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New Results on Single-Channel Speech Separation
Using Sinusoidal Modeling

Pejman Mowlaee, Student Member, IEEE, Mads Græsbøll Christensen, Member, IEEE, and
Søren Holdt Jensen, Senior Member, IEEE

Abstract—We present new results on single-channel speech
separation and suggest a new separation approach to improve
the speech quality of separated signals from an observed mixture.
The key idea is to derive a mixture estimator based on sinusoidal
parameters. The proposed estimator is aimed at finding sinusoidal
parameters in the form of codevectors from vector quantization
(VQ) codebooks pre-trained for speakers that, when combined,
best fit the observed mixed signal. The selected codevectors are
then used to reconstruct the recovered signals for the speakers in
the mixture. Compared to the log-max mixture estimator used in
binary masks and the Wiener filtering approach, it is observed
that the proposed method achieves an acceptable perceptual
speech quality with less cross-talk at different signal-to-signal
ratios. Moreover, the method is independent of pitch estimates
and reduces the computational complexity of the separation by
replacing the short-time Fourier transform (STFT) feature vectors
of high dimensionality with sinusoidal feature vectors. We report
separation results for the proposed method and compare them
with respect to other benchmark methods. The improvements
made by applying the proposed method over other methods are
confirmed by employing perceptual evaluation of speech quality
(PESQ) as an objective measure and a MUSHRA listening test as a
subjective evaluation for both speaker-dependent and gender-de-
pendent scenarios.

Index Terms—Mask methods, mixture estimation, single-
channel speech separation (SCSS), sinusoidal modeling, speaker
codebook.

I. INTRODUCTION

T HERE are many speech and audio applications where the
signal of interest is corrupted by highly correlated noise

sources. Separating such signals from their mixture has often
been considered as one of the most challenging research topics
in the area of speech enhancement. An extreme case of speech
enhancement, single-channel speech separation (SCSS), is often
considered as one of the most difficult scenarios where a speaker
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signal is corrupted with other interfering speaker signals. Al-
though there have been recent advances in speech enhancement
methods [1]–[10], SCSS with high speech quality still remains
as a challenge. High quality separation systems could play an in-
tegral role in offering robustness in many practical applications
including speech coding, speech recognition, speaker recogni-
tion in adverse mixture scenarios, and hearing aids [11].

The main objective for an ideal speech separation system is to
recover the unknown speaker signals accurately, based on their
observed mixed signal recorded by one microphone. The SCSS
problem is ill-conditioned since the mixing matrix is non-in-
vertible. The problem is in principle solvable by imposing a
priori information, e.g., about the speaker models [12]–[19].
Previous state-of-the-art SCSS systems can be divided into
two groups: 1) source-driven or computational auditory scene
analysis (CASA)-based method [20]–[25], and 2) model-based
method [12]–[19].

The main objective in the first group is to produce the binary
masks required to separate the unknown speaker signals from
their mixture. The methods predominantly use estimated pitch
trajectories by applying a multi-pitch estimator. According to
the results reported in [22], [26], and [27], the separation quality
degrades as energetic masking takes place at some overlapping
time-frequency cells. Therefore, the overall separation perfor-
mance is limited by the accuracy of the multi-pitch estimator es-
pecially when the relative amplitude levels of the signals differ
substantially (the signal-to-signal ratio (SSR) gets either low
or high). At these SSR levels, the pitch estimation accuracy is
relatively lost by large gross errors [26], [28]. In addition, ac-
cording to [20], the CASA-based methods are mostly able to
segregate the voiced frames of the mixture and often lack per-
ceptual quality due to a severe cross-talk problem.

The second group, model-based separation systems is based
on statistical models including VQ [15]–[18], Gaussian mix-
ture models (GMMs) [13], [19], [29], [30] and Hidden Markov
models (HMMs) [12], [14], [27]. In [14], a separate HMM was
applied for each speaker and a huge state space of 8000 was re-
quired in order to carefully capture every possible signal transi-
tion state. Though using HMMs enables the modeling of corre-
lated speaker signals, according to [31], it leads to a significantly
complex mixture estimation approach. MAX-VQ attempts to
find two masks based on the estimated VQ codewords. Ac-
cording to the results reported in [17], [22], [23], [32] using such
masks inevitably causes cross-talk and artifacts in the re-synthe-
sized signals.

From a synthesis viewpoint, the methods in the second group
are divided into two classes: overlap-add procedure and mask

1558-7916/$26.00 © 2010 IEEE
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methods. The masks to be applied are either the binary [15],
[16], [22], [23] or the Wiener filter masks [13], [29], [30], [33]
leading to the separation approaches of the log-max estimator
[12]–[15], [34] and the Wiener filtering [13], [29], respectively.
Despite the attractive appeal of using masks in speech enhance-
ment or separation, they have problems in dealing with the en-
ergetic masking [2]. These methods suggest filtering out one of
the speakers as a jammer signal thereby causing inferior perfor-
mance while recovering the masked speaker signal [16], [20].

In model-based methods, difficulties arise while mapping
vectors of mixed signals onto states of speaker models resulting
in wrong association of the codevectors with the log-max esti-
mator leading to the selection of poorly filtered signal vectors
[16], [23]. Selecting incorrect states from the speaker models
could degrade the perceptual quality of the separated signals.
According to [35], the model-based approach was expected
to perform better than the pitch-based methods indicating that
using only the pitch information shows limited discrimination
for sequential grouping. This brings forward the idea that
integration of pitch and spectral envelope in [16] may not be the
most efficient solution to recover both signals because accurate
multi-pitch estimation from a mixture at low SSRs is still a
problem [22], [26], [27], [36].

It is important to note that most of the previous separation
systems achieve a rather acceptable separation quality for the
underlying sources in the mixture by assuming speaker signals
to have nearly the same long-term energy level, i.e., when the
SSR level is around 0 dB. In practice, however, a nonzero SSR
level is expected since at each frame, one speaker signal often
dominates others and the energies of the sources most likely
collide [1], [37], a phenomenon called energetic masking [2]
that makes the signal recovery of the speakers rather difficult.
Therefore, studying novel methods to improve the separation
quality at different SSRs is very important.

In this paper, we present new results for SCSS by proposing
a mixture estimator based on sinusoidal parameters provided by
codebooks for underlying speakers in the observed speech mix-
ture. We consider a speech mixture composed of two speakers.
The proposed model-based separation method aims to find op-
timal sinusoidal codevectors, one from each speaker model,
that when combined best describe the observed mixture seg-
ment. The speaker models pre-trained for speakers are VQ
codebooks composed of sinusoidal amplitude and frequency
vectors. In this paper, we focus on speaker-dependent scenario
and then we relax this assumption by using gender-dependent
codebooks as an intermediate scenario. Through extensive sim-
ulations and subjective evaluations, we assess the separation
performance of the proposed method at different SSR levels.
The separation results show that the performance of the pro-
posed method outperforms those obtained by other previous
SCSS methods.

The rest of the paper is structured as follows: In the next sec-
tion, we review previous sinusoidal methods for separation. In
Section III, we introduce modified unconstrained sinusoidal pa-
rameters to be employed as feature parameters. The parameter
estimation procedure is presented and followed by the proposed
sinusoidal mixture estimator. In Section IV, we present the ex-
perimental results to compare the separation performance of the

proposed method with that of other methods. Section V presents
subjective evaluations and results of our MUSHRA test to assess
the perceived quality obtained by different methods. Section VI
features the discussions and Section VII concludes the work.

II. RELATION TO PREVIOUS SINUSOIDAL METHODS

FOR SEPARATION

Sinusoidal parameters have already been applied for sup-
pressing interference from a target signal [38]–[41]. As
pioneering work, [38] proposed a multi-pitch tracking ap-
proach to assign harmonics of a mixed signal to the unknown
speakers. In [39] and [40] nonlinear least square method was
used for detecting the pitch frequency as well as the amplitude
and phase parameters. In [41], a local nonlinear least square
frequency estimator was proposed and applied on harmonic or
nearly harmonic musical signals. The goal in [39]–[41] was
to suppress the interference signal and to recover a desired
speech signal from the mixture. The method in [40] worked
based on harmonic frequencies of the sources under the pre-as-
sumption that the pitch values of sources are known, a priori
from the signals prior to the mixing process. The idea in [41]
required estimates of the fundamental frequencies of the signals
obtained by the multi-pitch estimator in [28]. The proposed
approach in [39] was based on either a priori sinusoidal fre-
quencies or a priori fundamental frequencies contours. Due to
the pitch dependency of the methods in [38], [40], and [41],
their separation performance was limited by the accuracy of
the multi-pitch estimation. More specifically, this limitation
was reported as the major restriction especially for recovering
the weaker speaker signal in the observed mixture [38]–[41].
Good results were reported in [39] when the frequencies of
both speaker signals are obtained by peak picking of individual
STFT magnitudes prior to the mixing process. However, with
no a priori information about the speakers’ pitch information,
the approach achieved limited good performance for only a
subset of all-voiced c-channel signals and for roughly 0-dB
SSR level. As another example, the test signals used in [41]
consisted of either two well-separated sinusoids or a polyphonic
excerpt of music. According to [41], although the separation
performance was well for signals of prominent harmonic tones,
it was not yet robust enough to lead into a reliable separation
performance in general case.

In contrast to previous sinusoidal methods, the proposed
approach in this work is focused on separating both underlying
speakers from mixture. We suggest a new pitch-independent
separation approach that relies on pre-trained speaker models
as codebooks composed of sinusoidal amplitude and frequency.
Additionally, we employ a comprehensive database in [42]
containing utterances composed of both voiced and unvoiced
frames. This is comparable to sinusoidal methods in [38]–[40]
applied on a limited number of all-voiced utterances. Finally,
for comparison with other harmonic methods, we compare
the separation performance obtained by the proposed method
with respect to harmonic magnitude suppression (HMS) [24],
[25] and fusion method [16] as examples for source-driven and
harmonic methods, respectively.
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Fig. 1. Block diagram for the proposed speech separation method using sinu-
soidal modeling (�� and �� are separated signals).

III. PROPOSED SEPARATION METHOD

We will now proceed to describe the proposed separation
approach using sinusoidal modeling. Fig. 1 shows the block
diagram of the proposed separation approach. The system is
composed of the following blocks: sinusoidal parameter estima-
tion, two trained speaker models, sinusoidal mixture estimator
and overlap-add for signal reconstruction. In the following, we
present our separation approach.

A. Sinusoidal Modeling

Before presenting the sinusoidal modeling, we will introduce
some basic notation. Assume that we have a mixed signal,

composed of speakers
where is the speaker index and the th speaker signal is
denoted by with is the time sample
index and is the window length in the samples. At each
frame, we represent the th speaker signal in additive noise

as

(1)

where is an index used to refer to the th sinusoidal component
characterized by the amplitude , frequency and phase

, respectively. We define a parameter vector as of
size with and

denoting the th speaker’s amplitude, frequency and
phase vectors, respectively, and being the sinusoidal model
order. The signal model in (1) is also used for representing
observed mixed signal, . For the sake of simplicity and
tractability, here, we focus on separating speech mixture com-
posed of two speakers, i.e., and .

B. Sinusoidal Parameter Estimation

We make two modifications to the unconstrained sinusoidal
parameter estimator developed in [43] described as follows: 1)
the spectral coefficients are translated to the Mel scale to take
into account the logarithmic sensitivity of the human auditory
system, and 2) at each band the spectral peak with the highest
amplitude is selected [44]. These changes allow us to select the
most perceptually relevant peak per band. The -point discrete
Fourier transform (DFT) vector for the th frequency band of
the th speaker is represented by

(2)

where denotes the selected peak at the th band for the th
speaker. We define

(3)

where is the complex conjugate operator and is a
Vandermonde matrix whose rows are defined in (2). The

signal representation for the th speaker in terms of sinusoids is
given by an 1 vector, , where

(4)

We define as the complex spectrum for the th speaker.
The objective of the sinusoidal parameter estimation is to find
peaks with the constraint [44]

and
(5)

where is a set composed of all continuous frequencies for
the th speaker within the th band and returns the
argument where attains its maximum value.

C. Proposed Sinusoidal Mixture Estimator

In this section, we propose a mixture estimator based on the
sinusoidal parametric vectors in our model-based separation ap-
proach shown in Fig. 1. Each speaker codebook is composed of
a number of codevectors. The goal of a mixture estimator is to
search the possible codevectors of the speaker models to find
two optimal codevectors, one from each speaker model, such
that when mixed, they satisfy a minimum estimation error crite-
rion comparable to the mixed signal. These two best codevectors
are denoted by in Fig. 1.

By applying the sinusoidal parameter estimator in (5) to the
mixed signal, we obtain , where is a Vander-
monde matrix composed of frequency vectors of size 1
as defined by ,
which is the set of sinusoidal frequencies obtained for the mix-
ture at the th band. We define
and denoting, respectively, the amplitude, fre-
quency, and phase of the th component for the mixed signal.
We derive a mixture estimator based on the sinusoidal parame-
ters of the underlying speakers and their mixture. The key idea
is to project the mixture onto its sinusoidal subspace spanned by
the columns of the parametric vector and to find a
cost function to be minimized in the mixture estimation stage.
Based on (1), we define as the power spectrum for the

th speaker at the th band as [45]

(6)

where we assumed that is white at each th frequency
band and denotes its corresponding variance,
is the frequency set for the peaks retained for the th speaker
signal. A similar definition holds for the mixed signal, and we
define the mixture power spectrum as . The frequen-
cies in are formed by applying (5) on the mixed sig-



1268 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 5, JULY 2011

nals. Considering an appropriate window denoted by
to reduce the spectral leakage, the expected value for the peri-
odogram for each signal spectrum is

where is the periodogram for the th speaker,
denotes the expectation operator and is the convolution

operator. We define a cost function as the squared error between
the power spectra of the mixed signal and its estimate to be sam-
pled only at sinusoidal peaks given by . The expected
value for the mixture estimation error at the th band is

(7)

(8)

We define as the variance of the
error. The expected mixture estimation error in (8) is sampled
at mixture sinusoidal frequencies per th band defined by the set

. Replacing by in (8) and ignoring the negative
part of the spectrum for real speech signals, we get

(9)
where captures the mixture estimation error defined between
the original and the estimated mixture spectra at the th band.

and are the sinusoidal amplitude selected at the
th band for the first, the second, and the mixed signals, re-

spectively. The mixture approximation error gets close to zero
when the underlying speaker spectra are highly harmonic. The
mixture estimation error termed as at a given frame is

. The distortion function in (9) only calculates the mix-
ture estimation error at the sinusoidal peaks obtained from the
mixture. The proposed mixture estimation is targeted to find the
optimal indices by searching the possible codevectors in speaker
one codebook and speaker two codebook, by solving
the following minimization problem at each frame [46]

(10)

where and are the codebook indices for speaker codebook
one and two, respectively, and we define

as the space formed by the union of the spaces
defined by and . In the minimization formula given by
(10), addresses
which are the optimal sinusoidal codevectors selected from
codebooks and , and is the 2-D cost function
based on the mixture approximation error in (9). The set

can be any possible states in the speaker
models with as the codebook size. At each frame, by min-
imizing in (10), we obtain two codevectors of the speaker
models, which when combined, satisfy the minimization cri-
terion in (10). The selected codebook indices are then used to
reconstruct the two separated signals by means of a weighted
overlap-add (OLA) procedure as shown in Fig. 1.

It is important to note that, in this paper, we use a full search
to consider all possible states during minimization of the distor-
tion function in (10). However, it is also possible to apply some
cyclic minimizer or expectation maximization (EM)-like algo-
rithms as an approximation to solve the minimization problem
more computationally efficient, which is generally sub-optimal.

Our goal here is to find the set of unknowns denoted as
by solving the following minimiza-

tion problem per band:

(11)

where and are referred to the th codevector selected
from codebook and are referred to the th code-
vector selected from codebook . By taking the Fourier trans-
formation of the expression in (11), we get the mixture estima-
tion in (9).

Assume that the modeling error in (9) is a zero-mean white,
i.i.d. (independent and identically distributed over observations)
with Gaussian noise with constant variance at each fre-
quency band . Using an -norm and applying band decompo-
sition, one can show that the log-likelihood of all bands is

(12)

where is the estimated mixed signal formed by combining
the selected codewords of the speakers for the th band and

. Minimizing the likelihood of
all bands using the sinusoidal estimator approximates the exact
likelihood of all bands in (12). The minimization results in two
sinusoids (one for each speaker) per band.

D. Training Split-VQ Codebooks on Sinusoidal Parameters

We use split-VQ codebooks composed of sinusoidal ampli-
tude and frequency vectors as speaker models. Here, we briefly
explain the split-VQ codebook generation used in our proposed
separation method. The extracted sinusoidal parameters: am-
plitude and frequency, each of dimension are entered to the
training stage. Following [47], we apply different distance mea-
sures to produce codebooks of amplitude and frequency, respec-
tively. For the amplitude part of the th speaker, we apply dis-
tance measure

(13)

where is the -norm and is the coded
amplitude codevector, with as the coded amplitude for the
sinusoidal peak selected at the th band for the th speaker. Let

be the codebook size for the amplitude part of our split-VQ
codebook. After establishing amplitude codevectors, we se-
lect frequency vectors that are closest in terms of their related
amplitude vectors. Another VQ of a lower size is performed
on these frequency candidates for each amplitude codeword. To
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produce frequency codevectors for the th speaker, we apply the
following distance measure

(14)

where is the energy normalized ampli-
tude vector used for dynamic weighting of the Euclidean dis-
tance measure to make it proportional to the sinusoidal ampli-
tude at the peak frequencies.

IV. EXPERIMENTAL RESULTS

A. Separation Scenario and Database

As a proof of concept, we evaluate the performance of the
proposed method in SCSS and compare it with other benchmark
methods. In our implementations, we first focus on speaker-
dependent scenario. Then, we relax this assumption by using
gender-dependent codebooks as an intermediate scenario. The
SSR is defined as the averaged ratio of the target speaker gain to
the gain of the interfering signal. In our experiments, we swept
the SSR level within the range dB. Then, the sepa-
ration results are averaged at each SSR level over all pairs of
test signals and quantified using PESQ [48] as objective mea-
sure and MUSHRA [49] listening test as subjective evaluation.
As benchmark methods, the separation result of the proposed
method is compared with other conventionally used methods:
MAX-VQ [15], [23], [32], the Wiener filtering [13], [30], and
STFT-VQ [17], [18]. We also compare the separation results of
the proposed method with those obtained by HMS [24], [25] and
fusion method [16] for both speaker-dependent and speaker-in-
dependent scenarios.

To evaluate the proposed separation algorithm, we used the
database provided for SCSS in [42] consisting of 34 speakers
each uttering 500 sentences. For our speaker-dependent sce-
nario, we selected four speakers including two male (speakers
9 and 19) and two female speakers (4 and 23) from the data-
base. We used 10 minutes of speech signals from each of the
four speakers to train the speaker models. The sampling fre-
quency was decreased from the original 25 kHz to 8 kHz. We
analyzed the performance of the proposed mixture estimator for
many mixture pairs to find the best values of these parameters.
According to our results, throughout all experiments presented
here, we used 50 sinusoidal peaks and a von Hann window of
duration 32 ms with a frame-shift of 8 ms. For practical rea-
sons, throughout the simulations presented here, the desired fre-
quency range was set to [60, 3850] Hz at a sampling frequency
of 8 kHz.

For practical reasons and according to findings reported in
[47], we have opted for 11 bits for amplitude and 3 bits for fre-
quency. For a fair comparison and consistent with the results in
[17], the same codebook size was chosen for the STFT code-
books. In the experiments, we assumed that the double-talk re-
gions in the mixture are known a priori. We only focus on sep-
arating the mixed regions to report the performance of different
mixture estimators, which is arguably also the most difficult
part. We also assumed a priori knowledge of speaker identities
and SSR level in the observed speech mixture.

Fig. 2. Showing the magnitude spectrum for (a) the original and estimated mix-
ture, (b) speaker one, (c) speaker two, and (d) mixture estimation error power
in dB.

B. Ideal Separation Scenario

To assess the performance of our proposed mixture estimator,
we consider the ideal separation scenario as was done in [32]. In
an ideal separation scenario, we assume that we have access to
the original underlying speakers, and from their spectral vectors,
we find the optimal codevectors based on their corresponding
trained speaker codebooks. We select two utterances of one male
and one female and add them together at SSR dB to form
a mixture. Fig. 2 depicts how the proposed mixture estimator
works by minimizing the error at the sinusoidal peaks estimated
from the mixture. The sinusoidal peaks in magnitude spectrum
are shown for the original and estimated mixture in Fig. 2(a),
as well as for each of the underlying single speaker signals
in Fig. 2(b) and (c). From the mixture estimation error shown
in Fig. 2(d), it is observed that the estimation error is reason-
ably low especially at sinusoidal frequencies of the mixture, ex-
plaining the high accuracy of the proposed mixture estimator.

C. Evaluating Performance for Speaker-Dependent Case

We report the separation performance of the proposed method
and compare it with respect to other benchmark methods. First,
we consider speaker-dependent scenario where we assume that
we have a priori knowledge of speaker identities. To this end,
we randomly selected ten sentences from the test data of each
speaker in order to forming the speech mixtures. The training
and test sets were disjoint. Fig. 3 shows the PESQ scores of
different separation methods versus SSR. To carefully assess
the gap between methods, we also included the upper-bound
for the separation performance achieved by the STFT [17] and
split-VQ on the sinusoidals in [47]. The performance of the
proposed method was compared to previous speaker-dependent
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Fig. 3. Showing the separation results for speaker-dependent scenario for dif-
ferent methods in terms of PESQ score versus SSR levels for (a) speaker one
and (b) speaker two [46].

methods. The methods we included in our simulations are binary
mask, the Wiener filtering, and the STFT-based VQ methods.
Each curve depicted in Fig. 3 is labeled with the related ref-
erence. Several results are inferred from Fig. 3: 1) according
to the curves, the proposed method achieves a higher PESQ
score compared to MAX-VQ and the Wiener filtering especially
at low SSR levels; 2) it is observed that the proposed method
achieves about 1 point improvement in PESQ score over the
mask methods. The inferior performance of the mask methods
can be further explained by the energetic masking effect of the
dominant speaker at time-frequency cells [2], [27], [42]. The
mixture estimation error observed in the mask methods is due
to the fact that they originally filter out the competing speaker
to recover a target signal and consequently lead to decoding er-
rors while mapping vectors of the mixed signal into the code-
vectors in the codebooks of the underlying speaker in the mix-
ture. Hence, using a log-max mixture estimator in a mask ap-
proach could result in the selection of wrong codevectors from
the speaker models, and consequently, it leads to poorly filtered
separated signals as reported in [23]; 3) according to Fig. 3(a)
and (b), the proposed method outperforms the STFT-based ap-
proach and its upper-bound separation performance. The signifi-
cant degradation in performance caused by the STFT codebook-
based method (denoted by STFT-CB), as compared to the pro-
posed approach can be observed from the gap between the PESQ
curves shown in Fig. 3(a) and (b). This agrees with the recent
results reported in [17] stating that compared to mask methods,
performing subband transformation on the STFT features could
result in improvements in the perceived speech quality of the
separated signals especially at low SSR levels; 4) according to
the curves shown in Fig. 3, the proposed method asymptotically

Fig. 4. Showing the separation results for gender-dependent scenario for dif-
ferent methods in terms of PESQ score versus SSR levels for (a) speaker one,
and (b) speaker two.

TABLE I
SPEAKER LABELS USED FOR TRAINING THE GENDER-DEPENDENT MODELS

FOR MALE AND FEMALE SPEAKERS

reaches the upper-bound performance achieved by the split-VQ
codebooks in [47].

D. Separation Results for Gender-Dependent Scenario

To relax the assumption of a priori knowledge of speaker
identities, here, we study the separation results for gender-de-
pendent scenario. As gender-dependent models, we selected ten
female and ten male speakers each producing 35 s of speech
signal. We trained a male speaker model using utterance from
ten speakers and a female speaker model trained on ten fe-
male speakers. These two speaker models are gender-depen-
dent considered as an intermediate scenario between speaker-
dependent and speaker-independent. The speaker labels used
for training our gender-dependent models are shown in Table I.
To evaluate the separation performance we formed mixtures
using fifteen utterances of speakers 29, 34 as female and 30,
32 as male speakers selected as our test speakers. The separa-
tion results were then averaged over the mixture pairs at dif-
ferent SSR levels and speakers. Fig. 4 illustrates the separation
results obtained by different methods for gender-dependent sce-
nario. Curves demonstrate the separation performance for each
speaker in terms of SNR versus SSR. To assess the gap between
different methods, we also included the upper-bound separation
performance. From Fig. 4, it is concluded that compared to other
methods, the proposed method shows a significant improvement
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Fig. 5. Comparing the SNR results of the proposed method with MAX-VQ
[15], [16], [32], Wiener filtering [13], STFT-VQ [18], source-driven [24], [25],
and harmonic methods in [16] for speaker-dependent scenario.

for both speaker signals, especially at extreme SSR levels (both
low and high).

It is important to note that the results shown in Fig. 3 and 4
can best be interpreted separately. According to the definition of
SSR, high SSR means that speaker one is dominant in the mix-
ture while a similar interpretation goes for the second speaker
but for negative values of SSR. From Fig. 3 and 4, at high SSR
levels, soft mask achieves a slightly higher PESQ score com-
pared to our method. This can be explained because of the use
of masks in soft-mask method which employs information di-
rectly from the mixed signal. Since at high SSR levels, target
speaker (let speaker one) is more intelligible, then mask method
achieves a higher PESQ score for this speaker compared to a
model-based method since the latter employs no information
directly coming from the mixture, but uses pre-trained speaker
spectra for signal reconstruction. This observation can be further
explained by noting the fundamental difference between mask
and reconstruction-based methods while synthesizing the sepa-
rated signals.

E. Comparing the Separation Results With Harmonic Methods

We compare the separation performance of the proposed
method in terms of SNR measure with source-driven in [24] and
[25] and fusion methods in [16] both based on pitch estimates
of the underlying speakers in the observed speech mixture.
These two methods serve as examples for source-driven and
harmonic methods, respectively. To have a fair comparison to
the results reported in [16], here we select speaker 4 and 19 for
the speaker-dependent scenario. In addition to the speaker-de-
pendent scenario, here, we also consider a speaker-independent
one as a more practical scenario. To train a speaker-independent
codebook, we used the utterances of four speakers: 4, 7, 8, and
19. As a test, similar to [16], we selected ten speech files from
the remaining 30 speakers to generate five speech mixtures.
The test speakers in the speaker-independent scenario are: 2,
3, 14, 15, 16, and 22. To have a fair comparison, we used the
same mixtures as described in Tables in [16] all formed at
SSR dB. Figs. 5 and 6 show the SNR results measured
in dB per mixture described on -axis for speaker-dependent
and speaker-independent scenarios, respectively. According to
the results, it is observed that the proposed approach mostly
achieves a higher score compared to source-driven and fusion

Fig. 6. Comparing the SNR results of the proposed method with MAX-VQ
[15], [16], [32], Wiener filtering [13], STFT-VQ [18], source-driven [24], [25],
and harmonic methods in [16] for speaker-independent scenario.

TABLE II
LABELS OF THE METHODS USED IN MUSHRA TEST

methods in [16]. The improvement for speaker-independent
scenario is lower but the proposed method still mostly outper-
forms other approaches including: log-max, Wiener filtering,
source-driven and fusion.

V. SUBJECTIVE EVALUATION

A. MUSHRA Test Setup

To assess the perceived speech quality of the separated output
signals obtained by different methods, we conduct a subjec-
tive listening test by using the multi-stimulus test with hidden
reference and anchors (MUSHRA test) as described in ITU-R
BS.1534-1 [49]. The MUSHRA test is a double blind test for
the subjective assessment of intermediate quality level bene-
fits obtained from displaying all stimuli at the same time. This
enables the subjects to carry out simultaneous comparison be-
tween the methods directly. Seven untrained listeners partici-
pated in the test (the authors not included). The excerpts used in
our listening test are shown in Table II, each indicating a sep-
arated signal at a specific SSR level. The experiments are con-
ducted for both speaker-dependent and gender-dependent sce-
narios. Both MAX-VQ and STFT-based VQ methods were in-
cluded as benchmarks for separation methods. All the played
signals were monophonic of length 2 s and sampled at 8 kHz.
Many more excerpts were used in our development phase, but
the excerpts shown in Table II are the ones that have been tested
in our listening test. The excerpts consisted of the hidden refer-
ence denoted by HR and an anchor low-pass filtered at 2 kHz de-
noted by Anchor. The remaining six excerpts are the separated
signals at different SSRs shown in Table II. The hidden refer-
ence shows the known quality on the scale and is used to check
the consistency of the responses of a subject during the listening
test. A high score is expected at this point. The anchor point is
included to enable comparisons between the different listening
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TABLE III
RESULTS OF THE MUSHRA LISTENING TEST FOR THE SPEAKER-DEPENDENT SCENARIO. THE MOS RESULTS OBTAINED FOR EACH CLIP AVERAGED OVER SEVEN

LISTENERS ARE SHOWN FOR DIFFERENT METHODS. FOR EACH CASE, THE CONFIDENCE INTERVAL IS ALSO INCLUDED

Fig. 7. Results of the MUSHRA listening test for the speaker-dependent sce-
nario [46]. MOS scores for different separation methods over all excerpts and
all listeners. Error bars indicate 95% confidence intervals.

tests since it forms a simple but well-defined modification on
the reference signal. Excerpts listed in Table II were chosen and
played for each subject. The listeners were asked to rank eight
separated signals relative to a known reference on a scale of 0
to 100. By including different SSR levels, it is possible to assess
any improvement observed in the synthesized speech quality of
the proposed method compared to other methods. Further, the
separation performance is evaluated for two SSRs.

B. Listening Test Results for Speaker-Dependent Scenario

We conducted the listening experiments on subjects in a silent
room and a good sound quality audio, Firewire interface, was
used for digital to analog conversion. Moreover, we used a high
quality headphone: AKG K240 MKII. The scores obtained from
different methods were averaged over all listeners and excerpts.
Fig. 7 depicts the mean opinion score (MOS) for the speaker-de-
pendent scenario. Furthermore, the performance of individual
excerpts can be observed by the numbers in the first row of
Table III, which shows the results obtained by each clip.1 For
each entry, the first number is the averaged value over the scores
obtained by seven listeners and the second number determines
the confidence interval.

The results shown in Table III are divided into two categories,
i.e., target and masker speakers. Odd columns show the results
for the masked signal in the mixture explaining the low scores
at SSR dB while the even columns show the results for

1The mixed and separated wave files for different methods are downloadable
from our webpage: http://kom.aau.dk/~pmb/IEEE_Trans.htm.

the target speaker in the mixture. From Fig. 7, it is observed
that the proposed method scores, on average, about 20 points
higher than MAX-VQ, and more than 25 points higher than
the STFT-based method. According to Fig. 7, no overlap exists
between the confidence intervals of the proposed method and
the other methods. Therefore, it can be concluded that the pro-
posed method achieves statistically significant improvement by
consistently enhancing the performance of the perceived speech
quality for both target and interference separated signals espe-
cially at low SSRs. The proposed method achieves a slightly
lower quality compared to those obtained by MAX-VQ and
Wiener filtering. However, as indicated by the listening exper-
iments, some of the separated outputs achieved by MAX-VQ
were found suffering from severe crosstalk. Furthermore, lis-
teners observed that in some cases the separated signals ob-
tained by MAX-VQ were relatively poor compared to the ref-
erence signal. They observed that these methods suffer from
the cross-talk phenomenon, mostly while recovering masked
signal, in which a portion of the other speaker signal exists
in the separated output signal. This is mainly because a mask
method applies a gain function to the mixed spectrum rather
than finding a candidate from the codebooks. On the other hand,
the proposed method produced artifacts in the separated sig-
nals often encountered in sinusoidal speech modeling especially
in fricatives and sudden attacks [43]. However, the proposed
method still outperforms the others by achieving, on average,
23 to 28 points, higher than the STFT-based method and 17
to 21 points higher than MAX-VQ. According to the listeners
observations, the improvements brought about by the proposed
method are perceived both as an increase in terms of speech
signal quality and lower cross-talk. The tests also revealed that
the separation performance of the mask methods (especially at 0
dB of SSR where their separation performance is often reported)
does not necessarily produce the highest perceived quality for
the separated signals. This can be observed by comparing the
MOS results in Fig. 7 for BMM and SIN stating
that the proposed method shows an advantage of 10 points in
the resulting MOS compared to MAX-VQ. We also consid-
ered results shown in Table IV as the MOS results obtained by
each listener averaged over eight clips defined in Table II. In
gender-dependent scenario we only considered masked speaker
output for subjective measurement at SSR dB while for
speaker-dependent scenario we included both separated target
speaker and masker speaker signals at SSR dB. By in-
specting the MOS results shown in Fig. 7 along with the results
of the listening experiments in Table IV, subjects often indicated
that the signals related to the proposed method were close to the
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TABLE IV
RESULTS OF THE MUSHRA LISTENING TEST FOR THE SPEAKER-DEPENDENT SCENARIO. THE MOS RESULTS OBTAINED BY EACH LISTENER AVERAGED OVER

EIGHT CLIPS ARE SHOWN FOR DIFFERENT METHODS. FOR EACH CASE, THE CONFIDENCE INTERVAL IS ALSO INCLUDED

TABLE V
RESULTS OF THE MUSHRA LISTENING TEST FOR GENDER-DEPENDENT SCENARIO. THE MOS RESULTS OBTAINED FOR EACH CLIP AVERAGED OVER SEVEN

LISTENERS ARE SHOWN FOR DIFFERENT METHODS. FOR EACH CASE, THE CONFIDENCE INTERVAL IS ALSO INCLUDED

TABLE VI
RESULTS OF THE MUSHRA LISTENING TEST FOR THE GENDER-DEPENDENT SCENARIO. THE MOS RESULTS OBTAINED BY EACH LISTENER AVERAGED OVER

EIGHT CLIPS ARE SHOWN FOR DIFFERENT METHODS. FOR EACH CASE, THE CONFIDENCE INTERVAL IS ALSO INCLUDED

reference signal and showed a significant preference over other
separated signals.

C. Listening Test Results for Gender-Dependent Scenario

Relaxing the a priori knowledge of speaker identities, we
report the MOS results for the MUSHRA listening test in a
gender-dependent scenario shown in Fig. 8. According to the
results depicted in Fig. 8, since no overlap exists between the
proposed method and the benchmark methods, it can be con-
cluded that the proposed method can achieve statistically signif-
icant improvement compared to other methods and consistently
enhances the performance of the synthesized speech quality for
both target and interference separated signals. It is observed that
at 0 dB of SSR the proposed method achieves greater improve-
ment compared to other methods. From Fig. 8, it is observed
that in extreme cases (low/high SSRs), the proposed method im-
proves the perceived speech quality of the separated signals. The
numbers in the first row of Table V show the results obtained
by each clip for the gender-dependent scenario. We also con-
sidered results shown in Table VI as the MOS results obtained
by each listener averaged over eight clips for gender-depen-
dent scenario. It is observed that, for the gender-dependent sce-
nario, the proposed method consistently outperforms the others
in most of the cases.

Fig. 8. Results of the MUSHRA listening test for the gender-dependent sce-
nario. MOS scores for different separation methods over all excerpts and all
listeners. Error bars indicate 95% confidence intervals.

By comparing the MOS results shown in Figs. 7 and
8 along with Tables III–VI, we observe that the proposed
method achieves a higher score both in speaker-depen-
dent and gender-dependent scenarios. The MOS results for
gender-dependent scenario are lower than those obtained for
speaker-dependent scenarios. At low SSR levels, both mask
and STFT-based methods show inferior performance especially
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in gender-dependent scenario. In contrast, the proposed method
shows a shorter confidence interval both in speaker-dependent
and gender-dependent scenario. By comparing the MOS re-
sults depicted in Figs. 7 and 8, it is observed that the relative
difference between the methods in speaker-dependent and
gender-dependent scenarios shows a remarkably similar pattern
of overall performance.

VI. DISCUSSION

In previous separation methods based on either harmonic
modeling [16], [24], [25], [32], [39]–[41], or CASA [20]–[22],
the speech perceived quality for separated signals was directly
determined by the accuracy of the multi-pitch estimator. How-
ever, due to energetic masking [2], the pitch detection accuracy
of most of the existing pitch estimators, degrades significantly,
especially at low SSRs [26], [28]. Hence, the proposed method
offers an attractive candidate for SCSS or similar enhancement
scenarios where pitch estimation with high accuracy is either
rather erroneous [26], [28] or difficult because of the energetic
masking [2], [27]. In addition, it was shown in [39] that a
pitch-based method is not capable of attaining the same level
of enhancement compared to a system based on sinusoidal
frequencies. We confirmed this by comparing the separation
performance of the proposed method with source-driven in
[24], [25] and fusion methods in [16]. These motivate us to
present a separation strategy independent of pitch estimates, in
this paper. The sinusoidal parameter estimation taken in this
work leads to a high-frequency resolution at low frequencies,
reflecting the pitch harmonic structure of each speaker signal
and their mixture.

The proposed approach, like other well-known sinusoidal
modeling methods in [39]–[41], has a major limitation in the
failure to deal with unvoiced segments in a consistent manner.
The methods in [39]–[41] were all suggested and limited by
utterances composed of vocalic mixtures. Additionally, the
sinusoidal modeling we used in this work is originally like the
one described in [43] proposing that if we sample the spectrum
of unvoiced speech with rate equal to 100 Hz, no perceivable
degradation is observed in the synthesized speech signal at least
from perceptual point of view. As future work, it is possible
to consider more complex modeling of speech and jointly
estimating sinusoidal model parameters and voicing states of
the two underlying signals.

The study in [39] reported the problems related to the fre-
quency resolution of the discrete Fourier transform especially
when two sinusoids related to different fundamental frequencies
are arbitrary close to each other. As shown in [39], [40], the so-
lution leads to singular ill-conditioned matrix as the frequency
of one speaker close to the frequency of the other speaker and
the problem is only solvable if two pitch frequencies and their
integer multiples are not overlapping and are well separated;
a condition which is often not met when two speech sources
exist in the scene. This problem is equal to extracting two un-
knowns (two frequencies) from single observation (mixture fre-
quency). In order to deal with such ambiguity, [39] suggested
monitoring the spacing between neighboring frequencies and
using a multi-frame interpolation procedure. However, in this

work, we suggest testing all possible combinations of codevec-
tors selected from underlying speakers’ codebooks. This solu-
tion guarantees leading into the minimal error in the nonlinear
cost function. The work in [39] and [41] only considered en-
hancing the target speech while current work addresses the more
challenging problem of separating both speaker signals from
their observed mixture. More specifically, in [39] the interfer-
ence was suppressed while changing the interference speech to
noise.

The present sinusoidal mixture estimator ignores the
cross-term components and phase differences which, in some
situations, play a critical role and can change the position of
peaks completely. This happens when the sinusoidal peaks
of the underlying speakers get closer than 25 Hz. In such
situations, the accuracy of the sinusoidal mixture estimator is
limited but still finds the two states of the two speaker models
(sinusoidal coders), which when combined, will best describe
the mixture spectrum at certain frequencies (estimated from the
mixture spectrum per bands).

The proposed technique uses pre-trained frequency codevec-
tors based on peaks which makes the system more speaker-de-
pendent. According to our simulations, the proposed method
also led to good results for gender-dependent scenario which ad-
dresses an intermediate scenario. The more interesting speaker-
independent scenario, most likely can be addressed by com-
bining a speaker identification module with current separation
system as reported in [50].

The present work considers the mixture scenario composed
of two speaker signals. For mixtures with more than two
speakers, it is possible to employ an EM-like algorithm in
which for each speaker we update the signal parameters of
one speaker at a time and then use these parameters in another
searching scheme required for finding the optimal states of
other two speakers’ states. Separating mixtures of more than
two speakers is an open problem and we have considered that
as a potential future work.

The separation approach presented in this work neglected
room reverberation and echoes as well as background noise
which exist in a real recording scenario. A dereverberation ap-
proach [51], [52] together with a noise-suppression module can
be integrated to each other, in order to mitigate the reverberation
and background noise problem for achieving a robust speech
separation system in a practical scenario. As an example, [52]
proposed to suppress noise components by spectral subtraction
method, followed by a dereverberation module applied to the
noise-suppressed signal. In this way, it is possible to derever-
berate the received echoic signal as well as to reduce back-
ground noise from the corrupted signal recorded by one micro-
phone, and then apply our separation approach to the enhanced
mixed signal.

By assuming a priori knowledge of double-talk regions in
a given mixed signal, we apply the 2-D search only to mixed
frames to find the optimal states of the underlying speaker
models (codebooks). For the single-talk regions, we simply
re-synthesize the single-talk speaker signals according to the
corresponding speaker codebooks. It should be noted that, the
quantitative performance reported in our experiments are for
the entire utterances.
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The proposed approach cuts the computational cost in separa-
tion by substituting STFT feature vectors with sinusoidal peaks.
We conducted simulations to quantify the computational com-
plexity of the proposed method for ten 2-s mixtures. We ob-
served that the STFT-VQ approach, used as our benchmark,
took in average 26.71 s for separating each frame while the pro-
posed one required 5.55 s. Hence, the proposed approach leads
to approximately 5 times less computation time.

The upper-bound separation results presented here confirmed
recent findings in [47], where it was demonstrated that by ap-
plying the split-VQ codebooks composed of sinusoidal param-
eters, it is possible to achieve a better quantization performance
in terms of the re-synthesized speech quality compared to the
conventionally used STFT or its logarithm as the selected fea-
ture vectors. This agrees with the conclusion in [31] stating that
the ultimate quality of model-based speech enhancement system
is upper-bounded by the performance of the coder used. Sim-
ilarly in SCSS, the selected feature type along with the sta-
tistical model determines the separation upper-bound perfor-
mance. Therefore, to achieve an acceptable separation upper-
bound, the selected feature type for SCSS is required to perform
a high quantization performance that is in agreement with the re-
sults reported in [17], [18], and [47]. It was shown in [17] that
by applying a subband perceptually weighted transform on the
STFT vectors, it is possible to achieve improvements in the per-
ceptual quality of the recovered signals especially at low SSRs.
Similarly, in this work we observed that by changing STFT fea-
tures with sinusoidal parameters, it is possible to achieve im-
provements in the separation performance.

We note that the method can also be generalized into speech
enhancement in highly colored noise scenarios including
babble or harmonic noise [1]–[7]. In such scenarios, the mixed
signal includes less harmonics which makes the separation
task rather difficult. As a future work, the proposed method is
expected to be appropriately applied to speech enhancement
scenarios with highly colored noise. The proposed method in
this paper offers an attractive candidate similar to the weighted
codebook-mapping (WCBM) in [53], as an effective tool for
speech enhancement. The WCBM in [53], however, was based
on harmonic plus noise model (HNM) feature parameters that
require voicing estimation and pitch. In contrast, the proposed
method in this research is independent of pitch estimates and
benefits from the advantages inherited from modified sinusoidal
features, split-VQ codebooks, and sinusoidal mixture estimator
presented in this work.

VII. CONCLUSION

In this paper, we presented new results on single-channel
speech separation and also proposed a new method based on
sinusoidal parameters. In our proposed method, we suggested
to use a mixture estimator in the sinusoidal domain targeted to
find the optimal sinusoidal codevectors selected from speaker
codebooks that, when combined, best describe the observed
mixed signal in each frame. The key idea in the proposed
method is to separate the signals by mapping their mixture
frames onto the joint subspaces of the sources and then compute
the parts that fall in each subspace. We studied the performance
of the proposed method and compared its results with those

obtained by previous SCSS methods. Through extensive simu-
lations, and by comparison to other methods, it was observed
that the proposed method leads to rather good re-synthesized
speech quality as well as lower undesirable cross-talk for both
target and interference signals. It was also concluded that
minimization at sinusoidal frequencies of the mixed signal,
used in the proposed mixture estimator, makes significant
improvement compared to both mask approach (log-max and
Wiener filtering) and STFT-based VQ approaches. To assess the
improvements made by the proposed method, we used PESQ as
objective measure and MUSHRA listening tests as subjective
evaluation for both speaker-dependent and gender-dependent
scenarios. It was observed that the proposed method achieved a
higher score compared to other separation methods. In addition,
it was observed that by increasing the signal-to-signal ratio,
the proposed method asymptotically reaches the upper-bound
separation performance (ideal separation scenario). According
to the MUSHRA listening tests, the perceived speech quality of
the proposed method was the highest both in speaker-dependent
and gender-dependent scenarios. Finally, compared to other
methods, the proposed method achieved lower cross-talk and
was mostly preferred by the listeners.

REFERENCES

[1] P. Loizou, Speech Enhancement: Theory and Practice. Boca Raton,
FL: CRC, 2007.

[2] S. Srinivasan and D. Wang, “A model for multitalker speech percep-
tion,” J. Acoust. Soc. Amer., vol. 124, no. 5, pp. 3213–3224, Nov. 2008.

[3] H. Sameti, H. Sheikhzadeh, L. Deng, and R. L. Brennan, “HMM-based
strategies for enhancement of speech signals embedded in nonsta-
tionary noise,” IEEE Trans. Speech Audio Process., vol. 6, no. 5, pp.
445–455, Sep. 1998.

[4] S. Srinivasan, J. Samuelsson, and W. B. Kleijn, “Codebook driven
short-term predictor parameter estimation for speech enhancement,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 14, no. 1, pp. 163–176,
Jan. 2006.

[5] S. Srinivasan, J. Samuelsson, and W. B. Kleijn, “Codebook-based
Bayesian speech enhancement for nonstationary environments,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 15, no. 2, pp. 441–452,
Feb. 2007.

[6] Y. Ephraim and H. L. V. Trees, “A signal subspace approach for speech
enhancement,” IEEE Trans. Speech Audio Process., vol. 3, no. 4, pp.
251–266, Jul. 1995.

[7] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
mean square error short-time spectral amplitude estimator,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 32, no. 6, pp. 1109–1121,
Dec. 1984.

[8] S. H. Jensen, P. C. Hansen, S. D. Hansen, and J. A. Sorensen, “Reduc-
tion of broad-band noise in speech by truncated QSVD,” IEEE Trans.
Speech Audio Process., vol. 3, no. 6, pp. 439–448, Nov. 1995.

[9] P. C. Hansen and S. H. Jensen, “Prewhitening for rank-deficient noise
in subspace methods for noise reduction,” IEEE Trans. Signal Process.,
vol. 53, no. 10, pp. 3718–3726, Oct. 2005.

[10] P. C. Hansen and S. H. Jensen, “Subspace-based noise reduction for
speech signals via diagonal and triangular matrix decompositions:
Survey and analysis,” EURASIP J. Adv. Signal Process., vol. 1, p. 24,
Mar. 2007.

[11] D. Wang, “Time-frequency masking for speech separation and its po-
tential for hearing aid design,” Trends in Amplification, vol. 12, no. 4,
pp. 332–353, Dec. 2008.

[12] J. R. Hershey, S. J. Rennie, P. A. Olsen, and T. T. Kristjansson, “Su-
perhuman multi-talker speech recognition: A graphical modeling ap-
proach,” Elsevier Comput. Speech Lang., vol. 24, no. 1, pp. 45–66, Jan.
2010.

[13] A. M. Reddy and B. Raj, “Soft mask methods for single-channel
speaker separation,” IEEE Trans. Audio, Speech, Lang. Process., vol.
15, no. 6, pp. 1766–1776, Aug. 2007.



1276 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 5, JULY 2011

[14] S. T. Roweis, “One microphone source separation,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2000, pp. 793–799.

[15] S. T. Roweis, “Factorial models and refiltering for speech separation
and denoising,” in Proc. Eurospeech, 2003, pp. 1009–1012.

[16] M. H. Radfar, R. M. Dansereau, and A. Sayadiyan, “Monaural speech
segregation based on fusion of source-driven with model-driven tech-
niques,” Elsevier Speech Commun., vol. 49, no. 6, pp. 464–476, Jun.
2007.

[17] P. Mowlaee, A. Sayadiyan, and H. Sheikhzadeh, “Evaluating single
channel speech separation performance in transform-domain,” J.
Zhejiang Univ.-SCIENCE C, Comput. Electron., vol. 11, no. 3, pp.
160–174, Jan. 2010.

[18] D. P. W. Ellis and R. J. Weiss, “Model-based monaural source separa-
tion using a vector-quantized phase-vocoder representation,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., May 2006, vol. 5, pp.
957–960.

[19] M. J. Reyes-Gomez, D. P. W. Ellis, and N. Jojic, “Multiband audio
modeling for single-channel acoustic source separation,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., May 2004, vol. 5,
pp. 641–644.

[20] D. Wang and G. J. Brown, Computational Auditory Scene Analysis:
Principles, Algorithms, and Applications. New York: Wiley-IEEE
Press, 2006.

[21] Y. Shao, S. Srinivasan, Z. Jin, and D. Wang, “A computational auditory
scene analysis system for speech segregation and robust speech recog-
nition,” Elsevier Comput. Speech Lang., vol. 24, no. 1, pp. 77–93, 2010.

[22] G. Hu and D. Wang, “Monaural speech segregation based on pitch
tracking and amplitude modulation,” IEEE Trans. Neural Netw., vol.
15, no. 5, pp. 1135–1150, Sep. 2004.

[23] P. Li, Y. Guan, S. Wang, B. Xu, and W. Liu, “Monaural speech sep-
aration based on MAXVQ and CASA for robust speech recognition,”
Elsevier Comput. Speech Lang., vol. 24, no. 1, pp. 30–44, Jan. 2010.

[24] B. Hanson and D. Wong, “The harmonic magnitude suppression
(HMS) technique for intelligibility enhancement in the presence of
interfering speech,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Mar. 1984, pp. 65–68.

[25] J. Naylor and S. Boll, “Techniques for suppression of an interfering
talker in co-channel speech,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Apr. 1987, vol. 12, pp. 205–208.

[26] D. Chazan, Y. Stettiner, and D. Malah, “Optimal multi-pitch estimation
using the EM algorithm for co-channel speech separation,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., Apr. 1993, vol. 2,
pp. 728–731.

[27] J. Barker, M. Ning, A. Coy, and M. Cooke, “Speech fragment decoding
techniques for simultaneous speaker identification and speech recogni-
tion,” Elsevier Comput. Speech Lang., vol. 24, no. 1, pp. 94–111, 2010.

[28] M. Karjalainen and T. Tolonen, “Multi-pitch and periodicity analysis
model for sound separation and auditory scene analysis,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 1999, pp. 929–932.

[29] L. Benaroya, F. Bimbot, and R. Gribonval, “Audio source separation
with a single sensor,” IEEE Trans. Audio, Speech, Lang. Process., vol.
14, no. 1, pp. 191–199, Jan. 2006.

[30] M. H. Radfar and R. M. Dansereau, “Single-channel speech separation
using soft mask filtering,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 15, no. 8, pp. 2299–2310, Nov. 2007.

[31] Y. Ephraim, “Statistical-model-based speech enhancement systems,”
Proc. IEEE, vol. 80, no. 10, pp. 1526–1555, Oct. 1992.

[32] M. H. Radfar, R. M. Dansereau, and A. Sayadiyan, “A maximum
likelihood estimation of vocal-tract-related filter characteristics for
single channel speech separation,” EURASIP J. Audio, Speech, Music
Process., vol. 1, p. 15, Mar. 2007.

[33] J. Ming, T. J. Hazen, and J. R. Glass, “Combining missing-feature
theory, speech enhancement, and speaker-dependent/-independent
modeling for speech separation,” Elsevier Comput. Speech Lang., vol.
24, no. 1, pp. 67–76, Jan. 2010.

[34] D. Burshtein and S. Gannot, “Speech enhancement using a mixture-
maximum model,” IEEE Trans. Speech Audio Process., vol. 10, no. 6,
pp. 341–351, Sep. 2002.

[35] Y. Shao and D. Wang, “Model-based sequential organization in
cochannel speech,” IEEE Trans. Audio, Speech, Lang. Process., vol.
14, no. 1, pp. 289–298, Jan. 2006.

[36] M. G. Christensen and A. Jakobsson, Multi-Pitch Estimation. San
Rafael, CA: Morgan and Claypool, 2009, Synthesis Lectures on Speech
and Audio Processing.

[37] C. J. Moore, An Introduction to the Psychology of Hearing. San
Diego, CA: Academic, 2003.

[38] T. W. Parsons, “Separation of speech from interfering speech by means
of harmonic selection,” J. Acoust. Soc. Amer., vol. 60, pp. 911–918,
1976.

[39] T. F. Quatieri and R. G. Danisewicz, “An approach to co-channel talker
interference suppression using a sinusoidal model for speech,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 38, no. 1, pp. 56–69, Jan.
1990.

[40] F. M. Silva and L. B. Almeida, “Speech separation by means of sta-
tionary least-squares harmonic estimation,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., Apr. 1990, vol. 2, pp. 809–812.

[41] T. Tolonen, “Methods for separation of harmonic sound sources using
sinusoidal modeling,” in Proc. 106th Audio Eng, Society Conv., 1999.

[42] M. Cooke, J. R. Hershey, and S. J. Rennie, “Monaural speech separa-
tion and recognition challenge,” Elsevier Comput. Speech Lang., vol.
24, no. 1, pp. 1–15, 2010.

[43] R. McAulay and T. Quatieri, “Speech analysis/synthesis based on a si-
nusoidal representation,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-34, no. 4, pp. 744–754, Aug. 1986.

[44] P. Mowlaee, A. Sayadiyan, and H. Sheikhzadeh, “FDMSM robust
signal representation for speech mixtures and noise corrupted audio
signals,” IEICE Electron. Express, vol. 6, no. 15, pp. 1077–1083, 2009.

[45] H. Hayes, Statistical Digital Signal Processing and Modeling. New
York: Wiley, 1996.

[46] P. Mowlaee, M. G. Christensen, and S. H. Jensen, “Improved single
channel speech separation using sinusoidal modeling,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., Mar. 2010, pp. 21–24.

[47] P. Mowlaee and A. Sayadiyan, “Model-based monaural sound sep-
aration by split-VQ of sinusoidal parameters,” in Proc. Eur. Signal
Process. Conf., Aug. 2008.

[48] “Perceptual evaluation of speech quality (PESQ), an objective method
for end-to-end speech quality assessment of narrowband telephone net-
works and speech codecs,” ITU-T Rec. p. 862, 2001.

[49] “Method for the subjective assessment of intermediate quality level of
coding systems,” ITU-R BS.1534-1 2003.

[50] P. Mowlaee, R. Saeidi, Z. H. Tan, M. G. Christensen, P. Fränti, and S.
H. Jensen, “Joint single-channel speech separation and speaker iden-
tification,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Mar. 2010, pp. 4430–4433.

[51] T. Yoshioka, T. Nakatani, and M. Miyoshi, “Integrated speech en-
hancement method using noise suppression and dereverberation,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 17, no. 2, pp.
231–246, Feb. 2009.

[52] K. Kinoshita, T. Nakatani, and M. Miyoshi, “Spectral subtraction
steered by multi-step forward linear prediction for single channel
speech dereverberation,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2006, pp. 817–820.

[53] E. Zavarehei, S. Vaseghi, and Q. Yan, “Noisy speech enhancement
using harmonic-noise model and codebook-based post-processing,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 4, pp.
1194–1203, May 2007.

Pejman Mowlaee (S’07) was born in Bandar Anzali,
Iran, in March 1983. He received the B.Sc. and M.Sc.
degrees both with straight honors from Guilan Uni-
versity, Rasht, Iran, and Iran University of Science
and Technology, Tehran, in 2005 and 2007, respec-
tively. He is currently pursuing the Ph.D. degree at
Aalborg University, Aalborg, Denmark.

His research interests include digital signal
processing theory and methods with application
to speech processing and machine learning, in
particular single-channel speech separation and

enhancement, and speech coding.
Mr. Mowlaee has received several awards during his academic career, to name

a few: Young Researchers Award for the M.Sc. degree, Honored M.Sc. thesis
in nation-wide contest between Iranian electrical engineering students, and was
known as a talented student at the top class of Tehran polytechnic.



MOWLAEE et al.: NEW RESULTS ON SCSS USING SINUSOIDAL MODELING 1277

Mads Græsbøll Christensen (S’00–M’05) was
born in Copenhagen, Denmark, in March 1977. He
received the M.Sc. and Ph.D. degrees from Aalborg
University, Aalborg, Denmark, in 2002 and 2005,
respectively.

He was formerly with the Department of Elec-
tronic Systems, Aalborg University, and is currently
an Associate Professor in the Department of Ar-
chitecture, Design, and Media Technology. He has
been a Visiting Researcher at Philips Research Labs,
Ecole Nationale Supérieure des Télécommunica-

tions (ENST), University of California, Santa Barbara (UCSB), and Columbia
University. He has published more than 75 papers in peer-reviewed conference
proceedings and journals and is coauthor (with A. Jakobsson) of the book
Multi-Pitch Estimation (Morgan & Claypool, 2009). His research interests
include digital signal processing theory, and methods with application to speech
and audio, in particular parametric analysis, modeling, and coding.

Dr. Christensen has received several awards, namely an IEEE International
Conference on Acoustics, Speech, and Signal Processing Student Paper Con-
test Award, the Spar Nord Foundation’s Research Prize awarded annually for
his Ph.D. dissertation, and a Danish Independent Research Councils Young Re-
searcher’s Award. He is an Associate Editor for the IEEE SIGNAL PROCESSING

LETTERS.

Søren Holdt Jensen (S’87–M’88–SM’00) received
the M.Sc. degree in electrical engineering from Aal-
borg University, Aalborg, Denmark, in 1988 and the
Ph.D. degree in signal processing from the Technical
University of Denmark, Lyngby, in 1995.

Before joining the Department of Electronic
Systems, Aalborg University, he was with the
Telecommunications Laboratory of Telecom Den-
mark, Ltd., Copenhagen, Denmark; the Electronics
Institute of the Technical University, Denmark; the
Scientific Computing Group of Danish Computing

Center for Research and Education (UNI-C), Lyngby; the Electrical Engi-
neering Department, Katholieke Universiteit Leuven, Leuven, Belgium; and
the Center for PersonKommunikation (CPK), Aalborg University. He is Full
Professor and Head of the Multimedia, Information, and Signal Processing
Section. He is currently heading a research team working in the area of numer-
ical algorithms, optimization techniques, and signal processing for speech and
audio processing, image and video processing, multimedia technologies, and
digital communications.

Prof. Jensen was an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL

PROCESSING and is currently Member of the Editorial Board of Elsevier Signal
Processing and the EURASIP Journal on Advances in Signal Processing. He
is a recipient of the European Community Marie Curie Fellowship, former
Chairman of the IEEE Denmark Section, and Founder and Chairman of the
IEEE Denmark Section, Signal Processing Chapter.


