MULTIPLE DESCRIPTION QUANTIZATION OF SINUSOIDAL PARAMETERS

Morten Holm Larsen, Mads Græsbøll Christensen, and Søren Holdt Jensen

Department of Electronic Systems
Aalborg University, Denmark
{mhl,mgc,shj}@es.aau.dk

ABSTRACT
A new scheme for sinusoidal audio coding named multiple description spherical trellis-coded quantization is proposed and analytic expressions for the point densities and expected distortion of the quantizers are derived based on a high-resolution assumption. The proposed quantizers are of variable dimension, i.e., sinusoids can be quantized jointly for each audio segment whereby a lower distortion is achieved. The quantizers are designed to minimize a perceptual distortion measure subject to an entropy constraint for a given packet-loss probability. In experiments, the performance of the quantizers is compared to the corresponding single description spherical quantizer and associated bounds are found to increase robustness towards packet-losses.

Index Terms— Quantization, audio coding, robustness.

1. INTRODUCTION
Parametric audio coding is based on the notion that most audio signals can be efficiently described by a few physically or perceptually meaningful parameters. Perhaps the most common incarnation is sinusoidal coding where the individual audio segments are modeled as sums of sinusoids with each of these being characterized by an amplitude, a phase, and a frequency that combine to form a point in a spherical coordinate system. For each segment of audio, the task is to find the parameters best describing the segment and to quantize these parameters, whereby transmission over channels of limited capacity is facilitated. Various computationally efficient ways of finding the parameters that minimize a perceptual distortion measure exist (see, e.g., [1]). Also, the question of optimal quantization of these parameters has been addressed recently. The so-called polar and spherical quantizers of [2,3] have proven successful in terms of achieved quality and computational complexity by quantization of the parameters of each sinusoid independently. The quantizers were designed to minimize a perceptual distortion measure subject to an entropy constrain based on a high-resolution assumption, i.e., a high number of bits per sinusoid, whereby analytic expressions for the point densities of the quantizers were derived. In [4], the spherical quantizers of [3] were improved by joint quantization of the parameters of a variable number of sinusoids. Under a high-resolution assumption, the optimal point densities of the proposed quantization scheme, named spherical trellis-coded quantization (STCQ), were derived for a given entropy. In services such as speech coding or audio streaming over unreliable networks like the Internet, the transmitted audio parameters should be protected to compensate for packet-losses. One method that aims at doing this is multiple description coding where several complementary coarse descriptions of the audio signal are constructed and transmitted whereby graceful degradation is achieved when packets are lost. Multiple description coding has recently been applied to audio in the form of transform coding [5,6] and low-delay coding using pre- and post-filtering [7]. A limitation of the quantizer used in the latter paper is that the dimension of the vector must be fixed. Therefore, it cannot readily be applied to the problem of joint quantization of sinusoidal parameters. The multiple description trellis-coded quantizer (MDSTCQ) of [8] can, on the other hand, handle variable dimensions but requires training for a particular combination of entropy constraint and packet-loss probability.

In this paper, we extend the spherical quantizers of [3] to multiple descriptions by proposing a quantization scheme, named multiple description spherical trellis-coded quantization (MDSTCQ). Based on high-resolution theory, we derive analytic expressions for the expected distortion and point densities for a given target entropy and packet-loss probability. The MDSTCQ is based on a new quantization scheme named modified multiple description trellis-coded quantization (MMDSTCQ) that can be analytically designed from its point density given a packet-loss probability.

2. PROBLEM STATEMENT
We start this section by introducing the mathematical problem of robust quantization in parametric audio coding based on a perceptually relevant distortion measure. Let the audio signal x at sample time n be represented as $x(n) \approx \sum_{l=0}^{L} a_l \sin(\nu_l n + \phi_l)$, where L is the number of sinusoidal components and a_l, ϕ_l, ν_l are the amplitude, phase and frequency of the lth component, respectively, with $a_l \geq 0$ and $\phi_l, \nu_l \in [0, 2\pi)$. The quantization distortion consists of the contributions from the individual components and the cross-terms between the components. Assuming a sufficiently large window length W or statistical independence between components, the total expected distortion can be approximated as the sum over the L expected distortions for the individual components, denoted $E[D]$, with $E[\cdot]$ being the expectation operator. Therefore, we will in the rest of this paper be concerned with the quantization of a single set of parameters (a, ϕ, ν) thus ignoring the subscript l. The present work is

M. G. Christensen is supported by the Parametric Audio Processing project, Danish Research Council for Technology and Production Sciences grant no. 274-06-0521.
based on a perceptual distortion measure [9] defined as

\[D = \frac{1}{2\pi} \int_0^{2\pi} \mu_x(a,\phi,\nu)(\omega)|E(\omega)|^2 \, d\omega, \tag{1} \]

with \(E(\omega) \) denoting the Fourier transform of the windowed error, i.e., \(E(\omega) = \sum_{n=N_0}^{N-W-1} w(n)(x(n) - \hat{x}(n))e^{-j\omega n} \) where \(w(n) \) is the window, \(\mu_x(a,\phi,\nu)(\omega) \) is the perceptual weighting function, which is calculated from the audio signal \(x \) parametrized by \((a,\phi,\nu) \). Further, \(\hat{x} \) is the reconstructed audio signal based on the quantized parameters \((\hat{a},\hat{\phi},\hat{\nu})\). Next, we introduce the quantization errors \(e_a = a - \hat{a} \), \(e_\phi = \phi - \hat{\phi} \), \(e_\nu = \nu - \hat{\nu} \), and the constant \(||w||^2 = \sum_{n=N_0}^{N-W-1} w^2(n) \). Then, assuming a large \(W \), high-resolution, and a smooth masking curve, the perceptual distortion can be approximated as \(D \approx \frac{\mu_x(a,\phi,\nu)}{2\pi} \left(\epsilon_a^2 + a\hat{a} \epsilon_\phi^2 + \epsilon_\phi^2 \sigma^2 \right) \). Similarly to [2, 3], we assume the perceptual weighting function to be quantized and transmitted as side information. To the best of our knowledge, the problem of joint quantization of the perceptual weighting function and the sinusoidal parameters remains unsolved and we will defer from any further discussion of this. Setting \(N_0 = -\frac{W}{2} \) and using a Taylor expansion, the distortion can be shown to be

\[D \approx \frac{\mu_x(a,\phi,\nu)}{2\pi ||w||^2} \left(\epsilon_a^2 + a\hat{a} \epsilon_\phi^2 + \epsilon_\phi^2 \sigma^2 \right). \tag{2} \]

with \(\sigma^2 \approx \frac{1}{||w||^2} \sum_{n=N-W}^{N-1} w^2(n)^2 \). We observe from (2) that the amplitude, phase and frequency can be quantized independently using the \(l_2 \)-norm by assuming a high-resolution, i.e., \(a\hat{a} \approx \epsilon_a \). This provides inspiration to the proposed multiple description spherical trellis-coded quantization (MDSTCQ) scheme consisting of \(m \) multiple description quantizers, one for each of the parameters \(a, \phi \) and \(\nu \). We here focus on the common case of two descriptions. In this case, a low quality description is obtained when only one description is received. The resulting distortion, called the side distortion, is denoted as \(D_s \), with \(s \in \{1, 2\} \). The low quality reconstructions of \((a, \phi, \nu) \) is written as \((a_0, \phi_0, \nu_0)\). When both descriptions are received, the resulting distortion is referred to as the central distortion \(D_c \), and is based on the reconstruction point \((a_c, \phi_c, \nu_c)\). The aim of this work is to protect the sinusoidal parameters transmitted over a packet erasure channel where packets are dropped independently with probability \(p \). Assuming a balanced side distortion, i.e., \(E[D_1] = E[D_2] \), the average distortion in such a network is

\[E[D] = (1-p)^2 E[D_c] + 2p(1-p)E[D_s] + p^2E[x^2], \tag{3} \]

where \(E[x^2] \) is the variance of the audio signal.

3. THE PROPOSED QUANTIZER

We now proceed to propose a modified multiple description trellis-coded quantizer (MDSTCQ) inspired by the two-stage coding scheme in [10]. The first stage is to quantize the input signal \(y \) using two uniform side quantizers, \(Q_1 \) and \(Q_2 \) that are offset to each other and have step-sizes equal to the reciprocal value of the point density, \(g_y \), as shown in Fig. 1. In the second stage, we perform joint quantization using the joint Voronoi region, which is half the size of the Voronoi region of the side quantizers. Here, \(N \) reconstruction points are sorted as \(c_1 < c_2 < \cdots < c_N \) and partitioned into four subsets \(C_q = \{c_q, c_{q+4}, \ldots, c_{N-q+4}\} \), where \(q = 1, 2, 3, 4 \). In trellis-coded quantization, the transitions in the trellis specify \(C_q \) by one bit, and \(\log_2(N/4) \) bits are used to specify the quantization index within \(C_q \). Since this refined trellis information is only utilized when both descriptions are received, it is easily split into the two descriptions whereby the otherwise difficult index assignment is solved. Assuming high-resolution such that the probability density function (pdf) inside the Voronoi regions \(V_i \) of the side quantizers \(Q_i \) is uniform, the mean square-error distortion for each side quantizer can be written as \(E[D_i] = \sum_{i=1}^{4} f_Y(y)\log_2(g_y)dy + \frac{1}{2}\log_2(N) \), where \(H(Y) \) is the differential entropy of the source \(Y \).

We will now introduce the details of the proposed MDSTCQ coding scheme consisting of \(m \) MMDTCQs, one for each of \(a, \phi, \nu \). In deriving the optimal MDSTCQ design, we need expressions for the quantization point densities and the number \(N \) for the three MMDTCQs. To obtain these, we first introduce the joint pdf \(f(A, \phi, \nu) \) whereby we can express the expected side distortion as

\[E[D_s] \approx \sum_{i_s \in [1,4]} \sum_{i_\phi \in [1,4]} \sum_{i_\nu \in [1,4]} \int_{V_i} \int_{V_{i_\phi}} \int_{V_{i_\nu}} f(A, \phi, \nu) \frac{1}{2} \mu_s(\nu) \]

\[\left[||w||^2 \left(\epsilon_a^2 + a\hat{a} (\epsilon_\phi^2 + \epsilon_\phi^2 \sigma^2) \right) \right] \]

\[\approx \frac{1}{24} \int_A \int_\phi \int_\nu \left(\epsilon_a^2 + a\hat{a} (\epsilon_\phi^2 + \epsilon_\phi^2 \sigma^2) \right) \]

\[f(A, \phi, \nu) \mu_s(\nu) (g_y^{-2} + \hat{a}_s^2 (g_y^2 - \sigma^2 g_y^{-2})) \, \text{d}a \, \text{d}\phi \, \text{d}\nu \approx \frac{1}{24} \int_A \int_\phi \int_\nu \left(\epsilon_a^2 + a\hat{a} (\epsilon_\phi^2 + \epsilon_\phi^2 \sigma^2) \right) \]

(4)

by assuming that \(\mu_x(a,\phi,\nu) \) is constant over the joint Voronoi region of \(a, \phi, \nu \). We have assumed high-resolution such that \(a\hat{a} \approx \epsilon_a^2 \) and the probability mass function of the reconstruction points, \(Pr(\hat{a}_s, \hat{\phi}_s, \hat{\nu}_s) \) can be found from the joint pdf as \(f(\hat{a}_s, \hat{\phi}_s, \hat{\nu}_s)g_y^{-2}g_y^{-1} \) (see [3] for more details on this).

Here, the quantization point densities for \(a, \phi, \nu \) are written as \(g_i(a,\phi,\nu) \), although they at this point still depend on \(a, \phi, \nu \).
Similarly, we can express the expected central distortion as

\[
E[D_0] \approx \frac{\|w\|^2}{96} \int_{\mathbb{A}} \int_{\mathbb{A}} \int_v f_{A,\phi,\nu}(\hat{\varphi}) \left(\frac{g_{a^2}}{N_a^2} + \hat{\alpha}_a^2 \left(\frac{g_{a^2}}{N_a^2} + \sigma^2 \right) \right) d\varphi d\varphi dv,
\]

(5)

where, for simplicity, we have assumed an equal trellis structure, \(\Gamma = \Gamma(a,\phi,\nu) \). Also, \(N_a, N_\phi, N_\nu \) are the number of reconstruction points for the various refined quantizers. Next, assuming that the amplitude, phase and frequency are independent, we can write the entropy for each description as

\[
H_s = h(A, \Phi, \Upsilon) - \frac{3}{2} \int \int \int f(a, \phi, \nu) \log_2 (g_a g_\phi g_\nu) \]

\[
+ \frac{1}{2} \log_2 (N_a N_\phi N_\nu) d\varphi d\varphi dv,
\]

(6)

with \(h(A, \Phi, \Upsilon) \) being the differential entropy. To simplify the notation, we introduce \(\hat{H}_s = H_s - h(A, \Phi, \Upsilon) \) and write the cost function as

\[
J = (1 - p)E[D_0] + 2p(1 - p)E[D_1] + A \hat{H}_s
\]

with \(\lambda \) being the Lagrange multiplier. We note that there is the somewhat subtle problem that the distortions depend on \(\hat{\alpha}_a \) and \(\hat{\alpha}_\nu \). The point densities also depend on the amplitude \(a \) and in [3] it was argued that the amplitude can be replaced by its reconstruction due to the high-resolution assumption. Similarly, we here use \(\hat{\alpha}_a \) in lieu of \(\alpha_0 \) (later we will evaluate the loss, if any, of doing this). We now minimize this cost function by taking the derivative with respect to \(g_a, g_\phi, g_\nu, N_a, N_\phi, N_\nu \). This results in \(N_a = N_\phi = N_\nu = \sqrt{\tau(1 - p)/8\pi}N \) and the following expressions for the point densities:

\[
g_a^2 = \frac{p(1 - p)\mu_\tau(\hat{\varphi}) \|w\|^2}{12\lambda \log_2(e)}, \quad g_\phi^2 = g_a^2 \hat{\alpha}_s, \quad g_\nu^2 = g_a^2 \hat{\alpha}_s \sigma^2.
\]

(7)

Next, we insert these equations and the expression for \(N \) into the definition of \(\hat{H}_s \) and obtain the optimal \(\lambda^* \) as

\[
\lambda^* = \frac{N_p(1 - p)\|w\|^2}{12 \log_2(e)} 2^{-\frac{3}{2}(h(a, \phi, \nu) - H_s + \log_2(\pi) + 2\varphi + 1 + \psi)}.
\]

(8)

where \(\varphi = \int f_{a}(a) \log_2 f_{a}(a) da \) with \(f_{a}(a) \) being the pdf of \(a \) and \(\psi = \int \int \int f(a, \phi, \nu) \log_2 f_{a,\phi,\nu}(a,\phi,\nu) d\varphi d\varphi dv \). Using \(\lambda^* \) we get the optimal point densities:

\[
g_a = \left(\frac{\mu_\tau(\hat{\varphi})}{2N} \right) \frac{1}{2} 2^{\frac{3}{2}(H_s - h(a, \phi, \nu) - \log_2(\pi) - 2\varphi - \frac{3}{2})},
\]

\[
g_\phi = \hat{\alpha}_s g_a \quad \text{and} \quad g_\nu = \sigma \hat{\alpha}_s g_a.
\]

(9)

By inserting these into (4),(5) and (3), we can finally determine the expected distortion as

\[
E[D] \approx \|w\|^2 \sqrt{\frac{1}{8} \left(1 - p \right) \int_{\mathbb{A}} \int_{\mathbb{A}} \int_v f_{A,\phi,\nu}(\hat{\varphi}) \left(\frac{g_{a^2}}{N_a^2} + \hat{\alpha}_a^2 \left(\frac{g_{a^2}}{N_a^2} + \sigma^2 \right) \right) d\varphi d\varphi dv + p^2 E[x^2].
\]

(11)

The point densities for \(\phi \) and \(\nu \) can be seen to be functions of \(\hat{\alpha}_a \) (or \(\alpha_0 \)), i.e., the point densities depend on the reconstructed amplitude. Since the fundamental notion of multiple description coding is to transmit complementary descriptions that combined lead to a reduced distortion, the

reconstructed amplitudes in each of the descriptions will be different, i.e., \(\hat{\alpha}_1 \neq \hat{\alpha}_2 \), leading to phase and frequency quantizers having slightly different resolution for each description. To arrive at a feasible scheme, we encode \(\phi_0 \) and \(\nu_0 \) based on \(\hat{\alpha}_1 \) and for each of the two quantizers with \(s = \{1, 2\} \). In the ideal case, the point densities for each description are equivalent and the quantizers can be perfectly offset as illustrated in Fig. 1, in which case the reconstruction points of the joint description can be obtained as the mean of the reconstruction points of the two descriptions plus the contribution from the refined trellis-coded quantization, e.g., \(\hat{\alpha}_0 = \hat{\alpha}_1 + \hat{\alpha}_2 + \hat{\alpha}_{TCQ} \). In our case, however, the resolution of the two quantizers are slightly different, and we propose to deal with this in the following way: We consider the two descriptions as random variables from which we seek to estimate the mean. Due to the slightly different amplitudes \(\hat{\alpha}_1 \) and \(\hat{\alpha}_2 \), the two observations have been subjected to additive noise having different variances. Therefore, the mean can be obtained for the phase as \(\hat{\phi}_0 = \hat{\phi}_1 + \hat{\phi}_2 + \hat{\phi}_{TCQ} \), where \(0 \leq \hat{\phi}_0 \leq \pi \) is a weight. Since the quantizers are uniform, the observation noise can be modeled as uniform random variables having a variance corresponding to their Voronoi regions and the optimal weight \(\hat{\phi}_0 \) can then easily be determined from the point densities as \(\hat{\phi}_0 = g_{\phi,1}/(g_{\phi,1} + g_{\phi,2}) \) and similarly for the frequency \(\nu \).

4. EXPERIMENTAL RESULTS

The two following experiments are based on synthetic audio, generated using a statistical model similar to that employed in [3]. Specifically, the amplitudes and frequencies are generated from a Rayleigh pdf, i.e., \(f_y(y) = \beta^{-2}ye^{-y^2/(2\beta^2)} \), with \(\beta = 1000, 0.25 \). The phase, on the other hand, is uniformly distributed in the interval \([0, 2\pi] \). We focus on the performance gain achieved by joint quantization and we will therefore, for simplicity, set the perceptual weighting function to one and use a rectangular window with \(W = 1023 \). We remark that the trellis is initialized in zero-state and that no side information is needed. In the first experiment, we will
investigate the impact of the number of jointly quantized sinusoids and the number of states in the trellis on the expected distortion. Furthermore, we will illustrate the impact of the number of jointly quantized sinusoids and the number of states in the trellis on the expected distortion.

We have proposed multiple description spherical trellis-coded quantization of sinusoids. The quantizers are suitable for parametric audio coding where the number of sinusoids may vary and for transmission over unreliable networks like the Internet. Under high-resolution assumptions we have derived analytical expressions for the optimal design and the expected perceptual distortion for a given target entropy and packet-loss probability. Experiments have shown significant performance improvements of the proposed scheme as the number of dimensions is increased. Furthermore, a significant performance gain compared to the single description spherical trellis-coded quantization scheme of [4] has been observed for a large range of packet-loss probabilities.

5. CONCLUSION

We have proposed multiple description spherical trellis-coded quantization of sinusoids. The quantizers are suitable for parametric audio coding where the number of sinusoids may vary and for transmission over unreliable networks like the Internet. Under high-resolution assumptions we have derived analytical expressions for the optimal design and the expected perceptual distortion for a given target entropy and packet-loss probability. Experiments have shown significant performance improvements of the proposed scheme as the number of dimensions is increased. Furthermore, a significant performance gain compared to the single description spherical trellis-coded quantization scheme of [4] has been observed for a large range of packet-loss probabilities.

6. REFERENCES

