
Aalborg Universitet

Fundamental Frequency Estimation using the Shift-Invariance Property

Christensen, Mads Græsbøll; Jakobsson, Andreas; Jensen, Søren Holdt

Published in:
Proc. of Asilomar Conference on Signals, Systems, and Computers

Publication date:
2007

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Christensen, M. G., Jakobsson, A., & Jensen, S. H. (2007). Fundamental Frequency Estimation using the Shift-
Invariance Property. Proc. of Asilomar Conference on Signals, Systems, and Computers, 631-635.
http://kom.aau.dk/~mgc/publications/asilomar2007c.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://vbn.aau.dk/en/publications/ebd43f70-4ca6-11dc-a457-000ea68e967b
http://kom.aau.dk/~mgc/publications/asilomar2007c.pdf


FUNDAMENTAL FREQUENCY ESTIMATION
USING THE SHIFT-INVARIANCE PROPERTY

Mads Græsbøll Christensen∗†, Andreas Jakobsson‡, and Søren Holdt Jensen†

† Dept. of Electronic Systems
Aalborg University, Denmark
{mgc,shj}@es.aau.dk

‡ Dept. of Electrical Engineering
Karlstad University, Sweden

andreas.jakobsson@ieee.org

ABSTRACT
In this paper, we propose a method for the estimation of
the fundamental frequency of a periodic waveform based on
the shift-invariance property of the sinusoidal signal model
known from ESPRIT. An advantage of the proposed method
is that the model order and the fundamental frequency can
be found jointly and that the method does not depend on
the density of the observation noise but rather on it being
approximately white. Also, the cost function is observed to
very smooth as compared to that of MUSIC. The method
is shown in simulations to have good performance with the
root mean square estimation error approaching the Cramér-
Rao lower bound.

1. INTRODUCTION

In subspace methods, the full space is divided into a sub-
space known as the signal subspace that spans the space of
the signal of interest, and its orthogonal complement the
noise subspace. The properties of these subspaces are then
exploited for various estimation and identification tasks.Sub-
space methods have a rich history in sinusoidal parame-
ter estimation and are among the most eloquent estimators
available today. Especially for the estimation of sinusoidal
frequencies, a problem occurring in spectral estimation and
direction-of-arrival problems in array processing, thesemeth-
ods have proven successful during the past three decades.
Perhaps the most prominent subspace methods for frequency
estimation are the MUSIC (MUltiple SIgnal Classification)
method [1, 2] and the ESPRIT (Estimation of Signal Pa-
rameters by Rotational Invariance Techniques) method of
[3] while the earliest example of such methods is perhaps
[4]. Fundamental frequency estimation, i.e., the problem of
estimating the fundamental frequency of a set of harmoni-
cally related sinusoids, is an important component in many
speech and audio processing systems. Until recently, how-
ever, this problem has not received much attention in the
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literature on subspace-based estimation. In [5], a funda-
mental frequency estimator based on the subspace orthog-
onality property of MUSIC was proposed and its applica-
tion to analysis of speech and audio signals was demon-
strated. In later publications, this method was extended to
the multi-pitch case [6, 7]. The fundamental frequency es-
timation problem can be defined as follows. A signal con-
sisting of a set of harmonically related complex sinusoids in
additive white complex circularly symmetric noise,w(n),
for n = 0, . . . , N − 1, is considered, i.e.,

x(n) =

L∑

l=1

Ale
j(ω0ln+φl) + w(n), (1)

whereAl > 0 andφl are the amplitude and the phase of
the l’th harmonic, respectively. The task at hand is then
to estimate the fundamental frequencyω0, or, equivalently,
the pitch period, from a set ofN measured samples,x(n).
We propose a new method for fundamental frequency esti-
mation. It is a subspace method that exploits the structure
of the signal subspace to obtain the fundamental frequency
estimate. More specifically, the shift-invariance property
known from the ESPRIT algorithm [3] is used. The pro-
posed method is computationally simpler than that of [5]
and the associated cost function is very simple and much
smoother. The performance of the method is assessed in
Monte Carlo simulations comparing the root mean square
estimation error (RMSE) to those of MUSIC [5], the related
WLS fitting method [8], and the Cramér-Rao lower bound
for the fundamental frequency estimation, found in [9] for
the real case and in [5] for the complex case. We remark that
while we have assumed that the model orderL is known,
the method presented in this paper can be extended to in-
clude joint fundamental frequency and order estimation in a
straight-forward manner as described in [5] using the prin-
ciples of [10].

The remaining part of this paper is organized as follows.
In Section 2, the covariance matrix model that forms the
basis of this paper is briefly described. Then, the proposed
estimator is presented in Section 3. In Section 4, numerical



results are presented before the conclusions in Section 5.

2. COVARIANCE MATRIX MODEL

We start out by definingx(n) as a signal sub-vector con-
tainingM samples of the observed signal, i.e.,

x(n) = [ x(n) x(n + 1) · · · x(n + M − 1) ]
T

. (2)

with (·)T denoting the transpose. Assuming that the phases
{φl} are independent and uniformly distributed, the covari-
ance matrixR ∈ C

M×M of the signal in (1) can be written
as

R = E
{
x(n)xH(n)

}
= APAH + σ2IM , (3)

whereE {·} and(·)H denote the statistical expectation and
the conjugate transpose. We here require that the sub-vector
lengthM is chosen such thatL < M . Furthermore,P =
diag

(
[ A2

1 · · · A2
L ]

)
, andA ∈ C

M×L a full rank Vander-
monde matrix defined as

A =
[

a(ω0) · · · a(ω0L)
]
, (4)

wherea(ω) = [ 1 ejω · · · ejω(M−1) ]T . Also, σ2 denotes
the variance of the additive noise,w(n), andIM is theM ×
M identity matrix. We note thatAPAH has rankL. Let

R = UΛUH (5)

be the eigenvalue decomposition (EVD) of the covariance
matrix. Then,U contains theM orthonormal eigenvectors
of R, i.e., U =

[
u1 · · · uM

]
andΛ is a diagonal

matrix containing the corresponding eigenvalues,λk, with
λ1 ≥ λ2 ≥ . . . ≥ λM . The subspace-based methods are
based on a partitioning of the eigenvectors into a set be-
longing to the signal subspace spanned by the columns of
A and an orthogonal complement known as the noise sub-
space. LetS be formed from the eigenvectors correspond-
ing to theL most significant eigenvalues, i.e.,

S =
[

u1 · · · uL

]
. (6)

The subspace that is spanned by the columns ofS we de-
noteR (S) and is henceforth referred to as the signal sub-
space. Similarly, letG be formed from the eigenvectors
corresponding to theM − L least significant eigenvalues,
i.e.,

G =
[

uL+1 · · · uM

]
, (7)

whereR (G) is referred to as the noise subspace. Using the
EVD in (5), the covariance matrix model in (3) can now be
written asU

(
Λ − σ2IM

)
UH = APAH . Introducing

ΛS = diag
(
[ λ1 − σ2 · · ·λL − σ2 ]

)

we can write
SΛSSH = APAH . (8)

From this equation, it can be seen that the columns ofA

span the same space as the columns ofS and thatA there-
fore also must be orthogonal toG, i.e.,R (S) = R (A) and
R (G) ⊥ R (A).

3. PROPOSED ESTIMATOR

By post-multiplying (8) byS, the following relation be-
tween the signal subspace eigenvectors and the Vandermonde
matrix can be established (see [11]):

S = AC (9)

with C = PAHSΛ−1
S . Next, we define matrices theA1

and A2, constructed by removing the last and first rows
of A, i.e., A1 = [ IM−1 0 ]A andA2 = [ 0 IM−1 ]A.
Similarly, we define fromS, S1 = [ IM−1 0 ]S andS2 =
[ 0 IM−1 ]S. From these definitions and (9), the matrices
S1 andA1 can be related through the matrixC asS1 =
A1C. Then, due to the particular structure ofA known as
the shift-invariance property, the following can be seen to
hold:

A2 = A1D and S2 = S1Γ, (10)

with D = diag
(
[ ejω0 · · · ejω0L ]

)
. Then, the matrix re-

latingS1 to S2 can be written as follows:

Γ = C−1DC. (11)

Thus,Γ andD are related through a similarity transform.
The ESPRIT algorithm [3] is based onR (S) = R (A)

and the so-called shift-invariance property in (10) of the ma-
trix A. In practice, the expectation operator in (3) is re-
placed by a finite sum and the right relation in (10) holds
only approximately and the underlying assumptions may
only be approximations of the observed phenomenon. Con-
sequently, the sinusoidal parameters are found by construct-
ing the matricesS1 andS2 and then solving forΓ in S2 ≈
S1Γ in some sense. For instance,

Γ̂ = arg min
Γ

‖S2 − S1Γ‖
2
F =

(
SH

1 S1

)−1
SH

1 S2, (12)

or using total least-squares. The sinusoidal frequencies are
then found from the empirical EVD of̂Γ via the relation in
(11), i.e,

Γ̂ = QD̂Q−1 (13)

with Q containing the empirical eigenvectors ofΓ̂ and

D̂ = diag
(
[ ejω̂1 · · · ejω̂L ]

)
, (14)

where{ω̂l}
L
l=1 is a set of unconstrained frequencies. It is

not clear how to estimate the fundamental frequency from



these equations since the eigenvalues are not constrained to
be equally spaced on the unit circle. We proceed as follows.
We here assume that the eigenvalues and eigenvectors in
(13) are ordered by increasing arguments, i.e.,ω̂1 ≤ . . . ≤
ω̂L. Using the shift-invariance property in (10) and (11), we
can writeS2 = S1C

−1DC, and thus

S2 ≈ S1QD̂Q−1. (15)

Defining the diagonal matrix containing the unknown fun-
damental frequency as

D̄ = diag
(
[ ejω0 · · · ejω0L ]

)
(16)

we define a cost function

J , ‖S2 − S1QD̄Q−1‖2
F , (17)

from which the fundamental frequency can be estimated as

ω̂0 = arg min
ω0

J, (18)

where onlyD̄ depends onω0. Note that also the orderL can
be estimated using (17) (see, e.g., [10]). We see from (10)
that in the ideal case, we have equality in (15). So, instead
we may introduce the modified cost function as

J , ‖S2Q − S1QD̄‖2
F (19)

= ‖V − WD̄‖2
F (20)

with obvious definitions. The minimization of this norm
generally is not equivalent to minimizing (17) sinceQ is
not orthogonal. The cost function in can be rewritten as
follows (20)

J = − 2Re
(
TrVD̄HWH

)
(21)

+ Tr
{
VVH

}
+ Tr

{
WD̄D̄HWH

}
, (22)

where the last two terms can be seen to be constant. There-
fore, we introduceZ = WHV and redefine the cost func-
tion once again as

J , −2Re
(
Tr

{
ZD̄H

})
, (23)

and then use (18) with this cost function for finding the fun-
damental frequency. We remark that the proposed method
is superior to fitting the model matrix to the signal subspace
using the relation in (9) and the MUSIC method in terms of
computational complexity. One may wonder how the pro-
posed method is different from direct fitting of the funda-
mental frequency to the unconstrained frequencies in (15) a
la [8], i.e.,

ω̂0 = arg min
ω0

‖D̂ − D̄‖2
F , (24)

To answer this, we consider the ideal case, where the right
relation in (10) holds exactly, and we may write

S2 = S1Γ̂. (25)

Using this relation in (20), we get

J = ‖S1Γ̂ − S1QD̄Q−1‖2
F (26)

= ‖S1QD̂Q−1 − S1QD̄Q−1‖2
F (27)

= ‖S1Q
(
D̂ − D̄

)
Q−1‖2

F , (28)

which is different from the cost function in (24). The WLS
method of [8] is essentially a closed-form fit of the fun-
damental frequency to the unconstrained frequencies in a
weighted least-squares sense. However, unlike the proposed
method and the MUSIC method, it requires that the ampli-
tudes are known or are estimated.

The algorithm can be summarised as follows. First the
covariance matrix is estimated from the observed signal and
the EVD is calculated and partitioned into signal and noise
subspaces. The first and last row of the eigenvectors belong-
ing to the signal subspace are removed andΓ̂ is found using
least-squares or total least-squares. The EVD ofΓ̂ is calcu-
lated and subsequently the matrixZ. Finally, the cost func-
tion (23) is evaluated on a coarse grid. As we shall see, the
cost function is very smooth and thus only a few points are
needed on this grid. A refined estimate can then easily be
obtained using standard numerical optimization techniques.

4. EXPERIMENTAL RESULTS

We will now give a short example showing that the algo-
rithm can indeed estimate the fundamental frequency. In
Figure 1, the spectrum of the generated test signal in white
Gaussian noise is shown withω0 = 0.2501 for an SNR
of 20 dB with the SNR being defined as in [5] withN =
200. In all of the experiments reported here, we useM =
N/2. The cost functions that are obtained using the pro-
posed method is shown in Figure 2 along with that of the
MUSIC method of [5]. Specifically, the cost function in
(20) is shown. As can be seen, the cost function has a global
minimum near the true fundamental frequency. One notice-
able possible advantage, compared to the MUSIC method,
is that the ESPRIT cost function appears to be very simple
and smooth. Also shown in the figure is the cost function
for a direct fit ofD̄ to D̂ with ‖D̂ − D̄‖2

F being shown for
various fundamental frequencies. This last curve may help
in understanding the differences between minimizing (17)
or (20) and a direct fit.

We will now proceed to evaluate the RMSE of the esti-
mators under various conditions. In all these experiments,
we use 200 Monte-Carlo runs for each combination of pa-
rameters. The results are depicted in Figure 3 as a function
of the SNR forN = 200 with Al = 1 ∀l along with the
Cramér-Rao lower bound (CRLB) and the RMSE for the
MUSIC method. The results for a similar experiment but
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Fig. 1. Spectrum estimate, here the periodogram, of the test
signal.
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Fig. 2. ESPRIT and MUSIC cost functions (scaled) for the
test signal shown in Figure 1.

now with Rayleigh distributed amplitudes are shown in Fig-
ure 4. As can be seen from the figures, the proposed method
performs well for unit amplitudes, but the performance is
degraded when the amplitudes are drawn from a Rayleigh
distribution and it appears, like the WLS method, to be more
sensitive to this than the MUSIC method with the thresh-
old beneath which the results are not informative being in-
creased. Above the threshold, however, the method ap-
pears to perform equivalently or a bit better than the MUSIC
method. A likely explanation for this is that both the ES-
PRIT and WLS methods are sensitive to spurious frequency
estimates for the individual frequencies, which would cause
the ordering of the eigenvalues in (13) in forming the esti-
mate to be erroneous. Such spurious estimates are likely to

occur when sinusoids are closely spaced or the amplitudes
are small, like for the Rayleigh distributed amplitudes, since
this may cause signal and noise subspace eigenvectors of
the EVD to be swapped. Lastly, we have investigated the
performance of the estimators as a function of the funda-
mental frequency forN = 100 and an SNR of 40 dB. The
results are shown in Figure 5. The three methods seem to
exhibit similar thresholding behaviour for low fundamen-
tal frequencies. This thresholding effect is due to frequen-
cies of the individual sinusoids coming increasingly closer
as the fundamental frequency is lowered. Though, it ap-
pears that MUSIC is somewhat more robust to this than the
other methods. Despite these drawbacks, the method may
still be preferable to the MUSIC method in some cases since
the proposed method is computationally simpler than the
MUSIC-based method.

5. CONCLUSION

We have proposed a new method for the estimation of the
fundamental frequency of a set of harmonically related sinu-
soids. The method is based on subspace techniques where
bases for the signal and a noise subspaces are identified
from eigenvalue decomposition of the covariance matrix.
It is based on the a specific feature of the signal subspace
known as the shift-invariance property which was first ex-
ploited in ESPRIT. The performance of the method has been
assessed and been found to be good for unit amplitudes and
less good for Rayleigh distributed amplitudes compared to
other state-of-the-art methods, but the proposed method is
significantly simpler than, for example, a method based on
the subspace orthogonality property of MUSIC.
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