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New Results on Perceptual Distortion Minimization and
Nonlinear Least-Squares Frequency Estimation

Mads Græsbøll Christensen∗, Member, IEEE, and Søren Holdt Jensen, Senior Member, IEEE

Abstract— In a paper in this journal, a framework was presented
wherein a number of practical methods for finding the perceptually most
important sinusoids in audio signals could be related using a particular
perceptually motivated distortion measure and it was argued that for
Gaussian noise and a large number of samples, these methods should
attain the Cramér-Rao lower bound. In this correspondence, we report
some new results on this subject. Specifically, we analyze the finite-sample
performance of these methods in experiments and we conclude that for
a high number of samples, they perform close to the Cramér-Rao lower
bound. However, for a low number of observations, we demonstrate
that special care must be taken in designing the perceptually motivated
distortion measure if high-resolution estimates are desired. In particular,
the smoothness of the frequency response of the perceptual filter that
implements the distortion measure is shown to be important.

I. INTRODUCTION

THE problem of finding the L perceptually most important
sinusoids for a given audio segment occurs in speech and audio

applications involving, for example, modeling and coding. If the
L sinusoids are found such that a perceptual distortion measure is
minimized, we can claim in audio coding applications that at a given
bit-rate (a given number of sinusoids, assuming that, on average, a
certain number of bits is used per sinusoid using, e.g., spherical or
polar quantizers [1], [2]), the best possible performance is achieved.
In audio modeling where only limited computational resources are
available, it is likewise desirable the allowable number of sinusoids
is spent the best way possible. In [3], a framework for perceptual
distortion minimization and sinusoidal frequency estimation was
presented based on the distortion measure presented in [4], which
can be written as the 2-norm of an error signal filter by a perceptual
filter. A number of well-known methods for perceptual frequency
estimation, namely the weighted matching pursuit (WMP) [5], the
pre-filtering method [6], and the perceptual matching pursuit (PMP)
[7] (and thus also the cyclic matching pursuit (CMP) [8]) were
related to the optimal solution within this framework. These method
were then shown to be equivalent under certain conditions, and it
was argued, based on results in estimation theory [9], that for a
high number of samples, all these methods should achieve the best
possible performance in a statistical sense in the presence of Gaussian
noise, i.e. they attain the Cramér-Rao lower bound (CRLB). Other
interesting examples of methods that aim at extracting components
based on perceptual relevance as measured in various ways include
those of [10]–[16]. The interested reader may also wish to consult
[17] for a detailed discussion of the usage of perceptual weighting
or pre-/post-processing in signal processing.

In this correspondence, we seek to investigate whether this is
actually the case in experiments and we hypothesize, based on [9],
that the perceptual distortion measure should be designed such that
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the corresponding filter response is smooth. The experiments are
carried out in a simple and tractable way by applying the estimators to
the problem of finding the frequency of a sinusoid in white Gaussian
noise. For this problem, the original matching pursuit (MP) [18]
based on the minimization of the 2-norm is identical to the optimal
nonlinear least-squares (NLS) method and, hence, the maximum
likelihood estimator. The question that we seek to answer with
this experiment can be paraphrased as follows. If the finite sample
performance of the estimators is indeed degraded by the use of the
perceptual weighting matrix, for example by a bias, then perhaps the
sinusoids should first be estimated in another way and perception be
taken into account in a second step. Interestingly, it was observed
in [7] that the perceptual weighting in WMP could cause a bias in
the frequency estimates. It should be noted that the formulation used
in this paper is more general than the one originally used in [3] in
the sense that we here explicitly account for oversampling in the
frequency domain and the use of a non-trivial window function.

The remaining part of this paper is organized as follows: First, we
briefly review the framework of [3] in Section II. Then, we discuss
the issue of the smoothness of the perceptual filters and show to
obtain smooth filters in a computationally efficient way in Section III,
before the experimental results are presented in Section IV. Finally,
we conclude on the work in Section V.

II. GENERALIZED FRAMEWORK

Throughout the paper, we will make use of the complex notation
and signals for two reasons. Firstly, because a simpler notation is
obtained this way, and, secondly, because it leads to computationally
more efficient algorithms. We therefore start out by calculating the N
so-called down-sampled discrete-time analytic signal samples x(n)
from 2N real input samples y(n) (see, e.g., [19]). The analytic signal
is defined as ζ(n) = y(n) + jH{y(n)} where H{·} denotes the
Hilbert transform. x(n) is then obtained as x(n) = ζ(2n) for n =
0, . . . , N − 1. The problem of interest can now be stated as follows:
Given an observed signal x = [ x(0) · · · x(N − 1) ]T , consisting of
the signal of interest and additive noise e = [ e(0) · · · e(N − 1) ]T :

x = Za + e, (1)

with a being a vector containing the complex amplitudes, i.e., a =
[ a1 · · · aL ]T and Z a matrix having complex sinusoids as columns,
i.e.,

Z =


z01 · · · z0L
z11 · · · z1L
...

...
zN−1
1 · · · zN−1

L

 , (2)

where zl = ejωl , find the frequencies {ωl}. In this process, {al}
is also found implicitly such that a complete parametrization of the
signal of interest Za is obtained.

The methods being studied here are those where the perceptually
weighted distortion D for a particular segment can be written as (see
[4])

D =

K−1∑
k=0

P (k)|Ê(k)|2, (3)
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where P (k) is a real, positive weighting function defined in
the frequency domain for k = 0, . . . ,K − 1 and Ê(k) =∑N−1
n=0 w(n) [x(n)− x̂(n)] e−j2πk/Kn is the K point Fourier trans-

form of the weighted reconstruction error ê(n) = x(n)− x̂(n) with
x̂(n) being an approximation of x(n) and w(n) a real, positive
window function from which we define a diagonal matrix as W =
diag(w(0), . . . , w(N − 1)). Here, x̂(n) is given by the sinusoidal
components and will differ from x(n) in two ways: firstly, due to
the presence of stochastic signal components, and, secondly, due
incomplete or imperfect parameter estimates. Hence, ê(n) can be
interpreted as an estimate of the additive noise e(n) in (1).

The perceptual weighting function P (k) is computed using the
model proposed in [4]. Assuming that K > N , (3) can be written as

D =

∥∥∥∥H [ Wê
0

]∥∥∥∥2
2

=

∥∥∥∥H([ Wx
0

]
−
[

Wx̂
0

])∥∥∥∥2
2

(4)

=
∥∥H̄W (x− x̂)

∥∥2
2
, (5)

where model x̂ = [ x̂(0) · · · x̂(N − 1) ]T and ê = x − x̂. The
matrix H is a filtering matrix having a circulant structure, i.e.,

H =



h0 hK−1 hK−2 · · · h1

h1 h0 hK−1 · · · h2

...
...

...
. . .

...

hK−2 hK−3

...
. . . hK−1

hK−1 hK−2 hK−3 · · · h0

 , (6)

with each entry being given by

hn =
1

K

K−1∑
k=0

√
P (k)ej2π

n
K
k for n = 0, . . . ,K − 1. (7)

The K×N matrix H̄ in (5) contains the N first columns of H, which
results in matrix that is still circulant but not square. The perceptual
distortion measure can be seen to implement a particular kind of
linear transform, namely a linear filter. The eigenvectors of such a
matrix are the Fourier basis vectors, and, asymptotically, sinusoids of
arbitrary frequency are therefore eigenvectors of such a matrix [20].
The discrete Fourier transform (DFT) matrix is defined as

Q =
[

q0 q1 · · · qK−1

]
, (8)

with qk =
[
q0k · · · qK−1

k

]T
and qk = 1/

√
Ke−j2πk/K . Intro-

ducing the additional diagonal matrix Λ =
√
K diag(Qh) where

h = [ h0 · · · hK−1 ]T is the first column of H, the eigenvalue
decomposition (EVD) of this matrix can be expressed as

H = QΛQH . (9)

As can be seen, the function of the perceptual weighting matrix can
be interpreted as an unitary transformation followed by a weighting
and an inverse unitary transformation. This is, as was argued in [3],
what leads to the equivalence of a number of methods asymptotically
but also in special cases for a finite number of samples.

We can now use the defined perceptual distortion measure to find
the parameters of the signal of interest. More specifically, the per-
ceptual nonlinear least-squares (PNLS) estimates of the frequencies
{ωl}Ll=1 are then the minimizers of the norm of the perceptually
weighted error, i.e.,

{ω̂l} = arg min
{ωl}
‖H̄W(x− Za)‖22. (10)

Introducing V = H̄W, this can also be expressed as

{ω̂l} = arg max
{ω̂l}

xHV̄Z
(
ZHVHVZ

)−1

ZHVHVx. (11)

Additionally, the vector a can be estimated optimally given the
frequencies {ωl} as â =

(
ZHVHVZ

)−1
ZHVHVx.

Solving (10) is, however, an intractable problem due to the non-
linear nature of the unknowns, the frequencies, and instead iterative,
suboptimal estimation procedures are commonly used. We will now
proceed to briefly recap a number of such methods that have been
reported in the literature and operate on the distortion measure defined
in (3). First, we will introduce some additional quantities, namely the
residual vector at iteration l as rl =

[
rl(0) · · · rl(N − 1)

]T with
rl+1(n) = rl(n)− âlejω̂ln which is initialized as r1(n) = x(n). In
the PMP [7] sinusoids are chosen iteratively one at the time as the
minimizer of the perceptually weighted norm of this residual, i.e.,

ω̂l = arg min
ω
‖V(rl − za)‖22. (12)

with z = [ ejω0 · · · ejω(N−1) ]T . This results in the following
frequency estimation criterion1:

ω̂l = arg max
ω

|zHVHVrl|2

‖Vz‖22
(13)

The estimates can be obtained using two FFTs per iteration. Consider
now that we choose the signal model component z such that it is an
eigenvector of the perceptual weighting matrix, or approximately so,
i.e,

Vz = λz. (14)

For this relation to hold exactly, we require that K = N , i.e., H̄ = H
since H̄ cannot have an EVD otherwise, and that W = I since the
EVD of V is otherwise not given by (9) and (14) then cannot hold.
One can of course use the approximation regardless; it will just not
be as accurate.

As we saw earlier, the perceptual weighting matrix may be seen as
a unitary transformation followed by a perceptual weighting of the
individual directions. From this perspective, (14) can be interpreted
as the special property of the chosen model that it is invariant to the
unitary transformation of the perceptual weighting matrix, meaning
that only the length of the vector changes during the transformation.
Based on (14), the estimation criterion of the PMP can be simplified
into the so-called pre-filtering method used, e.g., in [6]. Specifically,
the signal is filtered before estimation (or, as is the case in [6],
quantization), i.e.,

ω̂l = arg min
ω
‖Vrl − λza‖22 = arg max

ω

∣∣zHVrl
∣∣2

N
. (15)

This estimator is very simple and can be implemented efficiently
using the FFT of the pre-filtered residual. Noting that the inner
product can be written as zHVzl = λ∗vHrl by using the eigenvector
approximation once again, we obtain

ω̂l = arg max
ω
|λ|2

∣∣zHrl
∣∣2

N
. (16)

The eigenvalue λ, which depends on ω, can now be seen to implement
a simple, frequency-dependent weighting, and the estimation criterion
in (16) is therefore identical to that of WMP [5].

In conclusion, we can now make some interesting observations by
comparing the optimal estimator (10) with the iterative, suboptimal
approximations in (13), (15), and (16):
• For a distinct set of frequencies and a large number of samples,

the estimators can be expected to yield similar results since
the interactions between the individual components will become
smaller as N grows.

1We here ignore the amplitude estimates since these can be found from the
same inner products that are used in the frequency estimates and are not the
subject of the present study.
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• Therefore, one would expect that the estimates will differ when
N is small or the sinusoids are not well-separated in frequencies.
This happens, for example, for complicated mixtures of signals
with many harmonics, as is commonly the case in music signals.

• Similarly, it can be expected that the difference also will depend
on the number of sinusoids that are to be extracted.

III. PERCEPTUAL FILTER SMOOTHING

It is well-known that for the problem of finding the frequency of a
single sinusoid in white Gaussian noise, the maximum likelihood
estimator and the nonlinear least-squares method are equivalent.
However, the question is whether the use of a perceptual distortion
measure will affect the estimators in a statistical sense. In [9], it was
shown that the nonlinear least-squares estimator is still asymptotically
efficient when the noise is colored provided that the noise power
spectral density is smooth around the frequencies of the sinusoids,
i.e., that the corresponding pre-whitening filter is smooth. Thus, it
was argued in [3], for a high number of samples, the performance of
perceptual frequency estimators should be unaffected by the coloring
effect of the perceptual weighting matrix if the perceptual weighting
filter is smooth. For more details and results on these matters, we
refer the interested reader to the paper [3].

Masking curves, and thus the corresponding perceptual filters
considered here, are typically calculated in the frequency domain for
a discrete set of frequency points (see, for example, the ISO 11172-
3 (MPEG-1) Psycho-acoustic Model 1 described in [21]). This is
also the way that the model proposed in [4] is implemented. From
filter design theory, it is well-known that direct manipulation of the
coefficients of a discrete Fourier transform is a problematic, yet
tempting, way of designing digital filters. It is sometimes referred
to as the frequency sampling design method. The resulting filters
may have some poor characteristics such as excessive ripples in
between frequency points. Another related issue is that masking
curves may exhibit rather extreme dynamics, i.e., there may be huge
differences between valleys and peaks. The threshold in quiet, for
example, exhibits a difference of about 80 dB. Since we are here
concerned with high-resolution estimation of model parameters, it
is quite possible that such filters may ruin the performance, and we
here hypothesize that this is actually the case. Intuitively it also makes
sense. A sharp dip in the perceptual filter near the true frequency of a
sinusoid can be suspected to cause a bias in the estimates, at least one
can easily see that this would be the case for the weighted matching
pursuit and the pre-filtering method.

In obtaining smooth perceptual filters, we use the following
method. We seek to design an FIR filter having coefficient vector
h, the first column of the matrix H in (6), of length G and we
here require that the filter length is less than the length K of the
original filter. The frequency response of the filter should be as close
as possible to some desired response, in our case the square root
of the weighting function P (k), evaluated at some frequency points,
here 2π k

K
for k = 0, . . . ,K − 1. This leads to a vector containing

the desired response, defined as

p =
[ √

P (0) · · ·
√
P (K − 1)

]T
. (17)

First, we define the following K×G matrix implementing the Fourier
transform:

F =


e−j2π

0
K

0 · · · e−j2π
0
K

(G−1)

...
...

e−j2π
K−1
K

0 · · · e−j2π
K−1
K

(G−1)

 . (18)

Now we can write the frequency response of the filter h as Fh, i.e.,
as the Fourier transform of hn and we may state our filter design

problem as the following approximation problem

Fh ≈ p. (19)

The next question is in what sense the frequency response of the
designed filter should match the desired response. Here, we use the
2-norm since it leads to a computationally simple algorithm that has
a closed-form solution, namely

ĥ = arg min
h
‖Fh− p‖22 (20)

=
(
FHF

)−1

FHp. (21)

We note that the pseudo-inverse F† =
(
FHF

)−1
FH can be pre-

calculated and that the smoothing method therefore reduces to the
calculation of the matrix-vector product F†p for each segment of
audio. It can be seen that (21) reduces to the frequency sampling
method for G = K.

Note that we do not claim this approximation to be the best
possible. It is, however, a practical method that can easily be applied
in complexity sensitive applications. We here use it mainly to show
that the smoothness of the filters matters.

IV. EXPERIMENTAL RESULTS

In this section, we will examine the finite sample performance
of the various estimators for a single sinusoid in the presence of
white Gaussian noise and compare to the CRLB. For the estimation
problem considered here, the CRLB, i.e., the lower bound for the
variance of an unbiased estimator, can for large N and a distinct set
of frequencies {ωl} be shown to be (see, e.g., [22]),

CRLB =
6σ2

A2
lN

3
, (22)

where σ2 is the variance of the Gaussian noise e(n). The CRLB
can be seen to depend on the signal-to-noise ratio (SNR) A2

l /σ
2.

If, as argued in [3], the performance of the estimators is unaffected
by the use of the perceptual distortion measure, the performance is
expected to asymptotically, i.e., for large N , be the same both with
and without the perceptual distortion measure. It may very well be,
however, that for a low number of samples, the various estimator
exhibit different performance. At this point, it should also be noted
that the underlying CRLB does not change by a linear transformation,
such as, in our case, a filter, although the matter is here actually
somewhat complicated as the filter depends on the signal parameters.

The performance of the respective estimators is measured in
terms of the root mean square estimation error (RMSE) which is
calculated in Monte Carlo simulations. Here, 200 runs is used for
each combination of N and SNR, where the noise and the phases are
randomized in each run. Special care must be taken in selecting the
frequency and amplitude, however, since the masking curve and thus
also the perceptual filter depend on these parameters. For example,
a sinusoid having a frequency in between two frequency points of
the masking curve may not estimated as accurately as one having a
frequency near the frequency points and the steepness of the filter
depends on the amplitude. The frequency is chosen to be in the
middle of the audible range and is chosen such that it does not fall
on the sampling points of the FFT. In these experiments, we assume
a sampling frequency of 44.1 kHz and use a rectangular window.
With respect to the amplitude of the sinusoids, we investigate two
cases. One where the amplitude is small such that the masking curve
is relatively flat, i.e., dominated by the threshold in quiet, and one
where the amplitude is high such that the masking curve is steep
near the frequency. The difference between the two amplitudes is 30
dB. Note that the absolute values of the amplitudes matter in the use
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and calibration of the perceptual model. For each realization of the
signal, the perceptual filter is calculated using the model in [23] with
K = 4096, and the various estimators are then applied to the problem
of finding the frequency. For all the estimators, initial estimates are
found using FFTs of size 4096 and then a gradient-based method,
operating on their respective cost functions, is used for obtaining
high-resolution estimates. We will conduct the experiments with and
without the filter smoothing with G = K/4. Note that the WMP
and the pre-filtering (denoted PRE) method are equivalent in this
particular experimental setup.

The results, the RMSE as a function of the number of observations
(the segment length) N , are shown in Figures 1 and 2 for a low and
high amplitude, respectively, for an SNR of 0 dB, and in Figure 3,
the results are shown with smoothing of the perceptual filters for the
high amplitude case. A number of observations can be made from
these figures. First of all, we see from Figure 1 that, as expected,
the MP attains the CRLB meaning that it achieves the best possible
performance. We also see, however, that there is a considerable gap
for low N between the CRLB and both the PMP and the WMP/PRE
methods for the high amplitude case whereas for the low amplitude
case shown in Figure 2, this gap is much smaller. The source of
the of difference between the RMSEs observed in Figure 1 and
2 is most likely the perceptual filters, since there is no reason to
believe that the amplitude of a sinusoid in itself should affect the
performance as the SNR is fixed. It can also be seen that the use
of the perceptual weighting appears to cause a threshold effect for
a low number of samples. Such threshold effects are by no means
uncommon phenomena in estimators, but it is stressed here since
the MP does not appear to suffer from this at this particular SNR
and the range of N tested here. However, we also see that as the
segment length is increased, the performance of the WMP and the
PMP approach the CRLB, and the the general conclusion is, therefore,
that for large N , the estimators appear to be efficient, despite the use
of the perceptual distortion measure, and these findings support the
arguments put forth in [3]. From Figure 3, we see that when the
perceptual filters are replaced by smooth approximations, the RMSE
of the estimators is improved, i.e. closer to the CRLB. It is likely
that the poor performance observed for low N in Figure 1 can be
explained by the properties of the perceptual filters. With this in
mind, the behavior that was observed in Figures 1 can likely be
explained. Since the sinusoid becomes more localized as N grows,
the frequency region, for which the smoothness of the perceptual
filter matters, will become smaller and the perceptual filter will thus
appear more smooth.

We have observed, in additional experiments not reported in detail
here, that the gap for low N like that in Figure 1 depends on a number
of experimental conditions, namely the amplitude of the sinusoid, and
thereby the steepness of the perceptual filter around the frequency of
the sinusoid, and also the SNR. If the contribution of estimation
errors that are due to the observation noise exceeds the error that is
presumably caused by the perceptual filter, the RMSEs approach the
CRLB. Also, it should be noted that for the smooth perceptual filters,
the PMP and WMP exhibit similar performance for the range of N
and the SNR tested here.

Next, we will illustrate the properties of the perceptual filter. In
Figure 4, the desired smooth perceptual weighting function (dashed)
is depicted along with the actual frequency response of the perceptual
filter (solid) for a sinusoid having a frequency of 6 kHz. For visual
clarity, a filter length of 256 was used here. As can be seen, the
perceptual filter suffers from severe ripples in between the frequency
points, in fact the ripples exceed 20 dB near the frequency of the
sinusoid. We have also observed in our experiments, that the higher
the amplitude of the sinusoid, and thus the steeper the filter, the more

500 1000 1500 2000 2500 3000 3500 4000 4500
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Segment Length

R
M

S
E

 

 

MP
WMP
PMP
CRLB

Fig. 1. RMSE of the various estimators as a function of the number of
observations for a sinusoid having a high amplitude without smoothing of the
perceptual filter.
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Fig. 2. RMSE of the various estimators as a function of the number of
observations for a sinusoid having a low amplitude without smoothing of the
perceptual filter.
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Fig. 3. RMSE of the various estimators as a function of the number of
observations for a sinusoid having a high amplitude with smoothing of the
perceptual filter.

severe these ripples also appear to be. This indicates that the question
of what exactly causes the degraded performance of the estimators
is difficult to answer. For a particular set of realizations, and thus a
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Fig. 4. Excerpt of an actual perceptual filter response (solid) and the desired
smooth perceptual weighting function (dashed).

particular realization of the perceptual filter, the error that is caused
by the perceptual filter is essentially a bias.

Interestingly, the properties of the perceptual filters may explain the
observation made in [24] that further optimization of the parameters
that were found using the FFT-based implementation of the PMP
did not lead to any improvements in the perceived quality of the
synthesized signal. Another possible explanation for this is of course
that those differences cannot be detected by the human auditory
system. However, we cannot dismiss that the estimation errors that are
caused by the perceptual filter may indeed be audible, depending on
the number of observations, SNR and signal parameters. In closing,
it is also worth noting that the PMP was was reported in [7] to
outperform WMP in terms of perceived quality evaluated in listening
tests.

V. CONCLUSION

In this correspondence, we have investigated the finite sample
performance of a number of well-known methods for finding the
perceptually most important sinusoids based on a perceptual distor-
tion measure, and in the process, we have generalized the previously
presented framework. The performance of the various methods has
been investigated using Monte Carlo simulations, wherein the root
mean square estimation errors of said estimators have been estimated
and compared to a theoretical lower bound, the Cramér-Rao lower
bound. For a high number of observations, the methods have been
shown to perform very close to the Cramér-Rao lower bound,
confirming the theoretical arguments made in a previous paper.
Additionally, it has been shown that for a low number of observations
the estimators perform far from this, meaning that they are suboptimal
from an estimation point of view and that the performance can be
improved by a smoothing of the perceptual filters that implement
the distortion measure. These findings are important in that they
show that the use of a perceptual distortion measure is not without
its problems and that two step methods wherein sinusoids are first
estimated where after perceptual analysis is performed to determine
the perceptually most important sinusoids may in fact be preferable
in some applications, for example when only a limited number of
observations are available.
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