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Multiple-Description/;-Compression

Tobias Lindstrgm Jensen, Jan @stergaltember, IEEE Joachim Dahl, Sgren Holdt Jens&enior Member, IEEE

Abstract—Multiple descriptions (MDs) is a method to obtain reliable
signal transmissions on erasure channels. An MD encoder fors several
descriptions of the signal and each description is indeperahtly transmit-
ted across an erasure channel. The reconstruction qualityhen depends
on the set of received descriptions. In this paper, we conséd the design
of redundant descriptions in an MD setup usingl;-minimization with
Euclidean distortion constraints. In this way we are able toobtain sparse
descriptions using convex optimization. The proposed metid allows for
an arbitrary number of descriptions and supports both symmeric and
asymmetric distortion design. We show that MDs with partial overlapping
information corresponds to enforcing coupled constraintsn the proposed
convex optimization problem. To handle the coupled constrats, we
apply dual decompositions which makes first-order methods pplicable
and thereby admit solutions for large-scale problemse.g, coding entire
images or image sequences. We show by examples that the prepd
framework generates non-trivial sparse descriptions and an-trivial
refinements. We finally show that the sparse descriptions cape quantized
and encoded using off-the-shell encoders such as the set p@oning in
hierarchical trees (SPIHT) encoder, however, the proposedhethod shows
a rate-distortion loss compared to state-of-the-art imageMD encoders.

Index Terms—Multiple Descriptions, Sparse Decompositions, First-
order Methods, Convex Optimization

|I. INTRODUCTION

N important problem in signal processing is timeultiple-

description(MD) problem [1]. The MD problem is on encoding
a source into multiple descriptions, which are transmittedr sep-
arate channels. The channels may occasionally break dousinca
description erasures, in which case only a subset of theigésns
are received. Which of the channels that are working at awgngi
time is known by the decoder but not by the encoder. The pnolige
then to construct a number of descriptions, which indiviyarovide
an acceptable quality and furthermore are able to refine etheh. It
is important to notice the contradicting requirements eiséed with
the MD problem; in order for the descriptions to be indivilipa
good, they must all be similar to the source and thereforesotoe
extend, the descriptions are also similar to each other. adevy if
the descriptions are the same, they cannot refine each other.

Let J be the number of channels and I, = {1,...,J}.

ThenZ; = {{|¢C J;, £ # 0} describes the indices of the non-

trivial subsets which can be received. Further,dgtdenote thejth
description and define, = {z; | j € £}, V¢ € Z;. At the decoder,
the descriptionsz,, ¢ € Z,, approximate the sourcg via their
individual reconstructiong,(z¢) which satisfy the fidelity constraint
d(ge(ze),y) < 8¢, V¢ € Z;, with d(-,-) denoting a distortion
measure. An example withi = 2 is illustrated in Fig. 1.

The traditional MD coding problem aims
at characterizing the set of achievable
(R(Z1)7R(Z2)'~~ ,R(Z])7(5{1}7~“ ,(5{1’2...,‘]}) where R(Z])

denotes the minimum coding rate for description V5 € Jj,
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supported by grant no. 274-07-0065 from the Danish Rese@ozincil for
Technology and Production Sciences. The work of Jan @stetdgs supported
by the Danish Research Council for Technology and ProducBoiences,
grant no. 274-07-0383.

(R(21), [|z1]11)
I Lo g0y (21y)
21 (Dq1y)
d(g13(213),y) < 61y
MD =
Yy 9{1,2} 99{1’2}(2{172})
Encoder| _={(D{1,2})
(941,23 (21,23),y) < 61,2
= (;{2}) > 923 (2¢23)
(R(22),||22]]1) {2}

d(gq2y(2(2}), ) < 0g2y
Fig. 1. The MD (;-compression) problem foy = 2.

required in order to approximate the sougce within the distortion
fidelities 6,, ¥/ € Z; [1]. The problem is then to construct
ze, V€ € Ly, so thatR(z;), Vj € Js, are minimized and the fidelity
constraints are satisfied, cf., Fig. 1. This well-known mifation
theoretic problem remains largely unsolved. In fact, it islyo
completely solved for the case of two descriptions, with $faared
error fidelity criterion and Gaussian sources [2].

Another direction is to form descriptions in a determirussiet-
ting, as opposed to the traditionally MD approach [1]. Aigons
designed for video and image coding may be basecean, Wiener
filters with prediction compensation [3], matching purddi, [5] or
compressed sensing [6], [7]. Recovery of the latent vaemlohn in
compressed sensing be obtained by sparsity driven methotisas
l1-minimization with known guarantees [8]. There is also hessin
the case of quantization [9]-[11].

In this paper we propose a convex problem, which can be used to

obtain sparse descriptions for MD problems usingminimization
with Euclidean constrains on the distortion of the recarddion. The
proposed MD formulation is flexible in terms of applicatiofesg,
speech, image and video compression), the number of clsadnel
as well as supporting both symmetric and asymmetric dedigm.
show how to apply a first-order method to solve the proposesteco
optimization problem using dual decomposition and smogthi2].
Let € be the desired accuracy of an approximate solution in fancti
value, in which case the first-order method has iterationpiexity
O(2). The combination of a reasonable iteration complexity dred t

tuplelpw complexity of a single iteration in first-order methodsikes it

possible to apply the proposed MD method to large scale enabl
such as for entire images or image sequences. The desusiptio
are for example represented in discrete wavelet dictierabut
arbitrary dictionaries are allowed in the original forntidga. For
encoding the sparse descriptions it is possible to appte-sfathe-
art methods for wavelet encoding.g, set partitioning in hierarchical
trees (SPIHT) [13]. However, we are not able to obtain stéditde-art

T. L. Jensen, J. @stergaard and S. H. Jensen are with Aalbaig Urate-distortion descriptions by the two stage approachrstffiorming

versity, Department of Electronic Systems, Aalborg, Derkn&mails: T.
L. Jensen (tj@es.aau.dk), J. Dstergaard (jo@es.aawadk)),S. H. Jensen
(shj@es.aau.dk). J. Dahl is with Mosek Aps, Copenhagenjriaek Email:
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sparse descriptions and then encode.
The organization of the paper is as follows: we will first ppep the
MD [;-compression (MDI1C) problem in Sec. Il and then analyze



(c) 2011 IEEE. Personal use of this material is permittedmision from IEEE must be obtained for all other users,udiig reprinting/ republishing this material for adve'rt‘g;2
or promotional purposes, creating new collective worksrésale or redistribution to servers or lists, or reuse of @syyrighted components of this work in other works.

and discuss important properties of the problem in Sec.Tiilen, Definition Il.1. Aninstance{y, {d¢}ecz,,{De¢}eez,, {W;}tiea, {Ni}tiea, }
in Sec. IV, we discuss algorithms for solving the proposedver of the MDI1C problem is defined by

problem, and present an efficient first-order method. Weyaeahe L

sparse descriptions in Sec. V and extend the framework todémg minimize Z AillWizilla

of MD wavelet coefficient based on well known methods and ioiev ) I€Ts 2)
simulations on compression of images and image sequencgscin subject to || Deze —yll2 < e, Veels,

VI. for 6¢ > 0, Y4 € Z;, \j > 0,Vj € Jy andW; > 0,V € J;.
For simplicity we sometime usf(z) = ", ; A;[|[W;z;: for the
primal objective and), = {z ||| De¢ze —yll2 < d¢, V€ € L} for the
primal feasible set.

Il. PROBLEM FORMULATION

An interesting direction of research is in sparse estimatech-
niques for signal processing basedigmorm heuristics, where.g, The problem (2) amounts to minimize the number of non-zero
compressive sampling [8], [14] have gained much attentibine coefficients in the descriptions (using convex relaxationjler the
theory is by now well-established and much is known abouggastonstraint that any combination of received descriptioliewa a
where thel;-minimization approach coincides with the solution tg€construction error smaller than some quantity. The ideahat
the otherwise intractable minimum cardinality solutioae§15] and the problem (2) can be used to obtain sparse coefficientshwhic

references therein. obeys certain bounds on the reconstruction error. Sincastbeen
One way of obtaining a sparse approximationf the sourcey is Shown that bit rate and sparsity is almost linearly depen#j, the
to solve the so-calledi-compressiorproblem problem formulation (2) can be used to form descriptions MR

framework. In Sec. VI we will discuss in detail how to encodie t
minimize  ||Wz|x (1) sparse coefficients. Note that sinf®y| = 27 — 1, the number of
subject to [|Dz —yll2 <6, possible received combinations grows exponential in thabar of
channels, and thereby the number of constraints in probBm (

where § > 0 is a given distortion boundpD € RM*V s an n Definition I we have introduced > 0 to all i0hting of
overcomplete dictionary N > M), z € RY is the variable, n Detinition 1.1 we have introduced > D 1o alow weighting o

andy € RM is the signal we wish to decompose into a spardd€ (1N0rms in order to achieve a desired ra jiz;/“ﬁl Vi e
representation. In a standard formulatiéhe R *" can be selected Js. Note that in the case where we ld?;;, Vj € J;, be
asW = I. To improve the;-minimization approach for minimizing orthogonal, we see that the constraints on the side recmtisins
the cardinality it has been proposed to selékt = diag(w) to can easily be fuffilled by simply truncating the smallestfGioents
reduce the cost of large coefficients [16], see also [17]. fid &, 2i = Djj, Vj € Ju, to zero separately for the coefficients of
the unscaled problem (1) is solved firse( with w = 1). Thenw €ach side description. This will, however, not guarante jtint
is chosen inversely proportional to the solutieh of that problem, reconstruction constraintDez, — yll2 < d¢, V¢ € Z;\J;. Thus, the
and (1) is solved again with the new weighting This reweighting Problem at hand is non-trivial.
scheme can be iterated a number of times. In the following sections we will analyse the MDI1C problem
In this work, we cast the MD problem into the frameworkigf —Presented in Definition Il.1 and give an algorithm to solveyéascale
compression (1).Let z; € RV %! Vj € 7, be the descriptions of instances of this problem.

length N;. We will define a concatenation operator
I1l. ANALYSIS OF THEMULTIPLE-DESCRIPTION

Ys, l;-COMPRESSIONPROBLEM
Vs, In this section we will review and discuss some importanppre
: ties of the proposed MDI1C problem.

Ys, Definition 11l.1. (Solvable) The MDI1C problem is solvable if the
., S.} hasn elements and problem has at least one feasible point.

x=Cyv =
€S

whereY; € RPi*9 S = {57,855, - L
X € REiesPixq Thenz, = de 2 € szeﬂ\’f“, V¢ € Iy, Remark (Definition 111.1) Since the MDI1C problem is always
is the vector concatenation of the descriptions used in #wding bounded below, this is the same definition as in [20].

when the subset C J; is received. For simplicity we will use . - = =
. = . . Proposition 11.2. (Solvable conditions) LeD, ; = p¢.;D;.;, V¢
z; with the meaningz(;y, j € Js, which also applies to other P ( ) LeDyj = pe;Dj5, VL€

< Zy,jeLlwithpe,; eR, > 4 =1, ¥l € Z;. Furthermore, let
symbols with subscripted. The matrix D, & RMX.EJZH Nj.’ vt e yJG ipan(Dj,j)/j[VJj € JJ.Z'Igﬁér? ltk]le MDILC pronler(Q) is solvable.
7, is the dlctlonaryTaSSOC|ated with the description given as
D, = (Cie Df;) with Dg; € RY*Ni. Our idea is to
form the multiple-descriptionl; -compressionproblem using linear
reconstruction functions,e., g¢(z¢) = D¢z, similar to [6] since it ) ‘ ) ) ]
preserves convexity [20], and the Euclidean norm as thentiish jeg, 7 € Qp is a primal feasible solution and the problem (2) is
measurej.e. d(z,y) = ||z — y|2.2 Note that its possible to select therefore solvable. _ N =
other distortion measures that is convex, but we chdpsg, since ~ ©Oneé way to obtain the setup used in Proposition Ill.2 is to aise
it relates to the well known peak signal-to-noise-ratio \iRg. The Standard MDI1C setup.

Proof: There existsz;, Vj € Jy, such that D ;z; =
y,Vj € Js. Then we also have thabez, = >, Dejz; =
YieepeiDiizi = y3cpe; = y, V0 € I;. Hence,z =

definition is given below. Definition 11.3. (Standard MD¢; -compression problem) We denote
an MDI1C problem a standard MDI1C problem if
1This work was presented in part [18], [19]. e Djj, Vj € Jy, are invertible.
2|nterestingly, in the Gaussian case and for the mean squearedfidelity 1 if [ =1 )
criterion, it has been shown that linear reconstructiorctions are sufficient o pPrj = Sicev; 07 h . , to weight
for achieving the MD rate-distortion function, see [21]2]2nd [23] for white (Je]=1) ;e 03 otherwise

and colored cases, respectively. the contributions
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e Dy = pe;Dj, (combined with abovéd; ; = D;, Vj € J).

Remark (Definition 111.3) In the general asymmetric case, it
common to weight the reconstruction of the joint recongions
relative to the distortion of the individual reconstructif25], [26].
Note that in the symmetric casé, = 8./, V£, ¢ € Z;,|¢| = |¢'|, we
have equal weighp, ; = pes, j, @ € L.

Proposition Ill.4. (Strong duality) Strong duality holds for the
standard MDI1C problem.

Proof: Sinced, > 0, V¢ € Z;, span(D;) € y, Vj € Js, and
Yjeepe = 1, VL € I, there exists a strictly feasiblgD,z¢ —
yll2 = 0 < ¢, V€ € Iy, point z such that Slater's condition for
strong duality holds [20]. [ ]

In Proposition 111.2 we assumed that, ; = p,;D;, VL € Z;,j €
£. We will, however, shortly discuss the case whédg; # p ;D;
for at least one paif/¢,j) € Z; x Js. The interpretation is that
the dictionaries associated with the same description noay@ the
same in all reconstruction functions. This can be illusidatvith an
example where we will solve a small problem of sive= 2, J = 2,

c

with D;, Vj € J;, being the orthogonal discrete cosine transform.

We will construct another dictionary in the central recomstion
using a rotation matrix
—sinf
cos 0

cos 6

Ro = { sin 6

such that we solve problems on the form

minimize  ||z1|l1 + ||22]x
subject to ||D1z1 —y|l2 < 61
| D222 — yll2 < 62
|2 (D1Rgz1 + Daz2) — yll2 < 671,23

with solution z;. By considering differen’’s we obtain different
central decoding functions. In Fig. 2 we show the optimakotiye
f(25) from solving problem (3). We investigatee [—7/2; 7/2] and
only report f(-) and the cardinality cafd) if the problem (3) is
solvable. We choosé; = d2 = {0.2,0.02} and ;23 = 0.01.
Observe that for both; 02 = 0.2 and 61 = 52 = 0.02,
the objective f(-) can be reduced if we seleét # 0, i.e, if the
dictionaries associated to the different decoding fumsti@re not

®)

11

- 51 :52 = 0.02

_51:52:0.2

7r/2
5
4 -
ardz;) |
2 "'51:5220.02
- 51 = 62 =0.2
Lr/2 —7/4 0 /4 ”)2
0
(b)

Fig. 2. (a): optimal objectivef(Z;) and (b): the cardinality cafd;) from
solving the problem (3) with\/ = 2. The distortion bounds aré = 2 =
{0.2,0.02}, 6710y = 0.01 and D1 = Do: the discrete cosine transform.
We only reportf(-) and card-) if the problem (3) is solvable.

|Deze — yll2 < d¢, V2 € I, is an intersection of Euclidean norm
balls.

We are interested in solving large-scale instances of pnolR),
and in the following subsections IV-A through IV-E, we wiltgsent
an efficient first-order method to handle problem (2).

A. Intersecting Euclidean Norm Balls
In order to illustrate the implications of the overlappiranstraints

equal. Ford; = &, = 0.2 the cardinality can also be reduced fronfn the feasible set, consider the following simple examipée.D, =

3 atd = 0 to cardinality2 at 0 ~ —=/s. If ||D121 — yl|2 is required
to be small, we would expe¢f| to be small becaus®:z; =~ y and
then D1 Rygz1 =~ y for 6 ~ 0. Note that if|0| is too large, then the
problem is not solvable.

This example illustrates that it can be useful to have diffier
dictionaries in the decoder associated to the same ddearipfo
find such dictionaries a-priori for different applications signal
dependent, and a separate research topic, which will noteaget!
in this work.

IV. SOLVING THE MD [;-COMPRESSION PROBLEM

Do=W1=Wa=X1=X=1so thatD;z; = 21 and Daz2 = 2.
From the joint constraint it may be noticed that and 22> can be
picked arbitrarily large but of different signs and yet siyti|%(zl +

za) — y| < 041,23 However, due to the individual constrairjts —

y| < d1 and|z2 — y| < d2, the feasible set is bounded as illustrated
in Fig. 3.

B. Dual Decomposition

An approach to handle problems with intersecting conssain
sometimes referred to as complicating or coupling conssais by
dual decomposition [29], [35].

The MDILC problem (2) can be solved using general-purpodgoposition IV.1. (Dual problem) A dual problem of the standard

primal-dual interior point methods. To do so, we need tosakveral
linear systems of equations of siZ8(K) x O(K), arising from
linearizing first-order optimality conditions, withk = M|Z;| +

ZJEJJ ]\7]-. This practically limits the size of the problems we can
consider to small and medium size, except if the problem has a

certain structure that can be used when solving the linestesy
of equations [27]. Another approach is to use first-orderhods
[12], [28]-[30]. Such first-order projection methods havewn to
be efficient for large scale problems [31]-[34]. Howeveis idifficult

to solve the MDI1C problem efficiently because the feasilde s

MDI1C problem can be represented as

maximize — 3 (<5[||tl||2 —&—yth)
Lely
subject to ||ujlleo < Aj, V5 € TJ,
te € RMXL Vi e T\T;s

tj=—|D;. [ Wju; +>_ D; ] D jte| Vi€ T,
tec; (T\s

(4)
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22
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5
2 26012}

21

Fig. 3. An example of the feasible set (shaded regionRih™1) %1, The
thick line indicates the optimal solutions for the problefmonimizing |z1 |+
|22].

whereg(t) is the dual objective and)4 the dual feasible set.

Proof: The dual function of (2) is given by

> gt -

Do tiy+dese |,

G(t,x) = {jea, =y , (9
it ltell2 < ke, VL E Ly
—00, else
where
t = {teteer,, K= {re}ecz,,

Z the,j Zj ¢y

Gs(t) = inf g () = inf { X[ Wz 1+
J ’ t€c;(Zy)

and
G(IT)={l|teZ,jel}.

Note that the dual function is now decoupled in the functign@)
with the implicit constraint|¢.||2 < k¢, V¢ € Z;. Furthermore,

it fuslloe < Xy, uy =W > DEte
ZECJ-(IJ)

0,

gi(t)

—o0, else

(6)
At this point, we change the implicit domain in (5) and (6)etplicit
constraints and note thaf, = ||t7||2, V¢ € Zs, under maximization

and thereby obtain the dual problem (4). [ ]

The equality constraints in (4) are simple because the blasa

smooth approximation and apply an optimal first-order me:thm

the smooth problem and obtain complex@(%), as proposed in
[12]. The primal feasible set has intersecting Euclideanmaéall

constraints, so we cannot efficiently follow the algoritht2], since
this approach requires projections in both the primal aral thasible
set. We will next show how to adapt the results of [12], in thais

of [36], using only projection on the dual feasible set arillathieve

complexity O(1). Consider

T
Tl = max v x 7
lallz = max {v7o} Y
and the approximation

VU, (x) = max {’UT:E—H’UQ} 8
u(x) = max AR ®)
_ [ Mlwlls = /2, if lzllz > n ©)

%me, otherwise '

where ¥, (-) is a Huber function with parameter > 0. For u = 0
we haveUo(z) = ||z||2. The function¥,(z) has forp > 0 the
(Lipschitz continuous) derivative

x

V) = el

The dual objective is

g(®)

== 3 (elltell +y"te)

=

and we can then form a smooth functigp as

9u(t) = = 3 (60Wulte) +y"ts) .

LeTy
The Lipschitz constant of the gradientisV ¥, (z)) = % and then
J C
Ly =L(Vgu(t) = | > f+1 =+l

Lely

Also, ¢(t) can bounded as
gu(t) < g(t) < gu(t) +pC'.

Now, fix 1 = 5= and let theith iterationt'*) of an algorithm have
the property

* I3 €
gn = gu(t") < 5. (10)

t;, Vj € Js, associated with the side descriptions, only occurs chhen it follows that

the left hand side, while the rest of the variablesV¢ € Z;\J7,
associated with the joint description, are on the right .sitfe can
then make a variable substitution bf, V5 € J;, in the objective,
but we choose the form (4) for readability.

C. Smoothing

Since the dual problem has simple and non-intersectingticonts
it is possible to efficiently apply first-order projection theds. The
objective of the dual problem (4) is differentiable @ty||> > 0 and

sub-differentiable orj|t.||2 = 0. The objective in the dual problem
(4) is hence not smoothWe could then apply an algorithm such

as the sub-gradient algorithm with complexi€y(1/c2) or form a

3A smooth function is a function with Lipschitz continuousrigatives [30].

g —g(tD) < gi 4 pC — g (tV) <e. (11)

By using an optimal-first order algorithm fak-smooth problems
with complexity © <\/§> [30], thent(®) can be obtained in

C-o(/E) —ol/ET) (/AT
o(EF ) =oC)+o(r) = o)

(12)
iterations?

4Seee.g, [37] for a definition of the big-O notation .
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D. Recovering primal variables from dual variables
The primal variables can be recovered as a minimizeof g;(¢),
see [20,§5.5.5]. But since|| - |1 is not strictly convex there will
in general be more than one minimizer. We will instead casrsil
different approach.
The Karush-Kuhn-Tucker (KKT) optimality conditions for eh
convex problem (2) are
ha(Dez; —y)||tzlle —t7 €0, YLeZIs
ki ([ Dezi —yll2 —6e) =0, VeI,
> Diti +Wiu; =0, Vi€
Leci(Zy)
[Dezi —yll2 < de,
)\jh1(WjZ}<) — u; €0,

(Itellz = re)

Vlely
VieJs

(13)
with hq(z) = 9||z|l.. We have fors, > 0, V¢ € Z;,
{ h2(Dez; —y)lltillz — 7 €0
tzll2(|Dezz — yll2 — 6¢) =0
* t* * . *
<~ tl = | ngZ (D(Z( — y) |f Ht(HZ > 0 (14)
for all £ € Z;. The system
hQ(D[ZE — y)HtZHQ — tZ €0, Wel;
ki ([[Dezg —yllz =) =0, VeeZ;  ([[tzll2 = rz)

> Dijti+Wu;=0, Vi€,

Leci(Zy) (15)

is then equivalent to
t* 2 "/ * * t* 2 A .
Z—” é” Di ;jDez; =—Wjuj + Z—” é” Diy, Vi€ Js.
[Ecj(IJ) KEcj(IJ)
We can then obtain the equivalent KKT optimality conditions
ty B *
> DI =
Leci(Zy)
—VV]'U;f + Z
[Ecj(IJ)
|Dezi —yll2 < 0o, VL ETLy
)\Jhl(WJZ;) — U; € O, VJ S \]] .

[l£21l2

Diy, Vi€ Js (16.A)

(16)
Let z* € Z be a solution to (16) and let € Z be a solution to
(16.0).

Proposition 1V.2. (Uniqueness) If the solutioh to the linear system

(16.2) is unique and there exist a solutiari to problem(1), then
2* =2z

where we can now remove constraints which are not strondiyeac
Similarly, if there is ani € 7, such that

ci(Zs) CQy,

then this corresponds to minimization over an unconstcaipeSince
by definition \; > 0 and W; > 0 thenz; = 0. Solving the original
primal problem (2) is, hence, equivalent to solving [20]

minimize > " X |[Wizih
) jejJ\i (18)
SUbjeCt to ||DgZe — y”z < 55, Ve e IJ\QJ
Definition 1V.3. (Trivial instance) We will call an instance

{y7 {55}56117 {Dl}leIJ7 {WJ'}J'EJH {)‘j}jEJJ} of the MDI1C
problem a trivial instance if it can be reformulated as an MDI

problem without coupled constraints.

The reason why we call these trivial instances is becausedbe
not include coupled constraints and therefore do not irecthd trade-
off normally associated with MD problems. All trivial instees can
be solved straightforwardly by a first-order primal methastduse
they do not include any coupled constraints, see [38].

Proposition 1V.4. We havez* = z for all non-trivial instances of
the standard MDI1C problem with = 2.

Proof: Let us represent the system (M9.by D;z* = @ and
consider the determinant of this system to analyze undechwhi
conditions there is a unique solution. By factorizifity and using
the multiplicative map of determinantet(AB) = det(A) det(B),
det(AT) = det(A), det(ad) = a"det(A) for A € R we
obtain the determinant

det(Dy) [] det(D))®
JET
M (19)

kg
-det Z Pl,jpl,i(;_[ )
ez,
i,jel i=1, ,J;j=1,,J
for the standard MDI1C problem. For our example with= 2 we

have

det(Dz) :det(D1)2det(D2)2 K?I}K?2}P%1},1P%2},2
513942y

. P M

+“{1}“{1,2}’3%1},1”%1,2},2+K{2}“{1,2}9%2},2p%1,2},2
57110 57010 :
{130{1,2} {2}%{1,2}

Proof: We have from the assumption and the system (16) th&incep,; > 0, V¢ € Z;,j € £, ¢ > 0, V¢ € Z; anddet(D;) #

0 #ZCZ.If |Z] =1then|Z| =1 such thatz = z*. ]

Proposition 1V.2 explains when it is interesting to solve firimal
problem by the dual problem and then recover the primal bbega
by (16A). The reason why we will focus on (18) is that the
remaining equations in the system (16) are sub-differblgiand
feasibility equations. These are difficult to handle - eggbc for
large scale problems. On the other hand, the systend\()18. linear
in z and can easily be solved for invertible;, Vj € 7.

However, first we will analyze the implication af, = 0. Let

Q= {l]re =ltel2 =0,£ € Ls},

with Q; C Z;. Then, solving the original primal problem (2) is

equivalent to solving [20]

> XlIWszh
J€Ty

subject to || Deze — yll2 < de,

minimize
(17)
Ve e IJ\QJ s

0, Vj € Jy, the conditiondet(D>) = 0 is determined by whicH,
Ky = 0. Let

Oy = {Qz |det(D2) = 0} .
ThenO- is given as equation

02 ={{{1},{2}},
{13, {1, 23}, {25, {1, 2}},
{25 {1,231

Let us consider all the cases:

o {{1},{2}}. No coupled constraints, which implies a trivial
instance.

o {{1},{1,2}} or {{2}, {1, 2}}. Corresponds ta; = 0 or z3
0. The primal problem can be solved directly owgror z; with
no coupled constraints, which implies a trivial instance.
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o {{1},{2},{1,2}}. Corresponds to an instance wit#j = 0 We defineD = {Dy}eez,, § = {0c}eez,, A = {\;}jeq,. We
and z3 = 0 and no coupled constraints, which implies a trivialvill denotez = ®p(y, §, ) ane-suboptimal solution of the problem
instance. (2) with z = {z;},e7, after4 reweight iterations. Note that in the

m Single channel casé = 1 we will obtain the problem (1). We will

Remark (Proposition IV.4): All the cases for = 2 can be seen 2lso define the functioa = T, (y, §) as the thresholding function of

. . - i -1
as two descriptions transmitted as one description overchaanel. the smallest coefficients db; "y such that PSNR|D;Tp, (y,0) —
It is not easy to analyz®; for J > 3 in all cases and compare yll2) ~0.
them to the definition of trivial instances. However, we wilake = We now select the two channel case = 2, y the Pirate
the following partial description on the number of activeswaints Standard image (Grayscalg|2 x 512) and as dictionarie®); ': a 2-

to ensure recovery of optimal primal variables.

Proposition IV.5. For a standard MDI1C problem, if
i) all side constraints are strongly active,; > 0, Vj € 77, then

=z
ii) there are no strongly active constraints; = 0, V¢ € Z;, then
z*=0.

Proof:
AP

i) From (14) we have; = 5 (Dez; — y), V€ € J;, which
gives a unique solution te™ = ngjJ Dj’1 (tjutiﬁ —I—y).

Since a subsystem7; C Z,) of (16.A) has exactly one point,

dimensional orthogonal Symlet discrete wavelet transform (DWT)
with 7 levels, andD;l: a 2-dimensional biorthogonal CD%/7 DWT
with 7 levels. The results are reported in Table I, where we foiitglar
will refer to different approaches using the numbering (@)-First,
we obtainz = ®p(y,d,\) (1) and then apply thresholding to the
same signal such that the side PSNRs are the same (2). Nogite t
due to the independent thresholding, the refinentert {1, 2} is
not much better than the individual descriptions. Consigeithe
same setup, but where we seléytsuch that the cardinality of each
description is the same cd(@®p (y,d, \));) = card Tp, (y, ;) (3).

In this case, we have a better side PSNR, but the refinemeiitl is s
poor and the central distortion not as good as in the case ef th

then|Z| < 1. A standard MDI1C problem is solvable such thaMDI1C approach. Finally, if we performed thresholding tchisve

|Z| > |Z| > 1. Hence|Z| = 1 and from Proposition V.2 we
then havez* = z.

If k; = ||t;]]2 = 0,VL € Z;, theng(t*) =0 and f(z*) =0
according to strong duality. From the definitidd}; > 0, Vj €
Jrand\; >0,V7s, thenf(z*) =0 z* =0.

Remark (Proposition IV.5): It is always possible to make aﬁ

the inactive side distortion constraints strongly actiye daljusting
d;, j € Js, without significantly changing the original formulation.
With this approach we can always recover the primal varglae
Z* =2z

E. Stopping Conditions

Since we implement a primal-dual first-order method and tobp
lem has strong duality, a primal-dual stopping criterianteiesting.
From the dual iterate t“),u“)) we obtain the primal iterate”
as the solution to

()
(i) _ () te” ll2 =7
‘D[Zl ——Wjuj + Zd—lDl,j:%
lEcj(IJ)
for j € J;. We then stop the first-order method at iteratioif
JED) =gy <6, 2V ey (19,uV) € Q.

To ensure scalability in the dimensions of the problem, wecse

e = JMe,, where for example we may choose to solve the problem

to medium accuracye.g, e, = 107°.

V. ANALYZING THE SPARSEDESCRIPTIONS

the same PSNR on the side distortion as the central disto(dd
we see that we need an excessive cardinality. We concludehba
MDI1C framework is able to generate non-trivial descripan a
MD framework with respect to both the cardinality of the dgstions
and the refinement.

With the same setup as used in Table I, we also investigate the
irst-order iteration complexity for obtaining a solutiamthe MDI1C
problem, including 4 reweight iterations. Each reweigtgration
has the worst-case iteration complexity(L) given in (12) which
results in an overall complexity o® (). The results are shown
in Fig. 4. In general, we obtain an empirical complexity ktly
(but not significantly) better than the theoretical worase iteration
complexityO@%). For obtaining are = ¢,JM-suboptimal solution
with e, = 107~ and 4 reweight iterations requires approximately 700
first-order iterations.

In this section we will use an image example and analyze the

sparse descriptions. In particular, we show that it is fidegb obtain
a sparse representation which has a lower cardinality ferstgme
PSNR requirement, or better PSNR for same cardinality,gustie
MDI1C approach compared to the simple approach of threstmld

-9~ MDiiC o
---0(3) ke
3 4
10 [ '¢'
’f
. ;'
*
e
*
"~
*
’O
’l
2 *
107 L |
EaCal :
-2 -3 -4
10 10 10
&= 75

Fig. 4. Number of first-order iterationsincluding 4 reweight iterations as a
function of of the relative accuracy.-. We also plot the complexity function
O(1) for comparison.

For images, lety be the column major wise stacked version of a

two-dimensional image of dimension x n, M = mn. The images
are normalized such thate< [0; 1] and the PSNR is

V2l

VI. SIMULATION AND ENCODING OF SPARSEDESCRIPTIONS

In this section we will consider an application of the progs
scheme, where the sparse descriptions are encoded to heapirse
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cardz;)/N PSNR|| D¢z, —
ID Method j= 1d( ])j/: 2 | e={1} F;”: f2§ yzl‘i){l,z}
@ | z2=9%01 0, 0.058 0059 27.0 27.0 331
@ | % =1b,.5)) 0030 0026] 27.0 27.0 27.9
@ | % =Tp, (4.3 0.058 0.059| 29.3 30.0 30.8
@ | z =Tp,(y,002) || 0128 0112] 331 33.1 34.4
TABLE |

COMPARISON BETWEENMDL1C (1), THRESHOLDING TO SAME SIDEPSNR (2)THRESHOLDING TO SAME CARDINALITY (3) AND THRESHOLDING TO
ACHIEVE THE CENTRAL DISTORTION ON EACH SIDE CHANNEL(4).

MD framework to a rate-distortion MD framework. A. Encoding for Multiple Descriptions

A state-of-the-art method for encoding images is the SPIHT we use the following approach when applying encoding fortimul
encoder [13], which efficiently uses the tree structure @ BWT. pjle descriptions, shown in Fig. 6. First the sparse coefftsigectors
We then denote the encoding of the coefficieats= D™'y as gzre formed using the functio®p (v, —~, A) with v = {v;}es,

2 = I'p(z,y,6), such that|| Dz — y||» < é. The encoder applies and »; = 0.05min,cs, 6;, Vj € Jy. That is, we aim for at
baseline SPIHT encoding. We add half a quantization levelltthe |east a 5% better reconstruction in the optimization stapihvwe
significant wavelets transform coefficients when the stappiriteria  yse to allow for a loss in the encoding stage. Each desaniftio
1Dz —y|]2 < ¢ is evaluated, see [39] or [40, Chapt. 6]. The quantizefidependently coded usingp, (D;'%;,y,d; — ;) to generate the
non-zero coefficients and their locations are further g@ytrooded encoded description vectors with the rateR(%;). The parameter
using the arithmetic coder [41]. 7; will be discussed shortly. From the received descriptiénsre

In order to illustrate the behaviour of encoding we will alsahen apply the decoding functigg(2,) = De2e.
obtain coefficients from solving a series of reweightedompression  For the encoding functiolp, it is easy to ensur§D; 2; —yl2 <
problems d;, Vj € Js, since we can encode each description independently
until the side distortion is satisfied as we previously did tive
example withJ = 1. It is, however, more complicated to ensure that
the coupled constraints are satisfied without requiring >aessive

minimize ||Wz|1
subject to ||Dz —yll2 <.

An ec-optimal solution from the above problem is denoted=
®p(y,d,1) (the same notation in the case &Hf= 1).

The encoder can be used in two different wags = 40¢ 50 * 4
Ip(D 'y,y,8) or 2 =Tp(®p(y,d —v,1),y,8). When encoding 2
the coefficientsz = ®p(y,d — v, 1), this corresponds to letting
SPIHT encode the (reconstructed) imafeg ~ y. Note that we
have introduced a modification of the distortion requiretneith the
parametery. This is done because= ®p(y, d, 1) is on the boundary
of the ball || Dz — y||2 = ¢ unlessz = 0. However, quantization
slightly degrades the reconstruction quality and it is ¢fiane difficult
to ensures| Dz — yl|» < & without requiring that the input to the

35¢
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PSNR([[DZ — yll2)

d—,1), y=Lena

encoder ensurd Dz — yll2 < § —, v > 0. We usey = 0.056. o 7g;WB??ty:Boat
It is possible to use any encoder which is based on encodiag 1 25 : ’ —
coefficients associated to a linear reconstruction funcéiod SPIHT 0.5 R 1 15
is such an encoder. R(2)

In Fig. 5 we illustrate the results from encoding coefficgent (a)
obtained ast = I'n(D~'y,y,68) or 2 = T'p(®p(y,d —7,1),9,9). x 10*
As test images we use Lena and Boat (Grayscdl2 x 512) and we 8 O-z:D*lg) y—Lena
selectD~! as a Symlet6 pyramid wavelet transform with levels. Oz=30 gy:(s_% 1), y=Lena

For the simulations we choose differefis and report the PSNR, 6||*z=D""y,y =Boat L%
the corresponding cardinality and the rdtéz) [bits/pixel]. From Fig. Hz=Pp(y,6—7,1), y=Boat

5(a) we can see that for the same rate the reconstructiog tisan
l1-minimization approachbp shows a smaller PSNR than with the
standard approach. This is to be expected, since for angmtiad
transform, SPIHT is designed to minimize the Euclideanodiiin ol
|2 — Z||2 to the input vectorz = D'y [13], and||2 — Z||» is also

our quality criteria. Forz = ®p(y,d — 7,1), which impliesz #

D~y in general, the design argumentation is slightly distorgd 0]
the modified input but the quality criteria remains the safether,

by first forming a sparse coefficient vector using convexxaian
technique and later encode is suboptimal which further adthé (b)

loss. We also notice from Fig. 5(b) that the cardinality aftdréite  rig 5. Encoding of the images Lena and Boat, (Graysédlg x 512) using
behaves linearly in this setup for tHe-minimization approach as z = T'p(z,y, §) with different distortion requirement. In (a) PSNR versus
also observed in other sparse decompositions esge[24]. rate and (b) cardinality versus rate.
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MD Encoder R(%1)
—=| T, (D7 21, 9,60 — 31) [T
z1 zZ1
T
. : : °
Y |5 5, | Y
(g, 8-7N)| ° i . | P
!
° : : °
LY
zZJ s _ z7
Ip,(D;"Z1,y,05 —77) N
R(ZJ)
Fig. 6. Encoding of sparse coefficients in a MD setup.
large rate. Setting?(2,) large, we can always satisfy the distortiondistortion requirement, # §,, for at least somg¢| = |¢'| with

requirement, but by locating more appropriate points onrtte- ¢,¢ € Z;, non-symmetric weightd; # X,/ for at least somg, ;' €
distortion function ofz;, we can achieve a better rate-distortion trade7; and both orthogonal and biorthogonal dictionaries.
off. To handle this problem we adjust by applying the following The results are shown in Fig. 8 where we obtain ra®s;) =

algorithm: 0.32, R(22) = 0.52 and R(%3) = 0.58 such thatR(2) = 1.42. For
« Encode the descriptions and independently ensurg||ibat; — comparison, if we encode the same image in a single desuripéitup
yll2 < 85, Y5 € Ty with the codef"p using a biorthogonal Cohen-Daubechies-Feauveau
« Check all the coupled distortion requiremehb,2, — y|l> < (CDF)9/7 DWT with 7 levels as dictionary) we obtain the distortion
S,V ETs) Ty measure PSNR D2 —y||2) ~ 27.0 or PSNR|| D2’ —y||2) ~ 34.0 at

— For the first distortion requirement not fulfilled, checkth® ratesk(z") = 0.25 or R(2') = 0.81, respectively. Th'(f' example
the first-order approximation of the slope PSR, 3; — IS @ large scale problem with/ x (|Z|+.J +.J) ~ 3.4-10° primal-
yll2)/R(%;) for j € £. Increase the rate (decreasg) of dual variables. The encoding process requived 13 |ter_at|ons_and
the descriptionj with the largest slope using bisection. ~the SPIHT encoder was then appligdt- (v — 1) = 15 times since

— If all distortion requirements of the encoded description& the first iteration we need to encode all descriptions and in
are satisfied then decrease the rate (increggefor the the remaining |terqt|ons it is onlylrllecc.essary to gnco;:lesthgle
descriptionj € 7 with the smallest slope PSNRD; 2, — description; for which 4; was modified in the previous iteration.
yll2)/R(2;) using bisection.

The purpose of the above algorithm is to find a stable point @f. MD Image Sequence Encoding
the Lagrange rate-distortion function. The process of stitjg the
description rate using the description with highest or $esalslope
respectively is also applied in [42]. The difference is ttie above
algorithm target distortion constraint (feasibilitye @,,) while [42]
targets a rate constraint.

To show the flexibility of the proposed framework, we give an
image sequence example. An image sequence can be seen as a thr
dimensional signal. If we joik consequent frames in a single block
we obtain a windowed three dimensional signal with dimemsiox
nxk with m x n being the frame dimensions of the video. For image
sequences we then forgnas a column major wise stacked version of
B. MD Image Encoding a each two-dimension frame witf = mnk. For encoding, we apply

We perform comparison with state-of-the-art algorithmmsecifi- 3D SPIHT [45]. To comply the 3D SPIHT framework we also form
cally MDLT-PC [3], [43] and RD-MDC [42], [44] for the two charel the dictionaries as three dimensional DWTSs. As dictiorsawe select
caseJ = 2 andy the Pirate image. We adjust the quantization Ievel@{’ll}: a3 level orthogonal Haar DWT along the (temporal) dimension
such that we achieve a fixed rate and plot the (average) side associated withk and a2-dimensional orthogonal Symlgt DWT
central distortion of the schemes under comparison. We plgb with 5 levels along the (spatial) dimensions associated with, and
the single description performance B, andT'p, as the distortion D.,): a3 level orthogonal Haar DWT along the (temporal) dimension
obtained at full rate and at half the rate and associatedhistcentral associated wittk and a2-dimensional orthogonal Da8tDWT with
(horizontal line) and side distortion (vertical line), pestively. This 5 levels along the (spatial) dimensions associated witt.
corresponds to the extreme MD setup where there is no regeite  Fig. 9 shows an example for an image sequence where we have
for the side or central distortion, in which case a singlecdption defined a frame extraction functicity, k) which takes theth frame
encoder is sufficient. from the image sequence stackedyinFor this example we obtain

In Fig. 7 (a) and (b) we see that MDLT-PC and RD-MDC arehe ratesR(2;) = 0.10 and R(22) = 0.12 such thatR(2) = 0.22.
able to obtain better single description PSNR than that®fSRIHT For comparison, if we had encoded the same image with ther code
encoder using eithel"p, or I'p,. Further, we observe that MDI1C I'p using D2, = D as dictionary we obtain the distortion measure
shows larger distortion at same rate, but behaves accotdine PSNR|| D2’ — yl|2) ~ 29.3 or PSNR|| D%’ — y||2) ~ 34.0 at the
single description bounds of the SPIHT encodEp{ and I'p,), ratesR(2’) = 0.05 or R(2') = 0.17, respectively. This example
however with a gap. This gap is due to the suboptimality of the a large scale problem with/ x (|Z;| + J + J) ~ 5.7 - 10°
MDI1C approach exemplified in Fig. 5. primal-dual variables. It is expected that the comparisetwben

We also show an example which demonstrates the flexibilithef the MDI1C method and state-of-the-art MD video coder withder
proposed method. To this end we seldct 3, apply non-symmetric similar results as in Fig. 7, that is, overall determined bg singe
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Fig. 8. Encoding the image Barbara (GrayscalE x 512). As dictionaries we us@{‘ll}: a 2-dimensional orthogonal SymieDWT with 7 IeveIs,D;zl}: a
2-dimensional orthogonal Symlegt DWT with 7 levels, andD{‘;}: a 2-dimensional biorthogonal CD8/7 DWT with 7 levels. We have\; = 1.5, Ao = 1.4

and A3 = 1.0. The distortion requirements and actual distortions arergabove the individual images using the notaiB$NR(|| D2, — y||2), PSNR;)).
The resulting rates are respective(21) = 0.32, R(%2) = 0.52, R(23) = 0.58 such thatR(2) = 1.42.
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with state-of-the-art methods it was not possible to achibe same
rate-distortion performance. On the other hand, the prxgbosethod
allow for a more flexible formulation and provides an aldumit for

applying encoding in sparse signal processing. Efficienbdimg of

sparse coefficients is generally an open research topic.
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