
Aalborg Universitet

A method for classification of network traffic based on C5.0 Machine Learning
Algorithm

Bujlow, Tomasz; Riaz, M. Tahir; Pedersen, Jens Myrup

Published in:
ICNC'12: 2012 International Conference on Computing, Networking and Communications (ICNC)

DOI (link to publication from Publisher):
10.1109/ICCNC.2012.6167418

Publication date:
2012

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Bujlow, T., Riaz, M. T., & Pedersen, J. M. (2012). A method for classification of network traffic based on C5.0
Machine Learning Algorithm. In ICNC'12: 2012 International Conference on Computing, Networking and
Communications (ICNC): Workshop on Computing, Networking and Communications (pp. 237-241). IEEE
Press. https://doi.org/10.1109/ICCNC.2012.6167418

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/ICCNC.2012.6167418
https://vbn.aau.dk/en/publications/b4676136-67cc-480b-b736-e473a38c2f97
https://doi.org/10.1109/ICCNC.2012.6167418

Downloaded from vbn.aau.dk on: June 18, 2025

A method for classification of network traffic based
on C5.0 Machine Learning Algorithm

Tomasz Bujlow, Tahir Riaz, Jens Myrup Pedersen
Section for Networking and Security, Department of Electronic Systems

Aalborg University, DK-9220 Aalborg East, Denmark
{tbu, tahir, jens}@es.aau.dk

Abstract—Monitoring of the network performance in high-
speed Internet infrastructure is a challenging task, as the
requirements for the given quality level are service-dependent.
Backbone QoS monitoring and analysis in Multi-hop Networks
requires therefore knowledge about types of applications forming
current network traffic. To overcome the drawbacks of existing
methods for traffic classification, usage of C5.0 Machine Learning
Algorithm (MLA) was proposed. On the basis of statistical
traffic information received from volunteers and C5.0 algorithm
we constructed a boosted classifier, which was shown to have
ability to distinguish between 7 different applications in test
set of 76,632–1,622,710 unknown cases with average accuracy
of 99.3–99.9 %. This high accuracy was achieved by using high
quality training data collected by our system, a unique set
of parameters used for both training and classification, an
algorithm for recognizing flow direction and the C5.0 itself.
Classified applications include Skype, FTP, torrent, web browser
traffic, web radio, interactive gaming and SSH. We performed
subsequent tries using different sets of parameters and both
training and classification options. This paper shows how we
collected accurate traffic data, presents arguments used in
classification process, introduces the C5.0 classifier and its
options, and finally evaluates and compares the obtained results.

Index Terms—traffic classification, computer networks, C5.0,
Machine Learning Algorithms (MLAs), performance monitoring

I. INTRODUCTION

One of the most important challenges in network monitoring
is how to measure performance of high-speed Multi-hop
Networks in a centralized manner. Each network carries
data for numerous different kinds of applications, which
have different performance requirements. Therefore providing
information about the quality level requires knowledge of what
kind of data is flowing in the network at the present time. Most
of the current methods for traffic classification use a concept
of flow defined as a group of packets having the same end
IP addresses, using the same transport protocol, and its port
numbers. Flows are considered bidirectional – packets going
from the local machine to the remote server and from the
remote server to the local machine are part of the same flow.

Using application ports for traffic classification is a very
simple idea widely used by network administrators to limit
traffic generated by worms and unwanted services. This
method is very fast, and can be applied to almost all the
routers and layer-3 switches existing on the market. Apart
from its universality, this method is very efficient to classify

some protocols operating on fixed port numbers. Using it,
however, gives very bad results in detection of protocols
using dynamic port numbers, like P2P and Skype [1]–[3]. The
second drawback is not less severe: many scam applications
use well-known port numbers to be treated in the network with
priority. Deep Packet Inspection (DPI) solutions are quite slow
and require a lot of processing power [1], [3]. Furthermore
they relay on inspecting the user data and therefore privacy and
confidentiality issues can appear [1]. Application signatures for
every application must be created outside the system and kept
up to date [1], what can be problematic. Worse, encryption
techniques make DPI in many cases impossible.

Machine Learning Algorithms like K-Means, Naive Bayes
Filter, C4.5, J48, Random Forests have much wider coverage.
They can be used in any point of the network, providing
very fast statistical detection of the application, to which the
traffic belongs. Achievable detection rate correctness is over
95 % [1], [2], [4]–[9]. All the MLAs require a significant
amount of training data for initial learning. Precision of future
classification by MLAs depends heavily on quality of the
training data. This paper introduces usage of C5.0 in traffic
classification and shows that this C4.5 successor is able to
offer classification accuracy above 99 %.

The remainder of this document describes related previous
work, gives an overview of our system, our method for
collecting precise training data and isolating set of arguments
used for classification, and then focuses on C5.0. Accuracy
of classification by C5.0 and speed of generating the
classifier was assessed when using various set of classification
arguments and program options. Subsequently obtained results
were presented and discussed.

II. RELATED WORK

It was demonstrated in [1] that all the P2P applications
behave similarly, so it is possible to use statistical analysis
to detect even unknown applications. Several tries were made
to classify accurately P2P and Skype traffic using older
implementations of MLAs, like REPTree, C4.5, or J48. In [1]
the authors proposed few simple algorithms based on REPTree
and C4.5, which are being able to classify P2P traffic using
the first 5 packets of the flow. Their method based on C4.5
performed highly accurately (97 % of P2P traffic was classified
properly), but the accuracy was not tested when starting
packets from the flow were lost. Furthermore, the attribute set

used for classification contained source and destination port
numbers, what could make the classifier closely related to the
current assignment of port numbers to particular applications
in the training data.

Another approach to classify P2P applications was taken
in [3] using a Java implementation of C4.5 called J48 to
distinguish between 5 different applications. The authors tried
to skip a number of packets at the beginning of the flow
ranging from 10 to 1000 and they obtained only a little
fluctuation in performance, with classification accuracy over
96 %. It was shown in [10] that the original C4.5 and J48
perform much different on relatively small or noisy data sets
(accuracy of J48 and C5.0 was in tested cases similar, and
worse than C4.5). J48 processing using statistics based on
sizes was implemented in [11] for detection of BitTorrent
and FTP traffic, reaching an accuracy of around 98 %. This
publication showed that behavior of data parameters contained
in encrypted and unencrypted traffic generated by the same
application looks almost the same. Moreover it was shown
that zero-payload packets (ACK) can distort statistics based
on sizes.

In [12] different mechanisms of classification of the network
traffic were evaluated, including C5.0. The achieved accuracy
was around 88–97 % on traffic belonging to 14 different
application classes. This not very high classification accuracy
was probably partly due to preparing both training and test
cases, where the decision attribute (application name) was
obtained by DPIs (PACE, OpenDPI and L7-filter). These DPI
solutions use multiple algorithms to obtain the application
name, including statistical analysis. Therefore, both training
and test data were in some degrees inaccurate, what caused
also more errors from the side of C5.0.

III. OVERVIEW OF THE METHODS

In our research the C5.0 classifier was intended to be a
part of a system for Quality of Service (QoS) measurements
in the core of the network [13]. The first task is to recruit
volunteers from the users in the network in which the system
will be installed. The volunteers install on their computer a
client program, which captures relevant traffic information
and submits the data to the server. On the server these
data is used to generate per-application traffic statistics. C5.0
Machine Learning Algorithm uses these statistics to learn
how to distinguish between different types of applications and
generate classification rules (decision trees). In our research
we focused on 7 different groups of applications instead of
individual applications, because the QoS requirements within
each group are similar (like for Firefox, Opera or Google
Chrome web browsers).

The challenging task is to inspect nearly in real-time
significant amount of traffic in the core of high-speed
networks. Such systems deal with huge amounts of data and
therefore only selected flows can be inspected due to memory
and processing power limitations for quality assessment.
Inspecting one or few flows per user a time is enough, since
when a user experiences problems, they usually concern all

Table I
REQUIREMENTS FOR DIFFERENT FLOWS

Group Requirement

Skype protocol name = ’UDP’ AND application name = ’Skype’ AND no. of
packets ≥ 200

FTP application name = ’Filezilla’

Torrent application name = ’uTorrent’

Web (application name = ’firefox’ OR application name = ’chrome’ OR
application name = ’opera’) AND remote IP 6= ’195.184.101.203’

Web radio client id = 3 AND application name = ’chrome’ AND remote IP =
’195.184.101.203’

Game application name = ’AA3Game’ AND protocol name = ’UDP’

SSH application name = ’Putty’

user’s network activity. For better adjustment to applications
used in different networks the classifier was designed to be
network-dependent, so it should be trained in each network
independently. When the relevant flows are captured, per-
flow statistics need to be generated. There are two kind of
statistics generated at this step: used for determining the kind
of application associated to that flow, and used for assessing
the QoS level in a passive way. The system uses classification
rules previously generated by C5.0 together with the first type
of statistics to find out to which application the flow belongs.
Then, on the basis of the kind of the application the system
determines acceptable ranges of values of the relevant QoS
parameters. The last step is to check if the current values
(obtained from flow statistics or in an active way) match the
expected ones. If not, quality of the given service is considered
as degraded.

Subsequent paragraphs contain detailed description of our
methods regarding:
• collecting accurate training and test data by our

Volunteer-Based System.
• criteria for the data flows used in our experiment.
• processing the flows and extracting the statistics.
• defining sets of classification arguments.
• assessing accuracy of C5.0 while using various

classification options.

IV. OBTAINING THE DATA

A good solution for obtaining accurate training data can
rely on collecting the flows at the user side along with the
name of the associated application. We did this using our
Volunteer-Based System. The basic idea and design of the
system was described in [14] and our current implementation
in [15]. The system consists of clients installed on users’
computers, and a server responsible for storing the collected
data. The task of the client is to register information about
each flow passing the Network Interface Card (NIC), with the
exception of traffic to and from the local subnet, to prevent
capturing transfers between local peers. The following flow
attributes were captured: start and end time of the flow, number
of packets, local and remote IP addresses, local and remote
ports, transport protocol, name of the application and client,

which the flow belongs to. Apart from the information on the
flow itself, the client also collected information about all the
packets associated with each flow. These packet parameters
were: direction, size, TCP flags, and relative timestamp to the
previous packet in the flow. Information was then transmitted
to the server, which stored all the data for further analysis in
a MySQL database.

Another small software was developed for generating
training and test files for the C5.0 classifier from the collected
data. The following application groups were isolated: Skype
main voice flow, FTP transfers (both uploads and downloads),
torrent transfers, web browser traffic (except web radio), web
radio traffic, the interactive game America’s Army and SSH
traffic. Requirements needed to be fulfilled by traffic flows
associated with each group are specified in Table I.

Because of dynamic switching between the flows, the
method had to be able to inspect a flow starting from any time
point. For performance reasons it is not possible to store all the
flows in the database and to start inspection of the chosen one
from its beginning. So, it had to be possible to assess the flow
on the basis of given number of packets or seconds from the
middle of that flow. We assumed that flow characteristics based
on packet sizes within a network are independent of current
conditions, contrary to the flow characteristics based on time
parameters (which change quickly during e.g. congestion).
Therefore, our method used a concept of probe equals to
particular number of captured packets instead of particular
number of seconds. The probability of catching initial packets
of each flow is very low due to dynamic switching between
the flows. Moreover, count and size characteristics are different
for the initial and for the remaining packets in the flow. To
not disturb accuracy of the classifier by statistics obtained
from initial packets, we decided to ignore in the experiment
ten initial packets of each flow, even if they were captured
and stored. This feature excluded from the experiment flows
possessing less than 15 packets, but this limitation was
reasonable, because QoS performance measurements rely in
our case on long flows.

The direction of the flow was recognized on the basis
of proportions of inbound to outbound payload bytes of
the classified flow – higher value was always considered
as belonging to the inbound traffic. This way, streams with
asymmetric load were always classified in the same way and
we avoided noise affecting the accuracy.

We needed to find out what number of packets from the
flow is needed to perform accurate classification. Each flow
was divided into X groups of Y packets, where Y depends on
the current iteration (we tested our algorithm on groups of 5,
10, 15,. . . , 90 packets), and X is a count of obtained groups.
The dependency between X and Y is evident: more packets in
a group means less groups in total (and therefore less training
cases), but higher accuracy of statistics creating each particular
case. Obtained groups were divided into 2 disjoint sets used
later to generate statistics.

V. CLASSIFICATION ATTRIBUTES

Each group from these 2 disjoint sets was used to generate
one (respectively training and testing) case for the classifier.
This way we never used the same cases for both training
and classification. Attributes were divided in 2 sets. Set A
contained 32 general continuous attributes based only on
packet count and sizes, plus the target attribute. All the size
parameters were based on the real payload length, not the
packet length. To improve the ability to classify the encrypted
traffic, the outer TCP/IP (40 B) or UDP/IP (28 B) header was
removed, leaving only the data part. This set of parameters
consists of:
• number of inbound / outbound / total payload bytes in

the sample.
• proportion of inbound to outbound data packets / payload

bytes.
• mean, minimum, maximum first quartile, median, third

quartile, standard deviation of inbound / outbound / total
payload size in the probe.

• ratio of small inbound data packets containing 50 B
payload or less to all inbound data packets.

• ratio of small outbound data packets containing 50 B
payload or less to all outbound data packets.

• ratio of all small data packets containing 50 B payload or
less to all data packets.

• ratio of large inbound data packets containing 1300 B
payload or more to all inbound data packets.

• ratio of large outbound data packets containing 1300 B
payload or more to all outbound data packets.

• ratio of all large data packets containing 1300 B payload
or more to all data packets.

• application: skype, ftp, torrent, web, web radio, game,
ssh.

Set B contained 10 protocol-dependent attributes:
• transport protocol: TCP, UDP.
• local port: well-known, dynamic.
• remote port: well-known, dynamic.
• number of ACK / PSH flags for the inbound / outbound

direction: continuous.
• proportion of inbound packets without payload to

inbound packets: continuous.
• proportion of outbound packets without payload to

outbound packets: continuous.
• proportion of packets without payload to all the packets:

continuous.
By dividing the classification attributes, the research

demonstrated how much the accuracy of the classifier depends
on including set B into the classification. It is worth to mention
that the attributes contained in set B are very general: no
real port numbers were stored, but only information if the
number is below 1024 (well-known) or above (dynamic). This
way at first we did not influence speed of the classifier by
dividing the cases for each local and remote port number
(resulting in generating port-based classifier), but still we
were able to provide general information about the application

Table II
PERCENT OF CLASSIFICATION ERRORS WHEN USING DIFFERENT C5.0 OPTIONS

No. of pckts / case 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

No. of cases 1622710 791552 520661 384757 304388 251420 213810 185686 163715 146248 131818 119710 109449 100908 93572 87225 81546 76632

Decision trees [A] 5.0 4.0 3.5 3.2 3.2 3.0 3.1 2.9 2.9 3.0 2.9 3.0 3.2 3.0 3.0 3.0 3.1 3.0

Decision trees [A+B] 0.5 0.4 0.7 0.5 0.5 1.0 0.5 0.9 0.3 0.4 0.5 0.4 0.3 0.4 0.4 0.3 0.3 0.3

Rules [A] 5.5 5.4 3.7 3.1 3.2 4.1 3.4 3.0 3.9 3.2 2.9 3.1 3.0 2.9 2.9 2.9 2.8 2.9

Rules [A+B] 0.5 0.4 0.6 0.4 0.4 1.0 0.3 0.3 0.3 0.4 0.2 0.4 0.3 0.2 0.2 0.3 0.2 0.3

Boost [A] 5.0 3.9 3.5 3.0 2.9 2.6 2.7 2.8 2.8 2.9 4.2 4.5 3.1 4.0 4.4 4.3 3.8 2.9

Boost [A+B] 0.4 0.4 0.3 0.4 0.4 0.3 0.2 0.2 0.2 0.7 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.2

Softening [A] 4.9 4.0 3.5 3.2 3.3 3.0 3.2 2.8 3.1 3.0 3.0 3.0 3.1 3.0 3.0 2.9 3.0 3.0

Softening [A+B] 0.5 0.4 0.7 0.5 0.5 0.9 0.5 0.9 0.3 0.4 0.5 0.4 0.3 0.4 0.4 0.3 0.3 0.3

model: client-server or peer-to-peer. Secondly, services can
use different port numbers, but still they should be classified
correctly, as the servers in the client-server model usually use
only well-known port numbers, and the clients use dynamic
ones. By avoiding using port numbers our solution should be
able to identify accurately also encrypted traffic. Zero-payload
packets (ACK) were treated in a special way by assignment
to their own classification argument.

VI. THE C5.0 CLASSIFIER

The C5.0 algorithm is a new generation of Machine
Learning Algorithms (MLAs) based on decision trees [16].
It means that the decision trees are built from list of possible
attributes and set of training cases, and then the trees can
be used to classify subsequent sets of test cases. C5.0 was
developed as an improved version of well-known and widely
used C4.5 classifier and it has several important advantages
over its ancestor [17]. The generated rules are more accurate
and the time used to generate them is lower (even around 360
times on some data sets). In C5.0 several new techniques were
introduced:
• boosting: several decision trees are generated and

combined to improve the predictions.
• variable misclassification costs: it makes it possible to

avoid errors which can result in a harm.
• new attributes: dates, times, timestamps, ordered discrete

attributes.
• values can be marked as missing or not applicable for

particular cases.
• supports sampling and cross-validation.
The C5.0 classifier contains a simple command-line

interface, which was used by us to generate the decision trees,
rules and finally test the classifier. In addition a free C source
code for including C5.0 classifier in external applications is
available on the C5.0 website. Detailed description of C5.0
and all its options and abilities is published in the tutorial
[18].

VII. RESULTS

The training cases were provided to the C5.0 classifier
to generate decision trees or classification rules. Then, the

decision trees or the rules were used to classify the test
cases. The experiment was repeated multiple times, each time
using different sets of training and test cases (dependent on
number of packets used to create the case), different set of
attributes used for classification (set A, or set A plus B),
and different classification options (normal, rules generating,
boosting, softening thresholds). We tested both error rates of
provided classifiers (Table II) and time needed to construct
them (Figure 2). Average error rates of the classifiers are
shown on Figure 1 and the misclassification table for the
classifier with the lower error rate (boosted classifier using
both A and B sets of classification attributes, 75 packets
used to construct each case) is presented on Figure 3. The
experiment resulted in several important conclusions. First of
all, using extended set of classification attributes (A + B)
containing protocol-dependent attributes we achieved lower
bottom error rate (0.1 %) than using only size-based attributes
from set A (2.7 %). The time used to construct classifiers
from the extended set of attributes was also lower than when
using only set A. Both these observations were completely
independent on classification options.

The lower error rate of 0.1 % was achieved by using
the boosted classifier, comparing to 0.3 % error rate when
using the standard classification without any options. However,
creating the boosted classifier took around 10 times more time
than creating the standard classifier. Furthermore our research
demonstrated that creating the rules instead of decision trees,
or using softened thresholds had no or only a little impact on
the error rate, while it extended dramatically the time used for
constructing the classifier.

We measured also which way of training the classifier is the
most optimal. The research showed that the classification error
rate was the highest when using numerous cases, each created
from statistics from 5 packets. The low precise statistics
constructed from small number of packets were not sufficient
to make the classifier accurate, even, if the count of them
was significant. The classification error was decreasing while
increasing count of packets from which the statistics were
generated, and it stabilized when we used 35 or more packets.
Increasing the number of packets used to construct the case
further did not improve the accuracy significantly, probably

because it was compensated by smaller amount of provided
training cases.

Figure 1. Average error rates of the classifiers

Figure 2. Time spent for generating the classifier

(a) (b) (c) (d) (e) (f) (g) <-classified as
---- ---- ---- ---- ---- ---- ----
650 3 (a): class skype

196 68 (b): class ftp
19 83929 3 (c): class torrent

6799 (d): class web
8 388 (e): class web_radio

16 9 1419 (f): class game
7 58 (g): class ssh

Figure 3. Misclassification table, the best case

VIII. CONCLUSION

The paper presents a novel method based on C5.0 MLA for
distinguishing different kinds of traffic in computer networks.
It was demonstrated that our method is feasible to classify
traffic belonging to 7 different applications with an average
accuracy of 99.3–99.9 %, when using accurate data sets for
both training and testing the boosted classifier. Our results
proved that the classifier is able to distinguish traffic which
appears to be similar, like web browser traffic and radio
streamed via a web page. The classifier did not have problems
with distinguishing interactive traffic: Skype, game and SSH.

We observed however that FTP and Torrent file transfers have
very similar flow characteristics, and therefore a significant
number of packets were misclassified between these two
classes. Our method is a field for more experiments and further
improvements. In this research both training and test data
sets were disjoint, but collected from the same users. As the
next step we consider involving numerous users to assess the
accuracy using data sets obtained from different networks.

REFERENCES

[1] Jun Li, Shunyi Zhang, Yanqing Lu, Junrong Yan, Real-time P2P Traffic
Identification, IEEE GLOBECOM 2008 PROCEEDINGS, pp. 1–5.

[2] Jing Cai, Zhibin Zhang, Xinbo Song, An Analysis of UDP Traffic
Classification, 12th IEEE International Conference on Communication
Technology (ICCT), IEEE 2010, pp. 116–119.

[3] Ying Zhang, Hongbo Wang, Shiduan Cheng, A Method for Real-
Time Peer-to-Peer Traffic Classification Based on C4.5, 12th IEEE
International Conference on Communication Technology (ICCT), IEEE
2010, pp. 1192–1195.

[4] Riyad Alshammari, A. Nur Zincir-Heywood, Machine Learning Based
Encrypted Traffic Classification: Identifying SSH and Skype, Proceedings
of the 2009 IEEE Symposium on Computational Intelligence in Security
and Defense Applications (CISDA 2009).

[5] Sven Ubik, Petr Žejdl, Evaluating Application-Layer Classification
Using a Machine Learning Technique Over Different High Speed
Networks, 2010 Fifth International Conference on Systems and Networks
Communications, IEEE 2010, pp. 387–391.

[6] Riyad Alshammari, A. Nur Zincir-Heywood, Unveiling Skype Encrypted
Tunnels using GP, IEEE Congress on Evolutionary Computation (CEC),
IEEE 2010, pp. 1–8.

[7] Jun Li, Shunyi Zhang, Yanqing Lu, Zailong Zhang, Internet
Traffic Classification Using Machine Learning, Second International
Conference on Communications and Networking in China (CHINACOM
’07), IEEE 2007, pp. 239–243.

[8] Yongli Ma, Zongjue Qian, Guochu Shou, Yihong Hu, Study of
Information Network Traffic Identification Based on C4.5 Algorithm,
4th International Conference on Wireless Communications, Networking
and Mobile Computing (WiCOM ’08), IEEE 2008, pp. 1–5.

[9] Wei Li, Andrew W. Moore, A Machine Learning Approach for Efficient
Traffic Classification, Proceedings of the Fifteenth IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS’07), IEEE 2008, pp. 310–
317.

[10] Samuel A. Moore, Daniel M. D’Addario, James Kurinskas, Gary M.
Weiss, Are Decision Trees Always Greener on the Open (Source) Side
of the Fence?, In Proceedings of DMIN’2009. pp. 185–188.

[11] Jason But, Philip Branch, Tung Le, Rapid identification of BitTorrent
Traffic, 35th Annual IEEE Conference on Local Computer Networks,
IEEE 2010, pp. 536–543.

[12] Oriol Mula-Valls, A practical retraining mechanism for network
traffic classification in operational environments, Master Thesis in
Computer Architecture, Networks and Systems, Universitat Politècnica
de Catalunya, June 2011.

[13] Tomasz Bujlow, Tahir Riaz, Jens Myrup Pedersen, A Method for
Assessing Quality of Service in Broadband Networks, submitted to
ICACT 2012 (International Conference on Advanced Communication
Technology).

[14] Kartheepan Balachandran, Jacob Honoré Broberg, Kasper Revsbech,
Jens Myrup Pedersen, Volunteer-based distributed traffic data collection
system, Feb. 7-10, 2010 ICACT 2010, pp. 1147–1152.

[15] Tomasz Bujlow, Kartheepan Balachandran, Tahir Riaz, Jens Myrup
Pedersen, Volunteer-Based System for classification of traffic in computer
networks, submitted to 19th Telecommunications Forum TELFOR 2011.

[16] Information on See5/C5.0 - RuleQuest Research Data Mining Tools,
2011. [Online]. Available: http://www.rulequest.com/see5-info.html

[17] Is See5/C5.0 Better Than C4.5?, 2009. [Online]. Available: http://www.
rulequest.com/see5-comparison.html

[18] C5.0: An Informal Tutorial, 2011. [Online]. Available: http://www.
rulequest.com/see5-unix.html

