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ABSTRACT

Speech enhancement and separation algorithms frequently employ
two-stage processing schemes, where the signal is first mapped to an
intermediate low-dimensional parametric description. Then, these
parameters are mapped to vectors in codebooks trained on individ-
ual noise-free sources using a vector quantizer. To obtain accurate
parameters, one must employ an estimator that takes the signal char-
acteristics into account. An open question is, however, how to derive
metrics for use in the vector quantization process. In this paper, we
present and derive a new metric aimed at exactly this, and we ex-
emplify and demonstrate its use in sinusoidal modeling. The metric
takes into account that parameters may have different uncertainties
and dependencies associated with them and thus leads to more ac-
curate estimates, as is demonstrated in experiments. Moreover, we
incorporate the metric in a recently proposed speech separation al-
gorithm and compare its performance to state-of-the-art methods.

Index Terms— Speech processing, vector quantization, speech
enhancement

1. INTRODUCTION

Speech separation and enhancement algorithms play important roles
in many speech processing applications as subsequent processing
stages and models can be greatly simplified if they do not have to
take into account the presence of noise and multiple sources. Exam-
ples of applications that benefit from this are speech recognition and
speech coding, both of which can exclude models of background
noise and interfering speakers when only the signal of interest is
present. There are of course also other applications where such algo-
rithms may be useful, including hearing aids, in which they alleviate
listener fatigue and hold the promise of increased speech intelligibil-
ity for the hearing impaired. A common approach to speech separa-
tion and enhancement is vector quantization (VQ), where codebooks
are trained offline for each noise-free source. These codebooks are
then used for estimating the individual speech sources from a mix-
ture, or the speech signal from a noisy observation, as is the case
in speech enhancement. Instead of the time-domain signal, often
low-dimensional parameter vectors are used as an intermediate rep-
resentation of the sources as this leads to better and faster training
of the codebooks and faster separation and enhancement algorithms.
Some examples of VQ-based enhancement and separation methods
are [1–4] and [5–9], respectively. In finding the parameters of the
intermediate representation, standard estimation algorithms such as
the maximum likelihood estimator based on well-known metrics can
be used. However, the question then arises which metric to use in
the vector quantization process.

In this paper, we seek to answer this question as we develop a

new metric for this purpose based on statistical arguments and ex-
emplify its use in a specific form of speech processing, more specif-
ically sinusoidal modeling. The effect of the metric on the vector
quantization process is twofold: Firstly, it takes into account that the
estimates of different parameters may have different uncertainties
associated with them, and, secondly, it also takes into account that
there may exist dependencies between the parameter estimates.

The rest of the paper is organized as follows. In Section 2, we
define the considered problem and present and derive the proposed
metric based on statistical arguments. In the next section, Section
3, we exemplify the use of the derived metric on a sinusoidal model
and present simulation results in Section 4. Finally, we conclude on
our work in Section 5.

2. THEORETICAL DEVELOPMENT

We will now proceed to derive the proposed metric, but first we will
define the problem under consideration, and we will do this based on
the following signal model:

x =

K∑
k=1

sk + e, (1)

where x ∈ RN is the observed signal, e the observation noise, and
sk the kth signal of interest. Each signal of interest sk is character-
ized by (possibly nonlinear) parameters θk. Note that, for simplicity,
θk denotes both the true parameter vector and the unknown param-
eter vector, depending on the context. When we refer to a specific
estimate, this will be denoted as θ̂k. The full parameter set is de-
noted θ = {θk}Kk=1 and similarly for estimates. The problem of
interest is then to find estimates {θ̂k} of {θk} from x where the pa-
rameters are in a codebook, i.e., θ ∈ C, and this codebook is a subset
of the full space, i.e., C ⊂ RM .

Some VQ-based speech separation and enhancement algorithms
work in a way, where, instead of finding directly the codebook en-
tries that best match the observation in some sense, they first go
through an intermediate step wherein a parametrization of the sig-
nal is obtain. In math, this can be described as

f : RN → RM , (2)

where f(·) is then the estimator. Using this estimator, intermedi-
ate parameters θ̃ are found as θ̃ = f(x). This is often beneficial
as the dimension of the parameter vector will be lower (and often
much lower) than the observation vector, i.e., M < N , whereby not
only the training procedure but also the separation or enhancement
algorithm are simplified. These intermediate parameters are then



mapped to codebook entries via a vector quantizer, here a function
g(·), defined as

g : RM → C. (3)

The final estimates are then obtained as θ̂ = g(θ̃). The question to
be answered is then how the functions f(·) and g(·) relate and how
they should be chosen. An estimator of the intermediate parameters
θ̃ should be chosen such that the found parameters are most likely
to explain the observation, i.e., it should take the characteristics of
the noise e into account. An obvious choice here that does this is
the maximum likelihood estimator, which is well-known to exhibit a
number of desirable properties, including asymptotic optimality.

Assuming that a maximum likelihood estimator f(·) is used and
that the data satisfies some regularity conditions, the so-obtained es-
timates θ̃ are asymptotically distributed as (see, e.g., [10])

θ̃ ∼ N (θ, I−1(θ)) (4)

where I(θ) is the Fisher information matrix,∼means distributed ac-
cording to andN (θ, I−1(θ)) denotes the normal probability density
function (pdf) with mean θ and covariance matrix I−1(θ). Specifi-
cally, the Fisher information matrix is defined as

I(θ) = −E
{
∂2 ln p(x;θ)

∂θ∂θT

}
, (5)

where p(x; θ̃) is the likelihood function of the observed signal pa-
rametrized by the parameters θ. The above then also means that the
estimation error θ̃ − θ is distributed as N (0, I−1(θ)), i.e., the esti-
mates are asymptotically unbiased and attain the Cramér-Rao lower
bound. It then follows that the likelihood function for the intermedi-
ate parameters is given by

p(θ̃;θ) =
1

(2π)
M
2 det (I−1(θ))

1
2

e−
1
2 (θ̃−θ)T I(θ)(θ̃−θ), (6)

where the pdf can be seen to be parametrized by the unknown pa-
rameters θ. Choosing now as our vector quantization function g(·)
the maximum likelihood estimator, we obtain

θ̂ = g(θ̃) = argmax
θ∈C

ln p(θ̃;θ) (7)

= argmin
θ∈C

(
θ̃ − θ

)T
I(θ)

(
θ̃ − θ

)
. (8)

This criterion, which is a weighted squared error metric, essentially
takes into account that different parameters in θ may have different
uncertainties associated with them in the vector quantization pro-
cess. As can be seen, the resulting estimator is a weighted least-
squares estimator.

One last difficulty remains, however. The metric in the estimator
in (8) requires knowledge of the true parameters to compute I(θ).
Instead of using I(θ), we can use an approximation based on the
intermediate parameters θ̃ (see [11, 12]), i.e.,

I(θ) ≈ −E
{
∂2 ln p(x;θ)

∂θ∂θT

}∣∣∣∣
θ=θ̃

, W, (9)

and this leads to the following estimates:

θ̂ = argmin
θ∈C

(
θ̃ − θ

)T
W
(
θ̃ − θ

)
, argmin

θ∈C
J, (10)

which is the fundamental result that we will use here. The metric
essentially takes into account that the individual intermediate pa-
rameters will have different uncertainties associated with them in

the vector quantization process. It should be noted that the obtained
weighting matrix may also be valid for suboptimal estimators that
produce estimates that are not distributed according to (4) as long
as the covariance matrix is related to the inverse Fisher information
matrix as κI−1(θ), where κ is a positive constant. We note that the
metric in (10) is also the metric one obtains using the so-called EXIP
principle [13].

We note that for the fairly general case of Gaussian signals with
x ∼ N (µ(θ),Q) where Q is the noise covariance matrix, Slepian-
Bang’s formula can be used for determining a more specific expres-
sion for the Fisher information matrix. More specifically, it is given
by

[I(θ)]nm =
∂µT (θ)

∂θn
Q−1 ∂µ(θ)

∂θm
, (11)

which requires only that the partial derivatives of the mean with re-
spect to all unknown parameters ∂µT (θ)

∂θn
for all n be determined,

something that is often fairly simple to do.

3. AN EXAMPLE

We will now exemplify the use of the proposed metric with a specific
parametrization of the observed signal x. More specifically, we will
use a sinusoidal model that is characterized by frequencies {ωl},
amplitudes {Al}, and phases {φl}. In this case, the signal model is
given by

x = Za+ e, (12)

where Z ∈ CN×L is a Vandermonde matrix constructed from L
complex sinusoidal vectors as Z = [ z(ω1) · · · z(ωL) ] with z(ω) =

[ 1 ejω · · · ejω(N−1) ]T , and a ∈ CL a vector containing the
complex amplitudes as a = [ a1 · · · aL ]T where al = Ale

jφl .
Note that, as before, we assume that we are here dealing with real
signals, which means that the complex sinusoid come in complex-
conjugate pairs. The parameter vector for each sinusoid is defined as
θl = [ Al φl ωl ]. Assuming that the noise e is white Gaussian, the
Fisher information matrix is fortunately well-known (see, e.g., [10]).
For sufficiently large N and a distinct set of frequencies, it exhibits
the following block-diagonal structure:

W =

 W1 0
. . .

0 WL

 , (13)

which means that the associated metric is additive over the sub-
matrices, which yields the estimator

θ̂ = argmin
θ∈C

L∑
l=1

(
θ̃l − θl

)T
Wl

(
θ̃l − θl

)
(14)

, argmin
θ∈C

L∑
l=1

Jl. (15)

The sub-matrices are given by

Wl =
1

4σ2

 2N 0 0

0 2NÃ2
l N2Ã2

l

0 N2Ã2
l

2
3
N3Ã2

l

 . (16)

Note that the noise variance is multiplied onto all elements and can
therefore be ignored. In sub-band processing, like [7], this may not
be the case, however, as the noise level may vary from one sub-band
to another, meaning that we would have a σ2

l for each sub-band.



Using (16) along with the definition of the parameter vector θl, Jl
can be expressed as

Jl =
1

4σ2

 Ãl
φ̃l
ω̃l

−
 Al
φl
ωl

T

(17)

×

 2N 0 0

0 2NÃ2
l N2Ã2

l

0 N2Ã2
l

2
3
N3Ã2

l

 Ãl
φ̃l
ω̃l

−
 Al
φl
ωl

 .

When codebooks for the parameter subsets θl are used so that θ̂l ∈
Cl, (14) simplifies further as

θ̂l = arg min
θl∈Cl

(
θ̃l − θl

)T
Wl

(
θ̃l − θl

)
. (18)

It should be noted that in speech enhancement and separation, the
phase is often omitted. We have, however, retained it here for com-
pleteness.

The question remains which estimators to use for the parameters
of the sinusoidal model. Our derivations were based on the assump-
tion that the estimated parameters will be distributed according to
(4). An asymptotically optimal estimator of the frequencies is the
periodogram while for the complex amplitudes, the least-squares es-
timator is efficient for white Gaussian noise and asymptotically so
for colored noise [14].

4. RESULTS

Next, we will present some simulations results. The aim of the first
experiments reported here is to demonstrate that the proposed metric
leads to superior estimates as compared to naive approaches ignoring
the different uncertainties associated with the intermediate parame-
ters, corresponding to using W = I, as is commonly done in the
literature. This results in a least-squares (LS) estimator in the vector
quantization process. Additionally, we will compare to the optimal
performance obtained as follows: for each codebook entry, a signal
is reconstructed and the 2-norm of the error between this signal and
the observed signal is measured. The codebook entry that leads to
the lowest error is then chosen as the estimate. This approach, which
we refer to as analysis-by-synthesis (AbS) is optimal in the sense that
it chooses the codebook entry that best explains and reconstructs the
observed signal. It is, however, also computationally expensive as
it measures distances of N -dimensional signals rather than the M -
dimensional parameter vectors. The experiments are carried out by
generating a signal x from a set of parameters from the codebook
after which noise is added. The intermediate parameters are then
found using a 8192 point FFT and these are then quantized using the
different metrics. We here use the sinusoidal model, the metric, and
the estimators discussed in Section 3. Moreover, we use a random
codebook of size 4096 which has been populated by realization of
uniformly distributed phases and frequencies between 0 and 2π and
Rayleigh distributed amplitudes. The performance is measured as
the percentage of correctly estimated codebook entries. If, as has
been hypothesized, the proposed metric is good, it should lead to
better estimates than the simple least-squares estimates and to esti-
mates close to those obtained with the AbS method. The results are
depicted in Figures 1 and 2 as functions of the signal-to-noise ratio
(SNR) with N = 50 and the number of samples N with SNR = 0
dB, respectively. The SNR is here defined as 10 log10A

2
1/σ

2. For
each data point, 1000 Monte Carlo trials were run. The figures show
that the proposed metric outperforms least-squares in the regions of
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Fig. 1. Percentage of correctly estimated codebook entries as a func-
tion of the SNR for N = 50.
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Fig. 2. Percentage of correctly estimated codebook entries as a func-
tion of the number of samples N for an SNR of 0 dB.

interest while for extremely low and high SNRs, all the methods ap-
proach 0 and 100 %, respectively, and similarly for low and high N .
It can also be seen that the proposed metric leads to results that are
very close to those obtained using the AbS approach, and this is done
at a significantly reduced computation time.

In the second part of our experiments, we will now, as a proof of
concept, assess the performance of the proposed metric incorporated
in [7] using the speech separation database in [15] (we refer to these
papers for further details on the system and the speech database, re-
spectively) and compare it to that obtained using well-known meth-
ods. The signals were down-sampled to 8 kHz and we used windows
of length 32 ms along with a frame-shift of 8 ms along with code-
books we used 11 bits for amplitude and 3 bits for frequency part
with a sinusoidal model order of 50. For training purposes, 500 ut-
terances were used and these were subsequently excluded from the
evaluation. The test data is mixtures of two signals, a target signal
and a masker, at different signal-to-signal ratios (SSRs). The results
shown here are for speakers 9 and 23 from the database, and we mea-
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Fig. 3. PESQ scores obtained for the reconstructed signal as a func-
tion of the SSR (in dB).

sure the quality of the reconstructed signals using PESQ [16]. In Fig-
ure 3, the scores obtained for the different methods are reported as
averages over the test set. The methods are: the STFT-based method
of [8], Max-VQ [5], and Wiener filtering in the STFT domain [17].
Codebooks of size 2048 were used for these methods with the same
training data as before. It can be observed that the proposed met-
ric in combination with the system of [7] performs well, attaining
good quality for the separated target speech signal for a wide range
of SSRs. In fact, the method using the proposed metric achieves the
highest score for the range of SSR values considered here.

5. CONCLUSION

In this paper, a new metric for VQ-based speech enhancement and
separation has been proposed and its use exemplified on a specific
parametrization, namely sinusoidal modeling. The metric was de-
rived based on statistical arguments and expressions for the asymp-
totic distribution of maximum likelihood estimators. It essentially
takes the uncertainties of different parameters into account in the
quantization process. This was then demonstrated to lead to supe-
rior estimates in Monte Carlo simulations with a vector quantizer as
compared to the commonly used squared error measure. In fact, the
proposed metric proved to perform close to the optimal performance,
showing that only a small loss is incurred by operating on intermedi-
ate parameters. Moreover, the proposed metric was incorporated in a
speech separation algorithm that was demonstrated to generally per-
form favorably compared to state-of-the-art methods. The proposed
methodology can of course be adapted to other parametrizations and
could lead to improved results there too.
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