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Abstract—Obtaining accurate system models for verification device may react differently to identical input sequencasnv
is a hard and time consuming process, which is seen by gperated in different physical environments. Data obthiog
industry as a hindrance to adopt otherwise powerful model- 4psepying the behavior of such a system could not be used
driven development techniques and tools. In this paper we pgue . ; - L .
an alternative approach where an accurate high-level model In .Anglum-styl.e 'e’?‘m'”,g’ where it is assumed tha,t .datla IS
can be automatically constructed from observations of a gen noise-free, which, in this case, means that each finite input
black-box embedded system. We adapt algorithms for learnip sequence is uniquely labeled as either accepted or rejbgted
finite probabilistic automata from observed system behavits. We  the system.
prove that in the limit of large sample sizes the learned mode To avoid these difficulties, we are interested in learning

will be an accurate representation of the data-generatingystem. e o .
In particular, in the large sample limit, the learned model and probabilistic system models. Probabilistic models previde

the original system will define the same probabilities for lnear ~ability to construct accurate quantitative models of aeyes
temporal logic (LTL) properties. Thus, we can perform PLTL  observable (and possibly non-deterministic) behavioe data
model-checking on the learned model to infer properties offte we require for learning only consists of previously obsdrve
system. We perform experiments learning models from system system behaviors. It is not assumed that the system for

observations at different levels of abstraction. The expémental . - . . -
results show the learned models provide very good approxima which a model is to be constructed is available for testing or

tions for relevant properties of the original system. interactive data generation in the learning process (hewev
our technigues might be refined lhgtive learningtechniques
|. INTRODUCTION that take advantage of such interactive data acquisition).

To enable the development of complex embedded softwardn this paper we show that methods for learning probalilisti
systems industry and researchers are increasingly fagusiimite automata [5], [6], [8] can be adapted for the task of
on a model-driven development approach (MDD). Once learning Markov Chain system models for verification.
model capturing the behavioral requirements for the systemin related work, Sen et al. [13] previously also adapted
(or component) has been constructed, it can be used fotha algorithm from [5] for learning Markov Chain models
variety of computer aided development tasks like unambigior verification. Our work differs from [13] in that we use a
ous documentation, simulation, model-checking, perfartea different modification of the original algorithm, which ldsto
evaluation and prediction, parameter optimization, adlgr somewhat stronger consistency results for learning inithig, |
synthesis, test generation, and, in restricted cases, @@® and that we analyse theoretically and experimentally hav th
generation. convergence of the learned model relates to the convergdnce

However, constructing accurate models of industrial syste probability estimates for system properties expressethé@at
is hard and time consuming, and is seen by industry astime temporal logic (LTL).
hindrance to adopt otherwise powerful MDD techniques and Statistical model-checking [18], [14] can also be used to
tools. Especially, the necessary accurate, updated, aaifede check (probabilistic) properties of a system. Statistinadel-
documentation rarely exist for legacy software or 3rd partshecking uses hypothesis testing based on sample runs of a
components. We therefore seek an experimental approaghktem (obtained from system traces or using Monte-Carlo
where an accurate high-level model can be automaticaltyodel simulation) that allows the engineer to check to a
constructed ofearnedfrom observations of a given black-boxdesired level of confidence whether a given logical property
embedded system component. Given a learned and explichilylds with a given (minimum) probability. Our ambition
represented model, it can be formally analyzed (e.g. by thodgoes beyond statistical model checking in that we extract an
checking) in the context of other existing component madeksxplicit probabilistic model to support verification (inding

For deterministic system models it has been suggestedptobability estimation) of a large class of properties with
use Angluin’s [1] approach to learning deterministic finitéhe potential costly re-sampling of the system, as well &sghe
automata [4], [11], [12]. For complex systems that are onbble to use the model for other MDD tasks.
partially observable via their interactions with the usecan Learning supports model construction at different levdls o
be quite unrealistic to assume that an adequate deteriminisbstraction since it takes place relative to a set of obfensa
model exists. For example, an embedded system in a moliitat the learner can make of the system under test. These



observations may be based on input and output actions,we denote byPs, , the distribution obtained by (re-)defining

may be based on states by evaluating a set of state predicajess the uniquestart state.

By selecting different actions or predicates, differerarfeed In a DLMC there is a tight connection between strings and

models reflect different views of the underlying system. §hustates: given an observed stringvith Py, (s) > 0 there is a

tailoring the observations to the properties of interesthi@ unique state; that the Markov Chain must be in. Conversely,

succeeding verification tasks will make verification easaietl every statey is associated with the setringgq) of all strings

more efficient. Further, for such abstractions we find it motlat lead from the start state §o We therefore use symbois

informative to preserve probabilistic information aboystem for states ands for strings to some extent interchangeably:

choices, rather than representing them as a purely detistinin can also denote the state in a DLMC reached by the string

or non-deterministic model. The association of strings with states, on the other hanthtis
In this paper, we thus make the following main contriene-to-one. We can still identify with the lexicographically

butions: we propose a modified version of theERGiIA minimal s € stringgq), and may use; also to denote this

learning algorithm for finite stochastic automata, essdblistring.

the consistency of the algorithm for learning in the large- A (Deterministic) Probabilistic Finite Automaton (D)PFA

sample limit, and we provide a theoretical and empiricéd defined similar as a (Deterministic) Labeled Markov Chain

analysis of the consistency and accuracy of model-checkiwigh the following modification:r is now defined orQ" x

LTL properties in the learned model. (QMuU{e}), wherer(q, e) stands for the probability at stage
This paper is structured as follows: Section Il describdbat the symbol generating process ends. A DRFEAdefines

the AALERGIA algorithm for learning Deterministic Labeledthe probability of a stringg =01 ...0,, as

Markov Chains. Section IV presents theoretical convergenc n

guarantees of the algorithm, and Section V demonstrates Pus(s) :1_[7(01 . Oi1,0)T(s,€)

empirically that model-checking our learned system models i—2

provide accurate and fast approximations to model—chgckiﬁ o1

the original system. = L(start). Py(s) = 0 otherwise. This defines a

probability distribution or* provided)  _ Py/(s) = 1, which
will be the case if every strongly connected component (SCC)
. of M contains at least one stagewith 7(q,e) > 0. A subset
A. Strings T of QM is calledstrongly connectedf for each pair(q;, q;)

We useX. to denote a (finite) alphabef; andx“ to denote Of states inI" there exists a patlpq . .. ¢, such thatg, € T
the set of all finite, respectively infinite strings over The for 0 <k <n, 7(qx,qk+1) > 0, go = ;, andg, = g;. Note
empty string is denoted. For a setS of StringS,preﬁX(S) that our definition of (D)PFA differs from the more standard
denotes the set of all prefixes of strings S. We assume an ones in that, as in (D)LMCs, we assume states to be labeled,
ordering on¥ that induces the lexicographic ordering Bn. Whereas the more common automaton model puts the labels
on the transitions. Both types of models are equivalentabut

Il. PRELIMINARIES

B. Markov System Models translation of a transition-labeled automaton to a stalbeled
A Labeled Markov chain (LMC)is a tuple M = automaton may |n|(_:rea}se tr;e nurgb]?r.qf sta_tes Iby ahfactor of
(QM, 2, 7M 7M M) where | 2 |. A minor implication of our definitions is also that we

assume that the label of the start state is always observed,
and so all strings with nonzero probability start with thenga
symbol, and the probability of the empty string is zero.

« QM is a finite set of states,

o M QM — [0,1] is aninitial probability distribution
such thaty>, w7V (q) = 1,

o ™™ . QM x QM — [0,1] is the transition probability C. Probabilistic LTL

H M M _ . . . .
functions.t. for allg € Q™ 32 com 7 (¢, ¢) = 1. Linear time temporal logic (LTL) over the vocabula¥yis

o« LM QM - ¥ is alabeling function defined as usual by the syntax
Labeling functions that assign to states a subset of atomic
propositions AP are accommodated in our framework by” *= truefo [ w1 Apa | = | Oyl prUp (o € %).
defining > = 247, o o . For better readability, we also use the derived temporat-ope

A labeled Markov chain igleterministic (DLMC) if ators0 (always) and) (eventually).

« There exists a statstart* ¢ QM with 7 (start') = 1 Let  be an LTL formula ovel. Fors = ogoi0y ... € X¢,

« Forallg € QM ando € X: there exists at most ones[j...] = o;0j410;42 ... is the suffix ofs starting ato; and
¢ € QM with LM(¢') = o and 7™ (q,¢’) > 0. We then s[j] is the prefixoy...o;. The LTL semantics for infinite
also write (q, o) instead ofr™(q, ¢'). words overY: are as follows:

When there is no risk of ambiguity, we usually omit the « s = true

superscript when denoting components 8f. A (D)LMC e s Eoliff o =09
defines a probability distributior?,; on X according to e s E pi A iff s E @1 ands E ¢
standard definitions (see e.g. [3, Section 10.1]). Fer Q o« s = —piff sEp



e s EQeliff s1...]E ¢ The Merge procedure (line 9 of Algorithm 1) is exactly
e s = ©iUpg iff 3j > 0. s[j...] E 2 andsfi...] = as described in [8]: first, the (unique) transition leadintpi
o1, forall 0 <i<j g, € BLUE is re-directed intog, € RED, i.e., the unique
The syntax of probabilistic LTL (PLTL) is: state ¢’ for which f4(¢’,q») > 0, one setsf*(¢',q,)
A, q) and f4(¢',q) = 0. Then, recursively, the fre-
¢ = Puar(p) (e {>, <, =} re0,1]; ¢ €LTL). quenciesf*(qys,0) (s € £*) are added to the frequencies
f4(qrs,0). Thus, during the whole execution of the algorithm,

A labeled Markov chain)/ satisfies the PLTL formula goq,ency countg# are maintained at the states, which define
Poo(p) iff Prr(p) pa v, where Py is the probability dis- omalized transition probabilities?.

tribution defined by the LCMM, and Py () is short for At termination of the algorithmA is a DPFA (with 74

Pu({s | s = e, 5 € X9}). defined by the normalized frequency courft8) that repre-
sents the data generating distribution, and includes a mode
for the observation lengths; via the termination probabilities
We begin by making some assumptions on the process thé{q, ¢). Since we are interested in the underlying DLMC
generates the data from which we learn: the data is generadefining a distribution over infinite string&«, in the last
by a LMC M, and 5S¢, S5,... is an independent family of step the DPFA is turned into a DLMC by renormalizing the
P)-distributed random variables (with values k¥’). Let transition probabilities(q, o) < 7(q,7)/(1 — (g, €)).
Ly, Ly, ... be an independent family of integer-valued random The main difference between our and previous versions
variables, such that thé&; are also independent of th&”. of the Alergia algorithm is the implementation of the com-
We assume that we observe the finite observation sequengasbility test. In [6] the testCompatibl¢) is conducted by
S; = S¢[L4], i.e., the firstL; symbols of S¢'. Thus, we recursively testing compatibility of the termination arfet
observe independent runs of the system for a period of timext symbol probabilities at statess, g,s in T (s € £*). The
that is determined independently of the observed behairior Compatibility tests are based on Hoeffding bounds for tiie di
particular, the observation does not automatically endrwhéerence|r? (¢,.s,0) — 77 (gps,o)|. In the DSAI algorithm [8],
the system enters a deadlock or failure state — such a situaigompatibility is tested by the condition
would rather lead to repeated deadlock or failure obsermati d(P p 1
in the final part of the sequence). We assume that fihe wo(Pags Paa) < i (1)
are unbounded, i.eP(L; > k) > 0 for all k. This will be for a fixed threshold., where for two distributiong” and Q
satisfied, e.g., by a geometric distribution, which, furthere, .
correspond to the natural model according to which at each doo(P, Q) := sea |P(s) = Q)] 2)
point in time it is decided with a fixed probability whether  Qur algorithm is related to DSAI, but differs in two aspects:
to terminate the observation. first, we determine the compatibility of.,q, € A not via
Finally, we denote withS[n] = 5i,...,5, the sample the probability distributionss ,, , Pa 4, defined in the current
consisting of the first: observations. automatond, but via the probability distribution®r , , Pr.,
Our algorithm, named ALERGIA, for learning LMCs is of the corresponding states in the original tre(i.e., the
a modified version of the PERGIA algorithm for learning states associated ifi with the lexicographic minimal strings
DPFAs from data [5], [8]. in stringgq,.), respectivelystringgq;).) . The reason for this is
AALERGIA starts by building a special DLMC representathat the latter distributions have a clear interpretati®empir-
tion of the dataset called afrequency prefix tree acceptorical probabilities defined by the daf which is instrumental
FPTA(S). This is a treel” with a state for each < prefix(S). in proving the consistency of the learning approach.
The states is labeled with thefrequenciesf” (s, o) (o € %) The second modification is that we replace the fixed thresh-
and f7(s,e), where f7(s, o) is the number of strings i old ;1 by a data-dependent threshold. For this, we denote with
with prefix so, and 7 (s, ) is the number of occurrences of f7'(s) := f7 (s, e) + >, f¥(s,0) (this is just the number of
s in S. By normalizing the frequencieg’ (s, ) at each node strings in S with prefix s), and define as our compatibility
to probabilitiesr? (s, ) an FPTA can also be seen as a DPFAsriterion
The tre€eT is kept as a data representation from which relevant
statistics are retrieved during the execution of the athori doo(Prg,» Pr.a,) < La(f" (@) + La(f" (@), )
A second FPTA representatiof of S is constructed, and where fora > 0 one defined, (n) := y/6alog(n)/n.
then iteratively transformed by merging states which adicar The use of this criterion is based on Lemma 2 due to
to acompatibilitytest (line 8 of Algorithm 1) are determined toAngluin [2] (cf. Appendix A), and instrumental for our cossi
correspond to the same state in the data-generating awtomatency proof. We call the resulting algorithmaARERGIA, with
Following the terminology from [8], Algorithm 1 is descritie the extra 'A’ standing for the Angluin-based compatibildsyi-
in terms of two sets of states: RED states, which have alreadyion. Algorithms 2 and 3 show the practical implementatio
been determined as states that will be included in the fir@fl criterion (3).
output DLMC, and BLUE states which still need to be tested The algorithm takes the parameteras an input. Larger
for compatibility with some RED state. values of « lead to a largere bound in the compatibility

1. L EARNING



Algorithm 1 AALERGIA

Algorithm 3 Compatiblerecurse

Input: : A set.S of strings and a parameter> 0.
Output: : A DLMC A.
1: T+ FPTA(S) and A «+ FPTA(S)

InpUt: : Tv qr; qb, Pr,Pb, €
Output: : true if |p, - Prg,(s) — py - Pr,g,(s)] < € for all
seX”

2: RED « startt 1: if p, < e andp, < € then
3: BLUE « {q: q = start’o,o € ¥, starto € prefix(S)}; 20 return true
4: while BLUE # 0 do 3: end if
5. qp + lexicographically minimaly € BLUE 4. if p,. > e andp, =0 then
6: merged« false 5. return false
7. for ¢, € RED & !merged/* ¢, in lexicographic order 6: end if

*[ do 7. if pp, >eandp,. =0 then
8: if CompatibléT’, g, gy, o) then 8: return false
9: Merge( A, g, q) 9: end if
10: merged— true 10: if |pr -7 (pr,e) —pp - 7L (pp,€)| > € then
11: end if 11: return false
12:  end for 12: end if
13:  if !merged then 13: for o € ¥ do
14: RED «+ REDU ¢ 14: if !CompatiblerecurseT, q,0, g0, pr - 71 (qr, o), b -
5. else 7 (qy,0),€) then
16: BLUE « BLUE\ ¢y U{g=qo | 0 € Z,qp0 € 15 return false

prefix(S)} 16:  end if

17:  end if 17: end for
18: end while 18: return  true
19: return  makeDLMGA);

on the Matlab gitoolbox ( http://code.google.com/p/gibmx/
) and is available at mi.cs.aau.dk/code/aalergia.

Algorithm 2 Compatible

Input: : FPTAT, statesg,, g, anda > 0

Output: : true if the distributions Pr ., Pr, are within
Angluin’s bound

IV. CONVERGENCEANALYSIS

1 if L(gr) # L(g) I* Equality of labeling symbol */then Convergence guarantees oRKERGIA are derived in two
2. return false steps: first, it is established that the algorithm will idfnt
3: end if the correct structure of the data-generating automatfn
4 & < Ia(f" () ande, < La(f"(q)) Then, convergence of the estimates for the learned transiti
5: return  Compatiblerecurse”’, ¢, qs, 1,1, €, + €5) probabiltiesr is used to establish that PLTL queries will be

answered (approximately) correctly.
The following lemma provides a simple characterization of
test, and hence to more merge operations and smaller outpigtmulations in DLMCs.
models in AALERGIA. According to the theoretical analysis Lemma 1:Let M be a DLMC. The equivalence relation
of Section IV, anya > 1 is admissible to obtain convergence; ~ ¢’ :< Py, = Py, is @ probabilistic bisimulation.
guarantees in the large sample limit. However, for any partiProofs of results in this section are given in Appendix B. We
ular finite sample sizex we try to tune the choice af so as denote with)M/ ~ the quotient automaton defined by.
to obtain the best approximation to the true model. In the following we assume that all random variables and
For this we run ALERGIA with different o values, and events of interest are defined on an underlying probability
evaluate the learned model using tBayesian Information space with probability measureP. The distribution of a
Criterion (BIC) score. This score evaluates the learned modelsndom variableX defined on this space is denotét, and
based on likelihood, but subtracts a penalty term for the sithe probability of a measureable eveitC 2 is P(E). For a
of the model. Concret9|y, the BIC score of a DLMCgiven sequence of even(@‘n)n indexed byn e N, we WriteEn a.a.
dataS[n] is defined as (“almost always”) for the event that all but finitely mad,
. take place, andv,, i.0. (“infinitely often”) for the event that
BIC(A ] S[n]) := log(Pa(S[n])) — 1/2 | A] log(N), infinitgly many E,, take place.
where| A | is the size of4, and N = " I; is the total size of For a DLMC M = (QM, ¥ start™ 7™ [M) we define
the data. thestructureof M asM := (QM, ¥, start™ 7™M LM) where
Using a golden section search [15, Section E.1.1] we sy&¥ C QM x QM is the transition relation defined Wy, ¢') €
tematically search for an value optimizing the BIC score of 7 < 7M(q,¢') > 0. The following theorem states that the
the learned model. Our implementation 0AERGIA is based structure of M will be identified if M is a DLMC.



Theorem 1:If M is a DLMC, A™ the DLMC returned by Py (¢) = Pgp(¢)), then¢ was removed fromb. We finally

AALERGIA on inputS[n], anda > 1, then evaluated the learned models by comparing the mean absolute
. — difference in probability (calculated using PRISM [10])esv
P(A" =M/~ a.a.)=1. the generated formulas for the modaéls and A:

The theoretical consistency result requirescaparameter 1
greater than 1. Since Theorem 1 is a large-sample result, it Dy = o] Z(beq) |Pr(p) — Pa(p)] (5)
may nevertheless be the case that for smaller datasetswgunni
AALERGIA with a < 1 leads to better approximations of thelhe mean absolute difference betwedhand B is calculated

true model)M. analogously and is denotdd.
Lemma 1 together with Theorem 1 lead to: For the actual empirical analysis we have considered model
Theorem 2:Under the assumptions of Theorem 1: for allearning at different levels of abstraction, thus allowitig
LTL propertiese: learning task to be tailored to the properties of interedt (c
Section I). Specifically, we have performed experimentagisi
P(lim Pan(¢) = Pru(9)) = 1. (4)  the randomized self-stabilizing algorithm by [9] and theps

gambling game described in [3].

An LTL proper is boundedif ¢ only contains until- . . .
operators ig thpe tmz—bounded forUg)L. Fo); boundeds, we . In _the craps gambling game we start off by rolling tV_VO fair
' six-sided dice. If the outcome is 7 or 11, the game is won,

obtain that.'l'_he.o.rem 2 also holds when the source mOdeIa'r%d if the outcome is 2, 3, or 12 then the game is lost. For all
not deterministic:

oo 1 s LN, and” ain Trore 1 hn 211 ST, 0 e 1 ke aan, I e tcome o
(4) holds for all bounded LTL properties 9 ’ q

. . . . tp the original roll (now called the “point”) the game is won.

T_he proof of this theore”? is quite straightforward amIfor any og'][her outcf)me, the dice areprolle()j aga?n. This psoces
omitted due to space constraints. . . . .

Even though the learned model converges to an automaﬁﬁ)r?tmues untll the game s either won or_lost. Fig. 1 show_s_a
that is bisimilar to the true one, this does not imply an imm%-tgtrlgor\é Crlaslgng%gil gff ttr?ee g:srz;aﬂlgv\r);ﬁgelgi:??ﬁj ‘?r;ii)t(,f)hcn
diate generalization of Theorem 2 to PCTL formulas. Conside P P P '
as an example the PCTL formufa= (O P—¢.50a. SupposeV/
consists of four statestart, ¢1, ¢2, g3 all labeled withb, except
q3 labeled witha. LetT(StarL (h) = T((]Q, QQ> = T((]3, qd) =1,
and7(q1,q2) = 7(q1,93) = 1/2. Then Py (¢) = 1. However,
in any learned modell™ with only a close approximation of
the transition probabilities(g;,-) one obtainsP4-(¢) = 0.
This example shows that an extension of Theorem 2 to PCTL
could only be based on a fragment of PCTL in which strict
equalities P—,. are not allowed, or be based on a notion of
approximate satisfaction of PCTL formulas.

V. EXPERIMENTS

In order to test the proposed algorithm we have generated
observation sequences from two known system models. We
applied the learning algorithm on the sampled sequences, an
compared the resulting models with the known generating
models in terms of their PLTL properties. For the actual Fig- 1. A Markov chain model for the craps gambling game [3].
comparison of the models, we considered relevant systenSuppose now that we are only interested in the probability of
properties expressed by PLTL formulas as well as adsetwinning the game within rolls of the dice. For this situation
of randomly generated PLTL formulas. The formulas wenge can abstract away information about the actual value of
generated using a stochastic context-free grammar, ard ethe “point” and only consider the predicatstart, point, lost,
formula was restricted to a maximum length 3sK. andwon With this abstracted set of predicates we generated

In order to avoid testing on tautologies or other formulasets of observation sequences whose lengths are georitgtrica
with little discriminative value, we constructed a baselindistributed withp = 0.1. More specifically, we first generated
model B with one state for each symbol in the alphabet amabservation sequences from the model in Fig. 1, and then
with uniform transitions probabilities. For each geneddt€L  replaced the values of the dice rolls with the abstract state
formula ¢ € ® we tested whether the formula was able tpoint Observe that by performing this type of abstraction
discriminate between the learned modé&| the generating over the observation sequences, we are effectively sagiplin
model M, and the baseline modeB. If ¢ was not able observations from a non-deterministic LMC. The results of
to discriminate between the three models (i.B4(¢) = the experiments are listed in Table I. In the table, #Dataeés t



TABLE |
THE EXPERIMENTAL RESULTS FOR THE CRAPS GAMBLING MODEL

#Data | #Seq| Time | Size | « range Dy P Py Ps Py Ps Ps P(Owon)
80 5 0.29 31 [26;26] | 0.06402 0.2 0.36 0.3997 0.4 0.4 0.4 0.4
160 19 0.017 4 [271;26] | 0.12169| 0.1579 | 0.2011 | 0.2619 | 0.2841 | 0.287 | 0.2874 0.2874
320 35 0.03 5 [271;26] | 0.06829| 0.1765| 0.2405| 0.3332 | 0.369 | 0.3741| 0.3749 0.375
640 65 0.05 4 [271;26] | 0.01967 | 0.1967 | 0.283 | 0.4023 | 0.4443| 0.4496 | 0.4502 0.4503
1280 141 0.07 4 [275;26] | 0.02945| 0.2031 | 0.2948 | 0.43 0.4842 | 0.4923 | 0.4935 0.4938
2560 291 | 0.092 4 [275;26] | 0.01183| 0.2188 | 0.2906 | 0.4037 | 0.4555| 0.4648 | 0.4665 0.4669
5120 530 0.16 4 [276;26] | 0.01376| 0.2063 | 0.2692 | 0.3754 | 0.4314 | 0.4437 | 0.4464 0.4472
10240 | 1081 | 0.24 4 [276;26) | 0.00619 | 0.2214 | 0.2869 | 0.3942 | 0.4475| 0.4583 | 0.4604 0.461
20480 | 2122 | 0.32 4 [276;26] | 0.00658| 0.2297 | 0.2944 | 0.4013 | 0.4554 | 0.4667 | 0.469 0.4697
40960 | 4251 | 0.48 4 [276;26] | 0.00483| 0.2248 | 0.2885 | 0.3955 | 0.4511 | 0.4632 | 0.4658 0.4665
M 9 0.2222 | 0.2994 | 0.3916 | 0.4429 | 0.4551 | 0.4579 0.4588

size of the data set (total number of symbols) used for leggni stable if it only contains a single token.

#Seq is the number of observation sequences in the data seUsing the protocol above we have first analyzed the be-
'Size’ is the number of nodes in the learned LM@, fange’ havior of the learning algorithm by varying the number of
is the interval (identified using the golden section seafoh) processes and changing the level of abstraction. For a given
o for which a BIC-optimal LMC is learned 4 is calculated number of processes, we have generated sets of observation
according to Equation 5 using 1102 formulas, and 'Time’ isequences whose lengths are geometrically distributed wit
the average run time (in seconds) of thel&RGIA algorithm; ; = 0.05. In the first experiment, each generated data point
the average is calculated wrt. the iterations performedhiey tcorresponds to a value assignment to the set of Boolean vari-
golden section search. Typically the golden section seargbles associated with the processes. Thus, witirocesses,
terminated after 25 to 35 iterations. Finally, the columngere are2” such assignments. In the second experiment,
labeled P, list the probabilitiesP(trueU=’won). From the we replaced the data points with abstract states repregenti
results we see that by using the abstracted alphabet and QA number of tokens defined by the corresponding value
35 observation sequences we still obtain accurate pratyabikssignments. For both experiments we also observed when
estimates of winning the game withinrolls (for 1 <i < 6) the network was stable. The results of the experiments with
and we also achieve a relatively small mean difference 8) 7, 11, 19, and 21 processes are given in Table Il (listing
probability of the randomly generated LTL formulas; fothe learning times and the sizes of the learned models)
comparison,Dp = 0.48933. Fig. 2 shows an abstract modelnd in Fig. 3 (showing the probability of reaching a stable
structure learned from 65 observation sequences. configuration withinZ steps as a function df). From Table Il

we see (as expected) that the time complexity of learning an
abstract model is significantly lower than that of learnirfgla
model. Note that due to time complexity, we have not learned
full models for networks with 11, 19, and 21 processes.

Fig. 3 provides a comparison of the probability values
P(trueU="stablg defined by the true models and the models
learned (both full and abstract) with datasize 10000. Qiera
one observes a very good match between the probability value
computed in the different models, with some discrepancies
emerging for larger values af in the 11 and 19 processes
models. To illustrate the accuracy of the models learned
Fig. 2. An LMC model for the craps gambling game learned us8g o smgaller amounts of data, we have collected in Table IiI
observations sequences over the alphabet {start, point, lost, won}. . . .

i ) . additional summary statistics for the accuracy obtainednfr

Consider now the randomized self-stabilizing protocol byigterent datasets. The first two columns specify the number
[9]. This algorithm is designed for ring networks with ary¢ ocesses, and whether a full (F) or abstract (A) model
odd number of processes, and where each propess s earned. The table then contains for different samptessi
equipped with a Boolean variablg;. The protocol operates (,mpher of symbols) 80,.. .,10000 thatal variation distance

syr_1chronously SUCh_ that ift; = X;_;, thenp; makes_ & petween the distributions over the time taken to reach the
_unlform random choice about the next valueXof; otherv_\nse stable state defined by the learned and true modely':
it sets X; to the current value ofX;_;. For each pair of

neighboring processes with the same value assigned to their oo
Boolean variables we have a so-called token. The network is TVD(A, M) = 1/22 | Pr(L) — Pa(L) |,
i=1
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Fig. 3. The figures showP(trueU<"stable) as a function of the number of stefis On the left the results for networks with 3 and 7 process heva,
on the rigth the results for networks with 11 and 19 procesBes 3, 7, and 11 processes the networks are learned fromsdttawith 10000 symbols and
an average sequence length of 20. For the results with 1®gses a data set with 100000 symbols were used.

TABLE Il
EXPERIMENTAL RESULTS FOR THE SELFSTABILIZING PROTOCOL
Full model Abstract model
#Data| Time Size «range || Time Size  « range
;s 80 006 37 [2—1;26] || 0.01 2 [274;29)
S 320 (0.065 10 [2%;26] ||0.025 2 [276;26]
« 1280|0.21 8 [20;26] || 0.05 2 [279;29)
5120 | 0.76 8 [27%;26] || 0.1 2 [276;26]
10000| 1.4 8 [276;20]]|0.15 2 [279;29]
;s 80 (017 71 [276;26] |0.02 11 [271;29]
S 320 |24 201 [276;26]||0.045 4  [20;26]
~ 128022 809 [2—1;26] || 0.11 4 [27%;29)
5120 | 23 387 [20;22] [|0.32 4 [275;26)
10000| 50 182 [29;23] ||0.5 4 [276;26]
s 80 025 29 [271;26]
S 320 0.3 30 [271;29]
o 1280 0.74 40  [20;29)
5120 0.8 6 [21;26]
10000 1.5 8 [0.334;0.511]
s 80 8.4 52 [272;29]
S 32 73 128  [271;26)
o 1280 93.2 128 [29;27]
5120 202 35 [271;29)
10000 344 34 [272;29]
s 80 244 70 [276;26)
e 320 814 111 [271;26]
o 1280 67.8 113 [271;27)
5120 552 77 [27%27)
10000 37 40 [272;27)

sizes not very accurate models are learned.
TABLE Il
ACCURACY RESULTS FOR RING NETWORK

Sample Size
#P | FIA 80 320 [ 1280 | 5120 | 10000
3 F 0.166 | 0.070 | 0.052 | 0.034 | 0.031
3 A 0.206 | 0.082 | 0.011| 0.015| 0.010
7 F 0.698 | 0.540 | 0.405| 0.057 | 0.033
7 A 0.435 | 0.121 | 0.078 | 0.042 | 0.038
11 A 0.497 | 0.143 | 0.077 | 0.065 | 0.067
19 A 0.704 | 0.472 | 0.208 | 0.107 | 0.106

Since the abstract models are often significantly smalkar th
the generating models, the time required for model checking
using the abstract models is also expected to be lower. We hav
analyzed this hypothesis further by measuring the time com-
plexity for evaluating the PLTL property(true U="stable
for 19 and 21 processes. For the generating model, the total
time is calculated as the time used for compiling the PRISM
model description to the internal PRISM representationels w
as the time used for the actual model checking. For the albstra
model, the total time is calculated as the time used for model
learning (which produces a model in the PRISM file format),
model compilation, and model checking. Fig. 4 shows the
(accumulated) time used by both approaches as a function of
L. The time complexity of using the abstract models is close
to constant. It consists of a constant time (2403 sec. and 269
sec., respectively) for model learning and model comifati
and a negligible additional linear time for model checking.

Going back to then ranges reported in the tables above,
we see that for the craps gambling game (Table I) and the

where P(L) is short for p(ﬁstab|eU=Lstab|9_ The sum- randomized self-stabilizing protocol (Table 1), the leiag is
mation extends ta. = oo, since for some models |earnecﬂUite robust with regard to the value. This suggests that

from small datasets one hd3;(co) := P4(—(stable > 0.

simply using a theoretically justified constant> 1 will lead

In fact, this is a main contributing factor for the relatiyel to good results.

large distances found for the smaller data sizes. All redult

Finally, we would like to note that for the experiments

Table 1l are averages taken over 5 different data samplesaifove, the observed learning time grows roughly linearthé
the specified size. The results show that for very small samize of the data set although the worst case time complexity i



18000 : : : : : version of the algorithm and its consistency proof presente
in Appendix B by relating it to a basic learning by enumenatio
/ approach described by Angluin [2].
oo / 1 A proof of consistency for the Alergia algorithm was first
12000 | 1 sketched in [5], and then elaborated in [6]. As mentioned
' in Section 1ll, in Alergia compatibility of the distributits
Pr., Prg, is tested by recursively applying a Hoeffding test
for the equality of the local termination and next symbol
probabilities Pr 4, s(0), Pr.q,s(0), (s € £*, 0 € T U {e}).
The proof of convergence then is based on the claim that
£ asn — oo, with probability one, all tests will return the
ZOOO*M - 197proc. correct result (i.e., the test will reject equality iff thechl
o b _ Learned model - 21 proc. transition probabilitiesPy; , (o), Par.q, (o) are different in the
0 20 40 60 80 100 120 true modeIM)
L . .
Fig. 4. The figure shows the accumulated time for calculating .The argument presented n [6] does take mto. account that as
P(trueU<ZLstable), i.e., at stepi we have the total time for calculating 7* INCr€ases the number of tests performed will also increase
P(trueUS7stable), for 1 < j < i. (linearly in n), and therefore the level of significance is
reduced as a function of so as to ensure that if each test
) o ] ) ] achieves the prescribed level of significance, then also the
cubic. This is consistent with the results reported in [S}eve  rpapility of making an error in any test can be made small.
a similar behavior is observed. What the argument of [6] neglects to consider is the fact
VI. CONCLUSION that asn increases, there will always be tests performed on

In this paper we have shown how Machine Learning tectcal distributionsPr.q,s, Pr.q, for which the data support
niques for probabilistic model learning can be used to obtal (4r5), /" (gs) is small (typically, whery, s, g,s are at or
system models for model-driven development. The main cof€d" the leaves df). The concrete test used in [6] will never
tributions of this paper are: theAAERGIA algorithm obtained "J€ct equality ofPr.q, s, Prq,s when this data support is
as a modification of previous DPFA-learning algorithms, gufﬁuently small, and therefore there will always be some

completely new proof of consistency for this algorithm thdests performed which are not_ kn_own _to return correct result
avoids some difficulties found in earlier proofs of related A MOre complete argumentis givenin [13]. Here the authors

results, novel results that link the convergence of theraata use the fact that one only needs to bound the type 1 errors

learning procedures to convergence of probability eseésat (rejecting a gorr.ect compatibili.ty hypothesis) for a numbe
LTL-definable system properties, and an experimental ev&l. leSts that is linearly increasing, whereas the type 2rerro
uation that demonstrates the feasibility of the approach {ACCEPtINg an incorrect compatibility hypothesis) onlgdeto
practice. b_e b(_)unded for a number of tests thafc depends on the (sample-
Compared to statistical model checking [18], [14] the modé&jze independent) number of states.|_n the true modgl, Sen et
learning approach offers the advantage that it allows us 3 [13] only show that the probability of not learning the
generalize from the observation of finite behaviors to idini CO'Tect model can be made arbitrarily small, which is weaker
behaviors. Thus, for example, in the ring network we obtaff2n the probability one convergence of our Theorem 1.
from the models learned from a sufficient amount of data 1© Motivate our approach, we begin with a short review
also the correct probability for the unbounded propefty- of Angluin’s [2] Iearnmg by enumeratioprinciple, which is
Ostable This generalization ability, of course, is dependent dfgSed on the following lemma. o
the correctness of the assumption that the source model is ‘Li(emma 2 (Angluin)Let Ps be a distribution on a count-

DLMC. However, as Theorem 3 shows, in the case where ABI€ S€t4, Si (i > 0) i.i.d. Ps-distributed random variables,
tandPg[n] the empirical distribution defined b, ..., S,. Let

a > 1. Then

16000 |- E

10000 |- ¥
8000 |

6000 -

Accumulated time

4000

assumption is wrong we still obtain similar guarantees fer
analysis of bounded properties as one obtains with statlsti
model checking. P(dso(Ps, Pgpp) < In(n) a.a.) =1. (6)
) . [n]
In this paper we have focused on the simplest case that
system behaviors only consist of sequences of symbols repNoW let M be a countable set of models, so that each
resenting system outputs. In ongoing work we are extendiflg € /M defines a distributior); on a countable sef. Let

the learning procedure to interactive systems with botlutsp /1, M2, . .. be a fixed enumeration o#4. Then, for a given
and outputs. data sample with empirical distributiof[n] return the first

model M; in the list that satisfied..(Par,, Pgp,)) < la(n).
APPENDIXA By Lemma 2, any/; with Py, equal to the data-generating
CONSISTENCY. A REVIEW distribution Ps will satisfy the condition a.a. with probability
We first review briefly previous consistency argumentne. For anyM; with P, # Ps the condition will not
for Alergia-style algorithms [5], [6]. Then we motivate ourbe satisfied i.o., sincé,(n) — 0 for n — oco. Since only



finitely such M; precede the first\/; with Py, = Pg in  with
the enumeration, with probability one a.a. none of them will Ay = n{doo(PS,Pgm) < I(D}.
satisfy the condition, and so a.a. the fifdt with Py, = Ps 1>k
will be returned by the algorithm.
) . .. Then

Theoretically very elegant, learning by enumeration is ob-
viously quite impractical. Nonetheless, learning aldomis in - A, \ {d.o(Ps, Ps(f(,y)) < I(f(n)) a.a.} = {f(n) <k i.0.}
the Alergia family can perhaps best be understood as oper- (8)
ational algorithms implementing the basic enumeratiorideAccording to our assumptions, the event on the right of (8) ha
The first modification for learning probabilistic automasad probability zero. It follows that/x>o A \ {deo (Ps, Ps(ny) <
split the learning problem into the two parts of identifyith@ 1(f(n)) a.a.} also has probability zero, which with (6) yields
structure of the automaton, and the estimation of its nurakri (7).
parameters. Only the first part is done by an enumeration-To show the second statement of the lemma, dlet=

style procedure, and as a result one is also only guaranteied( Pr, Ps) > 0. It is sufficient to show that
to identify the structure from (large) finite samples, wiaere

the parameter estimates will only converge in the limit te th P(I(g(n) +1(f(n)) <6/2 a.a.) =1, 9)
correct values. Secondly, the pointwise teBts = Py, are
replaced by membership te € {Py | M € M,} for
seFt)ij acZording to a f&edsgr%otocgl thal guaranteje;; that for Pdoo(Prigu), Psipmy) > 0/2 a-0.) = 1. (10)
eachs$ a fixed finite sequence of tests (independentphas (9) follows immediately from our assumptions on
to be performed correctly until a uniqueg with Py; = Pg is g(n), f(n), and the fact thaf(n) — 0 for n — oo.

identified. (10) follows by an identical argument as for the first part of
the lemma, where instead of (6) one uses that by the strong

and

APPENDIX B law of large numbers (or, as a special case of (6))
PROOFsS
Proof of Lemma 1: Let ¢ ~ ¢’. Then L(q) = L(¢), P(doo(Ps, Ppyy) < 0/4 a.a.) = 1.
becausel;,, and Py, assign probability one to the set of -

strings starting withZ.(q), respectivelyL(q'). For eacho € \yg are now ready to proceed to the proof of Theorem 1,

% one furthermore has(q,0) = 7(¢’,0), and f?ra With  for which we need the following additional notation and
7(q,0) > 0 also Prgo = Pugo, 1€, g0 ~ ¢'o. ThUS, yefinitions.

for each~ equivalence classl C Q™, one hasr(q, 4) = In the following we usee to denote either or b, i.e.,

Do qoeaT(@0:0) =20 goeaT(d0) = 7(¢; A). B (efinitions or statements containing expressions invghsin

To prepare the proof of Thereom 1 we begin with gepresent simultaneous definitions or statements for batid
generalization of Lemma 2: b.

Lemma 3:Let Ps, S; as in Lemma 2. Letl; (i > 0) b Agin the statement of the theoreth always denotes the
another i.i.d. family ofA-valued random variables distributed,e model from which the data was generated. We denote
according to a distributionP’r. Let g(n), i(n) (n > 1) be ith $%  the set of words that have nonzero probability under
integer-valued random variables, such that with prohgl:nine Pyr. Any execution of the inner loop at lines 7-12 is called
the sequencegg(n)), and (h(n)), are non-decreasing andap jteration of the algorithm.

unbounded. Thews = Pr iff We denote withA?, g7, the values ofA, respecitivelyg,
P(du(Pyryos Parrom) < I iy a) =1, immediately before.the‘th iteration yvhgn ALERGIA is run
(@ (Prigay: Psisom) (9(n)) +1(f(m)) a.a.) on dataS|[n]. In particular,A} is the initial FPTA constructed
and Pg # Pr iff in line 1. We also recall thatl™ is the automaton returned by
AALERGIA.
P(d(Prigny: Psipem)) > 1(9(n)) +1(f(n)) a.a) = L. Proof of Theorem 1:

Observe that apart from the i.i.d. assumption on the familie In order to make the association between strings and states

(S:):, respectively(T;);, no further independence assumptionS'°"€ explicit, we now sometimes writg(s) for the state
are made. In particulas; need not be independent &, or reached by string, ands(q) for the lexicographically minimal
any of these be independent of ther), 4(n). string associated with. We say that the FPTALY is rich, if

Proof: For the first statement it is sufficient to show thaff cONtains

(a) for allm € M/~ a node fors(m), as well as nodes for
P(d(Ps, Psipny) < 1(f(n)) a.a.) =1 (7) s(m)o for all o € ¥ with s(m)o € %/,

(b) nodes for all lexicographic predecessorsif) of nodes

included under (a).

We prove the theorem via a sequence of three claims.
di(Ps, Pgppy) < I(n) a.a. = Ug>o Ay, Claim I P(A? is rich a.a.) = 1.

(and analogously fof’, T[g(n)]). The statement then follows
with the triangle inequality. To show (7) we write



Proof of Claim 1 immediate from the strong law of large
numbers.

We say that the catompatible( A}, q7";, g7 ;, ) returns the
correct result (abbreviated r.c.r.), if the valtrae is returned
iff

Purrsan,) = Pus(ap,)-

Forn,i > 1 we define the event
G} = {A? rich} N ﬂ{compatz’ble(A}‘, 4r ;> qp j» @) T.C.LY.

7<i

Intuitively, G7* represents the event that for the fiist- 1

Proof of Theorem 2:By Lemma 1Py (¢) = Purj ().

By Theorem 1A™ with probability 1 a.a. has the same struc-
ture asM/ ~. The transition probabilitieg” (m, o) are the
empirical probabilities from i.i.d. samples frodd’/~(m, o),
and therefore converge with probability 1 &/~ (m, o).

Using the automata-theoretic approach to verification,[16]
[71.
with reachability probabilities in the product of the Maxko
chains A", M/ ~ and a Buchi automatorB representing
¢. The state spaces of all these product Markov chains
will a.a. be identical, and the transition probabilitiesthe
productsA™ x B converge to the transition probabilities in

[17], the probabilitiesPa- (¢), P/~ (¢) can be identified

iterations the algorithm performed a correct and typicat (f the productM/ ~ xB. Since the reachability probabilities

large samples) run.

The following claim essentially states that whéfi holds,
then the callkompatible(A, q;, g;' ;» o) will test the identity
Purrs, = Pus, for fixed s, sp that do not further depend
on A7. Furthermore, for a fixed:, if G, holds, then the
algorithm terminates after at moistiterations with the correct
model structureM// ~.

Claim 2 There existg > 0, so,; € £%,, (1 <14 < k), such
that:

(1]
(2]
(3]
(4]

(i) G7 C {slag;) = se,i} R o 5]
(i) b1 € {A" = AZ+1} N{A" = M/~}

Proof of Claim 2

Let k be the number of nodes required to be includedin (6]
for A; to be rich. (i): Fori < k, givenGY', within the firsti —1 7]
iterations exactly the same merge operations were perfbrme
and therefore before théth iteration the lexicographically [8l
minimal elements oBlue and Redare fixed stringss, ;. (9]

(i: If Gy, holds, then after at most iterations A7 will
contain for everym € M/ ~ one red nodey.(m) with [10]
s(g-(m)) = s(m) (and no other red nodes). Furthermore, for
eacho € ¥ with Py (o) > 0, ie., firstim)o € X3,
the nodefirst(m)o € A} has been merged with.(6(m, o)),
which means that the transition relationsfin and A}, , are
isomorphic, and that no blue nodes remain/ify, ;.

Claim 3 Let k£ be as in Claim 2. Then

[11]

[12]

P(compatible(A}, q;";, q ;» @) 1.C.la.a. | GI' a.a.) =1 [13]

Proof of Claim 3 The assumptions of Claim 2 (i) are
satisfied a.a., and therefore Compatiblg, ¢";,q;';) is a.a. 14
equivalent to

doc(Pag s,y Pag,sy) < (ST (s02) + L7 (50.,0))
[16]

Ps,, s, , is the empirical distribution of an i.i.d. sample of size
™ (se,:) from Py, . [17]

With probability one the sample size§'(s,,;) grow un-
bounded, so that the conditions of Lemma 3 are satisfied. It
thus follows thatcompatible(A}, q,';, g5 4, ) r.C.I. @.a. with [18]
probability one.

Combining claims 1, 2(i), and 3 now Yyields that
P(G}y, a.a.) = 1, which, with claim 2(ii) concludes the
proof of Theorem 1. ]

[15]

are continuous functions of the transition probabilitidss
implies the convergencBa- (¢) — Par(¢).
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