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ABSTRACT

We present a novel single-channel separation approach to improve
the separation performance while recovering the signals from a mix-
ture. The key idea in this research is to employ a mixture estima-
tor based on unconstrained modified sinusoidal parameters. Com-
pared to the mixmax (binary mask) and Wiener filter (softmask) ap-
proaches, the proposed approach works independently of pitch es-
timates. Furthermore, it is observed that it can achieve acceptable
perceptual speech quality with less cross-talk at different signal-to-
signal ratios while bringing down the complexity by replacing STFT
with sinusoidal parameters. Improvements made by the proposed ap-
proach are demonstrated by employing PESQ as our objective mea-
sure and MUSHRA listening test as our subjective evaluation.

Index Terms— Mixture estimation, single-channel speech sep-
aration, mask-based methods, speaker codebook.

1. INTRODUCTION

Although there have been recent advances in many speech enhance-
ment methods [1], single-channel speech separation (SCSS) systems
with high quality are still of great importance and remain as an un-
solved problem. Ideal separation systems are targeted to provide ac-
curate estimations for both sources from their mixture. In this aspect
having a high quality separation system would play an integral part
offering robustness to many practical applications including speech
recognition and speaker identification from mixtures of signals.

Previous single-channel speech separation systems are mainly
divided into two categories: source driven [2], [3] and model-based
methods [4], [5]. Most methods in either group are often required
to estimate two masks at each frame and applying them to the given
mixture to recover the unknown sources [3], [6–8]. The mask to
be applied could be either binary (hard decision) [3], [6], [7] or
soft mask [8] leading to MAX-VQ system (with log-max mixture
approximation) [6], [7] and Wiener filter (soft masks) [8], respec-
tively. Most of the previous separation systems led to rather satis-
fying performance for both sources mostly at signal-to-signal ratio
(SSR) around 0 dB [4–8]. However, it is often expected that the
SSR level vary from 0 dB since the underlying speakers in the mix-
ture often mask each other as time evolves. As a consequence, the
SSR level can vary in frames [1] making signal recovery of speakers
difficult. One reason for this problem is the fact that usually at a
frame level one speaker signal dominates the other and the energies
of sources collide at a time-frequency cell. The mask-based methods
explicitly suggest to filter out one of the speakers to recover the target
speaker. This would degrade the performance of the signal recov-
ery for the masked speaker. Further, using masks inevitably causes
cross-talk and artifacts in the separated signals as reported in [3].
From these aspects, there is a strong motivation in finding novel

methods to recover both signals at different SSR levels. According
to the results in [3] the Computationally Auditory Scene Analysis
(CASA) often lacks enough perceptual quality due to severe cross-
talk problems in the separated output signals. The separation per-
formance of CASA-based methods are mainly determined by multi-
pitch estimation accuracy. Further, according to the simulation re-
sults given in [9], the pitch estimation shows large gross errors espe-
cially at low SSR levels because of energetic masking. In this aspect,
integration of pitch as proposed in [6] may not be the best solution at
low SSR levels, since extracting pitch frequencies from a mixture is
both challenging and difficult [9]. This, as a consequence, causes er-
rors in mixture estimation stage which is targeted to find the pair of
states of composite sources of the speakers that best fit the given
mixture. These indices are then sent to the reconstruction stage,
therefore any mixture estimation error would degrade the percep-
tual quality of the synthesized outputs. Compared to the mask-based
methods, a model-based system is able to achieve a rather accept-
able separation quality for known speakers at SSR of 0 dB. Model
based systems are mostly based on statistical models including vec-
tor quantization (VQ) [4–6], Gaussian mixture models (GMM) [8]
and Hidden markov models (HMM) [7]. As the most representa-
tive method of this group, the MAX-VQ separation system tries to
produce two masks based on the estimated VQ states [2], [6], [7]
and integrate them with the log-max approximation as its mixture
estimation. According to the results reported in [2], [5], [6] using
these estimated masks provides re-synthesis signals often corrupted
with undesirable cross-talk effects. Furthermore, based on the anal-
ysis recently given in [10], we showed that log-max approximation
in [6], [7] and Wiener filter [8] are both biased mixture estimators.

The main purpose of this paper is to propose a novel mixture
estimator and apply it to modified unconstrained sinusoidal parame-
ters. The separation result of the proposed method is compared with
MAX-VQ [7], Wiener filter [8] and model-based VQ system by [4].
The paper is structured as follows: In the next section, we introduce
modified unconstrained sinusoidal parameters to be employed as fea-
ture parameters. Parameter estimation is presented and followed by
the proposed sinusoidal mixture estimator. We also explain the pro-
cedure to produce split-VQ speaker models composed of sinusoidal
parameters to be used in our proposed method. In Section 3, we
present the experimental results with PESQ as an objective measure
and MUSHRA test as a subjective measure. Section 4 features the
discussions and future work and Section 5 concludes on the work.

2. PROPOSED SEPARATION METHOD

2.1. Sinusoidal model

Each speaker signals is denoted by sj(n) with j ∈ [1, 2] and their
mixture is shown by z(n) with n = 0, . . . , N−1 as the time sample
index where N is the window length in samples. The sinusoidal
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model of speech in a fixed signal frame is

s(n) =
M∑

i=1

ai cos(2πfin + φi) + e(n) 0 ≤ n ≤ N − 1, (1)

where e(n) is the sinusoidal modeling error assumed as an additive
noise, M is model order and i ∈ [1, M ] is an index used to refer the
ith sinusoidal component characterized by fi, ai, and φi as the fre-
quency, amplitude, and phase, respectively. As a parametric feature
vector we have Θ=[a, f , φ] of size M × 3.

2.2. Sinusoidal Modeling and Parameter Estimation

We consider two modifications on unconstrained sinusoidal model
developed in [11]. The modifications we made are described as
follow; 1) the spectral coefficients are translated to Mel scale to
take into account the logarithmic sensitivity of human auditory sys-
tem, and 2) at each Mel band, the spectral peak with the highest
amplitude is selected. By employing these two foundations as our
sinusoidal parameter estimation rule, we find one peak per band
and end up with three M × 1 vectors of amplitude, frequency and
phase for each speaker signal or their mixture. We define vi =
[1 ej2πfi . . . ej2πfi(N−1)]T with i ∈ [1, M ] as the sinusoidal
frequency vector of dimension N × 1 and fi is the selected peak
at the ith band. All estimated sinusoidal frequency vectors for each
speaker signal are represented in a matrix format as

V = [v1 v2 . . . vM ]T i ∈ [1, M ] , (2)

where V is an M × N Vandermonde matrix whose rows are vi.
Then signal representation in terms of sinusoids is an N × 1 vec-
tor given by ŝ = V

T
a where a = [a1 . . . aM ]T and ŝ the

reconstructed signal by the sinusoidal peaks in (2). Defining the
complex amplitude for each sinusoid as ai = Aie

jφi , the objec-
tive of the parameter estimation stage is to find peaks character-
ized by an amplitude frequency pair given by Ai = |Si(fi)| and
fi = arg maxf∈Fi

log |Si(f)|, respectively where Fi denotes a set
composed of all the frequencies within the frequency spectrum in
the ith subband denoted by Si(f).

2.3. Sinusoidal Mixture Estimator

According to previous Section, we model the mixed signal as z =
V

T
z az where Vz is a Vandermonde matrix composed of M fre-

quency vectors of N × 1 as vz,i = [1 ejωz,i . . . ejωz,i(N−1)]T

related to {ωz,i} as the set of sinusoidal frequency peaks retained for
the mixture at the ith band. We derive mixture estimator based on
unconstrained sinusoidal parameters of the underlying speakers and
their mixture. The key idea is to project the mixture to its sinusoidal
subspace spanned by the columns of Θz and attempt to find a cost
function to be minimized in mixture estimation stage. Based on the
model in (1), for each speaker the power spectrum at the ith band is

P (ejω) = σ
2
i + A

2
i [δ(ω − ωi) + δ(ω + ωi)] , (3)

where we can replace ωi with underlying speakers signals frequency
sets given by {ω1,i} and {ω2,i} or the mixture denoted by {ωz,i}
to define the related power spectrum. A cost function is defined as
the squared error between the power spectra of the given and esti-
mated mixture to be sampled only at sinusoidal peaks defined by
set {ωz,i}. Sampling at sinusoidal frequencies of the mixed sig-
nal {ωz,i} is not necessarily synchronous with {ω1,i} and {ω2,i},
bringing the requirement of using an appropriate window denoted
by W (ejω) to reduce the spectral leakage. The expected value for

the periodogram for each signal spectrum is given by E{P̂ (ejω)} =
P (ejω)∗W (ejω) where E{·} denotes expectation operator. The ex-
pected value for the mixture approximation error at the ith band is

E{εi(e
jω)} = E{P̂z(e

jω)− P̂1(e
jω)− P̂2(e

jω)} (4)

= σ
2
ε,i + A

2
z,i[W (ej(ω−ωz,i)) + W (ej(ω+ωz,i))]

−
2∑

k=1

A
2
k,i[W (ej(ω−ωk,i)) + W (ej(ω+ωk,i))], (5)

where we define σ2
ε,i = σ2

z,i−σ2
1,i−σ2

2,i as the variance of the error.
The key idea is to sample the expected mixture estimation error in
(5) at sinusoidal frequencies of the mixture per ith band defined by
set {ωz,i}. Replacing ω by ωz,i in (5) we get

εi = A
2
z,i −A

2
1,iW (ej(ωz,i−ω1,i))−A

2
2,iW (ej(ωz,i−ω2,i)), (6)

which addresses the mixture approximation error defined between
the original and estimated spectra at the ith subband. A1,i,A2,i and
Az,i indicate the first, second and the mixture sinusoidal amplitude
selected at the ith band. According to (1), the mixture approximation
error energy converges to zero when the underlying speaker spec-
tra are highly harmonic. Then the mixture estimation error energy
termed as d at a given frames is d =

∑M

i=1 |εi|
2. Finally, the sinu-

soidal mixture estimation is accomplished by searching for the opti-
mal states of the composite sources denoted by {q∗, t∗} obtained by
solving the following minimization problem at each frame

{q∗, t∗} = arg min
q,t

dq,t , (7)

where q, t can be any possible state in the speaker models and dq,t

is a 2D cost function defined based on the mixture approximation
error in (6). At each frame, by in-place minimization of dq,t in (7),
we achieve two states of the speaker models that when combined
best fit the mixture. The selected codebook indices are then sent to a
weighted overlap-add (OLA) to reconstruct two separated signals.

2.4. Split-VQ Speaker Codebooks

Recently, we reported improvements by applying perceptually
weighted subband on the short-time Fourier transform (STFT)
features especially at low SSR [5]. It was observed that the se-
lected feature type along with the statistical model determine the
upper bound of separation performance. Therefore, to achieve the
upper bound separation quality, the selected feature for SCSS is
required to perform a high quantization performance which is in
agreement with the results reported in [4], [5], [12]. This is in
accordance with the conclusion in [13] stating that the ultimate
quality of the model-based speech enhancement system is upper
bounded by the performance of the coder used. In this respect it
was shown in [12] that by applying the split-VQ codebooks on si-
nusoidal parameters, it is possible to achieve a better quantization
performance compared to the conventionally used STFT features.
Due to this, we use split-VQ codebooks on sinusoidal amplitude
and frequencies of the underlying signals as our speaker codebooks.
Sinusoidal parameters from the training dataset of each speaker in
the mixture are extracted and results in matrices whose entries are
comprised of two distinctive parts; amplitude and frequency each
of dimension 1 × M . Similar to [12], we apply two different dis-
tance measures to produce codebooks of amplitude and frequency.
For the amplitude part we apply da(a, â) = 1

‖a‖

∑M

i=1 (ai − âi)
2

where da(·) denotes the distance measure applied to the amplitude
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part, M is the number of sinusoids used, and ˆ denotes the coded
parameters. Let Ma be the codebook size for the amplitude part of
our split-VQ codebook. After establishing Ma amplitude reference
vectors, we select the most appropriate frequency vectors for each
amplitude codeword. Another VQ of a lower size is performed on
the frequency candidates for amplitude codeword. A VQ with fre-
quency codebook size of 1, 2 or 4 bits was found as an appropriate
choice [12]. To produce frequency codevectors, we apply a distance
measure defined between the frequency part of the trained data ma-
trix (defined by V in (2)) and their related codevectors denoted by
V̂ as dw(V, V̂) =

∑M

i=1 wi(vi − v̂i)
2 where dw(·) is defined as

a weighted square error measure with wi = ai

‖a‖
as the energy nor-

malized amplitude vector used as a dynamic weighting to weight the
Euclidean distance measure proportional to the sinusoidal amplitude
at the peak frequencies indicated by Vi. Concatenating the coded
amplitude and frequency vectors denoted by v̂ and â, respectively,
we achieve coded vectors in split-VQ of each speaker model.

3. EXPERIMENTAL RESULTS

3.1. Dataset used and Separation Scenario

To evaluate the proposed separation algorithm, we selected four
speakers including two male (speakers 9 and 19) and two female
speakers (4 and 23) from the database [14]. Ten minutes of the
speech signals of each speaker was used to produce split-VQ [12]
and STFT codebooks similarly to [4], [5], [7], all with a codebook
size of 2048 (for practical reasons 11 bits are used for amplitude and
3 bits for frequency part in split-VQ codebooks). As our separation
scenario, we select two speaker signals, and mixed them together at a
certain SSR ranging within [−18, 18]. The sampling frequency was
decreased to 8 kHz from the original 25 kHz. A Hanning window
of duration 32 ms is used with a frame rate of 8 ms. The benchmark
methods used in our simulations are the mask based methods both
binary mask (log-max) [6], [7] and Wiener filter (soft mask) [8].
Since most separation systems predominantly employ STFT or its
logarithm as their signal representation [4], [6–8], we include the
results obtained by the model-based VQ in [4], [5], [7].

3.2. Objective and Subjective Results

As a proof of concept, we evaluate the separation performance of the
proposed method in a speaker dependent scenario. The core of the
separation scenario is composed of two trained codebooks. Simu-
lation results are conducted to assess the separation performance of
the proposed method and compared them to those obtained by other
separation methods. As our testing phase, fifteen pairs of utterances
of each speaker (not used in the training set) were randomly selected
to make mixtures. The separation results are quantified using PESQ
[15]. The results for the separated signals were averaged at each SSR
level over all pairs of test signals. Fig. 1 illustrates the separation
results obtained by different methods for each speaker output. We
also include the upper bound for the separation performance where
it is assumed that the optimal indices are known a priori. From
Fig. 1 it is observed that the proposed method consistently achieves
the highest PESQ score compared to the mask-based approaches of
MAX-VQ in [2], [6], [7] and Wiener filter in [8]. The mask-based
methods introduce significant mixture estimation error especially at
low or high SSR levels. Further, compared to the STFT-based VQ
system in [4], [5] denoted by STFT-CB in Fig. 1(a) and (b), the pro-
posed separation approach outperforms the STFT upper bound per-
formance [5]. From curves shown in Fig. 1 it is observed that the pro-
posed mixture estimator asymptotically reaches to the upper bound

Table 1. Labels of the excerpts used in MUSHRA test.
Excerpt Separation method and SSR scenario
BMssr0 Binary mask at SSR=0 dB
BMssr-18 Binary mask at SSR= −18 dB
SINssr0 Proposed method at SSR= 0 dB
SINssr-18 Proposed method at SSR= −18 dB
FFTssr0 STFT-based VQ at SSR=0 dB
FFTssr-18 STFT-based VQ at SSR= −18 dB

performance achieved by the split-VQ codebooks [12] while there is
on average a large gap between the separation upper bound and those
obtained by the mask-based methods [6], [7] and the model-based
VQ in [4], [5]. However, all methods exhibit their best performance
as SSR increases for the target speaker. The test and the processed
signals used in our MUSHRA test are presented on our webpage1.

As our second experiment we set up a MUlti-Stimulus test with
Hidden Reference and Anchors (MUSHRA) listening test as de-
scribed in ITU-R BS.1534-1 [16] in order to assess the perceived
speech quality of the separated signals. Eight listeners participated
in the test (the authors not included) and the items used in our lis-
tening test are the separated signals produced by different methods
at certain SSRs. Fig. 2 depicts the mean opinion score (MOS) ob-
tained from different speech separation methods averaged over all
listeners. The excerpts used are shown in Table 1. All of the played
signals were monophonic sampled at 8 kHz of duration 2 sec. For
each excerpt the listeners were asked to rank eight different sepa-
rated signals relative to a known reference on a score from 0 to 100.
The excerpts are composed of the hidden reference (denoted by HR),
an anchor low-pass filtered at 2 kHz (denoted by Anchor 1). The re-
maining six excerpts are the separated signals defined in Table 1.

In our listening test, the separated signals produced by binary
mask (MAX-VQ) in [6], [7] and the STFT-based VQ system [4], [5]
were included. Two extreme cases of SSR level as 0 and -18 dB are
included. It is observed that the proposed sinusoidal mixture esti-
mator scores about twenty points higher on average than the mask-
based method, and more than 25 points higher than STFT-based
method. According to Fig. 2, no overlap exists between the pro-
posed method and the benchmark methods. Hence, it can be con-
cluded that the proposed method can achieve statistically significant
improvement compared to other methods and consistently improves
the performance of the synthesized speech for both target and inter-
ference separated signals. Compared to the mask-based approach,
the proposed method shows improvements in the perceived signal
quality. As indicated by the listening experiments, the separated
output for the MAX-VQ method was found to suffer from severe
crosstalk. Tests also revealed that the separation performance of the
mask-based methods (especially at SSR=0 dB where their separa-
tion performance is often reported) do not necessarily produce the
highest perceived quality for the separated signals. This is observed
by comparing the MOS in Fig. 2 for the BMssr0 and SINssr0.

4. DISCUSSION AND FUTURE WORK
The results obtained in our simulations are in agreement with [3]
stating that the separation quality degrades as the energetic masking
takes place at some overlapping time-frequency cells. The sinusoidal
features used in this work lead to a high frequency resolution peak
picking, reflecting the pitch harmonic structure of single speaker sig-
nals and their mixture. In this aspect, the idea is conceptually similar
to the motivations behind the use of GF in CASA [2], [3]. By select-
ing the peak with the highest amplitude we simply exclude peaks

1http://kom.aau.dk/∼pmb/IEEE ICASSP.htm
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mainly caused by windowing effect or modulation of low frequency
components while still preserving high perceptual quality.

Comparing the upper bound separation performance in Fig. 1
confirms our recent findings in [5] stating that transforming full-
band STFT features into perceptually weighted subbands can sig-
nificantly provide improvements especially at low SSR levels. Cor-
respondingly, the results in this paper show that by using split-VQ
codebooks it is possible to achieve a higher separation upper bound
compared to the conventionally used STFT features. The results pre-
sented here were in agreement with our recent findings in [5], [12],
where the upper bound performance in SCSS was evaluated as the
performance of the coder when the optimal codebook indices are
known a priori (ideal separation).

In this paper, we only considered SCSS. Future work should
consider the generalization of the proposed estimator for speech en-
hancement in non-stationary noise (babble or harmonic) where many
researchers show growing interest in this field.
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Fig. 1. Evaluation results for different separation methods in terms
of PESQ for (a) speaker one (b) speaker two versus SSR.
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Fig. 2. MOS scores for different separation methods over all excerpts
and all listeners. The error bars indicate the 95% confident intervals.

5. CONCLUSION

In this paper, a novel mixture estimator has been proposed and de-
rived based on a modified unconstrained sinusoidal parameters to

improve the speech separation performance. The method is indepen-
dent of pitch estimates and offer a new approach for single-channel
speech separation, where pitch estimation is sometimes difficult
because of energetic masking occurred at time-frequency cells in
a mixture at different SSR. Through several experiments it was
observed that the proposed method achieved a higher score com-
pared to mask-based methods of MAX-VQ, Wiener filter and the
STFT VQ-based separation system especially at low SSR levels. As
SSR increases, the proposed method asymptote its separation upper
bound performance where it is assumed that the optimal indices
are a priori available. According to the MUSHRA listening test,
it was observed that the perceived speech quality of the proposed
system was the highest. Further, compared to the benchmark meth-
ods, the proposed method achieved lower cross-talk and was mostly
preferred by the listeners.
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