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Abstract
We introduce the concept of a rank-saturating system and outline its correspondence
to a rank-metric code with a given covering radius.We consider the problem of finding
the value of sqm/q(k, ρ), which is the minimum Fq -dimension of a q-system in F

k
qm

that is rank-ρ-saturating. This is equivalent to the covering problem in the rank metric.
We obtain upper and lower bounds on sqm/q(k, ρ) and evaluate it for certain values of k
and ρ. We give constructions of rank-ρ-saturating systems suggested from geometry.

Keywords Linear sets · Projective systems · Saturating systems · Rank-metric
codes · Covering radius
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1 Introduction

The relationships between linear codes and sets of points in finite geometries have
long been exploited by researchers [1, 16, 18, 19, 21, 25]. Indeed, the MDS conjecture
was first posed by Segre as a problem on arcs in finite geometry [41]. A generator
matrix or parity check matrix of a linear code can be constructed from a multiset of
projective points. Supports of codewords correspond to complements of hyperplanes
in a fixed projective set. This connection yields a ‘dictionary’ between these two fields,
which allows one to apply methods from one domain to the other. This approach has
been taken in constructing codes with bounded covering radius, related to saturating
sets in projective space.

The geometry of rank-metric codes has recently been investigated [3, 39]: rank-
metric codes correspond to q-systems and linear sets. In this paper, we exploit
this relationship further: we introduce the notion of a rank-saturating system in
correspondence with a rank-metric covering code.

The covering radius of a code is the least positive integer ρ such that the union
of the spheres of radius ρ about each codeword is equal to the full ambient space.
This fundamental coding theoretical parameter has been widely studied for codes in
respect of the Hamming metric [12, 17–21, 24], but very few papers on the subject
have appeared in the literature on rank-metric codes [14, 27]. The covering radius is an
indicator of combinatorial properties of a code, such as maximality and is an invariant
of code equivalence. It also gives a measure of its error-correcting capabilities, via
a determination of the maximal weight of a correctable error. Several other commu-
nication problems can be expressed in terms of covering problems for the Hamming
metric [17]. For the rank metric, the covering radius of a code has connections with
min-rank problems, such as those that arise in index-coding [13]. However, as far as
the authors are aware, covering radius problems in the rank metric have not yet been
approached from a geometric viewpoint.

A set S of points in the projective space PG(k − 1, q) is called ρ-saturating if
every point of PG(k − 1, q) lies in a projective subspace spanned by ρ + 1 points of
S and ρ is the least integer with this property. The equivalence classes of such sets
are in bijection with equivalence classes of covering codes: if a ρ-saturating set S is
identifiedwith the columns of a parity checkmatrix of a code C, then C has (Hamming)
covering radius ρ + 1. This yields an interesting connection between coding theory
and finite geometry. A key question in this topic concerns the minimal cardinality of
a saturating set for fixed q, k, and ρ. Translated to codes, this asks what the shortest
length of an Fq -code of redundancy k and covering radius ρ + 1 is. A related problem
is to obtain bounds on this number and to give constructions of codes or saturating sets
that meet these bounds. Geometric methods to these problems have been considered
in [18, 20, 21, 24, 44], wherein the two main approaches involve constructions using
(1) cutting (or strong) blocking sets and (2) mixed subgeometries.

Rank-metric codes have been a source of intense research activity over the last
number of years [8, 14, 15, 23, 26, 27, 35, 40, 42]. In this paper, we focus on rank-
metric codes that are Fqm -linear subspaces of F

n
qm . While there exists a more general

description of rank-metric codes simply as linear spaces of matrices, the restriction to
theFqm -linear subspaces ofFn

qm hasmore immediate connections to finite geometry [3,
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39]. In this paper, we introduce the notion of an [n, k]qm/q rank-ρ-saturating system.
In analogy with codes for the Hamming metric, it turns out that a rank-ρ-saturating
system corresponds to a linear code of rank-metric covering radius ρ. Such codes have
the property that every element of the ambient space is within rank distance at most
ρ to some codeword. In our analysis, we will use the notion of an [n, k]qm/q system,
which is simply an n-dimensionalFq -subspace ofFk

qm whoseFqm -span is the full space
and is a q-analogue of a projective system. Such q-systems have been used already in
[3] and [39] to describe geometric aspects of rank-metric codes. Then an [n, k]qm/q

rank-ρ-saturating system is one whose associated linear set is a (ρ − 1)-saturating set
in PG(k − 1, qm).

We write sqm/q(k, ρ) to denote the minimum Fq -dimension of a rank-ρ-saturating
system in F

k
qm . In this paper, we show that

⌈
mk

ρ

⌉
− m + ρ ≤ sqm/q(k, ρ) ≤ m(k − ρ) + ρ, (1)

for all q > 2, and a slightly different lower bound for q = 2. While the lower
bound of (1) arises from a combinatorial observation, the upper bound is constructive.
Furthermore, using the notion of a linear cutting blocking set [4], as well as construc-
tions from subgeometries, we obtain sharper upper bounds for specific parameters by
constructing rank-saturating systems.

This paper is organized as follows. In Sect. 2, we outline some background prelim-
inaries. In Sect. 3, we introduce the notion of a rank-saturating system, give equivalent
characterizations of such systems, and outline the connection to the rank covering
radius of a code. In Sect. 4, we give upper and lower bounds on the minimum Fq -
dimension of a rank-ρ-saturating system. In almost all cases, the bounds we establish
turn out to be independent of q. The concept of a rank-saturating system allows us to
extend in Sect. 5 classical constructions for the Hamming metric to the rank metric.
In particular, we adopt two different approaches: one construction arises from linear
cutting blocking sets, first introduced in [3], and the other uses subgeometries. In the
final section, we list some cases for which sqm/q(k, ρ) is completely determined.

2 Background

Throughout this paper, q will denote a fixed prime power, while m, n, k will denote
positive integers such that n ≤ km and k ≤ n. We will write ρ to denote a posi-
tive integer in {1, . . . ,min{k,m}}. Vectors will, as a rule, be column-vectors (unless
specified otherwise). We write [n] to denote the set {1, . . . , n}.

Let ∼ denote the equivalence relation on the non-zero elements of F
k
q defined by

u ∼ v if and only if u = λv for some nonzero element λ ∈ Fq . The projective space
PG(k − 1, q) with underlying vector space F

k
q is the set of equivalence classes for

∼, which are called points. For a subspace V ⊆ F
k
q , the corresponding collection of

points in PG(k − 1, q) form a projective subspace of PG(k − 1, q). If dim V = k − 1,
the corresponding subspace is called a hyperplane.
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For integers 0 ≤ k ≤ n and a prime power q, the Gaussian binomial coefficient

[
n
k

]
q

:=
k−1∏
j=0

qn − q j

qk − q j
,

denotes the number of k-dimensional subspaces of an n-dimensional space over Fq .

2.1 Linear codes

Let us start with some basic definitions of coding theory. Classically applied in noisy
channel communication, code elements are often calledwords and therefore commonly
represented as rowvectors. In this paper,wewillmainly consider the codes and systems
for the rank metric, but we will point out some relations with the more classical
Hamming-metric case. An Fqm -linear code of length n is an Fqm -linear space of F

1×n
qm .

Definition 2.1 Let u = (u1, . . . , un) and v = (v1, . . . , vn) in F
1×n
qm .

1. The Hamming distance between u and v in F
1×n
qm is defined to be the number

of coordinates in which they differ, that is: dH (u, v) := |{i ∈ [n] : ui �= vi }|.
The Hamming weight of u is wtH (u) := dH (u, 0). An [n, k, d]qm Hamming-
metric code C is a k-dimensional Fqm -subspace of F

1×n
qm such that d = dH (C) :=

min{dH (c, c′) : c, c′ ∈ C, c �= c′}. If the minimum distance of C is not known or
is not relevant, we refer to it as an [n, k]qm code.

2. The rank distance between u and v inF
1×n
qm is defined to be theFq -dimension of the

vector space spanned by the differences of their coordinates, that is: drk(u, v) :=
dimFq 〈ui − vi : i ∈ [n]〉Fq . The rank weight of u is wtrk(u) := drk(u, 0). An

[n, k, d]qm/q rank-metric code C is a k-dimensional Fqm -subspace of F
1×n
qm such

that d = drk(C) := min{drk(c, c′) : c, c′ ∈ C, c �= c′}. If the minimum distance C
is not known or is not relevant, we refer to it as an [n, k]qm/q code.

An [n, k]qm or an [n, k]qm/q code C is often described in terms of a generator matrix
G ∈ F

k×n
qm , which is a full-rank matrix whose rows generate C. The dual code of C is

defined to be:

C⊥ := {v ∈ F
1×n
qm : v · c = 0 ∀ c ∈ C},

where for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ F
1×n
qm wehave x ·y := ∑

j=1 x j y j .
Let C, C′ be a pair of Fqm -linear codes. We say that C and C′ are equivalent with

respect to the Hamming metric if there exists a monomial matrix M ∈ F
n×n
qm and a

pair of generator matrices G,G ′ of C, C′, respectively, satisfying G ′ = GM . We say
that C and C′ are equivalent with respect to the rank metric, if there exists A ∈ GLn(q)

and a pair of generator matrices G,G ′ of C, C′, respectively, satisfying G ′ = GA.
Wewill generally require that the codeswe study are nondegenerate in the following

sense.
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Definition 2.2 An [n, k]qm code C is Hamming-metric nondegenerate if for every
i ∈ [n] there exists c ∈ C such that ci �= 0. An [n, k]qm/q code C is rank-metric
nondegenerate if the Fq -span of the columns of any generator matrix of C has Fq -
dimension n.

Note that if a code is degenerate, then it can be isometrically embedded in an
ambient space of smaller dimension.

It was shown in [3, Proposition 3.2] that C is rank-metric nondegenerate if and only
if for every A ∈ GLn(q), the code C · A is Hamming-metric nondegenerate. Note
that, as already observed in [32, Corollary 6.5], nondegenerate rank-metric [n, k]qm/q

codes may exist only if n ≤ mk.

Definition 2.3 An [n, k]qm code C is projective if dH (C⊥) ≥ 3. We define a projec-
tivization of a code C to be a punctured code C∗ of C of maximal length such that
dH ((C∗)⊥) ≥ 3.

A code is called projective if and only if no generator matrix has two linearly depen-
dent columns. In a projectivization, one erases the minimum number of columns to
obtain a projective code. Any pair of codes obtained by projectivization are equivalent.
For this reason, it makes sense to talk about the projectivization of a code.

Definition 2.4 Let C ≤ F
1×n
qm . The Hamming-metric covering radius of C is:

ρH (C) := max{min{dH (x, c) : c ∈ C} : x ∈ F
1×n
qm }.

The rank-metric covering radius of C is:

ρrk(C) := max{min{drk(x, c) : c ∈ C} : x ∈ F
1×n
qm }.

More generally, with respect to an arbitrary distance function d on F
1×n
qm , the covering

radius of a code C ≤ F
1×n
qm is the minimum value ρ such that the union of the balls of

radius ρ about each codeword, with respect to the distance function d, is equal to the
full ambient space F

1×n
qm . Hamming-metric (respectively, rank-metric) covering radius

is an invariant of Hamming-metric (respectively, rank-metric) code equivalence.
We summarize some well-known results on the covering radius (c.f. [14, 17]).

Similar statements hold for any distance function, but we state them for the rank
metric.

Lemma 2.5 Let C,D ≤ F
1×n
qm be a pair of rank-metric codes. The following hold.

(a) If C ⊆ D, then ρrk(C) ≥ ρrk(D).
(b) If C � D, then ρrk(C) ≥ drk(D).
(c) If C /∈ {{0}, F

1×n
qm }, then drk(C) − 1 < 2ρrk(C).

An [n, k, d]qm/q code is calledmaximal if it is not strictly contained in any (possibly
nonlinear) code D ⊆ F

1×n
qm such that drk(D) = d. Clearly a cardinality-optimal code

is also maximal.

Lemma 2.6 (TheSupercodeLemma, [17]) LetC be an [n, k, d]qm/q codewith |C| ≥ 2.
Then C is maximal if and only if ρrk(C) ≤ d − 1.
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Example 2.7 Let α = (α j : j ∈ [n]) ∈ F
1×n
qm have rank weight n over Fq and let i be

a positive integer satisfying (i,m) = 1. An [n, k, n − k + 1]qm/q code with generator
matrix

Gn,k,i =
(
α
qi(t−1)

j

)
t∈[k], j∈[n]

is called as a generalized Gabidulin code. We denote it by Gn,k,i (α). Its dual code is
a generalized Gabidulin code Gn,n−k,i (β), for some β ∈ Fqm . Such codes meet the
rank-metric Singleton bound and are hence maximal, being optimal. Therefore, from
the Supercode Lemma, we have ρrk(Gn,k,i (α)) ≤ n−k. On the other hand,Gn,k,i (α) �

Gn,k+1,i (α) and so from Lemma 2.5, we have ρrk(Gn,k,i (α)) ≥ drk(Gn,k+1,i (α)) =
n − k. It follows that ρrk(Gn,k,i (α)) = n − k.

We recall the Dual Distance and External Distance bounds for rank-metric codes
[14, 22], which we state for Fqm -linear rank-metric codes. The external distance of an
[n, k]qm/q rank-metric code C is defined to be:

srk(C) := |{wtrk(c) : c ∈ C, c �= 0}|.

Theorem 2.8 Let C be a [n, k]qm/q rank-metric code. Then the following hold:

1. ρrk(C⊥) ≤ srk(C) (external distance),
2. ρrk(C⊥) ≤ min{n,m} − drk(C) + 1 (dual distance).

2.2 q-Systems and linear sets

There is a classical way to associate a set of points inP ⊆ PG(k−1, qm) to a projective
code in the Hamming metric. The idea is simply to take representatives in F

k
qm of the

points of P and put them as columns of a k × |P| generator matrix G over Fqm of a
code. As in the rank-metric case, such codes depend on the ordering of the points and
on their chosen vector representatives, but different choices yield equivalent codes.
We will call any code in this equivalence class a projective code associated with P ,
and we will denote it by CP . The same can be done for multisets of points, in which
case we arrive at non-projective codes, but we will not consider these in this work.
This geometric vision of codes leads to many interesting connections between objects
in finite geometry and properties of linear codes. In particular, the Hamming metric
can be read from this set of points: for any u ∈ F

k
qm , we have that:

wtH
(
uT G

)
= n − |P ∩ 〈u〉⊥

Fqm
| (2)

In the rank metric, there is analogous interpretation, which associates q-systems to
codes. We will now introduce these objects.
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Definition 2.9 An [n, k]qm/q system is an n-dimensional Fq -space U ≤ F
k
qm such that

〈U〉Fqm = F
k
qm . A generator matrix for U is a k × n matrix over Fqm whose columns

form an Fq -basis for U . Two [n, k]qm/q systems U and V are called equivalent if there
exists φ in GLk(qm) such that φ(U) = V .

A standardway to obtain [n, k]qm/q systems is to associate themwith nondegenerate
rank-metric codes. So, given a nondegenerate rank-metric code C, we may associate
it with a system U by taking a generator matrix of C and defining U to be the Fq -span
of its columns. This clearly depends on the choice of the matrix, but if we change the
generator matrix we obtain an equivalent system. We will call any system U in this
equivalence class a system associated with C. For a more detailed description of this
correspondence, which involves also the rank metric, the reader is referred to [3, §3]
and [39]. We just point out one important result which is the q-analogue of (2): for
any u ∈ F

1×k
qm ,

wtrk(uG) = n − dimFq (U ∩ 〈u〉⊥
Fqm

).

In this paper, we will show new connections between rank-metric codes (viewed as
covering codes) and q-systems. In order to do so, we will use the definition of a linear
set. Such objects were introduced by Lunardon in [34] in order to construct blocking
sets and they are subject of intense research over the last years. An in-depth treatment
of linear sets can be found in [38].

Definition 2.10 Let U be an [n, k]qm/q system. The Fq -linear set in PG(k − 1, qm) of
rank n associated with U is the set

LU := {〈u〉Fqm : u ∈ U \ {0}},

where 〈u〉Fqm denotes the projective point corresponding to u.

Remark 2.11 The original definition of a linear set does not assume that 〈U〉Fqm = F
k
qm .

However, if dimFqm (〈U〉Fqm ) = h < k, then, up to equivalence, we may assume

U ≤ F
h
qm with 〈U〉Fqm = F

h
qm , and then study LU in PG(h − 1, qm).

Let 0 �= v ∈ F
k
qm and P ∈ PG(k − 1, Fqm ) be the projective point associated with

v. We define the weight of P in LU as the integer

wtU (P) := dimFq (U ∩ 〈v〉Fqm ).

Definition 2.12 A linear set LU is scattered if wtU (P) = 1 for each P ∈ LU .

Any linear set LU of rank n satisfies

|LU | ≤ qn − 1

q − 1
. (3)
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Clearly a linear set LU is scattered if and only if equality holds in (3). Being a set of
points in PG(k−1, qm), a linear set LU can be associatedwith an [|LU |, k]qm codeCLU .
We may hence associate a (projective) Hamming-metric code with a nondegenerate
rank-metric code, as summarized in the following diagram.

C −→ CLU↓ ↑
U −→ LU

(4)

Definition 2.13 LetC be an [n, k]qm/q rank-metric code.We call the codeCLU obtained
as in (4) the projective Hamming-metric code associated with C.
Remark 2.14 Wehighlight the fact that the projectiveHamming-metric code associated
with a rank-metric code defined above is not, in general, the associated Hamming-
metric code described in [3, §4.2]. The two definitions coincide if and only if the
underlying linear set is scattered (see for example [3, §4.1]). If the linear set is scattered,
the Hamming-metric code associated with a representative [n, k]qm/q code has length
(qn − 1)/(q − 1). Otherwise, it is shorter. We remark that Hamming-metric codes
associated with scattered linear sets have been already considered in [10, 36, 37, 45].

3 Rank-saturating systems

In this section, we will introduce the main object of the paper. We will study its
properties and relations with covering codes in the rank metric.

Let us start with the notion of a saturating set.

Definition 3.1 Let S ⊆ PG(k − 1, qm).

(a) A point Q ∈ PG(k − 1, qm) is said to be ρ-saturated by S if there exist ρ + 1
points P1, . . . , Pρ+1 ∈ S such that Q ∈ 〈P1, . . . , Pρ+1〉Fqm . We also say that S
ρ-saturates Q.

(b) The set S is called ρ-saturating set of PG(k − 1, qm) if every point Q ∈ PG(k −
1, qm) is ρ-saturated by S and ρ is the smallest value with this property.

It is well-known (see, for example [31, Theorem 11.1.2]) that an [n, n − k]qm code
has (Hamming) covering radius ρ if every element of F

k
qm is a linear combination of

ρ columns of a generator matrix of the dual code and ρ is the smallest value with such
a property. The correspondence between projective systems and linear codes leads to
a correspondence between (ρ − 1)-saturating sets of size n in PG(k − 1, qm) and the
duals of [n, n − k]qm codes of covering radius ρ. In defining the q-analogue of such
saturating sets, we arrive at a q-analogue of this correspondence.

Definition 3.2 An [n, k]qm/q system U is rank-ρ-saturating if LU is a (ρ − 1)-
saturating set in PG(k − 1, qm). We call such a linear set a (ρ − 1)-saturating linear
set.

The property of being rank-ρ-saturating is clearly invariant under equivalence of
q-systems. The following result offers a characterization of rank-saturating systems
which we will use extensively in the remainder of this paper.
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Theorem 3.3 Let U be an [n, k]qm/q system and let {u1, . . . , un} be an Fq-basis of U .
The following are equivalent:

(a) U is rank-ρ-saturating.
(b) For each vector v ∈ F

k
qm , there exists λ ∈ F

1×n
qm with wtrk(λ) ≤ ρ such that

v = λ1u1 + . . . + λnun,

and ρ is the smallest value with this property.
(c) The full space can be expressed as:

F
k
qm =

⋃
S: S≤FqU : dimFq S≤ρ

〈S〉Fqm ,

and ρ is the smallest integer with this property.

Proof (a) ⇒ (b): Let 0 �= v ∈ F
k
qm and Q = 〈v〉Fqm ∈ PG(k − 1, qm). Since U is

rank-ρ-saturating, there exists ρ points P1 = 〈w1〉Fqm , . . . , Pρ = 〈wρ〉Fqm such that

v = γ1w1 + · · · γρwρ

with γi ∈ Fqm . Now w1, . . . , wρ are in LU , so that, if u1, . . . , un is an Fq -basis of U ,
we have

v = γ1(μ1,1u1 + · · · + μ1,nun) + · · · + γρ(μρ,1u1 + · · · + μρ,nun),

with μi, j ∈ Fq for all i, j . We reorder the terms to obtain:

v = (γ1μ1,1 + · · · + γρμρ,1)︸ ︷︷ ︸
λ1

u1 + · · · + (γ1μ1,n + · · · + γρμρ,n)︸ ︷︷ ︸
λn

un .

Now, call γ = (γ1, . . . , γρ) ∈ F
1×ρ
qm , M = (μi, j ) ∈ F

ρ×n
q , and λ = F

1×n
qm . We have

λ = γ M,

and so wtrk(λ) ≤ ρ (since the rank of M is at most ρ).
(b) ⇒ (c): From (b), any v ∈ F

k
qm can be expressed as the linear combination:

v = λ1u1 + · · · + λnun (5)

with dimFq 〈λ1, . . . , λn〉Fq ≤ ρ. Let S = 〈λ1, . . . , λn〉Fq . By (5), v ∈ 〈S〉Fqm .
(c) ⇒ (a): Take Q = 〈v〉Fqm ∈ PG(k − 1, qm). There exists S, an Fq -subspace of
U with dimFq S ≤ ρ, such that v ∈ 〈S〉Fqm . Let {w1, . . . , wρ} be a set containing a
basis of S over Fq and let P1, . . . , Pρ be their corresponding projective points, so that
〈wi 〉Fqm . These clearly belong to LU . Since v ∈ 〈S〉Fqm , Q ∈ 〈P1, . . . , Pρ〉Fqm . ��
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Remark 3.4 Note that (b) does not depend on the choice of the Fq -basis of U . Indeed,
consider two Fq -bases B = {u1, . . . , un} and B′ = {u′

1, . . . , u
′
n} of U . Then, for each

i ∈ [n] we have that ui = ∑n
j=1 a ju′

j with a j ∈ Fq for j ∈ [n]. Therefore,

n∑
i=1

λi ui =
n∑

i=1

λi

⎛
⎝ n∑

j=1

a ju
′
j

⎞
⎠ =

n∑
j=1

(
n∑

i=1

λi a j

)
u′
j =

n∑
i=1

λ′
i u

′
i ,

which that implies wtrk(λ) = wtrk(λ′).

The following theorem shows that in analogy with the Hamming-metric case, there
is a correspondence between rank-saturating systems and rank-metric covering codes.

Theorem 3.5 Let U be an [n, k]qm/q system associated with a code C. The following
are equivalent.

(a) U is rank-ρ-saturating.
(b) ρrk(C⊥) = ρ.

Proof (a) ⇒ (b) Let w ∈ F
1×n
qm , G be a generator matrix for C and v = GwT ∈ F

k
qm .

Since U is rank-ρ-saturating, by condition (b) of Theorem 3.3, there exists λ ∈ F
1×n
qm

with wtrk(λ) ≤ ρ such that v = GλT . Then G(wT − λT ), so that w − λ ∈ C⊥. Since
ρ is the least integer with this property, we may conclude that ρrk(C⊥) = ρ.
(b) ⇒ (a) Let v ∈ F

k
qm and G be a generator matrix for C. Let z any vector in F

1×n
qm

such that v = GzT . By the definition of rank covering radius, there exists w ∈ C⊥
(i.e., satisfying GwT = 0) such that wtrk(z − w) ≤ ρ. Call λ = z − w. We have
v = GzT = G(zT − wT ) = GλT . Since ρ is the least integer with this property, we
may conclude that U is rank-ρ-saturating. ��
Corollary 3.6 LetC be an [n, k]qm/q rank-metric code and letU be an [n, k]qm/q system
associated with C. Then

ρrk

(
C⊥) = ρH

(
(CLU )⊥

)
,

where CLU is the projective Hamming-metric code associated with C.
Proof This follows immediately by Theorem 3.5 and by the definition of rank-ρ-
saturating system. ��

We close this section by reformulating some known results (see [14]) on the rank-
covering radius, in the language of saturating systems.

Corollary 3.7 Let U be a rank-ρ-saturating [n, k]qm/q system associated with a code
C. Then

ρ ≤ srk(C) and ρ ≤ min{m, n} − drk(C) + 1.
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Proof These are direct consequences of Theorem 2.8. ��

Corollary 3.8 Let C be an [n, k]qm/q generalized Gabidulin code and let U be an
[n, k]qm/q system associated with C. Then U is a rank-k-saturating system.

Proof The statement follows immediately from the fact that ρrk(C⊥) = k. ��

4 Bounds on the dimension of rank-saturating systems

The classical covering problem, as presented for example in [17], is as follows: given
n and ρ, estimate the least number of spheres of radius ρ (with respect to the metric
considered) such that every vector in the ambient vector space of dimension n is
contained in their union, i.e., such that the union of the balls of radius ρ covers this
n-dimensional space. In the framework of linear codes, this is equivalent to asking how
large the rate of a code (that is the ratio between the dimension of the code and n) must
be in order to obtain a covering of the ambient space by balls centred at codewords.
In terms of rank-ρ-saturating systems, by Theorem 3.5 one may ask to find the least
value of n such that an [n, k]qm/q rank-ρ-saturating system exists, for fixed k and ρ.

Definition 4.1 We denote by sqm/q(k, ρ) the minimal Fq -dimension of any rank-ρ-
saturating system in F

k
qm . That is,

sqm/q(k, ρ) := min{n : ∃ an [n, k]qm/q rank-ρ-saturating system}.

The rest of this paper is devoted to obtaining bounds on this quantity: we will first
give a lower bound and then provide upper bounds arising from explicit constructions
of rank-ρ-saturating systems. We will use the following result.

Lemma 4.2 ( [27, Corollary 2.3]) Let a, b be positive integers, with b ≤ a. Then

[
a
b

]
q

<
qb(a−b)

(1/q)∞
,

where (1/q)∞ :=
∞∏
i=1

(1 − q−i ).

The following has been obtained with a slightly different approach in [28,
Proposition 14].

Theorem 4.3 Let U be a rank-ρ-saturating [n, k]qm/q system. Then

[
n
ρ

]
q

≥ qm(k−ρ).
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In particular, we have the following:

n ≥

⎧⎪⎪⎨
⎪⎪⎩

⌈mk
ρ

⌉− m + ρ if q > 2,
⌈mk−1

ρ

⌉− m + ρ if q = 2, ρ > 1,

m(k − 1) + 1 if q = 2, ρ = 1.

(6)

Proof Let us consider the set �ρ of all Fqm -subspaces spanned by ρ Fq -linearly
independent elements of U ; since the Fq -dimension of these subspaces is ρ, the rank
of theFq -span of their coefficients is at most ρ. AsU saturatesF

k
qm , fromTheorem 3.5,

we know that �ρ must cover the latter, i.e., that F
k
qm = ⋃

V∈�ρ
V . Therefore,

[
n
ρ

]
q

· qmρ ≥ qmk . (7)

If q = 2 and ρ = 1, then from (7) we get that 2n − 1 ≥ 2m(k−1) and hence n ≥
m(k − 1) + 1. From Lemma 4.2,

[
a
b

]
q

< (1/q)−1∞ · qb(a−b), for a, b ∈ N.

So

(1/q)−1∞ · qρ(n−ρ) · qmρ > qmk .

Hence,

n ≥
⌈
m

ρ
(k − ρ) + ρ − �logq((1/q)−1∞ )�

ρ

⌉
=
⌈
mk − �logq((1/q)−1∞ )�

ρ

⌉
− m + ρ.

The result now follows since (1/q)−1∞ < q for all q > 2, and is strictly less than 4 for
q = 2. ��

By Theorem 4.3, we obtain an immediate lower bound:

sqm/q(k, ρ) ≥

⎧⎪⎪⎨
⎪⎪⎩

⌈mk
ρ

⌉− m + ρ if q > 2,
⌈mk−1

ρ

⌉− m + ρ if q = 2, ρ > 1,

m(k − 1) + 1 if q = 2, ρ = 1.

(8)

Note that in the caseρ = 1, the bound of (8) is attained, i.e., sqm/q(k, 1) = m(k−1)+1.
To see this, let v ∈ F

k
qm , v �= 0 and let v′ /∈ 〈v〉⊥

Fqm
. Consider the [m(k−1)+1, k]qm/q

system:

U = 〈v′〉Fq + 〈v〉⊥
Fqm

,
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which is clearly a rank-1-saturating system, because LU = PG(k − 1, qm). Let C be
the code whose generator matrix has the elements of an Fq -basis of the system U as
its columns. The dual code C⊥ is an [m(k − 1) + 1,m(k − 1) + 1− k]qm/q with rank
covering radius 1 and it is the shortest code with this property for this dimension and
m.

We now obtain upper bounds on sqm/q(k, ρ). To start with, we give a generalization
of the previous construction.

Theorem 4.4 Any [m(k − ρ) + ρ, k]qm/q system U with generator matrix

G :=
[
Iρ 0
0 G ′

]
,

is rank-ρ-saturating. In particular,

sqm/q(k, ρ) ≤ m(k − ρ) + ρ.

Proof Let Fqm = Fq [α]. By [3, Proposition 3.16.], we have that, up to equivalence,
the system U has generator matrix

G :=
[
Iρ 0 0 · · · 0
0 Ik−ρ α Ik−ρ · · · αm−1 Ik−ρ

]
,

while U itself is given by:

U =
{(

u
ω

)
: u ∈ F

ρ
q , ω ∈ F

k−ρ
qm

}
.

Let v ∈ F
k
qm and suppose that vi1 , . . . , vir �= 0, for some i j ∈ [ρ]. Then v can be

expressed as:

v = vi1

⎛
⎜⎜⎜⎜⎝

ei1
ω1
vi1
...

ωk−ρ

vi1

⎞
⎟⎟⎟⎟⎠+ vi2

⎛
⎜⎜⎜⎜⎝

ei2
ω1
vi2
...

ωk−ρ

vi2

⎞
⎟⎟⎟⎟⎠+ . . . + vir

⎛
⎜⎜⎜⎜⎝

eir
ω1
vir
...

ωk−ρ

vir

⎞
⎟⎟⎟⎟⎠ ,

where e1, . . . , eρ is the standard basis of F
ρ
q . Clearly, each of these r ≤ ρ vectors

belongs to U . Any vector whose first ρ coordinates are non-zero requires exactly ρ

vectors in U and hence the system is rank-ρ-saturating. ��
Since we have equality between the lower and the upper bound for ρ = 1 and for

ρ = k, the bound of (8) is attained in these cases.
We now study some properties of the function sqm/q(k, ρ).

Lemma 4.5 Let U be a rank-ρ-saturating [n, k]qm/q system. The following are
equivalent.
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1. LU is not scattered.
2. U has an Fq-basis {u1, . . . , un} ⊆ F

k
qm with the property that

un = λ

n−1∑
j=1

lρ+1, j u j ,

for some lρ+1, j ∈ Fq , 1 ≤ j ≤ n − 1 and λ ∈ Fqm\Fq .

If either of the above equivalent properties hold, then U contains a rank-ρ′-saturating
[n − 1, k]qm/q system satisfying ρ′ ≤ ρ + 1. In particular, one such system is given
by 〈u1, . . . , un−1〉Fq .
Proof The equivalence of the two statements given above is clear: LU is scattered if
and only no two members of U are Fqm -multiples of the same vector in F

k
qm . For any

vector v ∈ F
k
qm ,

v =
ρ∑

i=1

λi

n∑
j=1

li, j u j

for some λi ∈ Fqm and li, j ∈ Fq . Therefore,

v =
ρ∑

i=1

λi

n−1∑
j=1

li, j u j +
ρ∑

i=1

λi li,nun

=
ρ∑

i=1

λi

n−1∑
j=1

li, j u j +
ρ∑

i=1

λi li,nλ
n−1∑
j=1

lρ+1, j u j

=
ρ+1∑
i=1

λi

n−1∑
j=1

li, j u j ,

where λρ+1 = ∑ρ
i=1 λi li,nλ ∈ Fqm . ��

Using similar arguments as in the classical Hamming-metric case (see [31, §11.5]),
we have the following results.

Theorem 4.6 (Monotonicity) The following hold:

(a) If ρ < min{k,m}, then sqm/q(k, ρ + 1) ≤ sqm/q(k, ρ).

(b) sqm/q(k, ρ) ≤ sqm/q(k + 1, ρ) − 1.
(c) If ρ < m, then sqm/q(k + 1, ρ + 1) ≤ sqm/q(k, ρ) + 1.

Proof (a) Let n > k and let n = sqm/q(k, ρ). Let G ∈ F
k×n
qm be a generator matrix

associated with a rank-ρ-saturating [n, k]qm/q system U . We may assume that G =
[Ik |uk+1 . . . , un−1, y] for some y, ui ∈ U . Assume further, that over all such choices
of U and G, that y has minimal rank weight.
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If wtrk(yT ) = 1, then U satisfies the hypothesis of Lemma 4.5 and so there exists
a (ρ + 1)-rank-saturating system of length n − 1. We thus assume that wtrk(yT ) =

 ≥ 2. Let {b1 := yi1 , . . . , b
 := yi
} be an Fq -basis of 〈y1, . . . , yk〉Fq , where yT =
(y1, . . . , yk). We have that y = b


∑k
j=1 p j e j + y′ for some p j ∈ Fq and y′ ∈ F

k
qm

satisfying y′ = (
∑
−1

j=1 a1 j b j , . . . ,
∑
−1

j=1 akj b j )
T for some ai j ∈ Fq .

Consider the matrix G ′ = [Ik |uk+1 . . . , un−1, y′], and the corresponding ρ′-rank-
saturating [n, k]qm/q system U ′ spanned by its columns. Let w ∈ F

k
qm . There exists

z ∈ F
n
qm of rank at most ρ such that w = Gz. Therefore,

w = Gz

=
∑
i∈[k]

zi ei +
n−1∑

i=k+1

zi ui + zn

⎛
⎝b


∑
i∈[k]

pi ei + y′
⎞
⎠

=
∑
i∈[k]

(zi + znb
 pi )ei +
n−1∑

i=k+1

zi ui + zn y
′

= G ′
⎛
⎝z + znb


∑
i∈[k]

pi ei

⎞
⎠ .

Let z′ = z + znb


∑
i∈[k] pi ei . Clearly, wtrk((z′)T ) ≤ wtrk(zT ) + 1 ≤ ρ + 1 and so

ρ′ ≤ ρ +1. If ρ′ = ρ +1, then we have sqm/q(k, ρ +1) ≤ n = sqm/q(k, ρ) and hence
the statement of the theorem will follow.

If y′ ∈ F
k
q , then U ′ is an [n − 1, k]qm/q system and so ρ′ = ρ + 1.

Suppose then that y′ /∈ F
k
q . Since wtrk((y

′)T ) < wtrk(yT ), by our choice of U and
G, it must be the case that ρ′ �= ρ. Suppose that ρ′ ≤ ρ − 1. If wtrk((y′)T ) = 1,
then U ′ satisfies the hypothesis of Lemma 4.5 and so there exists a rank-ρ′′-saturating
[n − 1, k]qm/q system U ′′ with ρ′′ ≤ ρ, yielding a contradiction to the fact that
n = sqm/q(k, ρ). We hence assume that wtrk((y′)T ) ≥ 2. Apply a similar argument
as before to produce a matrix G ′′ = [Ik |uk+1 . . . , un−1, y′′] with associated rank-
ρ′′-saturating system U ′′ satisfying ρ′′ ≤ ρ′ + 1 ≤ ρ and wtrk((y′′)T ) < wtrk(yT ).
Again, by our choice of G and U , it must be the case that ρ′′ ≤ ρ − 1. Continue,
iterating the same argument to produce a sequence of generator matrices G(i) =
[Ik |uk+1, . . . , un−1, y(i)] and associated [n − 1, k]qm/q rank-ρ(i)-saturating systems
U (i) with wtrk((y(i))T ) < wtrk((y(i−1))T ) at each step. This sequence will terminate
at some r for which wtrk((y(r))T ) = 1, in which case we may apply Lemma 4.5 to
arrive at a contradiction. We deduce that ρ′ = ρ + 1 and so the result follows.
(b) Let n > k and let n = sqm/q(k, ρ). Let G = [ Ik+1| A ] ∈ F

(k+1)×n
qm be a generator

matrix of a rank-ρ-saturating [n, k + 1]qm/q system U . Consider the matrix G ′ =
[ Ik | A′ ] ∈ F

k×(n−1)
qm found by deleting the first column and row of G. Let w′ ∈ F

k
qm

and let w = (0, w′)T ∈ F
k+1
qm . Since U is rank-ρ-saturating, there exists z ∈ F

n
qm of

rank at most ρ such that w = Gz and so w′ = G ′z′, where z′ = (z2, . . . , zn)T . Since
wtrk((z′)T ) ≤ wtrk(zT ) ≤ ρ, then G ′ generates an [n − 1, k]qm/q rank-ρ′-saturating
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system U ′ with ρ′ ≤ ρ. Therefore, by (a),

sqm/q(k, ρ) ≤ sqm/q(k, ρ
′) ≤ n − 1 = sqm/q(k + 1, ρ) − 1.

(c) Let n = sqm/q(k, ρ). Let G ∈ F
k×n
qm be a generator matrix of a rank-ρ-saturating

[n, k]qm/q system U . Consider the matrix

G ′ =
[
G 0
0 1

]
∈ F

(k+1)×(n+1)
qm ,

which generates a rank-ρ′-saturating [n+1, k+1]qm/q systemU ′. It is straightforward
to check that for any w ∈ F

k+1
qm , there exists z ∈ F

n+1
qm of rank at most ρ + 1 such that

w = G ′z. Again by (a), we have

sqm/q(k + 1, ρ + 1) ≤ sqm/q(k + 1, ρ′) ≤ n + 1 ≤ sqm/q(k, ρ) + 1.

��
In the following, we define the direct sum of systems to obtain recursive bounds,

in analogy with [21, 44].

Definition 4.7 For each i ∈ {1, 2}, let Ui be an [ni , ki ]qm/q system, associated with an
[ni , ki ]qm/q code Ci . Let f : F

1×n1
qm −→ F

1×n2
qm be an Fqm -linear map. The code

C := {(u, f (u) + v) : u ∈ C1, v ∈ C2}

is an [n1+n2, k1+k2]qm/q , which we call the f -sum of C1 and C2 and write C1⊕ f C2.
Its associated [n1 + n2, k1 + k2]qm/q system is called the f -sum of U1 and U2, which
we denote by U1 ⊕ f U2.

1. If f is the identity map, the f -sum of U1 and U2 is called the Plotkin sum of U1
and U2.

2. If f is the zero map, the f -sum of U1 and U2 is called the direct sum of U1 and
U2, which we denote by U1 ⊕ U2.

Theorem 4.8 For each i ∈ {1, 2}, let Ui be an [ni , ki ]qm/q rank-ρi -saturating system,

associated with an [ni , ki ]qm/q code Ci . Let f : F
1×n1
qm −→ F

1×n2
qm be an Fqm -linear

map. Then U1 ⊕ f U2 is an [n1 + n2, k1 + k2]qm/q system that is rank-ρ-saturating,
where ρ ≤ ρ1 + ρ2. In particular, if ρ1 + ρ2 ≤ min{k1 + k2,m}, then

sqm/q(k1 + k2, ρ1 + ρ2) ≤ sqm/q(k1, ρ1) + sqm/q(k2, ρ2).

Proof C = C1 ⊕ f C2 has a generator matrix of the form

G =
[
G1 G ′
0 G2

]
,
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where Gi is a generator matrix for Ci for each i and G ′ ∈ F
k1×n2
qm . Let Ui be the

system generated by Gi and let U ′ be the system generated by G ′. Since U1 is rank-
ρ1-saturating, U1 + U ′ is ρ′-saturating for some ρ′ ≤ ρ1. Let v ∈ F

k1+k2
qm and write

v = (v(1), v(2))T with each v(i) ∈ F
ki
qm . There exists (λ(1), λ′)T ∈ F

n1+n2
qm of rank

weight at most ρ′ and λ(2) ∈ F
n2
qm of rank weight at most ρ2 such that:

v =
[

v(1)

v(2)

]
=
[
G1 G ′
0 G2

] [
λ(1)

λ′ + λ(2)

]
,

and clearly λ = (λ(1), λ′ + λ(2))T has rank weight at most ρ1 + ρ2.
Suppose now that Ui has Fq -dimension sqm/q(ki , ρi ) for i ∈ {1, 2}. Then U1 ⊕ f U2

has Fq -dimension sqm/q(k1, ρ)+sqm/q(k2, ρ2). Since U1⊕ f U2 is rank- ρ′′-saturating
with ρ′′ ≤ ρ1 + ρ2, by Theorem 4.6,

sqm/q(k1 + k2, ρ1 + ρ2) ≤ sqm/q(k1 + k2, ρ
′′) ≤ sqm/q(k1, ρ1) + sqm/q(k2, ρ2),

if ρ1 + ρ2 ≤ min{k1 + k2,m}. ��
Remark 4.9 The direct sum U1 ⊕ U2 may be ρ-rank-saturating with ρ < ρ1 + ρ2,
as the following example shows. Let F16 = F2[α] with α4 = α + 1. Let U1 be the
[2, 2]16/2 system and U2 be the [3, 1]16/2 system defined, respectively, by

G1 =
[
1 0
0 1

]
and G2 = [

1 α α5
]
.

The system U1 is rank-2-saturating and the system U2 is rank-1-saturating, while
U1 ⊕ U2 is rank-2-saturating (which can be verified directly with Magma).

Corollary 4.10

sqm/q(tsh, ts) ≤ t · sqm/q(sh, s).

Proof We proceed by induction on t (for t = 1 it is clear). By Theorem 4.8 and by
induction hypothesis, we get

sqm/q(tsh, ts) ≤ sqm/q((t − 1)sh, (t − 1)s) + sqm/q(sh, s)

≤ (t − 1)sqm/q(sh, s) + sqm/q(sh, s) = t · sqm/q(sh, s).

��

5 Constructions

In this section, we present some geometric constructions of rank-saturating systems of
smallFq -dimension, following the lines of [18, 21, 24, 44],wherein, aswe have already
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mentioned, the two main approaches involve constructions using cutting blocking sets
and mixed subgeometries.

5.1 Constructions from linear cutting blocking sets

Let us first introduce the notion of a cutting blocking set.

Definition 5.1 AsubsetM ⊆ PG(k−1, q) is a cutting blocking set (or strong blocking
set) if for every hyperplane H of PG(k − 1, q), we have:

〈M ∩ H〉 = H.

Such sets were introduced in [19], with the original name of strong blocking sets,
in connection to ρ-saturating sets. More explicitly, we have the following result.

Theorem 5.2 (Theorem3.2. of [19])Any cutting blocking set in a subgeometryPG(k−
1, q) of PG(k − 1, qk−1) is a (k − 2)-saturating set in PG(k − 1, qk−1).

In [11], they were reintroduced, with the name of cutting blocking sets, in order to
construct a particular family of minimal codes.

Definition 5.3 An [n, k]qm code C is minimal if for every c, c′ ∈ C, {i : c′
i �= 0} ⊆ {i :

ci �= 0} implies c′ = λc for some λ ∈ Fqm .

Such codes have been the subject of extensive research over the last twenty years.
In [1, 43], it is shown that they are the geometrical counterparts of minimal codes, via
the correspondence introduced in Sect. 2.2. One of the main problems in the theory of
minimal codes is the construction of families of short-length codes, which is equivalent
to constructing small strong blocking sets. Some recent results can be found in [2, 4–6,
9, 30].

The q-analogue of a cutting blocking set is defined as follows.

Definition 5.4 A [n, k]qm/q system U is called a linear cutting blocking set if for every
Fqm -hyperplane H we have 〈H ∩ U〉Fqm = H.

Linear cutting blocking sets were introduced recently in [3], in connection with
minimal codes in the rank metric. In order to define these, we introduce the notion of
rank-support. Fix an ordered basis� = {γ1, . . . , γm} ofFqm/Fq . For a word c ∈ F

1×n
qm ,

let �(c) ∈ F
n×m
q be the matrix such that

ci =
m∑
j=1

�(c)i jγ j .

The rank-support of c, which we denote by σ rk(c) is the column space of �(c).

Definition 5.5 An [n, k]qm/q code C isminimal if for every c, c′ ∈ C, σ rk(c′) ⊆ σ rk(c)
implies c′ = λc for some λ ∈ Fqm .
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As shown in [3], a q-system is a linear cutting blocking set if and only if the
associated rank-metric code is minimal. We will show that, as in the classical setting,
linear cutting blocking sets give rise to rank-saturating systems.

Theorem 5.6 Let U be an [n, k]qm/q system. If U is a linear cutting blocking set, then
it is a rank-(k − 1)-saturating [n, k]qm(k−1)/q system.

Proof The system U is a linear cutting blocking set in F
k
qm , so that the [n, k]qm/q

code C associated with U is a minimal code in the rank metric by [3, Corollary 5.7].
Then the projective Hamming-metric code CLU associated with C is a minimal code
in the Hamming metric by [3, Theorem 5.13] (indeed, CLU is the projectivization of
the code CH in that reference, and we are using also the trivial fact that a code is
minimal if and only if its projectivization is minimal). Hence, LU is a cutting blocking
set in PG(k − 1, qm). Then LU is a (k − 2)-saturating set in PG(k − 1, qm(k−1)) by
Theorem5.2.By definition, thismeans thatU is a rank-(k−1)-saturating [n, k]qm(k−1)/q
system. ��
Corollary 5.7 For every m, k ≥ 2,

k + m − 1 ≤ sqm(k−1)/q(k, k − 1) ≤ lqm/q(k) ≤ 2k + m − 2,

where lqm/q(k) is the minimum Fq -dimension of a linear cutting blocking set in F
k
qm .

Proof The upper bound is a direct consequence of Theorem 5.6 and of [3, Corollary
6.11.], where it is shown that for every m, k ≥ 2, there exists a [2k + m − 2, k]qm/q

linear cutting blocking set. The lower bound is the one by Theorem 4.3. ��
Remark 5.8 Quite remarkably, the lower bound coincideswith the one for linear cutting
blocking set given in [3, Corollary 5.10], calculated over the subfield Fqm . Note,
however, that in [8] it is proved that the bound is not sharp for linear cutting blocking
sets when m < (k − 1)2. It would be interesting to know if a similar result holds also
for saturating systems.

Theorem 5.9 The equality

sq2r /q(3, 2) = r + 2

holds if one of the following is true:

(a) r �≡ 3, 5 mod 6 and r ≥ 4;
(b) gcd(r , (q2 s − qs + 1)!) = 1, r odd, 1 ≤ s ≤ r , gcd(r , s) = 1;
(c) r = 5, q = p15 h+s , p ∈ {2, 3}, gcd(s, 15) = 1;
(d) r = 5, q = 515 h+1;
(e) r = 5, q odd, q ≡ 2, 3 mod 5 and for q = 22 h+1, h ≥ 1.

Proof According to [3, 7, 33], under any of these hypothesis [r+2, 3]qr /q linear cutting
blocking sets exist. So by Theorem 5.6, rank-2-saturating [r+2, 3]q2r /q systems exist.
The equality comes from the fact that in this case the upper bound meets the lower
bound. ��
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Remark 5.10 Let us remark that, according to [29], [r+3, 3]qr /q linear cutting blocking
sets exist for any m and q. So, in general sq2r /q(3, 2) ∈ {r + 2, r + 3}.

Example 5.11 Let λ in F16 such that λ4 = λ+ 1. The [6, 3]16/2 system with generator
matrix

G =
⎛
⎝ λ4 λ10 λ8 λ3 λ9 λ7

λ14 λ8 λ λ8 0 λ8

λ10 0 λ6 λ5 λ11 λ3

⎞
⎠ ,

is a linear cutting blocking set, as shown in [3, Example 6.9]. So the [6, 3]256/2 system
U with the same generator matrix is a rank-2-saturating system. It has the smallest
F2-dimension. The linear set LU is scattered.

Remark 5.12 In [8], it is shown that, for all q, there exists an [8, 4]q3/q linear cutting
blocking set. Therefore, by Theorem 5.6 there exists a rank-3-saturating [8, 4]q9/q
system and hence

6 ≤ sq9/q(4, 3) ≤ 8.

In this case, their construction is independent of q.
On the other hand, for q = 2h with h odd, they show that the [8, 4]q4/q system

U =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

x
y

xq + yq
2

xq
2 + yq + yq

2

⎞
⎟⎟⎠ : x, y ∈ Fq4

⎫⎪⎪⎬
⎪⎪⎭

.

is a linear cutting blocking set (while for h even the result is no longer true) and by
Theorem 5.6, is a [8, 4]q12/q rank-3-saturating system. So

7 ≤ sq12/q(4, 3) ≤ 8,

for q = 2h with h odd. Note that, for h even, U may eventually be still a rank-3-
saturating system in spite of the fact that Theorem 5.6 is not applicable. It would
be interesting to know whether such an example of dependence on q exists also for
saturating systems. Note that from the dual distance bound, U is a rank-ρ-saturating
[8, 4]q4/q system, with ρ ≤ 5 − drk(C), where C is a code associated with U . In
particular, if C has minimum rank distance 2, U is ρ-rank-saturating, with ρ ≤ 3. A
parity-check matrix for C (up to equivalence) is given by [8, Proposition 4.14]:

H =

⎛
⎜⎜⎝

0 b
b 0

bq
2
bq

2 + bq
3

bq
3

bq
2

⎞
⎟⎟⎠ ,
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where b ∈ F
4
q4

has Fq -rank equal to 4 and bq
j := (bq

i

1 , . . . , bq
i

4 ) for each i . From this,

it is easy to see that no word of F
8
q is contained in the nullspace of H and hence C has

minimum distance at least 2.
Finally, in [8] it is shown that if [t, k]qm/q is a linear cutting blocking set, then

one can construct a [t + m, k + 1]qm/q linear cutting blocking set. In our terms, by
Theorem 5.6 we get that if a [t, k]qm/q linear cutting blocking set exists, then

sqm(k−1)/q(k, k − 1) ≤ t and sqmk/q(k + 1, k) ≤ t + m.

5.2 A construction from subgeometries

In this subsection, we outline a construction that exploits the properties of particular
subgeometries of PG(k − 1, qm), i.e., those arising from subfields of Fqm .

For the purposes of exposition, we start with a special case, which will serve as an
example of a more general construction.

Proposition 5.13 Let Fq2 = Fq [α]. For k ≥ 3, the [2k − 3, k]q4/q system U defined
by

U =
{(

u
w

)
: u ∈ F

3
q , w ∈ F

k−3
q2

}
,

which has an associated generator matrix given by:

G =
[
I3 0 0
0 Ik−3 α Ik−3

]
,

is rank-3-saturating. In particular, we have:

sq4/q(k, 3) ≤ 2k − 3.

Proof Fix β1, β2 ∈ Fq4 such that Fq4 = Fq2 + 〈β1, β2〉Fq . For any w ∈ Fq4 , write
w = πβ1(w)β1 +πβ2(w)β2 +πFq2

(w) for πβ1(w), πβ2(w) ∈ Fq and πFq2
(w) ∈ Fq2 .

Consider a vector v = (v1, . . . , vk)
T ∈ F

k
q4
; we will show that v = λ(1)u(1) +

λ(2)u(2) + λ(3)u(3) for some λ(1), λ(2), λ(3) ∈ Fq4 and u(1), u(2), u(3) ∈ U . We first
define the following functions:

ϕ1 : Fq4 × Fq4 −→ Fq

(x1, x2) �−→
{

πβ1(x1)
−1πβ1(x2) if πβ1(x1) �= 0,
0 otherwise;

and ϕ2 : Fq4 × Fq4 × Fq4 −→ Fq2 , where

ϕ2(x1, x2, x3) :=
πFq2

(x2) − πFq2
(x1)ϕ1(x1, x2)

πβ2(x2) − πβ2(x1)ϕ1(x1, x2)
(πβ2(x3) − πβ2(x1)ϕ1(x1, x3)),
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if πβ2(v2) �= πβ2(v1)ϕ1(v1, v2) and ϕ2(x1, x2, x3) := 0, otherwise.
We will first suppose that the following hold:

(I) πβ1(v1) �= 0,
(II) πβ2(v2) �= πβ2(v1)ϕ1(v1, v2),
(III) πFq2

(v3) �= πFq2
(v1)ϕ1(v1, v3) + ϕ2(v1, v2, v3).

Let

λ(1) := v1

πβ1(v1)
,

u(1) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

πβ1(v1)

πβ1(v2)

πβ1(v3)

πβ1(v4)
...

πβ1(vk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

λ(2) := β2 +
πFq2

(v2) − πFq2
(v1)ϕ1(v1, v2)

πβ2(v2) − πβ2(v1)ϕ(v1, v2)
= v2 − λ(1)u(1)

2 − πβ1(v2 − λ(1)u(1)
2 )β1

πβ2(v2 − λ(1)u(1)
2 )

,

u(2) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
πβ2(v2) − πβ2(v1)ϕ1(v1, v2)

πβ2(v3) − πβ2(v1)ϕ1(v1, v3)

πβ2(v4) − πβ2(v1)ϕ1(v1, v4)
...

πβ2(vk) − πβ2(v1)ϕ1(v1, v4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
πβ2(v2)

πβ2(v3)

πβ2(v4)
...

πβ2(vk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
πβ2(λ

(1)u(1)
2 )

πβ2(λ
(1)u(1)

3 )

πβ2(λ
(1)u(1)

4 )
...

πβ2(λ
(1)u(1)

k )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

λ(3) := πFq2
(v3) − πFq2

(v1)ϕ1(v1, v3) − ϕ2(v1, v2, v3)

= v3 − λ(1)u(1)
3 − λ(2)u(2)

3 − πβ1(v3 − λ(1)u(1)
3

− λ(2)u(2)
3 )β1 − πβ2(v3 − λ(1)u(1)

3 − λ(2)u(2)
3 )β2

u(3) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
.
.
.

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 1

λ(3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

πFq2
(v4) − πFq2

(v1)ϕ1(v1, v4) − ϕ2(v1, v2, v4)

.

.

.

πFq2
(vk ) − πFq2

(v1)ϕ1(v1, vk ) − ϕ2(v1, v2, vk )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
.
.
.

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 1

λ(3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

πFq2
(v4)

.

.

.

πFq2
(vk )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

λ(3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

πFq2
(λ(1)u(1)

4 )

.

.

.

πFq2
(λ(1)u(1)

k )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

λ(3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

πFq2
(λ(2)u(2)

4 )

.

.

.

πFq2
(λ(2)u(2)

k )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Direct computations show that v = λ(1)u(1) +λ(2)u(2) +λ(3)u(3). Since u(1), u(2) ∈
F
k
q ⊆ U and u(3) ∈ F

3
q × F

k−3
q2

⊆ U , we have that ρrk(U) ≤ 3.
We now consider the possibility that one or more of the assumptions (I)-(III) do

not hold. We will show that the argument holds with some minor modifications.

(I) Suppose that πβ1(v1) = 0.

(a) If there exists an index i ∈ {2, . . . , k} such that πβ1(vi ) �= 0, repeat the
passages written above replacing v1 with vi .

(b) Otherwise, if there does not exist any i ∈ {2, . . . , k} such that πβ1(vi ) �= 0, set
λ(1) = v1, u(1) = (1, 0, . . . , 0)T , and replace πβ1(v1)

−1 with the value zero
in the formula for ϕ1.

(II) Suppose that πβ2(v2) = πβ2(v1)ϕ1(v1, v2).

(a) If there exists an index i ∈ {3, . . . , k} such that

πβ2(vi ) �= πβ2(v1)ϕ1(v1, vi ),

repeat the passages written above replacing v2 with vi .
(b) Otherwise, if there does not exist any i ∈ {3, . . . , k} such that

πβ2(vi ) �= πβ2(v1)ϕ1(v1, vi ),

then set λ(2) = v2 − λ(1)u(1)
2 , u(2) = (0, 1, . . . , 0)T , replace

(πβ2(v2) − πβ2(v1)ϕ1(v1, v3))
−1

with the value zero in the determination of λ(3), u(3).

(III) Suppose that πFq2
(v3) �= πFq2

(v1)ϕ1(v1, v3) + ϕ2(v1, v2, v3).

(a) If there exists an index i ∈ {4, . . . , k} such that

πFq2
(vi ) �= πFq2

(v1)ϕ1(v1, vi ) + ϕ2(v1, v2, vi ),

then replace v3 with vi in the determination of λ(3), u(3).
(b) Otherwise, if there does not exist any i ∈ {4, . . . , k} such that

πFq2
(vi ) �= πFq2

(v1)ϕ1(v1, vi ) + ϕ2(v1, v2, vi ),

then the process has already terminated in the Step (II) and it is enough to set
λ(3) = 0 and u(3) = (0, . . . , 0)T .

To conclude the proof, we show that U is exactly 3-saturating. Let γ1, γ2, γ3 ∈ Fq4

be linearly independent over Fq , and let v = (γ1, γ2, γ3, 0, . . . , 0)T ∈ U . Due to the
linear independence of the γi over Fq , it is not possible to saturate v with fewer than
3 elements of U . ��
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The idea of the previous proof above, which is reminiscent of the Gram-Schmidt
algorithm, allows us to obtain a construction that generalizes Proposition 5.13.

Theorem 5.14 Let r , t ≥ 2 and Fqt = Fq [α], for some α, a root of an irreducible
polynomial of degree t over Fq . For h ≥ 0, the [th+(r−1)t+1, h+(r−1)t+1]qrt/q
system U defined by:

U =
{(

u
w

)
: u ∈ F

(r−1)t+1
q , w ∈ F

h
qt

}
,

which has an associated generator matrix given by:

G =
[
I(r−1)t+1 0 0 0 0

0 Ih α Ih . . . αt−1 Ih

]
,

is rank-((r − 1)t + 1)-saturating. In particular,

sqrt/q(h + (r − 1)t + 1, (r − 1)t + 1) ≤ th + (r − 1)t + 1.

Proof Let {β1, . . . , β(r−1)t } ⊆ Fqrt such that Fqrt = Fqt + 〈β1, . . . , β(r−1)t 〉Fq . For
any a ∈ Fqrt , write a = ∑

j∈[(r−1)t] πβ j (a)β j + πFqt
(a) for πβ j (a) ∈ Fq and

πFqt
(a) ∈ Fqt . Let k = h+(r−1)t+1 and consider a vector v = (v1, . . . , vk)

T ∈ F
k
qrt ;

we will show that v = ∑
j∈[(r−1)t+1] λ( j)u( j) for some λ( j) ∈ Fqrt and u( j) ∈ U .

Suppose first that πβ1(v1) �= 0. Define the following:

λ(1) := v1

πβ1(v1)
, u(1) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

πβ1(v1)

πβ1(v2)
...

πβ1(v(r−1)t+1)

πβ1(v(r−1)t+2)
...

πβ1(vh+(r−1)t+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If πβ1(v1) = 0, then proceed similarly as described in (I) of Proposition 5.13.
Now recursively define λ(
) and u(
) as follows: for 
 ∈ {2, . . . , (r − 1)t}, we set

λ(
) := v
 −∑
i∈[
−1](λ(i)u(i)


 ) −∑
j∈[
−1] πβ j (v
 −∑

i∈[ j] λ(i)u(i)

 )β j

πβ

(v
 −∑

i∈[
−1] λ(i)u(i)

 )

,
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u(
) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0(
−1)×1
πβ


(v
)

πβ

(v
+1)
...

πβ

(v(r−1)t+1)

πβ

(v(r−1)t+2)

...

πβ

(vh+(r−1)t+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
∑

i∈[
−1]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0(
−1)×1

πβ

(λ(i)u(i)


 )

πβ

(λ(i)u(i)


+1)
...

πβ

(λ(i)u(i)

(r−1)t+1)

πβ

(λ(i)u(i)

(r−1)t+2)

...

πβ

(λ(i)u(i)

h+(r−1)t+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

under the assumption that

πβ

(v
 −

∑
i∈[
−1]

λ(i)u(i)

 ) �= 0, for 
 ∈ [(r − 1)t]. (9)

If (9) does not hold, then this means that λ(
) and u(
) are not necessary for the
decomposition, and it is possible to proceed to the next step. We proceed in a manner
similar to (II) of Proposition 5.13.

Furthermore, define:

λ((r−1)t+1) := πFqt
(v(r−1)t+1) −

∑
i∈[(r−1)t]

πFqt
(λ(i)u(i)

(r−1)t+1),

and

u(r−1)t+1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0((r−1)t)×1
1

πFqt
(v(r−1)t+2)

λ((r−1)t+1)

...
πFqt

(vh+t(s−1)+1)

λ((r−1)t+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

λ((r−1)t+1)

∑
i∈[(r−1)t]

⎛
⎜⎜⎜⎜⎝

0((r−1)t+1)×1

πFqt
(λ(i)u(i)

(r−1)t+2)

...

πFqt
(λ(i)u(i)

h+t(s−1)+1)

⎞
⎟⎟⎟⎟⎠ ,

where we assume that

πFqt
(v(r−1)t+1) �=

∑
i∈[(r−1)t]

πFqt
(λ(i)u(i)

(r−1)t+1). (10)

Finally, if (10) does not hold, then continue as in (III) of Proposition 5.13.
In order to prove that U is ((r − 1)t + 1)-saturating, we show that the following

hold:

(i) v
 = ∑
i∈[
] λ(i)u(i)


 for 
 ∈ [(r − 1)t],
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(ii) πβ

(vk) = πβ


(∑
i∈[
] λ(i)u(i)

k

)
= πβ


(∑
i∈[ j] λ(i)u(i)

k

)
for 
 ∈ [(r − 1)t],

k ∈ {
 + 1, . . . , th + t(s − 1) + 1}, and j ∈ {
, . . . , (r − 1)t + 1},
(iii)

∑
i∈[(r−1)t+1] λ(i)u(i) = v.

Direct computations show that

λ(1)u(1)
1 = v1

πβ1(v1)
πβ1(v1) = v1,

and that, furthermore:

∑
i∈[
]

λ(i)u(i)

 = λ(
)u(
)


 +
∑

i∈[
−1]

(
λ(i)u(i)




)

=
v
 −∑

i∈[
−1]
(
λ(i)u(i)




)
−∑

j∈[
−1] πβ j

(
v
 −∑

i∈[ j] λ(i)u(i)



)
β j

πβ


(
v
 −∑

i∈[
−1] λ(i)u(i)



) πβ


⎛
⎝v
 −

∑
i∈[
−1]

λ(i)u(i)



⎞
⎠

+
∑

i∈[
−1]

(
λ(i)u(i)




)

= v
 −
∑

i∈[
−1]

(
λ(i)u(i)




)
+

∑
i∈[
−1]

(
λ(i)u(i)




)

= v
.

Hence (i) holds.
We now prove (ii), noting that by construction, πβi (λ

(i)) = 1, for i ≤ (r − 1)t .
Moreover, for 
 ∈ [(r − 1)t], it is straightforward to show that the second equality
in (ii) holds, as λ(i) ∈ 〈βi , βi+1, . . . , β(r−1)t 〉Fq + Fq2 and u(i) ∈ F

th+(r−1)t+1
q for

i ≤ (r − 1)t . Firstly, we have that

πβ1

(
λ(1)u(1)

k

)
= πβ1(v1)

πβ1(v1)
u(1)
1 = πβ1(v1).

Consider now 
 ∈ {2, . . . , (r − 1)t}. By construction, we have that:

πβ


⎛
⎝∑

i∈[
]
λ(i)u(i)

k

⎞
⎠ = πβ


(λ(
)u(
)
k ) + πβ


⎛
⎝ ∑

i∈[
−1]

(
λ(i)u(i)

)⎞⎠

= πβ

(v
) −

∑
i∈[
−1]

πβ


(
λ(i)u(i)

k

)
+ πβ


⎛
⎝ ∑

i∈[
−1]

(
λ(i)u(i)

k

)⎞⎠
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= πβ

(v
) −

∑
i∈[
−1]

πβ


(
λ(i)u(i)

)
k
+

∑
i∈[
−1]

πβ


(
λ(i)u(i)

)

= πβ

(v
),

which implies (ii).

To prove (iii) it remains to show that πFqt
(vk) = πFqt

(∑
i∈[(r−1)t+1] λ(i)u(i)

k

)
, for

k ∈ {(r − 1)t + 1, . . . , th + t(s − 1) + 1}.
By construction, for k ∈ {(r − 1)t + 1, . . . , th + t(s − 1) + 1} we have:

πFqt

⎛
⎝ ∑
i∈[(r−1)t+1]

λ(i)u(i)
k

⎞
⎠ =λ((r−1)t+1)u((r−1)t+1)

k +
∑

i∈[(r−1)t]
λ(i)u(i)

k

=πFqt
(v(r−1)t+1) −

∑
i∈[(r−1)t]

πFqt

(
u(i)
k

)
+

∑
i∈[(r−1)t]

λ(i)u(i)
k

=πFqt
(vk).

Since u(
) ∈ F
(r−1)t+h+1
q ⊆ U , for 
 ∈ [(r − 1)t], and u((r−1)t+1) ∈ F

(r−1)t
q ×

F
h
qt ⊆ U we have that ρrk(U) ≤ (r − 1)t + 1. Moreover, using the same argu-

ment as in the proof of Proposition 5.13, U is exactly ((r − 1)t + 1)-saturating
as taking γ1, . . . , γ(r−1)t+1 ∈ Fq(r−1)t+1 be linearly independent over Fq , the vec-
tor v = (γ1, . . . , γ(r−1)t+1, 0, . . . , 0)T ∈ U cannot be saturated with fewer than
(r − 1)t + 1 elements of U . ��

Remark 5.15 Let us suppose q > 2. Note that for h ≥ 0,

r th + ((r − 1)t + 1)2

(r − 1)t + 1
≤ sqrt/q((r − 1)t + 1 + h, (r − 1)t + 1) ≤ th + (r − 1)t + 1

and the difference between the upper and the lower bound is

(r − 1)t(t − 1)

(r − 1)t + 1
· h =

(
t − 1 − t − 1

(r − 1)t + 1

)
h < (t − 1)h

Note that, for t = 2 and h = 1, for all r ≥ 2 the difference is strictly less than 1, so
that

sq2r /q(2r , 2r − 1) = 2r + 1

for q > 2.
In the case q = 2, with a similar argument we get

2r ≤ s22r /2(2r , 2r − 1) ≤ 2r + 1.
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Now, clearly sq2r /q(2r , 2r − 1) cannot be equal to 2r (for any q), since the only
[2r , 2r ]qm/q code is the full space and in this case ρ = 2r . So, s22r /2(2r , 2r − 1) =
2r + 1.

6 Conclusion

For the convenience of the reader, we summarize the main results on sqm/q(k, ρ)

proved in this paper. First, by Theorem 4.3 and Theorem 4.4,

⌈
mk

ρ

⌉
− m + ρ ≤ sqm/q(k, ρ) ≤ m(k − ρ) + ρ, for q > 2 and ρ > 1,

⌈
mk − 1

ρ

⌉
− m + ρ ≤ sqm/q(k, ρ) ≤ m(k − ρ) + ρ, for q = 2 and ρ > 1,

sqm/q(k, 1) = m(k − 1) + 1, for all q.

TheMonotonicityTheorem (Theorem4.6) and theDirect SumTheorem (Theorem4.8)
state that, for all positive integers m, k, k′, ρ ∈ [min{k,m}], ρ′ ∈ [min{k′,m},
(a) If ρ < min{k,m}, then sqm/q(k, ρ + 1) ≤ sqm/q(k, ρ).

(b) sqm/q(k, ρ) < sqm/q(k + 1, ρ).
(c) If ρ < m, then sqm/q(k + 1, ρ + 1) ≤ sqm/q(k, ρ) + 1.
(d) If ρ + ρ′ ≤ min{k + k′,m}, sqm/q(k + k′, ρ + ρ′) ≤ sqm/q(k, ρ) + sqm/q(k′, ρ′).

The upper bound is sharpened for particular cases: for every r , k ≥ 2, thanks to the
construction using linear cutting blocking sets (Corollary 5.7) we have

sqr(k−1)/q(k, k − 1) ≤ 2k + r − 2.

Using subgeometries (Theorem 5.14), for t, s ≥ 2 and h ≥ 0 we have:

sqrt/q((r − 1)t + 1 + h, (r − 1)t + 1) ≤ th + (r − 1)t + 1.

Finally, we list some cases for which sqm/q(k, ρ) is determined, namely:

sqm /q (k, 1) = m(k − 1) + 1, for all m, k ≥ 2,
sqm /q (k, k) = k, for all m, k ≥ 2,
sq2r /q (3, 2) = r + 2, for r �= 3, 5 mod 6 and r ≥ 4,

sq2r /q (3, 2) = r + 2, for gcd(r , (q2s − qs + 1)!) = 1, r odd, 1 ≤ s ≤ r , gcd(r , s) = 1,

sq10/q (3, 2) = 7, for q = p15h+s , p ∈ {2, 3}, gcd(s, 15) = 1,

sq10/q (3, 2) = 7, for q = 515h+1,

sq10/q (3, 2) = 7, for q odd , q = 2, 3 mod 5 and for q = 22h+1, h ≥ 1,

sq2r /q (2r , 2r − 1) = 2r + 1, for all r ≥ 2.
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