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Abstract—We generalize cyclic matching pursuit (CMP), pro-
pose an orthogonal variant, and examine their performance using
multiscale time-frequency dictionaries in the sparse approxima-
tion of signals. Overall, we find that the cyclic approach of CMP
produces signal models that have a much lower approximation
error than existing greedy iterative descent methods such as
matching pursuit (MP), and are competitive with models found
using orthogonal MP (OMP), and orthogonal least squares (OLS).
This implies that CMP is a strong alternative to the more
computationally complex approaches of OMP and OLS for
modeling high-dimensional signals.

I. INTRODUCTION

Assume modeling a discrete signal x ∈ CK as x = Ds
where D = [d1|d2| · · · |dN ] ∈ CK×N is a dictionary of N
atoms that may be parametric, learned, or both. For sparse
approximation, we seek a solution s ∈ CN that has a large
concentration of energy in few of its elements, and that gives
a small error relative to any noise in the signal. In these
respects, we can consider the problem of sparse approximation
as either minimizing the number of atoms in the model that
has a maximum error ε ≥ 0

min ||s||0 such that ||x−Ds||22 ≤ ε (1)

where ||s||0 is the number of non-zero elements in s, or alter-
natively minimizing the error of the model using a maximum
number of atoms n > 0

min ||x−Ds||22 such that ||s||0 ≤ n. (2)

Another possibility, but harder to define precisely, is finding an
efficient model that provides a “useful” analysis of the signal,
for example, its time-frequency characteristics. To ensure there
exists solutions to x = Ds, one typically uses a dictionary of
size N � K and with rank(D) = K, which means that the
dictionary is overcomplete for the inner product space CK .
From the infinite number of solutions then, we want to find
the ones most favorable with respect to the problems in (1) or
(2), or in terms of its “descriptiveness” of the signal.

Many methods have been proposed and extensively studied
to solve these three problems, either exactly or approxi-
mately, e.g., [1]–[11]. One approach is to replace the non-
convex function in (1) or (2) with a convex one that favors
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sparse solutions, e.g., an `1-norm that is computationally
tractable to solve using methods of convex optimization [3],
[7]. These approaches, however, are currently too costly for
high-dimensional signals, and large dictionaries. Greedy iter-
ative descent methods provide another approach to solving
the problems above for high-dimensional signals and large
dictionaries. Matching pursuit (MP) [1] is the simplest of
these, and can be efficiently implemented for large shift-
invariant dictionaries and high-dimensional data, e.g., [12].
Other iterative approaches provide better signal decomposition
in terms of reducing the approximation error, e.g., orthogonal
MP (OMP) [2], [8], [10], and orthogonal least squares (OLS)
[4], [5], but at a higher computational cost than MP. An
extension to MP is given by cyclic MP (CMP) [6], where the
simple strategy and low complexity of MP are preserved, but
post-processing steps are taken to refine and improve the signal
model. Originally, CMP was proposed within a framework
of estimation for perceptual audio coding over parameteric
models using a Fourier dictionary of single-scale discrete
atoms with continuously distributed frequencies and complex
amplitudes. However, the principle of CMP is applicable to
any dictionary, including atoms that are time localized, as in
the case with a multiscale time-frequency dictionary.

In this paper, we first review CMP in a single scale Fourier
dictionary. Then we generalize it to using any dictionary, and
propose an orthogonal extension. We also study the compu-
tational complexity of these methods. Finally, we compare
the performance of these algorithms for modeling signals in
multiscale time-frequency dictionaries.

II. CYCLIC MATCHING PURSUIT

At its core, CMP [6] is identical to MP, except it reassesses
the parameters of all atoms of the model in a cyclic manner. It
is in principle capable of “correcting” atoms that were selected
in a biased way by a greedy pursuit [11]. In this section we
review CMP in a continuous Fourier dictionary, generalize it
to other dictionaries, and propose an orthogonal variation.

A. Pursuit in an Infinite Discrete Fourier Dictionary
Consider a K-dimensional signal x ∈ CK that we model

as a linear combination of L > 0 elements drawn from

FK
∆
=
{
d(ω) =

1√
K
ejωk : −π ≤ ω < π,

k
∆
= [0, 1, . . . ,K − 1]T

}
(3)
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where ejωk
∆
= [ejω0, ejω1, . . . , ejω(K−1)]T . We can exactly

represent any finite norm x ∈ CK by at most K elements
of FK since span{FK} = CK — for instance, using the
discrete Fourier transform of the signal. However, we want
to find L� K elements of FK such that the total distortion
is minimized

min
Θ⊂Ω
|Θ|=L

J(Θ)
∆
= min

Θ⊂Ω
|Θ|=L

∣∣∣∣∣
∣∣∣∣∣x−

L−1∑
i=0

1√
K
aie

jωik

∣∣∣∣∣
∣∣∣∣∣ (4)

where Ω
∆
= {θ = {ω, a} ∈ [−π, π) × C}, and we define the

norm here as the Euclidean norm. The notation |Θ| denotes
the cardinality of the set Θ. This cannot be solved directly, and
even for a dictionary D of finite size requires a combinatorial
search, i.e.,

(|D|
L

)
.

Instead of minimizing the total distortion in (4) over the
entire dictionary, we can use MP and select one atom at a
time such that the lth-atom is selected according to

θl = arg min
θ∈Ω

∣∣∣∣∣∣∣∣r(l)− 1√
K
aejωk

∣∣∣∣∣∣∣∣ (5)

where the lth-order residual is defined

r(l)
∆
=x−

l−1∑
i=0

1√
K
aie

jωik (6)

with the initialization r(0)
∆
=x. After L iterations we have

the parametric signal model ΘL = {θl : l = 0, . . . , L − 1}.
However, if the atoms in FK are not orthogonal, this signal
model will not be the solution to (4). For instance, we can
reduce the norm of (6) by recomputing the best weights
given the L atoms by orthogonal projection. Furthermore,
greedy atom selection of MP over a non-orthogonal dictionary,
along with a lack of fit between signal structures and the
dictionary, will produce a model that has artifacts of the MP
decomposition process [11]. These artifacts contribute more to
fixing the errors of previously selected atoms than modeling
the signal.

CMP [6] iteratively decreases the intermediate distortion in
(5) by refining the parameters of the model in a cyclic manner.
In principle, it operates the same way as any cyclic minimizer
[13]: CMP refines each parameter while holding the others
fixed. CMP then augments the model and proceeds to refine
all the parameters again. Considering that we already have a
set of 0 < l ≤ L parameters Θ

(0)
l = {θi = {ωi, ai}}l−1

i=0,
which produces the lth-order model in (6), and thus a signal
model with the distortion J(Θ

(0)
l ) = ||r(l)||, we attempt to

refine this model one parameter at a time.
In the first refinement step for the (i+ 1)th parameter (0 ≤

i ≤ l), we minimize the intermediate distortion

θ
(1)
i = arg min

θ
D(θ; rl\i)

∆
= arg min

θ

∣∣∣∣∣∣∣∣rl\i − a√
K
ejωk

∣∣∣∣∣∣∣∣ (7)

where we define the intermediate residual

rl\i
∆
=x− 1√

K

i−1∑
m=0

a(1)
m ejω

(1)
m k − 1√

K

l−1∑
m=i+1

a(0)
m ejω

(0)
m k

= rl\i−1 +
1√
K
a

(0)
i ejω

(0)
i k. (8)

with rl\−1
∆
=x. The refined parameters are given by

ω
(1)
i (rl\i) = arg max

ω

∣∣〈rl\i, ejωk〉∣∣ (9)

ai(ω
(1)
i ) =

1√
K

〈
rl\i, e

jω
(1)
i k
〉
. (10)

The problem in (9) is equivalent to finding the frequency of the
maximum DTFT magnitude (or two if the signal is real). With
these new parameters, we replace those of the (i+ 1)th atom,
update the intermediate residual, and refine the parameters of
the next atom.

Since we are minimizing the distortion (7), the worst we
can do in each refinement step is reselect the same atom, and
thus we are guaranteed that

· · · ≤ D
(
θ

(2)
i ; rl\i

)
≤ D

(
θ

(1)
i ; rl\i

)
≤ D

(
θ

(0)
i ; rl\i

)
(11)

in which it is implicit that the residual rl\i is changing with
each refinement. In the first refinement cycle, we refine Θ

(0)
l

into Θ
(1)
l , and we can perform additional cycles of refinement.

As a result of (11) then, we are guaranteed that the total
distortion (4) will not increase with each refinement cycle

. . . ≤ J
(

Θ
(2)
l

)
≤ J

(
Θ

(1)
l

)
≤ J

(
Θ

(0)
l

)
. (12)

The second step of CMP is the augmentation of the model
by a new atom from FK . In this case, we simply add to the
set of parameters Θl those of a new atom as in (5)

θ
(0)
l+1 = arg min

θ
D (θ; r(l + 1))

∆
= arg min

θ

∣∣∣∣∣∣∣∣r(l + 1)− 1√
K
aejωk

∣∣∣∣∣∣∣∣ (13)

which is solved using (9) and (10) with r(l + 1) defined like
in (6). After this, we refine the parameter set Θ

(0)
l+1, augment

again, and repeat until we have arrived at the refined param-
eters of an Lth-order model. Since the model augmentation
guarantees a nonincreasing total distortion (4), we can see

J
(

Θ
(∗)
L

)
≤ . . . ≤ J

(
Θ

(∗)
l

)
≤ . . . ≤ J

(
Θ

(∗)
1

)
(14)

no matter the number of refinement cycles at each order.

B. Pursuit in Any Dictionary

CMP in [6] is motivated by the need for parametric models
of audio signals producing low perceptual distortion, and as
such does not directly lend itself to other dictionaries, such
as a multiresolution Gabor dictionary. In this subsection, we
generalize CMP to sparse approximation using any dictionary.
As before, we consider a K-dimensional signal x ∈ CK that
we model as a linear combination of 0 < L � K elements
drawn from D ∆

= {di ∈ CK : ||di|| = 1} such that

min
H⊂D
|H|=L

J(H) = min
H⊂D
|H|=L

∣∣∣∣∣
∣∣∣∣∣x−

L−1∑
i=0

aihi

∣∣∣∣∣
∣∣∣∣∣ (15)

where hi ∈ H ⊂ D. As before, solving this problem has
combinatorial complexity so we approach it as done in MP,
but with the refinement apparatus of CMP.
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Consider that we have already found l atoms and weights,
giving a l-order representation XMP,l = {H(l),a(l), r(l)}
where x = H(l)a(l) + r(l), H(l) = [h0|h1| · · · |hl−1],
and a(l) ∈ Cl is a vector of weights. We augment this
representation by the rule

XMP,l+1 =


H(l + 1) = [H(l)|hl],
a(l + 1) =

[
aT (l), 〈r(l),hl〉

]T
,

r(l + 1) = x−H(l + 1)a(l + 1)

 (16)

using the atom selection criterion

hl = arg min
d∈D
||r(l)− 〈r(l),d〉d|| = arg max

d∈D
|〈r(l),d〉| (17)

which guarantees that the residual norm is non-increasing.
With this augmented model now, we refine the atom choices

in the following way. In the first refinement step for the (i+

1)th atom (0 ≤ i ≤ l) of the representation basis hi ∈ H(0)
l ,

we minimize the intermediate distortion

h
(1)
i = arg min

d∈D
D(d; rl\i)

∆
= arg min

d∈D

∣∣∣∣rl\i − 〈rl\i,d〉d∣∣∣∣
(18)

where the intermediate residual is as in (8)

rl\i
∆
=x−

i−1∑
m=0

a(1)
m h(1)

m −
l∑

m=i+1

a(0)
m h(0)

m (19)

= rl\i−1 + a
(0)
i h

(0)
i . (20)

With this procedure, we have refined the atoms in H(0)
l into

H(1)
l . As before, the worst we can do in a refinement step is

to reselect the same atom, and thus we are guaranteed that the
intermediate distortion will not increase

... ≤ D
(
h

(2)
i ; rl\i

)
≤ D

(
h

(1)
i ; rl\i

)
≤ D

(
h

(0)
i ; rl\i

)
(21)

for any number of refinements (it is implicit that the residual
rl\i is changing with each refinement). From this fact, we
know the total distortion will not increase as in (14), and so we
can thus refine the (l+ 1)th-order model until some stopping
criterion is met, e.g., when for some threshold η ≥ 0

J
(
H(m)
l

)
≥ (1− η)J

(
H(m−1)
l

)
. (22)

C. An Orthogonal Variation in Any Dictionary

It appears to be a simple matter to integrate this refinement
process into OMP, where the atom selection is the same as in
MP (17), but the representation update rule is

XOMP,l+1 =

H(l + 1) = [H(l)|hl],
a(l + 1) = H†(l + 1)x,
r(l + 1) = x−H(l + 1)a(l + 1)

 (23)

where H†(l + 1) =
[
HH(l + 1)H(l + 1)

]−1
HH(l + 1), and

we know the matrix HH(l+1)H(l+1) is non-singular because
H(l + 1) is full rank by construction. Updating the model
weights in this way guarantees that HH(l)r(l) = 0, i.e., that
the signal approximation H(l + 1)a(l + 1) is the orthogonal
projection of x onto the column space of H(l+1). For a model
built by OMP, however, refining each atom by the criterion in
(18) does not guarantee (21).

To see why, consider that we refine each new atom by using
(18), but with the orthogonalized residual

rl\i
∆
=
[
I−Pl\i(P

H
l\iPl\i)

−1PHl\i

]
x

= rl\i−1 + (PHl\i−1Pl\i−1)−1PHl\i−1hi (24)

where we define Pl\i
∆
= [H′(i)|H(l\i)] constructed by the

(i−1) new atoms as the columns of H′(i), and the (l− i+1)
atoms remaining to be refined as the columns of H(l\i).
The matrix Pl\i is full rank since both submatrices have
linearly independent columns by construction. Now, the atom
refinement criterion (18) will replace the ith atom with one
that points the most along rl\i oblivious to the fact that we
will recompute all weights by orthogonally projecting x onto
the span of the refined representation basis. This does not
guarantee (21), i.e., that the intermediate residual norm will
decrease with each atom replacement.

Instead, we must replace each atom with the one that points
the most along the residual projected onto the left null space
of Pl\i, which is exactly what is done in OLS [4], [5]. Thus,
the first replacement of the ith atom is given by

h
(1)
i

∆
= arg min

d∈D

∣∣∣∣∣
∣∣∣∣∣rl\i − 〈rl\i,d〉||dP⊥

l\i
||2

dP⊥
l\i

∣∣∣∣∣
∣∣∣∣∣ (25)

where
dP⊥

l\i

∆
=
[
I−Pl\i(P

H
l\iPl\i)

−1PHl\i

]
d. (26)

With this atom refinement used to create each XOLS,l using the
same update rule as OMP (23), we are now guaranteed (21),
and that J

(
H(∗)
L

)
≤ . . . ≤ J

(
H(∗)
l

)
≤ . . . ≤ J

(
H(∗)

1

)
. We

call this algorithm cyclic OLS (COLS).

D. Computational Complexity

The computational complexity of these approaches vary.
The complexity of MP is O(LK logK) [12] to create an
L-order model for a length-K real signal over a multiscale
complex time-frequency dictionary. This means that for CMP
running a maximum of R ≥ 0 refinement cycles for each
iteration, the worst-case complexity is

O

(
K logK

[
1 +R

L∑
l=2

l

])
= O

(
K logK

[
1 +R (L[L+ 1]/2− 1)

])
(27)

which is quadratic in the model order. By way of comparison,
the computational complexity for OMP to create an L-order
model of the same signal with the same dictionary, is

O

(
LK logK +

L∑
l=2

l3 +Kl2 +Kl

)
(28)

assuming the cost of inverting a complex matrix of rank 2l is
O(l3) (our matrix includes atoms and their conjugates). This
cost is cubic in the model order.

The computational cost of OLS is much higher than that
of MP. To find each lth-order projection matrix requires
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Fig. 1. Four time-domain signals used in our experiments.

C(l)
∆
=O(l3 + l2K + K2l). Each atom of the dictionary

must be projected onto the orthogonal subspace to the lth-
order representation basis, which has complexity O(NK2).
Then, finding the best atom has the same complexity as
MP. Each refinement cycle at the lth-order has a complexity
l[C(l−1)+NK2 +K logK]. Thus, for COLS running R ≥ 0
refinement cycles each iteration, the worst-case complexity is

O

(
L∑
l=2

C(l) + lRC(l − 1) + lR(K logK +NK2)

)
(29)

which is quartic in the model order. This situation can be
ameliorated by updating each projection matrix iteratively
using the matrix inversion lemma. Since we are updating each
representation basis by concatenating a new column in (23)

[HH(l + 1)H(l + 1)]−1 =
[
[H(l)|hl]H [H(l)|hl]

]−1

=

[
HH(l)H(l) HH(l)hl
hHl H(l) 1

]−1

.

(30)

Defining Gl
∆
=HH(l)H(l), gl

∆
=HH(l)hl, by the matrix in-

version lemma we know

[HH(l+1)H(l+1)]−1 =

[
[I + bG−1

l glg
H
l ]G−1

l −G
−1
l gl/b

−bgHl G−1
l 1/b

]
(31)

where b
∆
= 1 − gHl G−1

l gl. This reduces the computational
complexity of the each matrix inversion to be quadratic in l.
We can apply a similar argument to computing the projection
matrix of each matrix with a column removed, which is
quadratic in (l − 1). Thus, the complexity of COLS reduces

to be cubic in the model order

O

(
L∑
l=2

l2 + lR(l − 1)2 + lR(K logK +NK2)

)
. (32)

We can also take into consideration that each gl might be
found using tabulated inner products of each pair of atoms.
Or we can use a closed form solution if it exists. Also, much
of the outer product glgHl will be zeros when the dictionary
consists of time-localized atoms.

III. EXPERIMENTAL RESULTS

The residual decays of the four signals seen in Fig. 1
using five different greedy sparse approximation algorithms
is shown in Fig. 2: MP and OMP [9], LoCOMP [10], OLS,
CMP, and COLS, using a dictionary that is a union of
Dirac functions (scale and translations of 1 sample), and
complex Gabor atoms. The scale/hop in samples of each
Gabor atom in the dictionary is {4/2, 8/2, 16/4, 32/8, 64/16,
128/32, 256/64, 512/128}. The modulation frequencies pos-
sible for each Gabor atom of scale s samples are ω ∈
Z[0,s/2]π/s. We find the optimal complex amplitude of each
real atom by maximizing the projection of the residual onto the
best complex atom and its conjugate [14]. We do not add any
noise to any of these signals. We run the refinement cycles of
CMP up to either R = 10 times, or until the difference in total
distortion between a cycle is less than 0.1%, i.e., η = 0.001
in (22). It is clear from Fig. 2 that for these four signals CMP
results in a residual energy decay that is competitive with the
computationally more complex OMP, and OLS algorithms.
CMP produces models with residual energy decays superior
to OMP and sometimes OLS. COLS performs the best in all
these tests, but has the highest computational cost.
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(d) Transient (castanet)
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Fig. 2. Residual energy decay of each signal in Fig. 1 for six different greedy decompositions algorithms. MP: Matching Pursuit; OMP: Orthogonal MP;
LoCOMP: Low-complexity OMP; OLS: Orthogonal Least-squares; CMP: Cyclic MP; COLS: Cyclic OLS. The dictionary is a union of Gabor atoms and
Dirac spikes. Note the differences in the axes.

IV. CONCLUSION

We have explored CMP using any dictionary, and have
proposed the orthogonal variant COLS. We found in our
tests that CMP produces models with residual energy decays
superior to OMP and sometimes even OLS. Thus, we can take
a simple greedy method like MP and improve its model error
by cyclicly replacing the atoms. Though CMP increases the
computational cost of MP, it does so only as a very simple
augmentation of the basic algorithm, thus making it amenable
to fast implementations of MP [12]. Our tests also showed
that COLS performs better than all other greedy iterative
descent approaches with respect to the residual energy. Its
computational complexity is high, however. Our future work
involves implementing CMP within the MPTK framework
[12], and studying its performance in creating models of
real high-dimensional audio signals using large time-frequency
dictionaries. We are also studying the effects of the cyclic
refinement process on the convergence properties of MP.
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