤ δ − γ, γ > 0. We useγ = 0.05δ.
It is possible to use any encoder which is based on encoding the
coefficients associated to a linear reconstruction function and SPIHT
is such an encoder.

In Fig. 5 we illustrate the results from encoding coefficients
obtained aŝz = ΓD(D−1y, y, δ) or ẑ = ΓD(ΦD(y, δ − γ, 1), y, δ).
As test images we use Lena and Boat (Grayscale,512×512) and we
selectD−1 as a Symlet16 pyramid wavelet transform with7 levels.

For the simulations we choose differentδ’s and report the PSNR,
the corresponding cardinality and the rateR(ẑ) [bits/pixel]. From Fig.
5(a) we can see that for the same rate the reconstruction using the
l1-minimization approachΦD shows a smaller PSNR than with the
standard approach. This is to be expected, since for an orthogonal
transform, SPIHT is designed to minimize the Euclidean distortion
‖ẑ − z̄‖2 to the input vector̄z = D−1y [13], and‖ẑ − z̄‖2 is also
our quality criteria. Forz̄ = ΦD(y, δ − γ, 1), which implies z̄ 6=
D−1y in general, the design argumentation is slightly distortedby
the modified input but the quality criteria remains the same.Further,
by first forming a sparse coefficient vector using convex relaxation
technique and later encode is suboptimal which further add to the
loss. We also notice from Fig. 5(b) that the cardinality and bit rate
behaves linearly in this setup for thel1-minimization approach as
also observed in other sparse decompositions, seee.g., [24].

A. Encoding for Multiple Descriptions

We use the following approach when applying encoding for multi-
ple descriptions, shown in Fig. 6. First the sparse coefficients vectors
are formed using the functionΦD(y, δ−γ, λ) with γ = {γj}j∈JJ

and γj = 0.05mini∈JJ δi, ∀j ∈ JJ . That is, we aim for at
least a 5% better reconstruction in the optimization stage which we
use to allow for a loss in the encoding stage. Each description is
independently coded usingΓDj (D

−1
j z̄j , y, δj − γ̃j) to generate the

encoded description vectorŝzj with the rateR(ẑj). The parameter
γ̃j will be discussed shortly. From the received descriptionsℓ, we
then apply the decoding functiongℓ(ẑℓ) = Dℓẑℓ.

For the encoding functionΓDj it is easy to ensure‖Dj ẑj−y‖2 ≤
δj , ∀j ∈ JJ , since we can encode each description independently
until the side distortion is satisfied as we previously did inthe
example withJ = 1. It is, however, more complicated to ensure that
the coupled constraints are satisfied without requiring an excessive
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(b)
Fig. 5. Encoding of the images Lena and Boat, (Grayscale,512×512) using
ẑ = ΓD(z̄, y, δ) with different distortion requirementδ. In (a) PSNR versus
rate and (b) cardinality versus rate.
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ΦD(y, δ−γ, λ) Dℓẑℓ

MD Encoder

ΓD1
(D−1

1 z̄1, y, δ1 − γ̃1)

ΓDJ (D
−J
J z̄1, y, δJ − γ̃J )

y

z̄1

z̄J

ẑ1

ẑJ

R(ẑ1)

R(ẑJ)

ŷγ̃j

Fig. 6. Encoding of sparse coefficients in a MD setup.

large rate. SettingR(ẑj) large, we can always satisfy the distortion
requirement, but by locating more appropriate points on therate-
distortion function of̂zj , we can achieve a better rate-distortion trade-
off. To handle this problem we adjust̃γj by applying the following
algorithm:

• Encode the descriptions and independently ensure that‖Dj ẑj−
y‖2 ≤ δj , ∀j ∈ JJ .

• Check all the coupled distortion requirement‖Dℓẑℓ − y‖2 ≤
δℓ, ∀ℓ ∈ IJ/JJ .

– For the first distortion requirement not fulfilled, check
the first-order approximation of the slope PSNR(‖Dj ẑj −
y‖2)/R(ẑj) for j ∈ ℓ. Increase the rate (decreaseγ̃j) of
the descriptionj with the largest slope using bisection.

– If all distortion requirements of the encoded descriptions
are satisfied then decrease the rate (increaseγ̃j) for the
descriptionj ∈ JJ with the smallest slope PSNR(‖Dj ẑj−
y‖2)/R(ẑj) using bisection.

The purpose of the above algorithm is to find a stable point of
the Lagrange rate-distortion function. The process of adjusting the
description rate using the description with highest or smallest slope
respectively is also applied in [42]. The difference is thatthe above
algorithm target distortion constraint (feasibilitŷz ∈ Qp) while [42]
targets a rate constraint.

B. MD Image Encoding

We perform comparison with state-of-the-art algorithms, specifi-
cally MDLT-PC [3], [43] and RD-MDC [42], [44] for the two channel
caseJ = 2 andy the Pirate image. We adjust the quantization levels
such that we achieve a fixed rate and plot the (average) side and
central distortion of the schemes under comparison. We alsoplot
the single description performance ofΓD1

andΓD2
as the distortion

obtained at full rate and at half the rate and associate this to the central
(horizontal line) and side distortion (vertical line), respectively. This
corresponds to the extreme MD setup where there is no requirement
for the side or central distortion, in which case a single description
encoder is sufficient.

In Fig. 7 (a) and (b) we see that MDLT-PC and RD-MDC are
able to obtain better single description PSNR than that of the SPIHT
encoder using eitherΓD1

or ΓD2
. Further, we observe that MDl1C

shows larger distortion at same rate, but behaves accordingto the
single description bounds of the SPIHT encoder (ΓD1

and ΓD2
),

however with a gap. This gap is due to the suboptimality of the
MDl1C approach exemplified in Fig. 5.

We also show an example which demonstrates the flexibility ofthe
proposed method. To this end we selectJ = 3, apply non-symmetric

distortion requirementδℓ 6= δℓ′ for at least some|ℓ| = |ℓ′| with
ℓ, ℓ′ ∈ IJ , non-symmetric weightsλj 6= λj′ for at least somej, j′ ∈
JJ and both orthogonal and biorthogonal dictionaries.

The results are shown in Fig. 8 where we obtain ratesR(ẑ1) =
0.32, R(ẑ2) = 0.52 andR(ẑ3) = 0.58 such thatR(ẑ) = 1.42. For
comparison, if we encode the same image in a single description setup
with the coderΓD using a biorthogonal Cohen-Daubechies-Feauveau
(CDF)9/7 DWT with 7 levels as dictionaryD we obtain the distortion
measure PSNR(‖Dẑ′−y‖2) ≈ 27.0 or PSNR(‖Dẑ′−y‖2) ≈ 34.0 at
the ratesR(ẑ′) = 0.25 or R(ẑ′) = 0.81, respectively. This example
is a large scale problem withM× (|IJ |+J+J) ≈ 3.4 ·106 primal-
dual variables. The encoding process requiredv = 13 iterations and
the SPIHT encoder was then appliedJ + (v − 1) = 15 times since
in the first iteration we need to encode allJ descriptions and in
the remaining iterations it is only neccessary to encode thesingle
descriptionj for which γ̃j was modified in the previous iteration.

C. MD Image Sequence Encoding

To show the flexibility of the proposed framework, we give an
image sequence example. An image sequence can be seen as a three
dimensional signal. If we joink consequent frames in a single block
we obtain a windowed three dimensional signal with dimension m×
n×k with m×n being the frame dimensions of the video. For image
sequences we then formy as a column major wise stacked version of
a each two-dimension frame withM = mnk. For encoding, we apply
3D SPIHT [45]. To comply the 3D SPIHT framework we also form
the dictionaries as three dimensional DWTs. As dictionaries we select
D−1

{1}
: a3 level orthogonal Haar DWT along the (temporal) dimension

associated withk and a2-dimensional orthogonal Symlet16 DWT
with 5 levels along the (spatial) dimensions associated withm,n, and
D−1

{2}: a3 level orthogonal Haar DWT along the (temporal) dimension
associated withk and a2-dimensional orthogonal Daub8 DWT with
5 levels along the (spatial) dimensions associated withm,n.

Fig. 9 shows an example for an image sequence where we have
defined a frame extraction functions(y, k̄) which takes thēkth frame
from the image sequence stacked iny. For this example we obtain
the ratesR(ẑ1) = 0.10 andR(ẑ2) = 0.12 such thatR(ẑ) = 0.22.
For comparison, if we had encoded the same image with the coder
ΓD usingD{2} = D as dictionary we obtain the distortion measure
PSNR(‖Dẑ′ − y‖2) ≈ 29.3 or PSNR(‖Dẑ′ − y‖2) ≈ 34.0 at the
ratesR(ẑ′) = 0.05 or R(ẑ′) = 0.17, respectively. This example
is a large scale problem withM × (|IJ | + J + J) ≈ 5.7 · 106

primal-dual variables. It is expected that the comparison between
the MDl1C method and state-of-the-art MD video coder will render
similar results as in Fig. 7, that is, overall determined by the singe
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y

D1ẑ1 (27.0, 27.0) D2ẑ2 (28.3, 28.0) D3ẑ3 (29.1, 29.0)

D{1,2}ẑ{1,2} (30.7, 30.0) D{1,3}ẑ{1,3} (32.1, 31.0) D{2,3}ẑ{2,3} (32.4, 32.0)

D{1,2,3} ẑ{1,2,3} (34.0, 34.0)

Fig. 8. Encoding the image Barbara (Grayscale,512×512). As dictionaries we useD−1
{1}

: a 2-dimensional orthogonal Symlet8 DWT with 7 levels,D−1
{2}

: a

2-dimensional orthogonal Symlet16 DWT with 7 levels, andD−1
{3}

: a 2-dimensional biorthogonal CDF9/7 DWT with 7 levels. We haveλ1 = 1.5, λ2 = 1.4

andλ3 = 1.0. The distortion requirements and actual distortions are given above the individual images using the notation(PSNR(‖Dℓ ẑℓ − y‖2),PSNR(δℓ)).
The resulting rates are respectivelyR(ẑ1) = 0.32, R(ẑ2) = 0.52, R(ẑ3) = 0.58 such thatR(ẑ) = 1.42.
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(b) R(ẑ) = 0.25

Fig. 7. Comparison between different MD methods for the image Pirate
(Grayscale,512 × 512) at: (a) rateR(ẑ) = 1 and (b) rateR(ẑ) = 0.25.
The plot shows central distortion versus (average) side distortion. The single
description performance usingΓD1

andΓD2
are also shown as the distortion

at full rate and at half the rate which are associated to respectively the central
distortion (horizontal lines) and side distortion (vertical lines). As dictionaries
we useD−1

{1}
: a 2-dimensional orthogonal Symlet16 DWT with 7 levels, and

D−1
{2}

: a 2-dimensional biorthogonal CDF9/7 DWT with 7 levels.

channel encoder and a gap introduced by the suboptimal approach
of forming sparse descriptions using convex relaxation. Comparison
between 3D SPIHT and standard video encoding schemes are given
in, e.g., [45], [46].

VII. C ONCLUSION

We have shown how to use efficient first-order convex optimization
techniques in a multiple description framework in order to form
sparse descriptions, which satisfies a set of individual andjoint
distortion constraints. The proposed convex formulation allows for
non-symmetric distortions, non-symmetricl1-measures, different dic-
tionaries and an arbitrary number of descriptions. We analyzed the
sparse descriptions and concluded that the sparse descriptions were
non-trivial. When encoding the sparse coefficients and comparing

with state-of-the-art methods it was not possible to achieve the same
rate-distortion performance. On the other hand, the proposed method
allow for a more flexible formulation and provides an algorithm for
applying encoding in sparse signal processing. Efficient encoding of
sparse coefficients is generally an open research topic.
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