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Frequency selective sinusoidal order
estimation

A. Jakobsson, M.G. Christensen and S.H. Jensen

Proposed is a frequency selective (FS) subspace-based method for

determining the model order. A study is made of its performance when

applied to estimating the number of sinusoids in white noise. Employ-

ing an FS-version of the ESPRIT algorithm, the recent ESTER model

order estimation algorithm is extended to allow for the model order

estimation on a frequency subset.

Introduction: Estimating the order of a model is a central, yet

commonly overlooked, problem in parameter estimation, with the

majority of the literature assuming prior knowledge of the model

order. In many cases, however, the order cannot be known a priori and

may change over time. The prevalent methods for estimating the

model order are the minimum description length (MDL) [1, 2], the

Akaike information criterion (AIC) [3], and the maximum a posteriori

(MAP) rule [4]. These methods are based on statistical models of the

observed signal, such as the observation noise being white and

Gaussian distributed. From these models, a regularised estimation

criterion is devised that is composed of a log-likelihood term and an

order-dependent penalty term. We refer the reader to [5] for an

overview of such statistical methods. The problem that we are here

concerned with is that of sinusoidal order estimation, i.e. determining

the number of sinusoids in noise. This problem is treated in much

detail from a statistical point of view in [4] and is also exemplified in

[5]. Mathematically, the problem can be stated as follows. Consider a

complex signal consisting of (a possibly large number of) complex

sinusoids having frequencies {ol} which is corrupted by an additive

noise, w(n), for n¼ 0, . . . , N� 1, i.e.

xðnÞ ¼
PP

l¼ 1

Ale
jðol nþfl Þ þbln þ oðnÞ ð1Þ

where Al > 0, fl and bl are the amplitude, the phase and damping of

the lth sinusoid. Here, o(n), is assumed to be white complex

symmetric zero-mean noise. It is noted that the sinusoids may be

damped. Herein, we are interested in the problem of estimating the

model order, L�P, in a specific frequency band of interest specified

by a subset of discrete Fourier transform bases. In this Letter, we

propose an estimation criterion based on a frequency selective (FS)

subspace technique.

Algorithm: Following the notation in [6–8], we note that it is possible to

form a frequency selective data model allowing for the approximation

YP?
U ’ A‘X‘P

?
U ð2Þ

where Y 2 CS�M is the FS data matrix, P?
U a projection onto the

space orthogonal to the S�M Vandermonde matrix U, formed from a

subset of discrete Fourier transform bases, A‘ a S� ‘ Vandermonde

matrix formed from the assumed ‘ modes in the selected frequency

range, and X‘ 2 C‘�M a matrix formed from the Fourier trans-

formed modes. (In the interest of brevity, we here simply state the

approximative expression (2), referring the reader to [6–8] for further

details on the definitions and derivations.) As in [7], M�Lþ S

denotes the number of selected (possibly consecutive) frequency

grid points and the user parameter S2 (bM=3c, bM=2c), where bxc

denotes the integer part of x. We note that using (2), one may form a

(possibly weighted [8]) estimate of the unknown modes. Herein,

reminiscent to the ESTER algorithm proposed in [9], we propose to

form a cost function, J (‘), based on the goodness of the fit in (2) for

a generic order ‘, i.e.

J ð‘Þ ¼ kYP?
U � A‘X‘P

?
Uk

2
2 ð3Þ

where k � k2 denotes the 2-norm. We then propose to estimate the model

order as

L̂ ¼ argmin
‘

J ð‘Þ ð4Þ

It is worth noting that, unlike commonly used statistical methods, the

method does not depend on the noise probability density function.

Furthermore, we note that should the full frequency range be used in

forming (3), (4) will coincide with the ESTER estimate.

Fig. 1 Example of cost function for various model orders with L¼ 7

Fig. 2 Percentage of correctly estimated model orders against number of
observations

Results: Fig. 1 is an illustrative example of the cost function of the

proposed method. Here, the data consists of P¼ 107 real-valued

sinusoids corrupted by real-valued white noise, whereof L¼ 7 sinu-

soids reside in the frequency region o 2 [0.19, 0.28]. The signal

length is 512 samples, M ¼ 46 and S ¼ 20. In Fig. 2, we examine the

percentage of correctly estimated model orders against the number of

observations. The results are obtained using 2000 Monte-Carlo

simulations of the above data set, with each simulation randomising

the initial phases and the corrupting noise sequence. Here, S¼bM=2c
and SNR ¼ �8 dB, where SNR is defined as the power of the L

sinusoids to the noise and interference (in this case, the P–L

sinusoids).
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