
Aalborg Universitet

Learning Probabilistic Automata for Model Checking

Mao, Hua; Chen, Yingke; Jaeger, Manfred; Nielsen, Thomas Dyhre; Larsen, Kim Guldstrand;
Nielsen, Brian
Published in:
8th International Conference on Quantitative Evaluation of Systems (QEST)

DOI (link to publication from Publisher):
10.1109/QEST.2011.21

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Mao, H., Chen, Y., Jaeger, M., Nielsen, T. D., Larsen, K. G., & Nielsen, B. (2011). Learning Probabilistic
Automata for Model Checking. In 8th International Conference on Quantitative Evaluation of Systems (QEST)
(pp. 111-120). IEEE (Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/QEST.2011.21

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/QEST.2011.21
https://vbn.aau.dk/en/publications/c9ff3d94-6e80-4827-b184-a1b8ceed7c2f
https://doi.org/10.1109/QEST.2011.21

Learning Probabilistic Automata for Model
Checking

Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D. Nielsen, KimG. Larsen, and Brian Nielsen
Aalborg University

Dept. of Computer Science
Email: [huamao,ykchen,jaeger,tdn,kgl,bnielsen] @cs.aau.dk

Abstract—Obtaining accurate system models for verification
is a hard and time consuming process, which is seen by
industry as a hindrance to adopt otherwise powerful model-
driven development techniques and tools. In this paper we pursue
an alternative approach where an accurate high-level model
can be automatically constructed from observations of a given
black-box embedded system. We adapt algorithms for learning
finite probabilistic automata from observed system behaviors. We
prove that in the limit of large sample sizes the learned model
will be an accurate representation of the data-generating system.
In particular, in the large sample limit, the learned model and
the original system will define the same probabilities for linear
temporal logic (LTL) properties. Thus, we can perform PLTL
model-checking on the learned model to infer properties of the
system. We perform experiments learning models from system
observations at different levels of abstraction. The experimental
results show the learned models provide very good approxima-
tions for relevant properties of the original system.

I. I NTRODUCTION

To enable the development of complex embedded software
systems industry and researchers are increasingly focusing
on a model-driven development approach (MDD). Once a
model capturing the behavioral requirements for the system
(or component) has been constructed, it can be used for a
variety of computer aided development tasks like unambigu-
ous documentation, simulation, model-checking, performance
evaluation and prediction, parameter optimization, controller
synthesis, test generation, and, in restricted cases, evencode
generation.

However, constructing accurate models of industrial systems
is hard and time consuming, and is seen by industry as a
hindrance to adopt otherwise powerful MDD techniques and
tools. Especially, the necessary accurate, updated, and detailed
documentation rarely exist for legacy software or 3rd party
components. We therefore seek an experimental approach
where an accurate high-level model can be automatically
constructed orlearnedfrom observations of a given black-box
embedded system component. Given a learned and explicitly
represented model, it can be formally analyzed (e.g. by model-
checking) in the context of other existing component models.

For deterministic system models it has been suggested to
use Angluin’s [1] approach to learning deterministic finite
automata [4], [11], [12]. For complex systems that are only
partially observable via their interactions with the user,it can
be quite unrealistic to assume that an adequate deterministic
model exists. For example, an embedded system in a mobile

device may react differently to identical input sequences when
operated in different physical environments. Data obtained by
observing the behavior of such a system could not be used
in Angluin-style learning, where it is assumed that data is
noise-free, which, in this case, means that each finite input
sequence is uniquely labeled as either accepted or rejectedby
the system.

To avoid these difficulties, we are interested in learning
probabilistic system models. Probabilistic models provide the
ability to construct accurate quantitative models of a system’s
observable (and possibly non-deterministic) behavior. The data
we require for learning only consists of previously observed
system behaviors. It is not assumed that the system for
which a model is to be constructed is available for testing or
interactive data generation in the learning process (however,
our techniques might be refined byactive learningtechniques
that take advantage of such interactive data acquisition).

In this paper we show that methods for learning probabilistic
finite automata [5], [6], [8] can be adapted for the task of
learning Markov Chain system models for verification.

In related work, Sen et al. [13] previously also adapted
the algorithm from [5] for learning Markov Chain models
for verification. Our work differs from [13] in that we use a
different modification of the original algorithm, which leads to
somewhat stronger consistency results for learning in the limit,
and that we analyse theoretically and experimentally how the
convergence of the learned model relates to the convergenceof
probability estimates for system properties expressed in linear
time temporal logic (LTL).

Statistical model-checking [18], [14] can also be used to
check (probabilistic) properties of a system. Statisticalmodel-
checking uses hypothesis testing based on sample runs of a
system (obtained from system traces or using Monte-Carlo
model simulation) that allows the engineer to check to a
desired level of confidence whether a given logical property
holds with a given (minimum) probability. Our ambition
goes beyond statistical model checking in that we extract an
explicit probabilistic model to support verification (including
probability estimation) of a large class of properties without
the potential costly re-sampling of the system, as well as being
able to use the model for other MDD tasks.

Learning supports model construction at different levels of
abstraction since it takes place relative to a set of observations
that the learner can make of the system under test. These

observations may be based on input and output actions, or
may be based on states by evaluating a set of state predicates.
By selecting different actions or predicates, different learned
models reflect different views of the underlying system. Thus,
tailoring the observations to the properties of interest inthe
succeeding verification tasks will make verification easierand
more efficient. Further, for such abstractions we find it more
informative to preserve probabilistic information about system
choices, rather than representing them as a purely deterministic
or non-deterministic model.

In this paper, we thus make the following main contri-
butions: we propose a modified version of the ALERGIA

learning algorithm for finite stochastic automata, establish
the consistency of the algorithm for learning in the large-
sample limit, and we provide a theoretical and empirical
analysis of the consistency and accuracy of model-checking
LTL properties in the learned model.

This paper is structured as follows: Section III describes
the AALERGIA algorithm for learning Deterministic Labeled
Markov Chains. Section IV presents theoretical convergence
guarantees of the algorithm, and Section V demonstrates
empirically that model-checking our learned system models
provide accurate and fast approximations to model-checking
the original system.

II. PRELIMINARIES

A. Strings

We useΣ to denote a (finite) alphabet,Σ∗ andΣω to denote
the set of all finite, respectively infinite strings overΣ. The
empty string is denotede. For a setS of strings,prefix(S)
denotes the set of all prefixes of stringss ∈ S. We assume an
ordering onΣ that induces the lexicographic ordering onΣ∗.

B. Markov System Models

A Labeled Markov chain (LMC)is a tuple M =
〈QM ,Σ, πM , τM , LM 〉, where

• QM is a finite set of states,
• πM : QM → [0, 1] is an initial probability distribution

such that
∑

q∈QM πM (q) = 1,
• τM : QM × QM → [0, 1] is the transition probability

functions.t. for all q ∈ QM ,
∑

q′∈QM τM (q, q′) = 1.
• LM : QM → Σ is a labeling function

Labeling functions that assign to states a subset of atomic
propositionsAP are accommodated in our framework by
definingΣ = 2AP.

A labeled Markov chain isdeterministic (DLMC), if

• There exists a statestartM ∈ QM with πM (startM) = 1
• For all q ∈ QM and σ ∈ Σ: there exists at most one

q′ ∈ QM with LM (q′) = σ andτM (q, q′) > 0. We then
also writeτM (q, σ) instead ofτM (q, q′).

When there is no risk of ambiguity, we usually omit the
superscriptM when denoting components ofM . A (D)LMC
defines a probability distributionPM on Σω according to
standard definitions (see e.g. [3, Section 10.1]). Forq ∈ QM

we denote byPM,q the distribution obtained by (re-)defining
q as the uniquestart state.

In a DLMC there is a tight connection between strings and
states: given an observed strings with PM (s) > 0 there is a
unique stateq that the Markov Chain must be in. Conversely,
every stateq is associated with the setstrings(q) of all strings
that lead from the start state toq. We therefore use symbolsq
for states ands for strings to some extent interchangeably:s
can also denote the state in a DLMC reached by the strings.
The association of strings with states, on the other hand, isnot
one-to-one. We can still identifyq with the lexicographically
minimal s ∈ strings(q), and may useq also to denote this
string.

A (Deterministic) Probabilistic Finite Automaton (D)PFA
is defined similar as a (Deterministic) Labeled Markov Chain,
with the following modification:τ is now defined onQM ×
(QM ∪{e}), whereτ(q, e) stands for the probability at stateq
that the symbol generating process ends. A DPFAM defines
the probability of a strings = σ1 . . . σn as

PM (s) =
n
∏

i=2

τ(σ1 . . . σi−1, σi)τ(s, e)

if σ1 = L(start). PM (s) = 0 otherwise. This defines a
probability distribution onΣ∗ provided

∑

s PM (s) = 1, which
will be the case if every strongly connected component (SCC)
of M contains at least one stateq with τ(q, e) > 0. A subset
T of QM is calledstrongly connectedif for each pair(qi, qj)
of states inT there exists a pathq0q1 . . . qn such thatqk ∈ T
for 0 ≤ k ≤ n, τ(qk, qk+1) > 0, q0 = qi, andqn = qj . Note
that our definition of (D)PFA differs from the more standard
ones in that, as in (D)LMCs, we assume states to be labeled,
whereas the more common automaton model puts the labels
on the transitions. Both types of models are equivalent, buta
translation of a transition-labeled automaton to a state-labeled
automaton may increase the number of states by a factor of
| Σ |. A minor implication of our definitions is also that we
assume that the label of the start state is always observed,
and so all strings with nonzero probability start with the same
symbol, and the probability of the empty string is zero.

C. Probabilistic LTL

Linear time temporal logic (LTL) over the vocabularyΣ is
defined as usual by the syntax

ϕ ::= true | σ | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2 (σ ∈ Σ).

For better readability, we also use the derived temporal oper-
ators� (always) and♦ (eventually).

Let ϕ be an LTL formula overΣ. Fors = σ0σ1σ2 . . . ∈ Σω,
s[j . . .] = σjσj+1σj+2 . . . is the suffix ofs starting atσj and
s[j] is the prefixσ0 . . . σj . The LTL semantics for infinite
words overΣ are as follows:

• s |= true
• s |= σ iff σ = σ0

• s |= ϕ1 ∧ ϕ1 iff s |= ϕ1 ands |= ϕ2

• s |= ¬ ϕ iff s 2 ϕ

• s |= © ϕ iff s[1 . . .] |= ϕ
• s |= ϕ1Uϕ2 iff ∃j ≥ 0. s[j . . .] |= ϕ2 and s[i . . .] |=

ϕ1, for all 0 ≤ i < j

The syntax of probabilistic LTL (PLTL) is:

φ ::= P⊲⊳r(ϕ) (⊲⊳ ∈ {≥, ≤, =}; r ∈ [0, 1]; ϕ ∈ LTL).

A labeled Markov chainM satisfies the PLTL formula
P⊲⊳(ϕ) iff PM (ϕ) ⊲⊳ r, where PM is the probability dis-
tribution defined by the LCMM , and PM (ϕ) is short for
PM ({s | s |= ϕ, s ∈ Σω}).

III. L EARNING

We begin by making some assumptions on the process that
generates the data from which we learn: the data is generated
by a LMC M , andSω

1 , S
ω
2 , . . . is an independent family of

PM -distributed random variables (with values inΣω). Let
L1, L2, . . . be an independent family of integer-valued random
variables, such that theLi are also independent of theSω

i .
We assume that we observe the finite observation sequences
Si := Sω

i [Li], i.e., the firstLi symbols ofSω
i . Thus, we

observe independent runs of the system for a period of time
that is determined independently of the observed behavior (in
particular, the observation does not automatically end when
the system enters a deadlock or failure state – such a situation
would rather lead to repeated deadlock or failure observations
in the final part of the sequence). We assume that theLi

are unbounded, i.e.P (Li > k) > 0 for all k. This will be
satisfied, e.g., by a geometric distribution, which, furthermore,
correspond to the natural model according to which at each
point in time it is decided with a fixed probabilityp whether
to terminate the observation.

Finally, we denote withS[n] = S1, . . . , Sn the sample
consisting of the firstn observations.

Our algorithm, named AALERGIA, for learning LMCs is
a modified version of the ALERGIA algorithm for learning
DPFAs from data [5], [8].

AALERGIA starts by building a special DLMC representa-
tion of the datasetS called afrequency prefix tree acceptor
FPTA(S). This is a treeT with a state for eachs ∈ prefix(S).
The states is labeled with thefrequenciesfT (s, σ) (σ ∈ Σ)
and fT (s, e), wherefT (s, σ) is the number of strings inS
with prefix sσ, andfT (s, e) is the number of occurrences of
s in S. By normalizing the frequenciesfT (s, ·) at each node
to probabilitiesτT (s, ·) an FPTA can also be seen as a DPFA.
The treeT is kept as a data representation from which relevant
statistics are retrieved during the execution of the algorithm.

A second FPTA representationA of S is constructed, and
then iteratively transformed by merging states which according
to acompatibilitytest (line 8 of Algorithm 1) are determined to
correspond to the same state in the data-generating automaton.
Following the terminology from [8], Algorithm 1 is described
in terms of two sets of states: RED states, which have already
been determined as states that will be included in the final
output DLMC, and BLUE states which still need to be tested
for compatibility with some RED state.

The Merge procedure (line 9 of Algorithm 1) is exactly
as described in [8]: first, the (unique) transition leading into
qb ∈ BLUE is re-directed intoqr ∈ RED, i.e., the unique
state q′ for which fA(q′, qb) > 0, one setsfA(q′, qr) ←
fA(q′, qb) and fA(q′, qb) = 0. Then, recursively, the fre-
quenciesfA(qbs, σ) (s ∈ Σ∗) are added to the frequencies
fA(qrs, σ). Thus, during the whole execution of the algorithm,
frequency countsfA are maintained at the states, which define
normalized transition probabilitiesτA.

At termination of the algorithm,A is a DPFA (with τA

defined by the normalized frequency countsfA) that repre-
sents the data generating distribution, and includes a model
for the observation lengthsLi via the termination probabilities
τA(q, e). Since we are interested in the underlying DLMC
defining a distribution over infinite stringsΣω, in the last
step the DPFA is turned into a DLMC by renormalizing the
transition probabilitiesτ(q, σ)← τ(q, σ)/(1 − τ(q, e)).

The main difference between our and previous versions
of the Alergia algorithm is the implementation of the com-
patibility test. In [6] the testCompatible() is conducted by
recursively testing compatibility of the termination and the
next symbol probabilities at statesqrs, qbs in T (s ∈ Σ∗). The
compatibility tests are based on Hoeffding bounds for the dif-
ference|τT (qrs, σ)− τT (qbs, σ)|. In the DSAI algorithm [8],
compatibility is tested by the condition

d∞(PA,qr , PA,qb) < µ, (1)

for a fixed thresholdµ, where for two distributionsP andQ

d∞(P,Q) := max
s∈Σ∗

|P (s)−Q(s)|. (2)

Our algorithm is related to DSAI, but differs in two aspects:
first, we determine the compatibility ofqr, qb ∈ A not via
the probability distributionsPA,qr , PA,qb defined in the current
automatonA, but via the probability distributionsPT,qr , PT,qb

of the corresponding states in the original treeT (i.e., the
states associated inT with the lexicographic minimal strings
in strings(qr), respectivelystrings(qb).) . The reason for this is
that the latter distributions have a clear interpretation as empir-
ical probabilities defined by the dataS, which is instrumental
in proving the consistency of the learning approach.

The second modification is that we replace the fixed thresh-
old µ by a data-dependent threshold. For this, we denote with
fT (s) := fT (s, e) +

∑

σ f
T (s, σ) (this is just the number of

strings inS with prefix s), and define as our compatibility
criterion

d∞(PT,qr , PT,qb) < Iα(f
T (qr)) + Iα(f

T (qb)), (3)

where forα > 0 one definesIα(n) :=
√

6αlog(n)/n.
The use of this criterion is based on Lemma 2 due to

Angluin [2] (cf. Appendix A), and instrumental for our consis-
tency proof. We call the resulting algorithm AALERGIA, with
the extra ’A’ standing for the Angluin-based compatibilitycri-
terion. Algorithms 2 and 3 show the practical implementation
of criterion (3).

The algorithm takes the parameterα as an input. Larger
values ofα lead to a largerǫ bound in the compatibility

Algorithm 1 AALERGIA

Input: : A setS of strings and a parameterα > 0.
Output: : A DLMC A.

1: T ← FPTA(S) andA← FPTA(S)
2: RED← startA

3: BLUE ← {q : q = startAσ, σ ∈ Σ, startAσ ∈ prefix(S)};
4: while BLUE 6= ∅ do
5: qb ← lexicographically minimalq ∈ BLUE
6: merged← false
7: for qr ∈ RED & !merged/* qr in lexicographic order

*/ do
8: if Compatible(T, qr, qb, α) then
9: Merge(A, qr, qb)

10: merged← true
11: end if
12: end for
13: if !merged then
14: RED← RED∪ qb
15: else
16: BLUE ← BLUE \ qb ∪ {q = qbσ | σ ∈ Σ, qbσ ∈

prefix(S)}
17: end if
18: end while
19: return makeDLMC(A);

Algorithm 2 Compatible
Input: : FPTA T , statesqr, qb, andα > 0
Output: : true if the distributionsPT,qr , PT,qb are within

Angluin’s bound
1: if L(qr) 6= L(qb) /* Equality of labeling symbol */then
2: return false
3: end if
4: ǫr ← Iα(f

T (qr)) andǫb ← Iα(f
T (qb))

5: return Compatiblerecurse(T, qr, qb, 1, 1, ǫr + ǫb)

test, and hence to more merge operations and smaller output
models in AALERGIA. According to the theoretical analysis
of Section IV, anyα > 1 is admissible to obtain convergence
guarantees in the large sample limit. However, for any partic-
ular finite sample sizen we try to tune the choice ofα so as
to obtain the best approximation to the true model.

For this we run AALERGIA with different α values, and
evaluate the learned model using theBayesian Information
Criterion (BIC) score. This score evaluates the learned models
based on likelihood, but subtracts a penalty term for the size
of the model. Concretely, the BIC score of a DLMCA given
dataS[n] is defined as

BIC(A | S[n]) := log(PA(S[n]))− 1/2 |A | log(N),

where|A | is the size ofA, andN =
∑

li is the total size of
the data.

Using a golden section search [15, Section E.1.1] we sys-
tematically search for anα value optimizing the BIC score of
the learned model. Our implementation of AALERGIA is based

Algorithm 3 Compatiblerecurse
Input: : T, qr, qb, pr, pb, ǫ
Output: : true if |pr · PT,qr (s) − pb · PT,qb(s)| < ǫ for all

s ∈ Σ∗

1: if pr < ǫ andpb < ǫ then
2: return true
3: end if
4: if pr > ǫ andpb = 0 then
5: return false
6: end if
7: if pb > ǫ andpr = 0 then
8: return false
9: end if

10: if |pr · τT (pr, e)− pb · τT (pb, e)| > ǫ then
11: return false
12: end if
13: for σ ∈ Σ do
14: if !Compatiblerecurse(T, qrσ, qbσ, pr · τT (qr, σ), pb ·

τT (qb, σ), ǫ) then
15: return false
16: end if
17: end for
18: return true

on the Matlab gitoolbox (http://code.google.com/p/gitoolbox/
) and is available at mi.cs.aau.dk/code/aalergia.

IV. CONVERGENCEANALYSIS

Convergence guarantees of AALERGIA are derived in two
steps: first, it is established that the algorithm will identify
the correct structure of the data-generating automatonM .
Then, convergence of the estimates for the learned transition
probabiltiesτ is used to establish that PLTL queries will be
answered (approximately) correctly.

The following lemma provides a simple characterization of
bisimulations in DLMCs.

Lemma 1:Let M be a DLMC. The equivalence relation
q ∼ q′ :⇔ PM,q = PM,q′ is a probabilistic bisimulation.
Proofs of results in this section are given in Appendix B. We
denote withM/∼ the quotient automaton defined by∼.

In the following we assume that all random variables and
events of interest are defined on an underlying probability
spaceΩ with probability measureP . The distribution of a
random variableX defined on this space is denotedPX , and
the probability of a measureable eventE ⊆ Ω is P (E). For a
sequence of events(En)n indexed byn ∈ N, we writeEn a.a.
(“almost always”) for the event that all but finitely manyEn

take place, andEn i.o. (“infinitely often”) for the event that
infinitely manyEn take place.

For a DLMC M = 〈QM ,Σ, startM , τM , LM 〉 we define
thestructureof M asM̂ := 〈QM ,Σ, startM , τ̂M , LM 〉, where
τ̂M ⊆ QM×QM is the transition relation defined by(q, q′) ∈
τ̂M ⇔ τM (q, q′) > 0. The following theorem states that the
structure ofM will be identified if M is a DLMC.

Theorem 1:If M is a DLMC, An the DLMC returned by
AALERGIA on inputS[n], andα > 1, then

P (Ân = M̂/∼ a.a.) = 1.

The theoretical consistency result requires anα-parameter
greater than 1. Since Theorem 1 is a large-sample result, it
may nevertheless be the case that for smaller datasets running
AALERGIA with α < 1 leads to better approximations of the
true modelM .

Lemma 1 together with Theorem 1 lead to:
Theorem 2:Under the assumptions of Theorem 1: for all

LTL propertiesφ:

P (lim
n→∞

PAn(φ) = PM (φ)) = 1. (4)

An LTL property φ is boundedif φ only contains until-
operators in the time-bounded formU≤L. For boundedφ, we
obtain that Theorem 2 also holds when the source model is
not deterministic:

Theorem 3:If M is a LMC, andAn as in Theorem 1, then
(4) holds for all bounded LTL propertiesφ.

The proof of this theorem is quite straightforward and
omitted due to space constraints.

Even though the learned model converges to an automaton
that is bisimilar to the true one, this does not imply an imme-
diate generalization of Theorem 2 to PCTL formulas. Consider
as an example the PCTL formulaφ =©P=0.5♦a. SupposeM
consists of four statesstart, q1, q2, q3 all labeled withb, except
q3 labeled witha. Let τ(start, q1) = τ(q2, q2) = τ(q3, q3) = 1,
andτ(q1, q2) = τ(q1, q3) = 1/2. ThenPM (φ) = 1. However,
in any learned modelAn with only a close approximation of
the transition probabilitiesτ(q1, ·) one obtainsPAn(φ) = 0.
This example shows that an extension of Theorem 2 to PCTL
could only be based on a fragment of PCTL in which strict
equalitiesP=r are not allowed, or be based on a notion of
approximate satisfaction of PCTL formulas.

V. EXPERIMENTS

In order to test the proposed algorithm we have generated
observation sequences from two known system models. We
applied the learning algorithm on the sampled sequences, and
compared the resulting models with the known generating
models in terms of their PLTL properties. For the actual
comparison of the models, we considered relevant system
properties expressed by PLTL formulas as well as a setΦ
of randomly generated PLTL formulas. The formulas were
generated using a stochastic context-free grammar, and each
formula was restricted to a maximum length of30.

In order to avoid testing on tautologies or other formulas
with little discriminative value, we constructed a baseline
modelB with one state for each symbol in the alphabet and
with uniform transitions probabilities. For each generated LTL
formula φ ∈ Φ we tested whether the formula was able to
discriminate between the learned modelA, the generating
model M , and the baseline modelB. If φ was not able
to discriminate between the three models (i.e.,PA(φ) =

PM (φ) = PB(φ)), thenφ was removed fromΦ. We finally
evaluated the learned models by comparing the mean absolute
difference in probability (calculated using PRISM [10]) over
the generated formulas for the modelsM andA:

DA =
1

|Φ|

∑

φ∈Φ
|PM (ϕ)− PA(ϕ)| (5)

The mean absolute difference betweenM andB is calculated
analogously and is denotedDB.

For the actual empirical analysis we have considered model
learning at different levels of abstraction, thus allowingthe
learning task to be tailored to the properties of interest (c.f.
Section I). Specifically, we have performed experiments using
the randomized self-stabilizing algorithm by [9] and the craps
gambling game described in [3].

In the craps gambling game we start off by rolling two fair
six-sided dice. If the outcome is 7 or 11, the game is won,
and if the outcome is 2, 3, or 12 then the game is lost. For all
other outcomes, the dice are rolled again. If the outcome of
the new roll is 7 the game is lost, but if the new roll is equal
to the original roll (now called the “point”) the game is won.
For any other outcome, the dice are rolled again. This process
continues until the game is either won or lost. Fig. 1 shows a
Markov chain model of the game, which includes an explicit
state representation of the possible values of the “point”.

point
4 10 5 9 6 8

3/4 3/4 13/18

1/9

13/18

5/36

25/36 25/36

1/92/9
1/12

1/12 1/9
5/36

1/12

5/36 5/361/91/91/12

1/6

1/6

1/6

1/6 1/6
1/6

1 1

point point point point point

start

won lost

Fig. 1. A Markov chain model for the craps gambling game [3].

Suppose now that we are only interested in the probability of
winning the game withini rolls of the dice. For this situation
we can abstract away information about the actual value of
the “point” and only consider the predicatesstart, point, lost,
andwon. With this abstracted set of predicates we generated
sets of observation sequences whose lengths are geometrically
distributed withp = 0.1. More specifically, we first generated
observation sequences from the model in Fig. 1, and then
replaced the values of the dice rolls with the abstract state
point. Observe that by performing this type of abstraction
over the observation sequences, we are effectively sampling
observations from a non-deterministic LMC. The results of
the experiments are listed in Table I. In the table, #Data is the

TABLE I
THE EXPERIMENTAL RESULTS FOR THE CRAPS GAMBLING MODEL.

#Data #Seq Time Size α range DA P1 P2 P3 P4 P5 P6 P (♦won)

80 5 0.29 31 [2−6; 26] 0.06402 0.2 0.36 0.3997 0.4 0.4 0.4 0.4

160 19 0.017 4 [2−1; 26] 0.12169 0.1579 0.2011 0.2619 0.2841 0.287 0.2874 0.2874

320 35 0.03 5 [2−1; 26] 0.06829 0.1765 0.2405 0.3332 0.369 0.3741 0.3749 0.375

640 65 0.05 4 [2−1; 26] 0.01967 0.1967 0.283 0.4023 0.4443 0.4496 0.4502 0.4503

1280 141 0.07 4 [2−5; 26] 0.02945 0.2031 0.2948 0.43 0.4842 0.4923 0.4935 0.4938

2560 291 0.092 4 [2−5; 26] 0.01183 0.2188 0.2906 0.4037 0.4555 0.4648 0.4665 0.4669

5120 530 0.16 4 [2−6; 26] 0.01376 0.2063 0.2692 0.3754 0.4314 0.4437 0.4464 0.4472

10240 1081 0.24 4 [2−6; 26] 0.00619 0.2214 0.2869 0.3942 0.4475 0.4583 0.4604 0.461

20480 2122 0.32 4 [2−6; 26] 0.00658 0.2297 0.2944 0.4013 0.4554 0.4667 0.469 0.4697

40960 4251 0.48 4 [2−6; 26] 0.00483 0.2248 0.2885 0.3955 0.4511 0.4632 0.4658 0.4665

M 9 0.2222 0.2994 0.3916 0.4429 0.4551 0.4579 0.4588

size of the data set (total number of symbols) used for learning,
#Seq is the number of observation sequences in the data set,
’Size’ is the number of nodes in the learned LMC, ’α range’
is the interval (identified using the golden section search)for
α for which a BIC-optimal LMC is learned,DA is calculated
according to Equation 5 using 1102 formulas, and ’Time’ is
the average run time (in seconds) of the AALERGIA algorithm;
the average is calculated wrt. the iterations performed by the
golden section search. Typically the golden section search
terminated after 25 to 35 iterations. Finally, the columns
labeledPi list the probabilitiesP (trueU≤i won). From the
results we see that by using the abstracted alphabet and only
35 observation sequences we still obtain accurate probability
estimates of winning the game withini rolls (for 1 ≤ i ≤ 6)
and we also achieve a relatively small mean difference in
probability of the randomly generated LTL formulas; for
comparison,DB = 0.48933. Fig. 2 shows an abstract model
structure learned from 65 observation sequences.

start point

won

lost

0.2248

0.6628

0.1124

0.7364

0.0962

0.1675

1

1

Fig. 2. An LMC model for the craps gambling game learned using65
observations sequences over the alphabetΣ = {start, point, lost,won}.

Consider now the randomized self-stabilizing protocol by
[9]. This algorithm is designed for ring networks with an
odd number of processes, and where each processpi is
equipped with a Boolean variableXi. The protocol operates
synchronously such that ifXi = Xi−1, then pi makes a
uniform random choice about the next value ofXi; otherwise
it sets Xi to the current value ofXi−1. For each pair of
neighboring processes with the same value assigned to their
Boolean variables we have a so-called token. The network is

stable if it only contains a single token.
Using the protocol above we have first analyzed the be-

havior of the learning algorithm by varying the number of
processes and changing the level of abstraction. For a given
number of processes, we have generated sets of observation
sequences whose lengths are geometrically distributed with
p = 0.05. In the first experiment, each generated data point
corresponds to a value assignment to the set of Boolean vari-
ables associated with the processes. Thus, withn processes,
there are2n such assignments. In the second experiment,
we replaced the data points with abstract states representing
the number of tokens defined by the corresponding value
assignments. For both experiments we also observed when
the network was stable. The results of the experiments with
3, 7, 11, 19, and 21 processes are given in Table II (listing
the learning times and the sizes of the learned models)
and in Fig. 3 (showing the probability of reaching a stable
configuration withinL steps as a function ofL). From Table II
we see (as expected) that the time complexity of learning an
abstract model is significantly lower than that of learning afull
model. Note that due to time complexity, we have not learned
full models for networks with 11, 19, and 21 processes.

Fig. 3 provides a comparison of the probability values
P (trueU≤Lstable) defined by the true models and the models
learned (both full and abstract) with datasize 10000. Overall,
one observes a very good match between the probability values
computed in the different models, with some discrepancies
emerging for larger values ofL in the 11 and 19 processes
models. To illustrate the accuracy of the models learned
for smaller amounts of data, we have collected in Table III
additional summary statistics for the accuracy obtained from
different datasets. The first two columns specify the number
of processes, and whether a full (F) or abstract (A) model
was learned. The table then contains for different sample sizes
(number of symbols) 80,. . . ,10000 thetotal variation distance
between the distributions over the time taken to reach the
stable state defined by the learned and true modelsA,M :

TVD(A,M) = 1/2

∞
∑

i=1

| PM (L)− PA(L) |,

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

L

P
(t

ru
e

U
≤
L

st
a

b
le)

True model - 3 proc.

Learned abstract model - 3 proc.
Learned full model - 3 proc.

True model - 7 proc.

Learned abstract model - 7 proc.
Learned full model - 7 proc.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

L

P
(t

ru
e

U
≤
L

st
a

b
le)

True model - 11 proc.
Learned abstract model - 11 proc.

True model - 19 proc.
Learned abstract model - 19 proc.

Fig. 3. The figures showP (trueU≤Lstable) as a function of the number of stepsL. On the left the results for networks with 3 and 7 process are shown,
on the rigth the results for networks with 11 and 19 processes. For 3, 7, and 11 processes the networks are learned from datasets with 10000 symbols and
an average sequence length of 20. For the results with 19 processes a data set with 100000 symbols were used.

TABLE II
EXPERIMENTAL RESULTS FOR THE SELF-STABILIZING PROTOCOL.

Full model Abstract model

#Data Time Size α range Time Size α range

3
pr

oc
. 80 0.06 37 [2−1; 26] 0.01 2 [2−4; 26]

320 0.065 10 [21; 26] 0.025 2 [2−6; 26]

1280 0.21 8 [20; 26] 0.05 2 [2−6; 26]

5120 0.76 8 [2−5; 26] 0.1 2 [2−6; 26]

10000 1.4 8 [2−6; 26] 0.15 2 [2−9; 26]

7
pr

oc
. 80 0.17 71 [2−6; 26] 0.02 11 [2−1; 26]

320 2.4 291 [2−6; 26] 0.045 4 [20; 26]

1280 22 809 [2−1; 26] 0.11 4 [2−4; 26]

5120 23 387 [20; 22] 0.32 4 [2−5; 26]

10000 50 182 [20; 23] 0.5 4 [2−6; 26]

11
pr

oc
. 80 0.25 29 [2−1; 26]

320 0.3 30 [2−1; 26]

1280 0.74 40 [20; 26]

5120 0.8 6 [21; 26]

10000 1.5 8 [0.334; 0.511]

19
pr

oc
. 80 8.4 52 [2−2; 26]

320 73 128 [2−1; 26]

1280 93.2 128 [20; 27]

5120 20.2 35 [2−1; 28]

10000 34.4 34 [2−2; 29]

21
pr

oc
. 80 24.4 70 [2−6; 26]

320 81.4 111 [2−1; 26]

1280 67.8 113 [2−1; 27]

5120 55.2 77 [2−2; 27]

10000 37 40 [2−2; 27]

where P (L) is short for P (¬stableU=Lstable). The sum-
mation extends toL = ∞, since for some models learned
from small datasets one hasPA(∞) := PA(¬♦stable) > 0.
In fact, this is a main contributing factor for the relatively
large distances found for the smaller data sizes. All results in
Table III are averages taken over 5 different data samples of
the specified size. The results show that for very small sample

sizes not very accurate models are learned.
TABLE III

ACCURACY RESULTS FOR RING NETWORK

Sample Size
P F/A 80 320 1280 5120 10000
3 F 0.166 0.070 0.052 0.034 0.031
3 A 0.206 0.082 0.011 0.015 0.010
7 F 0.698 0.540 0.405 0.057 0.033
7 A 0.435 0.121 0.078 0.042 0.038
11 A 0.497 0.143 0.077 0.065 0.067
19 A 0.704 0.472 0.208 0.107 0.106

Since the abstract models are often significantly smaller than
the generating models, the time required for model checking
using the abstract models is also expected to be lower. We have
analyzed this hypothesis further by measuring the time com-
plexity for evaluating the PLTL propertyP (trueU≤Lstable)
for 19 and 21 processes. For the generating model, the total
time is calculated as the time used for compiling the PRISM
model description to the internal PRISM representation as well
as the time used for the actual model checking. For the abstract
model, the total time is calculated as the time used for model
learning (which produces a model in the PRISM file format),
model compilation, and model checking. Fig. 4 shows the
(accumulated) time used by both approaches as a function of
L. The time complexity of using the abstract models is close
to constant. It consists of a constant time (2403 sec. and 2697
sec., respectively) for model learning and model compilation,
and a negligible additional linear time for model checking.

Going back to theα ranges reported in the tables above,
we see that for the craps gambling game (Table I) and the
randomized self-stabilizing protocol (Table II), the learning is
quite robust with regard to theα value. This suggests that
simply using a theoretically justified constantα > 1 will lead
to good results.

Finally, we would like to note that for the experiments
above, the observed learning time grows roughly linearly inthe
size of the data set although the worst case time complexity is

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120

L

A
cc

u
m

u
la

te
d

tim
e

True model - 19 proc.
True model - 21 proc.

Learned model - 19 proc.
Learned model - 21 proc.

Fig. 4. The figure shows the accumulated time for calculating
P (trueU≤Lstable), i.e., at stepi we have the total time for calculating
P (trueU≤jstable), for 1 ≤ j ≤ i.

cubic. This is consistent with the results reported in [5], where
a similar behavior is observed.

VI. CONCLUSION

In this paper we have shown how Machine Learning tech-
niques for probabilistic model learning can be used to obtain
system models for model-driven development. The main con-
tributions of this paper are: the AALERGIA algorithm obtained
as a modification of previous DPFA-learning algorithms, a
completely new proof of consistency for this algorithm that
avoids some difficulties found in earlier proofs of related
results, novel results that link the convergence of the automata
learning procedures to convergence of probability estimates of
LTL-definable system properties, and an experimental eval-
uation that demonstrates the feasibility of the approach in
practice.

Compared to statistical model checking [18], [14] the model
learning approach offers the advantage that it allows us to
generalize from the observation of finite behaviors to infinite
behaviors. Thus, for example, in the ring network we obtain
from the models learned from a sufficient amount of data
also the correct probability for the unbounded propertyφ =
♦stable. This generalization ability, of course, is dependent on
the correctness of the assumption that the source model is a
DLMC. However, as Theorem 3 shows, in the case where the
assumption is wrong we still obtain similar guarantees for the
analysis of bounded properties as one obtains with statistical
model checking.

In this paper we have focused on the simplest case that
system behaviors only consist of sequences of symbols rep-
resenting system outputs. In ongoing work we are extending
the learning procedure to interactive systems with both inputs
and outputs.

APPENDIX A
CONSISTENCY: A REVIEW

We first review briefly previous consistency arguments
for Alergia-style algorithms [5], [6]. Then we motivate our

version of the algorithm and its consistency proof presented
in Appendix B by relating it to a basic learning by enumeration
approach described by Angluin [2].

A proof of consistency for the Alergia algorithm was first
sketched in [5], and then elaborated in [6]. As mentioned
in Section III, in Alergia compatibility of the distributions
PT,qr , PT,qb is tested by recursively applying a Hoeffding test
for the equality of the local termination and next symbol
probabilitiesPT,qrs(σ), PT,qbs(σ), (s ∈ Σ∗, σ ∈ Σ ∪ {e}).
The proof of convergence then is based on the claim that
as n → ∞, with probability one, all tests will return the
correct result (i.e., the test will reject equality iff the local
transition probabilitiesPM,qr (σ), PM,qb (σ) are different in the
true modelM).

The argument presented in [6] does take into account that as
n increases the number of tests performed will also increase
(linearly in n), and therefore the level of significance is
reduced as a function ofn so as to ensure that if each test
achieves the prescribed level of significance, then also the
probability of making an error in any test can be made small.
What the argument of [6] neglects to consider is the fact
that asn increases, there will always be tests performed on
local distributionsPT,qrs, PT,qbs for which the data support
fT (qrs), f

T (qbs) is small (typically, whenqrs, qbs are at or
near the leaves ofT). The concrete test used in [6] will never
reject equality ofPT,qrs, PT,qbs when this data support is
sufficiently small, and therefore there will always be some
tests performed which are not known to return correct results.

A more complete argument is given in [13]. Here the authors
use the fact that one only needs to bound the type 1 errors
(rejecting a correct compatibility hypothesis) for a number
of tests that is linearly increasing, whereas the type 2 error
(accepting an incorrect compatibility hypothesis) only needs to
be bounded for a number of tests that depends on the (sample-
size independent) number of states in the true model. Sen et
al. [13] only show that the probability of not learning the
correct model can be made arbitrarily small, which is weaker
than the probability one convergence of our Theorem 1.

To motivate our approach, we begin with a short review
of Angluin’s [2] learning by enumerationprinciple, which is
based on the following lemma.

Lemma 2 (Angluin):Let PS be a distribution on a count-
able setA, Si (i > 0) i.i.d. PS-distributed random variables,
andPS̄[n] the empirical distribution defined byS1, . . . , Sn. Let
α > 1. Then

P (d∞(PS , PS̄[n]) < Iα(n) a.a.) = 1. (6)

Now let M be a countable set of models, so that each
M ∈ M defines a distributionPM on a countable setS. Let
M1,M2, . . . be a fixed enumeration ofM. Then, for a given
data sample with empirical distribution̄S[n] return the first
modelMi in the list that satisfiesd∗(PMi

, PS̄[n]) < Ia(n).
By Lemma 2, anyMi with PMi

equal to the data-generating
distributionPS will satisfy the condition a.a. with probability
one. For anyMj with PMj

6= PS the condition will not
be satisfied i.o., sinceIa(n) → 0 for n → ∞. Since only

finitely such Mj precede the firstMi with PMi
= PS in

the enumeration, with probability one a.a. none of them will
satisfy the condition, and so a.a. the firstMi with PMi

= PS

will be returned by the algorithm.
Theoretically very elegant, learning by enumeration is ob-

viously quite impractical. Nonetheless, learning algorithms in
the Alergia family can perhaps best be understood as oper-
ational algorithms implementing the basic enumeration idea.
The first modification for learning probabilistic automata is to
split the learning problem into the two parts of identifyingthe
structure of the automaton, and the estimation of its numerical
parameters. Only the first part is done by an enumeration-
style procedure, and as a result one is also only guaranteed
to identify the structure from (large) finite samples, whereas
the parameter estimates will only converge in the limit to the
correct values. Secondly, the pointwise testsPS = PMj

are
replaced by membership testsPS ∈ {PM | M ∈ Mj} for
setsMj according to a fixed protocol that guarantees that for
eachS a fixed finite sequence of tests (independent ofn) has
to be performed correctly until a uniqueM with PM = PS is
identified.

APPENDIX B
PROOFS

Proof of Lemma 1: Let q ∼ q′. ThenL(q) = L(q′),
becausePM,q andPM,q′ assign probability one to the set of
strings starting withL(q), respectivelyL(q′). For eachσ ∈
Σ one furthermore hasτ(q, σ) = τ(q′, σ), and for σ with
τ(q, σ) > 0 also PM,qσ = PM,q′σ, i.e., qσ ∼ q′σ. Thus,
for each∼ equivalence classA ⊆ QM , one hasτ(q, A) =
∑

σ: qσ∈A τ(q, σ) =
∑

σ: q′σ∈A τ(q′, σ) = τ(q′, A).
To prepare the proof of Thereom 1 we begin with a

generalization of Lemma 2:
Lemma 3:Let PS , Si as in Lemma 2. LetTi (i > 0) be

another i.i.d. family ofA-valued random variables distributed
according to a distributionPT . Let g(n), h(n) (n ≥ 1) be
integer-valued random variables, such that with probability one
the sequences(g(n))n and (h(n))n are non-decreasing and
unbounded. ThenPS = PT iff

P (d∗(PT̄ [g(n)], PS̄[f(n)]) < I(g(n)) + I(f(n)) a.a.) = 1,

andPS 6= PT iff

P (d∗(PT̄ [g(n)], PS̄[f(n)]) > I(g(n)) + I(f(n)) a.a.) = 1.

Observe that apart from the i.i.d. assumption on the families
(Si)i, respectively(Ti)i, no further independence assumptions
are made. In particular,Si need not be independent ofTj, or
any of these be independent of theg(n), h(n).

Proof: For the first statement it is sufficient to show that

P (d∗(PS , PS̄[f(n)]) < I(f(n)) a.a.) = 1 (7)

(and analogously forT, T̄ [g(n)]). The statement then follows
with the triangle inequality. To show (7) we write

d∗(PS , PS̄[n]) < I(n) a.a. = ∪k≥0Ak,

with
Ak :=

⋂

l≥k

{d∞(PS , PS̄[l]) < I(l)}.

Then

Ak \ {d∞(PS , PS̄[f(n)]) < I(f(n)) a.a.} = {f(n) < k i.o.}
(8)

According to our assumptions, the event on the right of (8) has
probability zero. It follows that∪k≥0Ak\{d∞(PS , PS̄[f(n)]) <
I(f(n)) a.a.} also has probability zero, which with (6) yields
(7).

To show the second statement of the lemma, letδ :=
d∞(PT , PS) > 0. It is sufficient to show that

P (I(g(n) + I(f(n)) < δ/2 a.a.) = 1, (9)

and
P (d∞(PT̄ [g(n)], PS̄[f(n)]) > δ/2 a.a.) = 1. (10)

(9) follows immediately from our assumptions on
g(n), f(n), and the fact thatI(n)→ 0 for n→∞.

(10) follows by an identical argument as for the first part of
the lemma, where instead of (6) one uses that by the strong
law of large numbers (or, as a special case of (6))

P (d∞(PS , PS̄[n]) < δ/4 a.a.) = 1.

We are now ready to proceed to the proof of Theorem 1,
for which we need the following additional notation and
definitions.

In the following we use• to denote eitherr or b, i.e.,
definitions or statements containing expressions involving •
represent simultaneous definitions or statements for bothr and
b.

As in the statement of the theorem,M always denotes the
true model from which the data was generated. We denote
with Σ∗

M the set of words that have nonzero probability under
PM . Any execution of the inner loop at lines 7-12 is called
an iteration of the algorithm.

We denote withAn
i , qn•,i the values ofA, respecitivelyq•

immediately before theith iteration when AALERGIA is run
on dataS[n]. In particular,An

1 is the initial FPTA constructed
in line 1. We also recall thatAn is the automaton returned by
AALERGIA.

Proof of Theorem 1:
In order to make the association between strings and states

more explicit, we now sometimes writeq(s) for the state
reached by strings, ands(q) for the lexicographically minimal
string associated withq. We say that the FPTAAn

1 is rich, if
it contains

(a) for all m ∈M/∼ a node fors(m), as well as nodes for
s(m)σ for all σ ∈ Σ with s(m)σ ∈ Σ∗

M ,
(b) nodes for all lexicographic predecessors inΣ∗

M of nodes
included under (a).

We prove the theorem via a sequence of three claims.
Claim 1: P (An

1 is rich a.a.) = 1.

Proof of Claim 1: immediate from the strong law of large
numbers.

We say that the callcompatible(An
i , q

n
r ,i , q

n
b,i , α) returns the

correct result (abbreviated r.c.r.), if the valuetrue is returned
iff

PM,s(qn
r,i

) = PM,s(qn
b,i

).

For n, i ≥ 1 we define the event

Gn
i := {An

1 rich} ∩
⋂

j<i

{compatible(An
j , q

n
r ,j , q

n
b,j , α) r.c.r.}.

Intuitively, Gn
i represents the event that for the firsti − 1

iterations the algorithm performed a correct and typical (for
large samples) run.

The following claim essentially states that whenGn
i holds,

then the callcompatible(An
i , q

n
r ,i , q

n
b,i , α) will test the identity

PM,sr = PM,sb for fixed sr, sb that do not further depend
on An

i . Furthermore, for a fixedk, if Gn
k+1 holds, then the

algorithm terminates after at mostk iterations with the correct
model structurêM/∼.

Claim 2: There existsk > 0, s•,i ∈ Σ∗
M , (1 ≤ i ≤ k), such

that:

(i) Gn
i ⊆ {s(q

n
•,i) = s•,i}

(ii) Gn
k+1 ⊆ {A

n = An
k+1} ∩ {Â

n = M̂/∼}

Proof of Claim 2:
Let k be the number of nodes required to be included inA1

for A1 to be rich. (i): Fori < k, givenGn
i , within the firsti−1

iterations exactly the same merge operations were performed,
and therefore before theith iteration the lexicographically
minimal elements ofBlue andRedare fixed stringss•,i.

(ii): If Gn
k+1 holds, then after at mostk iterationsAn

i will
contain for everym ∈ M/ ∼ one red nodeqr(m) with
s(qr(m)) = s(m) (and no other red nodes). Furthermore, for
eachσ ∈ Σ with PM/∼,m(σ) > 0, i.e., first(m)σ ∈ Σ∗

M ,
the nodefirst(m)σ ∈ An

1 has been merged withqr(δ(m,σ)),
which means that the transition relations inM andAn

k+1 are
isomorphic, and that no blue nodes remain inAn

k+1.
Claim 3: Let k be as in Claim 2. Then

P (compatible(An
i , q

n
r ,i , q

n
b,i , α) r.c.r. a.a. | Gn

i a.a.) = 1

Proof of Claim 3 The assumptions of Claim 2 (i) are
satisfied a.a., and therefore Compatible(An

i , q
n
r,i, q

n
b,i) is a.a.

equivalent to

d∞(PAn
1
,sr,i , PAn

1
,sb,i) < I(fTn

(sr,i)) + I(fTn

(sb,i))

PSn,s•,i is the empirical distribution of an i.i.d. sample of size
fn(s•,i) from PM,s•,i .

With probability one the sample sizesfn(s•,i) grow un-
bounded, so that the conditions of Lemma 3 are satisfied. It
thus follows thatcompatible(An

i , q
n
r ,i , q

n
b,i , α) r.c.r. a.a. with

probability one.
Combining claims 1, 2(i), and 3 now yields that

P (Gn
k+1 a.a.) = 1, which, with claim 2(ii) concludes the

proof of Theorem 1.

Proof of Theorem 2:By Lemma 1PM (φ) = PM/∼(φ).
By Theorem 1An with probability 1 a.a. has the same struc-
ture asM/∼. The transition probabilitiesδA

n

(m,σ) are the
empirical probabilities from i.i.d. samples fromδM/∼(m,σ),
and therefore converge with probability 1 toδM/∼(m,σ).

Using the automata-theoretic approach to verification [16],
[7], [17], the probabilitiesPAn(φ), PM/∼(φ) can be identified
with reachability probabilities in the product of the Markov
chains An,M/ ∼ and a Büchi automatonB representing
φ. The state spaces of all these product Markov chains
will a.a. be identical, and the transition probabilities inthe
productsAn × B converge to the transition probabilities in
the productM/ ∼ ×B. Since the reachability probabilities
are continuous functions of the transition probabilities,this
implies the convergencePAn(φ)→ PM (φ).

REFERENCES

[1] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75:87–106, 1987.

[2] D. Angluin. Identifying languages from stochastic examples. Technical
Report YALEU/DCS/RR-614, Yale University, 1988.

[3] C. Baier and J. P. Katoen.Principles of Model Checking. The MIT
Press, 2008.

[4] T. Berg, B. Jonsson, M. Leucker, and M. Saksena. Insightsto angluin’s
learning.Electron. Notes Theor. Comput. Sci., 118:3–18, February 2005.

[5] R. Carrasco and J. Oncina. Learning stochastic regular grammars by
means of a state merging method. InGrammatical Inference and
Applications, volume 862 ofLecture Notes in Computer Science, pages
139–152. Springer Berlin / Heidelberg, 1994.

[6] R. C. Carrasco and J. Oncina. Learning deterministic regular grammars
from stochastic samples in polynomial time.ITA, pages 1–20, 1999.

[7] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic
verification. Journal of the ACM, 42(4):857–907, 1995.

[8] C. de Higuera. Grammatical Inference — Learning Automata and
Grammers. Cambridge University Press, 2010.

[9] T. Herman. Probabilistic self-stabilization.Information Processing
Letters, 35(2):63–67, 1990.

[10] M. Kwiatkowska, G. Norman, and D. Parker. Prism 2.0: a tool for
probabilistic model checking.In proceedings of the first international
conference on the Quantitative Evaluation of system (QEST), pages 322–
323, 2004.

[11] M. Leucker. Learning meets verification. InProceedings of the 5th
international conference on Formal methods for componentsand objects,
FMCO’06, pages 127–151, Berlin, Heidelberg, 2007. Springer-Verlag.

[12] H. Raffelt, B. Steffen, and T. Berg. Learnlib: a libraryfor automata
learning and experimentation. InProceedings of the 10th international
workshop on Formal methods for industrial critical systems, FMICS ’05,
pages 62–71, New York, NY, USA, 2005. ACM.

[13] K. Sen, M. Viswanathan, and G. Agha. Learning continuous time
markov chains from sample executions. InProc. of QEST’04, pages
146–155, 2004.

[14] K. Sen, M. Viswanathan, and G. Agha. Statistical model checkling
of black-box probabilistic systems. In R. Alur and D. Peled,editors,
Computer Aided Verification 2004, LNCS 3114, 2004.

[15] P.-N. Tan, M. Steinbach, and V. Kumar.Introduction to Data Mining.
Addison Wesley, 2006.

[16] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-
state programs. InProceedings of the 26th IEEE Symposium on
Foundations of Computer Science, pages 327–338, 1985.

[17] M. Y. Vardi. Probabilistic linear-time model checking: an overview of
the automata-theoretic approach. In J.-P. Katoen, editor,Formal methods
for real-time and probabilstic systems (ARTS-99) : 5th International
AMAST Workshop, volume 1601 ofLNCS, 1999.

[18] H. L. S. Younes and R. G. Simmons. Probabilistic verification of
discrete event systems using acceptance sampling. InComputer Aided
Verification 2002, LNCS 2404, 2002.

