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Improved Upper Bounds to the Causal

Quadratic Rate-Distortion Function for

Gaussian Stationary Sources
Milan S. Derpich and Jan Østergaard

Abstract

We improve the existing achievable rate regions for causal and for zero-delay source coding of

stationary Gaussian sources under an average mean squared error (MSE) distortion measure. To begin

with, we find a closed-form expression for the information-theoretic causal rate-distortion function (RDF)

under such distortion measure, denoted by Rit
c (D), for first-order Gauss-Markov processes. Rit

c (D)

is a lower bound to the optimal performance theoretically attainable (OPTA) by any causal source

code, namely Rop
c (D). We show that, for Gaussian sources, the latter can also be upper bounded as

Rop
c (D) ≤ Rit

c (D) + 0.5 log2(2π e) bits/sample. In order to analyze Rit
c (D) for arbitrary zero-mean

Gaussian stationary sources, we introduce Rit
c (D), the information-theoretic causal RDF when the

reconstruction error is jointly stationary with the source. Based upon Rit
c (D), we derive three closed-form

upper bounds to the additive rate loss defined as Rit
c (D)−R(D), where R(D) denotes Shannon’s RDF.

Two of these bounds are strictly smaller than 0.5 bits/sample at all rates. These bounds differ from one

another in their tightness and ease of evaluation; the tighter the bound, the more involved its evaluation.

We then show that, for any source spectral density and any positive distortion D ≤ σ2
x, Rit

c (D) can be

realized by an AWGN channel surrounded by a unique set of causal pre-, post-, and feedback filters. We

show that finding such filters constitutes a convex optimization problem. In order to solve the latter, we

propose an iterative optimization procedure that yields the optimal filters and is guaranteed to converge

to Rit
c (D). Finally, by establishing a connection to feedback quantization we design a causal and a zero-

delay coding scheme which, for Gaussian sources, achieves an operational rate lower than Rit
c (D)+0.254
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and Rit
c (D) + 0.754 bits/sample, respectively. This implies that the OPTA among all zero-delay source

codes, denoted by Rop
zd(D), is upper bounded as Rop

zd(D) < Rit
c (D)+1.254 < R(D)+1.754 bits/sample.

Index Terms

Causality, rate-distortion theory, entropy coded dithered quantization, noise-shaping, differential pulse-

code modulation (DPCM), sequential coding, convex optimization.

I. INTRODUCTION

In zero-delay source coding, the reconstruction of each input sample must take place at the same time

instant the corresponding input sample has been encoded. Zero-delay source coding is desirable in many

applications, e.g., in real-time applications where one cannot afford to have large delays [1], or in systems

involving feedback, in which the current input depends on the previous outputs [2]–[4]. A weaker notion

closely related to the principle behind zero-delay codes is that of causal source coding, wherein the

reproduction of the present source sample depends only on the present and past source samples but not

on the future source samples [5], [6]. This notion does not preclude the use of non-causal entropy coding,

and thus it does not guarantee zero-delay reconstruction. Nevertheless, any zero-delay source code must

also be causal.

It is known that, in general, causal codes cannot achieve the rate-distortion function (RDF) R(D) of

the source, which is the optimal performance theoretically attainable (OPTA) in the absence of causality

constraints [7]. However, it is in general not known how close to R(D) one can get when restricting

attention to the class of causal or zero-delay source codes, except, for causal codes, when dealing with

memory-less sources [5], stationary sources at high resolution [6], or first-order Gauss-Markov sources

under a per-sample MSE distortion metric [3].

For the case of memory-less sources, it was shown by Neuhoff and Gilbert that the optimum rate-

distortion performance of causal source codes, say Rop
c (D), is achieved by time-sharing at most two

memory-less scalar quantizers (followed by entropy coders) [5]. In this case, the rate loss due to causality

was shown to be given by the space-filling loss of the quantizers, i.e. the loss is at most (1/2) ln(2πe/12)

(' 0.254) bits/sample. For the case of Gaussian stationary sources with memory and MSE distortion,

Gorbunov and Pinsker showed that the information-theoretic1 causal RDF, here denoted by Rit
c (D) (to

1Here and in the sequel, the term “information theoretic” refers to the use of mutual information as a measure of the rate.
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be defined formally in Section II) and which satisfies Rit
c (D) ≤ Rop

c (D), tends to Shannon’s RDF as

the distortion goes to zero [8], [9]. The possible gap between the OPTA of causal source codes and this

information-theoretic causal RDF was not assessed. Since operational data rates are lower bounded by the

mutual information between the source and its reconstruction, we also have that Rit
c (D) ≤ Rop

c (D). On

the other hand, for arbitrary stationary sources with finite differential entropy and under high-resolution

conditions, it was shown in [6] that the rate-loss of causal codes (i.e, the difference between their OPTA

and Shannon’s RDF) is at most the space-filling loss of a uniform scalar quantizer. With the exception

of memory-less sources and first-order Gauss-Markov sources, the “price” of causality at general rate

regimes for other stationary sources remains an open problem. However, it is known that for any source,

the mutual information rates across an additive white Gaussian noise (AWGN) channel and across a scalar

ECDQ channel do not exceed R(D) by more than 0.5 and 0.754 bits per sample, respectively [10], [11].

This immediately yields the bounds Rit
c (D) ≤ R(D) + 0.5 and Rop

c (D) ≤ R(D) + 0.754.

In causal source coding it is generally difficult to provide a constructive proof of achievability since

Shannon’s random codebook construction, which relies upon jointly encoding long sequences of source

symbols, is not directly applicable even in the case of memory-less sources. Thus, even if one could

obtain an outer bound for the achievable region based on an information theoretic RDF, finding the inner

bound, i.e., the OPTA, would still remain a challenge.

There exist other results related to the information-theoretic causal RDF, in which achievability is

not addressed. The minimum sum-rate necessary to sequentially block-encode and block-decode two

scalar correlated random variables under a coupled fidelity criterion was studied in [12]. A closed-form

expression for this minimum rate is given in [12, Theorem 4] for the special case of a squared error

distortion measure and a per-variable (as opposed to a sum or average) distortion constraint. In [2], the

minimum rate for causally encoding and decoding source samples (under per-sample or average distortion

constraints) was given the name sequential rate-distortion function (SRDF). Under a per-sample MSE

distortion constraint D, it was also shown in [2, p. 187] that for a first-order Gauss-Markov source

x(k + 1) = a1 x(k) + ξ(k), where {ξ(k)} is a zero-mean white Gaussian process with variance σ2
ξ , the

information theoretic SRDF2 Rit
SRD(D) takes the form

Rit
SRD(D) = min

{
0 ,

1

2
log2

(
a21 +

σ2
ξ

D

)}
bits/sample, (1)

2The information theoretic SRDF is the one defined in [2, Def. 5.3.1], where it is denoted by RSRD
T,N (D). Its definition, adapted

to our notation, is presented later in Section IV.
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for all D > 0.3 No expressions are known for Rit
SRD(D) for higher-order Gauss-Markov sources. Also,

with the exception of memory-less Gaussian sources, Rit
c (D), with its average MSE distortion constraint

(weaker than a per-sample MSE constraint), has not been characterized.

In this paper, we improve the existing inner and outer rate-distortion bounds for causal and for zero-

delay source coding of zero-mean Gaussian stationary sources and average MSE distortion. We start

by showing that, for any zero-mean Gaussian source with bounded differential entropy rate, the causal

OPTA exceeds Rit
c (D) by less than approximately 0.254 bits/sample. Then we revisit the SRDF problem

for first-order Gauss-Markov sources under a per-sample distortion constraint schedule and find the

explicit expression for the corresponding RDF by means of an alternative, constructive derivation. This

expression, which turns out to differ from the one found in [2, bottom of p. 186], allows us to show that

for first-order Gauss-Markov sources, the information-theoretic causal RDF Rit
c (D) for an average (as

opposed to per-sample) distortion measure coincides with (1). In order to upper bound Rit
c (D) for general

Gaussian stationary sources, we introduce the information-theoretic causal RDF when the distortion is

jointly stationary with the source and denote it by Rit
c (D). We then derive three closed-form upper

bounding functions to the rate-loss Rit
c (D) − R(D), which can be applied to any stationary Gaussian

random process. Two of these bounds are, at all rates, strictly tighter than the best previously known

general bound of 0.5 bits/sample. Since, by definition, Rit
c (D) ≤ Rit

c (D), we have that

Rit
c (D)−R(D)

(a)

≤ Rit
c (D)−R(D), (2)

and thus all four three bounding functions also upper bound the gap Rit
c (D)− R(D). As we shall see,

equality holds in (a) if Rit
c (D) could be realized by a test channel with distortion jointly stationary with

the source, which seems a reasonable conjecture for stationary sources.

We do not provide a closed-form expression for Rit
c (D) (except for first-order Gauss-Markov sources),

and thus the upper bound on the right-hand-side (RHS) of (2) (the tightest bound discussed in this

paper) is not evaluated analytically for the general case. However, we propose an iterative procedure

that can be implemented numerically and which allows one to evaluate Rit
c (D), for any source power

spectral density (PSD) and D > 0, with any desired accuracy. This procedure is based upon the iterative

optimization of causal pre-, post- and feedback-filters around an AWGN channel. A key result in this

paper (and its second main contribution) is showing that such filter optimization problem is convex

in the frequency responses of all the filters. This guarantees that the mutual information rate between

3 It has not been established whether (1) is achievable or how close one can get to it.
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source and reconstruction yielded by our iterative procedure converges monotonically to Rit
c (D) as the

number of iterations and the order of the filters tend to infinity. This equivalence between the solution

to a convex filter design optimization problem and Rit
c (D) avoids the troublesome minimization over

mutual informations, thus making it possible to actually compute Rit
c (D) in practice, for general Gaussian

stationary sources. We then make the link between Rit
c (D) and the OPTA of causal and zero-delay

codes. More precisely, when the AWGN channel is replaced by a subtractively dithered uniform scalar

quantizer followed by memory-less entropy coding, the filters obtained with the iterative procedure yield

a causal source coding system whose operational rate is below Rit
c (D) + (1/2) log2(2π e) bits/sample.

If the entropy coder in this system is restricted to encode quantized values individually (as opposed to

long sequences of them), then this system achieves zero-delay operation with an operational rate below

Rit
c (D) + (1/2) log2(2π e) + 1 bits/sample. This directly translates into an upper bound to the OPTA of

zero-delay source codes, namely Rop
zd(D). To illustrate our results, we present an example for a zero-mean

AR-1 and a zero-mean AR-2 Gaussian source, for which we evaluate the closed-form bounds and obtain

an approximation of Rit
c (D) numerically by applying the iterative procedure proposed herein.

This paper is organized as follows: In Section II, we review some preliminary notions. We prove

in section III that the OPTA for Gaussian sources does not exceed the information-theoretic RDF by

more than approximately 0.254 bits per sample. Section IV contains the derivation of a closed-form

expression for Rit
c (D) for first-order Gauss-Markov sources. In Section V we formally introduce Rit

c (D)

and derive the three closed-form upper bounding functions for the information-theoretic rate-loss of

causality. Section VI presents the iterative procedure to calculate Rit
c (D), after presenting the proof

of convexity that guarantees its convergence. The two examples are provided in Section VII. Finally,

Section VIII draws conclusions. (Most of the proofs of our results are given in sections IX to XV.)

Notation

R and R+
0 denote, respectively, the set of real numbers and the set of non-negative real numbers.

Z and Z+ denote, respectively, the sets of integers and positive integers. We use non-italic lower case

letters, such as x, to denote scalar random variables, and boldface lower-case and upper-case letters to

denote vectors and matrices, respectively. We use A†, span{A} and N{A} to denote the Moore-Penrose

pseudo-inverse, the column span and the null space of the matrix A, respectively. The expectation

operator is denoted by E [ ]. The notation σ2
x refers to the variance of x. The notation {x(k)}∞k=1

describes a one-sided random process, which may also be written simply as {x(k)}. We write xk to

refer to the sequence {x(i)}ki=1. The PSD of a wide-sense stationary process {x(k)} is denoted by
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Sx(e
jω), ω ∈ [−π, π]. Notice that σ2

x = 1
2π

∫ π
−π Sx(e

jω)dω. For any two functions f, g : [−π, π] → C,

f, g ∈ L2, we write the standard squared norm and inner product as ‖f‖2 , 1
2π

∫ π
−π |f(ω)|

2dω and

〈f, g〉 , 1
2π

∫ π
−π f(ω)g(ω)

∗dω, respectively, where ∗ denotes complex conjugation. For one-sided random

processes {x(k)} and {y(k)}, the term Ī({x(k)} ; {y(k)}) = limk→∞ sup 1
kI(x

k
1; y

k
1) denotes the mutual

information rate between {x(k)} and {y(k)}, provided the limit exists. Similarly, for a stationary random

process {x(k)}, h̄({x(k)}) = limk→∞ h(x(k)|xk) denotes the differential entropy rate of {x(k)}.

II. PRELIMINARIES

A source encoder-decoder (ED) pair encodes a source {x(k)}∞k=−∞ into binary symbols, from which

a reconstruction {y(k)}∞k=1 of {x(k)}∞k=1 is generated. The end-to-end effect of any ED pair can be

described by a series of reproduction functions {fk}∞k=1, such that, for every k ∈ Z+,

yk1 = fk(x
∞
−∞), (3)

where we write yki as a short notation for {y(j)}kj=i. Following [5], we say that an ED pair is causal if

and only if it satisfies the following definition [5]:

Definition 1 (Causal Source Coder): An ED pair is said to be causal if and only if its reproduction

functions are such that

fk(x
∞
−∞) = fk(x̃

∞
−∞), whenever xk−∞ = x̃k−∞, ∀k ∈ Z+.

N
It also follows from Definition 1 that an ED pair is causal if and only if the following Markov chain

holds for every possible random input process {x(k)}:

x∞k+1 → xk−∞ → yk1, ∀k ∈ Z+. (4)

It is worth noting that if the reproducing functions are random, then this equivalent causality constraint

must require that (4) is satisfied for each realization of the reproducing functions {fk}∞k=1.

Let Lk(x
∞
1 ) be the total number of bits that the decoder has received when it generates the output

subsequence yk1 . Define b(k) ∈ {0, 1}Lk as the random binary sequence that contains the bits that the

decoder has received when yk1 is generated. Notice that Lk is, in general, a function of all source samples,

since the binary coding may be non-causal, i.e., yk1 may be generated only after the decoder has received

enough bits to reproduce ym1 , with m > k. We highlight the fact that even though b(k) may contain bits

which depend on samples x(`) with ` > k, the random sequences x∞−∞ and yk1 may still satisfy (4), i.e.,

the ED pair can still be causal. Notice also that Lk(x
∞
1 ) is a random variable, which depends on x∞−∞,
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the functions {fk} and on the manner in which the source is encoded into the binary sequence sent to

the decoder.

For further analysis, we define the average operational rate of an ED pair as [5]

r({x(k)} , {y(k)}) , lim
k→∞

sup
1

k
E
[
Lk(x

∞
−∞)

]
. (5)

In the sequel, we focus only on the MSE as the distortion measure. Accordingly, we define the average

distortion associated with an ED pair as:

d({x(k)} , {y(k)}) , lim
k→∞

sup
1

k
E
[
‖xk1 − yk1‖2

]
. (6)

The above notions allow us to define the operational causal RDF as follows:

Definition 2: The Operational Causal Rate-Distortion Function for a source {x(k)} is defined as [5]:

Rop
c (D) , inf

{y(k)}:y(k)=fk(xk),∀k∈Z+

{fk} causal,
d({x(k)},{y(k)})≤D.

r({y(k)} , {x(k)}). (7)

N
We note that the operational causal rate distortion function defined above corresponds to the OPTA of

all causal ED pairs.

In order to find a meaningful information-theoretical counterpart of Rop
c (D), we note from [13,

Theorem 5.3.1] that

1

k
E [Lk(x

∞
1 )] ≥ 1

k
H(b(k)), ∀k ∈ Z+. (8)

Also, from the Data Processing Inequality [13], it follows immediately that

H(b(k)) = I(b(k);b(k)) ≥ I(x∞1 ; yk1) ≥ I(xk1; y
k
1), (9)

where the last inequality turns into equality for a causal ED pair, since in that case (4) holds. Thus,

combining (5), (8) and (9),

r({x(k)} , {y(k)}) ≥ lim
k→∞

sup
1

k
I(xk1; y

k
1) = Ī({x(k)} ; {y(k)}). (10)

This lower bound motivates the study of an information-theoretic causal rate distortion function, as defined

below.

Definition 3: The Information-Theoretic Causal Rate-Distortion Function for a source {x(k)}, with

respect to the average MSE distortion measure, is defined as

Rit
c (D) , inf Ī({x(k)} ; {y(k)}),
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where the infimum is over all processes {y(k)} such that d({x(k)} , {y(k)}) ≤ D and such that (4)

holds. N
The above definition is a special case of the non-anticipative epsilon-entropy introduced by Pinsker and

Gorbunov, which was shown to converge to Shannon’s RDF, for Gaussian stationary sources and in the

limit as the rate goes to infinity [8], [9].

In the non-causal case, it is known that for any source and for any single-letter distortion measure,

the OPTA equals the information-theoretic RDF [13]. Unfortunately, such a strong equivalence between

the OPTA and the information-theoretic RDF does not seem to be possible in the causal case (i.e., for

Rit
c (D)). (One exception is if one is to jointly and causally encode an asymptotically large number of

parallel Gaussian sources, in which case Rit
c (D) can be shown to coincide with the OPTA of causal

codes.) Nevertheless, as outlined in Section I, it is possible to obtain lower and upper bounds to the

OPTA of causal codes from Rit
c (D). Indeed, and to begin with, since Rit

c (D) ≥ R(D), it follows directly

from (7) and (10) that

Rop
c (D) ≥ Rit

c (D) ≥ R(D). (11)

The last inequality in (11) is strict, in general, and becomes equality when the source is white or when

the rate tends to infinity. Also, as it will be shown in Section III, for Gaussian sources Rop
c (D) does not

exceed Rit
c (D) by more than approximately 0.254 bits/sample, and thus an upper bound to Rop

c (D) can

be obtained from Rit
c (D).

For completeness, and for future reference, we recall that for any MSE distortion D > 0, the RDF

for a stationary Gaussian source with PSD Sx(e
jω) is equal to the associated information-theoretic RDF,

given by the “reverse water-filling” equations [7]

R(D) =
1

4π

π∫
−π

max

{
0 , log2

(
Sx(e

jω)

θ

)}
dω (12a)

D =
1

2π

π∫
−π

min
{
θ , Sx(e

jω)
}
dω. (12b)

Although in general it is not known by how much Rit
c (D) exceeds R(D), for Gaussian stationary

sources one can readily find an upper bound for Rit
c (D) in the quadratic Gaussian RDF for source-

uncorrelated distortion, defined as [14]

R⊥(D) , inf
{y(k)}

Ī({x(k)} , {y(k)}), (13)
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where the infimum is taken over all output processes {y(k)} consistent with MSE≤ D and such that the

reconstruction error {y(k) − x(k)} is uncorrelated with the source. More precisely, it is shown in [14]

that this RDF, given by

R⊥(D) =
1

2π

∫ π

−π
log

(√
SX(ω) + α +

√
SX(ω)√

α

)
dω, (14a)

wherein α > 0 is the only scalar that satisfies

D =
1

4π

∫ π

−π

(√
SX(ω) + α −

√
SX(ω)

)√
SX(ω) dω, (14b)

can be realized causally.

More generally, it is known that, for any source, the mutual information across an AWGN channel

(which satisfies (4)) introducing noise with variance D, say RAWGN (D), exceeds Shannon’s RDF R(D)

by at most 0.5 bits/sample, see, e.g. [11]. Thus, we have:

Rit
c (D) ≤ RAWGN (D) ≤ R(D) + 0.5 bits/sample, ∀D > 0. (15)

Until now it has been an open question whether a bound tighter than (15) can be obtained for sources with

memory and at general rate regimes [10]. In sections IV, V and VI, we show that for for Gaussian sources

this is indeed the case. But before focusing on upper bounds for Rit
c (D), its operational importance will

be established by showing in the following section that, for Gaussian sources, the OPTA does not exceed

Rit
c (D) by more than approximately 0.254 bits/sample.

III. UPPER BOUNDS TO Rop
c FROM Rit

c

In this section we show that, for any Gaussian source {x(k)} and D ≥ 0, an upper bound to Rop
c can

be readily obtained from Rit
c (D) by adding (approximately) 0.254 bits per sample to Rit

c (D). This result

is first formally stated and proved for finite subsequences of any Gaussian source. Then, it is extended

to Gaussian stationary processes.

We start with two definitions.

Definition 4: The causal information theoretic RDF for a zero-mean Gaussian random vector of length

` is defined as

Rit(`)
c (D) = inf 1

` I(x;y), (16)

where the infimum is taken over all output vectors satisfying the causality constraint

y(k) ↔ xk ↔ x`k+1, ∀k = 1, . . . , `− 1 (17)
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and the distortion constraint

d(x,y) , 1

`
E
[
‖y − x‖2

]
≤ D. (18)

N
Definition 5: The operational causal RDF for a zero-mean Gaussian random vector of length ` is

defined as

Rop(`)
c (D) = inf

yk
1 :y(k)=fk(xk),∀k=1,...,`

{fk} causal,
d(x,y)≤D.

r(xk, yk) (19)

N
We will also need the following result [14, Lemma 1]:

Lemma 1: Let x ∈ R` ∼ N (0,Kx). Let z ∈ R` and zG ∈ R` be two random vectors with zero mean

and the same covariance matrix, i.e., Kz = KzG
, and having the same cross-covariance matrix with

respect to x, that is, Kx,z = Kx,zG
. If zG and x are jointly Gaussian, and if z has any distribution, then

I(x;x+ z) ≥ I(x;x+ zG). (20)

If furthermore |Kx+z| > 0, then equality is achieved in (20) if and only if z ∼ N (0,Kz) with z and x

being jointly Gaussian. N
Notice that if one applies Lemma 1 to a reconstruction error with which the output sequence satisfies

the causality constraint (4), then the Gaussian version of the same reconstruction error will also produce

an output causally related with the input. To see this, let

Kx1
`
= FF T

be the Cholesky factorization of the covariance matrix of the random vector x1
k , [x1 . . . xk]

T , 1 ≤ k ≤ `,

where F is a lower triangular matrix. This allows one to write x1
` as

x1
` = Fu1

` (21)

where u1
` ∼ N(0, I`×`). Suppose y1

` ,x
1
` satisfy (4). Then, there exists a set of reproduction functions

satisfying the conditions of Definition 1 which generate each partial vector y1
k, k ≤ `. Specifically, for

any given k ∈ {1, . . . , `}, there exists a function gk(·) such that y1
k = gk(x

1
k). From (21) and given

that F is lower triangular, we have that x1
k is fully determined by u1

k, and thus y1
k = g̃k(u

1
k), for some

function g̃k(·). From this and the fact that u1
k is independent of uk+1

` , we have that

y1
k ⊥⊥ uk+1

` , k ∈ {1, . . . , `} (22)
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where ⊥⊥ denotes probabilistic independence. On the other hand, for each k, j ∈ {1, . . . , `}, j ≤ k, let

Lj|kx
1
k be the MMSE linear estimator of y1

j given x1
k. Then, adopting the notation Ajy for the j-by-j

top-left corner submatrix of a matrix A, we have that

Lj|`x
1
` = Ky1

jx
1
`
K−1

x1
`
x1
` = E

[
y1
j (u

1
` )

T
]
F T (F T )−1F−1x1

`

(a)
=
[
E[y1

j (u
1
j )

T ] 0
]
F−1x1

`

= E[y1
j (u

1
j )

T ](F−1)jyx
1
j

= E[y1
j (u

1
j )

T ](F jy)
−1x1

j

= E[y1
j (u

1
j )

TF T
jy ](F

T
jy)

−1(F jy)
−1x1

j = Ky1
jx

1
j
K−1

x1
j
x1
j

= Lj|jx
1
j

where (a) follows from (22) and all the subsequent equalities stem from (21) and from the fact that F

is lower triangular. Therefore, since the residual y1
j −Lj|`x

1
` is uncorrelated to x1

` , it holds that

0 = E
[
xi(y

1
j −Lj|`x

1
` )
]
= E

[
xi(y

1
j −Lj|jx

1
j )
]

,∀i ∈ {1, . . . , `}. (23)

Now, since y`G, x
` have the same second-order statistics as y`, x`, it follows from (23) that

E
[
xi(yG

1
j −Lj|jx

1
j )
]
= 0 ,∀i ∈ {1, . . . , `} (24)

which, recalling that y`G is jointly Gaussian with x`, implies that y`G, x
` satisfy (4) too.

We are now in the position to state the first main result of this section:

Lemma 2: For any zero-mean Gaussian random vector source of length ` having bounded differential

entropy, and for every D > 0,

Rop(`)
c (D) ≤ Rit(`)

c (D) +
1

2
log2(2π e) +

1

`
bits/sample. (25)

N
The proof of Lemma 2 is presented in Section IX.

The result stated in Lemma 2 for Gaussian random vector sources is extended to Gaussian stationary

processes in the following theorem (the second main result of this section):

Theorem 1: For a zero-mean Gaussian stationary source {x(k)}, and D > 0,

Rop
c (D) ≤ Rit

c (D) +
1

2
log2(2π e). (26)

N
The proof of Theorem 1 can be found in Section X.
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The fact that Rit
c (D)+(1/2) log2(2π e) ≥ Rop

c (D) for Gaussian sources allows one to find upper bounds

to the OPTA of causal codes by explicitly finding or upper bounding Rit
c (D). This is accomplished in

the following sections.

IV. Rit
c (D) FOR FIRST-ORDER GAUSS-MARKOV PROCESSES

In this section we will find Rit
c (D) when the source is a first-order Gauss-Markov process. More

precisely, we will show that the information-theoretic causal RDF Rit
c (D), which is associated with an

average distortion constraint, coincides with the expression for the SRDF on the RHS of (1) obtained

in [2] for a per-sample distortion constraint. To do so, and to provide also a constructive method of

realizing the SRDF as well as Rit
c (D), we will start by stating an alternative derivation of the SRDF for

scalar source sequences of length `. In this case, from its definition in [2, Definition 5.3.5 on p. 147],

the SRDF takes the following form :

Rit
SRD(D1, . . . , D`) , inf

1

`
I(x`1; y

`
1), (27)

where the infimum is over all conditional distributions (of y`1 given x`1) satisfying the causality con-

straint (17) and the distortion schedule constraints

E
[
(x(t)− y(t))2

]
≤ Dt, ∀t = 1, 2, . . . , `. (28)

Before proceeding, it will be convenient to introduce some additional notation. For any process {x(k)},

we write xj
k, j ≤ k, to denote the random column vector [x(j) · · · x(k)]T and adopt the shorter notation

xk , x(k). For any two random vectors xj
k, y`

m, we define Kxj
k
, E

[
xj
k(x

j
k)

T
]
, Ky`

mxj
k
, E

[
y`
m(xj

k)
T
]
.

It was already stated in Lemma 1 that the reconstruction vector y` which realizes mutual information

between a Gaussian source vector x` and x` for any given MSE distortion constraint, must be jointly

Gaussian with the source. This holds in particular for a realization of the SRDF with distortion schedule

D1, . . . , D`. In the next theorem we will obtain an explicit expression for this RDF and prove that in its

realization, the sample distortions E
[
(y(k)− x(k))2

]
equal the effective distortions {dk}`k=1, defined as

d1 , min
{
σ2
x(1) , D1

}
(29a)

dk , min
{
a2k−1d(k−1) + σ2

ξ(k−1) , Dk

}
, ∀k = 2, . . . `. (29b)

Moreover, it will be shown that the unique second-order statistics of this realization are given by the

following recursive algorithm:
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Procedure 1

Step 0: Set E
[
y21
]
= E [y1 x1] = E

[
x21
]
− d1.

Step 1: Set the counter k = 2.

Step 2: Set E
[
y1
k−1 xk

]
= Ky1

k−1x
1
k−1

(Kx1
k−1

)−1 E
[
x1
k−1 xk

]
Step 3: Set E

[
y1
k−1 yk

]
= E

[
y1
k−1 xk

]
Step 4: Set E

[
y2k
]
= E [yk xk] = E

[
x2k
]
− dk

Step 5: Enlarge Ky1
k−1

to Ky1
k

by appending the column E
[
y1
k−1 yk

]
and the row E

[
y1
k yk

]T ,

calculated in steps 3 and 4.

Step 6: Set E
[
yk(x

1
k−1)

T
]

as

E
[
yk(x

1
k−1)

T
]
= E[y1

k xk]
T

 Ky1
k−1

E
[
y1
k−1 xk

]
E
[
y1
k−1 xk

]T
σ2
xk

−1  Ky1
k−1x

1
k−1

E
[
x1
k−1 xk

]T
 (30)

Step 7: Put together Ky1
k−1x

1
k−1

, E
[
yk x

1
k−1

]
, E
[
y1
k−1 xk

]
and E [yk xk] to obtain Ky1

kx
1
k
.

Step 8: Increment k by 1 and go to Step 2.

Figure 1 illustrates the operation of the above recursive procedure. After k−1 iterations, the covariance

sub-matrices Ky1
k−1x

1
k−1

, Ky1
k−1

have been found. At the k-th iteration, step i is responsible of revealing

the partial rows and columns indicated by number i in the figure.

Ky1
k−1

x1
k−1

Ky1
`
x1
`

Ky1
`

2 Ky1
k−1 3

4 456

Figure 1. Illustration of the recursive Procedure 1 at its k-th iteration. Starting from known covariance matrices Ky1
k−1

x1
k−1

,

Ky1
k−1

, their next partial rows and columns are found. The numbers indicate the step in the algorithm which reveals the

corresponding part of the matrix.

The above results are formally stated in the following theorem, which also gives an exact expression

for the SRDF of first-order Gauss-Markov sources.
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Theorem 2: Let {x(k)}`k=1 be a first-order Gauss-Markov source of the form

x(k + 1) = ak x(k) + ξ(k), k = 1, . . . , `− 1, (31)

where x(1) and the innovations {ξ(k)}`−1
k=1 are independent zero-mean Gaussian random variables with

variances σ2
x(1) and {σ2

ξ(k)}
`−1
k=1, respectively. Then, the sequential rate distortion function (SRDF) for

{x(k)}`k=1 under distortion schedule {Dk}`k=1 is given by

Rit
SRD(D1, . . . , D`) =

1

2`
ln

(
σ2
x(1)

d1

)
+

1

2`

∑`

k=2
ln

(
a2k−1dk−1 + σ2

ξ(k−1)

dk

)
, (32)

where the effective distortions {dk}`k=1 are defined in (29). The unique second-order statistics of a

realization of Rit
c (D) for this source are obtained by the recursive algorithm described in Procedure 1. N

The proof of this theorem can be found in Section XI.

Remark 1: The expression for the SRDF with per-sample distortion constraints in (32) differs from

the one found in [2, p. 186] for the source (31) with ak = a, ∀k = 1, . . . , `, which in our notation reads

RSRD
` (D1, . . . , D`) =

1

`

∑̀
t=1

max

{
0 ,

1

2
log

(
a2Dt−1 + σ2

ξ(t−1)

Dt

)}
, (33)

wherein D0 = 0 and σ2
ξ(0) = σ2

x(1). The difference lies in that the logarithms in (32) contain the effective

distortions {dk}`k=1, whereas (33) uses the distortion constraints {Dk}`k=1 themselves. It is likely that

the author of [2], on page 186, intended these distortion constraints to be the effective distortions, i.e.,

that E
[
(y(k)− x(k))2

]
= Dk, for every k = 1, . . . , `. However, on [2, Definition 5.3.5 on p. 147],

the SRDF under a distortion schedule is defined as the infimum of a mutual information rate subject

to the constraints E
[
(y(k)− x(k))2

]
≤ Dk. Under the latter interpretation, nothing precludes one from

choosing an arbitrarily large value for, say, D1, yielding an arbitrarily large value for the second term in

the summation on the RHS of (33), which is, of course, inadequate. N
We are now in a position to find the expression for Rit

c (D) for first-order Gauss-Markov sources. This

is done in the following theorem, whose proof is contained in Section XII.

Theorem 3: For a stationary Gaussian process

x(k + 1) = a x(k) + ξ(k), k = 1, . . . (34)

where {ξ(k)} is an i.i.d. sequence of zero-mean Gaussian random variables with variance σ2
ξ , x(1) ∼

N(0, σ2
x) with σ2

x , σ2
ξ/(1− a2), the information-theoretic causal RDF is given by

Rit
c (D) =

1

2
ln

(
a2 +

σ2
ξ

D

)
. (35)
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N
The technique applied to prove theorems 2 and 3 does not seem to be extensible to Gauss-Markov

processes of order greater than 1. In the sequel, we will find upper bounds to Rit
c (D) for arbitrary (any

order) stationary Gaussian sources.

V. CLOSED-FORM UPPER BOUNDS

In order to upper bound the difference between Rit
c (D) and R(D) for arbitrary stationary Gaussian

sources, we will start this section by defining an upper bounding function for Rit
c (D), denoted by Rit

c (D).

We will then derive three closed-form upper bounding functions to the rate-loss Rit
c (D)−R(D), applicable

to any Gaussian stationary process. Two of these bounds are strictly smaller than 0.5 bit/sample for all

distortions 0 < D ≤ σ2
x.

We begin with the following definition:

Definition 6 (Causal Stationary RDF): For a stationary source {x(k)}, the information-theoretic Causal

Stationary Rate-Distortion Function Rit
c (D) is defined as

Rit
c (D) , inf Ī({x(k)} ; {y(k)}),

where the infimum is over all processes {y(k)} such that:

i) d({x(k)} , {y(k)}) ≤ D,

ii) the reconstruction error {z(k)} , {y(k)} − {x(k)} is jointly stationary with the source, and

iii) Markov chain (4) holds.

N
Next we derive three closed-form upper bounding functions to Rit

c (D)−R(D) that are applicable to

arbitrary zero-mean stationary Gaussian sources with finite differential entropy rate. This result is stated

in the following theorem, proved in Section XIII:

Theorem 4: Let {x(k)} be a zero-mean Gaussian stationary source with PSD Sx(e
jω) with bounded

differential entropy rate and variance σ2
x. Let R(D) denote Shannon’s RDF for {x(k)} (given by (12)),

and let R⊥(D) denote the quadratic Gaussian RDF for source-uncorrelated distortions for the source

{x(k)} defined in (13). Let Rit
c (D) denote the information-theoretic causal RDF (see Definition 3). Then,

for all D ∈ (0, σ2
x),

Rit
c (D)−R(D) ≤ Rit

c (D)−R(D) ≤ B1(D) ≤ B2(D) < B3(D) ≤ 0.5 bits/sample, (36)
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where

B1(D) , R⊥( σ2
xD

σ2
x−D )−R(D) (37)

B2(D) , 1

4π

∫ π

−π
log2

(
1 + [1− D

σ2
x
]
Sx(e

jω)

D

)
dω −R(D) (38)

B3(D) , min

{
1

2
log2

(
(1 + ε

D )
[
1 + (ςεx − 1

σ2
x
)D
])

, 0.5 ,
1

2
log2

(
σ2
x

D

)}
, (39)

where

ςεx , 1

2π

∫ π

−π

1

max {ε, Sx(ejω)}
dω, (40)

with ε being any non-negative scalar with which (40) exists and such that ε ≤ D. N
Notice that B3(D) is independent of R(D), being therefore numerically simpler to evaluate than the

other bounding functions introduced in Theorem 4. However, as D is decreased away from σ2
x and

approaches σ2
x/2 , B3(D) becomes very loose. In fact, it can be seen from (110a) that for D > σ2

x/2,

the gap between Rit
c (D) and R(D) is actually upper bounded by B3(D) − R(D), which is of course

tighter than B3(D), but requires one to evaluate R(D).

It is easy to see that time-sharing between two causal realizations with distortions D1, D2 and

rates Rit
c (D1), Rit

c (D2) yields an output process which satisfies causality with a rate-distortion pair

corresponding to the linear combination of Rit
c (D1), Rit

c (D2). Thus, in some cases one could get a bound

tighter than B3 by considering the boundary of the convex hull of the region above R(D) +B3(D) and

then subtracting R(D). However, such bound would be much more involved to compute, since it requires

to evaluate not only R(D), but also the already mentioned convex hull.

It is also worth noting that the first term within the min operator on the RHS of (39) becomes smaller

when ςε−1/σ2
x is reduced. This difference, which from Jensen’s inequality is always non-negative, could

be taken as a measure of the “non-flatness” of the PSD of {x(k)} (specially when ε = 0). Indeed, as

{x(k)} approaches a white process, B3 tends to zero.

It can be seen from (36) that Rit
c (D) provides the tightest upper bound for the information-theoretic

RDF among all bounds presented so far. Although it does not seem to be feasible to obtain a closed-form

expression for Rit
c (D), we show in the next section how to get arbitrarily close to it.

VI. OBTAINING Rit
c (D)

In this section we present an iterative procedure that allows one to calculate Rit
c (D) with arbitrary

accuracy, for any D > 0. In addition, we will see that this procedure yields a characterization of the
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filters in a dithered feedback quantizer [15] that achieve an operational rate which is upper bounded by

Rit
c (D) + 0.254 [bits/sample].

A. An Equivalent Problem

To derive the results mentioned above, we will work on a scheme consisting of an AWGN channel

and a set of causal filters, as depicted in Fig. 2. In this scheme, the source {x(k)} is Gaussian and

B(z)

F (z)

x(k)

n(k)

v(k) w(k)
W (z) y(k)A(z)

x̃(k)

Figure 2. AWGN channel within a “perfect reconstruction” system followed by the causal de-noising filter W (z).

stationary, with PSD Sx(e
jω), and is assumed to have finite differential entropy rate. In Fig. 2, the noise

{n(k)} is a zero-mean Gaussian process with i.i.d. samples, independent of {x(k)}. Thus, between v(k)

and w(k) lies the AWGN channel w(k) = v(k) + n(k). The filter F (z) is stable and strictly causal,

i.e., it has at least a one sample delay. The filters A(z) and B(z) are causal and stable. The idea, to be

developed in the remainder of this section, is to first show that with the filters that minimize the variance

of the reconstruction error for a fixed ratio σ2
w/σ

2
n, the system of Fig. 2 attains a mutual information

rate between source and reconstruction equal to Rit
c (D), with a reconstruction MSE equal to D. We will

then show that finding such filters is a convex optimization problem, which naturally suggests an iterative

procedure to solve it.

In order to analyze the system in Fig. 2, and for notational convenience, we define

Ωx(e
jω) ,

√
Sx(ejω) , ∀ω ∈ [−π, π].

We also restrict the filters A(z) and B(z) to satisfy the “perfect reconstruction” condition

A(ejω)B(ejω) ≡ 1. (41)

Thus,

y(k) = W (z) x(k) +W (z)B(z)[1− F (z)] n(k), (42)

see Fig. 2. Therefore, W (z) is the signal transfer function of the system.
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The perfect reconstruction condition (41) induces a division of roles in the system, which will later

translate into a convenient parametrization of the optimization problem associated with it. On the one

hand, because of (41), the net effect of the AWGN channel and the filters A(z), B(z) and F (z) is to

introduce (coloured) Gaussian stationary additive noise, namely {u(k)}, independent of the source. The

PSD of this noise, Su(e
jω), is given by

Su(e
jω) ,

∣∣W (ejω)
∣∣2 ∣∣B(ejω)

∣∣2 ∣∣1− F (ejω)
∣∣2 σ2

n. (43)

The diagram in Figure 3 shows how the signal transfer function W (z) and the noise transfer function

W (z)B(z)(1− F (Z)) act upon {x(k)} and {n(k)} to yield the output process.

W (z)

n(k) u(k)

x(k) y(k)

W (z)B(z)(1− F (z))

Figure 3. Equivalent block diagram depicting the output as the sum of W (z)x(k) and u(k), where {n(k)} is an i.i.d. zero-mean

Gaussian process independent of {x(k)}.

On the other hand, by looking at Fig. 2 one can see that W (z) plays also the role of a de-noising

filter, which can be utilized to reduce additive noise at the expense of introducing linear distortion.

More precisely, W (z) acts upon the Gaussian stationary source {x(k)} corrupted by additive Gaussian

stationary noise with PSD
∣∣B(ejω)

∣∣2 ∣∣1− F (ejω)
∣∣2 σ2

n. From (42) and Fig. 2, the MSE is given by

Dc , σ2
u + ‖(W − 1)Ωx‖2 =

‖ΩxA‖2‖WBf‖2

K − ‖f‖2
+ ‖(W − 1)Ωx‖2, (44)

where σ2
u , 1

2π

∫ π
−π Su(e

jω)dω and

K , σ2
v

σ2
n

+ 1 =
σ2
w

σ2
n

,

f(ω) ,
∣∣1− F (ejω)

∣∣ , ∀ω ∈ [−π, π].

On the RHS of (44), the first term is the variance of the additive, source independent, Gaussian noise.

The second term corresponds to the error due to linear distortion, that is, from the deviation of W (ejω)

from a unit gain.

Since we will be interested in minimizing Dc, for any given F (z) and W (z), the filters A(z) and

B(z) in Fig. 2 are chosen so as to minimize σ2
u in (44), while still satisfying (41). From the viewpoint of

the subsystem comprised of the filters A(z), B(z) and F (z) and the AWGN channel, W (z) acts as an

error frequency weighting filter, see (43). Thus, for any F (z) and W (z), the filters A(z) and B(z) that

December 9, 2011 DRAFT



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

19

minimize σ2
u are those characterized in [15, Prop. 1], by setting P (z) in [15, eq. (20b)] equal to W (z).

With the minimizer filters in [15], the variance of the source-independent error term is given by

σ2
u =

〈Ωx|W |, f〉2

K − ‖f‖2
. (45)

On the other hand, the filter F (z) needs to be strictly causal and stable. As a consequence, it holds that
π∫

−π

log f(ω)dω ≥ 0,

which follows from Jensen’s formula [16] (see also the Bode Integral Theorem in, e.g., [17]).

Thus, from (44) and (45), if one wishes to minimize the reconstruction MSE by choosing appropriate

causal filters in the system in Fig. 2 for a given value of K, one needs to solve the following optimization

problem:

Optimization Problem 1: For any given Ωx(e
jω), and for any given K > 1, find the frequency response

W (ejω) and the frequency response magnitude f(ω) that

Minimize: Dc ,
〈Ωx|W |, f〉2

K − ‖f‖2
+ ‖(W − 1)Ωx‖2 (46a)

Subject to: W ∈ H,∫ π

−π
ln f(ω)dω ≥ 0,

where H denotes the space of all frequency responses that can be realized with causal filters. N
Now we can establish the equivalence between solving Optimization Problem 1 and finding Rit

c (D).

Lemma 3: For any K > 1 and Ωx(e
jω), if the filters A?(z), B?(z), and F ?(z) solve Optimization

Problem 1 and yield distortion D?
c , then

1

2
ln(K) = Rit

c (D
?
c ).

N
From the above lemma, whose proof can be found in Section XIV, one can find Rit

c (D) either by

solving the minimization in Definition 6 or by solving Optimization Problem 1. In the following, we

will pursue the latter approach. As we shall see, our formulation of Optimization Problem 1 provides a

convenient parametrization of its decision variables. In fact, it makes it possible to establish the convexity

of the cost functional defined in (46a) with respect to the set of all causal frequency responses involved.

That result can be obtained directly from the following key lemma, proved in Section XV:
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Lemma 4: Define the sets of functions

FK ,
{
f : [−π, π] → R+

0 , ‖f‖
2 < K

}
,

G , {G : [−π, π] → C} ,

where K is some positive constant. Then, for any G ∈ G and K > 1, the cost functional J : FK×G →

R+
0 , defined as

J (f, g) , 〈f, |g|〉2

K − ‖f‖2
+ ‖g −G‖2, (47)

is strictly convex in f and g. N
We can now prove the convexity of Optimization Problem 1.

Lemma 5: For all Ωx and for all K > 1, Optimization Problem 1 is convex . N
Proof: With the change of variables G , Ωx and g , ΩxW in (47), we obtain Dc = J (f, g),

see (44). With this, Optimization Problem 1 amounts to finding the functions f and g that

Minimize: J (f, g) (48a)

Subject to: g ∈ W, f ∈ B. (48b)

where

W , {g = ΩxW : W ∈ H} (49)

B ,
{
f ∈ FK :

∫ π

−π
ln f(ω)dω = 0

}
.

Clearly, the space of frequency responses associated with causal transfer functions, H, is a convex set.

This implies that W is a convex set. In addition, B is also a convex set, and from Lemma 4, J (f, g) is a

convex functional. Therefore, the optimization problem stated in (48), and thus Optimization Problem 1,

are convex. This completes the proof.

B. Finding Rit
c (D) Numerically

Lemma 5 and the parametrization in Optimization Problem 1 allow one to define an iterative algorithm

that, as will be shown later, yields the information-theoretic causal RDF. Such algorithm is embodied in

iterative Procedure 2:
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Iterative Procedure 2

For any target information theoretical rate R,

Step 1: Set K = 22R.

Step 2: Set W (ejω) ≡ 1.

Step 3: Find the frequency response magnitude f ∈ B that minimizes Dc for given W .

Step 4: Find the causal frequency response W ∈ H that minimizes Dc for given f .

Step 5: Return to step 3.

Notice that after solving Step 3 in the first iteration of Procedure 2, the MSE is comprised of only

additive noise independent of the source.4 Step 4 then reduces the MSE by attenuating source-independent

noise at the expense of introducing linear distortion. Each step reduces the MSE until a local (or global)

minimum of the MSE is obtained. Based upon the convexity of Optimization Problem 1, the following

theorem, which is the main technical result in this section, guarantees convergence to the global minimum

of the MSE, say D, for a given end-to-end mutual information. Since all the filters in Optimization

Problem 1 are causal, the mutual information achieved at this global minimum is equal to Rit
c (D).

Theorem 5 (Convergence of iterative Procedure 2): Iterative Procedure 2 converges monotonically to

the unique f and W that realize Rit
c (D). More precisely, letting ∆(n) denote the MSE obtained after the

n-th iteration of Iterative Procedure 2 aimed at a target rate R, we have that

n2 > n1 ⇐⇒ ∆(n2) < ∆(n1)

and

lim
n→∞

Rit
c (∆

(n)) = R.

N
Proof: The result follows directly from the fact that Optimization Problem 1 is strictly convex in f

and W , which was shown in Lemma 4, and from Lemma 3.

4Indeed, after solving Step 3 for the first time, the resulting rate is the quadratic Gaussian rate distortion function for source

uncorrelated distortions R⊥(D) introduced in [14] (see also (14)) .
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The above theorem states that the stationary information-theoretic causal RDF can be obtained by

using Iterative Procedure 2. In practice, this means that an approximation arbitrarily close to Rit
c (D) for

a given D can be obtained if sufficient iterations of the procedure are carried out.

The feasibility of running Iterative Procedure 2 depends on being able to solve each of the minimization

sub-problems involved in steps 3 and 4. We next show how these sub-problems can be solved.

Solving Step 3

If W (ejω) is given, the minimization problem in Step 3 of Iterative Procedure 2 is equivalent to

solving a feedback quantizer design problem with the constraint A(z)B(z) = 1, ∀z ∈ C and with error

weighting filter W (ejω). Therefore, the solution to Step 3 is given in closed form by [15, eqs. (20), (29)

and (31b)], where P (z) in [15, eq. (20b)] is replaced by W (z). The latter equations of [15] characterize

the frequency response magnitudes of the optimal A(z), B(z) and 1− F (z) given W (z). The existence

of rational transfer functions A(z), B(z) and F (z) arbitrarily close (in an L2 sense) to such frequency

response magnitudes is also shown in [15].

Solving Step 4

Finding the causal frequency response W (ejω) ∈ H that minimizes Dc for a given f is equivalent to

solving

min
g:g∈W

J (f, g) (50)

for a given f , where W is as defined in (49). Since W and J (·, ·) are convex, (50) is a convex optimization

problem. As such, its global solution can always be found iteratively. In particular, if W (z) is constrained

to be an M -th order FIR filter with impulse response c ∈ RM+1, such that W (ejω) = F {c}, where

F{·} denotes the discrete-time Fourier transform, then

G (c) , J (f,F{c})

is a convex functional. The latter follows directly from the convexity of J (·, ·) and the linearity of F{·}.

As a consequence, one can solve the minimization problem in Step 4, to any degree of accuracy, by

minimizing G (c) over the values of the impulse response of W (ejω), using standard convex optimization

methods (see, e.g, [18]). This approach also has the benefit of being amenable to numerical computation.

It is interesting to note that if the order of the de-noising filter W (z) were not a priori restricted, then,

after Iterative Procedure 2 has converged to Rit
c (D), the obtained W (z) is the causal Wiener filter (i.e.,
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the MMSE causal estimator) for the noisy signal that comes out of the perfect reconstruction system that

precedes W (z). Notice also that one can get the system in Fig. 7 to yield a realization of Shannon’s

R(D) using Iterative Procedure 1 by simply allowing W (z) to be non-causal. This would yield a system

equivalent to the one that was obtained analytically in [10]. An important observation is that one could

not obtain a realization of Rit
c (D) from such a system in one step by simply replacing W (z) (a non-causal

Wiener filter) by the MMSE causal estimator (that is, a causal Wiener filter). To see this, it suffices to

notice that, in doing so, the frequency response magnitude of W (z) would change. As a consequence,

the previously matched filters A(z), B(z) and F (z) would no longer be optimal for W (z). One would

then have to change A(z), and then W (z) again, and so on, thus having to carry out infinitely many

recursive optimization steps. However, a causally truncated version of the non causal Wiener filter W (z)

that realizes Shannon’s RDF could be used as an alternative starting guess in Step 2 of the iterative

procedure.

C. Achieving Rit
c (D) + 0.254 bits/sample Causally

If the AWGN channel in the system of Fig. 2 is replaced by a subtractively dithered uniform scalar

quantizer (SDUSQ), as shown in Fig. 4, then instead of the noise {n(k)} we will have an i.i.d. process

F (z)

Q

ν(k)

n′(k)

w′(k)

−ν(k)

y′(k)x(k)
W(z)B(z)

v′(k) q(k)
A(z)

x̃(k)

Figure 4. Uniform scalar quantizer Q and dither signals ν(k), −ν(k), forming an SDUSQ, replacing the AWGN channel of

the system from Fig. 2.

independent of {x(k)}, whose samples are uniformly distributed over the quantization interval [19].

The dither signal, denoted by {ν(k)}, is an i.i.d. sequence of uniformly distributed random variables,

independent of the source. Let {q(k)} be the quantized output of the SDUSQ. Denote the resulting input

and the output to the quantizer, before adding and after subtracting the dither, respectively, as {v′(k)} and

{w′(k)}, and let {n′(k)} , {w′(k)− v′(k)} be the quantization noise introduced by the SDUSQ. Notice

that the elements of {n′(k)} are independent, both mutually and from the source {x(k)}. However, unlike

{v(k)} and {w(k)}, the processes {v′(k)} and {w′(k)} are not Gaussian, since they contain samples of

the uniformly distributed process {n′(k)}. We then have the following:
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Theorem 6: If the scheme shown in Fig. 4 uses the filters yielded by Iterative Procedure 2, and if long

sequences of the quantized output of this system are entropy coded conditioned to the dither values in a

memoryless fashion, then an operational rate ropc satisfying

ropc ≤ Rit
c (D) + 1

2 log2(2π e) (51)

is achieved causally while attaining a reconstruction MSE equal to D. N
Proof: If memoryless entropy coding is applied to long sequences of symbols conditioning the

probabilities to dither values, then then operational rate equals the conditional entropy H(q(k)|ν(k)).

For this entropy, the following holds in the system shown in Fig. 4:

H(q(k)|ν(k)) (a)
= I(v′(k); w′(k)) = I(v′(k); v′(k) + n′(k)) = h(v′(k) + n′(k))− h(n′(k))

(b)
= h(v(k) + n(k))− h(n(k)) +D(n′(k)‖n(k))−D(v′(k) + n′(k)‖ v(k) + n(k))

< I(v(k); v(k) + n(k)) +D(n′(k)‖n(k)) = I(v(k); w(k)) + 1
2 log2(

2π e
12 )

= 1
2 log2K + 1

2 log2(
2π e
12 )

(52)

where H(q(k)|ν(k)) denotes the entropy of q(k) conditioned to the k-th value of the dither signal. In

the above, (a) follows from [11, Theorem 1]. In turn, (b) stems from the well known result D(x′ ‖ x) =

h(x)− h(x′), where D(·‖·) denotes the Kullback-Leibler distance, see, e.g., [13, p. 254]. The inequality

in the last line of (52) is strict since the distribution of v′(k) is not Gaussian.

The result follows directly by combining (52) with Lemma 3 and Theorem 5.

In view of Theorem 6, and since any ED pair using an SDUSQ and LTI filters yields a reconstruction

error jointly stationary with the source, it follows that the operational rate-distortion performance of

the feedback quantizer thus obtained is within 0.5 log2 (2πe/12) ' 0.254 bits/sample from the best

performance achievable by any ED pair within this class.

Remark 2: When the rate goes to infinity, so does K. In that limiting case, the transfer function

W (z) tends to unity, and it follows from [15] that the optimal filters asymptotically satisfy
∣∣A(ejω)∣∣ =

Sx(e
jω)−1,

∣∣B(ejω)
∣∣ = Sx(e

jω),
∣∣1− F (ejω)

∣∣ = exp
(

1
2π

∫ π
−π ln(Sx(e

jω))dω
)
/Sx(e

jω). Moreover, when

K → ∞, the system of Fig. 4 achieves Rop
c (D) which, in this asymptotic regime, coincides with Rit

c (D)+

0.5 log2(2πe), with Rit
c (D) tending to R(D). N

D. Achieving Rit
c (D) + 1.254 bits/sample With Zero Delay

If the requirement of zero-delay, which is stronger than that of causality, was to be satisfied, then it

would not be possible to apply entropy coding to long sequences of quantized samples. This would entail
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an excess bit-rate not greater than 1 bit per sample, see, e.g., [13, Section 5.4]. Consequently, we have

the following result:

Theorem 7: The OPTA of zero-delay codes, say Rop
ZD(D), can be upper bounded by the operational

rate of the scheme of Fig. 4 when each quantized output value is entropy-coded independently, conditioned

to the current dither value. Thus

Rop
ZD(D) ≤ Rit

c (D) +
1

2
ln

(
2πe

12

)
+ 1 ' Rit

c (D) + 0.254 + 1 bits/sample. (53)

N
The 0.254 bits per sample in (53), commonly referred to as the “space-filling loss” of scalar quantiza-

tion, can be reduced by using vector quantization [11], [20]. Vector quantization could be applied while

preserving causality (and without introducing delay) if the samples of the source were N -dimensional

vectors. This would also allow for the use of entropy coding over N -dimensional vectors of quantized

samples, which reduces the extra 1 bit/sample at the end of (53) to 1/N bits/sample, see [13, Theo-

rem 5.4.2].

E. The Additive Rate Loss of Causality Arises from Two Factors

It is worth noting that Lemma 3 and the above analysis reveals an interesting fact: the rate loss due to

causality for Gaussian sources with memory, that is, the difference between the OPTA of causal codes

and R(D), is upper bounded by the sum of two terms. The first term is 0.254 bits/sample, and results

from the space filling loss associated with scalar quantization, as was also pointed out in [6] for the

high resolution situation. This term is associated only with the encoder. For a scalar Gaussian stationary

source, such excess rate can only be avoided by jointly quantizing blocks of consecutive source samples

(vector quantization), i.e., by allowing for non-causal encoding (or by encoding several parallel sources).

The second term can be attributed to the reduced de-noising capabilities of causal filters, compared to

those of non-causal (or smoothing) filters. The contribution of the causal filtering aspect to the total

rate-loss is indeed Rit
c (D)− R(D). This latter gap can also be associated with the performance loss of

causal decoding.

As a final remark, we note that the architecture of Fig. 2, which allowed us to pose the search of

Rit
c (D) as a convex optimization problem, is by no means the only scheme capable of achieving the

upper bounds (52) and (53). For instance, it can be shown that the same performance can be attained

removing either A(z) or F (z) in the system of Fig. 2, provided an entropy coder with infinite memory

is used. Indeed, the theoretical optimality (among causal codes) of the differential pulse code modulation
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(DPCM) architecture, with predictive feedback and causal MMSE estimation at the decoding end, has

been shown in a different setting [21].

VII. EXAMPLE

To illustrate the upper bounds presented in the previous sections, we here evaluate B1(D), B2(D), and

B3(D), and calculate an approximation of Rit
c (D) via Iterative Procedure 2, for two Gaussian zero-mean

AR-1 and AR-2 sources. These sources were generated by the recursion

x(k) = a1 x(k − 1) + a2 x(k − 2) + z(k), ∀k ∈ Z, (54)

where the elements of the process {z(k)} are i.i.d. zero-mean unit-variance Gaussian random variables.

Iterative Procedure 2 was carried out by restricting W (z) to be an 8-tap FIR filter. For each of the

target rates considered, the procedure was stopped after four complete iterations.

The first-order source (Source 1) was chosen by setting the values of the coefficients in (54) to be

a1 = 0.9, a2 = 0. This amounts to zero-mean, unit variance white Gaussian noise filtered through the

colouring transfer function z/(z−0.9). The second-order source (Source 2) consisted of zero-mean, unit

variance white Gaussian noise filtered through the colouring transfer function z2/[(z − 0.9)(z − 0.1)].

The resulting upper bounds for Source 1 and Source 2 are shown in Figs. 5 and 6, respectively. As
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R(D) +B1(D)

Figure 5. R(D) (in bits/sample) and several upper bounding functions for Rit
c (D) for zero-mean unit variance white Gaussian

noise filtered through z/(z − 0.9). The resulting source variance is 5.26.

predicted by (103) and (39), all the upper bounds for Rit
c (D) derived in Section V converge to R(D) in

the limit of both large and small distortions (that is, when D → σ2
x
− and D → 0+, respectively).
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Figure 6. R(D) (in bits/sample) and several upper bounding functions for Rit
c (D) for zero-mean unit variance white Gaussian

noise filtered through z2/[(z − 0.9)(z − 0.1)]. The resulting source variance is 6.37.

For both sources, the gap between Rit
c (D) and R(D) is significantly smaller than 0.5 bits/sample, for

all rates at which Rit
c (D) was evaluated. Indeed, this gap is smaller than 0.22 bit/sample for both sources.

For the first-order source, the magnitude of the coefficients of the FIR filter W (z) obtained decays

rapidly with coefficient index. For example, when running five cycles of Iterative Procedure 2, using a

10th order FIR filter for W (z), for Source 1 at R = 0.2601 bits/sample, the obtained W (z) was

W (z) = 0.3027 + 0.1899z−1 + 0.1192z−2 + 0.0748z−3 + 0.0470z−4 + 0.0296z−5 + 0.0188z−6

+ 0.0123z−7 + 0.0086z−8 + 0.0070z−9

Such fast decay of the impulse response of W (z) suggests that, at least for AR-1 sources, there is little

to be gained by letting W (z) be an FIR filter of larger order. (It is worth noting that, in the iterative

procedure, the initial guess for W (z) is a unit scalar gain.) The frequency response magnitude of W (z)

is plotted in Fig. 7, together with Ωx(e
jω) and the resulting frequency response magnitude

∣∣1− F (ejω)
∣∣

after four iterations on Source 1 for a target rate of Rit
c (D) = 0.2601 bits/sample.

Notice that for Source 1, after four iterations of Iterative Procedure 1, the obtained values for Rit
c (D)

are almost identical to Rit
c (D), evaluated according to (35). This suggests that Iterative Procedure 2 has

fast convergence. For example, when applying four iterations of Iterative Procedure 2 to Source 1 with a

target rate of 0.2601 bits/sample, the distortions obtained after each iteration were 1.6565, 1.6026, 1.6023

and 1.6023, respectively. For the same source with a target rate of 0.0441 bits/sample, the distortion took
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Figure 7. Ωx(e
jω),

∣∣1− F (ejω)
∣∣ and

∣∣W (ejω)
∣∣ of an approximate realization of Rit

c (D) for a Gaussian stationary source with

PSD
∣∣1/(1− 0.9 e−jω)

∣∣2 when the rate is 0.2601 [bit/sample], using the system shown in Fig. 2. These frequency responses

were obtained after four iterations of Iterative Procedure 1, with filter W (z) being FIR with 8 taps.

the values 4.0152, 3.9783, 3.9783, and 3.9782 as the iterations proceeded. A similar behaviour is observed

for other target rates, and for other choices of a1 in (54) as well. Thus, at least for AR-1 sources, one

gets close to the global optimum Rit
c (D) after just three iterations.

VIII. CONCLUSIONS

In this paper we have obtained expressions and upper bounds to the causal and zero-delay rate

distortion function for Gaussian stationary sources and MSE as the distortion measure. We first showed

that for Gaussian sources with bounded differential entropy rate, the causal OPTA does not exceed the

information-theoretic RDF by more than approximately 0.254 bits/sample. After that, we derived an

explicit expression for the information-theoretic RDF under per-sample MSE distortion constraints using

a constructive method. This result was then utilized for obtaining a closed-form formula for the causal

information-theoretic RDF Rit
c (D) of first-order Gauss-Markov sources under an average MSE distortion

constraint.

We then derived three closed-form upper bounding functions to the difference between Rit
c (D) and

Shannon’s RDF. Two of these bounding functions are tighter than the previously best known bound of

0.5 bits/sample, at all rates. We also provided a tighter fourth upper bound to Ri
ct(D), named Rit

c (D),

that is constructive. More precisely, we provide a practical scheme that attains this bound, based on a
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noise-shaped predictive coder consisting of an AWGN channel surrounded by pre-, post-, and feedback

filters. For a given source spectral density and desired distortion, the design of the filters is convex

in their frequency responses. We proposed an iterative algorithm, which is guaranteed to converge to

the optimal set of unique filters. Moreover, the mutual information obtained across the AWGN channel,

converges monotonically to Rit
c (D). Thus, one avoids having to solve the more complicated minimization

of the mutual information over all possible conditional distributions satisfying the distortion constraint. To

achieve the upper bounds on the operational coding rates, one may simply replace the AWGN channel by

a subtractively-dithered scalar quantizer and using memoryless entropy coding conditioned to the dither

values.

IX. PROOF OF LEMMA 2

We will first show that R
it(`)
c (D) can be realized by a vector AWGN channel between two square

matrices. It was already established in Lemma 1 that an output y corresponds to a realization of R
it(`)
c

only if it is jointly Gaussian with the source x. From this Gaussianity condition, the MMSE estimator

of y from x, say ŷ, is given by

ŷ = KyxK
−1
x x, (55)

where the inverse of Kx exists from the fact that x has bounded differential entropy. It is clear from (55)

and the joint Gaussianity between x and y that the causality condition is satisfied if and only if the

matrix

KyxK
−1
x is lower triangular. (56)

On the other hand, the distortion constraint (18) can be expressed as

1
` tr{E

[
(y − x)(y − x)T

]
} = 1

` tr{Ky −Kyx − (Kyx)
T +Kx} ≤ D (57)

From the definition of R
it(`)
c , for every ε > 0, there exists an output vector y jointly Gaussian with x

such that Ky and Kyx satisfy (56), (57) and

1

`
I(x;y) ≤ Rit(`)

c + ε. (58)

We will now describe a simple scheme which is capable of reproducing the joint statistics between x

and any given y jointly Gaussian with x satisfying (56), (57) and (58).

Suppose x is first multiplied by a matrix A ∈ R`×` yielding the random vector v , Ax. Then a

vector with Gaussian i.i.d. entries with unit variance, independent from x, say n ∈ R`, is added to v, to
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yield the random vector w , v+ n. Finally, this result is multiplied by a matrix B ∈ R`×` to yield the

output

y = BAx+Bn. (59)

On the other hand, the joint second-order statistics between y and x are fully characterized by the matrices

Kyx = E
[
yxT

]
= BAKx (60)

Ky = E
[
yyT

]
= BAKx(BA)T +BBT . (61)

It can be seen from these equations that all that is needed for the system described above to reproduce

any given pair of covariance matrices Ky, Kyx is that the matrices A and B satisfy

BA = KyxK
−1
x (62)

BBT = M , Ky −KyxK
−1
x Kxy (63)

Thus, B can be chosen, for example, as the lower-triangular matrix in a Cholesky factorization of M .

With this, a tentative solution for A could be obtained as A = B†KyxK
−1
x , which would satisfy (62)

if and only if BB†KyxK
−1
x = KyxK

−1
x . The latter holds if and only if span{Kyx} ⊆ span{B}

(recall that Kx is non-singular since x has bounded differential entropy). We will now show that this

condition actually holds by using a contradiction argument. Suppose span{Kyx} * span{B}. Since

span{B} = span{M}, the former supposition is equivalent to span{Kyx} * span{M}. If this were

the case, then there would exist s ∈ R` such that sTKyx 6= 0 and sTM = 0. The latter, combined

with (63), would imply sTKy 6= 0. One could then construct the scalar random variable r , sTy, which

would have non-zero variance. The MSE of predicting r from x is given by

Kr −KrxK
−1
x KT

rx = sT (Ky −KyxK
−1
x Kxy)s = sTMs = 0.

From this, and in view of the fact that r is Gaussian with non-zero variance, we conclude that I(x; r)

would be unbounded. However, by construction, the Markov chain r ↔ y ↔ x holds, and therefore by

the Data Processing Inequality we would have that I(x;y) ≥ I(x; r), implying that I(x;y) is unbounded

too. This contradicts the assumption that y is a realization of R
it(`)
c (D), leading to the conclusion that

span{Kyx} ⊆ span{B}. Therefore, the choice

A = B†KyxK
−1
x (64)

is guaranteed to satisfy (62), and thus for every ε > 0, there exist matrices B and A which yield an

output vector satisfying (56), (57) and (58).
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On the other hand, we have that

I(x;y) = I(v;y) = I(v;w) (65)

The first equality follows from the data-processing inequality and the fact that v is obtained determinis-

tically from x. To prove that the second equality in (65) holds, we will prove that h(v|w) = h(v|y). We

first have, from (64), that R(A) ⊆ R(B†), which combined with the identity R(B†) = R(BT ) reveals

immediately that (64) implies

R(A) ⊆ N⊥(B). (66)

Secondly, we note that v ∈ R(A) and that w can be decomposed as

w = v + PR(A) n+ PR⊥(A) n, (67)

where PS denotes the orthogonal projection operator onto a given subspace S. Since v = PR(A) v and

PR⊥(A) n is orthogonal to the other two terms on the RHS of (67), we have that

h(v|w) = h
(
PR(A) v |PR(A) v + PR(A) n , PR⊥(A) n

)
= h

(
PR(A) v |PR(A) v + PR(A) n

)
(68)

where the last equality follows from the fact that n is Gaussian i.i.d., which implies that PR⊥(A) n is

independent of the other two terms in the expression. On the other hand, from (67),

y = Bw = Bv +BPR(A) n+BPR⊥(A) n.

Thus, we have that

h(v|y) = h
(
PR(A) v |BPR(A) v +BPR(A) n+BPR⊥(A) n

)
(69)

(a)

≤ h
(
PR(A) v |PR(A)B

†BPR(A) v + PR(A)B
†BPR(A) n+ PR(A)B

†BPR⊥(A) n
)

(70)

(b)
= h

(
PR(A) v |PR(A) PR(A) v + PR(A) PR(A) n+ PR(A) PR⊥(A) n

)
(71)

= h
(
PR(A) v |PR(A) v + PR(A) n

)
= h(v|w) (72)

where (a) comes from the Data Processing Inequality, and (b) follows from the fact that B†B = PN⊥(B)

and from (66). To complete the proof of the second equality in (65), we note that the Data Processing

Inequality also yields h(v|y) ≥ h(v|w).

Therefore, if A and B yield an output y such that (1/`)I(x;y) ≤ R
it(`)
c (D) + ε, then 1

` I(v;w) ≤

R
it(`)
c (D) + ε.

Finally, if we keep the A and B satisfying the above conditions and replace the noise n by the vector

of noise samples m with unit variance introduced by ` independently operating subtractively-dithered
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uniform scalar quantizers (SDUQS) [11], with their outputs being jointly entropy-coded conditioned to

the dither, then the operational data rate r(x,y) , E [L`(x)] would be upper bounded by [11]

r(x,y) ≤ Ī(v;u) +
1

`
≤ Ī(v;w) +

1

2
log2(2π e) +

1

`

where u , v+m is the output of the ECDQ channel. Since the distortion yielded by the SDUQs is the

same as that obtained with the original Gaussian channel, we conclude that

Rop(`)
c (D) ≤ Rit(`)

c (D) +
1

2
log2(2π e) +

1

`
+ ε bits/sample.

Given that the above holds for any ε > 0 and since R
op(`)
c (D) is defined as an infimum, we conclude

that Rop(`)
c (D) ≤ R

it(`)
c (D) + 1

2 log2(2π e) + 1
` , which completes the proof. �

X. PROOF OF THEOREM 1

We will start by showing that

Rop
c (D) = lim sup

`→∞
Rop(`)

c (D). (73)

First, following exactly the same proof as in Lemma 6 in the Appendix, it is straightforward to show

that

Rop
c (D) ≥ lim sup

`→∞
Rop(`)

c (D). (74)

Now, consider the following family of encoding/decoding schemes. For some positive integer `, the entire

source sequence is encoded in blocks of ` contiguous samples. Encoding and decoding of each block

is independent of the encoding and decoding of any other block. As in the scheme described in the

second part of the proof of Lemma 2, each source block is multiplied by the optimal `×` pre-processing

matrix, the resulting block being encoded and decoded utilizing ` parallel and independent SDUSQs,

with their outputs jointly entropy coded conditioned to the dither values. When decoded, the result is

then multiplied by the optimal post-processing matrix described in the proof of Lemma 2.

For such an ED pair, and from (5), the operational rate after k samples have been reconstructed is

r(xk, yk) =
`

k

⌈
k

`

⌉
Rop(`)

c (D) < Rop(`)
c (D) +

`

k
Rop(`)

c (D), (75)

where d·e denotes rounding to the nearest larger integer (since the k-th sample is reconstructed only after

dk/`e blocks of length ` are decoded). On the other hand, since the variance of each reconstruction error

sample cannot be larger than the variance of the source, we have that the average distortion associated

with the first k samples is upper bounded as

d(xk, yk) ≤ `bk/`c
k

D +
k − `bk/`c

k
σ2
x < D +

`

k
σ2
x, (76)
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where b·c denotes rounding to the nearest smaller integer. Therefore, for any finite `, the average distortion

of this scheme equals D when k → ∞ (i.e., when we consider the entire source process). Also, from (75)

and (5), letting k → ∞ we conclude that

Rop
c (D) ≤ Rop(`)

c (D), (77)

for every finite `. Our aim is to use this result to show that Rop
c (D) ≤ lim sup`→∞R

op(`)
c (D). Since (77)

is valid only for finite values of `, we must resort to analyzing the convergence of Rop(`)
c (D) as ` → ∞.

First of all, since Rop
c (D) is bounded, it follows from (74) that lim sup`→∞R

op(`)
c (D) exists. Then, for

every ε > 0, there exists a finite `0(ε) ∈ N such that

Rop(`)
c (D) ≤ lim sup

`→∞
Rop(`)

c (D) + ε, ∀` ≥ `0(ε) (78)

Therefore, for every ε > 0, there exists a finite `0(ε) ∈ N such that

Rop
c (D) ≤ lim sup

`→∞
Rop(`)

c (D) + ε, ∀` ≥ `0(ε) (79)

Since Rop
c (D) is defined as an infimum among all causal codes (which, in particular, means ` can be

chosen larger than `0(ε) for any ε > 0), it readily follows from (74), (79), Lemma 2 and Lemma 7, that

Rop
c (D) = lim sup

`→∞
Rop(`)

c (D) ≤ lim sup
`→∞

Rit(`)
c (D) +

1

2
log2(2π e) ≤ Rit

c (D) +
1

2
log2(2π e),

completing the proof. �

XI. PROOF OF THEOREM 2

From Lemma 1, for any given reconstruction-error covariance matrix, the mutual information is

minimized if and only if the output is jointly Gaussian with the source. In addition, for any given

mutual information between x` and a jointly Gaussian output y`, the variance of every reconstruction

error sample z(k) , y(k)− x(k) is minimized if and only if z(k) is the estimation error resulting from

estimating x(k) from yk, that is, if and only if

0 = E
[
zk y

1
k

]
= E

[
(yk − xk)y

1
k

]
, ∀k = 1, . . . , `, (80)

which for Gaussian vectors implies z(k) and yk are independent, and therefore

h(z(k)| yk) = h(z(k)), ∀k = 1, . . . , `. (81)
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Thus, hereafter we restrict the analysis to output processes jointly Gaussian with and causally related to

x` which also satisfy (80). For any such output process, say, y`, the following holds:

I(x`; y`) =
1

`

∑`

k=1
I(x`; y(k)| yk−1)

=
1

`

∑`

k=1
I(xk; y(k)| yk−1) (82)

≥ 1

`

∑`

k=1
I(x(k); y(k)| yk−1) (83)

=
h(x(1))− h(x(1)| y(1))

`
+

1

`

∑`

k=2

[
h(x(k)| yk−1)− h(x(k)| yk)

]
(84)

=
h(x(1))− h(z(1))

`
+

1

`

∑̀
k=2

[
h(ak−1 x(k − 1) + ξ(k − 1)| yk−1)− h(z(k))

]
(85)

=
1

2`
ln

(
σ2
x(1)

σ2
z(1)

)
+

1

`

∑`

k=2
[h(−ak−1 z(k − 1) + ξ(k − 1))− h(z(k))] (86)

=
1

2`
ln

(
σ2
x(1)

σ2
z(1)

)
+

1

2`

∑`

k=2
ln

(
a2k−1σ

2
z(k−1) + σ2

ξ(k−1)

σ2
z(k)

)
(87)

In the above, (82) follows because y` depends causally upon x`. In turn, inequality (83) is due to the

fact that I(xk; y(k)| yk−1) = h(y(k)| yk−1) − h(y(k)| yk−1, xk) ≥ h(y(k)| yk−1) − h(y(k)| yk−1, x(k)),

and thus equality holds in (83) if and only if the following Markov chain is satisfied:

y(k) ↔ {x(k), yk−1} ↔ xk−1, ∀k = 1, . . . , `. (88)

Finally, (85) and (86) follow because y` satisfies (81) for all k = 1, . . . , `.

Thus, the mutual information I(x`; y`) of every output y` that is a candidate to constitute a realization

of RSRD
` (D1, . . . , D`) is lower bounded by the RHS of (87), which in turn depends only on the error

variances {σ2
x(k)}

`
k=1 associated with y`. We shall now see that this lower bound is minimized by a

unique set of error variances, and then show that the resulting bound is achievable while having these

error variances.

Revisiting (84) (85) and (86), we have that (1/2) ln([a2k−1σ
2
z(k−1)+σ2

ξ(k−1)]/σ
2
z(k)) = h(x(k)| yk−1)−

h(x(k)| yk) ≥ 0 and (1/2) ln(σ2
x(1)/σ

2
z(1)) = h(x(1))− h(x(1)| y(1)) ≥ 0. Therefore, in a realization of

RSRD
c (D1, . . . , D`), it holds that

σ2
z(1) ≤ σ2

x(1) (89a)

σ2
z(k) ≤ a2k−1σ

2
z(k−1) + σ2

ξ(k−1) = σ2
x(k) − a2k−1σ

2
y(k−1), ∀k = 2, . . . `. (89b)

With this, and since the right-hand side of (87) decreases when any error variance σ2
z(k) increases, the
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minimum value of the right-hand side of (87) subject to the constraints

σ2
z(k) ≤ Dk, k = 1, . . . , ` (90)

is attained when these variances satisfy σ2
z(k) = dk, for k = 1, . . . , ` (see (29)). Therefore, for all outputs

y` causally related to and jointly Gaussian with x` satisfying the distortion constraints, it holds that

I(x`; y`) ≥ 1

2`
ln

(
σ2
x(1)

d1

)
+

1

2`

∑`

k=2
ln

(
a2k−1dk−1 + σ2

ξ(k−1)

dk

)
, (91)

with equality if and only if y` satisfies (80), (88) and (90).

Now we will show that for any distortion schedule {Dk}`k=1, the output y` yielded by the recursive

algorithm of Procedure 1 is such that I(x`; y`) equals the lower bound (91), thus being a realization of

RSRD
` (D1, . . . , D`).

We will first demonstrate that {y(k)} satisfies the causality Markov chain

yk ↔ x1
k ↔ xk+1

∞ ∀k ∈ N (92)

and the conditions (80) (MMSE), and (88) (Source’s Past Independence) which are necessary and sufficient

to attain equality in (91).

Causality condition (92): Let A , Ky1
kx

1
k
(Kx1

k
)−1. Suppose y1

k−1 satisfies causality. Then, since

Ky1
kx

1
k
= AKx1

k
, it follows from (56) that the top-left square submatrix Ak−1y ∈ R(k−1)×(k−1) of A is

lower triangular, being given by

Ak−1y = Ky1
k−1x

1
k−1

(Kx1
k−1

)−1. (93)

Then Step 2 of the algorithm is equivalent to

E
[
y1
k−1 xk

]
= Ak−1y E

[
x1
k−1 xk

]
. (94)

This means that the top (k − 1) entries in the k-th column of Ky1
kx

1
k

depend only on the entries of

Kx1
k

above its k-th row. Recalling that Ky1
kx

1
k
= AKx1

k
, we conclude that A is also lower triangular,

and thus y1
k also satisfies causality. Notice that for any given Kx1

k−1
and Ky1

k−1x
1
k−1

satisfying causality

up to sample k − 1, the vector E
[
y1
k−1 xk

]
yielded by Step 2 is the only vector consistent with xk, yk

satisfying causality up to the k-th sample.

MMSE Condition (80): Step 1 guarantees that (80) is satisfied for k = 1. Steps 3, 4 and 5 mean

that E
[
y1
k yk

]
= E

[
y1
k xk

]
for all k = 2, . . . , `. Therefore, the reconstruction vector y1

` yielded by the

above algorithm satisfies (80) for all k = 1, . . . , `.

December 9, 2011 DRAFT



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

36

Source’s past independence (88): Since all variables are jointly Gaussian, condition (88) is equivalent

to

E
[
(yk −E[yk | xk,y1

k−1])(x
1
k−1)

T
]
= 0, (95)

for all k = 1, . . . , `. On the other hand,

E
[
yk | xk,y1

k−1

]
= E

[
yk[(y

1
k−1)

T xk]
] Ky1

k−1
E
[
xk y

1
k−1

]
E
[
xk y

1
k−1

]T
E
[
x2k
]
−1 y1

k−1

xk

 . (96)

From steps 1, 3 and 4 it follows that E
[
yk[(y

1
k−1)

T xk]
]
= E

[
yk(y

1
k)

T
]
= E

[
xk(y

1
k)

T
]
. Substitution of

this into (96) and the result into (95) leads directly to (30). Thus, (88) is satisfied for all k = 1, . . . , `.

Since the above algorithm yields an output which satisfies (92), (80) and (88), for all k = 1, . . . , `,

this output attains equality in (91), thus being a realization of RSRD
` (D1, . . . , D`). Notice that once

the distortions {dk}`k=1 are given, each step in the recursive algorithm yields the only variances and

covariances that satisfy (92), (80) and (88). Therefore, for any given distortion schedule {Dk}`k=1, the

latter algorithm yields the unique output that realizes RSRD
` (D1, . . . , D`). This completes the proof. �

XII. PROOF OF THEOREM 3

Consider the first ` samples of input and output. The average distortion constraint here takes the form

1

`

∑̀
k=1

σ2
z(k) ≤ D. (97)

Then,

Rit(`)
c (D) , inf

y`:(92) and (97) hold

1
` I(x

`; y`) = inf
{z(k)}`

k=1:(97) holds
RSRD

` (σ2
z(1), . . . , σ

2
z(`))

= inf
{z(k)}`

k=1:(97) holds

{
1

2`
ln

(
σ2
x

σ2
z(`)

)
+

1

2`

∑`−1

k=1
ln

(
a2σ2

z(k) + σ2
ξ

σ2
z(k)

)}

≥ inf
{z(k)}`

k=1:(97) holds

{
1

2`
ln

(
σ2
x

σ2
z(`)

)
+

(`− 1)

2`
ln

(
a2 +

σ2
ξ

1
`−1

∑`−1
k=1 σ

2
z(k)

)}
(98)

where the last inequality follows from Jensen’s inequality and the fact that ln(a2 + b2

x ) is a convex

function of x. Equality is achieved if and only if all distortions σ2
z(k) equal some common value for all

k = 1, . . . , (` − 1). Given that the RHS of (98) is minimized when constraint (97) is active (i.e., by

making 1
`

∑`
k=1 σ

2
z(k) = D), we can attain equality in (98) and minimize its RHS by picking

σ2
z(k) =

`D − σ2
z(`)

`− 1
, ∀k ∈ {1, 2, . . . , `− 1}. (99)
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For this choice to be feasible, the distortion σ2
z(k) must satisfy (89), which translates into the constraint

σ2
z(`) ≤

`a2D + (`− 1)σ2
ξ

`− 1 + a2
, U(`). (100)

Thus, substituting (99) into (98), we obtain

Rit(`)
c (D) = inf

z(`):σ2
z(`)≤U(`)

{
1

2`
ln

(
σ2
x

σ2
z(`)

)
+

(`− 1)

2`
ln

(
a2 +

(`− 1)σ2
ξ

`D − σ2
z(`)

)}
. (101)

In view of (100), as ` → ∞, the value of σ2
x(`) that infimizes (101) remains bounded. Therefore,

lim
`→∞

Rit(`)
c (D) = max

{
0 ,

1

2
ln

(
a2 +

σ2
ξ

D

)}
(102)

Finally, from Lemma 7 in the Appendix, we conclude that Rit
c (D) equals the RHS of (102), completing

the proof. �

XIII. PROOF OF THEOREM 4

The first inequality in (36) follows directly from definitions 3 and 6. For a plain AWGN channel with

noise variance d, the mutual information between source and reconstruction is

RAWGN (d) , 1

4π

∫ π

−π
log2

(
1 +

Sx(e
jω)

d

)
dω.

On the other hand, by definition, the mutual information across a test channel that realizes R⊥(D) with

distortion D = d satisfies [14]:

R⊥(d) ≤ RAWGN (d).

In both cases the end-to-end distortion can be reduced by placing a scalar gain after the test channel.

The optimal (minimum MSE) gain is σ2
x

σ2
x+d . The mutual information from the source to the signal before

the scalar gain is the same as that between the source an the signal after it. However, now the resulting

end-to-end distortion is D = dσ2
x

σ2
x+d . Therefore, for a given end-to-end distortion D, the distortion between

the source and the signal before the optimal scalar gain is

d =
σ2
xD

σ2
x −D

,

which implies that the mutual informations across the R⊥ channel and the AWGN channel when the

optimal scalar gain is used are given by R⊥( σ2
xD

σ2
x−D ) and RAWGN ( σ2

xD
σ2
x−D ), respectively. We then have that

Rit
c (D)−R(D) ≤ R⊥( σ2

xD
σ2
x−D )−R(D) = B2(D)
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≤ RAWGN ( σ2
xD

σ2
x−D )−R(D) =

1

4π

∫ π

−π
log2

(
1 +

Sx(e
jω)

σ2
xD

σ2
x−D

)
dω −R(D)

=
1

4π

∫ π

−π
log2

(
1 + [1− D

σ2
x
]
Sx(e

jω)

D

)
dω −R(D) = B2(D). (103a)

To obtain the first function within the min operator on the RHS of (39), we notice from (12) that,

since ε ≤ D ≤ θ, the RDF for a Gaussian stationary source with PSD Sε
x(e

jω) , max
{
ε, Sx(e

jω)
}

,

∀ω ∈ [−π, π], say Rε(·), will equal the value R(D) given by (12a) when the “water level” θ takes the

same value as in (12). Hence, denoting by Dε the distortion obtained in (12) when Sx is substituted by

Sε
x, we find that

Rε(Dε) = R(D) ⇐⇒ Dε =
1

2π

π∫
−π

min
{
θ, Sε

x(e
jω)
}
dω ≤ D + ε. (104)

On the other hand,

Rε(Dε) ≥ 1

4π

π∫
−π

log2

(
Sε(ejω)

Dε

)
dω (105)

With this, and starting from (103a), we have the following:

Rit
c (D)−R(D) ≤ 1

4π

∫ π

−π
log2

(
1 + [1− D

σ2
x
]
Sx(e

jω)

D

)
dω −R(D)

≤ 1

4π

∫ π

−π
log2

(
1 + [1− D

σ2
x
]
Sε
x(e

jω)

D

)
dω − 1

4π

π∫
−π

log2

(
Sε(ejω)

Dε

)
dω (106)

=
1

4π

∫ π

−π
log2

(
Dε

Sε(ejω)
+ [1− D

σ2
x
]
Dε

D

)
dω (107)

≤ 1

4π

∫ π

−π
log2

(
D + ε

Sε(ejω)
+ [1− D

σ2
x
]
D + ε

D

)
dω (108)

≤ 1

2
log2

(
(D + ε)ςεx + [1− D

σ2
x
]
D + ε

D

)
, (109)

where (106) follows from (12), (104) and (105) and by noting that Sε
x(e

jω) ≥ Sx(e
jω), ∀ω ∈ [−π, π], (108)

stems from (104), and (109) follows from Jensen’s inequality. Notice that the RHS of (109) equals the

first term on the RHS of (39).

The middle term on the RHS of (39) follows directly from (15). Finally, for distortions close to σ2
x, a
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bound tighter than (109) can be obtained from (103a) as follows

Rit
c (D)−R(D) ≤ B3(D) =

1

4π

∫ π

−π
log2

(
1 +

[σ2
x −D]Sx(e

jω)

σ2
xD

)
dω −R(D)

<
1

4π

∫ π

−π
log2

(
1 +

[σ2
x −D]Sx(e

jω)

σ2
xD

)
dω (110a)

≤ 1

2
log2

(
1 +

σ2
x −D

D

)
=

1

2
log2

(
σ2
x

D

)
, (110b)

which is precisely the third term on the RHS of (39). In the above, (110a) holds trivially since R(D) >

0, ∀D < σ2
x, and (110b) follows from Jensen’s inequality. Therefore, equality holds in (110b) if and only

if {x(k)} is white. The validity of the chain of inequalities in (36) follows directly from (103) and (110).

This completes the proof. �

XIV. PROOF OF LEMMA 3

The idea of the proof is to first show that if the distortion Dc equals D > 0, then

1

2
ln(K) = I(v(k); w(k))

(a)

≥ Ī({x(k)} ; {y(k)})
(b)

≥ Rit
c (D). (111)

Immediately afterwards we prove that, despite the distortion and causality constraints, the scheme in

Fig. 2 has enough degrees of freedom to turn all the above inequalities into equalities. That means that

if we are able to globally infimize K over the filters of the system while satisfying the distortion and

causality constraints, then that infimum, say Kinf , must satisfy (1/2) ln(Kinf ) = Rit
c (Dc).

We now proceed to demonstrate the validity of (111) and to state the conditions under which equalities

are achieved. The first equality in (111) follows from the fact that {n(k)} is a Gaussian i.i.d. process.

Inequality (a) stems from the following:

I(v(k); w(k)) = h(w(k))− h(w(k)| v(k)) = h(w(k))− h(v(k) + n(k)| v(k))

= h(w(k))− h(n(k)| v(k))

= h(w(k))− h(n(k)) (112)

≥ h(w(k)|wk−1)− h(n(k)) (113)

= h̄({w(k)})− h(n(k)|nk−1) (114)

= h̄({w(k)})− h(n(k)|nk−1, vk) (115)

= h̄({w(k)})− h(w(k)|wk−1, vk) (116)

= h̄({w(k)})− h(w(k)|wk−1, x̃k) (117)
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= h̄({w(k)})− h(w(k)|wk−1, x̃∞) (118)

= Ī({x̃(k)} ; {w(k)}),

≥ Ī({x(k)} ; {y(k)}) (119)

where {x̃(k)} is the signal at the output of A(z), see Fig. 2. In the above, (112) follows from the fact

that {n(k)} and {x(k)} are independent and from the fact that F (z) is strictly causal. As a consequence,

n(k) is independent of v(k), for all k ∈ Z+. Inequality (113) holds from the property h(x|y) ≤ h(x),

with equality if and only if x and y are independent, i.e., if and only if {w(k)} is white. Similarly, (114)

holds since the samples of {n(k)} are independent. By noting that vk is a linear combination of xk and

nk−1, it follows immediately that n(k) is independent from vk upon knowledge of nk−1, which leads

to (115). On the other hand, (116) stems from the fact that wk = nk +vk. Equality in (117) holds from

the fact that, if wk−1 is known, then x̃k can be obtained deterministically from vk−1, and vice-versa,

see Fig. 2. Equality (118) follows from the fact that there exists no feedback from {w(k)} to {x̃(k)},

and thus the Markov chain x̃∞k+1 ↔ (x̃k,wk−1) ↔ w(k) holds. On the other hand, Ī({x̃(k)} ; {w(k)}) ≥

Ī({x(k)} ; {y(k)}), with equality if and only if B(ejω) is invertible for all frequencies ω for which∣∣A(ejω)∣∣ > 0. Finally, (119) follows directly from the Data Processing Inequality, with equality if and

only if B(ejω) is invertible for all frequencies ω for which
∣∣A(ejω)∣∣ > 0.

Since Rit
c (D) is by definition an infimum, it follows that, for every ε > 0, there exists an output

process {y′(k)} jointly Gaussian with {x(k)}, satisfying the causality and distortion constraints and such

that Ī({x(k)} ; {y′(k)}) ≤ Rit
c (D) + ε. Such output can be characterized by its noise PSD, say S′

u, and

its signal transfer function, say W ′(z), by using the model in Fig. 3.

Therefore, all that is needed for the system in Fig. 1 to achieve

1

2
ln(K) = Ī({x(k)} ; {y′(k)}) ≤ Rit

c (D) + ε (120)

is to yield the required noise PSD S′
u, the required signal transfer function W ′(z), a white {w(k)} and

satisfy B(ejω) 6= 0, ∀w : A(ejω) 6= 0. To summarize and to restate the latter more precisely:

Equality in (51) ⇐ Sw(e
jω) = 1 =

∣∣A(ejω)∣∣2 Sx(e
jω) +

∣∣1− F (ejω)
∣∣2 σ2

n (121a)

Equality in (new) (119) ⇔B(ejω) 6= 0, ∀ω : A(ejω) 6= 0 (121b)

(120) holds ⇐

{
W (ejω) = W ′(ejω)

S′
u(e

jω) =
∣∣W ′(ejω)

∣∣2 ∣∣B(ejω)
∣∣2 ∣∣1− F (ejω)

∣∣2 σ2
n

(121c)

All these equations are to be satisfied a.e. on [−π, π]. We have chosen σ2
w = 1 in (121a) for simplicity

and because, as we shall see next, we have enough degrees of freedom to do so without compromising
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rate/distortion performance. Solving the system of equations formed by (121a), (121c) and (121b) we

obtain ∣∣B(ejω)
∣∣2 = S′

u(e
jω) +

∣∣W ′(ejω)
∣∣2 Sx(e

jω)

|W ′(ejω)|2
a.e. on [−π, π] (122a)

∣∣1− F (ejω)
∣∣2 σ2

n =
S′
u(e

jω)

S′
u(e

jω) + |W ′(ejω)|2 Sx(ejω)
a.e. on [−π, π] (122b)

∣∣A(ejω)∣∣2 = ∣∣W (ejω)
∣∣2

S′
u(e

jω) + |W (ejω)|2 Sx(ejω)
a.e. on [−π, π] (122c)

It is only left to be shown that there exist causal, stable and minimum-phase transfer functions B(z),

(1−F (z)) and A(z) such that their squared magnitudes equal their right-hand sides in (122). To do so,

we will make use of the Paley-Wiener theorem (Theorem 8 in the Appendix).

To begin with, we notice from Fig. 3, and since {u′(k)} is independent of {x(k)}, that

Ī({x(k)} ; {y′(k)}) = 1

2

π∫
−π

ln

(∣∣W ′(ejω)
∣∣2 Sx(e

jω) + S′
u

S′
u(e

jω)

)
dω (123)

=
1

2

π∫
−π

∣∣∣ln(∣∣1− F (ejω)
∣∣2 σ2

n

)∣∣∣ dω, (124)

where (124) follows from (122b). Since Rit
c (D) is bounded, so is Ī({x(k)} ; {y′(k)}), and thus we

conclude from the Paley-Wiener theorem that there exists a stable, causal and minimum-phase transfer

function (1− F (z)) satisfying (122b). Also, from the fact that the first sample of the impulse response

of (1 − F (z)) is 1 and as a consequence of (1 − F (z)) being minimum-phase, we conclude that∫ π
−π ln

∣∣1− F (ejω)
∣∣ dω = 0 (see, e.g., [17]). Therefore,

σ2
n = e2Ī({x(k)};{y

′(k)}) . (125)

Next, we notice that since W (z) is stable and causal, then there exists a causal, stable and minimum

phase transfer function W̃ (z) such that
∣∣∣W̃ (ejω)

∣∣∣ = ∣∣W (ejω)
∣∣, forall ω ∈ [−π, π]. From the Paley-Wiener

theorem, it follows that
π∫

−π

∣∣∣ln ∣∣∣W̃ (ejω)
∣∣∣∣∣∣ dω < ∞, (126)

which implies that

−∞ <

π∫
−π

ln
∣∣∣W̃ (ejω)

∣∣∣ dω =

π∫
−π

ln
∣∣W (ejω)

∣∣ dω < ∞. (127)
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On the other hand, from (124),

Rit
c (D) ≥ 1

2

π∫
−π

ln

(∣∣W ′(ejω)
∣∣2 Sx(e

jω)

S′
u(e

jω)

)
dω (128)

and recalling that
∣∣∣ 1
2π

∫ π
−π lnSx(e

jω)dω
∣∣∣ < ∞, it follows that

∫ π
−π ln(S

′
u(e

jω)/
∣∣W (ejω)

∣∣2)dω is bounded

from below. In view of (127), we conclude that
∫ π
−π ln(S

′
u(e

jω))dω > −∞. Now, since 1
2π

∫ π
−π S

′
u(e

jω)dω ≤

D, we can apply Lemma 9 (see Appendix) to obtain that
π∫

−π

∣∣lnS′
u(e

jω)
∣∣ dω. < ∞ (129)

Substitution of the RHS of the second equation of (121c) into the above, together with the Paley-Wiener

theorem, yields that there exists a causal, stable and minimum phase transfer function G(z) such that∣∣G(ejω)
∣∣2 = ∣∣∣W̃ (ejω)

∣∣∣2 ∣∣B(ejω)
∣∣2 ∣∣1− F (ejω)

∣∣2 σ2
n, (130)

and thus B(z) can be chosen to be the causal, stable and minimum-phase transfer function

B(z) =
G(z)

W̃ (z)(1− F (z))σn
. (131)

which allows us to choose a stable, causal and minimum-phase A(z) = B(z)−1. Therefore, for every

ε > 0, there exists causal, stable and minimum phase transfer functions A(z), B(z) and 1 − F (z) that

satisfy (121), attaining equalities throughout and therefore yielding a value of K which satisfies (120).

This completes the proof. �

XV. PROOF OF LEMMA 4

Strict convexity exists if and only if the inequality

λJ (p1) + [1− λ]J (p2) > J (λp1 + [1− λ]p2), ∀λ ∈ (0, 1), (132)

holds for any two pairs p1 , (f1, g1) ∈ FK ×G and p2 , (f2, g2) ∈ FK ×G satisfying

‖f1 − f2‖+ ‖g1 − g2‖ > 0. (133)

We will first prove the validity of (132) for pairs p1 and p2 which also satisfy

|λg1(ω) + [1− λ]g2(ω)| > 0, ∀ω ∈ [−π, π],∀λ ∈ [0, 1], (134)

but are otherwise arbitrary. For any given λ ∈ [0, 1], define the pair

(f0, g0) , λ(f1, g1) + [1− λ](f2, g2).
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Upon defining the functions

η , f2 − f1; θ , g2 − g1, (135)

any pair along the “line” between (f1, g1) and (f2, g2) can be written in terms of a single scalar parameter

s via

(f, g) = (f0 + ηs , g0 + θs),

where s ∈ [λ− 1, λ]. Define the functions

N (s) , 〈f, |g|〉 =
〈
f0 + ηs,

√
|g0|2 + 2R{g0θ∗}s+ |θ|2 s2

〉
, (136a)

D(s) , K − ‖f‖2 = K − ‖f0‖2 − 2〈f0, η〉s− ‖η‖2s2, (136b)

where R{x} denotes the real part of x. Substitution of (136) into (47) allows one to write the latter as

J (f, g) = J(s) , N (s)2

D(s)
+ L+ as+ ‖θ‖2s2

where

a , 2R{〈g0−G, θ〉}

L , ‖g0‖2 + ‖G‖2 − 2R{〈g0, G〉} .

We next show that (132) holds by showing that d2J(s)/ds2|s=0 > 0 for every λ ∈ [0, 1]. For this purpose,

we first take the derivative of J(s) with respect to s. Denoting the derivatives of the functions D(s) and

N (s) with respect to s by D′ and N ′, respectively, we have that

J ′(s) =
2NN ′D −N 2D′

D2
+ a+ 2‖θ‖2s.

Differentiating again, one arrives to

J ′′(s) =
2 (N ′D −ND′)2 + 2NN ′′D2 −N 2D′′D

D3
+ 2‖θ‖2

=
2 (N ′D −ND′)2 + (2NN ′′D −N 2D′′ + 2‖θ‖2D2)D

D3
. (137)

From (137), we have that

J ′′(s)|s=0 =
2(N ′

0D0 −N0D′
0)

2

D3
0

+
2N0N ′′

0 D0 −N 2
0D′′

0 + 2‖θ‖2D2
0

D2
0

(138)
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where

N0 , N (s)|s=0 = 〈f0, |g0|〉

N ′
0 , N (s)′|s=0 = 〈f0,

c

|g0|
〉

N ′′
0 , N (s)′′|s=0 =

〈
f0,

|θ|2 |g0|2 − c2

|g0|3

〉
+ 2〈η, c

|g0|
〉

D0 , D(s)|s=0 = K − ‖f0‖2

D′
0 ,

∂D

∂s

∣∣∣
s=0

= −2〈f0, η〉

D′′
0 , D(s)′′|s=0 = −2‖η‖2,

(139)

see (136), and where

c , R{g0θ∗}. (140)

Notice that N ′
0 and N ′′

0 in (139) are well defined since we are considering pairs p1 and p2 for which (134)

holds.

Substitution of (139) into (138) yields

J ′′(s)|s=0 =
2(N ′

0D0 −N0D′
0)

2

D3
0

+
2N0D0

〈
f0,

|θ|2|g2
0 |−c2

|g0|3
〉
+ 4N0D0〈η, c

|g0|〉+ 2N 2
0 ‖η‖2 + 2‖θ‖2D2

0

D2
0

(a)

≥
2(〈f0, c

|g0|〉D0 + 2N0〈f0, η〉)2

D3
0

+
2N 2

0 ‖η‖2 + 4N0D0〈η, c
|g0|〉+ 2‖θ‖2D2

0

D2
0

(b)
=

2
〈
f0 , D0R{ g0

|g0|θ
∗}+ 2N0η

〉2
D3

0

+
2N 2

0 ‖η‖2 + 4N0D0R{〈η, g0
|g0|θ

∗〉}+ 2 ‖θ‖2D2
0

D2
0

=
2
(
R
{〈

f0 , 2N0η +D0
g0
|g0|θ

∗
〉})2

D3
0

+
2‖N0η +D0

g0
|g0|θ

∗‖2

D2
0

> 0, (141)

where (a) and (b) follow from (139), (140) and from the fact that R{g0θ∗} ≤ |g0| |θ|. The strict inequality

in (141) stems from the fact that ‖η‖ + ‖θ‖ > 0. The latter follows directly from (135) and (133).

Therefore (132) holds for any two pairs p1 = (f1, g1), p2 = (f2, g2) ∈ FK ×G satisfying (134).

We will show now that (132) also holds for pairs p1, p2 which do not satisfy (134). The idea is to

construct another pair, say pδ1, pδ2, “close” to p1, p2 and meeting (134), and then show that strict convexity

along the straight line between pδ1 and pδ2 implies strict convexity along the straight line between p1 and

p2.
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For this purpose, define, for any given pairs p1 = (f1, g1) ∈ FK × G, p2 = (f2, g2) ∈ FK × G, the

family of functions

hδ(ω) ,


δ , if |g1(ω)|+ |g2(ω)| = 0

δ
√
−1 g1(ω)

|g1(ω)| , if λg1(ω) + [1− λ]g2(ω) = 0 for some λ ∈ (0, 1),

0 , in any other case.

where δ > 0 is a scalar parameter. The functions hδ defined above exhibit the property (to be exploited

below) that∣∣λ[g1(ω) + hδ(ω)
]
+ [1− λ]

[
g2(ω) + hδ(ω)

]∣∣ > 0, ∀g1, g2 ∈ G, ∀δ > 0, ∀λ ∈ (0, 1). (142)

Upon introducing the notation pδ , p+(0, hδ) and gδ , g+hδ, it follows directly from (142) that pδ1, p
δ
2

satisfy (134) for all pairs p1, p2 ∈ FK ×G. Notice also that

‖g − gδ‖ ≤ δ. (143)

On the other hand, it is easy to show that J (p) is uniformly continuous at λp1+[1−λ]p2 for any pairs

p1, p2 ∈ FK × G and for all λ ∈ [0, 1]. In view of (143), uniform continuity of J (p) means that, for

every ε > 0, there exists δ = δ(ε) > 0 such that∣∣∣J (pδ)− J (p)
∣∣∣ < ε, ∀p = λp1 + [1− λ]p2, ∀λ ∈ (0, 1). (144)

The fact that pδ1 and pδ2 satisfy (134) implies that pδ1, pδ2 also satisfy the strict-convexity condition (132).

Therefore, for each λ ∈ (0, 1), there exists ε2(λ) > 0 such that

λJ (pδ1) + [1− λ]J (pδ2)− J (λpδ1 + [1− λ]pδ2) > ε2(λ) > 0, ∀λ ∈ (0, 1). (145)

Then, from (144) and (145),

λJ (p1) + [1− λ]J (p2) ≥ λJ (pδ1) + [1− λ]J (pδ2)− 2ε ≥ J (λpδ1 + [1− λ]pδ2) + ε2(λ)− 2ε

≥ J (λp1 + [1− λ]p2) + ε2(λ)− 3ε.

Since δ can be chosen arbitrarily small, and in particular, strictly smaller than δ(ε2(λ)/3) > 0, it follows

that (132) also holds for all pairs p1, p2 ∈ FK ×G not satisfying (134). This completes the proof. �
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XVI. APPENDIX

Lemma 6: For any zero-mean Gaussian stationary source {x(k)} and D > 0,

Rit
c (D) ≥ lim sup

k→∞
Rit(k)

c (D). (146)

Proof: Suppose (146) does not hold, i.e., that

V , lim sup
k→∞

Rit(k)
c (D) = Rit

c (D) + ε1, (147)

for some ε1 > 0. The definition of Rit
c (D) in (150) means that, ∀ε2 > 0, there exists ȳ ∈ S such that

lim sup
k→∞

Ī(xk; ȳk) ≤ Rit
c (D) + ε2 (148)

Combining this inequality with (147) we arrive to

V = lim sup
k→∞

inf
y∈S

Ī(xk; yk) ≤ lim sup
k→∞

Ī(xk; ȳk) ≤ Rit
c (D) + ε2 (149)

Since ε2 can be chosen to be arbitrarily small, it can always be chosen so that ε2 < ε1, which

contradicts (147). Therefore (146) holds.

Lemma 7: Let

Rit
c (D) , inf

{y(k)}∈S
lim sup
k→∞

Ī(xk; yk), (150)

where S denotes the space of all random processes causally related to {x(k)}. Let

Rit(k)
c (D) , inf

yk:{y(k)}∈S
Ī(xk; yk). (151)

Then, for any first-order Gauss-Markov source, the following holds:

Rit
c (D) = lim sup

k→∞
Rit(k)

c (D). (152)

N
Proof: In Lemma 6 in the Appendix it is shown that

Rit
c (D) ≥ lim sup

k→∞
Rit(k)

c (D), (153)

so all we need to demonstrate is that Rit
c (D) ≤ lim supk→∞R

it(k)
c (D). To do this, we simply observe

from Theorem 2 that if we construct an output process {y(k)} by using the recursive algorithm of that

theorem, with the choice dk = D, for all k ∈ N, then this output process is such that Ī({x(k)} ; {y(k)})

equals V , lim`→∞R
it(`)
c (D). Therefore, Rit

c (D) ≤ V , concluding the proof.
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Proposition 1 (MMSE Column Correspondence): Let x ∈ Rk be a Gaussian random vector source

with covariance matrix Kx. A reconstruction Gaussian random vector y satisfies

E
[
xk |y1

k

]
= yk (154)

if and only if

Kyek,k = Kyxek,k. (155)

N
Proof: We have that

Kyxek,k −Kyek,k = E
[
xk y

1
k

]
− E

[
yk y

1
k

]
= E

[
(xk − yk)y

1
k

]
(156)

The proof is completed by noting that E
[
xk |y1

k

]
= yk if and only if E

[
(xk − yk)y

1
k

]
= 0.

Lemma 8 (MMSE Triangular Correspondence): Let x ∈ RN , with N ∈ N, be a Gaussian random

source vector with covariance matrix Kx. A reconstruction Gaussian random vector y satisfies

E
[
xk |y1

k

]
= yk, ∀k = 1, 2, . . . N (157)

if and only if

[Ky]j,k = [Kyx]j,k , ∀j ≤ k, j, k = 1, 2, . . . N. (158)

N
Proof: Let us first introduce the notation Mky ∈ Rk×k, denoting the top-left submatrix of any given

square matrix M ∈ RN×N , with N ≥ k. From Proposition 1, it immediately follows that, for every

k = 1, 2, . . . N ,

Kky
y ek,k = Ky1

k
ek,k = Ky1

kx
1
k
ek,k = Kky

yxek,k, (159)

which is equivalent to (158).

Lemma 8 implies that, if the reconstruction y is the output of a causal Wiener filter applied to the noisy

source x+n for some noise vector n (a condition equivalent to (157)), then Ky and Kyx have identical

entries on and above their main diagonals.
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Paley-Wiener Theorem:

Theorem 8 (From [22, p. 229] ): Let g(ejω) be a non-negative function defined on (−π, π]. There

exists a unique stable, causal and minimum phase transfer function Y (z) such that
∣∣Y (ejω)

∣∣2 = g(ejω)

if and only if5

π∫
−π

∣∣log(g(ejω))∣∣ dω < ∞ (160)

N
Lemma 9: If f(ω) ≥ 0∀ω ∈ [−π, π] and is such that

∫ π
−π f(ω)dω < ∞ and

∫ π
−π ln f(ω)dω > −∞,

then
π∫

−π

|ln f(ω)| dω < ∞ (161)

N
Proof: Let S , {ω ∈ [−π, π] : f(ω) ≥ 1}. From Jensen’s inequality and the fact that

∫ π
−π f(ω)dω <

∞ , we have ∫
ω∈S

ln f(ω)dω ≤ |S| ln
(

1

|S|

∫ π

−π
f(ω)dω

)
< ∞. (162)

This, together with the condition
∫ π
−π ln f(ω)dω > −∞, implies that

−
∫

ω/∈S

ln f(ω)dω < ∞ (163)

Therefore,
π∫

−π

|ln f(ω)| dω = −
∫

ω/∈S

ln f(ω)dω +

∫
ω∈S

ln f(ω)dω < ∞, (164)

completing the proof.
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