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Exploiting Network Topology Information to

Mitigate Ambiguities in VMP Localization
Claus Pedersen, Troels Pedersen, Bernard H. Fleury

Section Navigation and Communications, Dep. of Electronic Systems, Aalborg University, Denmark

Email: {cpe, troels, bfl}@es.aau.dk

Abstract—We investigate an extension to the probabilistic
model of a wireless sensor network (WSN) in a recently proposed
variational message passing (VMP) localization algorithm. This
extension exploits network topology information to mitigate am-
biguities in WSN localization schemes. We derive VMP schemes
for direct (1-step) localization and 2-step localization where
knowledge on the positions of 2-step neighbours is taken into
account. We evaluate the performance of the algorithms in
connected WSNs via Monte Carlo simulations. The results show
that utilizing position information from sensors with which there
is no direct connection improves the position estimates for sensors
directly connected to few neighbour sensors. The most significant
improvement is observed for sensors of degree two i.e. with two
1-step neighbours. However, further investigations considering
more realistic WSNs with decentralized and (partly) centralized
settings are required to obtain more conclusive results on the
real performance gain achievable by exploiting information on
absent connections.

I. INTRODUCTION

Localization algorithms that can be deployed in a wireless

sensor network (WSN) are key to enabling location-aware

services in the government, public and private sectors [1],

[2]. Probabilistic sensor localization methods based on belief

propagation have been described in e.g. [2]–[4].

In [5], the authors proposed a new probabilistic localization

scheme based on variational message passing (VMP). The

suggested algorithm performs well; but when sensor density is

low, localization ambiguities arise due to the topology of the

network. Resolving such ambiguities will potentially improve

the performance of the VMP localization algorithm.

The basic principle in the ambiguity solutions published

in [6] and [4] is to exploit not only measured inter-sensor

distances but also information on network topology in the

localization algorithm. This is done by modelling the con-

ditional probability density function (pdf) of the absence of a

connection between two sensors in addition to the conditional

pdf of the presence of a link between sensors.

Probabilistic modeling of measured inter-sensor distances

and inferred sensor positions allows for inference about sensor

positions with both belief propagation and variational infer-

ence methods. Exploiting information on network topology,

such as the absence of a network connection, can be considered

merely as a sophistication of the probabilistic model that

describes the network. Hence, the model including absent

connections used in [6] and [4] yields a solution to the ambi-

guity problem experienced in our VMP localization algorithm

simulations in [5].

In this paper we investigate the impact on the VMP local-

ization algorithm in [5] when the model for absent network
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Figure 1. Example network with anchor sensors (black vertices), mobile
sensors (white vertices) and their communication links (edges).

connections from [6] is included. We give a short review

of the Gaussian VMP localization algorithm and conduct

Monte Carlo simulations to verify and illustrate the effect

of the proposed extension. Finally we present our concluding

remarks.
II. MODELS

Similarly to [6], we represent a network of wireless sensors

scattered randomly and independently in the plane by a graph

G = (V , E) with vertex set V and edge set E c.f. the example

in Figure 1. Each v ∈ V is associated with a sensor and each

(r, t) ∈ E represents a communication link between sensors

r and t. In the following the term ”sensor set” refers to V .
We subdivide the sensor set as V = VM ∪ VA, where VM is

the set of sensors at unknown positions and VA is the set of

sensors at known, fixed positions. The sensors in VM and VA

are referred to as mobiles and anchors respectively.

Assume that with some probability Po(xr,xt) mobile sen-

sor r obtains a noisy measurement dr,t of its distance from

sensor t

dr,t = ‖xr − xt‖+ wr,t (1)

where the vector xr ∈ R
2 is the position of sensor r, ‖·‖

denotes the Euclidean norm and wr,t represents observation

noise, which in this work is a zero-mean Gaussian random

variable with variance σ2
r,t.

Sensor r’s prior knowledge of its position is assumed to

be a circular symmetric Gaussian probability density function

(pdf) pr (xr) in R
2 with mean µr = Epr

[xr] and component

variance σ2
r = 1

2Epr

[

‖xr − µr‖
2
]

. Here Epr
[·] denotes expec-

tation with respect to the pdf pr (xr). If v ∈ VA, then σ2
r = 0

and pr (xr) reduces to a Dirac’s delta function localized at µr

in R2.

Similarly to [3], [4], [6], we denote the transmission range

of a sensor by R and assume that the probability of observing

neighbouring sensors falls off as

Po(xr,xt) = exp

(

−
1

2R2
‖xr − xt‖

2

)

. (2)
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Conditioned on the positions of the sensors involved, the indi-

vidual distance measurements in the network are independent.

This enables us to write the conditional pdf of a given distance

observation as

p (dr,t |xr,xt)

=

{

Po(xr,xt)pw(dr,t − ‖xr − xt‖) if dr,t ∈ R,

1− Po(xr,xt) if dr,t = nil,
(3)

where pw(·) is the observation noise pdf. To account for

the case where no measurement is obtained we extend the

definition domain of the distance measurements dr,t from R

to R∪{nil}. Hence, ”nil” denotes a non-existing measurement.

From (3) it follows that position information is embedded

in the knowledge of the absence of a connection between

two sensors too. Provided that the sensors have access to the

position of the sensors with which no distance measurement

can be made, each sensor can exploit this information to

resolve and/or improve its position estimate.

Given a sensor network, let X = {xi : i ∈ VM} denote the

set of unknown sensor positions and D = {dr,t | (r, t) ∈ V2}
be the set of distance observations between all sensor pairs in

the network. The joint pdf of distance observations and sensor

positions reads

p (X ,D) = p (D|X ) p (X )

=

(

∏

(r,t)∈V2

p (dr,t |xr,xt)

)(

∏

v∈VM

pv (xv)

)

. (4)

This pdf is proportional to the posterior position pdf p (X|D)
which we use to estimate the position of any sensor r ∈ VM .

III. MESSAGE PASSING FOR LOCALIZATION

A. Factor Graph Representation of p (X ,D)

The joint pdf in (4) can be represented by an undirected

factor graph on which message passing methods can be applied

to estimate the position posterior p (xr|D) of any mobile

sensor in the network [7]–[9]. We create the graph by first

defining the local factors

fv(xv) = pv (xv) , (5)

gr,t(xr,xt) = p (dr,t |xr,xt) . (6)

For each sensor v ∈ V , we then draw a variable node,

representing the sensor’s position xv . We connect each xv,

v ∈ VM to a factor node fv(xv) representing the prior position
pdf. For each pair of sensors (r, t) ∈ V2 we draw a factor node

labelled gr,t(xr,xt) and connect the variable nodes xr and xt

to it.

B. Gaussian Variational Message Passing for Localization

Variational methods aim at approximating a complex or

intractable pdf by a simpler pdf [9], [10]. That is, using the

notation in Section II, given the set X of unknown positions

xi, i ∈ VM and the set D of distance measurements, the

posterior pdf p (X|D) is approximated by a pdf that might

belong to a certain family of pdfs satisfying certain constraints

making their computation tractable. The selected pdf q (X ) is
an element in this family that minimizes the Kullback-Leibler

divergence

KL(q (X ) ‖ p (X|D)) =

∫

X

q (X ) ln
q (X )

p (X|D)
dX . (7)

A well-known variational method is the mean field approx-

imation where q (X ) is assumed to factorize as q (X ) =
∏

xi∈X qi (xi) [9]–[11]. This yields an iterative algorithm

that approximates p (X|D) by separately updating the factors

qi (xi) in a sequential manner. Moreover, this algorithm can be

interpreted as a message passing scheme. This interpretation is

referred to as VMP [10]. For details on the VMP localization

algorithm we refer the reader to [5].

For unconstrained VMP adapted to localization factor

graphs a message from a variable node xt to a neighbouring

factor node gr,t(xr,xt) ∈ N (xt) reads

mxt→N (xt)(xt) =
∏

h∈N (xt)

mh→xt
(xt). (8)

Here N (xt) denotes the set of factor nodes neighbouring

node xt. Messages from a factor node to variable node xr

are defined as follows:

mfr→xr
(xr) = pr (xr) , (9)

mgr,t→xr
(xr) =

exp

(
∫

xt

mxt→gr,t(xt) ln gr,t(xr,xt) dxt

)

. (10)

The marginal update of the pdf estimate of xr is computed as

qr (xr) =
1
Z
mxr→N (xr)(xr), (11)

where Z is the normalization constant

Z =

∫

xr

mxr→N (xr)(xr) dxr. (12)

The unconstrained VMP messages described above may lead

to unwieldy integral expressions in (10). This can be remedied

by restricting the messages from variable nodes to factor nodes

to be in the family CN of circular symmetric Gaussian pdfs,

with mean x̂i and component variance σ̂2
i for the ith node.

As a result of this constraint, equations (8) and (11) must

be modified according to (superscript G indicates Gaussian

restriction)

mG
xr→N (xr)

(xr) = argmin
q′r(xr)∈CN

KL(q′r (xr) ‖ p̃r (xr)) (13)

with
p̃r (xr) =

1

Z

∏

h∈N (xr)

mh→xr
(xr) (14)

and
qGr (xr) = mG

xr→N (xr)
(xr) (15)

respectively. The solution to (13) is computed by finding

the position and component variance estimates x̂r and σ̂2
r of

q′r (xr) ∈ CN minimizing KL(q′r (xr) ‖ p̃r (xr)). This can be

done using numerical methods.

In [6], the authors investigated localizability of sensor

networks in an idealized situation by Monte Carlo trials
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and found that most information relevant for computing the

position of a sensor is local to that sensor. Furthermore, every

uniquely determined network in the trials was also uniquely

determined when the sensors only utilized information from

the sensors with which they were connected and these sensors’

connected neighbouring sensors (so-called ”1-step” and ”2-

step” neighbours). That is, provided that network topology

information is accessible sensor r can, in addition to its

directly observable neighbours, identify sensors u for which

dr,t ∈ R2 and dt,u ∈ R2 but dr,u = nil. This can be achieved

if each sensor in the network in addition to its position and

variance estimates x̂r and σ̂2
r broadcasts a list of its ”1-

step” neighbours’ position estimates. A local approximation

to (4) can be made by keeping only a subset of sufficiently

informative edges. In accordance with [4], [6] we consider

from now on algorithms that only rely on ”1-step” and ”2-

step” neighbours in the network. The ”1-step” and ”2-step”

neighbours of sensor r read

Vr,1-step = {t : (r, t) ∈ E}, (16)

Vr,2-step = {t′ : (t, t′) ∈ E ∧ t ∈ Vr,1-step}. (17)

Replacing V2 in (14) by Vr,1-step ∪ Vr,2-step yields

p̃r (xr) ∝ mfr→xr
(xr)

∏

t∈Vr,1-step∪Vr,2-step

mgr,t→xr
(xr), (18)

with ∝ denoting proportionality. It follows from (9) that

mfr→xr
(xr) ∝ exp

(

− ‖xr−µr‖
2

2σ2
r

)

. (19)

For t ∈ Vr,1-step ∪ Vr,2-step, we have

mgr,t→xr
(xr) = exp

(

EqGt
[ln p (dr,t |xr,xt)]

)

. (20)

Inserting (19) and (20) in (18) we get the following expression

for the KL divergence in (13):

KL(q′r (xr) ‖ p̃r (xr)) ∝

ln
(

σ2

r

σ̂2
r

)

− 1 + 1
2σ2

r
Eq′r

[

‖xr − µr‖
2
]

+
∑

t∈Vr,1-step

(

1
2R2Eq′r

[

‖xr − xt‖
2
]

(21)

+ 1
2σ2

r,t

(

dr,t − Eq′r

[

EqGt

[

‖xr − xt‖
2
]])2 )

−
∑

t′∈Vr,2-step

Eq′r

[

EqG
t′

[

ln
(

1− exp
(

− 1
2R2 ‖xr − xt′‖

2
))]]

.

The right hand term in (21) depends implicitly on the mean

and the variance of qr (xr). Hence, the mean x̂r and variance

σ̂2
r of mG

xt→N (xr)
(xr) in (13) are the solutions minimizing

this expression.

When only ”1-step” neighbours are considered, the sum

over Vr,2-step in (21) vanishes. We refer to the algorithm that

only exploits this information from 1-step neighbours as as the

direct VMP algorithm. It is similar to the proposed scheme in

[5] with the modification that we have introduced Po(xr,xt).
The algorithm that in addition also exploits the information

from ”2-step” neighbours is referred to as the 2-step VMP
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Figure 2. Simulation scenario: 13 anchor sensors and 10 static mobile sensors
(not shown) in a connected network within 100m×100m in each Monte Carlo
trial. R = 20m and σ

2

r,t = 0.01m2. For simplicity, dr,t = dt,r .

algorithm. Here, each sensor in the network broadcasts a list

of its neighbours’ position estimates in addition to its own

position and variance estimates.

IV. NUMERICAL EXPERIMENTS

We investigate by means of Monte Carlo simulations the

potential performance gain that can be achieved using the

2-step VMP algorithm compared to the direct scheme. The

considered scenario is depicted in Figure 2. In this scenario,

the density of mobile sensors is low, and thus the WSN is

with high probability sparse. Consequently, the probability

that a mobile experiences a localization ambiguity (e.g. due to

few network connections) is high. The low density of mobile

sensors also leads to frequent occurrences of network realiza-

tions with groups of mobiles that are not connected directly or

indirectly to any anchor. In such networks the detached mobile

sensors can only estimate their positions relatively, irrespective

of the applied localization method; the resulting large errors

of the absolute position estimates drastically deteriorate the

localization performance. As our focus is on alleviation of

ambiguities we remedy these situations with detached sensors

in the simulations by restricting the attention to connected net-

works, and discard networks with nodes that are not connected

to the rest of the network. Doing so considerably restricts the

validity of the results, but nonetheless allows for an assessment

of the potential gain achievable by exploiting the information

from 2-step neighbours.

In the simulations we assume that the anchors cannot

communicate directly, i.e., they are not interconnected via a

separate backbone network. For simplicity we further assume

that dr,t = dt,r. In a Monte Carlo run the two algorithms each

perform 20 iterations on the same WSN and measurement

realization.

Figure 3 reports the estimated cumulative distribution func-

tion (cdf) of the absolute localization error. It appears that the
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Figure 3. Estimated cdf of the absolute localization error for the direct
(dashed line) and the 2-step (full line) VMP localization algorithms at iteration
20 based on 26 independent Monte Carlo trials.

Table I
RELATIVE FREQUENCIES OF SENSOR DEGREES IN THE SIMULATION.

Degree 1 2 3 4 ≥ 5

Rel. freq. [%] 8 32 33 19 8

2-step VMP algorithm provides somewhat improved position

estimates compared to the direct algorithm. To understand

what leads to this improvement, we show in Figure 4 the

estimated cdfs of the absolute localization error for sensors

with degree one, two and three respectively, i.e. with one, two

or three ”1-step” neighbours. From the figure no significant

difference between the two algorithms appears for sensors with

degree one. One would anticipate an improvement in the 2-

step VMP algorithm’s favor. As Table I shows however, only

8% of the sensors have degree one. We conjecture that this

small number of sensors along with the very low network

density leads to networks in which degree one sensors in

most cases are unable to exploit the ”2-step” information from

their neighbour. The estimated error cdf for degree 2 sensors

obtained with the 2-step VMP algorithm is significantly higher

than the cdf resulting from using the direct algorithm. This

increase is due to the mitigation of ambiguities and hence the

more precise localization of degree two sensors. The higher

error cdf obtained with the 2-step VMP algorithm in Figure 3

stems mainly from these improved position estimates. For

sensors with degree three we see a slight improvement in

the 2-step VMP algorithm’s favor. The cdfs for sensors with

higher degrees (not depicted) show the same trend as the cdf

for degree three sensors although with decreasing 2-step VMP

improvement as the degree of the sensors increases.

V. CONCLUSION

We have investigated an ambiguity mitigating extension to

the probability model used in our recently published Gaussian

VMP localization algorithm. The simulation results show that

the 2-step VMP algorithm improves the localization of degree

two sensors. No significant improvement is seen for sensors

with degree one. For sensors with higher degrees the perfor-

mance improvement is slight in the tested scenario. Future

work will include further investigations of more realistic WSN
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Figure 4. Estimated cdfs of the absolute localization error for sensors with
degree one, two, and three for the direct (dashed line) and the 2-step (full
line) VMP localization algorithms at iteration 20 based on 26 independent
Monte Carlo trials.

configurations with decentralized and (partly) centralized set-

tings in order to obtain more conclusive results on the real

performance gain achievable by exploiting information on

absent connections between sensors.
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