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Joint High-Resolution Fundamental Frequency and
Order Estimation

Mads Græsbøll Christensen∗, Member, IEEE, Andreas Jakobsson,Senior Member, IEEE, and
Søren Holdt Jensen,Senior Member, IEEE

Abstract— In this paper, we present a novel method for joint
estimation of the fundamental frequency and order of a set of
harmonically related sinusoids based on the MUSIC estimation
criterion. The presented method, termed HMUSIC, is shown
to have an efficient implementation using FFTs. Furthermore,
refined estimates can be obtained using a gradient-based method.
Illustrative examples of the application of the algorithm to
real-life speech and audio signals are given, and the statistical
performance of the estimator is evaluated using synthetic signals,
demonstrating its good statistical properties.

I. I NTRODUCTION

Fundamental frequency estimators form an integral part
in many signal processing applications, and especially so in
speech and audio processing. For example, long-term predic-
tion in linear prediction-based speech coding requires that
the fundamental frequency, or equivalently the pitch period,
is estimated [1]. Similarly, parametric coding of speech and
audio using a harmonic sinusoidal model is typically based on
a fundamental frequency estimator [2]. Fundamental frequency
estimators are also key components in music information
retrieval applications such as automatic music transcription
and in musical genre classification [3]. Many fundamental
frequency estimators used in speech and audio processing are
time-domain techniques based on the auto-correlation func-
tion, cross-correlation function, averaged magnitude difference
function, or averaged squared difference function. These meth-
ods are typically biased methods primarily concerned with
handling particular problems in speech and audio processing,
such as the so-called first formant interaction problem, than
obtaining high resolution frequency estimates. An illustrative
example of such a recent approach can be found in [4].
For a historical review of fundamental frequency estimation
methods, we refer to [5], [6], and for examples of more recent
work, we refer to [4], [7]–[13].

The fundamental frequency estimation problem can be
defined as follows. Consider a harmonic signal with the
fundamental frequencyω0 that is corrupted by an additive
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white complex circularly symmetric Gaussian noise,w(n), for
n = 0, . . . , N − 1,

x(n) =

L∑

l=1

Ale
j(ω0ln+φl) + w(n), (1)

whereAl > 0 andφl are the amplitude and the phase of the
l’th harmonic, respectively. The frequency of thel’th harmonic
is thus ωl = ω0l, and the problem considered in this paper
is to estimate the fundamental frequencyω0, as well as the
model orderL, from a set ofN measured samples,x(n).
We refer to the number of harmonics,L, as the model order.
Herein, we focus on the most common case, for which the set
of harmonics followsωl = ω0l, for l = 1, . . . , L; however,
other cases may be of interest where some of the harmonics,
even the fundamental, may be missing [14]. It should be
stressed that most estimators operate under the assumption
of the model order being known. Typically, this requires an
initial order estimation prior to the frequency estimation. For
example, the nonlinear least-squares (NLS) method is well-
known to be equivalent to the maximum likelihood estimator
under the condition of white Gaussian noise, provided that the
model order is known [15]. We refer the reader to [16], [17]
for a more complete discussion of this difficult problem. We
remark that real valued signals can be cast into the form of
(1) via the down-sampled discrete-time analytic signal [18].
Here, we have used the complex formulation because of its
notational simplicity and because it leads to computationally
less complex algorithms.

It has recently been shown that the MUltiple SIgnal Clas-
sification (MUSIC) estimation criterion can be used for high-
resolution estimation of the fundamental frequency [19]. The
resulting estimator was shown to have good statistical per-
formance, approaching the Cramér-Rao lower bound (CRLB),
provided that the orderL is known. In this paper, we further
extend on this work. Specifically, we propose an algorithm
that jointly estimates the fundamental frequency and the order,
showing that this algorithm can be efficiently implemented
using the fast Fourier transform (FFT). Also, refinements of
the estimates can be obtained using a gradient-based method
derived herein. We refer to the proposed estimator as the
harmonic MUSIC (HMUSIC) estimator. Using simulated data,
the proposed estimator is evaluated using Monte Carlo simu-
lations. Furthermore, we compare to the asymptotic CRLB
and the recent Markov-like weighted least squares (WLS)
estimator published in [7]. Additionally, illustrative examples
of the application of the proposed methods to speech and audio
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signal analysis are given.
The remaining part of the paper is organized as follows.

In Section II, the proposed estimator is presented along
with some implementation details. In Section III, numerical
results and illustrative examples are presented, and Section IV
concludes on the work.

II. T HE PROPOSEDESTIMATOR

A. Covariance Matrix Model

In this section, we present the fundamentals of the MUSIC
algorithm [20], [21] (see also [22]) and introduce some useful
vector and matrix definitions. We start out by definingx̃(n) as
a signal vector containingM samples of the observed signal,
i.e.,

x̃(n) =
[

x(n) x(n − 1) · · · x(n − M + 1)
]T

, (2)

with (·)T denoting the transpose. Then, assuming that the
phases of the harmonics are independent and uniformly dis-
tributed on the interval(−π, π], the covariance matrixR ∈
C

M×M of the signal in (1) can be written as [16]

R = E
{
x̃(n)x̃H(n)

}

= APAH + σ2I, (3)

whereE {·} and(·)H denote the statistical expectation and the
conjugate transpose, respectively. Note that for this decompo-
sition to hold, the noise need not be Gaussian. Furthermore,
P is a diagonal matrix containing the squared amplitudes, i.e.,

P = diag
([

A2
1 · · · A2

L

])
, (4)

andA ∈ C
M×L a full rank Vandermonde matrix defined as

A =
[

a(ω0) · · · a(ω0L)
]
, (5)

where a(ω) =
[

1 e−jω · · · e−jω(M−1)
]T

. Also, σ2

denotes the variance of the additive noise,w(n), andI is the
M ×M identity matrix. We note thatAPAH has rankL. Let

R = UΛUH (6)

be the eigenvalue decomposition (EVD) of the covariance
matrix. Then,U contains theM orthonormal eigenvectors
of R, i.e., U =

[
u1 · · · uM

]
and Λ is a diagonal

matrix containing the corresponding eigenvalues,λk, with
λ1 ≥ λ2 ≥ . . . ≥ λM . Let G be formed from the eigenvectors
corresponding to theM −L least significant eigenvalues, i.e.,

G =
[

uL+1 · · · uM

]
. (7)

The noise subspace spanned byG will then be orthogonal to
the Vandermonde matrixA, i.e.,

AHG = 0, (8)

and R(A) = R(S) with R(·) denoting the range andS =[
u1 · · · uL

]
being the eigenvectors that span the signal

subspace. We here form a consistent estimate of the covariance
matrix R as

R̂ =
1

N

N∑

n=M

x̃(n)x̃H(n). (9)

The MUSIC estimate is found as the frequencies minimizing

J = ‖AHG‖2
F = Tr

{
AHGGHA

}
, (10)

with Tr{·} and ‖ · ‖F denoting the trace and Frobenius
norm, respectively. Note that for notational simplicity, we have
omitted the dependency ofA and G on the unknowns. For
more on the performance of MUSIC see, e.g., [23], [24], and
for more on subspace-based estimation techniques in general,
see, e.g., [25], [26].

B. Harmonic MUSIC

Herein, we will extend the MUSIC estimation criterion in
(10) for jointly estimating both the fundamental frequencyand
the model order. We note that the cost function in (10) varies
with the orderL and the size of the covariance matrix,M ,
and we must therefore first derive an appropriate scaling. By
the Cauchy-Schwarz inequality, we have that

‖AHG‖F ≤ ‖AH‖F ‖G‖F . (11)

As theM − L columns ofG are orthonormal, and all theL
columns ofA have norm

√
M , we get

‖AHG‖F√
LM(M − L)

≤ 1. (12)

The scale factor
√

LM(M − L), which is due to the variable
dimensions ofA and G, makes the noise floor of the cost
function invariant to the matrix dimensions. When the order
is unknown, which is generally the case, it was estimated in
[19] as L = ⌊ 2π

ω0

⌋ − 1, and the fundamental frequency was
estimated as the value for which the Vandermonde matrix is
closest to being orthogonal to the noise subspace, i.e.,

ω̂0 = arg max
ω0∈Ω

LM(M − L)

‖AHG‖2
F

, (13)

whereΩ is a set of candidate fundamental frequencies. How-
ever, this approach may lead to a wrong identification of the
noise subspace in (7), and this, in turn, led to the problems
of spurious estimates reported in [19]. The orthogonality in
(8) will hold only when the estimated fundamental frequency
equates the true frequencyand the orderL is chosen such
that R(A) = R(S). Thus, we propose to jointly estimate
the fundamental frequency and the order as follows. Define
the two-dimensional cost function, depending on both the
fundamental frequency and the order, as

P (ω0, L) =
LM(M − L)

‖AHG‖2
F

. (14)

Then, exploiting (14), we proceed to estimate the fundamental
frequency as

ω̂0 = arg max
ω0∈Ω

max
L∈L

P (ω0, L). (15)

We term the resulting estimator the harmonic MUSIC (HMU-
SIC). Note that this order estimation principle holds in general
for any set of linearly independent vectors. We stress that
both A and G depend onL while only A depends on
the fundamental frequency and that as a by-product of (15),
we also get an estimate of the orderL. In some cases,
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the model order may not be of interest, but even then it
is necessary to determine it to obtain a correct fundamental
frequency estimate. It should be noted that the set of possible
orders,L, will depend on the fundamental frequency since the
harmonics are bounded by2π. Because of this dependency,
the maximizations in (15) cannot be interchanged without
modifying the setsΩ andL accordingly.

C. Efficient Implementation

The three major sources of computational complexity of
the proposed method are the calculation of the EVD of
the covariance matrix in (6), the inner productAHG, and
evaluating the Frobenius norm in (14). We will now show
how the algorithm can be implemented efficiently. First, we
define the Fourier matrixF ∈ C

F×F , with F ≫ N , as

F =





1 1 1 · · · 1
1 z1 z2 · · · zF−1

...
...

...
...

1 z(F−1) z2(F−1) · · · z(F−1)(F−1)




, (16)

where z = e−j2π 1

F . Next, we define a matrixD ∈ R
F×M

containing the squared absolute values of the inverse FFTs of
the zero-padded eigenvectors inU as

[D]lm =

∣∣∣∣

[
FH

[
U

0

]]

lm

∣∣∣∣
2

, (17)

with [D]lm being the(l,m)’th element ofD. For a candidate
pair of a fundamental frequency of2π f

F
and an orderL′, the

Frobenius norm in (14) can be calculated as

‖AHG‖2
F =

M∑

m=L′+1

L′∑

l=1

[D](fl+1)m . (18)

Thus, the complexity of calculating‖AHG‖2
F for differentω0

andL can be significantly reduced by calculating the inverse
FFT of all the eigenvectors once for each given data set. We
note that some of the eigenvectors, corresponding to the largest
eigenvalues, can be excluded from definition of (17), since
there is a lower bound onL′. Here, we have included all of
them for notational simplicity.

D. Refined Estimates

For many applications, only a coarse estimate of the fun-
damental frequency is needed, in which case the estimator in
(15) may produce sufficiently accurate results at a reasonable
complexity using the FFT-based method. If, however, very
accurate estimates are desired, a refined estimate can be found
as described next. For a givenL, the gradient of the cost
function (10) can be shown to be

∇J =
∂J

∂ω0
= 2Re

(
Tr

{
AHGGH ∂

∂ω0
A

})
, (19)

with Re(·) denoting the real value,⊙ the Schur-Hadamard
(element-wise) product, and

∂

∂ω0
A = −Y ⊙ A (20)

with

Y =





0 0 · · · 0
j j2 · · · jL
...

...
...

j(M − 1) j(M − 1)2 · · · j(M − 1)L




.

(21)
This gradient can be used for finding refined estimates using
standard methods. Here, we iteratively find a refined estimate
of the fundamental frequency as

ω̂
(i+1)
0 = ω̂

(i)
0 − δ∇J, (22)

with i being the iteration index andδ a small, positive constant
that is found adaptively using line search [27]. The method is
initialized for i = 0 using the coarse estimate obtained from
(15). As the orderL is kept fixed, only the matrixA changes in
each iteration. Note that instead of the gradient approach based
on the HMUSIC cost function, the NLS cost function could be
used. However, the NLS cost function (see, e.g., [7], [16]) is
more complicated than the HMUSIC cost function, involving
matrix inversion, and would hence be more computationally
demanding. Also, the NLS cost function is known to be multi-
modal with an abundance of local minima.

III. E XPERIMENTAL RESULTS

A. Signal Examples

We start out the experimental part of this paper by illustrat-
ing the application of the proposed method to analysis of an
audio signal. Figure 1 shows a segment of a quasi-harmonic
signal produced by a musical instrument, a violin. In Figure
2, the cost function (15) is shown for this signal for different
values of the fundamental frequency and order. The combina-
tion of the fundamental frequency and the order estimates can
be identified as large peaks in the landscape. It is interesting
to note that a measure of the confidence of the estimate is
how distinct the peak is. As can be seen from the figure, for
the fairly stationary signal in Figure 1, the associated cost
function has a very distinct peak. For non-stationary signals,
or signals where the model does not hold, the cost function
can be observed to be very noisy, with no distinct peak. Yet
another example is shown in Figure 3, this time for a trumpet.
The top panel shows the spectrogram (for low frequencies)
of the signal while the bottom panel shows the estimated
fundamental frequencies. The estimates can be seen to follow
the fundamental frequency of the top panel. Note that there
are some spurious estimates in the transition between notes
at 4.25 s. For such non-stationary segments, or for segments
containing multiple sets of harmonics, the signal model in (1)
is invalid. The estimation of multiple fundamental frequencies
can be incorporated into the proposed estimator at the cost of
increased computational complexity. For these examples, the
experimental setup was as follows:N = 282 samples were
obtained at a sampling frequency offs = 11025 Hz. For
each segment, the down-sampled discrete-time analytic signal
was calculated using the FFT method [18]. Then, the sample
covariance matrix of sizeM = 110 was calculated. The cost
function in (15) was evaluated for fundamental frequencies
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Fig. 1. Example of a quasi-harmonic signal, a segment of a violinsignal.
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Fig. 2. HMUSIC cost function for different combinations of fundamental
frequencies and orders for the signal in Figure 1.

corresponding to frequencies from approximately 60 to 1000
Hz in steps of 10 Hz using the FFT-based method with1

F = 1024. For each possible fundamental frequency the
model orders considered wereL = {5, . . . , ⌊ 2π

ω0

⌋ − 1} with
⌊·⌋ denoting truncation.

Next, we demonstrate the application of the proposed
method, along with the importance of the order estimate, to
speech analysis. We have used speech sample dominated by
voiced speech, namely a femaly speaker uttering “Why were
you away a year Roy?”. In Figure 4, the estimated fundamental
frequencies are shown along with the spectrogram of the
speech signal for various noise conditions, i.e., white Gaussian
noise with signal-to-noise ratios (SNR) of 0, 10, 20, and 30
dB, respectively. The SNR is defined as10 log10(σ̄

2/σ2), with
σ̄2 and σ2 being the power of the speech and noise signals,
respectively. The sampling frequency wasfs = 8000 Hz and
segments withN = 204 (25.6 ms) were used to calculate the
down-sampled discrete-time analytic signal which was then
used to form a covariance matrix of sizeM = 80. The cost
functions were evaluated on a 2 Hz grid from 60 to 400 Hz

1This value was chosen primarily for illustrative purposes. In practice, a
higher value would most likely be desirable.

Time [s]

F
re

qu
en

cy
 [H

z]

0 1 2 3 4 5 6
0

1000

2000

3000

4000

0 1 2 3 4 5 6
0

500

1000

Time [s]

E
st

im
at

e 
[H

z]

Fig. 3. Spectrogram of trumpet signal for low frequencies (top) and
fundamental frequencies estimated using the proposed method (bottom).

using the FFT-based method. It can be seen from the figure
that the signal is highly non-stationary, compared to the audio
signals in Figures 1 and 3, with the fundamental frequency
and order varying continuously throughout the duration of the
signal. The crosses indicate the estimated fundamental fre-
quencies as found using (15) where the order is estimated for
each segment (denoted estimated order). The circles indicate
the fundamental frequencies found by evaluating (13) for a
fixed order of 5 (denoted fixed order). For SNRs above 0
dB, the proposed method can be seen to consistently estimate
the correct fundamental frequency. At 0 dB, there are some
erroneous estimates in low energy segments. For the fixed
order case, however, spurious estimates can be observed for
all SNRs, with the actual performance depending on how well
the assumption of an order of 5 fits. This clearly shows that
the importance of the order estimate in fundamental frequency
estimation. Note that for SNRs below 0 dB, both methods do
not return any meaningful estimates.

B. Statistical Evaluation

Next, we use an experimental evaluation similar to that
of [7]. In assessing the statistical properties of the proposed
estimator, we employ Monte Carlo simulations. In each trial,
a signal is generated according to the model in (1), with the
parameters and noise realizations being randomized. We will
here use parameter values and constants that would be in the
order of those used in speech and audio processing. Since the
exact CRLB for the problem considered here varies with the
parameters in a complicated way [7] and we here randomize
the parameters, we instead compare the proposed method to
the asymptotic CRLB. The asymptotic CRLB (N ≫ 1), i.e. the
lower bound on the variance of an unbiased estimator, for the
fundamental frequency of the model in (1) can be shown to
be (see Appendix I)

CRLB(ω0) =
6σ2

N3
∑L

l=1 A2
l l

2
. (23)
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Fig. 4. Estimated fundamental frequencies (bottom panels) found using (13) with a fixed order (circles) and using (15) where also the order is estimated
(crosses) for a speech signal in additive white Gaussian noise for various SNRs (top panels).

The CRLB can be seen to depend on the pseudo signal-to-
noise ratio (PSNR)2:

PSNR = 10 log10

∑L
l=1 A2

l l
2

σ2
[dB]. (24)

In Appendix II, it is shown how this definition of the PSNR
relates to the more commonly used definition of the SNR.
The benefit of an adaptive order estimate is evident from the
CRLB: the more harmonics that are present, the more accurate
an estimate we can get and, due to the weighting byl2, the
higher harmonics are actually more important than the lower. It
is interesting to note that the asymptotic CRLB in (23) does not
depend on the fundamental frequency and that, as expected,
the fundamental frequency can be estimated more accurately
than any of the frequencies of the individual harmonics. For

2The PSNR is defined similarly in [28] but differently in [7].

a low number of observations, the performance of estimators
is expected to depend on the fundamental frequency, since
the fundamental frequency determines how closely spaced the
harmonics will be. Figure 5 shows the exact CRLB, given
in [7], averaged over different realizations of the parameters
and noise in (1), for a PSNR of 20 dB, as a function of
the fundamental frequency, for a sampling frequency of 8000
Hz. The amplitudes in (1) were generated according to a
Rayleigh probability density function (pdf) while the phases
were distributed uniformly andL = 10. The exact CRLB
can be seen to depend on the fundamental frequency with the
bound increasing for low frequencies. For high frequencies
and highN , the bound can be seen to approach the asymptotic
CRLB in (23).

In the experiments to follow, we use the following setup:
two cases are considered, namely for constant amplitudes, i.e.,
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Al = 1 ∀l, and for amplitudes that are generated according to
a Rayleigh pdf. The motivation for testing the algorithm with
amplitudes that are Rayleigh distributed is that, for speech and
audio signals, the harmonics can typically not be assumed
to have equal amplitudes. Hence, robustness towards such
variations is desirable. In both cases, orders were generated
from a uniform probability mass function (pmf) from5 to
10 and with a fundamental frequency ofω0 = 0.1963. We see
from Figure 5 that the asymptotic CRLB (indicated by circles)
can be expected to hold for this value. The cost function in (15)
was evaluated for fundamental frequencies in the intervalΩ ∈
[0.04; 0.4] using the FFT-based method withF ≈ 8192M .
Note that this interval includes2ω0 and 1

2ω0, so any potential
problems with spurious estimates at these frequencies, as
are often seen in fundamental frequency estimators, would
show up in the statistical evaluation. Moreover, the MUSIC
algorithm is generally sensitive to the choice ofM relative to
N . This is an inherent tradeoff between having many vectors
in the averaging in (9) while retaining sufficient dimensions
of the signal and noise subspaces. Here, we have usedM =
⌊ 4

5N⌋. For each possible fundamental frequencyω0 ∈ Ω, the

models orders considered wereL = {5, . . . , ⌊ 2π
ω0

⌋ − 1}. The
noise was complex white Gaussian distributed while the phases
were distributed uniformly on the interval(−π;π].

First, we confirm that the proposed method results in
an accurate order estimate. In Figure 6, the percentage of
correctly estimated orders are shown for varying PSNR with
N = 100. For each PSNR, 1000 trials were run. We here
compare to the minimum description length (MDL) method
[29]–[31] (see also [16], [32]). In finding the MDL estimates,
the true fundamental frequency was used, the log-likelihoods
were calculated using amplitudes that were estimated using
least-squares (see [17], [33]), and the noise variance was
estimated by subtracting the estimated sinusoids from the
signal. As can be seen in the figure, the proposed method
estimates the correct order for sufficiently high PSNRs. For
randomized amplitudes, HMUSIC is slightly worse than MDL,
if the latter is allowed to know the true fundamental frequency,
for 20 and 30 dB, but better for 0 and 10 dB.

In the following, we evaluate the estimators in terms of the
root mean squared estimation error (RMSE) defined as

RMSE =

√√√√ 1

S

S∑

s=1

(
ω̂

(s)
0 − ω0

)2

, (25)

with ω0 and ω̂
(s)
0 being the true fundamental frequency and

the estimate, respectively, and withS being the number of
Monte Carlo trials. This is done for various PSNRs, for a
given N , as well as for differentN for a given PSNR.
The number of Monte Carlo trials was 200. As a reference
method, we use the WLS estimator proposed in [7]. This
is a computationally efficient method with good statistical
performance. It operates in a two-step procedure where first
the unconstrained frequencies of the individual harmonicsare
estimated and sorted according to their value. Then, a funda-
mental frequency estimate is formed from these frequenciesin
a weighted way. It should be noted that this method requires
that the model order is known, and the weighting requires that
the amplitudes are either known or well estimated (see also
[33]). We stress that the proposed method requires neither the
amplitudes nor the order to be known. Here, to allow for the
most favorable implementation of WLS, we allow it to use
the true model order, the actual amplitudes as well as estimate
the frequencies using ESPRIT [34]. As a result, the estimators
have comparable complexity, namelyO(N3), due to the EVD
of the covariance matrix. In general, HMUSIC will have a
higher complexity than WLS, as it requires a nonlinear grid
search while the fitting procedure of WLS is in closed form.

In Figure 7, the RMSEs are shown for different cases. In
Figures 7(a) and 7(c), the experiments of [7] are repeated
with Al = 1 ∀l. As can be seen, both WLS and HMUSIC
have very good statistical performance for PSNRs above 20
dB. In Figures 7(b) and 7(d), the amplitudes are randomized
according to a Rayleigh pdf. This can be seen to have an
impact on the performance of both estimators. It is interesting
to note that, as before, HMUSIC breaks down for PSNRs
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Fig. 7. (a) RMSE as a function of PSNR forN = 200 with constant amplitudes, (b) RMSE as a function of PSNR forN = 200 with randomized
amplitudes, (c) RMSE as a function ofN for PSNR = 40 dB with constant amplitudes, and (d) RMSE as a function ofN for PSNR = 40 dB with
randomized amplitudes.

below 20 dB3. However, WLS breaks down at PSNRs below
40 dB. Therefore, we conclude that HMUSIC is more robust
than WLS. Above 40 dB, however, the performance of WLS
exceeds that of HMUSIC with WLS being closer to the CRLB.
A separate experiment was carried out to determine whether
the gap between the CRLB and the RMSE of HMUSIC was
due to a erroneous order estimates. However, simulations
showed no increase in performance in RMSE for a known
order. An explanation of the gap is that for low amplitudes,
eigenvectors belonging to the signal subspace are likely to
be interchanged with noise subspace eigenvectors althoughit
appears from Figure 6 that the order is still estimated correctly.
Also, it should be noted that the distance between the RMSE
and the CRLB is due to an increased variance rather than
an increased bias. The bad performance of WLS below 40
dB in Figure 7(b) can largely be attributed to erroneously

3By breakdown, we mean that the RMSE of the estimator deviates from
the CRLB by an order of magnitude. This kind of behavior is often seen in
practical estimators and is also known as a thresholding effect. This effect is
predicted by the Barankin and other bounds [35], [36], but not by the CRLB.

estimated frequencies in the unconstrained estimator, in this
case ESPRIT, due to the high probability of small amplitudes
in the Rayleigh pdf. We note that the WLS fitting procedure
may easily result in erroneous estimates for large errors since
these may cause a wrong ordering of the frequencies. In
Figure 7(c), both estimators can be seen to follow the CRLB
closely as a function of the number of observationsN , with
WLS having slightly better performance than HMUSIC. In
Figure 7(d), the trend of 7(b) is continued for differentN ,
and HMUSIC can again be seen to be more robust.

IV. CONCLUSION

In this paper, we have presented a method for high-
resolution estimation of the fundamental frequency of a setof
harmonically related sinusoids, assuming an unknown model
order. The method, which is based on the MUSIC estimation
criterion, jointly estimates the fundamental frequency and the
number of harmonics. Since many estimators, such as the
nonlinear least-squares method, require that the model order is
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known, this is a significant advantage of the proposed method.
It has been shown how the method can be implemented effi-
ciently using FFTs and how refined estimates can be obtained
by a gradient-based method. The application of the proposed
method to analysis of audio signals has been illustrated with
signal examples. The statistical performance of the method,
in terms of the mean squared error, has been evaluated and
compared to the asymptotic Cramér-Rao lower bound and
the Markov-like weighted least squares (WLS) method. The
simulations show that the proposed method has good statistical
performance and that it is more robust to noise than the WLS
method, even in the case when the latter is allowed to know
the true model order and the true signal amplitudes.

APPENDIX I
ASYMPTOTIC CRAMÉR-RAO LOWER BOUND

In this appendix, we derive the asymptotic CRLB for the
estimation problem considered in this paper. First, we define
the model of signal signal of interest as

x̂(n,θ) =
L∑

l=1

Ale
j(ω0ln+φl) (26)

being a function of the parameter vector

θ = [ ω0 A1 φ1 . . . AL φL] . (27)

The variance of an unbiased estimate of thei’th parameter of
θ is then lower bounded as

var (θi) ≥ [B(θ)]ii , (28)

whereB(θ) is referred to as the CRLB matrix. Defining the
vector

x̂(θ) =
[

x̂(0,θ) x̂(1,θ) x̂(N − 1,θ)
]T

, (29)

and assuming that noise in (1) does not depend on any of
the parameters inθ as well as being Gaussian distributed with
covariance matrixQ, the exact CRLB is given by the so-called
Slepian-Bangs formula (see, e.g., [37])

B−1(θ) = 2Re

{
∂x̂H(θ)

∂θ
Q−1 ∂x̂(θ)

∂θT

}
. (30)

The bound can be seen to depend on the matrix

∂x̂H(θ)

∂θ
=

[
∂x̂(0,θ)

∂θ
. . . ∂x̂(N−1,θ)

∂θ

]
, (31)

where the partial derivatives are given by

∂x̂(n,θ)

∂θ
=





∑L
l=1 jlnAle

j(ω0ln+φl)

ej(ω01n+φ1)

jA1e
j(ω01n+φ1)

...
ej(ω0Ln+φL)

jALej(ω0Ln+φL)





. (32)

In this paper, we make the assumption that the noise is also
white, i.e.,Q−1 = 1

σ2 I. Inserting this into (30), the CRLB

matrix can be seen to depend on the matrixC, defined as

C =Re

{
∂x̂H(θ)

∂θ

∂x̂(θ)

∂θT

}
(33)

=Re










χHχ χHΨ1 . . . χHΨL

ΨH
1 χ ΨH

1 Ψ1 . . . ΨH
1 ΨH

L

...
...

. . .
...

ΨH
L χ ΨH

L Ψ1 . . . ΨH
L ΨH

L









, (34)

where

χ =
[

∂x̂(0,θ)
∂ω0

. . . ∂x̂(N−1,θ)
∂ω0

]T

, (35)

and

Ψl =

[
∂x̂(0,θ)

∂Al

. . . ∂x̂(N−1,θ)
∂Al

∂x̂(0,θ)
∂φl

. . . ∂x̂(N−1,θ)
∂φl

]T

. (36)

Then it can easily be seen that

Re
{
ΨH

l Ψl

}
=

[
N 0
0 A2

l N

]
. (37)

Furthermore, assuming thatω0 is not close to zero and that
N is large, we can make the following approximations:

Re
{
ΨH

l Ψm

}
≈ 0 for l 6= m (38)

Re
{
χHχ

}
≈

L∑

l=1

A2
l l

2 N(N − 1)(2N − 1)

6
(39)

Re
{
ΨH

l χ
}
≈

[
0

A2
l l

N(N−1)
2

]
. (40)

Inserting these expressions into (34), we get the following
structured, sparse matrix

C = Re










χHχ χHΨ1 χHΨ1 . . . χHΨL

ΨH
1 χ ΨH

1 Ψ1 0 . . . 0

ΨH
2 χ 0

.. .
. ..

...
...

...
.. .

. .. 0

ΨH
L χ 0 . . . 0 ΨH

L ΨH
L










.

Next, partition the matrixC as follows, withd being a vector
containing the first column,E a diagonal matrix, andc a scalar,

C =

[
c dH

d E

]
(41)

then, from the matrix inversion lemma (see, e.g., [16]), we
have that [

C−1
]
11

=
(
c − dHE−1d

)−1
, (42)

yielding the asymptotic CRLB for the fundamental frequency
estimation problem, i.e.,

[B(θ)]11 =
σ2

2

[
C−1

]
11

=
6σ2

∑L
l=1 A2

l l
2N(N2 − 1)

(43)

≈ 6σ2

N3
∑L

l=1 A2
l l

2
. (44)
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APPENDIX II
RELATION BETWEEN PSNRAND SNR

In this appendix, we relate the PSNR, defined in (24), to
the more commonly used SNR, which for the signal model in
(1), for a particular segment (withN ≫ 1), is

SNR = 10 log10

∑L
l=1 A2

l

σ2
[dB]. (45)

When this quantity is averaged over a number of segments,
we get the so-called segmental SNR (see, e.g., [38]). Although
we see from the CRLB in (23) that the estimation problem
does not depend on the SNR but rather on the PSNR in a
straightforward way, the PSNR and SNR can be related in
some special cases. Assuming unit amplitudes, i.e.,Al = 1 ∀l,
we get

SNR = 10 log10

L

σ2
(46)

= 10 [log10 L − 2 log10 σ] (47)

whereas for the PSNR in (24), we get

PSNR = 10 log10

∑L
l=1 A2

l l
2

σ2
= 10 log10

∑L
l=1 l2

σ2

= 10 log10

L(L + 1)(L + 2)

6σ2

= 10
[
log10 L + log10(L + 1)

+ log10(L + 2) − log10 6 − 2 log10 σ
]
.

(48)

The difference between the two definitions of the SNR can be
seen to depend only on the number of harmonicsL, i.e.,

∆ = PSNR − SNR (49)

= 10
[
log10(L + 1) + log10(L + 2) − log10 6

]
. (50)

In Figure 8 this difference is shown, in dB, as a function of
the number of harmonics. As can be seen, the PSNR is higher
than the SNR forL > 1 and the difference grows larger for
more harmonics. In practice, this means that for speech and
single instrument audio signals with a fairly typical number
of harmonics, in the range of 20–40, a PSNR of 20 dB would
correspond to an SNR below 0 dB.
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