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Abstract—A general path loss model for in-room radio chan-
nels is proposed. The model is based on experimental obser-
vations of the behavior of the delay-power spectrum in closed
rooms. In such a room, the early part of the spectrum observed
at different positions typically consists of a dominant compo-
nent (peak) that vanishes as the transmitter-receiver distance
increases; the late part decays versus distance according to the
same exponential law in delay regardless of the distance. These
observations motivate the proposed model of the delay-power
spectrum with an early dominant component and a reverberant
component. The dominant component is modeled as a Dirac
delta function weighted with a factor decaying according to an
inverse distance power law (d−n). The reverberant component is
an exponentially decaying function versus delay with distance-
dependent onset. Its power decays exponentially with distance.
The proposed model allows for the prediction of path loss,
mean delay, and rms delay spread versus distance. We use
measurements to validate the model. We observe good agreement
of the model prediction for mean delay and rms delay spread.

I. INTRODUCTION

The field of indoor radio-localization has recently attracted
significant interest. One approach for solving the localization
problem is to rely on the measured power of the received signal
[1] and to use a path loss model to infer the corresponding
length of a radio link. Knowledge of the received power is
often used for localization in already deployed systems (e.g.
WiFi) where received signal strength is readily available or
with cheap low power devices in sensor networks. Even when
deploying localization techniques with higher accuracy, path
loss models are used to predict the signal-to-noise ratio and
the probability of connectivity [2], which are both important
criteria for system analysis.

Indoor path loss models, relating the received power to the
transmitter-receiver distance, have been a valuable instrument
to the communication engineer [3]. A vast amount of such
models have been proposed for various propagation scenarios
and environments and have been validated for diverse purposes
in wireless communications. The primary concern so far has
been to predict the power loss with respect to distance. These
models consider indoor scenarios in which path loss is caused
by transmission across multiple walls and floors, and multi-
path fading [4], [5]. Thus, they cover a whole building. Only
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Fig. 1. Typical behavior of the bandlimited delay-power spectrum experimen-
tally observed in an in-room environment at three different transmitter-receiver
distances (schematically presented by the grey box).

few models are available in the literature that characterize
propagation in a single room [6].

In this contribution we propose an in-room path loss model
based on experimental observations of the behavior of the
delay-power spectrum [7], [8] and on analogies to models used
in room acoustics [9] and electromagnetic fields in cavities
[10]. In our model the delay-power spectrum consists of a
dominant and a reverberant component. The model allows
for the prediction of the path loss, the mean delay and the
rms delay spread versus transmitter-receiver distance. The
proposed model is validated with a new set of measurement
data.

II. DELAY POWER SPECTRUM MODEL

We consider an in-room scenario as illustrated in Fig. 1. The
delay-power spectrum is observed at different transmitter and
receiver locations. A system bandwidth high enough to observe
frequency fading (delay dispersion), but to low to separate
single propagation paths in the environment is considered.
The regarded carrier frequencies are high enough, such that
the smallest dimension of the room is large compared to the
wavelength λ. The delay-power spectrum is the expectation of
the squared magnitude of the impulse response h (τ, d):

G(τ, d) = E[|h (τ, d)|2]. (1)

Here τ is the delay and d is the transmitter-receiver distance.
In [8] it is observed that the delay-power spectrum in such



TABLE I
PARAMETERS OF THE PROPOSED MODEL.

Parameter Meaning

G0 Path gain at reference distance d0.
d0 Reference distance, typically 1 m.
n Path gain decay exponent of the dominant component.
q Ratio Grev(d0)/Gdom(d0).
T Reverberation time of the reverberant component.

an in-room scenario exhibits the typical behavior depicted
in Fig. 1. The tail of the delay-power spectrum exhibits the
same constant exponential decay regardless of the transmitter-
receiver distance. The early part is strong at short distance and
gradually vanishes as this distance increases.

Based on these observations, we model the delay-power
spectrum as a dominant component plus a reverberant compo-
nent:

G(τ, d) = E[|hdom (τ, d)|2] + E[|hrev (τ, d)|2]
= Gdom(τ, d) + Grev(τ, d). (2)

Subscript dom indicates the dominant component and sub-
script rev denotes the reverberant component. The domi-
nant component represents the early part of the delay-power
spectrum consisting of a directly propagating component and
possible first-order reflections from the floor, ceiling and walls.
The reverberant component represents the multitude of higher
order reflections in the room which yield the diffuse tail of
the delay-power spectrum.

We model the delay-power spectrum of the dominant com-
ponent as

Gdom(τ, d) = G0

(
d0
d

)n
δ
(
τ − d

c

)
, (3)

where n is the power decay exponent, δ( · ) is the Dirac delta
function, c the speed of light, and G0 > 0 is the gain at the
reference distance d0.

We model the reverberant delay-power spectrum as an
exponentially decaying function with onset determined by the
transmitter-receiver distance:

Grev(τ, d) =

{
G0,rev e−

τ
T , τ > d

c

0, otherwise
(4)

where G0,rev is the reference gain of the reverberant compo-
nent. In analogy to acoustics [8], [9] we call T the reverber-
ation time.

We remark that the models in [7] and [8] are based on
the room acoustic theory. They both neglect the transmitter-
receiver distance. In [7] the delay-power spectrum of the
reverberant component, i.e. corresponding to (4), is non-
exponential. It has maximum power one and constant onset
at delay zero. In [8] the model only accounts for the expo-
nentially decaying delay-power spectrum of the reverberant
component in (2).

III. PREDICTIONS OF THE DELAY POWER SPECTRUM

MODEL

Based on the model (2) we now derive expressions for the
path gain, mean delay, and rms delay spread as a function of
the transmitter-receiver distance.

A. Path gain

The path gain at distance d is

G(d) =
∫

G(τ, d)dτ

= G0

(
d0
d

)n︸ ︷︷ ︸
Gdom(d)

+G0,rev T e
−d
c T︸ ︷︷ ︸

Grev(d)

. (5)

The component Gdom(d) decays with d−n, while Grev(d)
decays exponentially. Denoting by q the ratio of reverberant
to dominant gain at reference distance d0:

q =
Grev(d0)
Gdom(d0)

=
G0,rev

G0
T e

−d0
c T , (6)

the path gain can be recast as

G(d) = G0

(
d0
d

)n
+ G0 q e

d0−d
c T . (7)

Examples of G(d) are graphed in Fig. 2a. At small distances
Gdom(d) dominates and the path gain decays as d−n. Beyond a
certain distance, the contribution of the reverberant component
Grev(d) in G(d) leads to a deviation from Gdom(d). This
effect occurs over a certain distance interval, denoted as the
reverberation region Drev = {d : Grev(d) ≥ Gdom(d)}.
At larger distances Grev(d) vanishes and G(d) approaches
Gdom(d) again.

We remark that the path loss is defined as the inverse of
the path gain: L(d) = G(d)−1. For notational convenience we
consider only path gain in the sequel.

B. Mean Delay and Root Mean Squared Delay Spread

The mean delay at distance d as is derived from (2) as

μτ (d) =
1

G(d)

∫
τ G(τ, d)dτ (8)

= d
c + T

1

1 +
(

d0
d

)n 1
q e

d−d0
c T

. (9)

In (9) the first term is the delay of a directly propagating
component and the second term results from the reverberant
component. Fig. 2b depicts the mean delay versus distance
with the settings specified in the legend of the figures. The
mean delay increases with distance. For distances in the rever-
beration region, the curves approximately follow the straight
line d

c + T . It can be seen from (9) that limd→0 μτ (d) = 0
and that μτ (d) has the asymptote d

c for d → ∞. Note that the
range of distance considered in the plot of Fig. 2b is to small
to observe the convergence of μτ (d) towards its asymptote.

Similarly, (2) enables computation of the rms delay spread:
στ (d):

σ2
τ (d) =

1
G(d)

∫
τ2 G(τ, d)dτ − (μτ (d))2 . (10)

Insertion of (7) and (9) into (10) leads to

σ2
τ (d) =

T 2

1 +
(

d0
d

)n 1
q e

d−d0
c T

⎛⎝2 − 1

1 +
(

d0
d

)n 1
q e

d−d0
c T

⎞⎠ .

(11)
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Fig. 2. Path gain (a), mean delay (b) and rms delay spread (c) versus distance predicted by the proposed model for d0 = 1 m.

Fig. 2c depicts the rms delay spread versus distance. Notice,
στ (d) in (11) has the following limits

lim
d→0

στ (d) = lim
d→∞

στ (d) = 0. (12)

Here again, the range of the distance considered in Fig. 2c
is to small to observe the convergence of στ (d) towards 0
as d → ∞. For distances in the reverberation region στ (d)
approaches the reverberation time T . Indeed it can be shown
that

T = sup
d,n,q

{στ (d) : d ≥ 0, n ≥ 0, q ≥ 0}, (13)

i.e. the rms delay spread is upper bounded by T for any
distance.

IV. MEASUREMENT DATA

We validate the proposed model by means of measurement
data from a campaign conducted at DLR in Oberpfaffenhofen,
Germany. The investigated room is sketched in Fig. 3. A
panograph of it is depicted in Fig. 4. The environment was
static and no one was in the room while the measurements
were taken.

The dimensions of the room are 5.1×5.25×2.78 m3. The
three inner walls are made of plaster boards. As visible in the
panograph, the outer “wall” consists mainly of four windows
(W1–W4) and two pillars made of concrete. The frames of
the windows are metallic and the glass is metal coated. The
height of the transmit and receive antenna was 1.26 m and
1.1 m, respectively.

The measurement data were collected using the Rusk-DLR
channel sounder [11] operating at 5.2 GHz. The settings of
the sounder are summarized in Table II. The transmit antenna
[12] was omni-directional with 3 dBi gain. A uniform circular
array of eight monopoles with diameter 75.18 mm was used at
the receiver. The transmitter and receiver were synchronized
to a common clock via cables throughout the measurements.

The equipment used a multiplexer to sequentially sound
the eight channels between the port of the transmit antenna
and the ports of the eight elements of the receive array.
One measurement cycle, in which all eight channel frequency
responses were measured, was completed in 204.8 µs. The
sounder was operating in “burst” mode. In each burst 20
consecutive measurement cycles were performed. One burst
lasted 20 · 204.8 µs = 4096 µs. Between each burst, the
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Fig. 3. Schematic of the investigated room.
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Fig. 4. Panograph (spherical panoramic photo) of the investigated room seen
from Rp1 using an equi-rectangular projection.

sounder paused for data storage; the burst repetition time was
131.072 ms.

The receive antenna array was placed at five fixed locations
labeled as Rp1 to Rp5 respectively in Fig. 3. The transmit
antenna was mounted on a model train which moved on
two tracks labeled as T1 and T2. Frequency responses were
measured for each receiver position while the transmitter
moved along the two tracks with a constant speed of ap-
proximately 0.05 m/s. During one measurement burst the
transmitter moved 204.8 µm = 0.0035λ. Over this distance
the channel response can be considered constant. Between two
consecutive bursts, the transmitter moved 6.55 mm ≈ λ/8.8.

The positions Rp1-Rp5 and the trajectory along the track
were measured with a tachymeter. The odometer of the model
train was connected to the channel sounder to record the
measurement locations.

V. RESULTS

We compute the received power at all receiver and transmit-
ter positions. Notice that one measurement burst corresponds
uniquely to one pair of transmitter and receiver positions. Let
us consider one specific burst. The frequency responses of each
of the eight channels measured during the burst are averaged.



TABLE II
SETTINGS OF THE CHANNEL SOUNDER.

Parameter Value

Carrier frequency fc 5.2 GHz
Bandwidth B 120 MHz
Number of sub-carriers Nc 1536
Carrier separation Δf 78.125 kHz
Signal duration 12.8 µs
Cycle duration 204.8 µs
Cycles per burst 20
Burst duration 4096 µs
Burst repetition time 131.072 ms
Transmit power 0 dBm

TABLE III
PARAMETER ESTIMATES FOR THE STANDARD AND PROPOSED MODELS.

Model Ĝ0 n̂ q̂ T̂ [ns]

Standard 1.11 · 10−5 1.14 — —
Proposed T̂ = 18.73 ns 6.42 · 10−6 2.26 0.56 18.73

Proposed T̂ = 16.02 ns 5.79 · 10−6 2.39 0.71 16.02

The averaged responses are then squared and integrated to
obtain the power values of the eight channels. Averaging these
values yields the power measured in the burst. Fig. 5 reports
the scatter plot of power values computed for all bursts versus
transmitter-receiver distance. Since the noise-floor is below
−70 dBm in all measurements, we disregard the noise.

We compute the mean delay estimate μ̂τ and rms delay
spread estimates σ̂τ for each burst. We multiply the averaged
frequency responses of the eight channels obtained for a given
burst (see above) with a Hann window. Taking the inverse
Fourier transform of the filtered frequency responses yields
estimates of the impulse responses of the eight channels.
The mean delay and delay spread estimates for the burst are
obtained by inserting the squared average of the eight im-
pulse responses in (8) and (10), respectively. These estimates
computed for all bursts are reported versus transmitter-receiver
distance in Fig. 6. These values are in accordance with values
reported in [5] for office environments.

We use the model assumption (4) on the behavior of the
tail of the delay-power spectrum versus τ to estimate T
from experimental delay-power spectra. More specifically, an
estimate of T is obtained from a linear least squares estimate
of the slope of the late part of the experimental log power
spectra. As can be seen in Fig. 7 the underlying model
assumption (4) holds true for the experimental delay-power
spectra. Considering the restriction of the log spectra obtained
for any transmitter and receiver positions in the delay range
40 ns ≤ τ ≤ 150 ns, the linear least squares estimator yields
T̂ = 18.73 ns.

We test the behavior of the mean delay (μτ → d
c + T ,

see Fig. 2b) and the rms delay spread (στ ≈ T , see Fig. 2c)
predicted by the model when d ranges in the reverberation
region. The scatter plot of estimates of the rms delay spread
in Fig. 6 shows a constant behavior for distances larger than
3 m. Therefore, we estimate T by taking the average of these
estimates for d > 3m. This yields T̂ = 16.02ns. Similarly we
estimate T from the scatter plot of estimates of the mean delay
versus distance. For each estimate, say μ̂τ (d), the difference
μ̂τ (d) − d

c is computed for d > 3 m. The estimate T̂ is the
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.

average of these differences. Doing so yields T̂ = 13.07 ns.
The theoretical results for μτ and στ in Fig. 2b and Fig. 2c,
respectively, show that for some model parameter settings, the
bound στ ≈ T and specifically the asymptote of the mean
delay μτ → d

c +T are not reached. Thus we proceed with the
analysis by considering the two close estimates T̂ = 18.73 ns
and T̂ = 16.02 ns.

We estimate the parameters of both the standard path
loss model (G(d) = G0

(
d0
d

)n
) and the proposed model

from the estimated power values reported in Fig. 5. More
specifically, the estimates are computed by considering the
log-power domain. For the standard path loss model a linear
least squares estimation is performed. We use the Matlab curve
fitting toolbox [13], which provides a non-linear least squares
estimator, to fit the proposed path gain model (7). This toolbox
returns estimates of the parameters G0, n and q with the
estimate T̂ provided as input.

The estimates of the parameters of the models are reported
in Table III and the path gains versus distance computed from
the models with these parameter settings are shown in Fig. 5.
The path gain predictions of the standard and proposed models
(for the two sets of parameter estimates) almost overlap.
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VI. DISCUSSION

The estimate n̂ = 1.14 of the path loss exponent of the
standard path gain model is in the range of published values
obtained from in-room measurement data [6] and references
therein. Traditionally, exponent values lower than 2 are at-
tributed to wave guiding effects. However, the dimensions of
the room do not advocate this interpretation. A reverberation
phenomenon in the room provides a more plausible explana-
tion to the observed low exponent.

The estimates of the mean delay μ̂τ (d) and rms delay
spread σ̂τ (d) shown in Fig. 6 are in accordance with the
model prediction obtained with T̂ = 16.02 ns. The predicted
transition of the mean delay and the rms delay spread from
zero at d = 0 to respectively d

c + T and T for d ranging in
the reverberation region is well observed.

The parameter estimates of the model computed from the
two estimated reverberation times slightly differ (see Ta-
ble III). However, the path gains predicted by the two model
estimates fall on top of each other as shown in Fig. 7.

The estimate T̂ = 18.73ns obtained directly from the delay-
power spectra deviates by only 14.5 % from T̂ = 16.02 ns
obtained from (13). These observations support the hypoth-
esis that the reverberant component impacts significantly the
received power, mean delay, and rms delay spread.

The estimated values for q, which characterize the ratio be-
tween the power of the dominant and reverberant components,
is 0.56 and 0.71 respectively. Thus, the reverberant component
plays an important role in the description of the path gain. The
estimates n̂ = 2.26 and 2.39 of the path gain decay exponent
of the dominant component are close to the exponent of free-
space propagation.

The estimated reverberation times are close to typical rms
delay spreads observed in office environments [5]. This sug-
gests that these rms delay spreads might have been measured
in the reverberation region and are thus dominated by the
reverberation term. This interpretation is further supported by
the fact that the reverberation region starts as close a distance
as 1.2 m in the considered scenario.

VII. CONCLUSIONS

A model of the delay-power spectrum of an in-room rever-
berant channel has been proposed. The model includes a dom-

inant and a reverberant component. The dominant component
follows an inverse distance power law (d−n). The reverberant
component decays exponentially versus delay and exhibits a
distance dependent onset. As a result, its power decays ex-
ponentially with distance. The proposed model allows for the
prediction of path gain, mean delay and rms delay spread. The
model was validated using measurement data and compared to
the standard path loss model. The predictions of mean delay
and rms delay spread agree well with the estimates obtained
from the measurement data. In the investigated environment
the ratio of the gain of the reverberant component to the gain
of the dominant component is 0.56. Hence, the reverberant
component is prominent in this environment. The estimated
path gain exponent of the dominant component in the proposed
model is close to the free-space path gain exponent. Due to
its inability to separate the dominant component from the
reverberant component the standard path gain model yields a
path gain exponent close to unity. This model merely provides
a fit of the path gain that blends the contributions from the
dominant and reverberant component.
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