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Analysis of Smoothing Techniques for Subspace
Estimation with Application to Channel Estimation

Niels Lovmand Pedersen∗, Morten Lomholt Jakobsen∗ Christian Rom† and Bernard Henri Fleury∗
∗Department of Electronic Systems, Aalborg University, Denmark

†Infineon Technologies Denmark A/S, Aalborg, Denmark

Abstract—In this paper, we present an investigation on the
impact of spatial smoothing and forward-backward averaging
techniques for subspace-based channel estimation. The spatial
smoothing technique requires the selection of a window size,
which, if not chosen properly, leads to dramatic performance
breakdown of subspace-based methods. We provide an expla-
nation of the performance drop for certain window sizes and
subsequently an understanding of a proper window size selection.
In particular, we describe the behavior of the magnitude of
the least signal eigenvalue as a function of the used window
size. Through simulations we show that the magnitude of this
eigenvalue is of particular importance for estimating the signal
subspace and the entailing performance of the channel estimator.

I. INTRODUCTION

Subspace-based methods such as MUSIC [1] and ESPRIT
[2] are commonly employed for the purpose of extracting
unknown parameters from structured observation models. The
unknown parameters of interest are estimated by exploiting
properties of certain subspaces created via matrix factorization
techniques, e.g. eigenvalue-decomposition of a sample covari-
ance matrix. Accordingly, the estimation accuracy associated
with the unknown parameters relies upon the ”quality” of the
subspaces involved. Preprocessing techniques, such as spatial
smoothing (SS) and forward-backward averaging (FB) can be
applied prior to the matrix factorization [3], [4]. This may
trigger extraction of the unknown parameters with greater
precision due to an improved representation of the parameter-
revealing subspace. In practice, only a limited number of
observations are available to compute a sample covariance
matrix. By application of SS one can artificially generate
additional observations at the cost of a reduction of the matrix
dimensions. This trade-off is dictated by the window size
which needs to be specified by the designer. The change in
the original matrix dimensions is to some extend harmless as
long as the parameter-revealing properties are sustained.

Preprocessing techniques have been used in various ap-
plications, e.g. in direction-of-arrival (DOA) estimation [5]
and in enhanced propagation delay estimation [6], [7] for
decorrelation of coherent sources. The above mentioned trade-
off on the selected window size is commonly determined
based on simulations, see e.g. [7] and the references therein.
Subspace-based methods and preprocessing techniques have
also been applied for orthogonal frequency-division multiplex-
ing (OFDM) pilot-aided channel estimation [8], [9]. As shown
by [9], selecting a too large (or small) window size relative

to the available observation window leads to a severe drop in
performance of the subspaced-based channel estimator.

A well-known observation from the DOA literature is that
one should select the window size to be approximately half
the available observation window. Furthermore, in [10] the
performance breakdown of subspace-based methods is inves-
tigated when the signal-to-noise ratio (SNR) falls below a
threshold SNR. However, to the authors’ best knowledge, no
comprehensive explanation for this choice of window size is
available nor a proper understanding of the performance drop
for some selected window sizes. In this paper, we aim at
providing such an understanding. To do so, we decouple the
compound impact of SS and FB into three distinct effects.
From this decoupling, we indirectly explore the impact of SS
and FB on the performance of channel estimation by inves-
tigating how these techniques affect the underlying subspace
estimation. This approach has the advantage of being general
in the sense that it can be conducted without any particular
channel estimator in mind. In a next step, we infer how
SS and FB affects the performance of a particular channel
estimator. We consider an OFDM system with the channel
estimation performed as in [8] and [9] operating in a multipath
environment.

II. SYSTEM DESCRIPTION

A. OFDM Signal Model

We consider a single-input single-output OFDM system
with N subcarriers, where only Nu ≤ N of these are used for
transmission. A cyclic prefix is added to preserve orthogonality
between subcarriers and to eliminate inter-symbol interference
between consecutive OFDM symbols. The channel is assumed
static during the transmission of each OFDM symbol. In
baseband representation the received OFDM signal in matrix-
vector notation reads

r = [r1, r2, . . . , rNu
]T = Xh + w, (1)

where (·)T denotes the transpose operation. The diagonal
matrix X = diag {x1, x2, . . . , xNu

} is built from the trans-
mitted symbols. The vector h = [h1, h2, . . . , hNu

]T contains
as components samples of the channel frequency response at
the Nu active subcarriers. Samples of additive complex white
Gaussian noise with variance σ2 are contained in the vector
w = [w1, w2, . . . , wNu

]T .
To estimate the vector h in (1), a total of M pilot symbols



are transmitted systematically across selected subcarriers with
indices in the subset

P :=
{
p(1), p(2), . . . , p(M)

} ⊂ {
1, 2, . . . , Nu

}
. (2)

The received symbols observed at the pilot positions are
divided by the corresponding pilot symbols to produce the
observations used to estimate the channel vector h:

y := (XP)−1 rP = hP + (XP)−1 wP . (3)

We assume that all pilot symbols hold unit power such that
the statistics of the noise term (XP )−1wP remain unchanged
compared to w, i.e. y yields the samples of the true channel
frequency response (at the pilot subcarriers) corrupted by
additive complex white Gaussian noise with variance σ2.

B. Multipath Channel Model

To estimate h we invoke a parametric model of the wireless
channel. The task is thereby altered to the estimation of the
parameters of the model instead of the samples of the channel
frequency response at the Nu − M subcarriers. The time-
varying impulse response of the channel is modeled as a sum
of multipath components:

g(t, τ) =
L∑

l=1

αl(t)δ (τ − τl) . (4)

In this expression, αl(t) and τl are respectively the com-
plex weight and the delay of the lth multipath component,
while δ(·) is the Dirac delta. The total number of multipath
components L is assumed fixed. The delay parameters {τl}
are also assumed persistently static. The weights {αl(t)} are
mutually uncorrelated wide-sense stationary, zero-mean proper
complex Gaussian processes with their power normalized such
that

∑L
l=1 E

[|αl(t)|2
]

= 1. Thus, the channel described by
(4) is a wide-sense stationary and uncorrelated scattering
[11] (WSSUS) Rayleigh fading channel. Additional details
regarding the assumptions on the channel model are provided
in Section VI.

III. SUBSPACE DECOMPOSITION

Taking the parametric model (4) of the channel into account,
we reformulate (3) as

y = Tα + n, (5)

where α = [α1, . . . , αL]T and T is an M × L matrix
depending on the known pilot positions P as well as the
unknown delay parameters {τl}. Specifically, the (m, l)th
entry of T reads

Tm,l := exp
(
−j2π

p(m)
N

τl

)
,

m = 1, 2, . . . ,M

l = 1, 2, . . . , L.
(6)

The vector y in (5) is proper complex Gaussian distributed
with zero-mean and covariance matrix

R := E
[
yyH

]
= TATH + σ2IM , (7)

where (·)H denotes the conjugate transpose operation and
IM is the M × M identity matrix. In writing (7) we have

assumed that α and n are statistically independent, and due to
the uncorrelated scattering assumption, A := E

[
ααH

]
is an

L×L diagonal matrix. It is crucial to realize that both matrices
A and R are theoretical quantities which are not available
in practice. These matrices can be estimated only if certain
ergodic properties are satisfied and still it would require an
observation window of extensive duration. In practice we are
limited to work with finite sample sizes and observations are
usually collected during short periods of time. Accordingly,
we have to be careful when applying algorithms which are
based on a theoretical quantity such as R or its associated
eigen-decomposition.

The M eigenvalues of R can be arranged in decreasing
order as [12, sec. 4.5]

λm =

{
μm + σ2 , m = 1, 2, . . . , L

σ2 , m = L + 1, . . . ,M,
(8)

where μ1 ≥ μ2 ≥ . . . ≥ μL are the L strictly positive
eigenvalues of the matrix B := TATH . The subspace spanned
by the L eigenvectors of R associated with λ1, . . . , λL is
identical to the column space of T [12, sec. 4.5]. We refer
to this L-dimensional subspace as the signal subspace, and
its orthogonal complement as the noise subspace. That is, (8)
allows for the orthonormal eigenvector basis of R to be split
into two bases, one spanning the signal subspace and the other
one spanning the noise subspace. Practical algorithms such as
MUSIC and ESPRIT exploit the partly known structure of T to
extract the unknown delay parameters {τl} from estimates of
these two distinct subspaces. As will be argued this is possible
since (8) may apply to matrices obtained from finite sample
sizes.

IV. PREPROCESSING TECHNIQUES

Since the theoretical covariance matrix R is unobtainable
in practice, we are compelled to acquire an estimate of it.
Using the word ”estimate” is in fact rather misleading in this
case. We merely seek a matrix R̂ = ÛΛ̃ÛH such that the L
eigenvectors in Û associated with the L largest eigenvalues
form a basis for the column space of T. To acquire such a
matrix R̂, we collect K temporal observations y1, . . . ,yK

from (5) and store them in the M × K matrix

Y :=
[
y1 y2 . . . yK

]
. (9)

From (9) we compute the sample covariance matrix

R̂ :=
1
K

YYH = TÃTH + E (10)

with

Ã :=
1
K

K∑
k=1

αkαH
k (11)

and with noise and cross-term contributions collected in

E :=
1
K

K∑
k=1

nknH
k +

1
K

K∑
k=1

(
TαknH

k + nkαH
k TH

)
. (12)



Throughout the paper our main focus is aimed at the matrix
B̃ := TÃTH . It is again crucial to realize that we do not
consider the matrix Ã as a proper or direct estimate of A,
neither as B̃ as an estimate of B. The important thing is that
Ã holds similar properties as A, e.g. that it is nonsingular.
The decomposition of R̂ into a signal and noise subspace as
in (8) makes sense only when B̃ has rank L, i.e. when Ã
is nonsingular. However, Ã may easily happen to be singular,
because the samples α1, . . . ,αK are usually correlated. When
K < L the matrix is indeed singular, e.g. with K = 1 the
matrix Ã = α1α

H
1 has rank one (in fact, R̂ = y1yH

1 only
holds a single non-zero eigenvalue). The integer K should be
chosen as small as possible to mitigate the effect of large-scale
fluctuations of the channel response. So we cannot increase
K arbitrarily to build up rank in Ã. Another issue is the
matrix term E in (10) which desirably (but loosely speaking)
should be E ≈ σ2IM . Preprocessing techniques are the key to
achieve these goals. Any technique for doing so is of course
only meaningful in this context if it leaves the properties of
the parameter-revealing subspace unaltered. In the following
we describe the SS and FB techniques, and discuss why they
preserve the subspace properties.

A. Spatial Smoothing

The SS technique [3] applies a sliding window to the matrix
Y in (9). We select the subset P in (2) such that the pilots are
equally spaced1 by a fixed amount Δp. Then P is divided
into overlapping windows of size M1 ≤ M . The set of
positions indexed by {p(1), p(2), . . . , p(M1)} forms the first
window, the set {p(2), p(3), . . . , p(M1 +1)} forms the second
window and so on to a total of M̄ := M −M1 + 1 windows.
This procedure artificially builds up additional observations
at the expense of lowering the observation bandwidth, i.e.
the resolution in the delay domain. Let y(m)

k denote the M1

components of yk corresponding to the mth window. Then,
by exploiting the particular shift structure of T, we can write

y(m)
k = TM1D

mαk + n(m)
k , m = 0, 1, . . . , M̄ − 1, (13)

where D = diag {exp(−j2πΔfτ1), . . . , exp(−j2πΔfτL)}
with Δf := Δp/N . The matrix TM1 is made of the first
M1 rows of T, while n(m)

k denotes the M1 components of
nk corresponding to the mth window. The spatially smoothed
sample covariance matrix is then defined as

R̂ss :=
1
K

K∑
k=1

1
M̄

M̄−1∑
m=0

y(m)
k

(
y(m)

k

)H

∈ C
M1×M1 . (14)

Notice that R̂ss can be split in a similar way as the right-hand
side of (10):

R̂ss = TM1A
ssTH

M1
+ Ess (15)

with

Ass :=
1
M̄

M̄−1∑
m=0

DmÃ (Dm)H
. (16)

1Meaning that p(m) − p(m − 1) = Δp for m = 2, 3, . . . , M .

We illustrate the principle of the SS technique for K = 1 and
M1 = M − 1 by recasting Ass as

Ass =
1
2

[
α1 Dα1

][
α1 Dα1

]H

. (17)

From (17) we observe that Ass has rank equal to two whereas
Ã = α1α

H
1 has rank one. More generally, by means of SS

we aim at building up L linearly independent columns and
hence, we must have KM̄ ≥ L.

B. Forward-Backward Averaging

The FB technique (see e.g. [4]) is a well-known and simple
method for increasing the rank without lowering the dimension
of R̂. We perform SS together with FB (denoted FBSS) and
define R̂fbss as

R̂fbss :=
1
2

(
R̂ss + J

(
R̂ss

)∗
J
)
∈ C

M1×M1 . (18)

Here, (·)∗ denotes complex conjugation and J is the reversal
matrix with 1’s on its entire antidiagonal and 0’s elsewhere.
The matrix in (18) is persymmetric, i.e. JR̂fbss = (JR̂fbss)T .

From (18) and in analogy with (10) and (15) we write R̂fbss

as

R̂fbss = TM1A
fbssTH

M1
+ Efbss (19)

with

Afbss :=
1
2

(
Ass + Q(Ass)∗QH

)
. (20)

The L × L diagonal matrix2 Q is obtained from the identity
JT∗

M1
= TM1Q. By jointly applying FB and SS we build up

rank in Afbss more rapidly than in Ass. Performing FB only
may not be sufficient, because it can at most double the rank
of a matrix. Notice that the two techniques can be applied in
any order.

C. Discussion

It is meaningful to apply SS and FB if the properties of
the parameter-revealing subspace are sustained. Hence, the
subspace-based methods should still be able to extract the
desired parameters. For SS a requirement is that M1 > L,
otherwise we cannot separate the eigenvalues into signal and
noise eigenvalues as in (8). The FB technique does not change
the signal subspace. To see this, we let

Bss := TM1A
ssTH

M1
(21)

and

Bfbss :=
1
2

(
Bss + J (Bss)∗ J

)
= TM1

1
2

(
Ass + Q(Ass)∗QH

)
TH

M1
. (22)

As long as Ass is nonsingular, the columns of Bfbss and Bss

span the same L-dimensional signal subspace.

2More specifically, Q has diagonal entries
Ql,l = exp

(
j2π

(
2p(1) + (M1 − 1)Δp

)
τl/N

)
, l = 1, . . . , L.



It can be shown analytically that the elements of the
matrices in (11), (16) and (20) fulfill the following relations:∣∣Afbss

l,l′
∣∣ ≤ ∣∣Ass

l,l′
∣∣ ≤ ∣∣Ãl,l′

∣∣ , l, l′ = 1, . . . , L (23)

with equality in both relations if l = l′. In analogy with [5]–
[7], we refer to the relationship (23) as the decorrelation effect
inherited from the preprocessing.

Let μss
L and μfbss

L denote the Lth eigenvalue of Bss and
Bfbss respectively. Then, the inequality

μfbss
L ≥ μss

L , (24)

holds with equality if and only if μss
1 = μss

2 = . . . = μss
L .

This result follows from the proof in [13, Appendix A]. In
[13] the inequality is proven for ensemble average matrices,
but the proof can be extended to the matrices (21) and
(22) as all the necessary assumptions still hold. Hence, by
performing FB we may increase the Lth eigenvalue of Bfbss

compared to that of Bss, while Bss and Bfbss have the same
matrix dimensions. This result plays an important role for the
previously mentioned preprocessing trade-off on the selection
of the window size M1.

Notice that due to the selection of equally spaced pilots,
the Hermitian matrix R is in fact Toeplitz. This entails that
R is invariant under FB and (8) still holds. Usually FB is
applied to R̂ with the justification that R is Toeplitz and
thereby persymmetric. It is therefore important to stress that
we only apply the technique due to its property (24) together
with its ability to increase the matrix rank without lowering
the matrix dimensions.

V. INVESTIGATION OF THE WINDOW SIZE M1

Since R̂ss and R̂fbss are computed from noise corrupted
samples and finite sample sizes, their associated noise eigen-
vectors may be mistaken for signal eigenvectors and vice
versa. According to (8), it is therefore desirable that the
least signal sample eigenvalue λ̃L is large relative to λ̃L+1,
i.e. μ̃L should be as large as possible. In this section, we
investigate the behavior of the eigenvalues μss

L and μfbss
L as a

function of M1. Our approach relies on decoupling the effects
of the preprocessing techniques, i.e. (i) the reduction of the
sample matrix dimensions when applying SS (14), (ii) the
decorrelation inherited from the preprocessing (23) and (iii)
that the Lth eigenvalue of Bfbss cannot be smaller than that
of Bss (24). Additionally, we employ a performance metric to
assess the accuracy of the subspace estimates obtained with
the preprocessing techniques.

A. Decoupling the Preprocessing Effects

As in Section IV, the following investigations solely address
the terms in the sample covariance matrices arising from the
signal subspace, i.e. we disregard any term depending on noise,
e.g. E in (10). We can conveniently decouple the effects of
the preprocessing techniques into the three separated effects
(i)-(iii). Notice that when SS and FB are applied, these effects

appear jointly in a convoluted and compound fashion. To
describe them separately, we define the matrices

Fss(M1) := TAssTH ∈ C
M×M (25)

Ffbss(M1) := TAfbssTH ∈ C
M×M (26)

Fdim(M1) := TM1Diag
{
Ã

}
TH

M1
∈ C

M1×M1 , (27)

where Diag{Ã} is the diagonal matrix built with the diagonal
entries of (11). Notice that all three matrices in (25) to (27) are
functions of M1. In (25) and (26) we decrease the magnitudes
of the off-diagonal entries of Ã but without reducing the ma-
trix dimensions. Hence, (25) and (26) mimic the decorrelation
effect inherited from the preprocessing. In (27) however, we
reduce the matrix dimensions while pretending that Ã has
diagonal form. Hence, the matrix in (27) imitates the effect of
reduced matrix dimensions.

Notice that Fdim in (27) is Hermitian and Toeplitz. From
this, we are able to show the following result by application
of Weyl’s inequality [14]. For any choice of window sizes M1

and M2, with M1 < M2, we have for each n = 1, 2, . . . ,M1

λn

(
Fdim(M1)

) ≤ λn

(
Fdim(M2)

)
, (28)

where λn

(
Fdim

)
denotes the nth eigenvalue of Fdim. Now,

as the window size decreases the matrices Bss and Bfbss are
forced towards being Toeplitz due to (23). In the limiting case
when Ass and Afbss become diagonal, then Bss and Bfbss are
identical and they equal (27). Hence, according to (28) every
eigenvalue of (27) are decreasing (or constant) as a function
of decreasing window size.

In Section VI, we analyse the compound decorrelation
and dimension reduction effects on the eigenvalues μss

L and
μfbss

L by tracking individually the Lth eigenvalues of (25),
(26) and (27). We denote the Lth eigenvalue of Fss(M1),
Ffbss(M1) and Fdim(M1) by γss

L , γfbss
L and γdim

L respectively.
Specifically, μss

L is analysed from γss
L and γdim

L , while μfbss
L

from γfbss
L and γdim

L .

B. Performance Metric for Subspace Estimation Accuracy

As mentioned in Section III, the column space of T
coincides with the span of the signal eigenvectors. These
eigenvectors are mutually orthogonal whereas, in general, the
columns of T are not (they are only linearly independent).
Therefore, to assess the ”quality” of an estimated signal
subspace, we employ the performance metric

N (M1) :=
1

M1

∥∥ΠT − ΠÛs

∥∥2

F
. (29)

In (29), ΠT and ΠÛs
denote the operators projecting or-

thogonally onto respectively the true and the estimated signal
subspaces, while ‖ · ‖F is the Frobenius norm. The projection
operator ΠT is defined as

ΠT := TM1T
†
M1

∈ C
M1×M1 , (30)

where (·)† denotes the Moore-Penrose generalized matrix
inverse. Our choice of the performance metric (29) is based on
the fact that the projection operator is invariant to the selected
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Fig. 1. Eigenvalues γss
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L and γdim
L as a function of M1.

basis used to span the subspace onto which the operator
projects. The M1 × L matrix Ûs contains the L estimated
signal eigenvectors. Hence, to compute ΠÛs

we simply insert
Ûs instead of TM1 in (30). The metric in (29) is related to the
principal angles between the subspaces, see e.g. [15]. Notice
that the squared Frobenius norm in (29) is weighted with 1/M1

for the purpose of allowing a performance comparison across
different matrix dimensions.

VI. EXPERIMENTAL RESULTS

We consider a 3GPP long term evolution alike scenario [16],
using the parameters

N = 2048, Nu = 1200, M = 200, Δp = 6.

The multipath channel in (4) is based on the 3GPP Extended
Vehicular A Model [16, Annex B.2]. More specifically, the
channel constantly holds L = 9 multipath components, where
L is assumed known to the receiver. Relative multipath delays,
power delay profile and maximum excess delay of the channel
are specified in [16, Annex B.2].

We let K = 1 for all simulations. Hence, the rank of R̂
is one and we can only obtain the eigenvalue ordering in (8)
through smoothing. Uncoded QPSK modulation is used with
Gray mapping both for data and pilot symbols. All curves are
computed based on a total of 1000 Monte Carlo runs.

A. Subspace Estimation Performance

We plot the Lth eigenvalue of (25), (26) and (27) in Fig. 1
and the Lth eigenvalue of (21) and (22) in Fig. 2. Notice that
all reported eigenvalues do not depend on the SNR level.

By comparing Fig. 1 and Fig. 2 we observe that the
behavior of μss

L can be explained from γss
L and γdim

L , while
μfbss

L is explained from γfbss
L and γdim

L , as described in Section
V. From Fig. 2 we see that μfbss

L and μss
L are related as given

in (24), i.e. μfbss
L ≥ μss

L . Moreover, μfbss
L is near its maximum

for a wider M1-region compared to μss
L . Finally, in Fig. 1, we

see how γdim
L decreases with M1 according to (28).

In Fig. 3 we depict the metric (29) versus M1 for three
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Fig. 3. Performance metric (29) versus M1 with the SNR as a parameter.

selected levels of SNR. As a consequence of (24) (see Fig.
2), we see how FBSS achieves wider M1-regions with better
subspace estimation performance as compared to SS. The
gain from the preprocessing increases with the SNR, which
emphasizes that the subspace estimation performance depends
on the actual SNR level. However, the near optimum window
size almost remain unchanged regardless of the SNR level.

B. Channel Estimation Performance

We now use the ESPRIT algorithm for the estimation of
the channel multipath delays, see [8]. Prior to ESPRIT, SS
with and without FB are applied. OFDM channel estimation is
performed using the LMMSE estimator from [8]. Simulations
have also been conducted using Unitary ESPRIT [17] instead
of (standard) ESPRIT. However, both algorithms perform
similarly because FB is a built-in feature of Unitary ESPRIT.

In Fig. 4 we report the uncoded bit-error-rate (BER)
performance of the OFDM system versus the window size
M1. By jointly employing both preprocessing schemes we
achieve wide M1-regions with BER performance close to the
performance obtained when the channel is known. We observe
that for high SNR the drop in BER performance for large and
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small values of M1 may be explained by the decrease of μss
L

and μfbss
L in these M1-regions (see Fig. 2). As in Fig. 3 we

observe that the general behavior of the curves (and thereby
the choice of window size) remain similar across SNR levels.
However, we do not observe a performance gain in Fig. 3 for
small M1 as in Fig. 4. Therefore, the metric (29) does not
encompass all aspects determining for the system assessment.
A more adequate metric for comparing the subspace estimation
performance across different window sizes is still an open
issue.

VII. CONCLUSION

In this paper, we have provided an analysis of spatial
smoothing and forward-backward averaging for subspace-
based methods. We have decoupled the compound impacts
of these techniques into separate effects, more specifically, a
decorrelation effect and a dimension reduction effect. From
this we have been able to describe the overall behavior of
the least signal eigenvalue as a function of the size of the
used window. Through Monte Carlo simulations we have
demonstrated that this behavior critically affects a proper
separation of signal and noise subspaces.

We have applied the insight gained from the above inves-
tigations to the problem of channel estimation in an OFDM
system with the pilot positions appropriately selected, so that
the preprocessing techniques can be applied. The results show
that the selection of the appropriate window size is dictated by
the behavior of the least signal eigenvalue. Furthermore, jointly
applying forward-backward averaging and spatial smoothing
yields near optimum performance for a broad range of win-
dows sizes. This allows to select the window size with greater
flexibility, as compared to using spatial smoothing alone.

The dramatic performance drop of the subspace-based meth-
ods for certain window sizes underlines the importance of the
analysis conducted in this paper.
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