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THE CYCLIC MATCHING PURSUIT
AND ITS APPLICATION TO AUDIO MODELING AND CODING

Mads Græsbøll Christensen∗ and Søren Holdt Jensen

Dept. of Electronic Systems
Aalborg University, Denmark
{mgc,shj}@es.aau.dk

ABSTRACT

In this paper, we propose a method, named the cyclic matching
pursuit, that outperforms the standard matching pursuit and the
perceptual matching pursuit while preserving the computationally
efficiency of those methods. We exemplify the application of the
method to audio modeling and coding using a perceptual distortion
measure and demonstrate using audio signals that the method leads
to improved modeling capabilities.

1. INTRODUCTION

The problem of decomposing a segment of data into a linear com-
bination of some bases occurs in many applications. It occurs,
for example, in speech and audio applications involving modeling
and coding where so-called atomic decompositions have proven
to be useful. In such applications it is important that the com-
ponents are chosen such that they best describe the signal which
in audio modeling means that the perceptual distortion is mini-
mized. If the signal is decomposed intoL components that are
found such that a perceptual distortion measure is minimized, we
can claim in audio coding applications that at a given bit-rate (a
given number of components), the best possible performance is
achieved. In complexity constrained audio modeling, it is likewise
desirable the allowable number of components is spent the best
way possible. In audio modeling and coding, sinusoidal models
have proven to be an efficient representation of stationary, tonal
parts. In [1], a framework for perceptual distortion minimization
and sinusoidal component selection, i.e. frequency estimation, was
presented based on the distortion measure presented in [2]. Within
this framework, a number of well-known practical, but subopti-
mal, methods for decomposing signals into sinusoids, namely the
weighted matching pursuit (WMP) [3], the pre-filtering method
[4], and the perceptual matching pursuit (PMP) [5] were related
to each other and the optimal solution. Many different improve-
ments over the original matching pursuit [6] have been proposed
in recent years, like the forward and backward orthogonal match-
ing pursuits (see., e.g., [7, 8, 9, 10]). While these methods improve
upon the performance, i.e., achieve lower distortions, of matching
pursuit, the improvements usually come at the price of a signifi-
cant increase in computational complexity. Typically, the elegant
and computationally simple calculations associated with finding
the inner products in the original matching pursuit are lost in the
process. Also, these methods suffer from the problem that once
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atoms have been chosen, the are fixed in later iterations. In the
case of sinusoidal modeling, this means that once the frequency of
a sinusoids has been selected, it can no longer be changed. This
means that if a biased estimate is obtained in an early iteration of
such an algorithm, it is never able to recover. For an overview of
these methods and their properties, we refer to [10] and the refer-
enced therein.

In this paper, we propose a new method based on the frame-
work of [1] called the cyclic matching pursuit (CMP) for decom-
posing signals into a linear combination of bases. Although de-
rived in a particular context, the method may be easily generalized
to minimizing any distortion measure that is induced by an inner
product and any kind of dictionary. The method retains the sim-
plicity of the original matching pursuit for the 2-norm and the per-
ceptual matching pursuit for the perceptually weighted norm with
the computational complexity of the proposed method being pro-
portional to the complexity of those methods. The method is easy
to implement and does not require the notoriously difficult multidi-
mensional nonlinear optimization that may otherwise be required.
Also, the method is able to overcome an important weakness of
the forward and backward orthogonal matching pursuits, namely
that it can compensate for biases introduced in early iterations.

The remaining part of this paper is organized as follows: First,
we briefly review the framework of [1] in Section 2. In Section 3
we then proceed to present the new method, i.e., the cyclic match-
ing pursuit, before we give an illustrative signal example in 4. Fi-
nally, we conclude on the work in Section 5.

2. FRAMEWORK

For simplicity, we will make use the complex notation and signals.
Consequently, we start out by calculating theN so-called down-
sampled discrete-time analytic signal samplesx(n) from 2N real
input samplesy(n). The analytic signal is defined asζ(n) =
y(n) + jH{y(n)} whereH{·} denotes the Hilbert transform.
x(n) is then obtained asx(n) = ζ(2n) for n = 0, . . . , N − 1.
This representation is valid for largeN .

Using the auditory masking model proposed for sinusoidal au-
dio coding in [2] the distortionD for a particular segment can be
written as

D =

K−1
X

k=0

P (k)|E(k)|2, (1)

whereP (k) is a frequency domain real, positive weighting func-
tion andE(k) =

P

N−1
n=0 w(n) [x(n) − x̂(n)] exp(−j2πk/Kn)

is theK point Fourier transform (withK ≥ N ) of the weighted



reconstruction error witĥx(n) being the reconstructed signal and
w(n) the analysis/synthesis window. In the following discussion,
we assume a rectangular window because the relations between
the approximate methods and the exact methods to be discussed
do not hold otherwise. However, the use of a different window can
easily be incorporated in both the PMP and the proposed CMP by
applying the window tox(n) andx̂(n). The perceptual weighting
function is chosen as the reciprocal of the masking curve which
is calculated using the model proposed in [2]. Definingx =
[ x(0) · · · x(N − 1) ]T , x̂ = [ x̂(0) · · · x̂(N − 1) ]T and as-
suming thatK > N , the distortion measure can be put into matrix-
vector notation, i.e,
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wheree = x − x̂ is the error signal vector. The matrixH is the
perceptual weighting matrix having the following structure

H =

2

6

6

6

4

h(0) h(K − 1) · · · h(1)
h(1) h(0) · · · h(K − 1)

...
...

. . .
...

h(K − 1) h(K − 2) · · · h(0)

3

7

7

7

5

, (3)

with h(n) = 1
K

P

K−1
k=0

p

P (k) exp (j2πkn/K). The distortion
in (2) can also be written as
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whereH̄ is a K × N matrix containing theN first columns of
H. We note in passing that̄H is still circulant but not square.
H̄HH̄, on the other hand, is not circulant, unlikeHHH, but still
Toeplitz. ForH̄ = I whereI is the identity matrix, the distor-
tion measure is the usual 2-norm. As can be seen, the perceptual
distortion measure can be interpreted as a particular kind of linear
transform, namely a linear filter. Interestingly, the eigenvectors
of such a matrix are the Fourier basis vectors and asymptotically
sinusoids of arbitrary frequency are eigenvectors of this matrix.
The circulant matrixH ∈ R

K×K , is defined by its first column
h = [ h(0) · · · h(K − 1) ]T . Next, defining the discrete Fourier
transform (DFT) matrix as

F =
1√
K

ˆ

f0 f1 · · · fK−1

˜

, (5)

with thekth vectorfk =
ˆ

f0
k · · · fK−1

k

˜T

being composed from

fk = exp(−j2πk/K) (6)

Furthermore, settingQ = FH and Λ =
√

K diag(Fh), the
eigenvalue decomposition (EVD) ofH can then be written as

H = QΛQ
H . (7)

We see that the function of the perceptual weighting matrix can
be seen as an orthogonal transformation followed by a weighting.
This is the result that leads to the equivalence of a number of meth-
ods in [1] both asymptotically as well as in special cases for a finite
number of samples.

The frequency estimation problem can now be stated. Given a
real observed signalx(n) for n = 0, . . . , N − 1, find the parame-
ters of the signal of interest̂x(n) in additive noisee(n):

x(n) = x̂(n) + e(n). (8)

In our case the signal of interestx̂(n) is a sum of sinusoidal com-
ponents, i.e.,

x̂(n) =
L

X

l=1

al exp (jωln) , (9)

whereal = Al exp (jφl) with each component having an ampli-
tudeAl, phaseφl, and frequencyωl. The difficult part is find-
ing the nonlinear parameters, i.e., the frequencies. The perceptual
nonlinear least-squares estimates of the frequencies{ωl}L

l=1 are

{ω̂l} = arg min
{ωl}

‖H̄(x − Za)‖2
2. (10)

The matrixZ is defined fromzl = exp(jωl) as

Z =

2
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. (11)

Furthermore, we have thata = [ a1 · · · aL ]T . For convenience,
we introduceW̄ = H̄HH̄. The complex amplitudes can be esti-
mated given the frequencies{ωl} using linear least-squares as

â =
“

Z
H
W̄Z

”−1

Z
H
W̄x. (12)

We can now write the estimates as the set of frequencies that min-
imize the perceptual distortion, i.e.,

{ω̂} = arg max
ω

x
H
W̄Z

“

Z
H
W̄Z

”−1

Z
H
W̄x. (13)

However, solving this is not computationally feasible due to the
nonlinear nature of the frequencies. Instead, an iterative estima-
tion procedure is often used. We will now proceed to describe a
number of such methods that have been reported in the literature
within the framework of the minimization of the perceptual dis-
tortion measure defined in (1). First, we define the residual vector
at iterationl asrl =

ˆ

rl(0) · · · rl(N − 1)
˜T

with rl+1(n) =
rl(n)− âl exp (jω̂ln) which is initialized asr1(n) = x(n). In the
perceptual matching pursuit [11], sinusoids are chosen iteratively
one at the time as the minimizer of the perceptual distortion of this
residual, i.e.,

ω̂l = arg min
ω

‖H̄[(rl − za)‖2
2. (14)

with z = [ exp(jω0) · · · exp(jω(N − 1)) ]T . This results in the
following frequency estimation criterion1:

ω̂l = arg max
ω

|
˙

H̄z, H̄rl

¸

|2

‖H̄z‖2
2

(15)

with 〈x,y〉 denoting the usual discrete inner product2 xHy that
induces the 2-norm‖ · ‖2. The estimates can be obtained using
two FFTs per iteration. Consider now that we choose the signal
model componentz such that it is an eigenvector of the perceptual
weighting matrix or at least a good approximation, i.e,

H̄z = λz. (16)

1We here ignore the amplitude estimates since these can be foundfrom
the same inner products that are used in the frequency estimates.

2It is also possible to redefine the inner product such that it induces the
perceptually weighted norm.



In the following we assume thatK = N , i.e., H̄ = H since it
cannot have an EVD otherwise. It could be seen from (7) that the
perceptual weighting matrix may be seen as a unitary transforma-
tion followed by a weighting (the eigenvalues) of the individual
directions (the eigenvectors). From this perspective, (16) can be
interpreted as the special property of the chosen model that it is
invariant to the unitary transformation of the perceptual weight-
ing matrix. Using these observations, the frequency estimation
criterion of the PMP can be reduced to the so-called pre-filtering
method that has been applied to th perceptual frequency estimation
problem and audio coding in [4]. Specifically, the signal is filtered
before estimation and quantization, i.e.,

ω̂l = arg min
ω

‖H̄rl − λza‖2
2 = arg max

ω

˛

˛

˙

z, H̄rl

¸˛

˛

2

N
. (17)

This estimator can obviously be implemented efficiently using an
FFT of the pre-filtered signal. The pre-filtering can of course
also be implemented this way. We see that the complexity of the
method can be greatly reduced this way. Next, we note that the
inner product can be written as〈z,Hrl〉 = λ∗vHrl, whereby the
frequency estimation criterion then becomes

ω̂l = arg max
ω

|λ|2 |〈z, rl〉|2
N

. (18)

We see thatλ can be interpreted as a frequency dependent weight-
ing, and the estimation criterion in (18) is therefore identical to
the weighted matching pursuit proposed in [3] which also can be
implemented in a simple way.

Comparing the optimal estimator (10) with the iterative, sub-
optimal approximations in (15), (17), and (18), we can give some
insights into in what cases the estimators may give identical results
and in what cases they may differ. For a distinct set of frequencies
and a large number of samples, the estimators can be expected to
yield similar results since the interactions between the individual
components will be come smaller asN grows. Therefore, one
would expect that the estimates will differ whenN is small or the
sinusoids are not well-separated in frequencies. This happens, for
example, for transients signals or for complicated mixtures of sig-
nals with many harmonics. Similarly, it can be expected that the
improvement also will depend on the number of sinusoids that are
to be extracted.

3. THE CYCLIC MATCHING PURSUIT

We will now proceed to propose a new method, called cyclic match-
ing pursuit (CMP), for minimization of the perceptual distortion
measure defined in (1). Although derived in this particular context,
the method may be easily generalized to minimizing any distor-
tion measure that is induced by an inner product. The methods re-
tains the simplicity of the original matching pursuit for the 2-norm
and the perceptual matching pursuit for the perceptually weighted
norm and is thus easy to implement. We note in passing that the
approach introduced next is conceptually reminiscent of iterative
techniques found in estimation theory such as those in [12, 13].
For more on such iterative methods, we refer the interested reader
to [14] and the references therein.

First we will describe the new algorithm in general terms be-
fore showing the exact equations. Letθl = (ωl, al) denote the
parameters associated with thelth complex sinusoid and let

D(θ1, . . . , θL) (19)

denote the distortion that results from synthesizing the signal using
the parametersΘ = {θl}L

l=1. Using this notation, we can write
the iterations of the matching pursuit as

θ̂1 = arg min
θ1

D (θ1)

θ̂2 = arg min
θ2

D
“

θ̂1, θ2

”

...

θ̂L = arg min
θL

D
“

θ̂1, . . . , θ̂L−1, θL

”

.

(20)

Since the distortionD(·) is minimized in each step, it follows that
the distortion is a non-increasing function of the model orderL.
The efficient implementation of matching pursuit stems from each
minimization being simpler than finding all parameters in{θl}L

l=1

simultaneously. The approach proposed here is to optimize the pa-
rameter set iteratively given an initial set of parameters{θ(1)

l
}L

l=1

as

θ̂
(i+1)
1 = arg min

θ1

D
“

θ1, θ̂
(i)
2 , . . . , θ̂

(i)
L

”

θ̂
(i+1)
2 = arg min

θ2

D
“

θ̂
(i+1)
1 , θ2, θ̂

(i)
3 , . . . , θ̂

(i)
L

”

...

θ̂
(i+1)
L

= arg min
θL

D
“

θ̂
(i+1)
1 , . . . , θ̂

(i+1)
L−1 , θL

”

, (21)

with i being the iteration index. Again, since the distortion is min-
imized in each step, it can be seen that the distortion is a non-
increasing function. Similarly, it can easily be verified that the
distortion is a non-increasing function across iterationsi since

D
“

θ̂
(i+1)
1 , θ̂

(i)
2 , . . . , θ̂

(i)
L

”

≤ D
“

θ̂
(i)
1 , . . . , θ̂

(i)
L

”

. (22)

We propose to build the model iteratively by increasing the model
order as follows. Given the set of parameters{θ̂(1)

l
}K−1

l=1 that were
estimated for theK − 1th order model, the model order is incre-
mented by one and the parameters associated with the new sinu-
soid θ̂K are found as

θ̂K = arg min
θk

D
“

{θ̂l}K−1
l=1 , θK

”

. (23)

Then the parameter set for theKth order model{θ̂(1)
l

}K

l=1 are op-
timized in a cyclic manner for allk andi = 1, . . . , I as

θ̂
(i+1)
k

= arg min
θk

D
“

{θ̂(i+1)
l

}k−1
l=1 , θk, {θ̂(i)

l
}K

l=k+1

”

, (24)

with the estimates being initialized aŝθ(1)
l

= θ̂l, ∀l. The whole
process is then repeated by incrementing the model order by one
and finding the new parameters using (23) by using the parameters
obtained in (24), i.e. by settinĝθl = θ̂

(I)
l

, ∀l. The step in (23)
can also be written in the form of (23) by setting the amplitude in
{θ̂(1)

l
}L

l=K+1 with K ≤ L to zero. We refer to the step in (23)
as the augmentation step and the step in (24) as the optimization
step. It is of course possible to skip the optimization step until the
desired number of sinusoids have been reached. This corresponds
to initializing the optimization step by estimates obtained using
matching pursuit.



Next, we will re-write the optimization step in CMP in (24)
into the notation of the framework presented in Section 2. First,
we calculate the residual used for obtaining the parameters of the
kth sinusoid in theith iteration from the parameter setΘ \ θl as

r
(i)
k

(n) = x(n) −
k−1
X

l=1

â
(i+1)
l

exp
“

jω̂
(i+1)
l

n
”

−
L

X

l=k+1

â
(i)
l

exp
“

jω̂
(i)
l

n
”

(25)

and construct the corresponding residual vectorr
(i)
k

. We can now
write the frequency estimation criterion as the minimization of the
perceptual distortion of this residual, i.e.,

ω̂
(i+1)
k

= arg min
ω

‖H(r
(i)
k

− za)‖2
2 (26)

= arg max
ω

˛

˛

˛

D

Hz,Hr
(i)
k

E˛

˛

˛

2

‖Hz‖2
2

, (27)

and the associated optimal complex amplitude estimate as

â
(i+1)
k

= arg min
a

‖H(r
(i)
k

− za)‖2
2 (28)

=

D

Hz,Hr
(i)
k

E

‖Hz‖2
2

. (29)

Since equations (27) and (29) have the same form as the PMP
in (15), the CMP too can be implemented efficiently using two
FFTs per iteration [11]. If very accurate estimates are desired, nu-
merical nonlinear optimization can easily be applied to the maxi-
mization of (29) given the initial coarse estimates obtained using
the FFT method. Since such an optimization still would be one-
dimensional, it is computationally much simpler than the approach
presented in [15] where allL sinusoids are optimized using New-
ton’s method. Note that the augmentation step in (23) too can be
described this framework by settingal = 0 for l > k in the cal-
culation of the residual in (25). The approximations used in de-
riving the WMP and the pre-filtering method also can be applied
in this framework. However, since these methods do not minimize
an explicit distortion measure, it is unclear how the convergence
properties would be.

Regarding the number of iterations used in the optimization
step, we here regard it as a parameter that is chosen by the user in
accordance with theavailable resources. It is of course possible to
use termination criteria based on the convergence of the distortion.

4. AN EXAMPLE

We will now illustrate the application of the proposed method for
audio modeling using the perceptual distortion measure. We will
here focus on the common case of a sinusoidal model using a 30
ms Hanning analysis-synthesis window and an FFT size of 4096.
As has already been discussed, the CMP can be expected to outper-
form the PMP whenever there is significant interaction between the
model components. This can be expected whenever we are deal-
ing with complicated signals containing closely spaced sinusoids,
modulated sinusoids or many sinusoids. Therefore, we will use a
segment of the castanet signal from the EBU SQAM disc which is
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Fig. 1. Original signal, an excerpt of the castanet signal on the
EBU SQAM disc.
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Fig. 2. Signal model obtained for 100 sinusoids using the PMP.

samples at 44.1 kHz. The signal is shown in Figure 1. Matching
pursuit will tend to model this signal with many closely spaced si-
nusoids to capture the strong modulation. Figures 2 and 3 show
the sinusoidal signal models that are obtained using the PMP and
CMP, respectively. In both cases 100 sinusoids are used and 10
the CMP is set to perform 10 iterations in the optimization step.
From the figure, it can be seen that the resulting signal models do
not match the signal well. The distortion as a function of the num-
ber of sinusoids are plotted for the two methods, CMP (dashed)
and PMP (solid), in Figure 4. It is important to note that the CMP
both results in a higher rate of convergence for a low number of
components and, it would seem, a lower saturation level for a high
number of sinusoids. As can be seen from the figures, the CMP is
better at modeling the complicated signal with the same number of
sinusoids and it is also better for all possible numbers of sinusoids.
It should be stressed that we here only optimize over a discrete set
of frequency points, here 4096, i.e., we do not employ any kind
of numerical optimization technique once the frequencies of sinu-
soids have been selected using the FFT-based implementation of
the PMP and CMP. We remark that the interaction effects between
components depends on the segment lengthN .
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Fig. 3. Signal model obtained for 100 sinusoids using the proposed
method, the CMP.
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Fig. 4. Perceptual distortion as a function of the number of sinu-
soids for the two methods, CMP (dashed) and PMP (solid).

5. CONCLUSION

A new algorithm based on the principles of matching pursuit has
been proposed. The new method, called the cyclic matching pur-
suit, is based on a iterative, cyclic minimization of a distortion
measure where the parameters of each model component are re-
fined in each iteration according to a distortion measure. The
method is conceptually simple and easy to implement and does not
require any multidimensional nonlinear optimization. The method
has been derived in the context of sinusoidal audio modeling based
on a perceptually relevant distortion measure, and an illustrative
audio example showing its performance has been given. The ex-
ample shows that the method is superior to the usual matching pur-
suit algorithms when modeling complicated signals or using many
components. As a special case, the method reduces to the usual
matching pursuit or the perceptual matching pursuit, depending
on the distortion measure.
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