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Joint High-Resolution Fundamental Frequency and
Order Estimation

Mads Graesbgll ChristenserMember, IEEE Andreas Jakobsso®&enior Member, IEEEFand
Sgren Holdt Jenseigenior Member, IEEE

Abstract— In this paper, we present a novel method for joint white complex circularly symmetric Gaussian noig€rn ), for
estimation of the fundamental frequency and order of a set of =0, ... N —1,
harmonically related sinusoids based on the MUSIC estimation

criterion. The presented method, termed HMUSIC, is shown L (wolntér)
to have an efficient implementation using FFTs. Furthermore, z(n) = ZA,@J womTOU +w(n), (1)
refined estimates can be obtained using a gradient-based method. =1

lllustrative examples of the application of the algorithm to .
real-life speech and audio signals are given, and the statistical whereA; > 0 and ¢; are the amplitude and the phase of the

performance of the estimator is evaluated using synthetic signals, /'th harmonic, respectively. The frequency of #té harmonic
demonstrating its good statistical properties. is thusw; = wyl, and the problem considered in this paper

is to estimate the fundamental frequenay, as well as the
model orderLZ, from a set of N measured samples;(n).
We refer to the number of harmonick, as the model order.
Fundamental frequency estimators form an integral pa#erein, we focus on the most common case, for which the set
in many signal processing applications, and especiallynso df harmonics followsw; = wyl, for [ = 1,..., L; however,
speech and audio processing. For example, long-term predigher cases may be of interest where some of the harmonics,
tion in linear prediction-based speech coding requires theven the fundamental, may be missing [14]. It should be
the fundamental frequency, or equivalently the pitch mkriostressed that most estimators operate under the assumption
is estimated [1]. Similarly, parametric coding of speechl arof the model order being known. Typically, this requires an
audio using a harmonic sinusoidal model is typically based nitial order estimation prior to the frequency estimati®ior
a fundamental frequency estimator [2]. Fundamental freqpie example, the nonlinear least-squares (NLS) method is well-
estimators are also key components in music informati®mown to be equivalent to the maximum likelihood estimator
retrieval applications such as automatic music transoript under the condition of white Gaussian noise, provided thet t
and in musical genre classification [3]. Many fundamentahodel order is known [15]. We refer the reader to [16], [17]
frequency estimators used in speech and audio processngfar a more complete discussion of this difficult problem. We
time-domain techniques based on the auto-correlation-futemark that real valued signals can be cast into the form of
tion, cross-correlation function, averaged magnitudiedhce (1) via the down-sampled discrete-time analytic signal].[18
function, or averaged squared difference function. Thesthm Here, we have used the complex formulation because of its
ods are typically biased methods primarily concerned withotational simplicity and because it leads to computatipna
handling particular problems in speech and audio procgssifess complex algorithms.
such as the so-called first formant interaction problemntha |t has recently been shown that the MUItiple Signal Clas-
obtaining high resolution frequency estimates. An illas#e sification (MUSIC) estimation criterion can be used for high
example of such a recent approach can be found in [4dsolution estimation of the fundamental frequency [19]e T
For a historical review of fundamental frequency estimatioresulting estimator was shown to have good statistical per-
methods, we refer to [5], [6], and for examples of more recefdrmance, approaching the Cramér-Rao lower bound (CRLB),
work, we refer to [4], [7]-[13]. provided that the ordek is known. In this paper, we further
The fundamental frequency estimation problem can k&tend on this work. Specifically, we propose an algorithm
defined as follows. Consider a harmonic signal with thgat jointly estimates the fundamental frequency and thermr
fundamental frequencyy, that is corrupted by an additive showing that this algorithm can be efficiently implemented
. . . _ . using the fast Fourier transform (FFT). Also, refinements of
This research was supported in part by the Intelligent Squafct, Danish the estimates can be obtained using a gradient-based method
Technical Research Council, grant no. 26—04—0092, andahentetric Audio
Processing project, Danish Research Council for Techyatogl Production derived herein. We refer to the proposed estimator as the
Scﬁn‘ﬁsggﬁgtter:;e §7;36§05§1-Jensen are with the Dept, of Blict harmonic MUSIC (HMUSIC) estimator. Using simulated data,
Systems, Aalborg University, Niels Jernes Vej 12, DK-9220bagg, Den- the proposed estimator is evaluated using Monte Carlo simu-
mark (phone: +45 96 35 {86 20, 86 54}, fax: +45 96 15 15 83, emaitations. Furthermore, we compare to the asymptotic CRLB

{mgc, shj } @om aau. dk). . o ~and the recent Markov-like weighted least squares (WLS)
A. Jakobsson is with the Dept. of Electrical Engineeringsigtad Uni-

versity, Universitetgatan 2, SE-651 88 Karlstad, Swedémige: +45 54 700 €Stimator published in [7]. Additionally, illustrative amples .
2330, fax: +46 54 700 2197, emaindr eas. j akobsson@ eee. org).  Of the application of the proposed methods to speech and audi

I. INTRODUCTION



signal analysis are given. The MUSIC estimate is found as the frequencies minimizing
The remaining part of the paper is organized as follows.

In Section Il, the proposed estimator is presented along T =IA"GE = Tr {AHGGHA}’ (10)
with some implementation details. In Section Ill, numericayith Tr{-} and || - | denoting the trace and Frobenius
results and illustrative examples are presented, andd®eldfi norm, respectively. Note that for notational simplicitye Wwave
concludes on the work. omitted the dependency ok and G on the unknowns. For
more on the performance of MUSIC see, e.g., [23], [24], and
[I. THE PROPOSEDESTIMATOR for more on subspace-based estimation techniques in denera
A. Covariance Matrix Model see, e.g., [25], [26].

In this section, we present the fundamentals of the MUSIC )
algorithm [20], [21] (see also [22]) and introduce some ukefB: Harmonic MUSIC
vector and matrix definitions. We start out by definigr) as Herein, we will extend the MUSIC estimation criterion in
a signal vector containing/ samples of the observed signal(10) for jointly estimating both the fundamental frequeracy
ie., the model order. We note that the cost function in (10) varies
with the orderL and the size of the covariance matrix/,

~ T

X(n)=[ z(n) z(n-1) - 2z@m-M+1) ], (2 and we must therefore first derive an appropriate scaling. By
with ()7 denoting the transpose. Then, assuming that tHee Cauchy-Schwarz inequality, we have that
phases of the harmonics are independent and uniformly dis- IALG|r < HAH||F||GHF~ (11)
tributed on the interval—m, 7], the covariance matriR € N
CM*M of the signal in (1) can be written as [16] As the M — L columns ofG are orthonormal, and all the

o columns of A have normy/M, we get
R = E{X(n)xH(n)}
|A"G|F

= APAY 4571, (3) (12)

VLM(M - L) =1
whereE {-} and(-)¥ denote the statistical expectation and the o i
conjugate transpose, respectively. Note that for this mgee 1 N€ Scale factor/LM (M — L), which is due to the variable
sition to hold, the noise need not be Gaussian. Furthermgfénensions ofA and G, makes the noise floor of the cost

P is a diagonal matrix containing the squared amplitudes, i.8nction invariant to the matrix dimensions. When the order
is unknown, which is generally the case, it was estimated in

P=diag([ A7 --- A% ]), (4) [9]asL = [25| — 1, and the fundamental frequency was
estimated as the value for which the Vandermonde matrix is
closest to being orthogonal to the noise subspace, i.e.,
A= [ a(wo) N a(wOL) } s (5) . LM(M _ L)
Wo =argmax ———-—<o5
wherea(w) = [1 e ... ¢=«(M=1D 7 Also, o2 0T LS ARG
denotes the variance of the additive noiggn), andI is the where is a set of candidate fundamental frequencies. How-
M x M identity matrix. We note thaAPA* has rankL. Let ever, this approach may lead to a wrong identification of the
R — UAUH ©) noise subspace in (7), and this, in turn, led to the problems
of spurious estimates reported in [19]. The orthogonality i
be the eigenvalue decomposition (EVD) of the covariand8) will hold only when the estimated fundamental frequency
matrix. Then,U contains theM orthonormal eigenvectors equates the true frequen@nd the orderL is chosen such
of R, i.e.,, U = [ u, - uy ] and A is a diagonal that R(A) = R(S). Thus, we propose to jointly estimate
matrix containing the corresponding eigenvalugg, with the fundamental frequency and the order as follows. Define
A1 > X2 > ... > Ay Let G be formed from the eigenvectorsthe two-dimensional cost function, depending on both the
corresponding to théd/ — L least significant eigenvalues, i.e.fundamental frequency and the order, as

G=[up1 - uy]. @) Py, L) = Mi(yc;_f)
The noise subspace spanned@ywill then be orthogonal to - | I ]
the Vandermonde matriA, i.e., Then, exploiting (14), we proceed to estimate the fundaaient
frequency as

and A € CM*L g full rank Vandermonde matrix defined as

(13)

(14)

ARG =0, (8)
Wo = arg max max P(wg, L). (15)

and R(A) = R(S) with R(-) denoting the range anfl = wo€ LeL
[u; --- wug | being the eigenvectors that span the signale term the resulting estimator the harmonic MUSIC (HMU-
subspace. We here form a consistent estimate of the coeariafilC). Note that this order estimation principle holds in get
matrix R as for any set of linearly independent vectors. We stress that

~ 1 XL - both A and G depend onL while only A depends on

R=%5 < X(n)&" (n). ) the fundamental frequency and that as a by-product of (15),

n=.1vi

we also get an estimate of the ordér In some cases,



the model order may not be of interest, but even then itith
iS necessary to determine it to obtain a correct fundamental 0 0 0
frequency estimate. It should be noted that the set of plessib ; 9 i

. . J J J
orders,Z, will depend on the fundamental frequency since the Y = i ) )
harmonics are bounded . Because of this dependency, oo o . :
the maximizations in (15) cannot be interchanged without JM-1) j(M-1)2 - j(M-1)L

modifying the set€) and £ accordingly. (21)

This gradient can be used for finding refined estimates using
standard methods. Here, we iteratively find a refined estimat
of the fundamental frequency as
The three major sources of computational complexity of . ,
! o = af) — oV (22)
the proposed method are the calculation of the EVD of wo =W )

the covariance matrix in (6), the inner produgHG, and  ith ; being the iteration index anila small, positive constant
evaluating the Frobenius norm in (14). We will now showhat is found adaptively using line search [27]. The metrsod |
how the algorithm can be implemented efficiently. First, Wjitialized for i = 0 using the coarse estimate obtained from

C. Efficient Implementation

define the Fourier matri¥ € C***, with F > N, as (15). As the ordet. is kept fixed, only the matriXA changes in
1 1 1 e 1 each iteration. Note that instead of the gradient approaskd

1 21 P e LF-1 on the HMUSIC cost function, the NLS cost function could be

F=1. : : : , (16) used. However, the NLS cost function (see, e.g., [7], [18]) i

i Z(FQ) 22(15“71) Z(Ffl.)(Ffl) more complicated than the HMUSIC cost function, involving

matrix inversion, and would hence be more computationally
where » — =327+ Next. we define a matrisD € RF*M demanding. Also, the NLS cost function is known to be multi-

containing the squared absolute values of the inverse FETgT§dal with an abundance of local minima.
the zero-padded eigenvectorstihas
(17) A. Signal Examples

[ 2]

tm We start out the experimental part of this paper by illustrat

with [D],,, being the(l,m)'th element ofD. For a candidate ing the application of the proposed method to analysis of an
pair of a fundamental frequency ofr-L and an ordei’, the audio signal. Figure 1 shows a segment of a quasi-harmonic

) IIl. EXPERIMENTAL RESULTS

)

Frobenius norm in (14) can be calculated as signal produced by a musical instrument, a violin. In Figure
ML 2, the cost function (15) is shown for this signal for diffete
IAPG|2% = Z Z D] (1 1ym - (18) Vvalues of the fundamental frequency and order. The combina-
m=L 41 =1 tion of the fundamental frequency and the order estimates ca

: . . be identified as large peaks in the landscape. It is integsti
H 2
Thus, the complexity of calculatingA™ G|, for differentwo 1 ote that a measure of the confidence of the estimate is

and L can be significanty reduced by calculating the inverq%w distinct the peak is. As can be seen from the figure, for

FFT of all the eigenvectors once for each given data set. W?e fairly stationary signal in Figure 1, the associatedt cos

note that some of the eigenvectors, corresponding to tgesgr function has a very distinct peak. For non-stationary diggna

eigenvalues, can be excluded from definition of (17), sin 5t signals where the model does not hold, the cost function
. / . 1

:Eere f'S a liwfr b?ur.]d ?ﬂt Here, we have included all of can be observed to be very noisy, with no distinct peak. Yet

em for notational simplicity. another example is shown in Figure 3, this time for a trumpet.

The top panel shows the spectrogram (for low frequencies)

D. Refined Estimates of the signal while the bottom panel shows the estimated

For many app"ca‘[ions, 0n|y a coarse estimate of the fuﬂmdamental frequencies. The estimates can be seen tafollo
damental frequency is needed, in which case the estimatoith fundamental frequency of the top panel. Note that there
(15) may produce sufficiently accurate results at a reagenaBl® some spurious estimates in the transition between notes
complexity using the FFT-based method. If, however, vedt 4.25 s. For such non-stationary segments, or for segments
accurate estimates are desired, a refined estimate cantm fgtpntaining multiple sets of harmonics, the signal modellin (

as described next. For a giveb7 the gradient of the cost is invalid. The estimation of multiple fundamental frequiers
function (10) can be shown to be can be incorporated into the proposed estimator at the ¢ost o

o7 5 increased computational complexity. For these examphes, t
VJ=-—=2Re (Tr {AHGGHA}> . (19) experimental setup was as followa = 282 samples were
dwo Owo obtained at a sampling frequency ¢f = 11025 Hz. For
with Re(-) denoting the real valuep the Schur-Hadamard each segment, the down-sampled discrete-time analytalsig
(element-wise) product, and was calculated using the FFT method [18]. Then, the sample
P covariance matrix of sizéd/ = 110 was calculated. The cost

%A =-YOA (20) function in (15) was evaluated for fundamental frequencies
0
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Fig. 1. Example of a quasi-harmonic signal, a segment of a vidinal.

600 : f\

Fig. 3.  Spectrogram of trumpet signal for low frequenciesp)tand
fundamental frequencies estimated using the proposed metblatiir().

using the FFT-based method. It can be seen from the figure
500+ ‘ that the signal is highly non-stationary, compared to thdiau
4004 signals in Figures 1 and 3, with the fundamental frequency
| ‘ and order varying continuously throughout the durationhef t
300+ | N \‘ signal. The crosses indicate the estimated fundamental fre
2004 ‘ e guencies as found using (15) where the order is estimated for
HH\HHM‘ each segment (denoted estimated order). The circles tadica
100+ ‘ HH‘HL the fundamental frequencies found by evaluating (13) for a
0 20 0 fixed order of 5 (denoted fixed order). For SNRs above 0

0
200
400 600

Fundamental Frequency [Hz]

800

_ 40
60
80

1000 Model Order

dB, the proposed method can be seen to consistently estimate
the correct fundamental frequency. At 0 dB, there are some
erroneous estimates in low energy segments. For the fixed

order case, however, spurious estimates can be observed for
all SNRs, with the actual performance depending on how well
the assumption of an order of 5 fits. This clearly shows that
the importance of the order estimate in fundamental frequen
corresponding to frequencies from approximately 60 to 10@Stimation. Note that for SNRs below 0 dB, both methods do
Hz in steps of 10 Hz using the FFT-based method itiot return any meaningful estimates.

F = 1024. For each possible fundamental frequency the

model orders considered were = {5,..., Li—zj — 1} with B, Statistical Evaluation

|-] denating truncation.

Next, we demonstrate the application of the proposeq
method, along with the importance of the order estimate, [Q
speech analysis. We have used speech sample dominate
voiced speech, namely a femaly speaker uttering “Why we
you away a year Roy?”. In Figure 4, the estimated fundamen al
frequencies are shown along with the spectrogram of t
speech signal for various noise conditions, i.e., whiteSSen

Fig. 2. HMUSIC cost function for different combinations ofnfiamental
frequencies and orders for the signal in Figure 1.

Next, we use an experimental evaluation similar to that
[7]. In assessing the statistical properties of the psago
timator, we employ Monte Carlo simulations. In each trial
gnal is generated according to the model in (1), with the
rameters and noise realizations being randomized. We wil
re use parameter values and constants that would be in the
Ofder of those used in speech and audio processing. Since the
) ) . . . act CRLB for the problem considered here varies with the
noise with signal-to-noise ratios (SNR) of 0, 10, 20, and 3 arameters in a compplicated way [7] and we here randomize

. X : ooy
g?;rfj‘;‘gcg‘é?r'é Ihh: s(;\lwir'socfjingegpﬁgﬁlg% /nZi)s’eWsltignat%e parameters, we instead compare the proposed method to
respectively. The sampling frequency was= 8000 Hz and e asymptotic CRLB. The asymptotic CRLE'(> 1), i.e. the

segments withV' — 204 (25.6 ms) were used to calculate th lower bound on the variance of an unbiased estimator, for the
9 . = S . fundamental frequency of the model in (1) can be shown to
down-sampled discrete-time analytic signal which was th

used to form a covariance matrix of sidé = 80. The cost % (see Appendix 1)

functions were evaluated on a 2 Hz grid from 60 to 400 Hz 602

CRLB(wy) = —————.
N3 Y AR

(23)

1This value was chosen primarily for illustrative purposes.ptactice, a
higher value would most likely be desirable.
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Estimated fundamental frequencies (bottom panelg)daising (13) with a fixed order (circles) and using (15) wehalso the order is estimated

(crosses) for a speech signal in additive white Gaussiaserforr various SNRs (top panels).

The CRLB can be seen to depend on the pseudo signal#olow number of observations, the performance of estimators
noise ratio (PSNF) is expected to depend on the fundamental frequency, since
the fundamental frequency determines how closely spaaed th
harmonics will be. Figure 5 shows the exact CRLB, given

) o ] o in [7], averaged over different realizations of the pararet
In Appendix Il, it is shown how this definition of the PSNRyq hoise in (1), for a PSNR of 20 dB, as a function of

relates to the more commonly used definition of the SNk, fundamental frequency, for a sampling frequency of 8000
The benefit of an adaptive order estimate is evident from thg, The amplitudes in (1) were generated according to a

CRLB:' the more harmonics that are present, 'Fhe rno;e aCCUfR'é‘erigh probability density function (pdf) while the plas
an estimate we can get and, due to the weighting“pyhe \yere distributed uniformly and. = 10. The exact CRLB

higher harmonics are actually more important than the lolWer ¢, e seen to depend on the fundamental frequency with the
is interesting to note that the asymptotic CRLB in (23) do®s Npoyng increasing for low frequencies. For high frequencies

depend on the fundamental frequency and that, as expectggy high, the bound can be seen to approach the asymptotic
the fundamental frequency can be estimated more accuraigly| g in (23).

than any of the frequencies of the individual harmonics. For |, ine experiments to follow, we use the following setup:

L
A2l2
PSNR = 101log,, Zﬁ% [dB]. (24)

2The PSNR is defined similarly in [28] but differently in [7]. two cases are considered, hamely for constant amplituges, i



Rl N0 quels orders considgred wefg: {5, o Li—’gj —'1}. The
" CRLB N=100 noise was complex white Gaussian distributed while the gdhas
CRLB N=150| were distributed uniformly on the intervél-; «].
~ - CRLB N=200 First, we confirm that the proposed method results in
1 an accurate order estimate. In Figure 6, the percentage of
correctly estimated orders are shown for varying PSNR with
i N = 100. For each PSNR, 1000 trials were run. We here
compare to the minimum description length (MDL) method
[29]-[31] (see also [16], [32]). In finding the MDL estimates
the true fundamental frequency was used, the log-likelilsoo
S| were calculated using amplitudes that were estimated using
least-squares (see [17], [33]), and the noise variance was
10 ‘ ‘ ‘ ‘ estimated by subtracting the estimated sinusoids from the
0 100 zggquency [E‘CZ)? 400 500 sigpal. As can be seen in the figqrg, the p_roposed method
estimates the correct order for sufficiently high PSNRs. For
Fig. 5. The exact CRLB averaged over 1000 realizations asetitin of randomized amplitudes, HMUSIC is slightly worse than MDL,
the fundamental frequency (in Hz) for a sampling frequencyQffBHz. The  if the latter is allowed to know the true fundamental frequen
circles at the right edge indicate the corresponding asytcp&RLB. for 20 and 30 dB, but better for 0 and 10 dB.
100 ‘ In the following, we evaluate the estimators in terms of the
root mean squared estimation error (RMSE) defined as

90r

801

S 2
70t RMSE = % ; (ags) — wo) , (25)

601

50r with wy and Caés) being the true fundamental frequency and
the estimate, respectively, and with being the number of
Monte Carlo trials. This is done for various PSNRs, for a

given N, as well as for differentV for a given PSNR.

% Correct

40t

301

204" s Ercii‘ifg)t) The number of Monte Carlo trials was 200. As a reference

10/ -+ MDL (random) method, we use the WLS estimator proposed in [7]. This
K ‘ ‘ ‘ o MDL (constant) is a computationally efficient method with good statistical
0 10 20 PSN3R0[ - 40 50 60 performance. It operates in a two-step procedure where first

the unconstrained frequencies of the individual harmoares
Fig. 6. Percentage of correctly estimated orders of the mepanethod for €Stimated and sorted according to their value. Then, a funda
varying PSNR for constant and randomized amplitudes, witk= 100. mental frequency estimate is formed from these frequericies

a weighted way. It should be noted that this method requires

) _that the model order is known, and the weighting requires tha

A; =1V, and for amplitudes that are generated according fQe amplitudes are either known or well estimated (see also
a Rayleigh pdf. The motivation for testing the algorithm hwit [33]). We stress that the proposed method requires neitfeer t
amplitudes that are Rayleigh distributed is that, for she®® 5y piitudes nor the order to be known. Here, to allow for the
audio signals, the harmonics can typically not be assumggs; favorable implementation of WLS, we allow it to use
to have equal amplitudes. Hence, robustness towards sygl e model order, the actual amplitudes as well as etima
variations is desirable. In both cases, orders were gesteraf,q frequencies using ESPRIT [34]. As a result, the estirsato

from a u_niform probability mass function (pmf) from to  pave comparable complexity, name®y N'3), due to the EVD

10 and with a fundamental frequency ©f = 0.1963. We see ot the covariance matrix. In general, HMUSIC will have a
from Figure 5 that the asymptotic CRLB (indicated by cir¥les,igher complexity than WLS, as it requires a nonlinear grid
can be expected to hold for this value. The cost function) (15earch while the fitting procedure of WLS is in closed form.
was evaluated for fundamental frequencies in the intenval In Figure 7, the RMSEs are shown for different cases. In

[0.04;0.4] using the FFT-based method withi ~ 8192M. Figyres 7(a) and 7(c), the experiments of [7] are repeated
Note that this interval includezv, and %wo, so any potential \ith A, = 1 Vi. As can be seen, both WLS and HMUSIC
problems with spurious estimates at these frequencies, 1age very good statistical performance for PSNRs above 20
are often seen in fundamental frequency estimators, Wolg | Figures 7(b) and 7(d), the amplitudes are randomized
show up in the statistical evaluation. Moreover, the MUS'Qccording to a Rayleigh pdf. This can be seen to have an
algorithm is generally sensitive to the choice/df relative to impact on the performance of both estimators. It is inténgst

N. This is an inherent tradeoff between having many vecto§ note that, as before, HMUSIC breaks down for PSNRs
in the averaging in (9) while retaining sufficient dimension

of the signal and noise subspaces. Here, we have lised

L%NJ. For each possible fundamental frequengye (2, the
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Fig. 7. a) RMSE as a function of PSNR fd¥ = 200 with constant amplitudes, (b) RMSE as a function of PSNR fbr= 200 with randomized
g p

amplitudes, (c) RMSE as a function of for PSNR = 40 dB with constant amplitudes, and (d) RMSE as a functiomofor PSNR = 40 dB with
randomized amplitudes.

below 20 dB. However, WLS breaks down at PSNRs belovestimated frequencies in the unconstrained estimatorhig t
40 dB. Therefore, we conclude that HMUSIC is more robustise ESPRIT, due to the high probability of small amplitudes
than WLS. Above 40 dB, however, the performance of WLB the Rayleigh pdf. We note that the WLS fitting procedure
exceeds that of HMUSIC with WLS being closer to the CRLBmay easily result in erroneous estimates for large errorsesi

A separate experiment was carried out to determine whetlleese may cause a wrong ordering of the frequencies. In
the gap between the CRLB and the RMSE of HMUSIC wadsigure 7(c), both estimators can be seen to follow the CRLB
due to a erroneous order estimates. However, simulatiarissely as a function of the number of observatigviswith
showed no increase in performance in RMSE for a knowWLS having slightly better performance than HMUSIC. In
order. An explanation of the gap is that for low amplitudedsigure 7(d), the trend of 7(b) is continued for differeit
eigenvectors belonging to the signal subspace are likely aod HMUSIC can again be seen to be more robust.

be interchanged with noise subspace eigenvectors althibugh

appears from Figure 6 that the order is still estimated ctigre IV. CONCLUSION

Also, it should b_e noted that the distance bgtween the RMSE,, his paper, we have presented a method for high-
and the CRLB is due to an increased variance rather th%

olution estimation of the fundamental frequency of ao$et
an increased bias. The bad performance of WLS below @8 d y

rmonically related sinusoids, assuming an unknown model

rder. The method, which is based on the MUSIC estimation
3By breakdown, we mean that the RMSE of the estimator deviates fr criterion, jointly estimates the fundamental frequency &me

the CRLB by an order of magnitude. This kind of behavior is féeen in  number of harmonics. Since many estimators, such as the

practical estimators and is also known as a thresholdingteffédis effect is nonlinear | _ res meth r ire th he m ;
predicted by the Barankin and other bounds [35], [36], buthyothe CRLB. 0 ear least-squares method, require that the modet esd

dB in Figure 7(b) can largely be attributed to erroneous



known, this is a significant advantage of the proposed methadatrix can be seen to depend on the ma@ixdefined as

It has been shown how the method can be implemented effi- 0% (8) 9%(6)
ciently using FFTs and how refined estimates can be obtainedC :Re{ 70 7 } (33)
by a gradient-based method. The application of the proposed o 00 o .
method to analysis of audio signals has been illustrated wit X'x x"¥r ... X7V
signal examples. The statistical performance of the method vix wiw, ... wiw}
in terms of the mean squared error, has been evaluated and =Re : : : (34
compared to the asymptotic Cramér-Rao lower bound and ‘I’I.i ,I,H"I, ‘I,H.‘I’H
the Markov-like weighted least squares (WLS) method. The LX e L
simulations show that the proposed method has good statistwhere
performance and that it is more robust to noise than the WLS _ [ 0#(0,0) oa(n-1,0) 17
method, even in the case when the latter is allowed to know - { duwo dwo ] ' (35)
the true model order and the true signal amplitudes. and
91(0,0) o&(N-1,0) 17T
APPENDIXI U, = [ aj%&ze) %(2@1 0) ] ) (36)
AsYyMPTOTIC CRAMER-RAO LOWER BOUND 2%, R
In this appendix, we derive the asymptotic CRLB for thghen it can easily be seen that
estimation problem considered in this paper. First, we defin
the model of signal signal of interest as Re {\I,H\I; } _|N 0 37)
L 0 AN
i(n,0) = ZAlej(woln+¢1,) (26) Furthermore, assuming thag is not close to zero and that
=1 N is large, we can make the following approximations:
being a function of the parameter vector Re ‘I,H‘I, } ~0 for I#m (38)
BZ[WOAI ¢1 AL¢L} (27) 22N )(2N—1)
The variance of an unbiased estimate of ttie parameter of Re {X X} Z Ayl 6 (39)
6 is then lower bounded as
I 0
var (6;) > [B(0)],, . (28) RC{‘I’z X} ~ [ PULICSY } : (40)
whereB(0) is referred to as the CRLB matrix. Defining thelnserting these expressions into (34), we get the following
vector structured, sparse matrix
%(6) = [ 2(0,0) #(1,0) #N-1,0)]",  (29) xx  x"w, x"w, o XMy
. o vy vy, 0 0
and assuming that noise in (1) does not depend on any of _
the parameters ifl as well as being Gaussian distributed withC = Re \Ilgfx 0 '
covariance matrixQ, the exact CRLB is given by the so-called . )
Slepian-Bangs formula (see, e.g., [37]) i : ' ' HO i
Tl 0 .0 vl
3 ox(9) ., 0%(0) " . . .
B~ (0) = 2Re{ Q- = } . (30) Next, partition the matrixC as follows, withd being a vector
90 containing the first columrk a diagonal matrix, anda scalar,
The bound can be seen to depend on the matrix I
. C [ ¢ d } (41)
ox"(6) _ [ 02(00)  92(N-10) }, (31) d E
00 e e then, from the matrix inversion lemma (see, e.g., [16]), we
where the partial derivatives are given by have that
F L i dgedteotnton T (€], = (c—d"E) ", (42)
el (wolnton) yielding the asymptotic CRLB for the fundamental frequency
0% (n, 0) jA eI (wolntén) 32 estimation problem, i.e.,
00 o : ( ) [B(g)] o2 [C—l] 602 (43)
el (woLn+ar) 11— o 11 — i3 272 5
jALej(woLnJr(bL) 2 602 El:l All N(NZ—1)
- g
In this paper, we make the assumption that the noise is also N3 ZzL:1 Alzlz' (44)

white, i.e., Q™! = %I. Inserting this into (30), the CRLB



APPENDIX I
RELATION BETWEENPSNRAND SNR

In this appendix, we relate the PSNR, defined in (24), to
the more commonly used SNR, which for the signal model in
(1), for a particular segment (with/ > 1), is

L
i1 Al

SNR = 10log;) <=5~ [dB]. (45)

When this quantity is averaged over a number of segments,
we get the so-called segmental SNR (see, e.g., [38]). Athou
we see from the CRLB in (23) that the estimation problem
does not depend on the SNR but rather on the PSNR in a
straightforward way, the PSNR and SNR can be related in
some special cases. Assuming unit amplitudes,dg= 1 VI,

we get

L
SNR =10log;, P (46)
= 10{logy L — 2logyq o] (47)
whereas for the PSNR in (24), we get [8]
S A2 SR
PSNR = 10logy, % = 101logy, 10721 [9]
L(L+1)(L+2
= 101log, M (48)

602 (20]
= 10[logyo L + log;o(L + 1)

+log(L + 2) — logy; 6 — 2logy o).

(11]

The difference between the two definitions of the SNR can ]
seen to depend only on the number of harmodics.e.,

A=PSNR-SNR (49)
= 10[logyo(L + 1) + logyo(L + 2) —log,, 6].  (50)

In Figure 8 this difference is shown, in dB, as a function dt5l

(23]

(14]

the number of harmonics. As can be seen, the PSNR is high%i

than the SNR for. > 1 and the difference grows larger for
more harmonics. In practice, this means that for speech dhd
single instrument audio signals with a fairly typical numbe g
of harmonics, in the range of 20-40, a PSNR of 20 dB would
correspond to an SNR below 0 dB. (19]
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